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1 Abstract

To describe the semantics of 1-safe Petri Nets Mazurkiewicz trace theory is suffi-
cient. But for the semantics of more general concurrency systems Mazurkiewicz
traces are not enough. In this thesis several generalizations of Mazurkiewicz
traces are compared in a framework based on prefixes and partial orders. The
so called crop traces, a generalization described by Biermann and Rozoy, are the
most, general traces. This generalization is based on right-congruences, just like
the local traces described by Hoogers. However Bauget and Gastin describe traces
based on congruences. The relations, by which the congruences are induced, can
be restricted to context commutations relations, leading to cc traces, left- or
right-context commutations relations, leading to lcc and rcc traces, left-context
commutations with a limited left-context, leading to k-context and <k-context
traces. Properties of these generalizations have been investigated, which lead to
a hierarchy of generalized traces, as shown in figure 72.



2 Introduction

In a concurrent system events do not necessarily take place in a sequential
fashion. Events, which are not causally related and do not share common re-
sources, may occur independently of one another. The trace theory developed
by Mazurkiewicz, see [M87], provides a means to describe the behaviour of
concurrent systems using a globally defined binary independence relation be-
tween events. Petri nets are a well-known model of concurrent systems and
Mazurkiewicz’ trace theory has been successfully used to describe the semantics
of so-called 1-safe Petri nets in terms of non-conflicting runs of the net. A Petri
net is 1-safe if it has the property that no execution of it according to the firing
rule leads to a place with two or more tokens.

For more general nets however Mazurkiewicz traces are too restricted. When
a place may contain more than one token, concurrency and conflict between tran-
sitions depend on the current state of the net. Thus the concurrency can no longer
be captured in a global binary independence relation. Mazurkiewicz traces have
been generalized in various ways and in this thesis we will investigate some of
these generalizations.

The framework within which we carry out our investigations and comparisons,
consists of partial orders and a specific kind of edge labelled event-preserving
graphs associated with equivalence classes of words (traces). All the notions
and terminology concerning words, sets, relations, and equivalences are defined
in section 3 and those concerning the graphs are defined in section 4. The last
preliminary section contains all the notions and terminology concerning the par-
tial orders. After these preliminary sections 3 through 5, which fix our notions
and terminology concerning equivalences, graphs and partial orders, we describe
in section 6 the Mazurkiewicz trace theory. In the next section 7 two kinds
of generalizations, crop traces from [BR95| and cop traces from [BG95], of the
Mazurkiewicz trace theory are handled. Other generalizations, local traces from
[H94], cc traces, lcc traces from [BG95], rce traces, and k-context traces from
[BRI5], are considered in section 8.



3 Preliminaries

In this section we fix general notations and conventions used throughout the
paper. This section is divided into four subsections. In the first subsection we
define all the notions and terminology concerning words of an alphabet. There are
also some functions on words given. In the next subsection we give the notations
and conventions for a set (or an alphabet) and functions on sets. Then the
subsection for relations, binary relations and labelled binary relations, follows.
The last subsection concerns the equivalences.

3.1 Words

Let A be an alphabet. By e we denote the empty word. The concatenation
between two words w,v € A* is denoted by w-v. We usually write wv. If u = wv
then we call w a prefiz of u. The length of a word w € A* is denoted by |w|
and defined in the following way: |e|] = 0 and |wa| = |w|+ 1 if a € A. For
a word w € A* we write |w|, if we mean the number of occurrences of a letter
a € A inw. We define |e|, = 0 and for all x € A* and b € A |xb|, = |x], + 1
if b = a and |zb|, = |w|, otherwise. The word v is a permutation of the word w
if |v], = |w|, for all @ € A. The set of all letters occurring in a word w € A*,
denoted by alph(w), is defined in the following way: alph(e) = () and, for all
x € A* and a € A, alph(za) = alph(z) U {a}. The set of events of A, denoted
by Eg, is defined as F4 = {(a,i)| a € A and i € N }. The enumeration function
ev: A* — E, is defined by ev(e) = 0 and ev(wa) = ev(w) U{(a, |w|,+1)} for all
w € A* and a € A. The raise function t, : E4 — E4, where u € A*, is defined
by tu((a,i)) = (a,i+ |u|,) for all (a,i) € E4. The labelling functionly : E4 — A
is the function defined by [4((a,7)) = a for all (a,i) € E4.

Let f : A — B be a total function from A to some alphabet B. Let - be the
concatenation in B. The homomorphic extension of f to A* is also denoted by
f and is defined in the following way f(a;...a,) = f(a1)-...- f(a,) for a; € A
where 1 < i <n € N. In particular the labelling function /4 and raise function
t, will be used as homomorphisms.

3.2 Sets

Let S be a set. Let S1, 55 C S. The difference of two sets S; and S, is denoted by
S1\S2. The number of elements of the set S is denoted by |S|. The set of finite
subsets of the set S is denoted by P;(S) and defined as {S" C S| S’ is finite}.

Let A be an alphabet. A non-empty set S C A* is event-preserving if |v], = |w],



for all a € A and v,w € S. We extend ev to event-preserving sets V by setting
ev(V) = ev(w), where w € V. Note that ev(V) is well-defined in this way.
Prefiz(S) is the set of prefizes of S and is defined as Prefiz(S) = {w' €
A*lw'z = w for some x € A* and w € S}.

Let A be an alphabet and let S C A. The set of linearisations of S, denoted by
Lin(S), is defined as Lin(S) = {w € S*||w|, =1 for all a € S}.

Let S, S" be sets. Let f : S — S’ be a function. We denoted by f|s, the restriction
of f to Sy. fis a total function if f(s) is defined for all s € S.

Let f: S — S be a function. The function f is injective if whenever f(s;) =t
and f(so) = t for some s1,89,¢t € S then s; = sy. [ is surjective if for all t € S
there exists s € S such that f(s) = t.

3.3 Relations
3.3.1 Binary relations

Let N be a set and let R C N x N be a binary relation over N. Instead of
(p,q) € R for p,g € N we may also write pRq. R is reflezive if (p,p) € R
for all p € N. R is irreflezive if (p,p) ¢ R for all p € N. R is injective if
for all py,pe,q € N whenever (p1,q) € R and (p2,q) € R then p; = ps. R is
surjective if for all py € N there exists a p; € N such that (p;,p2) € R. R is
bijective if R is injective and surjective. R is transitive if for all py,po,p3 € N
whenever (p1,p2), (p2,p3) € R then (p1,p3) € R. R is symmetric if (p1,p2) € R
implies (p2,p1) € R for all p;,py, € N. R is anti-symmetric if (p;,p2) € R and
(p2,p1) € R implies p; = po for all p;,p; € N. R is an equivalence relation
(over N ) if it is reflexive, symmetric, and transitive. And R is a partial ordering
relation (over N ) if it is reflexive, anti-symmetric, and transitive.

