
1

Parallel Genetic Algorithms

Master’s Thesis
Laurens Jan Pit

30/08/95
Department of Computer Science

Leiden University



2



3

 Preface

Can.

Leiden, 30/08/95

Laurens Jan Pit



4



5

 Abstract

In 1992 Boers and Kuiper designed a method that automatically searches for opti-
mal modular artificial neural network architectures. For this they used modular tech-
niques based on biological systems. A genetic algorithm imitating evolution is used
to find recipes which are used by an L-system which imitates natural growth. From
the recipes a modular artificial neural network is constructed which imitates the
human brain on a very small scale. Preliminary results indicated that modular net-
works can be found that outperform standard solutions. One drawback is the large
amount of computing power needed to evaluate each network architecture.

The goal of this research was to implement the algorithms on a parallel computer
(CM-5) in order to allow for larger simulations to investigate the real potential of
the methods proposed. The main theme is therefore parallel genetic algorithms imi-
tating evolution on a number of separate islands which once in a while exchange
individuals.
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Chapter 1

Introduction

Everything around us is part of some system. The goal of research is always to
understand and describe how a system works. One of the most fascinating systems
to study is the brain-system. It is however also one of the most incomprehensible
ones, with its parallel activity of a myriad of neurons.

With the introduction of computers researchers have tried to model the system
‘brain’ (or simple brain-like functions) into the system ‘computer’. However, this
modelling has not been very successful in the fifties and sixties because the models
were not complex enough to solve interesting problems and also because the com-
puters were not powerful enough. The seventies and eighties solved this to some
extent. The models could achieve solutions for simple problem areas, but more
complex problems couldn’t be solved within a feasible period of time. Thus the
models were not practical.

This thesis is aimed to solve some practical problems. The brain will be modelled
on a small scale by artificial neural networks which can be characterized as being
heterogeneous, modular and asynchronous. The design of these networks is a com-
plicated matter for which no standard rules exist. In 1992 Boers and Kuiper devel-
oped a method that leaves the design of modular neural networks to the computer
[4]. To this end they also used two systems that are, like artificial neural networks,
models of systems from nature. They are a genetic algorithm for the evolutionary
search towards better neural networks, and an L-system for the growth and develop-
ment of network architectures. The evolutionary search for architectures of modular
neural networks is a very time-consuming process and is during this research imple-
mented using parallel computing.

I support Minsky and Papert’s view stated in their epilogue [40]: “We maintain that
the scientific future of neural networks is tied not to the search for some single, uni-
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versal scheme to solve all problems at once, but to the evolution of a many-faceted
technology of brain design. It encompasses good technical theories about the analy-
sis of learning procedures, of useful architectures and of organizational principles to
use when assembling these components into larger systems.”

1.1  Problem Solving

In principle the brute force method, i.e. generate and test every possibility, can be
used to solve every problem of which a representation of the search space is known
and where the solution can be recognized. However, this is often hardly practical
when solving real-world problems. Even with the most powerful computers it can
take ages to seek all possible solutions. Even with a seemingly simple task to build a
house from ten wooden blocks there are more possibilities than an individual could
ever try in its whole life.

An improvement to this blind search by generating and testing is when a method can
be used with which progression can be signalled. For instance, we could find the top
of a hill by following the path of someone who is climbing a hill in the dark —
every time, with each step, to climb as steep as possible.

For simple problems this is a useful tactic, but when the problem gets more compli-
cated it could be as difficult to recognize progression as it is to solve the actual prob-
lem. The hill-climber will end up on a hill, but without an overview probably on one
that is not the real top in the area. There is no full-proof method to prevent this.

The most powerful method we could use to solve complex problems is one where
the problem is split into several simpler problems, which can be solved independ-
ently from each other. Much of the research in the Artificial Intelligence area is
focused on this subject of splitting problems into smaller subproblems, which in
turn also could be split into even smaller subsubproblems. Thus we seek formodu-
larity.

In some parts of the Artificial Intelligence world, research is done by incorporating
knowledge into the computer programs. This has proven to be an effective method
for a lot of problems that humans find difficult to solve. However, for every new
problem new knowledge has to be built into the program. Therefore it would be
more efficient if we had programs appropriate for a wide range of problems, and not
for one specific task. Also, problems which humans find relatively easy to solve, for
example building a house with 10 wooden blocks, seem too difficult to solve with
programs which have built-in knowledge. In this thesis I will concentrate on those
seemingly simple problems.

1.2  Artificial Life

One approach that turned out to be very effective for solving many problems is the
reverse engineering approach. This means that one looks for something that works,
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tries to understand it, and then rebuild it. In this thesis it means that I will look at
nature, because of its excellent results. All the methods used are kept asbiologically
plausible as possible. With these methods a system will be composed of the simplest
underlying mechanisms of natural evolution in order tosynthesize life-like behav-
iour, orArtificial Life.

Specifically, I will focus on bottom-up artificial life simulations of evolving popula-
tions, because evolution is the most important property of natural life, and is respon-
sible for the diversity, adaptation and ecological complexity that we see today and
know from fossil record.

Many think evolution takes care of life, i.e. that evolution has the goal to make sure
that organisms survive and reproduce. They only see the survivors, and not that
most mutated animals die before they can give birth to children. The species we see
are those whose predecessors developed effective surviving mechanisms. That’s
why it seems that their behaviour is to serve their life, but only in the environments
in which their predecessors evolved.

Evolutionists hold that random changes are responsible for the development of liv-
ing species. Yet a lot of people think in a theological way which means they hold
that evolution is orientated towards certain goals. This last idea is probably based on
the correct insight into solving problems and the incorrect insight into the way evo-
lution develops. The correct insight is that humans don’t invent aeroplanes by coin-
cidence or without certain goals. The human mindis goal orientated. The incorrect
insight however is to think that nature is out to solve problems, such as how to build
flying animals.

Because we are in the engineering domain we do have certain goals we set for our-
selves: we want to solve certain problems. For this we usegenetic algorithms which
are inspired by natural evolution, but where little effort has been done to model it in
detail.

1.3  Genetic Algorithms

Genetic algorithms can be viewed as a biological metaphor of Darwinian evolution.
The fitter an individual is, the more chance it will have to survive in its environment
and produce offspring.

In GAs (genetic algorithms) a population of strings is used, where each string can
be viewed as the genotype of an individual with a set ofchromosomes each consist-
ing of a number ofgenes. Each gene represents a parameter of the problem to be
solved. Depending on how well an individual is at solving the given problem it is
given an award in the form of afitness value. Individuals which do well get a high
fitness, those who do poorly get a low fitness. As with Darwinian evolution the
genes of individuals with higher fitness will have a higher chance to survive than
those with lower fitness. Those with low fitness will be replaced by new individuals
having high fitness. A new population, orgeneration, is created by using selection
and recombination mechanisms on the strings based on their fitness. The most com-
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monly used operators areselection, crossover, inversion andmutation.A more thor-
ough treatment of GAs is given in chapter 2.

1.4  L-systems

L-systems can be viewed as a metaphor of biological growth and development of
living organisms.

The growth of living organisms is governed by genes. Each living organism starts
from one cell which contains all the genetic information (thegenotype) necessary to
develop into its final form (thephenotype). The genetic information is not a blue-
print of how the organism will look in the end, but can be seen as arecipe [12]. This
recipe is followed by each cell, not by the organism as a whole. The way a cell will
behave depends not only on the genes from which information is extracted but also
on the information read in the past and its cellular environment. Thus the develop-
ment of a cell is a local matter.

The biologist Aristid Lindenmayer modelled this development in plants with anL-
system [38]. An L-system consists of arewriting mechanism, so that a string can be
rewritten into another string by rewriting all the characters in the stringin parallel
into other characters. Which rule is used on a character (or set of characters)
depends on the character itself and its neighbouring characters. The resulting string
can be interpreted in many ways. Here a G2L-system will be used which is a special
case of an L-system . A G2L-system consists of a special rewriting mechanism and
interpretation where a string is translated into a graph [6]. L-systems and G2L-sys-
tems will be described in more detail in chapter 6.

1.5  Artificial Neural Networks

The human brain is considered to exhibitintelligent behaviour. Although the mean-
ing of intelligence is somewhat vague, maybe even an illusion we have of ourselves,
humans have tried for decades to create computer programs which can be called
intelligent.

Many attempts couldn’t satisfy the expectations. Deterministic programs of which
the behaviour could in principle be predicted (for example the class of rule based
systems) were not satisfying. When we use thereverse engineering approach again,
we could take a look at what we know about the way the brain works. Then we
could view that intelligent processing can emerge from a large number of simple
computational units (neurons), each sending excitatory and inhibitory signals to
each other. Because these neurons are relatively easy to model it is in principle pos-
sible to build an artificial neural network (ANN) that can compete with the com-
plexity of a human brain. Here we face a practicality problem though, because in a
human brain the amount of neurons and connections between them are huge. The
current computing powers are too low to store this complexity. Therefore large sim-
plifications have to be made in ANN.
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Thus an ANN can be viewed as a biological metaphor of the human brain. A neuron
in the brain is represented by anode. An ANN is built up from a number of nodes
which are connected to each other. Each node receives some input, does some com-
putation on this input and sends the result of this computation as output to other
nodes. For the ANN to communicate with the outside world some nodes are desig-
nated asinput nodes (senses) and some nodes asoutput nodes (expression). All
other nodes that have no direct link with the outside world are calledhidden nodes.

As with humans, an ANN has to betrained in order to perform a certain task. In this
thesisBack Propagation Networks (BPN) are used as ANNs, andsupervised learn-
ing as the method to train a network. In supervised training the network is repeat-
edly offered so-calledinput/output pairs until the network has learned the problem
or until the teacher gives up. Each input/output pair specifies the input the network
will get and the desired output the network should produce. The input values are
propagated through the network, until some output is produced. The difference
between the produced output and the desired output is used to calculate an error for
each output node. With these errors the internal connections between nodes are
adjusted. These errors are back propagated through the net, until it reaches the input
nodes. This way the whole internal representation of the specific problem is
changed.

1.6  GA, G2L and ANN combined

Boers and Kuiper designed a method that automatically searches for optimal modu-
lar neural networks [4]. For this they used modular techniques based on biological
systems. A GA was used to find recipes which are used by the G2L-system to con-
struct a graph which represents the architecture for an ANN. Globally the method is
summarized in the following 3 steps:

1. A GA generates a population of bit-strings, which are the chromosomes of the
individuals. Individuals with high fitness will have a higher probability to pro-
duce offspring. The fitness of a newly created individual is determined in step 3.

2. A chromosome from step 1 is decoded into a set of production rules. Using the
G2L-system, these rules are used to rewrite strings starting from an axiom, and
the resulting string is then interpreted as a graph. This graph forms the specifica-
tion of the architecture for an ANN.

3. The ANN from step 2 is trained to solve a particular task. Depending on how
well the network could learn the task a fitness is determined. This fitness is
returned to the GA, specifically to the chromosome which contained the produc-
tion rules that resulted into the network.

1.7  Research Goals

Preliminary results from using the method of Boers and Kuiper suggested that the
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method does work, and finds modular neural networks that perform better than net-
works without the specific architecture. One of the problems they encountered,
however, was the amount of computing power needed. The goal of this research was
to port their code containing the algorithms to a parallel computer in order to get
results faster.

Specifically, in this thesis an investigation is done intoparallel genetic algorithms.
The idea is to eventually let several GAs run simultaneously on many processors,
getting more ANNs evaluated, so more complex real-world problems can be tack-
led. In order to get the application of Boers and Kuiper up and running on a parallel
hardware machine several adaptations and rewriting of code had to be made.

Chapter 2 gives an extensive overview of genetic algorithms. Chapter 3 reviews the
various parallel variants of GA which can be considered as new paradigms within
the field of GA. In chapter 4 results from several experiments with GA and it’s par-
allel variants are presented. Parallel GA was applied to the famous travelling sales-
person problem, the Schwefel optimization function, and Walsh polynomials.
Chapter 5 and 6 give minimal introductions into L-systems and ANNs respectively.
Chapter 7 describes some implementational details of the software developed.
Chapter 8 combines the theory of GA, G2L-system and ANN, and results from sev-
eral experiments using these theories are presented. Finally this thesis is concluded
in chapter 9 and recommendations for further research are given.
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Chapter 2

Genetic Algorithms

In this chapter the sequential genetic algorithm (GA) is described which is used as
the basis for parallel genetic algorithms. GAs are stochastic search and optimization
techniques which were inspired by the analogy of evolution and population genet-
ics. They have been demonstrated to be effective and robust in searching very large,
varied spaces in a wide range of applications. GAs were first introduced by John
Holland [29].

2.1  Overview

Looking at nature one sees living species, which grow and then interact with each
other. A specie is characterized by its genotype, which is independent of the envi-
ronment it lives in. Genetic operators function on the genotypic level while the
selection mechanism operates on the phenotypic level. According to Darwin, the fit-
ter a specie, the higher chance it has to survive and thus produce offspring [10]. The
environment determines the phenotypic expression of the genotype and bias the sys-
tem towards the selection of fitter species.

Evolution is a biological metaphor of genetic algorithms. Chromosomes are repre-
sented by bit-strings (zeros and ones). The bit-string contains multiple sub-strings,
or genes. An individual is coded by one or more of these bit-strings. Genetic opera-
tors like crossover, inversion and mutation are applied to these bit-strings, each with
a certain probability. Thus sometimes it could happen that a child is just a copy of
one of its parents. Each individual gets a fitness value determined by an evaluation
function. The higher the fitness, the better the coded representation of the individ-
ual. A group of individuals makes up a population. These individuals in the popula-
tion are then going through an evolution process, in order to direct the search for
new individuals with higher fitnesses which give better solutions to the optimization
problem at hand. In pseudo-code this process looks as follows:
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g = 0;
initialize population P(g);
evaluate P(g);
while not done do

g = g + 1;
P’(g) = select parents P(g-1);
recombine P’(g);
mutate P’(g);
evaluate P’(g);
P(g) = survive (P(g-1),P’(g));

od;

There are four fundamental differences between genetic algorithms and more tradi-
tional optimization and search procedures. These are in short [20]:

1. GAs work with a coding of the parameter set, not the parameters themselves.
2. GAs search from a population of points, not from a single point.
3. GAs use pay-off (objective function) information, not derivatives or other auxil-

iary knowledge.
4. GAs use probabilistic transition rules, not deterministic rules.

Each parameter of the problem to optimize is encoded in a bitstring, which can be
viewed as a gene. The set of the parameters is encoded by concatenating all the bit-
strings, which can be viewed as a chromosome. The devising of a suitable coding
for a problem is done by the user of the genetic algorithm. The algorithm itself has
no knowledge about the meaning of the coded strings. There are parameters for the
genetic algorithm itself, but usually they remain fixed for a given problem. Looking
at nature one can see unchanging parameters too, like the gravitation-force constant,
the weight of an electron, etc. These parameters do affect the evolution, since the
individuals in the environment will adapt themselves to this parameter space auto-
matically.

Genetic algorithms don’t work from a single point in the search space, but from an
entire population of points. Each point is assigned a fitness value, which gives an
indication of how good the solution is. Take for example a look at figure 2-1. It vis-
ualizes the fitness as a function over the space of possible genetic combinations
using 2 genes for one individual in a particular environment. Fitness should not be
regarded as an attribute of any particular gene, but rather of the total combination of
genes, therefore the entire genotype. Working from a single point, for example start-
ing at the origin, traditional search procedures like hill-climbing would likely end
up at peak P1. At that point the algorithm has found an optimum and stops search-
ing. However, it is a local optimum, and it has missed the global optimum at peak
P2.

Using a genetic algorithm one starts at many different random points in the search-
space at the same time. A population is represented as a cloud of points on the fit-
ness surface, one for each individual. The more diverse the population, the more
scattered it is on the surface. Individuals with high fitnesses have a higher probabil-
ity to be selected for contributing offspring than individuals with lower fitnesses.
Therefore a population tends to move uphill in the fitness surface. Also, over many
generations more points will concentrate around certain regions in the landscape. In
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this way it is more likely that one of the points in figure 2-1 will work its way up to
peak P2.

The fitness value is calculated by an objective evaluation function. This means that
the genetic algorithm does not need specific knowledge about the problem to solve.
It only needs the fitness value, not the meaning of the value. Thus the genetic algo-
rithm can be used on a wide range of problems without changing the code of the
algorithm. However, because of this blindness to auxiliary information it can place
an upper bound on the performance of the algorithm when compared to methods
which are specially designed for the problem at hand.

Genetic algorithms use probabilistic transition rules to guide their search, instead of
deterministic rules. This may sound as a simple random search, but it’s not. Chance
moves the population in a random direction upon the fitness surface, but it is the
selection mechanism that is used to direct the search towards regions in the search
space where there is a probable improvement.

2.2  Selection

The selection mechanism of genetic algorithms operates on the phenotypic level of
the individuals in the population. Every individual decodes the sought parameters of
the problem, where each parameter is encoded as a gene on a chromosome. A gene
is represented by a set of characters, and a chromosome by a string. According to
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figure 2-1Example 2-dimensional landscape or fitness surface. The height of the sur-
face is the fitness for each gene combination in a particular environment.
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the fitness-values of the strings those strings with higher values will have higher
probability to be selected for contributing to one or more offspring in the next gen-
eration. This artificial operation can be viewed as a metaphor of natural Darwinian
survival. In nature an individuals fitness is determined by its ability to survive all
kinds of obstacles long enough in its environment where it becomes reproductive. In
the artificial environment the objective evaluation function only cares about life or
death of the string-individual.

Table 2-1 shows a sample population of 7 strings. Each string is a binary representa-
tion x of length 8 of a decimal valuey. The evaluation function used isF(y) = .

In this thesis three different selection mechanisms have been tried: theroulette
wheel selection described by Goldberg [20], therank based selection described by
Whitley [56], and thetournament selection as described by Goldberg and Deb [22].

With roulette wheel selection strings are assigned a probability proportional to their
evaluation fitness. Many define the probability that individualy is chosen as a parent
as:

wheren is the population size, andsj is evaluation score associated with the individ-
ual labelledj. Strings are entered into the mating pool which are selected according
to those probabilities. This is like spinning a roulette wheel, see figure 2-2. Special
care should be taken that the ratio between the highest and lowest probability is not
too large. That may lead to the undesirable situation that certain individuals quickly
dominate the population and thus cause premature convergence into a non-optimal
solution. Goldberg suggests to scale the probabilities linearly by a ratio between 1.2
and 2 [20].

Table 2-1: Sample population

bitstring x y F(y) = rank
roulette
wheel

11101011 235 55,225 1 0.387

10100101 165 27,225 2 0.191

10011100 156 24,336 3 0.171

10000010 130 16,900 4 0.118

01100101 101 10,201 5 0.072

01000110 70 4,900 6 0.034

00111110 62 3,844 7 0.027

y2

y2

P y( )
sy

sii 0=
n 1–∑

-------------=
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With rank-based selection strings must be ordered by their fitness. Then each string
is assigned a probability by a linear function according to its rank of the string in the
population. Whitley used the following formula:

wherei is the rank of the selected string, is the number of individuals in the popu-
lation,p is the selection pressure, andr a random value in the range . The
value of the selection pressure determines the preference for the best individuals. If
this pressure is between 0 and 2 all the individuals have a chance to be selected.
When this pressure is for example 2.5 one third of the bad individuals are never
selected. See also figure 2-3. The higher the pressurep the more the best individuals
are preferred. Many choosep = 1.5 for good results. The main purpose of this
scheme is to select as severely as possible without destroying the diversity of the
population too much.
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figure 2-2Roulette wheel for the sample population of table 2-1.

i
µ

2 p 1–( )
---------------------- p p2 4 p 1–( ) r⋅––( )⋅=

µ
0.0 1.0),[

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

in
d

iv
id

u
a

l

chance

p=2.0

p=3.0

p=5.0

p=10.0

p=1.5

p=1.01

figure 2-3Influence of rank-pressure p on rank based selection-probability.



Replacement

20

Another selection mechanism is the tournament selection. From a populationp indi-
viduals are randomly chosen to contest to become a parent. The individual with the
highest evaluation fitness score is chosen, the rest is discarded. Then this process is
repeated, so that two parents are chosen. Again, the higher the pressurep the more
the best individuals are preferred. In this casep = 2 is usually chosen.

2.3  Replacement

One not only has to consider how to select individuals to be parents but also how to
put the resulting offspring back into the population. The selection phase during the
execution of a GA is applied to thecurrent population. The selected strings are put
into anintermediate population (also referred to as thegene pool). Then the genetic
operators crossover, inversion and mutation are applied to the intermediate popula-
tion, which creates thenext population. The next population can then be evaluated.
The process of going from the current population to the next population forms one
generation in the execution of a GA.

Mainly there are two ways to create a next generation. One is to replace the whole
current population by the next population. The sizes of the current, intermediate and
the next population have to be equal in this case. Thisgenerational replacement was
used by Goldberg in his Simple Genetic Algorithm (SGA) [20].

The other option is the so calledsteady-state replacement as described by Whitley
[56]. A newly created individual replaces the worst individual of the current popula-
tion when the new individual has a higher evaluation fitness. This can be seen as a
process where the size of the intermediate population is 1. The next population is
almost an exact copy of the current population, except for maybe 1 individual which
came from the intermediate population. Therefore this model is often referred to in
literature as thestatic population model. The best solutions always stay within the
population and therefore the best fitness value increases monotonously. Steady-state
replacement is always better than creating a whole new population when it can be
shown that a global optimum can be reached from a string in the population without
passing any local optima during the process [58].

To place these two replacement methods in the light of mother nature again, when
we look at certain short-living individuals the parents are dead before their offspring
are able to reproduce (e.g. fruitflies). This is what the generational model is based
on. With longer living individuals (e.g. mammals) parents and children live at the
same time. Children and parents compete together for selection. The static popula-
tion model is based on this.

An important difference between a generational replacement GA, and steady-state
GA is that in the latter new offspring are immediately available for reproduction.
Such a GA has therefore the opportunity to exploit the promising individuals as
soon as they are created.

In this thesis some changes are made to these two standard algorithms. Together
with the generational method theelitist method is used. With the elitist method the
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best individual of the current population is saved into the next population. Then the
best fitness value increases monotonously, just as in the steady-state model. When
using the steady-state method the size of the intermediate population is chosen
somewhat larger than 1.

figure 2-4One generation is divided into a selection phase and a recombination phase.
Strings selected are copied to an intermediate population. Recombination is then per-

formed on pairs of strings. Mutation can be done after recombination.

The selection phase of the GA produces two parents for each new individual that is
to be included in the intermediate generation. Three genetic operators are used to
create the offspring: crossover, inversion and mutation. These mechanisms operate
on the genotypic level of the individuals in the population. They are explained next.

2.4  Crossover

The crossover operator takes different parts from two parents from the mating pool
and creates a new individual by combining the parts. So the offspring contains
genetic information from both parents. Onlyreciprocal crossoveris considered,
where equivalent length sub-strings are exchanged. Crossover points (usually two,
and they have to be between two genes) are chosen randomly. The new individual,
or child, will then consist of alternate parts of the parent strings.

Though randomized, this exchange of information gives genetic algorithms much of
their power. Good parts from one parent could replace bad parts from the second
parent, and thus create a child with only partial good parts. See figure 2-5 for an
example of crossover.

string 1
string 2
string 3
string 4
...........

string 2
string 3
string 1
string 3
...........

Current
Generation

Intermediate Next
Generation Generation

offspring (2x3)
offspring (2x3)
offspring (1x3)
offspring (1x3)

...........

Selection Recombination
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2.5  Inversion

Inversion takes two points in a chromosome at random and inverts the sequence of
the genes between these two points. The genetic algorithm has to keep track of the
positions of each gene within a chromosome, because the genes have to retain their
intended meaning regardless of their position. Therefore inversion has no immedi-
ate effect on the fitness of the individual. The reason to use inversion is to make it
possible that good string arrangements are built which are less likely to be destroyed
by crossover. An example is shown in figure 2-6, using strings with genes contain-
ing only 1 bit.

2.6  Mutation

Mutation is a very simple genetic operator. It changes at random the value of a gene
in a newly created individual. As in natural populations the mutation rate used is
very small, in the order of one mutation per thousand genes transfers. Thus mutation
is considered to be a secondary mechanism of genetic algorithms. Yet it is still used
to introduce new solutions into the population and to protect the algorithm from pre-
mature loss of important genetic material by reintroduction of genes.

0 1100101

1 0111100

0 1101101

figure 2-5Crossover of the members ranked 2nd and 7th from table 2-1.

1 101010

0 1101101

1

figure 2-6Inversion of the crossover result from figure 2-5.
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2.7  Schema Theorem

At this point one could wonder why a process as described above should result in an
effective form of optimization to find (near-)optimal solutions. Although there is no
accepted theory which explains exactly why GAs perform well, some hypotheses
have been introduced which can partially explain this success.

Holland’sschema theorem [29] was the first hypothesis to explain how GAs work.
A schema is a similarity template describing a (sub)set of chromosomes. If the pop-
ulation consists for example of binary strings, we can define a ternary alphabet
{ 0,1,#}. With this we can build a schema to represent a pattern of gene values. A
chromosome is part of the schema when at every location a0 in the schema matches
a 0 in the chromosome, a1 matches a1, and a# (wild card or don’t care metasym-
bol, which is never explicitly processed by the genetic algorithm) matches either a0
or a 1. So for example the schema#0#1 matches the subset {0001, 0011, 1001,
1011}. The idea of a schema is thus to give a powerful and compact way to talk
about all the well-defined similarities among finite-length strings over a finite alpha-
bet.

Let’s first look at an example, using the strings from table 2-1 as the starting situa-
tion. Suppose we want to maximize the function . The
GA doesn’t know anything about the fitness functionF. The only information the
GA has access to are the strings and their fitness values. When you look at the
strings separately you will only see ten pieces of information. But when you con-
sider the strings, their fitness values, and the similarities among the strings in the
population you admit a wealth of new information to help directing the search for
the maximum. In our example it seems like a good idea to put a1 in the first position
of new strings. This idea of using similar (small) parts of highly fit strings to create
a new string can be explained more precisely using the concept ofschemata and
building blocks.

It is useful to begin formalizing the potential sampling rate of a schema, H. In a pop-
ulation ofn bitstrings of lengthl there are3l schemata (every bit-position can be0,1
or #). One bitstring in the population belongs to2l-1 schemata because each position
in the string can be either the bit value contained in the bitstring or the# symbol (the
string of all# symbols represents the search space itself and is not counted as a par-
tition of the space [29]). The defining length of a schemaH, denoted by∆(H), is the

1 101010

1 1010111

1

figure 2-7Mutation of the inverted string from figure 2-6. Bit 2 has been mutated.
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difference between the indexes of the position of the left-most respectively the
right-most occurrence of either a0 or 1. The defining length is a direct measure of
how many possible crossover points fall within the significant portion of a schema.
Let m(H,t) be the number of strings representing schemaH in a population at a cer-
tain generationt. Let f(H) be the average fitness of the strings representing schema
H, andfavg the average fitness of the total population. The effect of the reproduction
operator on schemaH can be expressed by:

Thus schemata which have higher fitness values than the average fitness of the pop-
ulation increase (exponentially) in number of samples in the next generation. This is
done for all schemata in the population in parallel. Of course, by reproduction alone
no new sampling of schemata are actually occurring since no new strings are gener-
ated. Crossover and mutation provide the means for this. When we defineps as the
probability that a schema stays intact after crossover, andpc as the probability that
crossover will occur, then we can express the following:

Furthermore, letpm be the mutation probability. Every position in a schema which
has value0 or 1 has a chance ofpm to be flipped. Mutation on a position with a#
symbol has no effect on a schema. The orderο of a schemaH is defined as the
number of bits in the representation ofH that have value0 or 1, and is denoted by
ο(H). Then the probability that mutation affects the schema representingH
is . For small mutation ratepm<<1 this can be estimated by

.

Combining the effects of reproduction, crossover and mutation leads to the follow-
ing expression of theschema theorem :

It can be seen that schemata with high fitness have a higher chance of surviving into
the next generation. Also schemata with short defining length have better chances of
survival than schemata with long defining length (schemata with short defining
length are also calledbuilding blocks [20]). So the schema theorem learns that sche-
mata with short defining length and high fitness propagate exponentially throughout
the population.

Holland [28] argued that since each string contains a great many schemata, the
number of schemata which are effectively being processed in each generation is of
the ordern3.  However, this argument does not hold in general for any population of

m H t 1+,( ) m H t,( ) f H( )
favg

-------------⋅=

ps 1 pc
H( )∆

l 1–
--------------⋅–≥
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sizen. If n is chosen equal to 3l then at mostn hyperplanes can be processed. There-
fore, n must be chosen with respect to the stringlengthl to make then3 argument
reasonable. Still, the argument is important because it says that despite the disrup-
tion of long, high-order schemata by crossover and mutation, genetic algorithms
inherently process a large quantity of schemata while processing a relatively small
quantity of strings. This property of genetic algorithms is known asimplicit paral-
lelism1.

2.8  Deception

An important question for GA research to answer is “What problems pose challeng-
ing optimization tasks for a GA?’’. One of the major approaches to this has been the
study ofdeception [57].

For a GA to be successful chromosomes need to be built, via the process of crosso-
ver, from optimal schemata (especiallybuilding blocks) which are contained in the
global optimum. However, when schemata which are not contained in the global
optimum increase in frequency more rapidly than schemata which are contained in
the global optimum, a GA is misled, so that the GA converges towards a local opti-
mum instead of towards the global optimum. The GA is misled because the best
points tend to be surrounded by the worst.

Imagine a person is looking for the highest point in an area as drawn in figure 2-8. A
person (or GA) at point A must determine which direction to take, and all the infor-
mation the person has got is on a signpost (or schemata) at that point. The signpost
says for example: “The land to the west is generally higher than the land to the
east”. This is correct information, and the person will probably head off west. How-
ever, the word ‘generally’ makes the signpost deceptive. The west may have high
ground and the east overall low ground, but the peak is east.

Practically speaking, there is usually some regularity in the problems encountered in
the real world, so those problems usually don’t suffer from deception. Still, it is
important to keep the behaviour of deception in mind.

1. Implicit parallelism does not refer to the potential for running genetic algorithms on paral-
lel hardware, although genetic algorithms are generally viewed as highly parallelizable
algorithms, as will be presented in chapter 3.

A

figure 2-81-dimensional landscape
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Chapter 3

Parallel Genetic Algorithms

During recent years the area of genetic algorithms in general and the field ofParal-
lel genetic algorithmsin particular has matured up to a point, where the application
to a complex real-world problem in some applied science is now potentially feasible
and to the benefit of both fields. Due to increasing demands placed on genetic algo-
rithms, such as searching large search spaces with costly evaluation functions and
using large population sizes, there is an ever growing need for fast implementations
to allow quick and flexible experimentation. Parallel processing is the natural route
to explore. Furthermore, some of the difficulties that face standard GAs (such as
premature convergence) may be less of a problem for parallel variants. Parallel GAs
can even be considered as creating new paradigms within this area and thus estab-
lishing a new and promising field of research. In this chapter various variants of par-
allel GA are described, together with short reviews of related work. First an
overview is given of the various parallel hardware architectures available which
affect the way a GA can possibly be parallelized.

3.1  Parallel Hardware

Parallel computing, or the concurrent operation of separate processing units, has for
a long time been used as a technique to derive better performance from a given tech-
nology. Over the years various types of concurrency within a computer system
evolved to enable several operations to occur at once. Flynn  made an early attempt
to divide the various types of computer systems into four major categories based on
the number of instruction and data streams that are processed simultaneously [16,
17]. Flynn’s categories are as follows:

• Single instruction stream, single data stream machines (SISD).
• Single instruction stream, multiple data stream machines (SIMD).
• Multiple instruction stream, single data stream machines (MISD).
• Multiple instruction stream, multiple data stream machines (MIMD).
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The SISD architecture executes a single program as one sequential procedure using
a single set of data and is still today’s most used type of computer (e.g. Intel 80486).
SIMD machines may invoke a plurality of data operations to occur concurrently
during one instruction cycle. Generally a SIMD machine is massively parallel, with
hundreds or thousands of processor elements. These processor elements are gener-
ally not based on 8- or 16-bit microprocessor chips but on even simpler bit-organ-
ised, special purpose chips. They are relatively slow, cheap, and the amount of local
memory on the chip is low. Processor elements can communicate with neighbouring
processor elements. Systems with this architecture are restricted in the problems
that they can solve, but are particularly suited to operations on large matrices (e.g.
MasPar MP-1). MISD machines allow actions within an instruction cycle to overlap
with different actions of consecutive instruction cycles on a single data stream to
achieve a higher rate of instruction execution. However, machines with these archi-
tectures are very rare (e.g. CRAY-205). Lastly, the MIMD organization allows mul-
tiple sets of possibly different instructions to execute separately and concurrently on
multiple sets of data. Processors can communicate with each other via messages.
Generally a MIMD machine is transputer-based, with 8 to 64 processors. The proc-
essors are relatively fast, and the amount of local memory high. The processors may
share a common memory (e.g. CM*).

It has become common to study the performance of parallel systems in terms of
speed-up andefficiency. Let  be the time required to perform some calculation on
a system withp processors. Then the speed-up factor over a uniprocessor is

and the efficiency in theory is

In theory, whenp processors working concurrently on a task take  of the time
that it takes for one processor to complete the same task then the efficiency  will
be unity. Usually communication and synchronisation problems are amongst the
factors which prevent this from being achieved. The arguments behind the defini-
tions of speed-up and efficiency appear very reasonable and simple, so they are
widely used, but there is reason to doubt their validity when applied to today’s real
multiprocessor systems. Parallel computing can introduce paradigms, that are not so
simple to implement in serial computing, which can cause the effect of super-linear
speed-up. It has also been shown possible that program code running on 8 proces-
sors can produce the same results more than twice as fast as when the same code is
run on 4 processors (e.g. [31]), which also implies super-linear speed-up.

Genetic algorithms lend themselves excellently for effective parallelization, giving
their inspiring principle of evolving in parallel a population of individuals. How-
ever, the classical Holland’s algorithm is not straightforwardly parallelizable
because of its need (in the selection step and in crossover for some of its many vari-
ations) of global control that causes the need to serially execute a piece of code and
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to force non-local interactions between the processors, thus requiring high commu-
nication costs.

Several approaches have been proposed to overcome these limitations yielding
excellent results. The different models used for distributing the computation and to
ease parallelization, cluster around three main approaches which will be explained
in the next sections. First, a parallel GA similar to the traditional GA model will be
reviewed. Next two approaches are described which decompose the population as a
particular model of a GA. The first decomposition approach explained is theisland
model which divides a population into several equal subpopulations, each of which
runs a GA independently and in parallel in respect to the other subpopulations.
Occasionally individuals are migrated to another subpopulation. The second decom-
position approach explained are thecellular genetic algorithms. This parallel vari-
ant of GA divides a population in such a way that each processor typically only has
one individual. Each processor then uses GA operators only on individuals in a
bounded region. Fit individuals propagate throughout the whole population because
all regions overlap each other.

3.2  Global Populations with Parallelism

In these models one global population is kept, on which the traditional genetic oper-
ators are performed. Selection is done on the global population, and then the
selected individuals undergo crossover and mutation in parallel.

Grefenstette mentions a synchronous master-slave model [24]. Here a single master
process keeps the whole population in its own memory, performs selection, crosso-
ver and mutation on the individuals, but leaves the calculation of the fitness of the
new individuals tok slave processes. The problem with this model is that a lot of
time is wasted if some slave processes finish their evaluation significantly quicker
than others. Another problem is that much is depending on the master process.
Grefenstette then mentions thesemisynchronous master-slave model, where an indi-
vidual is inserted when a slave process is done, and that same process gets a new
individual as soon as possible. Again the problem of dependency on one master
process is still there. Lastly Grefenstette considers theasynchronous concurrent
model. Here the individuals of the population are kept in a common shared memory,
which can be accessed byk concurrent processes. Each process performs function
evaluations, but also genetic operations. Each process works independently of the
others1. Whitley states that the only difference between this last model and the tradi-
tional (serial) genetic algorithm is a change in the selection mechanism [58]. Selec-
tion can best be done by tournament selection. Assume that one has a population of
N individuals andN/2 concurrent processors. Twice each processor randomly

1. This model was actually used by Boers and Kuiper [4]. At one time they used for a spe-
cific problem 11 Sun Sparc4 workstations. Each workstation selected several individuals
from a population which was maintained in a global shared file. Then each workstation
performed genetic operators on the selected individuals, evaluated them, and then wrote
the newly created individuals plus their fitnesses back to the global file.
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selects two individuals from the shared memory, and keeps the best. The two
selected strings are then subjected to crossover, mutation and evaluation. The result-
ing children are put back in the population in the shared memory. This all goes in
parallel.

figure 3-1Global population with parallelism

3.3  Island Models

Looking at nature again one could say that the world of humans consists of one big
population. Another view is to say that it’s actually a collection of subpopulations
which evolve independently from each other on isolated continents or in restricted
regions. Once in a while some individuals from one region migrate to another
region. This migration allows subpopulations to share genetic material. The idea is
that isolated environments, or competing islands, are more search-effective than a
wider one in which all the members are held together.

If we apply this to genetic algorithms we could parallelize it by letting each proces-
sor run its own (sequential) genetic algorithm with its own subpopulation, but each
trying to maximize the same function. If a neighbourhood structure is defined over
the set of subpopulations, and once in a while each subpopulation sends its best
individuals to its neighbours, we say we’re running adistributed genetic algorithm.
If no swapping of individuals to neighbours is done we have a special case of the
distributed model, which we call thepartitioned genetic algorithm. These models
are most suited for MIMD machines.

Since each processor starts with a different initial populationgenetic drift will tend
to drive these populations into different directions. By introducing migration the
island model is able to exploit differences in the various subpopulations; this varia-
tion represents a source of genetic diversity. However, migrating a large number of
individuals too often may drive out any local differences between islands, thus
destroying global diversity. On the other hand, if migration occurs not often enough,
it may lead to premature convergence of the subpopulations. When dealing with an
island model the main issues to be considered are:

• the processors with which each processor exchanges individuals with.
• migration frequency, or how often a processor exchanges individuals.
• migration rate, or the number of individuals exchanged between processors.
• the individuals chosen to exchange.
• the individuals deleted after having received individuals from others.

slave processorsmaster processor

population
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figure 3-2Example of an island model

One of the first island models was introduced by Pettey, Leuze and Grefenstette
[46]. Their problem was that they had individuals with long bit-representations and
the evaluation of the fitness relatively took a lot of time. They tried parallel evolu-
tion of several subpopulations where each process followed the same procedure.

Cohoon, Hedge, Martin and Richards investigated the effects on the evolution proc-
ess of having a diversity of environmental characteristics across the populations [7].
Here they are influenced by the theory ofpunctuated equilibria [14]. In short this
theory holds that the emergence of new species can be associated with very rapid
evolutionary development after a geographically separation. Thus they proposed a
distributed genetic algorithm where each subpopulation evolves until it reaches
equilibrium in a stable environment (stasis), after which the environment is changed
by merging (previously isolated) subpopulations together. Later they investigated
the use of different control parameters (such as crossover and mutation rates, or
population sizes) per processor as another way to differentiate the subpopulations
[8].

Tanese tried to answer the question whether a distributed GA can achieve near-lin-
ear speed-up without compromising its performance, or better yet, whether it can
obtain even better performance than the traditional version [53]. In her experiments
she used a population size of 256 for the traditional GA, and for the distributed GA
various subpopulation sizes while maintaining the total population size to 256. Her
first experiment used the partitioned GA studying the effect of dividing a large pop-
ulation into a number of small subpopulations. Tanese’s result to this was that the
partitioned GA consistently found better individuals than the traditional GA (even
with relatively small subpopulations), but worse average fitness of the total popula-
tion.

Her second experiment used the distributed GA studying the effect of various
migration rates and frequencies. Results showed again that the distributed GA con-
sistently found better individuals than the traditional GA, but because of migration
it also could achieve higher average fitness of the total population. This was best
achieved with a moderate migration rate, for example migrating 20% of each sub-
population every 20 generations or so (when using generational replacement). In
both experiments near-linear speed-up was achieved.
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Mühlenbein, Schomisch and Born implemented the island model with rank-based
selection to act as function optimizers [42]. Starting from solutions generated by a
GA they used an additional greedy local search algorithm. They tested their system
on the five de Jong functions (F1-F5) [35], the highly multimodal Rastrigin’s func-
tion (F6), and two other functions proposed by Schwefel (F7) and Griewangk (F8).
They showed that the time needed to reach the optimum and the number of function
evaluations compare favourably with previously published results on the same prob-
lems obtained with standard GAs. They also argued that some problems can be too
easy on parallel hardware, which could explain why these problems showed little
speed-up. On Schwefel’s function F7 they showed superlinear speed-up when
increasing the number of processors from 4 to 8. They concluded that parallel
search pays off only if the search space is large and complex, and that it is able to
solve complex problems that have not been previously solved.

Pettey et al. also tested the five de Jong functions on a parallel GA, but using ran-
domly communicating subpopulations [46]. Because they exchanged individuals
every generation the results showed an increased likelihood of premature conver-
gence. They also concluded that an increase in the number of processors improves
convergence speed, but not the quality of the solution.

Norman also tested a parallel GA using randomly communicating subpopulations
[44]. Individuals were accepted when their fitness was better than the fittest individ-
ual. Individuals which were just as fit as the least fit individual were accepted with
probability p0. Individuals with a fitness between the best and least fit individual
were accepted with probabilityp1, wherep1 is a linear interpolation betweenp0 and
1. The migration frequency was variable. Norman then showed improved conver-
gence speed, and also an improvement in the quality of the solution.

3.4  Cellular Genetic Algorithms

Genetic algorithms implemented on a SIMD machine typically have one individual
string residing at each processor element (cells). Individuals select mates and
recombine with other individuals in their immediate neighbourhood (e.g. north,
south, east and west). This class of genetic algorithms are in fact a subclass of cellu-
lar automata. Thus, the termCellular Genetic Algorithmis proposed to describe this
class of parallel algorithms.

Parent selection is not used as proposed by Holland, because it relies on a global
ranking of all individuals. Global ranking of all individuals introduces an unneces-
sary central control and the amount of communication overhead would become too
costly. Instead, each individual selects an individual in its local neighbourhood as its
mate. This can be done by selecting the best individual from among the neighbours
or by some local random selection scheme.

The selected individual is then mated with the individual residing in the cell. One
offspring is produced and may or may not replace the individual in the cell depend-
ing on the replacement scheme chosen. The model is thus fully distributed with no
need of any central control.When dealing with a cellular model the main issues to be
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considered are:

• the neighbourhood structure
• the selection scheme
• the replacement scheme

Although there are no islands in this model, when one assumes to have a 64x64 2-
dimensional grid of processor elements and one neighbourhood is say 30 moves
away from another neighbourhood, then these neighbourhoods can be viewed as
isolated as two subpopulations in the island model. This kind of separation is
referred to asisolation by distance [41].

The colouring of the cells in figure 3-3 represents genetically similar material that
form virtual islands isolated by distance. The arrows indicate that the grid wraps
around to form a torus. On the right side of figure 3-3 an example of a neighbour-
hood structure is given. The processor with the cross can communicate with its
south, east, north and west neighbours. Communication between the cells only takes
place during the selection phase. In the example of figure 3-3 all processors concur-
rently send their individual to their north neighbour, while at the same time all the
processors concurrently receive an individual from their south neighbour. This is
repeated for all existing directions in the neighbourhood structure. Thus in four
steps all processor elements will have all the information they need to continue the
GA process locally. Because of synchronisation of the processors the evaluation of
one individual should take about the same time for all individuals. If for example on
a 4096-processor system one processor needs100t clock cycles to finish evaluating
its individual while all the others only needt clock cycles, then 4095 processors are
99t clock cycles being idle.

figure 3-3A cellular model, together with a neighbourhood relation.
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Several people have done research using cellular GA, among them are Baluja [3],
Collins and Jefferson [9], Davidor [11], Spiesens and Manderick [50, 51] and Gorg-
Schleuter [23]. The results obtained were generally that on hard problems the cellu-
lar GA provided better solutions compared to the standard one. It was less prone to
get stuck in local optima, could find several optima in the same run, the diversity of
the genes was greater, and it was more robust concerning the parameter settings.
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Chapter 4

Parallel GA Experiments.

This chapter describes some experiments using parallel genetic algorithms on a
variety of problems. These include:

• Travelling Salesperson Problem
• Schwefel Optimization Problem
• Walsh Polynomials

4.1  Travelling Salesperson Problem

Introduction

In the travelling salesperson problem (TSP) , a hypothetical salesperson must make
a complete tour of a given set of cities in the order that minimizes his total distance
travelled. He should return to the starting point and no city may be visited more than
once. This problem may seem easy, but it belongs to the class of NP-complete prob-
lems, which means it is currently not solvable in deterministic polynomial time. If
there are n cities to be visited, the search space is n!. So for instance, even a seem-
ingly simple problem with 30 cities would need  years to solve if a super-
computer could be used that can evaluate 1 million cities per second. Consequently,
heuristic methods should be used to deal with this problem. They may find solutions
that are only approximations of the optimum, but they will do it in a reasonable
amount of time. In this case a GA is used.

First an important question connected with the chromosome representation is
addressed. Usually chromosomes are represented as binary strings, which allows for
binary mutation and crossover. For example, when applying these operators to the
table 2-1, that yielded into legal offspring, i.e., offspring within the search space.
This is not the case for the travelling salesperson problem. For example, for a TSP
with 10 cities, a city needs 4 bits to be represented within a chromosome. However,
some 4-bit sequences do not correspond to any city (e.g. 1101). This can be solved

8 1018⋅
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in two ways. We could use a so-calledrepair algorithm which repairs a chromo-
some so that it is moved back into the search space. Or we could use a different
chromosome representation, and instead of using repair algorithms we could incor-
porate the knowledge of the problem into the genetic operators.

The search space for the TSP is the set of permutations of the cities. The most natu-
ral way to represent a tour is through a path representation, where the cities are
listed in the order in which they are visited. As an example of a path representation,
assume there are 6 cities {1,2,3,4,5,6}. Then the tour (1 2 3 4 5 6) means the sales-
person visits city 1 first, city 2 second, city 3 third, ... , returning to city 1 from city
6.

Although it seems natural enough, there are at least two drawbacks to this represen-
tation. First, it is not unique. For example, (2 3 4 5 6 1) and (3 4 5 6 1 2) actually
represent the same tour as (1 2 3 4 5 6) (i.e., representation is unique only up to
direction of traversalclockwise or counterclockwise and originating city). This rep-
resentational ambiguity generally confuses the GA. Second, for the tour representa-
tion, a simple crossover operator could fail to produce legal tours. For example, the
following strings with cross site 3 fail to produce legal tours.

before crossover (1 2 3 4 5 6)

(4 5 2 3 6 1)

crossover site ^

after crossover (1 2 3 3 6 1)

(4 5 2 4 5 6)

Later in this section it will be shown how to overcome this problem.

The TSP has an extremely easy evaluation function. For any potential solution, we
can refer to the table with distances between all cities to calculate the total length of
the tour. Thus, in a population of tours, we can easily compare any two of them.

Tournament selection is used with a pressure of 2. When the new generation is full
the old is replaced by the new in one step, i.e. generational replacement is used. In
addition, the GA uses the elitist strategy. The elitist strategy guarantees that the best
individual of a population survives to the next generation.

The mutation operator is specifically made for this TSP. It takes a chromosome, ran-
domly selects two points and randomly scrambles the cities between the two points.
The length of the mutation segment shouldn’t be too large, so as not to change too
much in the original chromosome. The inversion operator used randomly chooses
two cities of a tour, and inverts the subpath between these two cities inclusively.

To illustrate the working of a genetic algorithm on the travelling salesperson prob-
lem I made a program that can be run under an X-window environment. Figure 4-1
shows a simple example using only mutation and inversion performed on a 50-cities
problem. The population consisted of 100 individuals. Mutation rate was 0.01 and
inversion rate was 0.6.
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The above figure shows some of the best individuals of subsequent populations
found during the simulation. The top-left tour is the starting best individual, the tour
at the bottom-right is the found optimum. With each generation the number of
recombinations (in this case the number of inversions) is given that were done that
lead to the shown tour, the distance of the best tour (the length of the path), and the
average distance of all the individuals in the population. The genetic algorithm
quickly halves the best distance to about 10,000. After that it slowly converges to
the found optimum. Figure 4-2 shows the distance of the best individual and the
average distance of the population against the number of generations.

figure 4-1Some best tours found during a simulation with 50 cities.
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The MX operator

In the next experiment crossover is used. For this the matrix crossover operator is
chosen as described by Homaifar et al. [31]. This approach is based on the matrix
representation of the tours.