The inverse relation of R, denoted by R™', is defined by R™' = {(p, q)|(q,p) €
R}. The restriction of R to V', for some V' C N is denoted by Ry and defined

as Rly = {(p,q)|(p,q) € R and p € V}.

3.3.2 Labelled binary relations

Let L be a set of labels, NV be a set, and R C N x L x N be a binary relation over
N labelled by L. All notions for binary relations carry over to labelled binary
relations R C N x L x N through the underlying binary relation R’ defined
by R' = {(p1,p2)|(p1,l,p2) € R for some [ € L}. Thus R is reflezive if for all
p € N there exists a [ € L such that (p,l,p) € R. R is transitive if for all
p1,p2,p3 € N and Iy,ly € L whenever (py,l;,p2) € R and (ps,ls, p3) € R, there



exists a [3 € L such that (pi,[3,p3) € R. And the relation R is anti-symmetric if
(p1,11,p2) € Rand (po,ls,p1) € R implies p; = po for all py, p, € N and 1,15 € L.
The restriction of R to S, for some S C N x L x N is denoted by R|s and defined
as R|ls ={(p,1,9)|(p,1,q) € S and (p,l,q) € R}.
Now let R C N x A x N, where A is an alphabet. The reflezive and transitive

closure of R, denoted by R*, is defined in the following way:

R" ={(p,e,p)lp € N},

R*Y = {(p,za,p)|3p" € N : (p,x,p") € R and (p",a,p’) € R}

for all 7 > 0, and
R* = UR.

i>0
The reflexive and transitive closure of R has some interesting aspects.

Lemma 1 Let A be an alphabet, N a set, and R C N x A x N.

Let p,q € N and w € A*. If (p,w,q) € R then |w| = i.

Proof:
We prove the statement by induction on <.
Let i = 0. Then we have (p,w,q) € R°. By definition w = ¢. Thus |w| = 0.
Suppose the statement is proven for ¢ = k for some k£ > 0.
Assume i = k + 1, thus (p,w,q) € R¥*!. By the definition of the reflexive
and transitive closure of R there exist w’ € A*, p' € N, and a € A such that
w = w'a, (p,w',p') € R, and (p',a,q) € R. By the induction hypothesis we
have |w'| = k. Thus |w| = |w'| + |a| = k +1 = i. We can conclude that the
lemma holds. [J

Lemma 2 Let A be an alphabet, N a set, and R C N x A x N.

Let p,p',p" € N and wy,wy € A*. If (p,w,p') € R, (p',wq,p") € R then

(p, wiws, p") € R,

Proof:
We prove the statement by induction on |w;ws|.
Let |ws| = 0 then (p/,¢,p") € R°. Thus p' = p". Then (p,wy,p") € R
Suppose it is proven for |wywsy| = k for some k > 0.
Assume |wjwy| = k + 1 and |we] # 0. If (p,ws, p") € R’ then there exist
q € N, w € A*, and a € A such that wy, = wa, (p',w,q) € R, and
(¢,a,p") € R. By the induction hypothesis (p,w,w,q) € R*0U~D. Since
(¢,a,p") € R we have (p,wyw - a,p") € ROTU=DH by definition. Thus
(p, wiws, p") € R,
We can conclude that the lemma holds. [J



3.4 Equivalence

Let A be an alphabet and R C A* x A* an equivalence relation over A*. For
w € A* the equivalence class of R containing w, denoted by [w]g, is the set
[wlg = {v € A*|(v,w) € R} and A*/R = {[w]g|lw € A*}. When there is no
confusion about the relation, we will write [w]. R is right-cancellative if, for all
uv,wv € A*, uwwRwv implies uRw. R is left-cancellative if, for all vu,vw € A*,
vuRvw implies uRw. The equivalence relation R is cancellative if R is both
right-cancellative and left-cancellative. R is event-preserving if, for all v, w € A*,
(v,w) € R implies |v|, = |w|, for all a € A. For an event-preserving equivalence
over A* | |[w]| the length of an equivalence class containing the word w € A* is
well-defined by |[w]| = |w].

Let R be event-preserving. The translate function (g : A*/R — E4 is defined
in the following way: (r([w]r) = ev(w) for all [w] € A*/R.

Note that (g is well-defined if R is event-preserving.

Let A be an alphabet and let S C A* x A* be an arbitrary binary relation
over A*. The equivalence induced by S, denoted by ~g, is defined by (S U S™')*.
Let S, = {(zu,yu)| (z,y) € S and u € A*} be the relation S extended to the
right and S; = {(uzx,uy| (z,y) € S and u € A*} be the relation S extended
to the left. The right congruence induced by S is defined by ~g= (S, U S, 1)*.
Let S;, = {(uzv,uyv)| (z,y) € S and u,v € A*}, then =¢= (S}, U S;;')* is the
congruence induced by S. u =g v if and only if (u,v) € Sj,.

Note that ~g is an equivalence, (S,)~" = (S7"),, Sy = S, (Si)™" = (S™V)us,
Rg=nrvg,, and =g=nvg, .

Note that each equivalence relation R with S C R contains (S U S~ 1)*, thus ~g
is the least equivalence relation over A* containing S.

Note that ~g, &5 and =g are event-preserving whenever S is event-preserving.



4 Graphs

In this subsection we introduce our graph-theoretical notions directly for edge
labelled graphs, as these are the graphs we are interested in rather than in unla-
belled graphs.

4.1 Edge labelled graphs

An edge labelled (directed) graph, or elgraph for short, is a triple G = (N, A, —),
where N is the set of nodes of G, A is the labelling alphabet of G and the binary
relation -C N x A x N labelled with A is the set of labelled edges of G.

We usually write p — ¢ for (p,a,q) €— and p 13" g for (p,u,q) €E—*.

Let G = (N, A, —>) be an elgraph. If (p, u,q) €—* for some p,q € N and u € A*
we write p M q and say that there exists a path (labelled with w) from p to
g. Note that p Ny ¢ holds if and only if p = ¢q. G is acyclic if whenever both
P T q and ¢ vt p hold for some p,qg € N and u,v € A*, then p = ¢ and
uw=1v = e G is deterministic if whenever both p -+ ¢ and p —= ¢’ hold
for some p,q,¢' € N and a € A, then ¢ = ¢'. For two vertices p,q € N of an
elgraph G the set Path, ,(G) of all path labels in G from p to ¢ is defined as
Path, ,(G) = {w € A*|p " ¢}. Clearly, in a deterministic elgraph G each
path label in Path, ,(G) corresponds with a unique path from p to ¢. G is event-
preserving if whenever p vy q and p v q for some p,q € N and u,v € A*,
then |u|, = |v]|, for all @ € A.