Two parents are chosen from the population which are then transformed into a
matrix representation, where entry (i,j) from the matrix is set to 1 when there exists
an edge from cityi to city j, otherwise the entry is set to 0. This representation is
thus unique up to traversal direction. Two crossover points are randomly chosen
which cut the matrices vertical. Then the offspring are made from the parents by
exchanging the columns as determined by the crossover points. Figure 4-3 shows an
example of his operation.

It could be that the resulting offspring contain more than one 1 in a row or contain
cycles. Therefore we need some sort of arepair algorithm; such an algorithm would
repair a chromosome, moving it back into the search space. The first step of the
repair algorithm moves a “1” from each row with duplicate “1”s into another row
that has no “1” entries. For example, in the first offspring child1 from figure 4-3, the
algorithm may move entry (1,7) into (3,7), and the entry (6,4) into (8,4). Similarly,
in the second offspring child2, the algorithm may move entry (3,4) into (1,4), and
(8,3) into (6,3). After the completion of the first step of the repair algorithm, the first
offspring represents a (legal) tour,

(1 3 7 5 8 4 6 2),

and the second offspring represents a tour which consists of two subtours,

(1 4 2 8 7 5) and (3 6).
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The second step of the repair algorithm should be applied to the second offspring
only. During this stage, the algorithm cuts and connects subtours to produce a legal
tour while preserving as many of the existing edges from the parents as possible.
For example, the edge (4 6) is selected to connect these two subtours, since this edge
is present in the first parent. Thus the complete tour (a legal second offspring) is

(1 4 6 3 2 8 7 5).

To prove that this MX operator really works a simulation was run of a GA trying to
solve the same 50-cities problem given earlier, but this time only using the MX
operator with a rate of 0.65 (thus no mutation and no inversion operator are used).
Figure 4-4 shows the result, where the best distance found is plotted against the
number of MX operations performed.

After a certain amount of generations the GA has converged and therefore doesn’t
improve any more. The best distance isn’t that good, compared to the best found
individual from figure 4-1. When other genetic operators, such as mutation and
inversion, are used together with the crossover operator, the algorithm finds better
solutions.

parent1: (5 8 3 4 6 2 1 7) parent2: (3 6 4 2 8 7 5 1)

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0
2 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1
3 0 0 0 1 0 0 0 0 3 0 0 0 0 0 1 0 0
4 0 0 0 0 0 1 0 0 4 0 1 0 0 0 0 0 0
5 0 0 0 0 0 0 0 1 5 1 0 0 0 0 0 0 0
6 0 1 0 0 0 0 0 0 6 0 0 0 1 0 0 0 0
7 0 0 0 0 1 0 0 0 7 0 0 0 0 1 0 0 0
8 0 0 1 0 0 0 0 0 8 0 0 0 0 0 0 1 0

^  ^ ^  ^
MX sites MX sites

child1: child2:

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1
3 0 0 0 0 0 0 0 0 3 0 0 0 1 0 1 0 0
4 0 0 0 0 0 1 0 0 4 0 1 0 0 0 0 0 0
5 0 0 0 0 0 0 0 1 5 1 0 0 0 0 0 0 0
6 0 1 0 1 0 0 0 0 6 0 0 0 0 0 0 0 0
7 0 0 0 0 1 0 0 0 7 0 0 0 0 1 0 0 0
8 0 0 0 0 0 0 0 0 8 0 0 1 0 0 0 1 0

figure 4-3Two intermediate offspring after the first step of the MX operator.
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Partitioned and distributed GA performed on the TSP

Most performance results reported for the TSP heavily depend on many details
(population size, number of generations, size of the problem, etc.). Moreover, many
results were related to relatively small sizes of the TSP (up to 100 cities); as
observed in [34]: “It does appear that instances as small as 100 cities must now be
considered to be well within the state of global optimization art, and instances must
be considerably larger than this for us to be sure that heuristic approaches are really
called for.” Therefore, in the following, experiments will be done using parallel
genetic algorithms, and only on problem sizes of 100, 318 or 442 cities.1 These are
sufficiently difficult to tackle with parallelism.

Tanese found that the partitioned and distributed GA outperformed the canonical
serial GA on a class of difficult, randomly-generated Walsh polynomials [53]. This
left open the question whether they would also hold for other functions that were
more amenable to optimization by a GA. To this end, the performance of a parti-
tioned and a distributed GA was compared to that of the canonical GA on the travel-
ling salesperson problem.

In the first experiments I tried the partitioned GA on a 100-cities problem. The GA
was run a CM-5 with 16 processors. Remember from section 3.3 that in a parti-
tioned GA no communication between the processors takes place. I did 16 simula-
tions using a population size of 800 (i.e. 16 simulations of the canonical serial GA),
16 simulations using 4 subpopulations of 200 individuals each, and 16 simulations

1. The city problems used are from the publicly available collection of cities (partly with
optimal solutions), compiled by Gerhard Reinelt (Institut für Mathematik, Universität
Augsburg). The collection is available through ftp from titan.rice.edu (128.42.1.30) as
/public/tsplib.tar.Z. The cities problems used in this research are contained in the files
kroA100.tsp, lin318.tsp and pcb442.tsp.
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using 16 subpopulations of 50 individuals each (thus making the total population
size 800 in each simulation). Figure 4-5 plots the average of the best found (mini-
mum) distances over these 16 simulations against the number of generations.

Several observations can be made. First, it seems that the partitioned GA outper-
forms the canonical serial GA. It can be seen that the more subpopulations are used
the better the end result gets. So instead of running a GA with one large population
it is more worthwhile to run the GA a number of times with a smaller population
size and take the best result from those runs. Using the partitioned GA has another
advantage compared to the canonical serial GA: because generational replacement
is used, less recombinations and evaluations are done per generation. To explain
why the partitioned GA gives better results in this case, take a look at figure 4-6
which shows the average distance of all the individuals in the total population plot-
ted against the number of generations for the different simulations done.
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As can be seen, the larger the (sub)population size, the more ‘garbage’ there is in the
population. It is probably the tournament selection mechanism used in combination
with generational replacement that is responsible for keeping larger amounts of
‘bad’ tours in the subsequent populations as the (sub)population size increases.

Then I tried the distributed GA. I ran 16 simulations using 16 subpopulations of 50
individuals each, and communication took place every 750 generations. The proces-
sors were arranged ladderlike as shown on the right side of figure 4-19. The results
of the distributed GA were then plotted against the results of the partitioned GA, see
figure 4-7.

The distributed GA slightly outperforms the partitioned GA for some generations
with respect to the best found tour and the average tourlengths, but eventually they
converge to equal best distances. Notice the downward peaks in the average tour-
lengths for the distributed GA. At those points communication took place. Of course
it would be preferable if the GA could keep the average low when it dropped after
communication. Instead it jumps back to worse averages. It is most likely that the
MX operator disrupts the GA process, making it impossible to improve any further.

Lamarckian evolution vs. Baldwin effect performed on the TSP

So far I have used tournament selection, elitist strategy, generational replacement,
inversion, mutation and the MX operator together. I’ve done a lot of simulations
with the 318- and 442-cities problems too, which I won’t present here, but generally
it turned out that none performed as well as I would’ve liked (often the best found
optimum was about 10% or more away from the best known optimum). It seemed
that the MX operator on its own can’t reach the results Homaifar et al. presented in
their article (they reported results within 2% of the best known optimum) [31].

However, Homaifar et al. specialized their GA variant by using 2-opt iteratively as a
deterministic hill climber. In path representation 2-opt is nothing more than inver-
sion. Thishybrid GA thus combines local optimization with the simple GA. The
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strings produced by the genetic recombination operators are improved by local
search, after which these resulting improvements are coded back onto the strings
processed by the GA. This is equivalent to a form ofLamarckian evolution.

Local search in this context can be thought of as being analogous to the learning of
useful adaptations by organisms during their lifetime. Not only the population as a
whole is evolving, but also the individuals themselves are given a chance to evolve.
Most biologists now accept that the Lamarckian hypothesis is not substantiated.
Since in that case all that was learned by the phenotype is not communicated back to
the genotype, some infer that learning, or evolving of individuals during their life-
time, has no effect on the evolutionary search.

There is however another way in which learning can guide the evolutionary search,
which has recently received new attention. Instead of coding the improvement of an
individual back to its genetic encoding as in Lamarckian evolution, the fitness value
of an evolved individual is determined as a function of its improvements. This has
the effect of changing the fitness landscape, but the nature of this form of evolution
is still Darwinian. This effect is known as theBaldwin effect, after Baldwin who first
proposed the idea a hundred years ago that learned behaviour of organisms could
influence evolution [2].

Figure 4-8, taken from Gruau and Whitley [26], illustrates how local optimization
can alter the fitness landscape. N steps of local optimization deepens the basin of
attraction, therefore making the landscape flatter around the local optima (minima
for this example). When each individual always learns until it fully converges to a
local optimum, then the landscape becomes flat in each basin of attraction. Each
basin of attraction has a potentially different evaluation corresponding to the evalu-
ation of the local optimum. Since hyperplane sampling is the basis for the claim that
genetic algorithms globally sample a search space, changing the fitness landscape in
this way has the potential for increasing the likelihood of allocating more samples in
certain basins of attraction.

fitness
F(x)

Fitness, no learning.

Fitness after n-steps downhill.

Fitness after descent to a local optimum.

one-dimensional variable x

figure 4-8The effect of local search (or learning) on the fitness landscape of a one
dimensional function. Improvements move downhill on the fitness landscape.
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The use of a hybrid GA, a combination of local optimization with simple GA, has
been used by different researchers to solve the TSP. But I have not come across any
article that uses the Baldwin effect on the TSP. So I thought I would try that out. I
used the distributed GA as described earlier, and as local optimization of an individ-
ual the best inversion possible was done. First I tried this out on the 100-cities prob-
lem with 16 simulations. Figure 4-9 shows the average best tours found plotted
against the number of generations for the plain distributed GA (where no local opti-
mization was used), for the distributed GA when using the Baldwin effect, and
when using Lamarckian evolution.

All eventually converge to equal minimum distances. However, the Lamarckian
variant gets there within a few generations, while the two other variants need a lot
more. During the converging process, the Baldwin effect gives somewhat better
results compared to the effect of not using local optimization of the individuals.

I tried the same experiment using the 442-cities problem. However, this turned out
to be very impractical, especially when using the Baldwin effect or Lamarckian evo-
lution. I had to wait for days for one simulation to converge. This was due to the
costly local optimization operator.

Therefore I changed it into doing the first N inversions that lead to improvement.
Then I tried the 442-cities problem again. The variable N was chosen 15, the sub-
population size was chosen to be 16 individuals making the total population consist-
ing of 256 individuals. For each variant I did 5 simulations. Figure 4-10 shows the
average best tours found plotted against the number of generations for the plain dis-
tributed GA, for the distributed GA when using the Baldwin effect, and when using
Lamarckian evolution.
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Again, all eventually converge to equal minimum distances. Note however that with
the use of a different local optimization operator the Lamarckian variant isn’t as
quick in converging any more compared to the previous experiments. Also note that
now the plain distributed GA gives somewhat better results compared to the Bald-
win effect during the converging process. Because of these two results I thought that
maybe I could get the Baldwin effect and Lamarckian evolution perform better if  I
increased the variable N. Figure 4-11 gives an indication of what happens then,
using the 318-cities problem this time.
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The two lines the arrow points at are results from a Lamarckian evolution using N=4
and N=30; they perform equally well. The other lines are all from a Baldwinian sim-
ulation. The higher the value N is chosen the worse the results get. Clearly the Bald-
win effect is not useful for the TSP. It is hypothesised that the Baldwin effect is only
effective when the problem at hand is sufficiently deceptive in nature. The travelling
salesperson problem isn’t deceptive at all.

Lastly, I want to present an optimal tour found for the 442-cities problem. This
problem was originally designed by Grötschel. It represents 442 points non uni-
formly distributed in a square of area 11.4 square inches and issuing from a real
world drilling problem of integrated circuit boards. The best known solution to date
is 51.21 inches. Figure 4-12 shows an optimal tour found; it has a tourlength of
51.41 inches, which is 0.4% from the best known solution. Considering that no use
was made of operators specially designed for this problem, and considering that
Grötschel’s own solution was 51.45 inches, this is an excellent result.

figure 4-12Optimal tour found for the 442-cities problem with length 51.41 inches.
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4.2  Schwefel’s Optimization Problem

I also tested the effect of the Baldwinian  and Lamarackian search strategies when
applied to the numerical minimization problem of the following function proposed
by Schwefel [52]:

This function is plotted in 1 dimension in figure 4-13. The global minimum is atxi =
420.9687,i = 1,…,n. The local minima are located at the pointsxk ≈ ((0.5+k)π)2, k =
0,2,4,6 andxk ≈ -((0.5+k)π)2, k = 1,3,5. The second best minimum is atxi =
420.9687,i=1,…,j-1,j+1,…,n andxj = -302.5232,j ���∈ {1,…,n}, which is far away
from the global minimum. Therefore the search algorithm may be trapped in the
wrong region.

I first tried experimenting with a single population of 50 individuals. Each individ-
ual was coded with 20 genes (n = 20) stored in 16 bits each, of which the last 6 bits
were discarded when de- and encoding. Each gene represented anxi, and was gray-
coded. Tournament selection was used with a pressure of 2. Two-point crossover on
gene-level was used with probability set to 0.7, mutation rate was 0.004. No inver-
sion was used. Generational replacement was used, and the elitist method was not
used. A next generation is defined when 50 new individuals are created. When using
local search the learning algorithm worked as follows: forx1 calculate the one-
dimensional Schwefel functions ,  and  where  <<
1.0. Determine which has the lowest value, and take that as the direction for further
steps, which is to take at the most 4 times steps of 8 in thex dimension downhill in
the y dimension. When a step does not result in an improvement local search is
stopped (it has then arrived near a local minimum). This process is then repeated for
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figure 4-13The Schwefel function plotted in 1 dimension.

F x1( ) F x1 ∆–( ) F x1 ∆+( ) ∆



Schwefel’s Optimization Problem

48

all xi, i = 2,…,n. Figure 4-14 shows the results until generation 3000. Each line
shows the error of the best individual in the population, averaged over 48 runs.

Figure 4-15 shows the same experiments for a population with 128 individuals.
Here the mutation rate was set to 0.005, and the local search algorithm did at the
most 2 times steps of 5.5 in thex dimension downhill in they dimension for eachx.

Then I did the same experiments as those from figure 4-15, but this time I used a
parallel genetic algorithm. All the settings from the previous experiment were kept
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the same. The population was divided into 16 subpopulations of 8 individuals each,
which makes a total of 128 individuals for the total population. The communication
structure used was the ladder-like arrangement from figure 4-19. Migration period
was set to 15 generations and the migration rate was 2 individuals. Figure 4-16
shows the result with again average best errors out of 48 runs. Note the saw-teeth in
the error-lines. At the points the teeth go drastically down communication took
place, after which the algorithm tried to settle down again in its usual behaviour.

Figure 4-17 shows a blown-up picture of figure 4-15 but with the results from the
parallel variant with the Baldwin effect. The latter cuts each error lines of the singu-
lar variants and converges to an error of almost zero.
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For completeness, figure 4-18 plots all the results from the parallel genetic algo-
rithm against the results from the singular genetic algorithm. Note that each parallel
variant has a longer start-up time compared to its singular variant, but eventually
always outperforms it with the error halved.

Lastly, table 4-1 shows performance data for each algorithm, indicating the number
of times the global optimum was found. Again, different local search algorithms
were used for the populations with 50 and 128 individuals.

Note that the parallel genetic algorithm could find the global optimum without any
local search in a number of cases after 2000 generations, whereas its singular vari-
ant couldn’t. In fact, in all cases the parallel variant outperforms the singular variant.
Also note the peculiar fact that although the error surface of the Lamarckian variant
remains more or less flat after generation 1000, it still improves in terms of finding
the global optimum. It is also interesting to see that even though the error surface of

Table 4-1: Number of times the global optimum is found at different
generations, out of 48 runs.

pop. size +
method

50 GA 128 GA 128 PGA

generation 1000 2000 3000 1000 2000 1000 2000

Plain 0 0 0 0  0 1 5

Baldwin 1 3 8 19 37 30 42

Lamarck 1 2 6 13 22 28 37
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figure 4-18All results from the parallel genetic algorithms plotted against
the results from the canonical genetic algorithms.
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the Baldwin effect is above the Lamarckian error surface (except at the very end),
Baldwin scores better in terms of finding the global optimum.

As a last note I have to say that the selection of the parameters, replacement scheme,
genetic operators and local search algorithm to get the Baldwin effect perform better
than Lamarckian evolution is somewhat of a black art. For instance, using the cross-
over operator on bit level severely damages the Baldwin effect. Or when inversion
is used, or 6-point crossover is used instead of the 2-point crossover, then the plain
genetic algorithm is just as capable of finding the global minimum as any result I’ve
shown above.  Having a local search algorithm that learns too much or too little has
the same effect on Baldwin as could be seen with the travelling salesperson problem
in the previous section, thus making the choice of how much a local search algo-
rithm should learn of importance. Also, when using Whitley’s one-at-a-time
replacement instead of generational replacement makes the Baldwin effect virtually
ineffective. I’ve encountered all these side-effects, but due to time-limitations of
writing this thesis I will not discuss these results in detail.
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4.3  Communication Schemes

I wanted to know whether there is any neighbourhood relation between processors
that leads to favourable results. To test this I needed a fitness function that was quick
in its evaluation (which left out the travelling salesperson problem), and the fitness
surface should be fairly complex (which left out the Schwefel function).

In this section a large class of functions calledWalsh polynomials, which are based
on Walsh functions [55] , are used for optimization. These can be used to design
highly deceptive functions for a GA and to calculate the average fitness values of
schemata. As a basis, these Walsh functions, which take values± 1, are more practi-
cal than the traditional trigonometric basis like the Fourier functions. A good intro-
duction to using Walsh functions in a GA context is given by Goldberg [18, 19, 20].

Walsh polynomials formalized

Walsh functions form an ordered set of rectangular waveforms taking one or two
amplitude values: +1 and -1. They form a complete orthogonal set of functions and
can thus be used as a basis. Consequently, any fitness function depending onl bits
can be thought of as being made up of2l Walsh functions of various strengths.
Whatever the function is, the rectangular waves are the same, so the only thing
needed to describe the function are2l Walsh coefficients (strengths). Thus there are
two equally valid ways of viewing a  fitness function onl bits:2l string fitnesses, or
2l Walsh coefficients.

A string of binary digitsxlxl-1...x1 can be thought of as being the binary representa-
tion of a decimal numberx where . A Walsh function of indexj
over a binary stringx of lengthl is defined as follows:

wherexlxl-1...x1 andj lj l-1...j1 are the binary representations ofx andj. Thus  is
+1 whenx ∧ j has even parity, otherwise -1. The set {  :j = 0, 1, 2, ... , 2l-1}
forms a basis for the fitness functions defined on [0,2l). So formally a Walsh polyno-
mial is a functionf defined as follows:

wherewj is the Walsh coefficient. Or in simple terms: to find the fitness of a string
add up the effects of all the waves on that string.
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A Walsh function of indexj is of order kwhen the number of 1’s in the binary repre-
sentation ofj is equal tok. There are orderk Walsh functions. A Walsh function
of orderk defines a set of2k schemas. Anorder k Walsh polynomial is a Walsh poly-
nomial in which the only non-zero Walsh coefficients are all associated with orderk
Walsh functions.

Experimental setup

In the experiments of this section binary strings of lengthl = 32 were used, and
order 8 Walsh polynomials. Each order 8 Walsh polynomial was built up in the fol-
lowing way: choose randomly a pointxopt to be the global optimum, choose ran-
domly 32 different indexesj of order 8 Walsh functions, and then assign to each of
them a Walsh coefficientwj as follows:

wherernd(0,5) is a random real value between 0 and 5. With a chromosome length
of 32 it is enough to have 32 non-zero Walsh coefficients to ensure the existence of
precisely 1 global optimum and to make the problem sufficiently hard to solve.

Fifty order 8 Walsh polynomials were generated randomly and were tested 5 times
with a GA using the island model with different communication structures. The dis-
tributed GA was implemented on a CM-51 with 16 subpopulations of size 16, thus
making the total population size 256.2 Each run started with a different initial popu-
lation. 2-Point crossover was used with a crossover rate of 0.7. Mutation rate was
set to 0.005. Whitley-selection was used with a pressure of 1.5. As replacement
scheme the steady-state model was used, where the size of the intermediate popula-
tion was varied. Gray-coding was used, which has the advantage that a mutation of
1 bit has little effect on the value [20]. Each run did 5,000 evaluations.

The variables per testrun were:

• size of intermediate population; {2, 4, 8, 16}.
• migration rate; {2, 4, 8}.
• migration period; {50, 250, 500, 1000}.
• communication scheme {partitioned, ladder, circle, full, split, random}.

Communication scheme

Six different communication schemes were tested. They were:

1. partitioned: the GA runs on 16 processors, but there is no communication
between the processors.

2. ladder: the processors are arranged ladderlike as shown on the right side of figure
4-19. Mühlenbein et al. suggested that this was a ‘promising population struc-
ture’ [42].

1. See chapter 7 for a description of the CM-5 with 16 nodes.

2. Because an order 8 Walsh function defines a set of 28 = 256 schemas, each schema should
have on average one instance in a population of 256.

l
k 

 

wj Ψj xopt( ) rnd 0 5,( )⋅=
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3. circle: the processors are connected to each other so that they form a closed cir-
cle. Thus each processor is connected with only two other processors.

4. full: the processors are fully connected with each other. This means that if for
example the migration rate is 4 and the migration period is 50, then after each
processor has evaluated 50 strings it sends its 4 best strings to every other proces-
sor, but every processor accepts only the 4 best of all the strings received. Thus
using the fully connected arrangement means that the 4 best of the total popula-
tion are spread over all the subpopulations.

5. split: this neighbourhood relation is shown on the left side of figure 4-19. The
processors are connected as shown. The number besides each connection indi-
cates the migration period. So in the figure, processor A communicates with
processor B after they’ve each evaluated 150 strings, and processor A communi-
cates with processor C after they’ve each evaluated 2,375 strings. This arrange-
ment can be seen as a form of islands within islands model.

6. random: when it’s time for a processor to send its best strings, it chooses the
processor to which it is going to send its individuals to randomly.

Results

With each experiment 50 order 8 Walsh polynomials were tested 5 times. Of each
order 8 Walsh polynomial the best found solution of the 5 times was compared to
the global optimum. Per experiment the average error and the standard deviation
was calculated from the 50 differences. In total 208 runs were performed, taking
five full days on a CM-5 with 16 processors. Table 4-2 shows the ten best and fifteen
worst results, ordered by the average error1. The first column shows the neighbour-
hood relation used, the second the average of the errors. S.D. indicates the standard
deviation. Members indicates the size of the intermediate population used, and the
last two columns show the migration rate and migration period respectively.

1. The complete table can be found in Appendix A.
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figure 4-19Islands within islands model, and the ladder-like arrangement.
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Table 4-3 shows results obtained from using a canonical serial GA. In this case one
global population was maintained consisting of 256 individuals. The size of the
intermediate population was chosen from the set {2, 16, 32, 64, 128, 256}. All other
variables and operators used were exactly the same as the ones used for the parallel
GA. Six runs did 5,000 evaluations, six other 80,000 evaluations. Again the average
error and the standard deviation is given for each run.

Table 4-2: Results from experimenting with different neighbourhood relations.

Type Mean S.D. Members Rate Period
ladder 1.89 0.13 8 4 250
ladder 1.93 0.11 8 4 1000
ladder 1.94 0.13 16 4 50
ladder 1.95 0.12 4 2 250
random 1.97 0.10 4 4 250
circle 1.97 0.11 8 4 1000
circle 1.97 0.11 4 2 500
ladder 1.97 0.12 8 8 250
ladder 1.98 0.10 8 2 500
random 2.00 0.11 8 4 500

. . . . . . . . . . . . . . . . . .
random 2.49 0.10 4 2 50
full 2.49 0.12 8 2 50
partitioned 2.51 0.10 2 n.a. n.a.
partitioned 2.51 0.11 8 n.a. n.a.
full 2.51 0.12 8 4 50
circle 2.52 0.09 2 4 50
random 2.52 0.13 2 4 50
partitioned 2.52 0.11 16 n.a. n.a.
full 2.54 0.12 8 8 250
full 2.54 0.12 2 8 250
full 2.56 0.11 4 4 50
full 2.63 0.14 4 8 50
partitioned 2.64 0.13 4 n.a. n.a.
full 2.66 0.14 2 4 50
full 2.68 0.12 2 8 50

Table 4-3: Results from a canonical serial GA.

Max. Generation 5.000 80.000
Members Mean S.D. Mean S.D.

2 5.38 0.18 3.13 0.17
16 5.71 0.18 3.07 0.15
32 5.64 0.17 3.04 0.17
64 5.80 0.16 3.07 0.16

128 5.71 0.16 3.12 0.15
256 5.37 0.19 2.90 0.19



Communication Schemes

56

Discussion

Several observations can be made from the tables 4-2 and 4-3. First,  all 208 runs
with the parallel GA significantly outperform the 12 runs done with the canonical
serial GA, even when no communication takes place as in the partitioned model. A
division of a population into several subpopulations therefore seems once again the
better road to travel.

Also, of the 208 runs the 4 runs done with the partitioned model all end up in the
worst 15 list. Thus, although the partitioned model significantly outperforms the
serial model, in turn the distributed model significantly outperforms the partitioned
model.

Looking at the list of the worst 15 runs one could think that the ‘full’ model isn’t
good enough. This is not quite true. The reason those runs are the worst is because
of the combination of low migration period, low intermediate population size and a
high migration rate. Because of this combination the diversity of the total popula-
tion is often decreased.

The ‘split’ model didn’t perform as well as I had expected. Probably the two con-
nection weights of 2,375 between the two ‘continents’ of 8 processors was too high,
thereby given the GA little chance to take advantage of this separation within 5000
evaluations.

The ‘ladder’ model seems the most promising, but the ‘random’ and ‘circle’ model
can be just as good. When the migration period is set high, it is best to set the size of
the intermediate population low. When the migration period is set low, the size of
the intermediate population is best set to a high value.
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Chapter 5

L-Systems

5.1  Overview

Patterns resulting from the growth and development of many living organisms can
be simulated by a mathematical system calledfractals. A fractal was defined by
Mandelbrot to be any curve or surface that is independent of scale [39]. Thus a frac-
tal isself-similar, meaning that when any portion of the curve is blown up in scale it
would appear identical to the whole curve.

Growth involves the repetition of the same simple processes (e.g. branching) so that
self-similarity arises on different scales. These repetitive processes that model
growth can be captured as sets of rules and symbols, calledL-systems (short for
Lindenmayer-systems, after Aristid Lindenmayer [38]).

5.2  Simple L-systems

L-systems are sets of rules and symbols (a formal grammar) that model growth
processes. A simple L-system contains three elements:

1. Alphabet, symbols denoting elements that can be replaced or remain fixed.
2. Axiom, a string of characters from the alphabet defining how the system should

begin.
3. Production rules, define how the characters from the alphabet are to be replaced

by other characters.

In formal grammars production rules are normally applied one-by-one sequentially.
In L-systems however all symbols are rewritten in parallel to form a new expres-
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sion. Consider the following simple L-system:

alphabet: {A, B}
axiom: A
rules: A → B

B → AB

The left-hand-side of the production rule (the part in front of the→) is called the
predecessor and describes the string to be replaced. The right-hand-side is called the
successorand describes the string with which it should be replaced. The process of
replacing symbols stops when no production rule can be applied, or by placing an
upper-bound on the number of steps. The simple L-system given above produces the
following sequence of strings:

step 0: A
step 1: B
step 2: AB
step 3: BAB
step 4: ABBAB
step 5: BABABBAB
step 6: ABBABBABABBAB
step 7: BABABBABABBABBABABBAB

If we count the length of each string, we obtain the famous Fibonacci sequence of
numbers:

1 1 2 3 5 8 13 21 34 ...

The power of L-systems comes when a predefined interpretation is assigned to the
symbols. For instance a symbol might represent physical parts of a modelled plant,
such as leaves and internodes, or it could represent local properties such as the mag-
nitude of a branching angle.

Visualising expressions generated by an L-system requires that the symbols in the
model refer to elements of a drawing on paper or on a computer screen. A common
tool used for this purpose isTurtle Graphics, which appeared in the popular lan-
guage LOGO [1]. A turtle provides a vivid mental model. It plays the part of the pen
in a penplotter. Relative moves and draws of the pen are specified in terms of direc-
tion and a distance. Thus each symbol in an L-system can be interpreted as a turtle
command.

Take for example the Koch-Graph, as proposed by Helge von Koch in 1905 [36]. It
is one of the oldest examples of a fractal and can be described with the following L-
system:

alphabet: {F, +, -}
axiom: F
rules: F → F-F++F-F

Suppose the following interpretations are attached to the symbols:

F : let the turtle draw a line for a distance d.
+ : let the turtle change direction by δ degrees to the left.
- : let the turtle change direction by δ degrees to the right.

The distanced and angleδ are variables. Figure 5-1 shows the result after 5 stages
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using an angle ofδ=80°.

figure 5-1Koch-graph after 5 stages,δ=80°.

To obtain branching as happens in real life plants two more symbols can be intro-
duced with the following interpretation:

[ : Push the current position and direction of the turtle on a stack.
] : Pop a position and direction from the stack and let the turtle

 continue from there.

Matching pairs of the brackets [ and ] delimit branches.

5.3  Context-sensitive L-system

In the previous section information was transferred from parent to child symbols at
the time of child creation. This is calledlineage. In a growing plant information is
also exchanged between coexisting adjacent cells, such as phytohormones, nutri-
ents, or water. To model thisinteractive property the simple L-system is extended to
context-sensitive L-systems.

Context is introduced to make sure certain conditions are met before a module is
rewritten. A production rule in a context-sensitive L-system has the following form:

L < P > R → S

P is the predecessor and S the successor, both are mandatory. L and R (theleft- and
right-context) may be absent. P is replaced by S if P is preceded by L and followed
by R. If two or more production rules apply for a certain module, the one with the
longest context is used. When both contexts are of equal length, the first one in the
list is considered. L-systems without context are called 0L-systems. When one of
the production rules has one-sided context it is called a 1L-system. 2L-systems have
one or more production rules with two-sided context.

Look for example at the following 2L-system:

alphabet: {A,B,C}
axiom: A
rules:  A → ABC

A < B → A
B < C → BCB
B < C > A → B
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step 0: A
step 1: ABC
step 2: ABCABCB
step 3: ABCABABCABCBB

The plant in figure 5-2 was created from the 2L-system described below. The sym-
bols 0 and 1 are not interpreted by the turtle. During context matching the turtle
commands (-,+ and F) are ignored. So for example the string F1F1F1 is rewritten to
F1F0F1. The production rules were constructed by Hogeweg and Hesper [30]. As
can be seen from this picture context-sensitive L-systems lead to more natural look-
ing plants.

alphabet: {0,1,F,[,],-,+}
axiom: F1F1F1
rules: 0 < 0 > 0 → 0

0 < 0 > 1 → 1[-F1F1]
0 < 1 > 0 → 1
0 < 1 > 1 → 1
1 < 0 > 0 → 0
1 < 0 > 1 → 1F1F
1 < 1 > 0 → 1
1 < 1 > 1 → 0

+ → -
- → +

figure 5-2Axiom F1F1F1, production rules as above,δ=16°, 30 rewriting steps.

5.4  Graph construction with a G2L-system

In this research a GA is used to manipulate a population of sets of production rules.
Each member of the population is a binary string consisting of one or more produc-
tion rules for an L-system1. To determine the fitness of the string an axiom is rewrit-
ten using the production rules the string contains. Because L-systems were

1. How these production rules can be extracted from a binary string will be shown later in
section 8.1.
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originally constructed to model biological growth, it is logical to use them when try-
ing to describe the growth of the brain, where the brain can be seen as a modular
neural network1. The resulting string is therefore interpreted as a modular neural
network. A modular neural network is represented by a directed graph, see figure 5-
3.

figure 5-3A directed graph

Instead of using a LOGO-based interpretation of a string from an L-system, a suita-
ble interpretation has been constructed to generate a directed graph directly from an
L-system, the G2L-system [6].

The strings used are made of characters from the alphabet {A-Z,1-9,[,]}. The string
is interpreted by reading it from left to right. Anode in the graph is represented by a
letter (A-Z). Nodes between square brackets form asubnetwork(or module). A digit
x following a node or module is interpreted as ‘‘jumpx nodes and/or modules to the
right and make a directed connection to that node and/or module’’. Two adjoining
modules do not have to be fully connected.Output nodes from the first module are
connected to allinput nodes from the second module. An input node has no input
from other nodes within the module, and an output node has no output to other
nodes within the module.

As an example the string A13[BC]1D1E represents the graph drawn in Figure 5-4.
The string consists of 4 layers: the nodes A, D and E, and module BC. Node A is
connected to module BC, and to node E which is the third layer after node A. Mod-
ule BC is connected to the next layer which is node D. And node D is connected to
node E. Note that module BC is connected to the same nodes outside the module,
and that the nodes within the module are not connected to each other.

Not every string over the alphabet {A-Z,1-9,[,]} is allowed. The predecessor and
successor may only contain nodes or complete subgraphs. The number of left and
right brackets must therefore be equal to each other and have to be in the correct
order. For example, the string A]BC[D is not correct because of the bracket’s order.
Empty subgraphs ( [ ] ) are not allowed. The predecessor must contain at least one
node. Thus, unlike in normal 2L-systems where only single symbols may be rewrit-
ten, in G2L-systems it is allowed to replace complete substrings. The successor may
be omitted, which can be used to remove the predecessor from the string when the

1. Neural networks will be explained in chapter 6.

module

output-node

node

branche
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production rule is applied. The left- and right-context of a production rule may also
be omitted. But if one is present then the same restrictions hold for it as for the pred-
ecessor, with the added restriction that every digit must follow a node or a module.
For example, the string 1A[BC] is not allowed as a context.

The definition ofcontext in a G2L-system is also different from a 2L-system. In a
normal 2L-system when the predecessor is rewritten into the successor the context
is directly on the left and right side of the predecessor. In a G2L-system context is
determined after the complete string has been interpreted.

A production rule with context is matched when the left context has edgesto the
predecessor and when the right context has edgesfrom the predecessor in the graph
interpretation of the string.

Look for example at the following G2L-system:

alphabet: {A,B,C,D,1,2,[,]}

axiom: A

rules:  A → B1B1B

 B > B → [CD]

 B → C

C < D → C

 D > D → C2

step 0: A

step 1: B1B1B

step 2: [CD]1[CD]1C

step 3: [CC2]1[CC]1C

After step 3 no more rules apply. If a digit is contained in a module and the skip
goes beyond the closing bracket, the skip is continued after the ]. Figure 5-5 shows
the result of each successive rewriting step. Note that the first D in the string from
step 2 is replaced by C2 because it is connected to the second D in the string, and the
second D in the string is replaced by C because it gets input from the first C in the
string.

A

B C

D

E

figure 5-4The graph from string A13[BC]1D1E visualized.
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figure 5-5The successive rewriting steps in the growth of a graph.
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Chapter 6

Artificial Neural Networks

6.1  Overview

One of the most fascinating and challenging tasks in the history of humanity is prob-
ably to understand how the brain works, particularly in humans. A lot of effort is put
into finding ways to make machines which show intelligent behaviour. The question
“What is intelligence?” however seems unanswerable, or at least to be in the domain
of philosophy.

Nonetheless scientists and engineers need criteria to determine whether a machine
may be called intelligent or not. In 1950 Alan Turing proposed a test procedure to
determine whether a machine shows intelligent behaviour [54]. This test has
become known as theTuring test. To conduct this test a person who will play the
role of an interrogator is situated in a room with two terminals, known as A and B.
One terminal is connected to a person in another room, the other terminal is con-
nected to the machine to be evaluated. The interrogator doesn’t know whether A or
B is the machine. It’s his job to determine which of them is the machine by typing
questions to the terminal. The machine’s job is to fool the interrogator into believing
it to be the person. If the machine succeeds at this, then Turing is willing to accept
that the machine can think intelligently.

No computer has ever passed the Turing test. However, when we narrow down the
domain of a complete imitation of a person to a more restricted domain some com-
puter programs do pass the Turing test. Theseexpert systems are able to compete
with the best specialists in very narrow areas. For example, on the domain of chess-
playing, computer programs have rankings comparable to the best chess-players of
the world. In the medical field some expert systems make better diagnoses than spe-
cialists.
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Expert systems designed to show intelligent behaviour usually make use of sets of
rules. This however poses some practical difficulties: no person could ever supply a
complete set of such rules, it would take too long and could certainly not be done
without human mistakes; no program could easily handle all those rules, the
response-time is too slow and there is a storage problem; there are areas lacking
‘absolute knowledge’ which can not be described by a definite set of rules. There-
fore researchers look for other approaches.

One is to look at nature again, see the brain, understand it’s basic workings and try
to simulate that in a computer. The basic building block of a brain is theneuron
which is a single nerve cell from the nerve system. Artificial neural networks are
based on the way these neurons work. The advantage of artificial neural networks is
that they acquire knowledge on their own. They do not have to be told what to do,
but insteadlearn it by themselves. They are capable of autonomously discovering
similarities, generalize automatically to novel situations, extract knowledge from
examples in complex task domains, and they are tunable to changing environments.

6.2  Artificial Neural Networks

An artificial neural network (ANN) is based on the workings of a nerve system. To
understand the functioning of an ANN it is therefore useful to understand the func-
tioning of a single neuron.

The size and shape of neurons vary, depending on their type and their location in the
nerve system. However, all neurons are basically similar in structure. As shown in
figure 6-1 each neuron consists of a cell body, a single axon, and one or more den-
drites. The neuron functions by means of electro-chemical signals, or impulses.
When a sense organ or other receptor is stimulated, an electro-chemical impulse is
set up in the dendrites of a neuron. The impulse passes rapidly in an electrical wave
to the cell body and from there on along the length of the axon. After the passage of
the impulse the neuron returns to normal, its resting state. Impulses from the axon of
one neuron are transmitted to the dendrites of the next neuron at a point called the
synapse. When an impulse reaches the end of an axon, the axon liberates chemical
substances calledneurotransmitters. The neurotransmitters cross the synapse, initi-
ating an impulse in the dendrites of the next neuron. The neurotransmitters are then
quickly inactivated by an enzyme, which prevents them from continuing to stimu-
late the neuron. It is believed thatchanges in the activity of neurotransmitters being
released causes the processes oflearning anddeveloping.

figure 6-1A Neuron

Dendrites

Axon
Nucleus
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In the artificial case, the artificial neuron takes its input as real numbers, and the out-
put is calculated as a function of its input. Every inputxi has a corresponding weight
wi. A weight can be positive or negative, which is analogous to real neurons which
give either excitatory or inhibitory signals respectively at their synapses. The stimu-
lation of an artificial neuron is usually simply the sum of all its inputs multiplied by
their weights, defined as:

where  is a bias term to shift the sum relative to the origin. The actual activation,
or output, of the artificial neuron is usually defined as a function of the stimulation:

figure 6-2An artificial neuron

Now that the functioning of an artificial neuron is defined and understood we can
interconnect a number of them together in order to build an ANN. There are differ-
ent ways to do this, but a standard one is thefeedforward network paradigm. A
standard feedforward network consists of 3 layers: an input, an output and a hidden
layer. Connections between different layers go in one direction. In figure 6-3 for
example there is a connection from node (or artificial neuron) A to B, which means
that the output of node A is propagated as input for node B. A node can have any
number of input- and/or output connections. A layer of nodes with no input-connec-
tions is called an input layer; this layer gets the stimulus from the ‘‘outside world’’.
A layer of nodes with no output-connections is called an output layer; this layer
gives the response to the ‘‘outside world’’. A layer of nodes with both input- and
output-connections is called a hidden layer.

Recurrent loops are not allowed in feedforward networks. The output of a node is
not allowed to return to the same node, or to a node in the same layer, or to a node in
a previous layer. The input of a node always comes from a previous layer (except of
course when it’s part of the input layer).
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figure 6-3An artificial neural network1

As with the human brain, an ANN has to betrained in order to perform a certain
task. Rumelhart and McClelland described extensively how they usedsupervised
learning as the method to train a feedforward network, which they then called a
backpropagation network (BPN) [49]. In supervised training the network is repeat-
edly offered so-calledinput/output pairs until the network has converged toward a
state that allows all the training patterns (the input/output pairs) to be encoded, or
until the teacher gives up. Each input/output pair specifies the input the network will
get and the desired output the network should produce. The input values are propa-
gated through the network, until some output is produced. The difference between
the produced output and the desired output is used to calculate an error for each out-
put node. With these errors the internal connections between nodes are adjusted.
These errors are back propagated through the network, until it reaches the input
nodes. This way the whole internal representation of the specific problem is
changed. When all input/output pairs have been offered to the network once, one
training cycle has been done or oneepoch.

Note that the representation of an item is not located at a particular place in compu-
ter memory as is the case in the conventional way. The representation of an item
corresponds to a certain pattern of activity. Different items correspond to different
patterns activity over the same group of nodes. A new item is ‘stored’ by modifying
the interactions between the nodes so as to create a new stable pattern of activity.
The main difference from a conventional computer memory is that patterns which
are not active do not exist anywhere. They can be re-created because the connection
weights between units have been changed appropriately, but each connection weight
is involved in storing many patterns, so it is impossible to point to a particular place
where the memory for a particular item is stored. For a more detailed description of
how a BPN works the reader is referred to appendix B.

A fully connected BPN is of course a large simplification compared to a real brain,
and some problems can arise because of this. A BPN may not converge to the global
minimum error of the weight-space. Whether the BPN reaches this global minimum
may depend on the random initialization of the weights. But even when the BPN

1. Throughout this thesis, all connections in the figures point upwards. The input nodes are at
the bottom, the output nodes at the top.

output layer

hidden layer

input layerA

B
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does reach the global minimum the network may not be very useful, because it may
be unable to inter- or extrapolate responses to input not seen during the training
process. Another problem that may arise happens when the network is supposed to
learn several unrelated problems at the same time. Even when the network is in
principle large enough to learn all the problems at the same time, the problems seem
to be in each other’s way, causinginterference throughout the weight-space. Not
only BPNs suffer from these problems, most other neural network paradigms do
too. There seems to be a solution to these problems, which is found inmodularity.

6.3  Modular Artificial Neural Networks

Let’s once again take a look at nature, at the human brain in specific. The brain is
made up of around 1011 neurons. These neurons are not fully connected with each
other. Instead the brain is divided in different modules at several levels, which in
turn are divided in a number of functional areas. For example, the brain is divided in
a left and a right half, which function for a large part independently from each other.
The two parts are connected to each other through thecorpus callosum, a module
with a relatively small amount of connections. On a lower level there are a number
of functional areas, like the visual, auditory and motory areas, between which rela-
tively small number of connections exist. At a smaller scale than the functional
areas more clear divisions can be made to show areas that each have their own spe-
cialism. All this suggests the brain is highly modular, meaning the brain can be
divided in identifiable parts, each with its own purpose or function. Of course mod-
ularity is not only found in the brain, but almost everywhere in nature (e.g. leaves of
a tree, hairs on the skin, scales of a fish, etc.). A good reason to also incorporate this
feature in a BPN.

To allow modularity in feedforward networks, the full connectivity between adja-
cent layers has to be discarded. Instead of full connectivity between two layers,
some connections are left out. Although a network with only one hidden layer can
compute any (mathematical) function, more hidden layers can be added to allow for
faster learning. Layers can be split into sub-layers, leaving specific connections out.
This way different nodes see different things. The amount of computing is
decreased, several local minima are removed which increase the speed of conver-
gence, and mutual interference between the simultaneous learning of different tasks
is minimized. Figure 6-4 shows a visualized example of a modular artificial neural
network. A rectangular box is a module, a group of unconnected nodes, each con-
nected to the same set of nodes. The number within the box shows the numbers of
nodes in the module. Connected modules are fully connected. All feedforward net-
works can still be built with these components, when one considers that each node is
a module on its own.

Studies so far have shown promising results when using modular artificial neural
networks. It is stated that modular networks learn faster, generalize better, have a
clearer architecture and are more suitable when there are hardware limitations to be
considered. See also Boers and Kuiper [4], Rueckl, Cave and Kosslyn [48], Jacobs,
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Jordan and Barto [33], Murre [43], and Happel and Murre [27].

figure 6-4A modular artificial neural network.
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Chapter 7

Implementation

Because the amount of computing time needed to find good neural network archi-
tectures with the method of Boers and Kuiper, an implementation on a supercom-
puter was preferred. First I tried to port their code on a Parsytec transputer system
(MIMD) with 16 processors, but this was not a simple task. First I had to translate
C++ code to C, and even then it didn’t work very smoothly. The communication
capabilities on the Parsytec were not adequate enough. I also considered implement-
ing the code on a MasPar MP-1 (SIMD) with 1024 processors, but this was not
practical due to hardware limitations. Finally I got access to a CM-5 parallel compu-
ter with 16 processors, which has a very nice programming environment and the
communication capabilities between processors are sublime.

First this chapter shortly describes the environment of the CM-5. Then some func-
tions provided by CM are briefly described. After that the software developed is
described, with some details highlighted.

7.1  Environment of CM-5

CM-5 stands short for Connection Machine and is produced by Thinking Machines
Corporation. The CM-5 is a highly scalable parallel processing computer. The
number of computational processors (or nodes) on a CM-5 ranges from fairly small
to very large. For this thesis I had access to a CM-5 with 16 processors, each had
32Mb local RAM, and communication speed was about 10Mb/sec/node. A CM-5
provides for both space-sharing and time-sharing. The CM-5 provides both SIMD
and MIMD capabilities. For this thesis use was made of the MIMD capabilities.
Nodes on a CM-5 are assigned to partitions. A partition, or host, has access to all
UNIX facilities that normally form part of the SunOS version of UNIX. Also access
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was given to special tools and utilities provided by CM software to facilitate parallel
programming. The source code for a CM-5 message-passing program depends on
the programming model in use:

• For ahostless program there is a single set of source code files for the nodes.
In the hostless programming model, the host merely initiates execution of
the node program, and thereafter acts as an I/O server for the nodes.

• For ahost/node program there are two sets of source code files, one for the
host and one for the nodes. The host program must explicitly start and moni-
tor the execution of the node programs.

In this thesis the hostless mode as recommended by CM was used. Single node pro-
grams were written which ran on all the nodes. The program did all computation
and communication; it did not communicate explicitly with the host. Each node exe-
cuted its code asynchronously, fetching data and instructions from its local memory.
It synchronizes with other nodes only when required to do so for message-passing
purposes (e.g., to send or receive a synchronous message, or to participate in a glo-
bal instruction, to do I/O, etc.). In the hostless mode an internal server program is
run on the host. This program downloads the source code to the nodes, which then
begin executing it, and goes into a polling loop as an I/O server, so that it can com-
municate with I/O devices on behalf of the nodes. This allows node programs to do
I/O. The code that runs on the nodes performs all the normal tasks of an application
program. Computation on each node is written normally. Communication among
nodes uses special function calls. Communication can be point-to-point, when one
node sends a message to a second node; or it can be global, with all nodes contribut-
ing to the message (and, usually, with all nodes receiving the result). Global com-
munication synchronize all the nodes; point-to-point communications can be either
synchronous or asynchronous. Hostless programming is supported in C, C++, For-
tran 77, CM Fortran and C*; for this research C is used as the programming lan-
guage.

figure 7-1CM-5 from Thinking Machines Corporation
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7.2  CMMD library functions

CMMD is a library of message-passing routines for the Connection Machine CM-5
system. CMMD allows to send messages from one processing node to another in a
number of different ways, depending on the need of the application. Here I will
briefly sum up the minimal set of CMMD function calls I used. More details can be
found in the CMMD Reference Manual.