If we know that GG is event-preserving, then we can conclude that the elgraph
is acyclic. This is proven in the next lemma.

Lemma 3 Let G = (N, A,—) be an elgraph. If G is event-preserving then G is

acyclic.

Proof:
Suppose p,q € N and u,v € A* are such that p Uyt q and ¢ S p. Then
by lemma 2 p SLN p. Since p 7 p and G is event-preserving we have
|€e|o = |uv]|, for all a € A. Thus u = v = € and p = ¢q. Hence G is acyclic. O

Let G = (N, A,—) be an elgraph and r € N. Then r is a root of G if for all
p € N there exists a path from r to p.

The next lemma is very easy to see. If we have an elgraph which is acyclic
and we have a root, then this root has to be unique.

Lemma 4 Let G = (N, A, —) be an elgraph and r a root of G.
If G is acyclic, then r is the unique root of G.

10



Proof:
Suppose there exists ' € N such that »’ is also a root of G. Since 7’ is a
root of GG, there exists a path from 7’ to r. We know that r is a root thus
there exists a path from r to r'. Since G is acyclic we have r' = r. [J

An elgraph with an initial node is a 4-tuple G = (N, A, —, po), where (N, A, —)
is an elgraph and p, € N.

A rooted elgraph, relgraph for short, is an elgraph with an initial node
G = (N, A, —,po) such that py is a root of (N, A, —).

Let G = (N, A,—,r) be a relgraph. We define the set of all path labels along
the paths in G, denoted by Path(G), as Path(G) = gNPathr,p(G).
p

A reldepgraph is a rooted elgraph which is deterministic and event-preserving.
All notation and terminology introduced for elgraphs and relgraphs will also be
used for reldepgraphs.

Corollary Let G = (N, A, —,r) be a reldepgraph. The node r is the unique
T00%.
Proof:
(G is a reldepgraph thus we have that GG is event-preserving. By lemma 3 we
have that G is acyclic. Then lemma 4 tells us that the root r is unique. [J

4.2 Restriction of a reldepgraph

Let p € N be a vertex of the reldepgraph G = (N, A, —, r). The set of all vertices
q before p, denoted by Bef(p), is defined by Bef(p) = {q € N| there exists a
path from ¢ to p}. The graph G(p), the restriction of reldepgraph G to the node
p, is the restriction of G to the set Bef(p) and is defined by
G(p) = (Bef(p), A, = |Bes(pyxaxBes(p)sT)-

All paths in G between vertices from Bef(p) are included in the graph G(p)
as stated in the next lemma.

Lemma 5 Let G = (N, A, —,r) be a reldepgraph. Let p € N and q,s € Bef(p).

Then Path,s(G) = Path,s(G(p))

Proof:
Since G(p) is a restriction of G, we have Path,(G(p)) C Path,s(G).
Now assume that w € Path,(G). Let o = ¢, q1, ... ,qn—1,¢, = S be nodes
along the path labelled by w. Then we have n > 0 and g¢; Lty qiv1 for
0<i<n-1anda; € Asuch that w = ay...a,. Since s € Bef(p), it
follows that each ¢; € Bef(p). Hence each (¢;,a;+1,¢;11) is an edge of G(p).
Consequently w labels a path from ¢ to s in G(p) and is an element of
Path,s(G(p)). O

11



Now we can prove that the restriction of a reldepgraph to a node is again a
reldepgraph.

Theorem 6 Let G = (N, A, —,r) be a reldepgraph and p € N.

G(p) is a reldepgraph.

Proof:
Since G(p) is a restriction of G, it is deterministic and event-preserving. We
now only have to make sure that the root r is still the root in the graph
G(p). We know r € Bef(p) and r is a vertex of G(p). That each vertex of
G(p) can be reached from r follows from lemma 5.
Thus the graph G(p) is a relddop-graph. [

Note that p is a leaf of G(p): it has no out-going edges. Moreover it is the only
leaf of G(p). G(p) has also a root, which is unique, this means that all vertices in
G(p) are along a path from r to p. In the graph G(p) we still have the definition of
Path, s(G(p)). However for the set Path, ,(G(p)) we will write Pathy,q...(G(p))-

4.3 Some properties for reldepgraphs

Let G = (N,A,—,r) be a reldepgraph. G is co-deterministic if (N, A, —) is
co-deterministic: whenever ¢ — p and ¢’ — p for some p,¢,¢' € N and a € A,
then ¢ = ¢'.

To describe the internal structure of a reldepgraph we may use the so-called
diamond properties. The forward and backward diamond properties, as described
in [BR95| by Biermann and Rozoy, are illustrated in figure 1 and 2, and are defined
in the following way:

G has the forward diamond property if for all p, p1,po € N and a,b € A whenever

a#b,p— p,and p LN po then there exists p’ € N such that p; LN p' and
p2 7.

P P1

b2 P2

Figure 1: Forward diamond

G has the backward diamond property if for all p, p;, p2 € N and a,b € A whenever

a#b, pr — p, and py LN p then there exists p’ € N such that p’ LN p1 and
a
p— pa.

12



P P1

D2 P2

Figure 2: Backward diamond

Having defined the forward diamond property we can define the compatible for-
ward diamond property. This means that only vertices, which are before a com-
mon vertex, have to satisfy the forward diamond property. There is a restriction
that the vertex p', which closes the forward diamond property, has to be before
the common vertex. This property allows us to conclude in theorem 7 that if G
has the compatible forward diamond property, then all the restrictions of G' to
a node have the forward diamond property. The compatible forward diamond
property is illustrated in figure 3.

G has the compatible forward diamond property if for all p,pi,po € N and for
all a,b € A whenever a # b, p % p1, p LN P2, and there exists ¢ € N such that
p1,p2 € Bef(q) then there exists p’ € Bef(q) such that p; LN p and py, = p'.

Figure 3: Compatible forward diamond

If G has the forward (backward or compatible forward, respectively) diamond
property we will write: FD(G) (BD(G) or CFD(G), respectively).

If a restriction G(p) has the forward diamond property then all vertices in
Bef(p) satisfy the compatible forward diamond property. Thus we can conclude
that if all restrictions of G have the forward diamond property then G has the
compatible forward diamond property.

Theorem 7 Let G = (N, A,—,r) be a reldepgraph. CFD(G) if and only if
FD(G(p)) for allp € N.
Proof:

Suppose p € N is such that G(p) does not have the forward diamond prop-

13



erty. Thus there exist ¢,q,q € Bef(p) such that ¢ - ¢; and ¢ LN g2
for some a,b € A but there exists no ¢’ € Bef(p) such that ¢ LI ¢ and
¢z — ¢'. Since G(p) is a restriction of G we have the same situation in G.
Thus G does not have the compatible forward diamond property.

Suppose G does not have the compatible forward diamond property.
Thus there exist ¢,¢1,¢o € N such that ¢ — ¢; and ¢ LN g2 for some
a,b € A and there exists p € N such that ¢;,¢ € Bef(p), but there exists

no ¢’ € Bef(p) such that ¢ LN ¢ and ¢o — ¢'. If we look at G(p), we can
conclude that G(p) does not have the forward diamond property, because
q1,q2 € Bef(p) implies ¢ € Bef(p). Thus ¢ - ¢, and ¢ Ly g in G(p) and
there exists no ¢’ € Bef(p) such that ¢ LI ¢ and ¢ —— ¢'. O

Another way to describe the internal structure of a reldepgraph are the so-called
cube and inverse cube axiom. In figure 4 the cube axiom and inverse cube axiom
are visualized. For the cube axiom in part a the pre-conditions are shown and in
part b the post-conditions. For the inverse cube axiom in part b the pre-conditions
are shown and in part a the post-conditions. These properties are described in
[DK95] by Droste and Kuske.

q1 c p

q2

q C

(a) (b)

Figure 4: Cube and inverse cube axiom

G satisfies the cube aziom if for all ¢, ¢1, g2, p € N and a,b,c € A whenever
{ab,ba} C Path,, (G), {bc,cb} C Pathg,,(G), and {bac,bca} C Path,,(G),
then also {abc, ach, cba, cab} C Path,,(G) and there exists g3 € N such that
{ac,ca} C Pathg g, (G).

G satisfies the inverse cube aziom if for all ¢,q3,p € N and a,b,c € A whenever
{ac,ca} C Pathyq,(G) and {abc, ach, cba, cab} C Path,,(G), then also

{bac,bea} C Path,,(G) and there exists g1, g2 € N such that {ab, ba} C Path,, (G)
and {bc, cb} C Path,q,(G).
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The relation between the forward diamond property and the cube axiom is stated
in the next theorem.

Theorem 8 Let G = (N, A, —,r) be a reldepgraph. If G has the forward dia-

mond property then G satisfies the cube aziom.

Proof:
Suppose we have ¢ % ¢} S g1 S p, g S dh S @, 02> dh S a5 dh D
¢ = p, for some ¢, q},¢5,q5 € N. Thus we have the pre-conditions of the
cube axiom. We know that GG has the forward diamond diamond property.
Thus there exist g3 € N such that ¢} = g3, ¢5 = ¢3, and g3 LN p. Then G
satisfies the cube axiom. []

q1 c p
1\ a
/ |
bl a\q, : @
b
, b 1 |b
R
a a\
A
q C

Similarly we have a relation between the backward diamond property and the
inverse cube axiom.

Theorem 9 Let G = (N, A, —,r) be a reldepgraph. If G has the backward dia-
mond property then G satisfies the inverse cube axiom.

Proof:
Supposewehaveq&q’l—%ql —c>p,q—c>qgi>q2i>p, andq’l—c>q3—b>p
¢ = g for some p,qi,q2,q3,4,,q5 € N. Thus we have the pre-conditions
of the inverse cube axiom. We know that G has the backward diamond
property. Thus there exist ¢5 € N such that ¢, % q1, ¢4 = ¢, and ¢ LN 5.
Then G satisfies the inverse cube axiom. []
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4.4 Morphisms between reldepgraphs

When we have two reldepgraphs, we would like to compare these graphs. To
compare two reldepgraphs we have special functions from one graph to the other
graph, called morphisms. A morphism is defined in the following way.

Definition
Let G = (N,A,—,r) and G' = (N', A, =/, ') be two reldepgraphs.

1. A morphism from G to G' is a total functilon H : N — N’ such that
H(r) =" and p; — p, implies H(p;) —— H(py).

2. A morphism H from G to G’ is full if for all ¢;,¢q» € H(N) and a € A,

whenever ¢ o/ ¢> then p; — po for some p;,ps € N such that
H(p1) = 1 and H(pz) = qo.

3. G and G’ are isomorphic if there exists a morphism H from G to G’
which is bijective and full.

If there is an injective morphism H from G into G’ then G can be embedded into
G' and we write G C G'. Further G is fully mapped to G’ by H if H is full.

If there exists a morphism between two reldepgraphs then this morphism is
unique.

Theorem 10 Let G = (N, A,—,r) and G' = (N', A, =", 1") be two reldepgraphs.
If H and H' are morphisms from G to G', then H = H'.
Proof:
Since G is event-preserving all paths from r to a fixed p € N are labelled
with words of the same length. We prove H(p) = H'(p) for all p € N
by induction on the length of the paths from r to p. Let p € N and let
w € Path,,(G).
If |lw| =0, then p = r. Since H and H' are morphisms H(r) =" = H'(r).
Now suppose that H(q) = H'(q) for all ¢ € N for which there is a path of
length £ > 0 from r to q.
Assume |w| = k + 1. Then there exist ¢ € N, u € A* and b € A such

that r %" ¢, ¢ = p, and w = ub. Since |u| = k we have H(q) = H'(q) by
/
the induction hypothesis. H and H' are morphisms thus H(q) LN H(p) and

H'(q) LN H'(p). Since G’ is deterministic H(p) = H'(p) follows.
We can conclude that H = H'. O
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5 Partial orders and event-preserving sets

In this section we first describe our notations and conventions concerning partial
orders. We use the setup of Davey and Priestley in [DP90]. The first subsection
handles the general definitions used with partial orders. However we work with
event-preserving sets and in the second subsection the definitions and notations
for the partial order of an event-preserving set are given. Bauget and Gastin
identify in [BG95] congruences by means of (modular) representations by partial
orders. The necessary definitions are specified in subsection 5.3.

5.1 Partial orders

Let E be a set and let < be a partial ordering over E. We can define an ordering,
<, of strict inequality by x < y if x < y and x # y. If for some x,y € E both
r £ y and y £ x, notation z ||< y, then x and y are incomparable. < is a linear
ordering if v <y or y <z for all z,y € S. The set E' C E is left-closed (wrt <)
if e € E' and €' < e implies € € F' for all e, e’ € F'.