Node information.

int CMMD_self_address (void);

returns an integer that represents the node identifier (the logical address) for the call-
ing node. The system I used contained nodes 0­–15.

int CMMD_partition_size (void);

returns the number of processors in the current partition. For the system I used this
was 16.

Input/Output.

int CMMD_set_open_mode (CMMD_file_mode_t io_mode);

int CMMD_set_io_mode (int fd, CMMD_file_mode_t io_mode);

int CMMD_fset_io_mode (FILE *stream, CMMD_file_mode_t io_mode);

These are the CMMD I/O functions I used. Most UNIX system and library calls are
supported, but the nodes need to know how to treat the I/O.CMMD_set_open_mode

changes the behaviour of UNIXopen()  and fopen()  calls. The other two functions
change the manner in which a global file is treated. The possibleio_modes  ares:

CMMD_local         Default. Treats each file operation as purely local

                   to the calling node.

CMMD_independent   Globally opens the file but allows each node to

                   perform I/O operations independently on the file.

CMMD_sync_seq      Globally opens the file and synchronizes all I/O

                   operations. Read operations spread data across all

                   nodes in processor order. Write operations ouput

                   data from all nodes in processor order.

CMMD_sync_bc       Gloablly opens the file and synchronizes all I/O

                   operations. Read operations broadcast data to all

                   nodes, write operations take data as if from a

                   single node.

To make debugging easy I used for exampleCMMD_set_open_mode(CMMD_local) so
that each node could open its own files andCMMD_fset_io_mode(stdout,

CMMD_independent)  to be able to monitor single nodes on the standard output. When
reading a global file onto all the processors this could easily be done by setting
CMMD_set_open_mode(CMMD_sync_bc)  so that there is no need, as on other parallel
machines, to read the file on one node and then take care that the data is sent around
the nodes correctly.
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Synchronization.

int CMMD_set_global_or (int value);
int CMMD_get_global_or (void);
void CMMD_sync_with_nodes (void);

These are the three synchronization functions which serve to synchronize all nodes
at a given point in a program. When usingCMMD_sync_with_nodes() each node waits
until all nodes have made this call. Only then all the nodes continue. In addition,
two asynchronous global logical OR routines allow nodes to signal each other by
contributing to a global logical OR and reading its results. The global OR mecha-
nism can be used as a non-blocking method of determining when all processors
have reached a given state. I used this to signal all the nodes when to stop running
the genetic algorithm and start collecting data.

Asynchronous message passing.

int CMMD_send_noblock (int dest_node, int tag, void *buffer,
                       int buffer_desc);
int CMMD_msg_pending (int node, int tag);
int CMMD_msg_sender (void);
int CMMD_receive_block (int source_node, int tag, void *buffer,
                        int buffer_desc);

Once in a while a node sends a couple of individuals from it’s population to another
node. Because a node might be busy training a network, which takes a lot of time,
sending nodes don’t want to wait for a confirmation from a destination node that it
has received the buffer. For this theCMMD_send_noblock  is used. The function always
returns immediately, having queued the buffer for later transmission when the desti-
nation node has declared its readiness to accept. For a node to check whether there
is a message waiting to be received it can use theCMMD_msg_pending function; as
parameters one can useCMMD_ANY_NODEand CMMD_ANY_TAG. When there is a message
waiting to be received a node callsCMMD_msg_sender to determine from which node
the  message was sent. Then it can receive the message withCMMD_receive_block .
This last function only returns when the message has been received and copied into
the specified buffer.

7.3  Software used

Original software

The original software to search for networks consisted of a main program and three
subprograms. They were:

• genalg, the main program which manipulates a population.
• chr2gram, translates the chromosome of an individual from the population

into  a set of production rules.
• lsystem,rewrites strings using the production rules for a number of itera-

tions, resulting in an adjacency matrix representing a network.
• backprop,trains a network using backpropagation.
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Backpropwas written in C++. At the time I started this project I first had to translate
backprop from C++ to C because the Parsytec didn’t support C++.  I also had to put
the four different programs together into one program, therefore directing output
from the different programs not to files but to memory.

Datastructures

The main programpga uses the libraryExtended GenLIB. The two main datastruc-
tures are described:

typedef struct /* contains information for each member */
{
    float    fitness; /* fitness of the member                */
    unsigned *genPos; /* pointer to array of genpositions     */
    BYTE     **genValue; /* pointer to array of chromosome       */
} MEMBER;

An individual from a population is described by aMEMBER structure, which contains
the fitness of the individual, an array of genpositions necessary for the inversion
operator to be able to switch genes, and an array of bytes containing the chromo-
somes. Each byte consists of 8 bits.

typedef struct /* contains population info             */
{
    unsigned popSize, /* nr of members in this population     */
             nrGenes, /* nr of genes in each member           */
             genSize; /* size of gene in bit                  */

/* (must be multiple of 8)              */
    MEMBER   *member;
} POPULATION;

Each population is described by aPOPULATION structure, which contains the number
of inidividuals in the population, the number of genes each individual has, the size
of each gene in the individuals, and an array of individuals. To make computation
easy only gene sizes which are a multiple of 8 bits are allowed. In this research
nrGenes is used to indicate the number of chromosomes of an individual, andgen-

Size  is used to indicate the length of a chromosome.

Population maintenance

POPULATION *DefinePopulation (unsigned popSize,
  unsigned nrGenes,
  unsigned genSize,
  BOOLEAN  initialize);

void FreePopulation (POPULATION *p);

A population is allocated memory by a call toDefinePopulation . The initialize

parameter indicates whether the newly created population should be filled with ran-
domly initialized individuals or not.  Freeing the allocated memory is done by a call
to FreePopulation .

Cmmd_LoadPopulation (POPULATION *p, char *popfile,
    unsigned long *generation, int PID);

Cmmd_SavePopulation (POPULATION *p, char *popfile,
    unsigned long generation, int PID);

Cmmd_LoadPopulation1 (POPULATION *p, char *popfile,
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     unsigned long *generation, PID);
Cmmd_SavePopulation1 (POPULATION *p, char *popfile,

     unsigned long generation, PID);

Because one run may take days, it is useful to be able to save a population to disk
once in a while. There are two ways to write and load a population from disk. The
first two functions load/save each subpopulation from/into a separate file; this can
be done asynchronously. The other two functions load/save subpopulations into/
from the appropriate nodes from a single file; for this synchronisation of the nodes is
necessary.

Genetic operators

unsigned Select (POPULATION *p);
unsigned RankSelect (POPULATION *p, double pressure);
unsigned TournamentSelect (POPULATION *p, unsigned pressure);

All selection methods described in chapter 2 are available; roulette wheel, rank
based and tournament selection. The higher the pressure, the greater chance individ-
uals with high fitness have to be selected.

RankReplace (POPULATION *p, POPULATION *newp, unsigned newmember);

This function is useful when the population needs to stay sorted all the time used in
the steady-state model as described by Whitley.

CopyMember (POPULATION *p, unsigned member,
 POPULATION *newp, unsigned newmember);

To avoid the disruption of genetic information when performing genetic operators
on the parents it is necessary to copy them into an intermediate population. This can
be done by using the above function.

void Mutate (POPULATION *p, unsigned member,
  int variance, double pMut);

int BitCrossover (POPULATION *oldpop,
 unsigned parent1, unsigned parent2,
 POPULATION *newpop, unsigned child,
 double pCross, unsigned point);

int BitInvert (POPULATION *p, unsigned member, double pInv);

These are the actual genetic operators on the chromosomes as described in chapter
2. Mutate()  flips every bit in a chromosome with a chance ofpMut . For the programs
used in the experiments of chapter 4 functionsCrossover()  andInvert()  were used.
After crossover one offspring is produced.Crossover()  supports a maximum of one
crossover point per gene.Invert()  swaps genes. For this program only one gene is
used, where the gene is acted upon as a chromosome consisting of 1-bit long genes.
For this special case the functionsBitCrossover()  andBitInvert()  were written.

Communication
int Cmmd_ReadNetwork (char *network_file);
int Cmmd_Connected (int from_node, int to_node);

The first function reads a file into the memory of each node (processor). The file
contains a specification of how the various nodes are connected to each other. Each
connection is directed. With each connection a weight can be given. For Example:
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0 1 50

0 2 75

1 0 50

1 3 75

2 0 75

2 3 100

3 1 75

3 2 100

gives the following network structure:

The functionCmmd_Connected () returns the weight between two nodes. When there
is no connection it returns 0.

int Cmmd_SendBest (POPULATION *p, int migration_rate);

int Cmmd_SendRandom (POPULATION *p, int migration_rate);

int Cmmd_SendBest2Random (POPULATION *p, int migration_rate);

int Cmmd_SendRandom2Random (POPULATION *p, int migration_rate);

int Cmmd_RecvIndividuals (POPULATION *p, int migration_rate);

These functions take care of sending and receiving of individuals.Cmmd_SendBest ()
sends the firstmigration_rate  best individuals from the population to the other
nodes it is connected to.Cmmd_SendRandom () randomly choosesmigration_rate  dif-
ferent individuals from the population to be sent.Cmmd_SendBest2Random () sends the
best individuals to one other randomly chosen node, andCmmd_SendRandom2Random ()
sends randomly chosen individuals to one other randomly chosen node. Lastly,
Cmmd_RecvIndividuals  checks the buffer to see if there are individuals waiting to be
received. If not, the function returns immediately, otherwise it will receive the indi-
viduals. At mostmigration_rate individuals are allowed to be received.

Miscellaneous

int Chr2Gram (POPULATION *p, unsigned member, char **production);

int Lsystem (char **production, unsigned nrofprod,

  char *axiom, unsigned steps, matrixType **adjMatrix);

float Backprop (matrixType **adjMatrix, unsigned nrNodes);

These are the main functions used to determine the fitness of a chromosome.
Chr2Gram  translates the chromosome into a set of production rules, and returns the
number of production rules found.Lsystem  () rewrites theaxiom  using the set of pro-
duction rules for a maximum ofsteps  steps, and translates the resulting string into
an adjacency matrix. It returns the number of nodes of the matrix.BackProp  () is the
neural network simulator, and returns a fitness indicating how good the network is.

int GetProblem (char *problem_file);

75

50

75

100

0 1

2 3
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Problem information for the neural network simulator was programmed hardcoded.
With the use of libraries from Matt White it is now possible to read the problem
specification from file. One call toGetProblem  () in the main program is enough.

7.4  Main program

The basic structure of the program is given below.May_send_individuals  () is a
function which determines whether it is time for a node to send some of its own
individuals to other nodes.

#define PSIZE           32    /* size of population on one node    */
#define NRMEMBER        10    /* size of intermediate population   */
#define NRGENES         1     /* number of genes                   */
#define CHROMSIZE       1024  /* chomosome length                  */
#define PRESSURE        1.5   /* selection pressure                */
#define PINV            0.5   /* inversion rate                    */
#define PMUT            0.01  /* mutation rate                     */
#define PCROSS          0.65  /* crossover rate                    */
#define SITES           2     /* number of crossover sites         */
#define MIGRATION_FREQ  50    /* migration period                  */
#define MIGRATION_RATE  6     /* migration rate                    */

float Fitness (POPULATION *p, unsigned member)
{
   nrofprod = Chr2Gram (p, member, production);
   nrNodes  = Lsystem (production, nrofprod, AXIOM, STEPS, adjMatrix);
   fitness  = Backprop (adjMatrix, nrNodes);
   return (fitness);
}

void main (void)
{
   POPULATION*  p;           /* population on this node             */
   POPULATION*  np;          /* new parents for crossover           */
   POPULATION*  localPop;    /* intermediate population             */
   unsigned     p1, p2;      /* the chosen parents                  */

   CMMD_set_global_or (0);
   p = DefinePopulation (PSIZE, NRGENES, CHROMSIZE, TRUE);
   np = DefinePopulation (2, NRGENES, CHROMSIZE, FALSE);
   localPop = DefinePopulation (NRMEMBERS, NRGENES, CHROMSIZE, FALSE);

   while (!CMMD_get_global_or())
   {
      /* Create new intermediate population                         */
      for(i=0; i<NRMEMBERS; i++)
      {
          p1 = RankSelect (p, PRESSURE);
          p2 = RankSelect (p, PRESSURE);
          CopyMember (p, p1, np, 0);
          CopyMember (p, p2, np, 1);

          BitInvert (np, 0, PINV);
          BitInvert (np, 1, PINV);
          BitCrossover (np, 0, 1, localPop, i, PCROSS, SITES);
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          Mutate (localPop, i, 10, PMUT);

          localPop->member[i].fitness = Fitness (localPop, i);

          if (CMMD_get_global_or ())
             break;
      }

      /* Put new individuals in the population sorted by fitness    */
      for (i=0; i<NRMEMBERS; i++)
         RankReplace (p, localPop, i);

      generation = generation + 1;

      /* Determine if it’s time to send individuals to other nodes  */
      if (May_SendIndividuals (generation, MIGRATION_FREQ))
         Cmmd_SendBest (p, MIGRATION_RATE);

      /* Check for individuals to be received from other nodes      */
      if (Cmmd_RecvIndividuals (localPop, MIGRATION_RATE) > 0)
         for (i=0; i<MIGRATION_RATE; i++)
            RankReplace (p, localPop, i);

      /* If this node has found an optimum then signal all          */
      /* nodes to stop                                              */
      if (p->member[0].fitness > MAXFITNESS)
         CMMD_set_global_or (1);
    }

    Cmmd_SavePopulation (p, popfile, generation, PID);
    FreePopulation (p);
    FreePopulation (np);
    FreePopulation (localPop);
}

The next chapter will present some results of experiments done with the software on
the CM-5. After that a chapter is dedicated to a number of suggestions and ideas on
how to improve and/or expand the software further on the CM-5.
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Chapter 8

Seeking Architectures

8.1  Overview

Determining suitable neural network architectures for a given problem is most often
like seeking a needle in a haystack. Instead of searching by hand, Boers and Kuiper
used a genetic algorithm to automatically find these architectures [4]. Other
researchers have tried this too, but most used the chromosomes of the genetic algo-
rithm asblue-print representations for the neural networks. They could obtain good
results for small networks but got stuck on the harder problems, which need larger
networks, because the number of possible connections to be coded in the chromo-
somes grew exponentially. Boers and Kuiper designed a method that does not suffer
from this problem. They used the metaphor of arecipe, where not the network itself
is coded, but a set of rules that produce the network. However, they have not tested
this method on any large problems yet. A combination was made of genetic algo-
rithms, L-systems and neural networks.

Neural network

G2L-system

Genetic algorithm

fitness

production rules

network

figure 8-1The combination of the three systems.
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The genetic algorithm generates a population of bit-strings, which are the chromo-
somes of the individuals. A chromosome codes recipes, or production rules. The set
of production rules decoded from a chromosome are applied to an axiom for a
number of iterations and the resulting string is then transformed into a neural net-
work architecture by the G2L-system. The resulting neural network is then trained
on a specific problem for a number of times. Depending on how well the network
could learn the problem at hand a fitness value is determined. Low errors in the net-
work results in a high fitness value. The fitness value is returned to the genetic algo-
rithm, specifically to the chromosome in the population which coded the recipe that
resulted in the network.

The G2L-system uses production rules of the form L < P > R→ S, where every part
of these rules is a string made of characters from the alphabet {A-H,1-6,[,]}. To sep-
arate constituent parts of the production rules within a chromosome a special char-
acter was used (the asterisk), therefore making the total number of characters that
can be coded 17. In principle 5-bit strings can be used to code these 17 characters,
but instead 6-bit strings were used. Thus 17 characters are related to 64 6-bit strings,
which shows similarity with biological genetic codes where 20 amino-acids are
related to 64 triples with four different bases. Table 8-1 shows the translation table
used. The first two bits of a string need to correspond with the bits in the left col-
umn, the second two bits with the bits in the upper row, and the last two bits with the
bits in the right column. For example, the genetic codestring 110100 corresponds to
the first character B in the table.

Furthermore, a chromosome can be read in twelve different ways. By starting at one
of the first 6 bits different production rules can be obtained by reading forward. The

Table 8-1: The translation table
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other 6 ways to read a chromosome are done by starting at any of the last 6 bits and
reading backwards. This feature provides the genetic algorithm again with a much
higher level of implicit parallelism than in traditional applications. Figure 8-2 shows
an example from Boers and Kuiper where a chromosome of length 48 is decoded1.
For clarity’s sake only four of the twelve possible decodings are shown. The four
decodings result in the following four rules:

**A*BB*D*

[1]1H][*

*D]B1[5*

1[*[HAE[1

Only the first of these four is a complete production rule. Rewritten in the usual
notation it is read as:

A > BB → D.

figure 8-2Extracting production rules from a chromosome.

Finally, the software developed by Boers and Kuiper also contains several functions
capable of repairing faulty strings. The functions remove strings with extraneous
brackets, useless commas, succeeding digits, etc. in order for the strings to meet the
restrictions of useful production rules. Repair mechanisms can also be found in
nature, in living cells to correct mistakes in the replication of DNA.

1. In the experiments done in this research chromosome length is usually 1024 or longer.

000011111000100110111001110101110111000010001000000011

1 [ E A H [ * [ 1

* 5 [ 1 B ] D *

* * A * B B * D *

[ 1 ] 1 H ] [ *
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8.2  Experiments

The XOR problem

The first experiment is a small problem where a network has to be found that can
learn the logic exclusive OR function. The logical XOR function is a function of
two boolean variables:

In the late sixties Minsky and Papert proved that it is impossible to construct a net-
work without a hidden layer that can learn the XOR function [40]. Because of this
proof and since at that time it was unknown how to train a network with a hidden
layer research in neural networks was for a long time thought to be not worthwhile.
Even at the present the XOR problem is still used as the benchmark. Although I
believe that nowadays the XOR problem receives too much attention in learning-
speed studies I will present some results using this problem to show the potential of
the methods described so far.

One of the parameters in the program is the variablenrofiter. This variable is used as
the stop-criterion when training a network. It indicates how many epochs a found
network should be trained, after which the error of the network is determined (and
subsequently the fitness for the GA). The lower this value, the faster the evaluation
of a network for the GA. Since more than 80% of the program is spent on training
found networks I tried an experiment varying this parameter to see the effect on the
speed of convergence of the GA and the quality of the XOR networks found. The
value ofnrofiter was varied between 75 and 1,000 epochs. The other parameters
used in these experiments were:

#psize           50
#nrmembers       10
#nrgenes         1
#chromsize       1024
#pressure        1.5
#pinv            0.5
#pmut            0.03
#pcross          0.65
#sites           2
#steps           6
#axiom           ABC
#times_train     5
#neighbourhood   circle
#migration_freq  25
#migration_rate  4
#minimum_freq    1

Thetimes_train variable indicates how often a found network is trained, after which

Table 8-2: the XOR function

x y x XOR y

0 0 0

0 1 1

1 0 1

1 1 0
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the fitness is determined by averaging the last found errors. This makes the chance
of a chromosome coding for that network receiving an erroneous fitness small. The
neighbourhoodvariable indicates the neighbourhood relation used. The possible
neighbourhood relations I used are described in section 4.3. In these experiments
each processor is connected to two other processors to form a circle. Individuals are
sent to neighbouring processors at timeg wheng is greater thanminimum_freq and
is a multiple ofmigration_freq and the best fitness in the subpopulation has changed
during the timeg - migration_freq andg. When the best fitness has not changed dur-
ing that time and no individuals have been sent at timeg - migration_freq, then indi-
viduals will be sent at timeg + migration_freq anyway. Lastly, there is a parameter
calledSUPERSNOEI in the program which removes extraneous nodes (e.g. unused out-
put nodes, chains of nodes) from a found network. In all experiments done this
parameter was set to on.

Table 8-3 shows the results. The values are averages of 5 runs, and should therefore
only be considered as estimations. The columnevaluationsindicates the number of
string-evaluations done by the GA,trained indicates the number of networks that
were actually trained. The time shown is an estimation in minutes execution time on
the CM-5. As one can see there’s a big difference between the number of string-
evaluations and the number of networks that were trained. This  is explained as fol-
lows: A chromosome of 1,024 bits contains on average 50 production rules. But of
these 50 rules none could be applicable to the chosen axiom. When this happens the
fitness for the chromosome is set to 0. Even when it so happens that a production
rule is used it often generates a string which translates into a network architecture
which is beforehand considered to be not a good one (e.g. it has too few or too many
nodes, or too few output-nodes for the task to learn). These last networks are also
evaluated to fitness 0. Eventually at the most 15% of all the generated individuals
are evaluated to a non-zero fitness. This percentage is calculated over an entire sim-
ulation. Usually the first couple of generations no valid networks are produced at all.
The number of evaluated individuals increases with time.

In all cases good neural networks were found. Figure 8-3 shows some of the best
neural networks found during the different runs. The number below a network indi-
cates the value ofnrofiter that was chosen during that particular run. The dark
shaded nodes at the bottom are the input nodes, the dark shaded nodes at the top are
the output nodes. In the right-most network the node at the bottom with the arced

Table 8-3: Results of varyingnrofiter for the XOR problem.

#nrofiter evaluations trained time (est. min.)

75 45,000 7,700 5

125 18,600 3,740 12

250 6,200 475 2

500 2,400 90 0.5

1,000 1,900 20 0.4
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pattern is also an input node, one which always gets a default input-value of 0.0. For
the three networks shown the error is plotted against the number of epochs in figure
8-4. It can be seen that lower nrofiter values result in more complex neural networks
which learn the problem faster in terms of epochs needed to converge. It is impor-
tant to take this result into consideration when trying larger problems. For larger
problems the valuenrofiter may need to be so high in order to give a network a
chance to converge, that is notpractical any more to use this value in the program.
To make it practical, low values ofnrofiter will have to be chosen. But this may then
result in complex architectures, while it may be preferable that simple modular
architectures are found that can learn the problem, even if it takes more epochs to
learn the task. Simple architectures usually need more epochs to converge, but they
also have less connections which means that they do one complete epoch faster. So
it is a trade-off. Either you want complex architectures that converge fast in terms of
epochs but maybe slow in terms of time per epoch needed, or either you want sim-
ple architectures that converge slow in terms of epochs but maybe fast in terms of
time per epoch needed. In this thesis I do not care about how complex or how sim-
ple an architecture found is. I am afterpracticality and after network architectures
that canlearn the task after extended training. That means I will choose the value
nrofiter low enough to be able to get a good enough idea about how well a found
network converges, and therefore have a (hopefully) fair indication of how well it
might be after extended training. It has to be noted though that larger networks
increase the number of (local) optima, therefore decreasing the chance of good gen-
eralisation. So on the training set the neural network might learn the problem per-
fectly, but because of overgeneralisation it could fail on the test set.

(125)(250)(500)

figure 8-3Some XOR networks found.



87

The fitness of a network was simply the inverse of the summed squared error of the
output node during the last epoch. The GA stopped when a network was found with
fitness higher than 25 (which means an average error of 0.1 in the output node), or
when a processor had done a maximum of 3,000 string-evaluations. Whennrofiter
was chosen above 500 the program quickly stopped with the left-most network from
figure 8-3 as the best found. Whennrofiter was chosen below 125 the GA stopped
because the maximum number of evaluations was reached. It had then found net-
works comparable to the ones found whennrofiter is equal to 125; complex and
with a fast converging error towards zero. But no network was found that could get
the error low enough within 75 epochs. Note that the time needed whennrofiter
equals 75 is considerably less compared to when it equals 125, even though more
networks were trained.1

A closer look at the networks obtained from runs withnrofiter equal to 125 or less
reveals that there are 6 layers of nodes in the best found networks. I tried another
run with nrofiter equal to 75, but this time with the parameterstepsset to 16 in order
to allow networks with a maximum of 16 layers. In one run several networks were
found that could indeed always learn the XOR function with an error less than 0.2
within 75 epochs. These networks contained from 70 up to 200 nodes. Although it
seems ridiculous to use a network with 200 nodes to solve a simple XOR function,
when this can also be done with just 5 nodes, these experiments show the potential
power of searching for good neural network architectures using a genetic algorithm
whose chromosomes encode production rules that make up the network.

1. I also triednrofiter equal to 50 and 100, which gave the same results as that for 75.
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figure 8-4Convergence in the error of the three different XOR networks from
figure 8-3. The numbers next to the curves indicate the value of#nrofiter

with which the network was found.
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The TC problem.

With the TC problem, a neural network should be able to recognize the letters T and
C in a 4x4 grid [49]. Each letter, consisting of 3x3 pixels, can be rotated 0°, 90°,
180° or 270° and can be anywhere on the 4x4 grid. The total number of input pat-
terns is therefore 32 since there are 4 positions to put the 8 different 3x3 patterns.
Figure 8-5 shows the possible 3x3 patterns and a sample 4x4 grid that would be pre-
sented as input to the network.

A black pixel was represented with an input value of 0.9, and white pixels with an
input value of 0.1. The output node was trained to respond with 0.1 for a T and with
0.9 for a C.  An approximation of the maximum possible error  used to calculate the
fitness of the network is:

The network was trained for a number of epochs after which the network was tested
to see how many of the possible 32 patterns were recognized correctly. Whenk pat-
terns were recognized correctly, the fitness was calculated as 100 +k - error. So low
errors resulted in a high fitness. The following parameters were chosen:

#psize           100
#nrmembers       20
#nrgenes         1
#chromsize       1024
#pressure        1.5
#pinv            0.5
#pmut            0.01
#pcross          0.65
#sites           2
#steps           6
#axiom           ABC
#times_train     1
#nrofiter        250
#neighbourhood   circle
#migration_freq  50
#migration_rate  10
#minimum_freq    70

I did two runs. Both ended with somewhat similar results. Figure 8-6 shows the best
found network during the first run, together with the production rules responsible
for the network architecture. It evaluated to a fitness of 128.73. The best found net-
work in the other run had a fitness of 128.63. This means that 2 or 3 out of the 32
patterns were not learned correctly within 250 epochs.

figure 8-5The 8 possible letters and one sample input grid of 4x4.

error 0.92 32⋅ 5.1≈=
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It is interesting to note that during the first simulation the following rules were also
found:

B → D[H[B]BFCB]2

A → 3

It produced the same network as the one shown in figure 8-6. Since the axiom isABC

the ruleA → 3  is used once here, but doesn’t really contribute to the end form of the
network. In an earlier generation the following production rule was used:

A → D[H[B]BFCA]2

which shows great similarity with the previous production rule. It produced a simple
network with an input layer of 36 nodes all directly connected to 1 output node. It
evaluated to a fitness of 116.77.  Although the two production rules look very simi-
lar to each other, the produced network architectures are totally different, as are their
fitness values.
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     B → D[H[B]BFCB]2
BC < D → A

figure 8-6The best network found during the simulation.
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A → FHD[A]3FC A → FH[D[A]]3FC

figure 8-7Two other networks found during the early stages of the simulation.



90

In the above two production rules the difference was in two letters. During the same
simulation the two networks shown in figure 8-7 were found in an early stage. They
too have production rules with great similarity; here the difference is in two brack-
ets. Both networks evaluated to low fitnesses (112.95 and 112.68 respectively). In
this case there is some similarity in the network architectures as well as in the fit-
ness. In nature too, one simple change in the chromosome structure of a new indi-
vidual can have no influence or a major influence.

Introducing patience variables.

During a typical run solving the TC problem, after 33,000 evaluations were per-
formed, the times spent on the separate parts of the program were as follows1:

Of the 33,000 evaluations only 10,000 networks were actually trained. The rest was
evaluated to fitness zero because the production rules did not produce valid net-
works. About 80% of the time was spent on training and evaluating valid networks.
To train a network it was given a set of training input/output pairs. These pairs were
presented to the network for a given number of times, which should be enough to
give the network a chance to decode the problem correctly. When the network has
been trained, the network is tested, and a fitness value is determined. Because the
resulting weight-space of the network depends on the random initialization of the
network, the network is reset, trained again, evaluated again, and a new fitness is
determined. This process is repeated a number of times. After that the average fit-
ness from the different runs is calculated, which will be the ultimate fitness given
back to the GA.

To reduce the amount of time needed to train a network apatience variable was
introduced. The idea was that a network could converge long before the stop-crite-
rion was reached, which was a fixed number of times presenting the training set.
The new stop-criterion was that the network would stop training when the change in
the summed squared error of the output nodes did not increase or change more than
a certain low percentage (error_change) for a number of epochs (patience). This

1. The time is rounded off, and shown in seconds ofexecution time on the CM-5. It does not
include time during which the program was swapped out. The actual time is the execution
time shown divided by 16 (since the CM-5 I used had 16 processors).

Table 8-4: Times spent per part of the program.

part of program
CPU time

(sec.)
CPU time

(perc.)

GA operators 140 0 %

Decoding from chromosomes to production rules 4,300 12 %

G2L-System 1,500 4 %

Training and evaluation of ANN 30,000 83 %

Communication operators 60 0 %
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was tested on a problem to find good network architectures solving the TC problem,
where we would stop when the error didn’t change more than 1% for 20 epochs, or
when the upper bound of 500 epochs was reached (i.e.patience= 20,error_change
= 0.01 andnrofiter= 500). The result was that the amount of time for the GA to con-
verge decreased dramatically. However, the resulting networks performed badly.
Changing thechange_error variable to 0.1% or even 0.01% and thepatience varia-
ble to 100 did not change this poor result significantly. The question was how it was
possible that only networks were found that perform badly, even after extended
training, when the summed squared error of the output-nodes does not change in
any significant way for a long period of time. To answer this it is a good idea to look
at the development of the errors of a network. I compared the networks that I found
with thepatience variable set with networks I found during previous and next runs
(without thepatience variable set) that performed well after extended training.  I
just picked some found networks at random, trained them once, and plotted the
error; see figure 8-8.

Lines E and F show typical examples of networks found with thepatience variable
set; either the error is heavily oscillating at high values, or the error drops within 10
to 20 epochs to a certain (high) error, and from there on the line remains flat during
the whole training. Lines B, C and D show error lines for networks that were found
halfway through a simulation which had thepatience variable not set. Line A shows
the error development of a best found network with thepatience variable not set.
Looking at these lines it now becomes clear why the chance of finding networks that
converge like A, B, C or D is low when thepatience variable is set. After the error
has initially dropped within 10 to 20 epochs all invariably remain at a somewhat
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constant error for over 100 epochs.  What’s more, they have during that period an
error comparable to the worst converging networks. So when for instance network
A is found, and thepatience variable is set, then it gets evaluated to the same fitness
as for example network E. This means that the GA will have no clue that network A
is really better than network E, and therefore there’s a chance that network A will be
lost because it will not be selected as a parent for the next generation, and more rub-
bish like networks E and F are generated. It is also clear now why the results do not
change when higher values of thepatience variable are chosen.

Since it seemed that especially during the first number of epochs the error is not
changing much, I tried another test where each network was forced to learn for a
minimum number of epochs (miniter) before allowing thepatience variable to be
applicable. It improved the results a bit, but still the resulting networks performed
mediocre. The reason for this is now also clear from the error lines in figure 8-8.
When for exampleminiter = 200,patience = 30 is chosen then networks like C and
D will still get bad fitness values. Network B will get a better fitness value, but it
will be based upon the error around epoch 300. Even if it gets past this point it will
stop at the plateau around epoch 400, and it will miss the evaluation of being a very
good network that can learn the problem completely correct. Because networks
don’t get the credit they deserve they have a chance of being lost in subsequent
selection phases of the GA. Choosing even higher values for theminiter and
patience variables does not add anything new, since it will only mean that learning
will stop at the original threshold ofnrofiter we had at first.

Calculating the fitness of the initial population.

In the original version of the program the population was initialized with random
chromosomes. These initial individuals were however not evaluated and their fit-
ness values were simply set to zero. This meant that useful information that hap-
pened to be present in the initial population might get directly lost. In the program I
made the addition that each initial individual is evaluated before the genetic process
starts, therefore beginning with parents with correct fitness values. Practically
speaking though, this did not seem to have any effect since most of the time all indi-
viduals get evaluated to zero anyway (because of the number of non-applicable pro-
duction rules and/or invalid networks generated).

Making the primeval soup period as short as possible.

To give an idea of what theprimeval soup theory entails I will quote some text from
the thesis from Boers and Kuiper [4]:

“The atmosphere of the earth at the time when there was no life on earth, con-
tained no oxygen but plenty of hydrogen and water, carbon dioxide, and very
likely some ammonia, methane and other simple organic gases. The ‘primeval
soup’ theory states that this environment, under influence of lightning and ultra-
violet light (there was no ozone layer), after thousands of millions of years spon-
taneously created some molecules that were able to replicate themselves, and
subsequently started evolution [45]. Once started, evolution could slowly give
rise to more and more complex creatures.”



Seeking Architectures

93

This is something that can be found in the simulations I did as well. It always took
tens of generations before a valid network was found. As I already mentioned, of the
newly created individuals only 15 to 20 percent at the most are considered as valid
networks and get evaluated to a non-zero fitness. However, these percentages were
calculated over an entire simulation. The start-up process is much worse. When
there is nothing it takes a lot of time to create something spontaneously out of this
nothing. Once there’s something it gets easier to create more somethings each gen-
eration, i.e. more useful new chromosomes. Only then when there are individuals
with non-zero fitnesses has the genetic algorithm really started with its schema
processing. Boers and Kuiper presume that the results found by them so far can be
compared only to the period just after the start of evolution, and that much longer
simulations on much larger tasks perhaps require the full potential of their methods.

There is a problem with this however when using their methods together with a par-
allel genetic algorithm. It is very well possible (I’ve seen it happen each time) that
one subpopulation after a small number of generations finds a valid network, after
which an increasing number of better networks are found and put within that sub-
population. Meanwhile, all the other subpopulations are still busy in their primeval
soup period searching for their first valid network. After some more generations the
subpopulation that has already developed some good networks decides to send some
of its individuals to neighbouring subpopulations. These neighbouring subpopula-
tions, which still haven’t found valid networks on their own (i.e. each individual
still has a fitness of zero), are shocked by the amount of good networks they sud-
denly receive, and they start searching for better networks from these networks they
have just received. But this is not what is desired. It only means that more subpopu-
lations are now searching from the same subspace, i.e. this means that they are
doing much of the same work and there is hardly any diversity between the subpop-
ulations. Evolution could then get stuck on all subpopulations with one reasonable
set of production rules, that was accidentally found on one specific subpopulation,
and which can not evolve any further anywhere.

Therefore it seemed like a good idea to make the primeval soup period as short as
possible. This could be done by making sure that the initial population, before start-
ing the GA process, has individuals with non-zero fitness. I.e. only insert the next
initial individual into a subpopulation when it has non-zero fitness. This way the
simulation will start with a high amount of randomly found production rules that,
when combined, may quickly result in good solutions.

I tried this, but in my judgement this was terrible and far from practical. When it
takes for instance 1,500 randomly generated chromosomes to create one something
out of nothing1, and a subpopulation of say 100 individuals has to be filled, then it

1. This was in fact an average when applied to the TC problem. With an inter-
mediate population size (nrmembers) of 20 it took around 70 generations
on average before a network with a non-zero fitness was found. This was
also the reason why I choseminimum_freq equal to 70 (with
migration_freq= 50 this meant that a subpopulation would start its first
communication at generation 100).
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would take 150,000 evaluations before the genetic process can bestarted (and I’m
only talking about one subpopulation here, so it would mean around 2.5 million
evaluations in total when using 16 subpopulations). In the meantime I could have
found some good working neural networks ten times when I just started the GA
process with an initial population of individuals with zero fitness. I would rather
take this last route and keep the best found network out of the 10 runs, even if this
means that the end-result might have been a local optimum in evolution. Limiting
the number of initial individuals with a non-zero fitness to say 10 still makes the
start-up time excruciatingly long (in the order of hours).

To keep the primeval soup period as short as possible it is better to find ways where
something can be created out of nothing faster. I’ll come back to this issue in a later
paragraph.

Introducing a database.

Since more than 80 to 90 percent of the program is spent on training neural net-
works it seemed like a good idea to create a database containing already trained net-
work architectures together with their fitnesses. This would probably save a lot of
computing power. Instead of storing the network architecture, a lot of space is saved
when only the used production rules that evolved into the architecture are stored.

Setting up an effective and efficient database requires more time than I can afford to
spend on this research. Therefore I decided to set up a database in a simple and
crude form just to get a rough indication of the implications on the speed. In the pro-
gram I kept track of which production rules were used during the rewriting steps in
the G2L-system. At the beginning of each new generation the database is emptied
and each individual of the best half of the current subpopulation is decoded into pro-
duction rules. These are given to the G2L-system, which returns a string containing
the production rules used. This string together with the fitness of the individual was
put into a small database. Then when the intermediate population was being filled
the production rules used by a newly created individual were first looked up in the
database. If a match was found, the new individual got the corresponding fitness. If
no match was found, the network architecture was trained.

Using a database in this form means that at each time it only contains network archi-
tectures equal to the best half of a current subpopulation. Network architectures that
might have been trained in the past can be lost. Also, since each subpopulation
maintains its own database it is possible that one subpopulation is training a network
that is contained in the database of another subpopulation.

When I first tried the program with the database a new problem introduced itself. An
individual with high fitness can spread itself throughout the population, which
means that when no database is used this individual is evaluated over and over
again. So for instance, when thetimes variable is set to 1 as I did when solving the
TC problem, one particular network could be trained more than once. This means
that this network gets more chances to get a higher fitness, since other initial random
weights of the network might be directed towards lower errors in the network.
When a database of evaluated production rules is used a particular network is evalu-
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ated once and only once. This means that if the network started with bad initial ran-
dom weights it gets a lower fitness than it deserves. When using the database the
times variable should therefore be set to higher values to average out the error of a
network. This of course means an extra large amount of computing time.

In the experiments I will present hereafter I will each time give three values, which I
call: invalid, databaseandtrained. In order to discuss results pertaining to the addi-
tion of a database I will start with presenting some example numbers, see tables 8-5
and 8-6 (the values are rounded off). These are results from a rerun of the TC prob-
lem with the same parameters as I started with, but with variable times set to 4 and
the database installed. The GA had fully converged. A newly created individual is
marked asinvalid, databaseor trained, depending on how the fitness was deter-
mined. It is marked asinvalid when the individual was evaluated to a fitness of zero
(i.e. no network architecture could be produced with the production rules, or the net-
work architecture produced was considered invalid), and it is marked astrained
when the network architecture resulting from the individual’s production rules was
trained and therefore was evaluated to a non-zero fitness. An individual is marked as
database when it got its fitness from the database, thereby bypassing the need to
train the network.

As can be seen from table 8-5 about 75% of all created individuals is marked as
invalid. Around 20% got its fitness from the database, and only 5% actually got
trained. This 5% takes about 75% of the time of the program, as can be seen from

Table 8-5: Values showing how the fitness was determined.

invalid 365,000 73 %

database 111,000 22 %

trained 25,000 5 %

total evaluations 501,000 100 %

Table 8-6: Times spent per part of the program.

part of program
CPU time

(sec.)
CPU time

(perc.)

GA operators 550 0 %

Decoding from chromosomes to production rules 38,000 6 %

G2L-System 36,000 6 %

Training and evaluation of ANN 445,000 76 %

Communication operators 160 0 %

Database operators 66,000 12 %
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table 8-6. Had there not been a database it can be deduced that the total time for the
GA to converge would take about 4 to 5 times longer, and about 95% of the time
would’ve been spent on training networks. Note in the above the time needed to cre-
ate the database each time. Since I used just a crude form of a database this time
needed to perform database maintenance could easily become substantially less
when more efficient database operators are installed. However, for my purposes it
served me enough since the time is not really significant in comparison with the
time to train a network. Of course the database can also be made more effective,
which means cutting down even more on the time needed to train networks.

The reader should also note the following: when the variabletimes is set to 1 and no
database would have been used, and this is compared to the above where the varia-
ble times was set to 4, then it could be deduced from the above tables that the total
time spent on the program would be somewhat equal for the two runs. It is therefore
doubtful whether a database will be of real help.

Adapting the translation table.

During one generation newly created chromosomes produce on average 50 valid
production rules, but very often none is applicable to the axiom. Even when some
rules are used during the rewriting steps of the G2L-system, often network architec-
tures are produced that will not even get trained, due for instance to too few nodes,
too many nodes, too few output nodes, etc. Wiemer researched to increase the
number of applicable production rules by adapting the translation table 8-1 [59].
She used a different evaluation function though. Produced network architectures
were not trained. Instead the fitness was simply a function of the average number of
nodes in a module, the number of modules and the average  number of connections
between modules.

One of the experiments she tried was to replace some numbers and letters in the
translation table by asterisks. It turned out that this resulted in an improvement in
her experiments. I also tried this for the TC problem. I replaced 5 numbers and 2 let-
ters in the translation table by asterisks. This did not seem to improve much1 (best
found networks had fitnesses of 125.41 and 126.56).

Wiemer also introduced a new character, the point. In the successor the point was
ignored and filtered out of the string. In the left part of the production rule the point
was interpreted as an asterisk.  This way the chance for matching production rules
was increased and the successor wouldn’t be too small. The best results were pro-
duced when she combined adding more asterisks and more points to the table, as the
one shown in table 8-7.

1. Each time I tried a new translation table I did two runs. This took a complete day. It is hard
and maybe even unjustifiable to base assumptions on just 2 runs. Nevertheless, I have no
choice in this due to time limitations, and therefore I can only give observations biased by
my subjective interpretation. However, even with 2 runs I think I can make reasonable
judgements based on the results about how promising a translation table may be. This is
based upon a number of factors, such as the best found network and its fitness, the time of
the primeval soup period, the average number of production rules that are applicable, the
number of valid networks found per generation, and the convergence speed of the GA.



Seeking Architectures

97

The shaded symbols show where changes have been made to the original translation
table. These changes had the effect of increasing the convergence speed of the GA,
and the number of fitness evaluations turned out to approximate a normal distribu-
tion. Because the fitness function used was an alternative one, I tried to experiment
with the given translation table to see its effect on the original fitness function which
trains the networks. The results did indeed show a slight improvement. The number
of applicable production rules clearly increased, and the time of the primeval soup
period decreased on average on the subpopulations by several generations (origi-
nally it took about 70 generations before the first valid network was found; with the
addition of the points it took about 20 to 30 generations). The fitnesses of the best
found networks were somewhat higher (129.89 and 130.11). Still, the number of
valid networks produced that could be trained did not increase as much as I
would’ve expected considering the increase in applicable production rules, and the
convergence speed also didn’t increase that much. This can perhaps be explained by
the fact that Wiemer accepted every network architecture created, while I only con-
sider network architectures with a certain minimum and maximum amount of input-
and output-nodes. It seems that the adaptations of the translation table used by Wie-
mer are just not enough yet to overcome the constraints I put on the form of a net-
work architecture.

To increase the number of applicable production rules even more I tried another
experiment where I replaced the two letters‘H’ by the letter‘A’ (the axiom chosen
was ‘ABC’ ). This didn’t show any further significant improvement. Then I replaced
in addition to all previous adaptations the two letters‘G’  by the letters‘A’  and‘B’ ,
and replaced the numbers‘5’  and ‘6’  by a point thereby making the maximum
jump over modules 4; see also table 8-8.

The number of applicable production rules now increased even more. The primeval
soup period shortened in such a way that some subpopulations started with valid

Table 8-7: Translation table used by Wiemer [59].

4 4 * * [ [ [ [ D D 3 3 ] ] * 6

. * * * . 2 2 2 E E F F ] ] ] ]

* 3 3 5 . A A A G G H H [ [ ] ]

1 1 1 1 . B B B * * [ [ C C C C

Table 8-8: Translation table used.

4 4 * * [ [ [ [ D D 3 3 ] ] * .

. * * * . 2 2 2 E E F F ] ] ] ]

* 3 3 . . A A A B A A A [ [ ] ]

1 1 1 1 . B B B * * [ [ C C C C
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networks in their first generation. The convergence speed of the GA seemed to
increase, but I stopped the simulation halfway, since due to this convergence speed
the migration period now seemed too high. I decreased the variablemigration_freq
from 50 to 25, and decreased the variableminimum_freq from 70 to 0, and did again
two complete runs. The parameters then looked as follows:

#psize           100
#nrmembers       70
#nrgenes         1
#chromsize       1024
#pressure        4.0
#pinv            0.5
#pmut            0.01
#pcross          0.65
#sites           6
#steps           6
#axiom           ABC
#times_train     4
#nrofiter        250
#neighbourhood   circle
#migration_freq  25
#migration_rate  20
#minimum_freq    0

Both simulations performed equally well. To give an indication of the performance I
will show some results from one of them. During a simulation a subpopulation once
in a while saves its best individual. When this particular simulation ended a total of
45 individuals were saved in files. Of these 45 individuals 13 individuals had the
curious property of carrying a production rule of the formA → N[ADFC]S , whereN is
a number andS a substring. Below some of these networks are shown, together with
their fitness value they got and the production rules that were used. They are sorted
by their fitness value, from top-left to bottom-right. With the exception of one net-
work, they are also in order of time of (file) creation.

12 1

1

1

3 2

16 2 1

117.90
C < C →
    C > C →
    A → 3[ADFC]A[CFE]CACC

3

1

3 3

28 1012

121.48
     AA → C
DF < C → AAA
     D →
     C > C →
     A → 3[ADFC]A[CFE]CAC
     B →
     C → B



Seeking Architectures

99

1

3

1512

2 1

2

2

1 1

124.60
C < C →
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              BE[DA]221CF3A
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    F →
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    F  > C →
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    AC > F → FFF
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     D > C → F
D <  C → F
     B → [ECE]4C
FE < EA →
     A → 4[ADFC]A[CFEEA]
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129.77
   C →
   F > C →
   A → 3[ADFC]A[C[EAC]AC]
   B →
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1
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130.06
       B → 23CAA1C3ACAAAB
       C → [[D]FAEC]
       23CAA → 1C3ACAAAB
CACA < AAB > A →
AAB  < A → 234AD[C]1B
  C  < D → F3B
       F → CA
       A →

131.42
      C → BC
DCD < B → BE2
      B > E →
FE  < EA →
      A → 4[ADFC]A[CFEEA]
      B →
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The last and best network was found after about 50.000 evaluations had been per-
formed. The way the networks seem to develop is by keeping 12 to 16 input nodes
on the left-side, increasing the number of nodes in the hidden layer that is connected
between the left-most input-part and the output node, and by making the right-side
of the network simpler with every step. Also note from the examples shown above
the number of production rules used to develop the network architectures. In the
original setup mostly 1 (if at all) was used, and with any luck 2 production rules
were used. Because production rules are now more easily applied to the axiom the
convergence speed of the GA increases. This can also be seen from table 8-9 when
compared to table 8-5.

The total number of evaluations needed for the GA to converge has decreased by
about 75%. Relatively speaking though, the number of invalid produced network
architectures increased a bit. The ratio betweendatabase andtrained has changed
significantly. In the old situation the number of individuals that got their fitness from
the database was about 4 times the number of individuals that got actually trained.
In the new situation more individuals get trained than individuals getting their fit-
ness from the database. This can very well be explained as follows: in the old situa-
tion where mostly only one production rule was used the genetic operators had little
chance of making changes in that, so that the offspring was often like one of its par-
ents. In the new situation the genetic operators have a higher chance to mix different

Table 8-9: Values showing how the fitness was determined when using the
translation table 8-8.

invalid 97,000 80 %

database 11,000 9 %

trained 14,000 11 %

total evaluations 122,000 100 %

1

15

15 15

131.82
B → 2CCAA1AC2ACAEAABE
C → [ECFAEC]A
E →
A →

1

23

13 12

131.88
    C →
    E →
C < D →
    A → 4[ADFC]A[CAFEAC]

figure 8-9Example of the development of production rules and their corresponding
network architectures. Sorted by fitness, from top-left to bottom-right.
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production rules, therefore creating more differences in the offspring produced.
Since the offspring are now more often different from their parents less use is made
of the database. Still, the database has its use as can be deduced from tables 8-9 and
8-10, since otherwise the program would probably have spent about 275,000 sec-
onds more, while the time that was needed to maintain the database is about 1,500%
less.

Figure 8-10 shows the fitness of the best individual of the total population, the aver-
age of the best individuals from all subpopulations and the average fitness of the
total population throughout the simulation. Again it has to be noted that this can
only be viewed as an indication of how the fitness developed; it is not the actual
development since the asynchronisation of the processes makes it hard to keep track
of this. With this last simulation for example one subpopulation stopped at around
generation 160 while another stopped at around generation 60. Each subpopulation
writes its fitness values to a separate file each generation, so the figure was created
simply by adding all the values from the separate files.