A partially (linearly) ordered set P = (E,<) consists of a set E together with
a partial (linear) ordering < over E. Partially (linearly) ordered sets will be
depicted by their Hasse diagrams. We call a partially ordered set a poset. We
write x ||p y instead of z ||< .

Let P = (FE,<) be a poset. The linear extension of P, denoted by LE(P), is
the set {e1...e, € E*| |e;...eyle =1 forall e € E and for all 4,5 € {1,... ,n}
e; < e; implies i < j}. For a poset P = (F, <) and z,y € E, we have z is covered
by y, or y covers z, denoted by x < y, if v <y and z < z < y implies z = z.

Let P = (Ep,<p) be a finite poset. The order independence relation of P,
denoted by Ip, is the set {(e1,e3)| €1 ||p €2}. We can now define an equivalence
relation Cp = {(e1e9, e2e1)| (e1,€3) € Ip}.

Then =p is the congruence over Ep generated by Cp.

Lemma 11 Let P = (Ep, <p) be a finite poset. Let w € LE(P) and v € E},. If
u=p v then v € LE(P).
Proof:

Suppose we have u € LE(P) and u =p v. Then there exist e1,es € Ep and

x,y € E} such that u = xejeay, v = zesery, and (eq,e3) € Ip. Then clearly
v = zege1y € LE(P).

Suppose we have u € LE(P) and v, wy, ... ,w, € E} such that
U =wy=pw; =p ... =p w, =v. Then u =p v and by repeatedly applying
the reasoning given for =p and we have wy, ... ,w,,v € LE(P). O
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This lemma leads to the property that any two elements of the linear extension
of a poset are equivalent.

Lemma 12 Let P = (Ep,<p) be a finite poset. Let u,v € Ey. If u,v € LE(P)

then u =p v.

Proof:
Let x € E} be the longest common prefix of u and v. Induction on |u| — |z|.
Let |u| — |z| = 0 then u = z and thus u = v. Clearly u =p v holds.
Suppose the statement is proven for |u| — |z| = k.
Assume |u| — |z| = k+1. Let a,b € Ep and y, 2z € E} be such that u = zay
and v = zbz. If u,v € LE(P) then |u|, = |v|, =1 for all e € Ep. Then
there exist ', y", 2/, 2" € FE} such that u = zay'by” and v = xzbz'az”. If
we have this then for all e € alph(ay’), (e,b) € Ip. Then u = zay by” =
zaby'y" =p xbay'y”. From lemma 11 follows zbay'y” € LE(P). Slnce
|zbay'y ”| |x’| < k where 2’ is the longest common prefix of xbay'y” and
v we have by the induction hypothesis xbay'y” =p v. It is now easy to see
that v =p v. I

A labelled poset is a pair LP = (P,l), where P = (F,<) is a poset and [ is a
labelling function [ : E — A for some alphabet A.
We write LP = (E, <,l) instead of LP = ((E, <),1).

Let LP = (P,l) = (E,<,l) be a labelled poset. The linear extension of LP,
denoted by LE(LP), is defined by :
LE(LP) = {l(e1)...l(en) € A*| €1,e, € LE(P)}. Thus LE((P,1)) = I[(LE(P))

since [ is a homomorphism.

Let (P,l) = (Ep,<p,l) be a finite labelled poset. Define the equivalence relation
Ciryy = {(l(eres), (6261))|(61, e2) € Ip} Then =(py) is the congruence over I(E,)*
generated by Cp;

Lemma 13 Let P = (Ep,<p) be a finite poset and [ be a labelling function. Let
u,v € l(Ep)*. Ifu e I(LE(P)) and u =pyy v then v € I(LE(P)).
Proof:
Suppose we have u =p;) v. Then (u,v) € C(pyy. Let u = I(u") and v = I(v').
Then (u',v') € Cp and v’ € LE(P). By lemma 11 we have v' € LE(P).
Thus v € [(LE(P)).
Suppose U =(py) v and there exist wy, ... ,w, € [(E,)* such that u =
Wo —(Pl) Wy —(pl) ... =(py) wy, = v. By repeatedly applying the above
reasoning for =p;) we get ug, ... ,u,v € [(LE(P)). O

If we have two words which are an element of the linearizations of a labelled
partial order then the two words are equivalent.
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Lemma 14 Let P = (Ep,<p) be a finite poset and | be a labelling function. Let
u,v € [(Ep)*. Ifu,v € I(LE(P)) then u =py v.
Proof:
Let u = [(u’) and v = [(v') for some ', v € LE(P). From lemma 12 follows
u' =p v'. Since (Cipyy)ir = I((Cp)ir) we have u =p;y v. O

Let LP = (E,<,l) be a labelled poset. C C FE is a configuration of LP if C
is a finite left-closed subset of E. The set of configurations of LP is denoted
by Confrp and defined as Confrp = {C|C is a configuration of LP}. The
configuration graph of LP is the elgraph with initial node Crp = (Confrp, A, —
,0), where C e enif o = CU{e} and e ¢ C.

If we have a certain configuration, we know that there exists an element such
that this configuration without the element is still a configuration. This leads to
the fact that each configuration can be reached from a smaller configuration.

Lemma 15 Let LP = (E,<,1) a labelled poset. Let C € Confrp. If C # () then

there exist C' € Confrp and e € E such that C' @) C.

Proof:
Since C'is finite, there exists an e € C such that for no ¢’ € C' we have e < ¢'.
Clearly C'\{e} is left-closed and finite. Then it follows that C'\{e} € Confrp

and hence C\{e} e o

The set Confrp ordered by inclusion forms a lattice, as stated in the next theo-
rem.

Theorem 16 Let LP = (E,<,l) a labelled poset. Then Confrp forms a lattice
ordered by inclusion.

Proof:
We have to prove that the intersection and union of two configurations is
again a configuration.

Let C',Cy € Confr,p and m € E such that m € C; N Cy. Then m € (.
Therefore if m’ < m then m’ € C; for all m' € E. Also m € C5 and if
m' < m then m’ € C, for all m' € E. Thus if m’ < m then m' € C; N Cy for
all m" € E. Then Cy N, is a configuration.

Let Cy,Cy € Confrp and m € E such that m € Cy UCs. Then m € C,
orm € Cy. m € C implies if m’ < m then m’ € C, for all m’ € E. Then
m' € C; U Cy. Similarly m € Cy. Thus m' < m implies m’ € Cy U C, for all
m' € E. Therefore C; U Cj is a configuration. [
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5.2 Partial order of an event-preserving set

Definition
Let A be an alphabet and V' C A* be event-preserving. Let w € V.

1. The alphabet of events of w is defined by E,, = ev(w);

2. The occurrence total order of w is defined as
To(w) = (Ey,<y) where (a,i) <, (b,7) if the i-th occurrence of a
precedes the j-th occurrence of b in the word w;

3. The partial order of V, denoted by Po(V'), is defined as the labelled
poset
Po(V) = (Ey, <v,l), where w € V and (a,i) <y (b,7) if
(a,i) <, (b,j) for all v € V.

Note that F,, = F, for all w,v € V.
Since the partial order of V' is an intersection of the occurrence total orders

of the elements of V', the linearizations of the partial order contain all elements
of V.

Theorem 17 Let A be an alphabet and V' C A* an event-preserving set. Then

V C LE(Po(V)).

Proof:
Suppose we have a word w € V such that w ¢ LE(Po(V)). This implies
that there exist events (a, i), (b, j) € E, such that (a,7) <y (b, j) and
(b,7) <w (a,i). The partial order of V' depends on all occurrence total
orders of the elements of V. This means that if (a,i) <y (b,j) then in all
the elements of V' the i-th occurrence of a precedes the j-th occurrence of b.
But (b, j) <y (a,i), a contradiction. Hence w € LE(Po(V)). O

The configuration graph of the partial order of an event-preserving set is a reldep-
graph.

Theorem 18 Let A be an alphabet and V' C A* an event-preserving set. The
configuration graph Cpopvy = (Confpery, A, —,0) is a reldepgraph.
Proof:
First we show that () is a root. Suppose we have C' € Confponyy. With
induction on |C| we prove that there exists a path from ) to C.
Let |C] = 0. Then we know that C' = ) and ) =" C holds.
Suppose k£ > 0 and for each configuration with k£ elements there exists a
path from ) to that configuration.
Let |C'| = k4 1. Then by lemma 15 there exist C' € Confpoy) and e € E

such that ' % C. Since ¢’ has k elements the induction hypothesis
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. . I(e)*
implies ) %" €' for some w € A*. Thus 0 Y4 . We can conclude that
there exists a path from ) to C.

Next we have to show that Cp,y) is deterministic. Suppose we have

C1,Cs,C € Confpovy and ey, €5 € Ey with [(e;) = [(ez) such that C' l(i; C,
and ¢ 1 Cy. If l(e1) = I(e2) then e; = (a,i) and ey = (a,j) for some
a € A and i,j € N. There can be two situations. First ¢ = j. Then
C1 = CU{a} = Cy and thus C; = Cs. The other situation is that i < j. By
definition (a,i) <y (a,j) thus e; <y es. We have C' Hea) Csy thus e; € C. A

contradiction, since C' l(i; C1, Thus Cpyvy is deterministic.

Finally we show Cp,(y is event-preserving. Suppose we have
C,C" € Confpoy and 7,y € Ey such that ¢ “%5 ¢ and ¢ 1% ¢ By
definition of — we know alph(z) N C' =0 = alph(y) N C,
C'\C = alph(x) = alph(y), and |z| = |y|. Thus |l(z)|. = |l(y)]. for all
a € A.

Cpo(v) is Tooted, deterministic and event-preserving, and hence Cp, vy is
a reldep-graph. O

For practical reasons we write a; in stead of (a,7) in the configuration graph.

Example
Let V' = {abcd, cabd, cadb}. The occurrence total order of the word abed is
illustrated in figure 5.

(a,1) (b,1) (c,1) (d,1)

Figure 5: To(abcd)

After we have determined all occurrence total orders of the elements of the
set V', we can construct the partial order of the set V. The partial order of

V' is depicted in figure 6.
(a,1) 2 " (b,1)
(1) * (@)
Figure 6: Po(V)

Now we can construct the configuration graph of the partial order of V. In
this graph we write a; instead of (a,7). In figure 7 the configuration graph
is depicted.
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{al} {ah bl} : {ala b17 Cl}
a b i
c d
@ a {alacl} {alacladl} b {alablacladl}

{er,di}

Figure 7: Cpov)

{er}

In this example the linear extension of Po(V') contains more elements then
V. We have LE(Po(V') = {abcd, acbd, acdb, cabd, cadb, cdab} and
thus V' C LE(Po(V).

Let V' = {abcd, acbd, acdb, cabd, cadb, cdab}. Then Po(V) = Po(V') and
V' = LE(Po(V'). Thus there exist event-preserving sets which are equal to
the linearizations of their partial order and there exist event-preserving sets
which are a strict subset of the linearizations of their partial order. (See
theorem 17)

If we have a path from the root to a configuration labelled with a word, then the
configuration exists of all events of the word labelling the path from the root to
the configuration.

Theorem 19 Let A be an alphabet and V C A* an event-preserving set.
Let w € A* and C € Confpow).
If0 5" C then C = {(a,))|a € A and 1 < i < |w|,} = ev(w).
Proof:
Induction on |w|.
Let |w| = 0 then w = ¢ and C' = 0.
Suppose it has been proven for 0 < |w| < k. Assume |w| = k + 1. Then
w = w'b for some w' € A* and b € A and there exists C' € Confpov)

such that 0 2 C" % C. Then |w'| = k and by the induction hypothesis
C'={(a,i)la€ Aand 1 <i < Ju'|,}. If €' = C then C = C" U {e} where
l(e) =band e ¢ C. As C is left-closed, e = (b, |w'|y + 1) must hold. Thus
C={(a,i)Jae Aand 1 <i < |w|,}. O

Theorem 20 Let A be an alphabet and V' C A* an event-preserving set.

Then Con fpovy = {ev(z)|x € Prefiz(LE(Po(V)))}.