Finally the networks found during the simulation are compared to standard back-

Table 8-10: Times spent per part of the program.

part of program
CPU time

(sec.)
CPU time

(perc.)

Decoding from chromosomes to production rules 9,000 2 %

G2L-System 14,000 4 %

Training and evaluation of ANN 350,000 90 %

Database operators 17,000 4 %
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figure 8-10The fitness of the total population during one simulation.
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propagation networks with one hidden layer. The learning rate was 0.4, and the
momentum was 0.9. The number of nodes in the hidden layer for the standard net-
works was varied  from 4 to 10. The 32 patterns were presented 250 times to each
network. Each network was tested 50 times. Table 8-11 shows the results.

The first row shows the average error, and the second row shows the number of
times the network classified all 32 patterns correctly out of the 50 runs. The last row
shows the fitness the network would’ve gotten. Table 8-12 shows an identical table,
but for the networks found during the simulations.

The more nodes are added to one hidden layer, the better it gets. Note that the fitness
of the network from figure 8-6 was higher than it deserved according to this last
table. This was probably because during that simulation no database was installed
and the variabletimes was set to 1, which meant that the network could have gotten
a lot of chances to improve its fitness due to one good set of initial random weights
with which it started the training.

Remember from the paragraph about the primeval soup theory that originally it took
a lot of time to create something out of nothing. Adapting the translation table is a
way to create something out of nothing faster. Since initial individuals with non-
zero fitnesses can now be created within reasonable time I decided to re-install this
feature in the program.

Lastly, I tried to solve the TC problem using a smaller population size. Instead of
100 individuals per subpopulation I tried 50. With other problems tackled with a GA
this is already considered a ‘large’ subpopulation size. However, for this application
it produces undesirable results, such as premature convergence of the GA on the
subpopulations. I could not solve this by decreasing the migration period. Therefore
subpopulation sizes of 100 seem to be minimally needed.

Table 8-11: Performance of standard networks on the TC problem.

nr of hidden 4 5 6 7 8 9 10

Error 3.62 1.21 1.27 1.12 0.84 0.66 0.75

Correct 1 12 9 13 20 29 26

Fitness 120.81 125.57 125.01 127.41 128.34 129.16 128.73

Table 8-12: Performance of found networks on the TC problem.

network figure 8-6 16 hidden 23 hidden figure 8-9

Error 1.26 0.28 0.34 0.34

Correct 8 44 42 45

Fitness 126.49 131.28 130.47 130.70
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‘What’ / ‘Where’ problem.

The ‘what’/‘where’ problem was proposed by Rueckl et al. [48]. They wanted to
explain why ‘what’ and ‘where’ are processed by separate cortical visual structures.
Like the TC problem there are a number of patterns consisting of 3x3 pixels, see fig-
ure 8-11. In this problem there are 9 patterns and they are placed on a 5x5 grid. The
network should not only recognize theform of the pattern, but also theplace of the
pattern on the grid.

Rueckl et al. tried a number of experiments with different networks. Each network
had 25 input, 18 hidden and 18 output nodes. Nine output nodes were used for
encoding ‘what’ and nine were used for encoding ‘where’. Their results showed that
a network learned faster and better when the hidden layer was split where each part
processed the ‘what’ and ‘where’ separately. Of importance was the number of
nodes allocated to the ‘what’ and ‘where’ systems. Figure  8-12 shows the optimal
network found. Four nodes are dedicated to the processing of ‘where’, and fourteen
nodes to ‘what’ which is a more complex task. Rueckl et al. also stated that when
the processing of ‘what’ and ‘where’ was done with one hidden layer of 18 nodes
then interference would occur.

Boers and Kuiper reported in their thesis that when they tried to find a network that
could solve this problem they found a simple network without a hidden layer, thus
one with 25 input nodes directly connected to the 18 output nodes. They also
reported that this simple network without a hidden layer could very well learn this
problem [4].

Before describing some experiments I did with this problem it is necessary to intro-
duce a new network learning-algorithm I  incorporated into the program.

The Quickprop Algorithm

The greatest obstacle in the application is the slow speed at which the neural net-
work simulator works. This is a problem for which most applications with a back-
propagation algorithm suffer. Also, back-propagation learning scales up poorly as

figure 8-11The nine patterns.

25 input

14 4

9 what 9 where

figure 8-12The network from Rueckl et al. [48].
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tasks become larger and more complex. Therefore I  looked for another simulator to
install, and found the fastest available in the form of the Quickprop program devel-
oped by Fahlman.1 It has a new learning algorithm that is faster than standard back-
propagation by an order of magnitude or more and it appears to scale up very well as
the problem size increases.

Everything in the Quickprop algorithm proceeds as in standard back-propagation,
but for each weight a copy of the error derivative computed during the previous
training epoch is kept, along with the difference between the current and previous
values of this weight. Two assumptions are made: first, that the error vs. weight
curve for each weight can be approximated by a parabola whose arms open upward;
second, that the change in the slope of the error curve, as seen by each weight, is not
affected by all the other weights that are changing at the same time. For each
weight, independently, the previous and current error slopes are used as are the
weight change between the points at which these slopes were measured to determine
a parabola; a jump is directly made to the minimum point of this parabola.

In order to keep the jump within limits a new parameter is introduced, called
maxfactor. No weight step is allowed to be larger in magnitude thanmaxfactor times
the previous step for that weight. Another new parameter is calledhypererr. When
the error of an output unit is calculated usually the error is simply defined as the
squared difference between the actual and the desired output. It was suggested that a
non-linear error function might speed up learning. The idea was that for small dif-
ferences between the output and the desired output, the error should behave linearly,
but as the difference increased, the error function should grow faster than linearly,
heading toward infinity as errors approach their maximum values. One function that
meets these requirements is the hyperbolic arctangent of the difference. When
hypererr is set to true the non-linear error function is used, otherwise the usual lin-
ear error function is used.

There are some more new parameters included in the Quickprop algorithm, but they
are outside the scope of this thesis (and not changed during the simulations here).
For a more in-depth description of how the Quickprop algorithm works the reader is
referred to Fahlman’s article [15].

To get an impression of the difference in speed between standard backpropagation
and the Quickprop algorithm I did some experiments using the ‘What’/‘Where’
problem using the network from Rueckl et al. as shown in figure 8-12. The learning
ratealpha was chosen 0.4 and the momentum ratebeta was chosen 0.9. Using the
standard backpropagation simulator it took about 8 minutes to do 1000 training
epochs. Doing 1,000 training epochs using the Quickprop simulator took about 1
minute. After 1,000 epochs the networks hadn’t converged yet. When I used a train-
ing set with input and output values from the set {0.1, 0.9}, andhypererr set to
false, it took about 1250 epochs on average for the Quickprop algorithm to con-
verge. Changing the training set to input from the set {0.0, 1.0} and output from the
set {-0.5, 0.5} it took about 200 epochs on average for the network to converge.

1. The original LISP version and a translation into C of the Quickprop program can be found
at http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/neural/systems/0.html.
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This means that in this case the symmetrical sigmoid activation function performs
significantly better than the asymmetrical sigmoid activation function which is usu-
ally used. When in addition the parameterhypererr is set to true it took about 100
epochs on average to converge, or about 5 to 10 seconds. Thus it can be seen that the
Quickprop algorithm computes fasterand converges faster. This is definitely advan-
tageous compared to the original neural network simulator used in the application.

As already mentioned in the previous paragraph, Rueckl et al. stated that when the
processing of ‘what’ and ‘where’ was done with one hidden layer of 18 nodes then
interference would occur. I tried whether this was true with the last settings from
above. It turned out that out of 50 runs the Quickprop algorithm could always learn
the problem correctly, where 90% of the runs converged within 150 epochs. I also
checked whether the problem could be learned with simple gradient descent. This
too worked fine; usually within 200 epochs the network converged. These results
suggest that the division that Rueckl et al. made in the hidden layer is not really nec-
essary. The split does make the network converge faster though.

Also, Boers and Kuiper reported in their thesis that a simple network with 25 input
nodes directly connected to the 18 output nodes (thus without a hidden layer) could
very well learn the problem [4]. I’ve tried numerous simulations with different neu-
ral network simulators to see whether this was true. Not one experiment succeeded.1

The ‘where’ problem could always be solved, but the more complex ‘what’ problem
typically had after extended training 3 or 4 values wrong per output node of the 81
training patterns. Another simulator reported a maximum of 78% of the problem
learnt2. These results suggest that this problem isnot linearly separable. Results
from new experiments with the application to see whether a network architecture
can be found that is able to learn the ‘What’ / ‘Where’ problem will be presented in
a later paragraph.

TC problem revisited.

With a new neural network simulator installed in the application I tried the TC prob-
lem again. Before that I looked at some error curves produced by the Quickprop
algorithm. Figure 8-12 shows two typical error curves. The errors of the networks
plotted were computed by adding all the squared errors on the output nodes.
Although overall the errors converge nicely, there are sudden jumps. Since the fit-
ness of a network was a function of the error at the last epoch it can be seen that it is
possible that the error at the last epoch is as bad as when the network started train-
ing. I changed the fitness by making it a function of the lowest error found during
the training of the network. This way a network can’t accidentally get a low fitness
because it just happened to have a high error at the last epoch.

1. This difference in results could be explained by a bug that was found by M. Borst in the
neural network code of Boers and Kuiper.

2. This was the general purpose backpropagation NevProp simulator, also available from
http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/neural/systems/0.html.
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The application was run again trying to find a network architecture that could solve
the TC problem using the Quickprop algorithm. The variablenrofiter was chosen as
tight as possible, namely 60 epochs (compare this with the old value of 250 epochs
that was minimally needed). The parameters were as follows:

#psize           100
#nrmembers       70
#nrgenes         1
#chromsize       1024
#pressure        1.5
#pinv            0.5
#pmut            0.01
#pcross          0.625
#sites           6
#steps           6
#axiom           ABC
#times_train     4
#nrofiter        60
#neighbourhood   circle
#migration_freq  5
#migration_rate  10
#minimum_freq    0
#alpha           0.4
#beta            0.9
#hypererr        true
#maxfactor       1.75
#scorethreshold  0.35
#maxnodes        60

The variablescorethreshold is used for a “threshold and margin” criterion: if the
absolute difference between the actual and the desired output is below this thresh-
old, then the output is counted as correct. The variablemaxnodes denotes the maxi-
mum number of nodes in the network that is allowed for training.

Within 7500 evaluations (12 minutes) a network was found with a fitness of 130.54,
which is already pretty good. I let the program run until the GA converged. Eventu-
ally it found the network as shown in figure 8-13, with a fitness of 131.75. This net-
work always learns the TC problem, usually within 40 epochs. Table 8-13 shows
how the fitness was determined. Compared to table 8-9 one can see another dra-
matic decrease in the number of total evaluations needed for the GA to converge.
The total time spent on training the networks was 80,000 seconds.
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figure 8-12Example error lines plotted when using Quickprop.
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‘What’ / ‘Where’ problem revisited.

I did two runs trying to find an architecture that can solve the ‘What’ / ‘Where’
problem. The parameters were as follows:

#psize           100
#nrmembers       70
#nrgenes         1
#chromsize       1024
#pressure        1.5
#pinv            0.5
#pmut            0.01
#pcross          0.625
#sites           6
#steps           6
#axiom           ABC
#times_train     3
#nrofiter        150

Table 8-13: Values showing how the fitness was determined when using
Quickprop.

invalid 36,500 76 %

database 3,500 7 %

trained 8,000 17 %

total evaluations 48,000 100 %

3 1 1 6 3 1 1

4 11

14128

1

5

1131.75
  A < A > Α  → C
      A > A → AAC1[AB]
  A < A → AAC1[AB]
      A →
      C → [FC]
  A < B →
      B → B[ACB4C4B]2
BFF < F > C → 4AC4BABD

figure 8-13Network that solves the TC problem within 40 epochs on average using
the Quickprop algorithm. For clarity sake the connections from the input nodes to
hidden nodes have been omitted.All input nodes are fully connected to all hidden
nodes. 8 input nodes are also directly connected to the output node. The fitness and
the production rules that produced the network architecture are shown on the left.
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#neighbourhood   ladder
#migration_freq  15
#migration_rate  10
#minimum_freq    0
#alpha           0.4
#beta            0.9
#hypererr        true
#maxfactor       1.25
#scorethreshold  0.35
#maxnodes        120

The fitness was calculated as 2000 -MinErrorBits - MinError, whereMinErrorBits
is the minimum number of bits of one epoch that were wrong andMinError is the
square root of the minimum summed squared error of the output nodes of one epoch
during a training.

Unfortunately, the genetic algorithm converged after about 300,000 evaluations to
network architectures with fitnesses 1,962 and 1,958, which is bad. Why the appli-
cation was unable to find a good network architecture for this problem is unclear.
Maybe the variablenrofiter was set too low. Or it could be that it is hard to find pro-
duction rules that expand the axiom into a network architecture suitable for this
problem.

The mapping problem.

The last experiment presented is called the mapping problem. Standard backpropa-
gation has difficulty with this when using one or no hidden layer. Van Hoogstraten
used this problem to investigate the influence of the structure of a network upon its
ability to map functions [32]. A two-dimensional map is created with an input space
of (0,1]2. On this map 100 (10 x 10) points are assigned to four classes (here the
symbols▲ ■ ● ✖ are used). Van Hoogstraten constructed two mappings, where the
second was derived from the first by ‘misclassifying’ three of the 100 points. The
second mapping is shown in figure 8-14. The misclassified points are (0.5,0.6),
(0.6,1.0), (0.8.0.4) and can be seen asnoise. Although Van Hoogstraten wanted net-
works that were not fouled by that noise (and therefore ignored them), the interest
here is in networks that are able to learnall points correctly.

▲  ▲ ▲ ▲ ▲ ▲ ✖ ■ ■  ■

▲ ▲ ▲ ▲ ▲ ▲ ✖ ✖ ■ ■

▲ ▲ ■ ● ● ● ✖ ✖   ✖   ■

▲ ▲ ■ ● ● ● ✖ ▲ ✖ ✖

▲ ▲ ■    ■ ■ ■ ✖ ✖ ✖ ✖

▲ ▲ ■ ■ ▲ ■ ■   ■   ✖   ✖

▲ ▲ ■    ■ ■ ■ ■  ■ ✖ ✖

■ ■  ■ ■ ■ ● ● ■ ✖ ✖

■ ■ ■ ■ ● ● ● ■ ✖ ✖

■   ■ ■ ■ ● ■ ● ■ ✖ ✖

0  0.1 0.2 0.3 0.4  0.5  0.6  0.7  0.8 0.9 1.0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

figure 8-14The input grid for the mapping problem.
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A network is presented with two input values (x andy respectively) and four output
values (one for each symbol). Van Hoogstraten tried networks with hidden layers
containing 6 and 15 nodes, both of which were more or less able to learn the first
mapping without the noise, but failed to learn the second mapping with the three
misclassified points. Another network with 100 nodes in the hidden layer was able
to learn one of the misclassified points, but failed on the other two. Only when he
used a network with three hidden layers of 20 nodes each all three misclassified
points were learned correctly. This last network has 920 connections.

Boers and Kuiper tried to find asmall, modular network that was able to learn the
second mapping correctly. They needed three days and 11 SUN Sparc4 workstations
to converge to a network with 23 nodes and with 82 connections. It took three more
days for them to reach the network shown in figure 8-15, which has 24 nodes and
153 connections. According to Boers and Kuiper this network had a consistently
higher fitness in comparison with the 2-20-20-20-4 network used by Van Hoog-
straten.

I doubted however whether the network from figure 8-15 was really that good, espe-
cially since the error curves plotted in the thesis of Boers and Kuiper showed that
the 2-20-20-20-4 network converged to an error of 74 and their own network to an
error of 14. Although it is not stated how the errors were computed, it is presumed
that they were calculated as usual, i.e. by simply adding the squared errors of the
output nodes. An error of 74 for the 2-20-20-20-4 network would then be very pecu-
liar since that would mean an average error of 0.4 in each output node, which means
that surely a lot of patterns were not being recognized correctly, while Van Hoog-
straten states that the network can learnall patterns correctly. An error of 14 also
seems quite high (average error of 0.2 in each output node).

First I tried to see what parameters to use for the 2-20-20-20-4 network. The usual
learning ratealphaof 0.4 seemed too high; 0.05 produced better results. Then I tried
experimenting with the activation function and thehypererr parameter to see which
combination leads to learning the problem correctly. Figure 8-16 shows the results
of averages of 5 runs.
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figure 8-15Network found by Boers and Kuiper [4].
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The errors plotted are always the summed squared errors of the output nodes. The
worst curve in the figure uses the asymmetrical sigmoid activation function and the
linear error function; i.e. the same combination that Boers and Kuiper used. After
25,000 epochs it still misclassified 2 to 4 points. Better results are produced when
the non-linear error function is used, but still not all points are classified correctly
every time. When using the non-linear error function together with a symmetrical
sigmoid activation function the error converges towards zero within 20,000 epochs
and learns all points correctly. When using the linear error function again, together
with the symmetrical sigmoid activation function the error converges within 5,000
epochs towards zero and classifiesall points correctly including the noise.

I also tried varying the learning-ratealpha, when using the last combination of error
and activation functions. Higher values of the learning rate also converged towards
zero, but were more erratic (‘jumpy’) in their error curves, especially at start-up.
Values ofalpha above 0.3 started to give problems in convergence towards zero.

Lastly I tried the network found by Boers and Kuiper as shown in figure 8-15. The
best results were again produced when I used a low learning rate, the linear error
function and the asymmetrical sigmoid activation function. Figure 8-17 shows the
convergence of their network, with the errors averaged over 5 runs. It ends with an
error of 5.6, at which point it still misclassified 6 or 7 points.
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figure 8-16Errors plotted for the 2-20-20-20-4 network using different
error and activation functions.
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I tried experimenting with the application using the symmetrical sigmoid activation
function and the linear error function in order to find network architectures that can
classify all points correctly. I did three experiments, each taking a couple of days.
The fitness was calculated as 400 -MinErrorBits - MinError, whereMinErrorBits is
the minimum number of bits of one epoch that were wrong andMinError is the
square root of the minimum summed squared error of the output nodes of one epoch
during a training. The results of the experiments are presented next.

Experiment 1

The parameters used for the first experiment were as follows:

#psize           100
#nrmembers       70
#nrgenes         1
#chromsize       1024
#pressure        4.0
#pinv            0.5
#pmut            0.01
#pcross          0.625
#sites           6
#steps           6
#axiom           ABC
#times_train     1
#nrofiter        1000
#neighbourhood   ladder
#migration_freq  10
#migration_rate  20
#minimum_freq    0
#alpha           0.05
#beta            0.9
#hypererr        false
#maxfactor       1.25
#scorethreshold  0.35
#maxnodes        60

The best found network had 55 nodes with 552 connections, and had received a fit-
ness of 391.12. The architecture of the network is too complicated to draw, therefore
the matrix representation of the network is given in appendix C, together with the
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figure 8-17Error plotted for the network from Boers and Kuiper.
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production rules responsible for the architecture. Figure 8-18 shows the average
error out of 5 runs plotted for the network. The lowest average error is about 3.5. In
3 runs all but the 3 misclassified points were learned correctly, and in 2 runs all but
2 were learned correctly.

Experiment 2

In the second experiment I doubled the population size and the size of the intermedi-
ate population, and used a higher selection pressure (only the best 10% had a chance
of getting selected). The parameters were as follows:

#psize           200
#nrmembers       140
#nrgenes         1
#chromsize       1024
#pressure        10.0
#pinv            0.75
#pmut            0.007
#pcross          0.625
#sites           4
#steps           6
#axiom           ABC
#times_train     1
#nrofiter        1000
#neighbourhood   ladder
#migration_freq  10
#migration_rate  40
#minimum_freq    0
#alpha           0.05
#beta            0.9
#hypererr        false
#maxfactor       1.25
#scorethreshold  0.35
#maxnodes        60

The best found network had 56 nodes with 683 connections, and had received a fit-
ness of 390.08. The matrix representation of the network is given in appendix D,
together with the production rules responsible for the architecture. Figure 8-19
shows the average error out of 5 runs plotted for the network. The lowest average
error is about 1.9. In 2 runsall points were learned correctly. In 2 other runs all but
one, and in one run all but 4 points were learned correctly.
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figure 8-18Average error out of 5 runs plotted for best found network from
experiment 1.
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experiment 3

In the last experiment for the mapping problem the population size was chosen low,
the selection pressure was set high again, inversion always took place, the migration
period was halved, and the variablenrofiter was doubled. The parameters for this
third experiment looked as follows:

#psize           75
#nrmembers       50
#nrgenes         1
#chromsize       1024
#pressure        10.0
#pinv            1.0
#pmut            0.01
#pcross          0.625
#sites           6
#steps           5
#axiom           ABC
#times_train     1
#nrofiter        2000
#neighbourhood   ladder
#migration_freq  5
#migration_rate  16
#minimum_freq    0
#alpha           0.05
#beta            0.9
#hypererr        false
#maxfactor       1.25
#scorethreshold  0.35
#maxnodes        60

The best found network had 48 nodes with 635 connections, and had received a fit-
ness of 392.72. The matrix representation of the network is given in appendix E,
together with the production rules responsible for the architecture. Figure 8-20
shows the average error out of 5 runs plotted for the network. The lowest average
error is between 7.0 and 14.0. In 1 runall points were learned correctly. In 1 other
run all but 3, in 2 runs all but 4 and in 1 other run all but 7 were learned correctly.
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figure 8-19Average error out of 5 runs plotted for best found network from
experiment 2.
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This last network is very instable in that it has problems in converging. The second
and third best networks found in this experiment suffered from the same problems.
Two example error plots of these second best networks are given in figure 8-21. As
can be seen these networks got a high fitness because they can drop their error
quickly to a low point, but when doing extended training they can not continue
decreasing the error. Unfortunately, this side effect can not be helped without setting
the variablenrofiter to higher values which would mean even more time spent on
training networks. Overall it can also be seen that what Boers and Kuiper hoped for
did not happen in these experiments: the networks produced are hardly small, nor
simple, nor stable in their convergence. They are modular though.

Tables 8-14 and 8-15 show the usual statistics obtained during the third experiment.
The ratio of the number of trained networks is quite high compared with the other
experiments, while the database is hardly used. Nearly all time is spent on training
networks.

figure 8-20Average error out of 5 runs plotted for best found network from
experiment 3.
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figure 8-21Error plots of two other ‘good’ network architectures found.
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This concludes the experiments done with the application. In the next chapter con-
clusions are drawn, and some ideas are given for further research.

Table 8-14: Values showing how the fitness was determined when solving the
mapping problem.

invalid 14,800 65 %

database 300 1 %

trained 7,500 33 %

total evaluations 22,600 100 %

Table 8-15: Times spent per part of the program.

part of program
time
(sec.)

time
(perc.)

Decoding from chromosomes to production rules 1,800 0 %

G2L-System 900 0 %

Training and evaluation of ANN 1,285,000 99.9 %

Database operators 2,500 0 %
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Chapter 9

Conclusions and Future Work

9.1  Conclusions

The main theme that runs throughout this thesis is simulation of evolution using
genetic algorithms on separate islands of subpopulations which communicate with
each other once in a while. With multiple processors available, more points per gen-
eration can be sampled which means a higher rate of schema processing.

Working with a GA is a delicate matter and can even be viewed as black art. A cer-
tain combination of parameters, local search, selection-, replacement- and migration
schemes may result in excellent results for a given problem, but it cannot be
extended to other problems that easily.

What is required before deciding what building blocks to use for a GA is a deeper
understanding of the problem faced to optimize. One could argue that this is the
same problem faced when designing network architectures, which was solved by
using a genetic algorithm to find good network architectures. Likewise, the question
has now presented itself whether we should use a genetic algorithm to optimize a
genetic algorithm?1

The total system is now beginning to become so complex and messy that some func-
tionings aren’t understandable any more. This might seem to be a problem, however
it is better suited than deterministic approaches. Evolutionary computationis a
messy business, and might in the future be the only search strategy able to generate
the desired complexity needed. It has come to a point where thecombination of
parameter settings becomes important regarding the effect it will have on the whole.