Proof:
Let = be a prefix of w € LE(Po(V)). Since ev(z) C ev(w) = ev(V) we only
have to prove that ev(z) is left-closed with respect to <y. Then ev(z) €
Confpovy. So assume e = (a,4) € ev(z) and €' = (b,j) <y (a,i). Then
(b,7) <y (a,i) and because z is a prefix of w containing the i-th occurrence
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of a, it also contains the j-th occurrence of b. Hence (b, j) € ev(z), and thus
ev(x) is left closed and an element of Con fpov)

Next we prove with induction on |C| that for each C' € Con fpov) there
exists © € Prefix(LE(Po(V))) such that C' = ev(z).
Let |C| = 0. Then C = ev(e) and € € Prefiz(LE(Po(V))).
Suppose the statement has been proved for all C' € Con fpyvy with |C| < k
for some k£ > 0.
Assume |C| =k + 1, thus C' # (). By lemma 15 there exists C" € Con fpov)

such that " 2% ¢ for some ¢ € ev(V) with {e} = C\C". By the induction
hypothesis C" = ev(x) for some x € Prefixz(LE(Po(V))). Since C is left-
closed e = (la(e), |x|i, ) + 1) and so C = ev(xls(e)). Let [4(e) = a. As
x € Prefix(LE(Po(V))) there exists y € A* such that xy € LE(Po(V)).
Futhermore ev(za) C ev(V) = ev(zy) and so y = y,ays for some y;,y, € A*
with a ¢ alph(y;). C is left-closed implies that e = (a, |z|o + 1) ||poqv) €
for all ¢’ € ev(xyi)\ev(za). Thus zay,y, € LE(Po(V)). This implies that
C = ev(za) with za € Prefiz(LE(Po(V))). O

Example continued

We have an event-preserving set V' = {abed, cabd, cadb}.

The set of linearizations LE(Po(V')) = {abcd, acbd, acdb, cabd, cadb, cdab}.

The set of congigurations Con fpovy = {0, {(a,1)}, {(¢,1)}, {(a, 1), (b, 1)},
{(a,1), (e D}, (1), (1D} L@ 1), (,1), (6 D}, {(a 1), (e, 1), (d, D)},
[ 1), (b, 1), (e 1), (d, 1)},

It is clear that the configuration {(c, 1), (d, 1)} is the set of events of a prefix

of the linearization cdab of the partial order of V.

The configuration graph Cpey) has the forward diamond property and has the
backward diamond property. Th1s is stated in the following theorem:.

Theorem 21 Let A be an alphabet and V' C A* an event-preserving set.

Then Cpovy has the forward and backward diamond property.

Proof:
First we prove that Cpy1,) has the forward diamond property. Suppose we
have C,C;,C, € Confpo and e1,es € EA such that C'U {e;} = C} and

C'U{es} = Cy. Then € "2V ¢y and ¢ "2 ¢y Since Cy UCy € Confpo

and C7 U Cy = C U {ey, ez}, we have O] — faley) C" and O, lﬂ) C', where
C'=CU{ey, e} Next we prove that Cpo(yy has the backward diamond
property. Suppose we have C,Cy, Cy € C’onfpo and ey, ey € E4 such that

CiU{er} = C and Oy U {es} = C. Then C) ”‘(ﬁQ C and Cy ‘ﬁ C’ Since
CyNCy € Confpovy and Cy NCy = C' N {ey, ez}, we have ¢ — ta C’1 and
C’ lﬁ) Cy, where C' = C N {e1,e}. O

In fact the configuration graph Cp,y is a distributive lattice, see [DP90].
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5.3 Represented by partial orders

Bauget and Gastin identify in [BG95] congruences by means of (modular) repre-
sentations by partial orders. The definitions are specified in the following way:

Definition
Let A be an alphabet and R an equivalence relation over A.

1. R can be represented by a partial order if R is event-preserving and
[wlr = LE(Po([w]g)) for all w € A*;

2. R can be modularly represented by a partial order if it can be repre-
sented by a partial order and if for all u,v € A*

(a) <le N By X By = <pp,
(b) S[uU]R N tu(EU) X tu(Ev) = tu(S[U]R), and
(c) Sluv]r N tu(Ey) X B, = 0.

Note that R is event-preserving, thus Po([w]) = (Ey, <[u),[) is defined for w € A*.

When we have an equivalence which can be represented by partial orders and
the concatenation of two partial orders exist only of the edges of the two partial
orders and some edges between the events of the first partial order and the events
of the second partial order, then we say that the equivalence can be modularly
represented by partial orders.

The first condition of the definition, <p,, N Ey, X E, = <[y,, is the re-
quirement that the concatenation of the partial orders contains the first partial
order. The second condition is the requirement that the concatenation contains
the second partial order. The condition <f,, N tu(E,) x E, = () makes sure
that there are no edges added which are from events of the second partial order
to events of the first partial order. This condition is always satisfied as proven in

the next lemma.

Lemma 22 Let A be an alphabet and R be an equivalence relation such that R

18 event-preserving and R can be represented by partial orders.

Then <puy N tu(Ey) x Ey, = 0 for all u,v € A*.

Proof:
Suppose we have u,v € A* such that <p,; N t,(E,) x E, # 0. Then there
exist (a,7) € t,(F,) and (b, j) € E, such that (a,i) <, (b, 7). Then for all
w € LE(Po([uv])) the i-th occurrence of a occurs before the j-th occurrence
of b in w. But (a,i) € t,(F,) and (b,j) € E,. Thus when we consider the
word uv we have (b, j) <., (a,i). Contradiction. [J

To illustrate that there exist equivalences which can not be represented by partial
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orders, the next example is given.

Example
Let A = {a,b, ¢} and let R be the equivalence generated by {(aab, baa)}. Let
w = aaab. Then [w]r = {aaab,abaa}. The partial order of [w]g is depicted
in figure 8.

(a,2) (a,3)
(a:1)< . ~ .
(b‘,l)

Figure 8: Po([w]r)

The linearizations of the partial order contain the word aaba, which is not
in [w]g. Thus [w] C LE(Po([w]g)).

R is event-preserving but [w]g # LE(Po([w]g)), thus R can not be repre-
sented by partial orders.

The next example contains an equivalence which can be represented by partial
orders.

Example
Let A = {a,b,c,d} and R is the congruence generated by {(ab, ba), (ac,ca)}.
Let v = acbac and w = dab. The partial orders of [v|g and [w]g are depicted
in figure 9.

(a,1) (a,2) (a,1)

(@) <

() (1) (©2) (b,1)

Figure 9: Po([v]g) and Po([w]r)

As we will prove later in theorem 28 [w]p = LE(Po([w]g)) for all p € A*/R,
thus R can be represented by partial orders. Let u = acbacdab, then u = vw.
The partial order of [u]g is depicted in figure 10.
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(a,1) (a.9) (d,1) (a,3)

(c,1) (b,1) (¢;2) (b,2)

Figure 10: Po([u]r)

When we evaluate the partial order of v = vw then we can conclude that
the partial order of [u]g is a disjoint union of the two partial orders of [v]x
and [w]r and we have added some edges from Po([v]|g) to Po([w]g). The
equivalence relation 2 can be modularly represented by partial orders.