Although the introduction of parallelism has increased the speed of the program, it
has not made it possible to investigate the real potential of the methods proposed by
extending the problem-space that is solvable within a feasible amount of time. The

1. In fact, this is precisely what Wiemer has done in her research project [59].
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bottle-neck remains the time needed to train one network. Therefore the conclusion
is that the methods proposed do seem to have potential, but the program has still not
made it practical yet.

Unlike the results of Boers and Kuiper, who usually found small simple modular
architectures, during this research large complex modular architectures were found.
This difference is probably due to the use of a different translation table, and the
newly installed neural network simulator.

In chapter 4 I showed the effect that learning of individuals can have on evolution.
On the travelling salesperson problem Lamarckian evolution is more effective and
more efficient than Darwinian evolution with Baldwin effect. When using N-steps
local descent with the Baldwin effect N must not be too large, otherwise it will
severely disrupt the genetic search. Also it should not be too small, otherwise no
significant gain can be made compared to using no learning. On the Schwefel opti-
mization problem the most effective form of evolution is when the Baldwin effect is
tried. But also for this problem the local search algorithm had to be carefully cho-
sen. From this it can be concluded that for the advantages of the Baldwin effect to
appear the problem must have some degree of deceptiveness in its fitness surface.
Whether the Baldwin effect is also advantageous when the fitness surface is highly
noisy is unclear and is left for future research.

It also seems that a good evolution program for the TSP should incorporate local
improvement operators, based on algorithms for local optimization, together with
the usual genetic operators, which would incorporate heuristic information about
the problem. The quest for an evolution program for the TSP, which would include
‘the best’ representation and genetic operators to be performed on them, is still
going on.

I also showed in chapter 4 the effect of using different communication schemes. In
general it turns out that the partitioned GA outperforms the canonical serial GA, and
likewise the distributed GA outperforms the partitioned GA. Which communication
scheme for the distributed model is best is dependable on the sort of problem, but
generally speaking the ladderlike arrangement seems to be the most promising vari-
ant.

9.2  Future Work

Somewhere midway this research I delved more into parallel genetic algorithms to
understand their workings. I’ve also put a lot of time into parallelizing the program
of Boers and Kuiper on a CM-5. But there has to come a point when a research
project has to be concluded, even when this leaves improvements and ideas open
that I would have liked to implement, if only to quench my desire for making things
faster and create better quality. In this section therefore, a number of directions are
indicated for future research concerning the work of Boers and Kuiper, that appear
to be potentially important and fruitful.
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Miscellaneous

Switch from hostless mode to host/node mode.

In this first implementation of the program the hostless mode as recommended
by CM was chosen. In this mode there is a single set of source code files for the
nodes, and the host only acts as I/O server for the nodes. The first suggestion is
an implementational one, to now switch to host/node mode. Then there are two
sets of source code files, one for the host and one for the node. A separate host
program needs to be written, which explicitly must start and monitor the execu-
tion of the node programs. This is suggested because now the different GAs run
asynchronously from each other, making it difficult to monitor the best found
network, fitness, or the number of evaluations done at a particular time. Synchro-
nisation of the processors is not desirable because a processor then runs the risk
of being idle for a long time, for instance when another processor has just started
training a network. With a host each processor can send its information whenever
it wants, and the collection and assimilation of the information is left to the host.
Another good reason to switch to host/node mode is to make it possible to imple-
ment a monitoring tool and a global database, which are explained next.

Make a tool to monitor the progression of each processor.

Using the hostless mode it is difficult to monitor what each processor is doing at
a given time. Directing output to files is not convenient; for instance, saving the
best found networks at 10 different stages of a run creates 160 files (since there’s
no synchronisation 16 processors each have to save 10 networks). With a global
monitoring tool in the host/node mode at most 10 files can be saved if desirable.
CM-5 provides for a nice X-windows environment, so best found networks could
even be drawn on screen, as well as fitness progressions, number of evaluations,
number of networks trained, time tables, etc.

 Create a database containing sets of production rules already evaluated.

Chapter 8 already lightly touched on this subject. A set of production rules when
applied to an axiom results in a network architecture, which is then evaluated. It
was already shown that when the production rules that were used are stored in a
database together with the fitness of the network that was produced from those
rules then the amount of computing time can be reduced considerably. The way
the database was programmed was however a basic one, and can be much
improved.

Note that when the hostless mode is kept that this will mean that only local data-
bases can be created. So a processor might start to learn a network, which has
already been evaluated on another processor. Hence the need for a global data-
base. This can easily be done in the host/node mode, where the database and its
functions are maintained on the host. This also means that each processor has to
send its intermediate population to the hostafter recombination and mutation but
before evaluation of all the members, thus creating more communication over-
head.
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After a call tolsystem all the used production rules are stored alphabetically in
the stringusedstring. It would be best to add a new field in the MEMBER struc-
ture whereusedstring can be stored. I haven’t done this because I considered this
a major change in a basic datastructure of the program which means that a lot of
functions have to be changed accordingly. Also, I estimate that the creation of an
efficient and effective database is a project in itself.

Parallel Genetic Algorithm

After hundreds of experimentations with genetic algorithms I’ve become wary of
introducing programming tricks, tweaking parameters, and implementing ideas that
logically should work but actually only cause unexpected undesirable side effects
that overshadow the desired main effect. In this light I can now heartily agree with
the following four principles of genetic algorithm design which David Goldberg
brought to the attention in his article ‘Zen and the Art of Genetic Algorithms’ [21]:

1. Let nature be your guide.

2. Beware the frontal assault.

3. Respect the sieve of schemata.

4. Distrust central authority.

Therefore, the next suggestions concerning the genetic algorithm should be taken
carefully. Do not fall into the trap of overcontrolling the genetic process, because
that will very likely only result in failure.

Revisit the asynchronous concurrent model.

Boers and Kuiper ran the program using one population processed by several Sun
Sparc4 workstations. The suggestion is made to investigate this model on the
CM-5. For this the host/node mode is necessary, where one global population is
maintained on a host and with the nodes performing the genetic operators and
evaluations asynchronously. This violates the fourth principle given above
because it reintroduces a degree of central control, but a principle is not a law;
this model might turn out to be the best one suited for this case.

Speed up initial process.

It may be desirable to use the original translation table. It then takes a couple of
generations before a set of production rules is found that can create a valid net-
work. This need not be wasted time in terms of evolution, still it could be investi-
gated if the initial process can be speeded up. This could be done by starting with
a population with `useful’ production rules created from previous simulations. Or
by waiting for random members, but in such a way that when one processor has
found enough valid network it first helps other processors which haven’t found
enough yet. Again, the host/node mode is then preferred where nodes can con-
tribute useful chromosomes to a global buffer on the host. When the buffer is
full, each node can then select a number of individuals.
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Start with different parameters on each island.

Experiments could be done using different crossover and mutation rates on each
island. These parameters could even be coded as a second chromosome in each
individual.

Furthermore, experiments could be done using different genetic algorithms per
island; differing subpopulation sizes, differing selection schemes, etc. (note: I do
not recommend this last suggestion for the program of Boers and Kuiper, only for
parallel genetic algorithms in general).

Change communication scheme.

Many different communication schemes can be chosen for the application. I sug-
gest the following: A processor decides for itself when to send its individuals to
another processor. This decision is based on the number of evaluations done, and/
or whenever the fitness value of a best individual has increased. Instead of send-
ing individuals it might be more effective for a processor to decide when it wants
to receive individuals. For instance when a subpopulation has converged, it is
desirable to receive new blood immediately from other subpopulations without
having to wait for the decision of those other processors when they send their
individuals. When implementing this scheme processors first need to send a mes-
sage to the other appropriate processors indicating that they want to receive indi-
viduals. This makes it necessary to work with tags attached to the messages in
order to differentiate between a request-message and a message sending individ-
uals.

Genetically find optimal communication schemes.

In section 4.3 different communication schemes were investigated to see how
well they performed. What was done was actually a search for a good architec-
ture of connected processors. Better architectures could be found by using a
genetic algorithm. I.e. use a genetic algorithm to find good architectures of con-
nected processors that lead to favourable results when used by a parallel genetic
algorithm.

Preserving initial diversity.

In the beginning a subpopulation should only allow to receive new individuals
from another subpopulation when it has produced valid networks on its own.
Otherwise the subpopulation might from the start just explore the same space as
the other subpopulation is doing, therefore causing less diversity among the total
population.

Store subpopulations in 2 dimensions.

I propose a new way to store a population, not necessarily for the work of Boers
and Kuiper, but for the GA community in general. The idea is a combination of
the island model and the cellular model. As in this work GAs are run separately
on populations residing on islands. Once in a while individuals are migrated to
other islands, preferably with different migration frequencies like the ratios of



Future Work

122

figure 4-19 in order to create islands within islands. A sequential GA is always
performed on a population of which the members are stored linearly. Instead a
single population should be stored in 2 dimensions, as in the real world. On this
level it’s like the cellular model. Selection schemes should be used accordingly,
only within a local neighbourhood. So on each island a 2 dimensional population
is stored. This total model should provide for high local inbreeding because of
the 2 dimensional storage of subpopulations, and keep higher rates of diversity
within the total population.

G2L-system

Experiment with different translation tables.

More experiments should be done with different translation tables since this has a
major effect on the network architectures generated.

New experiments should be done with the original translation table, but with the
Quickprop simulator installed, to compare with the results from section 8.2.

Do not use a fixed axiom.

Because the axiom is fixed potentially good production rules might get lost. To
increase the number of valid network architectures produced by the G2L-system
the following suggestions are made:

• The axiom could be added as a parameter in the chromosome.

• A list of axioms could be made, from which the G2L-system picks the first it
encounters on which it can apply a production rule.

• An axiom could be determined from the valid production rules decoded from
the chromosome. For example, when a chromosome decodes into the valid
production rules:

A < A → [CBC]1D

    CC > D →  C1[A2B]A

the fixed axiom could first be tried, but if no production rule apply, the axiom
could be chosen as A1A, [CC]1D, a combination of both, etc.

Research building blocks.

The power of genetic search is based on schema processing. That means that
there have to be similarities in the chromosomes that correlate to near equal fit-
nesses. There have to be exploitable similarities so that when using genetic oper-
ators the disruption of those similarities are minimized. When a disruption is
minimized, but still this results in uncorrelated network architectures and fit-
nesses, then the conclusion must be that a genetic algorithm is not suitable for
this problem (because it is too deceptive and/or noisy), or that the encoding by
the G2L-system needs to be replaced by a different encoding scheme.I suggest
this should be researched thoroughly with high priority.
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Neural Networks

Until now only ‘small’ problems were presented to the program. During this
research it became clear that the algorithms used would make it very difficult to
approach the goal of learning larger problems such as the two-spiral problem. A
neural network simulator several order of magnitude faster might permit a worthy
attack.

Investigate Baldwin effect.

In chapter 4 I showed the effect of Lamarckian evolution and the Baldwin effect
on Darwinian evolution for the travelling salesperson problem and for the
Schwefel optimization function. The Baldwin effect could also be implemented
in this program, by evolving the architecture of a neural networkwhile it is learn-
ing a task. Networks learning in this way have already been researched at the
group where this research took place, but it has not yet been implemented
together with a GA. Evaluation of a chromosome may in this case take more
time, but the genetic search may also be improved in convergence speed as well
as in the quality of the best network found.

Before that, I recommend investigating the Baldwin effect on a problem with a
quick evaluation function and with a highly complex fitness surface to get an
idea of how well the effect is in that case (research with the Walsh polynomials is
recommended). This because it seems the fitness surface of the program is highly
complex, and it might be worthwhile to first gain insight into how the Baldwin
effect behaves in complex fitness surfaces.

To implement Lamarckian evolution in the program it is necessary to translate
the architecture of a network that evolved by itself back to production rules. At
this moment that seems to be quite impossible (except of course for the trivial
case A→ X with A chosen as the axiom and X being the string representing the
total graph).

Investigate faster learning procedures for neural networks.

A network simulator several orders of magnitude faster is needed. When pre-
sented to learn the two-spiral problem for instance, the time needed to evaluate
one architecture with backpropagation takes a whole day.

No matter how many improvements one makes in the GA and/or G2L-system,
and no matter how much the problem to learn is turned upside down, the fact
remains that it takes hours for a network to learn the 2-spiral problem.

Therefore it is far from practical to use genetic search to find a good architecture
that learns this problem with the usual backpropagation or the Quickprop algo-
rithm. Some research might be done if it is possible to use some heuristics to
determine thepotential of an architecture and/or toestimate how well an archi-
tecture will do. If this is rated high enough the network is allowed to train.

Gruau is doing similar work to this one, but he uses genetic programming with
cellular encoding [25]. According to Gruau his networks are evaluated typically
within 100 milliseconds. He achieved this by coding the networks plus their
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weights, and then training the network for just one or two epochs. The weights
are simply initialized to 0 or±1 and his networks are of a deterministic nature.
Gruau’s goal is to find a network plus given weights that cansolve a particular
problem in 1 epoch, while the goal of Boers and Kuiper is to find good network
architectures that canlearn the problem. Still, it is suggested to investigate cod-
ing the weights of a network. This can for instance be done by interpreting a
character from the G2L-system as 0 or±1 weight for a connection.
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 A  Table 4-2 complete

Table 4-2: Results from experimenting with different neighbourhood relations.

Type Mean S.D. Members Rate Period
ladder 1.89 0.13 8 4 250
ladder 1.93 0.11 8 4 1000
ladder 1.94 0.13 16 4 50
ladder 1.95 0.12 4 2 250
random 1.97 0.10 4 4 250
circle 1.97 0.11 8 4 1000
circle 1.97 0.11 4 2 500
ladder 1.97 0.12 8 8 250
ladder 1.98 0.10 8 2 500
random 2.00 0.11 8 4 500
circle 2.00 0.11 16 8 50
random 2.00 0.11 16 4 50
random 2.01 0.11 16 2 50
circle 2.01 0.13 4 2 250
circle 2.02 0.12 4 8 500
random 2.02 0.12 16 8 50
ladder 2.03 0.12 2 2 250
random 2.03 0.11 2 2 500
random 2.03 0.10 8 2 50
circle 2.03 0.11 4 4 250
full 2.04 0.11 4 2 1000
random 2.04 0.12 8 2 1000
circle 2.04 0.12 2 8 1000
random 2.04 0.11 2 4 500
ladder 2.04 0.10 16 8 1000
random 2.05 0.11 8 8 500
full 2.05 0.11 8 4 500
ladder 2.05 0.10 16 2 50
circle 2.05 0.13 4 4 500
random 2.06 0.10 16 2 1000
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ladder 2.06 0.10 4 2 1000
random 2.06 0.10 4 8 500
circle 2.07 0.10 16 2 500
ladder 2.07 0.11 8 2 250
ladder 2.07 0.11 4 4 1000
circle 2.07 0.11 8 4 500
circle 2.07 0.10 16 8 500
full 2.07 0.11 8 4 250
random 2.07 0.12 4 2 1000
random 2.07 0.10 8 4 250
random 2.08 0.09 4 2 250
ladder 2.08 0.11 16 2 500
random 2.08 0.13 2 8 250
random 2.08 0.10 4 4 500
ladder 2.09 0.11 16 8 250
ladder 2.09 0.10 16 4 250
ladder 2.10 0.12 8 2 1000
circle 2.10 0.10 8 8 500
circle 2.10 0.11 4 2 1000
ladder 2.10 0.12 2 4 1000
circle 2.10 0.10 16 4 1000
random 2.10 0.11 2 8 500
random 2.11 0.09 2 2 1000
circle 2.11 0.09 8 2 500
ladder 2.11 0.10 16 4 500
ladder 2.11 0.10 2 2 500
random 2.11 0.11 4 8 250
split 2.11 0.13 2 2 n.a.
random 2.12 0.12 8 8 50
ladder 2.12 0.12 16 2 250
ladder 2.12 0.11 8 2 50
random 2.12 0.10 2 2 250
ladder 2.13 0.11 16 4 1000
random 2.13 0.11 2 4 250
full 2.13 0.13 2 2 1000
random 2.13 0.10 2 8 1000
circle 2.13 0.11 16 8 1000
random 2.14 0.09 8 2 250
circle 2.14 0.12 8 8 1000
full 2.14 0.10 8 2 500
circle 2.14 0.12 2 4 500
ladder 2.15 0.10 8 4 500
circle 2.15 0.11 8 2 1000
split 2.15 0.11 16 4 n.a.
circle 2.16 0.11 8 8 250
ladder 2.16 0.11 2 8 250

Table 4-2: Results from experimenting with different neighbourhood relations.

Type Mean S.D. Members Rate Period
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ladder 2.16 0.11 4 8 500
random 2.16 0.11 16 8 500
random 2.16 0.10 8 4 1000
circle 2.16 0.12 16 4 500
ladder 2.16 0.11 2 2 1000
random 2.16 0.10 4 2 500
circle 2.16 0.10 2 8 500
ladder 2.17 0.12 16 2 1000
ladder 2.17 0.10 8 8 50
random 2.17 0.12 16 2 500
circle 2.17 0.10 2 2 250
circle 2.17 0.12 4 8 1000
circle 2.17 0.10 4 4 50
circle 2.18 0.11 2 4 250
random 2.18 0.10 8 8 250
circle 2.18 0.12 16 4 50
full 2.18 0.10 16 8 1000
circle 2.18 0.11 8 2 250
random 2.18 0.09 8 8 1000
split 2.18 0.11 8 2 n.a.
circle 2.18 0.11 2 2 1000
full 2.18 0.10 8 2 250
split 2.19 0.12 16 2 n.a.
circle 2.19 0.10 8 4 250
ladder 2.19 0.12 4 2 500
split 2.20 0.11 4 4 n.a.
ladder 2.20 0.11 4 2 50
random 2.20 0.12 4 4 1000
circle 2.20 0.11 16 8 250
ladder 2.20 0.12 2 4 250
split 2.21 0.11 8 4 n.a.
full 2.21 0.13 16 8 250
ladder 2.21 0.11 2 2 50
full 2.21 0.11 16 8 500
circle 2.21 0.11 2 8 250
circle 2.21 0.11 8 2 50
random 2.21 0.11 8 2 500
full 2.22 0.11 16 2 50
ladder 2.22 0.12 2 4 500
full 2.22 0.12 16 4 500
circle 2.22 0.11 2 4 1000
ladder 2.22 0.11 4 4 500
random 2.22 0.10 4 8 1000
full 2.23 0.11 16 2 500
ladder 2.23 0.12 2 8 1000
split 2.23 0.11 16 8 n.a.

Table 4-2: Results from experimenting with different neighbourhood relations.

Type Mean S.D. Members Rate Period
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full 2.23 0.13 2 2 500
ladder 2.24 0.11 8 8 500
ladder 2.24 0.10 4 4 250
ladder 2.24 0.09 2 8 500
circle 2.25 0.12 8 4 50
ladder 2.25 0.11 16 8 50
circle 2.26 0.12 4 2 50
full 2.26 0.13 4 8 500
random 2.26 0.12 2 2 50
circle 2.27 0.11 4 4 1000
full 2.28 0.13 4 4 250
ladder 2.28 0.12 4 8 1000
random 2.28 0.12 8 4 50
ladder 2.29 0.12 8 8 1000
full 2.29 0.12 16 4 250
full 2.29 0.10 8 8 500
full 2.29 0.10 4 2 250
full 2.29 0.11 16 2 250
circle 2.29 0.10 2 2 500
circle 2.30 0.09 16 4 250
full 2.30 0.11 8 8 1000
ladder 2.31 0.10 16 8 500
split 2.31 0.11 4 2 n.a.
full 2.31 0.11 16 4 1000
random 2.31 0.11 2 4 1000
random 2.31 0.11 16 4 500
random 2.31 0.11 16 2 250
full 2.31 0.12 4 2 500
full 2.32 0.12 2 4 250
circle 2.32 0.11 16 2 50
split 2.33 0.11 8 8 n.a.
circle 2.33 0.09 4 8 250
ladder 2.33 0.12 2 8 50
circle 2.33 0.10 16 2 250
full 2.33 0.10 8 2 1000
full 2.33 0.10 8 4 1000
full 2.33 0.13 2 8 1000
full 2.33 0.12 2 2 250
full 2.34 0.12 16 2 1000
random 2.34 0.11 16 8 1000
ladder 2.34 0.11 4 8 250
random 2.34 0.11 16 4 1000
split 2.34 0.11 2 4 n.a.
circle 2.35 0.12 4 8 50
full 2.35 0.11 4 8 250
full 2.36 0.13 4 4 500

Table 4-2: Results from experimenting with different neighbourhood relations.

Type Mean S.D. Members Rate Period
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random 2.38 0.09 16 8 250
random 2.38 0.11 16 4 250
ladder 2.38 0.12 8 4 50
split 2.38 0.12 2 8 n.a.
full 2.39 0.14 2 8 500
ladder 2.39 0.11 4 8 50
ladder 2.39 0.11 2 4 50
circle 2.41 0.12 8 8 50
random 2.41 0.12 4 8 50
full 2.42 0.13 4 2 50
full 2.43 0.12 2 2 50
circle 2.44 0.11 2 2 50
full 2.45 0.11 16 4 50
ladder 2.45 0.12 4 4 50
full 2.46 0.13 16 8 50
circle 2.46 0.13 2 8 50
full 2.47 0.12 8 8 50
split 2.47 0.10 4 8 n.a.
random 2.48 0.12 4 4 50
random 2.48 0.10 2 8 50
full 2.48 0.09 4 8 1000
full 2.48 0.11 2 4 500
random 2.49 0.10 4 2 50
full 2.49 0.12 8 2 50
partitioned 2.51 0.10 2 n.a. n.a.
partitioned 2.51 0.11 8 n.a. n.a.
full 2.51 0.12 8 4 50
circle 2.52 0.09 2 4 50
random 2.52 0.13 2 4 50
partitioned 2.52 0.11 16 n.a. n.a.
full 2.54 0.12 8 8 250
full 2.54 0.12 2 8 250
full 2.56 0.11 4 4 50
full 2.63 0.14 4 8 50
partitioned 2.64 0.13 4 n.a. n.a.
full 2.66 0.14 2 4 50
full 2.68 0.12 2 8 50

Table 4-2: Results from experimenting with different neighbourhood relations.

Type Mean S.D. Members Rate Period
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 B    Backpropagation

This appendix gives a short description of the standard backpropagation algorithm
for a network withp input,q hidden andr output nodes. A more extensive treatment
on backpropagation networks can be found in Rumelhart and McClelland [49].

1. Initialize all the weights of the network with random values (e.g. between -1 and
1). We will denote the weights of the hidden layer and of the output layer as
and  respectively. The notation  stands for the weight between input node i
and hidden node j.

2. Choose an input/output pair ( , ), where  and  are the

inputvector and outputvector, and assign the inputvector to the corresponding
input nodes.

3. Propagate the activation of the input layer to the hidden layer, and calculate the
stimulation and activation of the hidden nodes. Often the bias  of each node is
implemented as an extra node 0 with a standard activation of 1, the weights from
node 0 to the other nodes in the network are used as adaptive thresholds. The
activation of the nodes in the hidden layer now becomes:

4. Propagate the activation of theq hidden nodes to the output layer.
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5. Calculate the deltas (the errors) of the output layer:

6. Compute the deltas for the hidden layer:

7. Adjust the weights between the hidden layer and the output layer:

where

The last term is called themomentum, it tends to keep the weight changes ( )
going in the same direction by averaging the changes over the last few training
cycles. Usually , thelearning-rate parameter, is chosen between 0.1 and 0.5 and

, themomentum parameter between 0.8 and 0.95.

8. Adjust the weights between the input layer and the hidden layer:

9. Repeat steps 2 to 8 until thetotal error of the network  is

small enough for each of the training-vector pairs in the training-set.
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 C   Result Mapping Experiment 1

fitness: 391.12

production rules:

BC → CE
B → 1
A → [BAA2]
C → AAC
E → CB

matrix file:
#nodes 55
0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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 D   Result Mapping Experiment 2

fitness: 390.08

production rules:

A → AD[A]
B →
D → 2

matrix file:
#nodes 56
0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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 E   Result Mapping Experiment 3

fitness: 392.72

production rules:

AA < A → EE31D
     E → E31D
     A → B2B3
  B2B3 →
 E < C → [ECAB2A][D33A3]A
     B → 1B24[BA]
     C → C3

matrix file:
#nodes 48
0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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