In the last example the concatenation of two partial orders is the partial order
containing the two partial orders and some edges from the first to the second one.
However there exist congruences which can be represented by partial orders and
the concatenation of the partial orders is not defined as the union of the partial
orders and adding some edges between the first and the second partial order. In
this case the equivalence relation can not be modularly represented by partial
orders. In the next example this is shown.

Example
Let A = {p,c} and R is the congruence induced by {(ppc, pcp)}. Let v =p
and w = ¢p. The partial orders are depicted in figure 11.

(p,1) (c,1) (p,1)

. .
—_—

Figure 11: Po([v]g) and Po([w]r)

If we examine all equivalence classes we can conclude that [w]p =
LE(Po([w]g)) for all [w]g € A*/R, thus R can be represented by partial
orders. Let u = pep, then [u]p = {pep, ppc}. The partial order is depicted
in figure 12.

¢ (Cal)

(p,1) <
¢ (p72)

Figure 12: Po([u]g)

It is clear that the partial order of [u]r does not include the partial order of
[w]g. Thus <ppep) Nt (Eep) X tp(Eep) 7 tp(<iep))- And therefore R can not be
modularly represented by partial orders.
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6 Mazurkiewicz traces

Let A be an alphabet and I a symmetric irreflexive binary relation (over A), I
is an independence relation indicating that whenever a and b are independent
then the sequential observations ab and ba are to be considered as equivalent
observations of independently occurring ¢ and b. This is the basis of the theory
as developed by Mazurkiewicz, [M87].

6.1 Mazurkiewicz trace equivalence

Let A be an alphabet. A binary relation I C A x A is called an independence
relation over A if it is symmetric and irreflexive. For an independence relation I
over A we denote by C7 the commutation relation induced by I, which is defined
by Cr = {(ab, ba)|(a,b) € I}. Note that C; is symmetric and whenever (u,v) € C
then |u| = |v| = 2, alph(u) = alph(v), and u # v.

Definition
Let A be an alphabet and I an independence relation over A. Let x,y € A*.

1. © =y y if there exist u,v € A* and (a,b) € I such that x = uabv and
y = ubav.

2. The Mazurkiewicz trace equivalence = is defined by =;= (=;)*.

3. (z); = {z € A*| z =1 =} the equivalence class of xz, is the Mtrace (over
I) containing .

It is easy to see that the Mazurkiewicz trace equivalence =; so defined is in fact
a congruence over A*. The congruence =; is the least congruence containing C'y,
the commutation relation induced by I.

Theorem 23 Let A be an alphabet and I an independence relation over A.
Then =r==¢,.
Proof:
From the definition we can conclude that =; = (C7);,- and since =; is sym-
metric it follows that =; = (=,)* = (S, U =) = =¢, . O
Example

Suppose we have A = {a,b,c} and I = {(b,¢), (¢,b)}. If we only consider
words with length less then 4, we have the following Mtraces:

(e, {a)r, (b)1, (c)1,
(aa)r, (bb)r, (cc)r, (ab)r, {ac), (ba)r, {ca)r, (bc)r = {cb),
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aaa)r, {(aab)r, {(aac);, (aba);, (aca), (baa), {caa);,

bbb>[, <bba>1, (bab);, <abb>1,

ceeyr, {cea)y, (cac)y, {acc)r, (bac)r, (cab)y,

abc)r = (ach)y, (bea)r = (cba)y, (bbe)r = (beby; = (cbb)r, and

(beeyr = (bebyr = (ceb)r.

Notice that there are 5 equivalence classes which have two or more elements.

(
(
{
{

= is event-preserving and so z =; y implies ev(x) = ev(y). In lemma 24 this
property is strengthened.

Lemma 24 Let A be an alphabet and I an independence relation over A. Let
x,y € A*. Then x =; y if and only if
ev(z) = ev(y) and for all distinct (a, i), (b, j) € ev(z), (a,i) <, (b,7) and (b, j) <,
(a,1) together imply (a,b) € I.
Proof:
First assume that x =; y and let xg,... ,z, € A* be such that o = = and
rp =y and z;_1 =7 x; forall 1 <7 <n.
If n =0 then x = y and the statement holds.
If n =1 then x =7 y. Thus there exist u,v € A* and (¢,d) € I such that
r = ucdv and y = udcv. Clearly ev(x) = ev(y) and the only distinct pair
(a,i), (b,7) with (a,i) <, (b,j) and (b,7) <, (a,i) are (a,7) = (¢, |uc|.) and
(b,j) = (d, |ud|g). So the statement holds.
Now let n > 2 and assume that the conclusion holds for all z; =; 24
with 0 <i<i+j<nand0<j <n-—1. Since z,_1 =7 x, we have
ev(z) = ev(z, 1) = ev(y). Assume that distinct (a, i), (b, j) € ev(z) are such
that (a,i) <, (b,7) and (b,7) <, (a,i). If (b,7) <s, , (a,i) then (a,b) € I
by the induction hypothesis applied to ¢ =; 2,,_1. If (a,i) <,,_, (b,j) then
also (a,b) € I by the induction hypothesis applied to z, 1 = z,.
Thus the statement holds.

Next, let z,y € A* be such that ev(z) = ev(y) and for all distinct
(a,i),(b,7) € ev(z) : (a,i) <, (b,j) and (b, j) <, (a,i) implies (a,b) € I.
Let u be the longest common prefix of x and y. If u = x = y then z =; y
by definition.

Assume that * = wav and y = ubw for some v,w € A* and a,b € A
with @ # b. Since ev(z) = ev(y) it follows that there exist v, v, € A*
such that v = v1bvy with b ¢ alph(vy). Thus x = uavibv, and y = ubw
which implies that for all ¢ € alph(av,) we have (b,¢) € I. Hence z =
uav bvg =1 uabvive =5 ubavive. Since we have not disturbed the ordering
of the events in av vy and in w and since the common prefix of ubav,v, and
y = ubw is at least one symbol longer than u we can repeatedly apply a
similar reasoning until we have reached y as the common prefix. This proves
x =75 ubavivy =; y and thus the statement holds.

We can now conclude that the lemma holds. [J
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Having defined what it means for two observations to be equivalent we can prove
that the defined congruence =; is cancellative. To prove this we only need the
earlier proven lemma 24.

Corollary Let A be an alphabet and I an independence relation over A.

Then =5 s cancellative.

Proof:
Let u,v,x,y € A* be such that uxv =; uyv. We have to prove that x =; y.
From lemma 24 we know that ev(uzv) = ev(uyv). It is easy to see that
this implies ev(z) = ev(y). Now consider two arbitrary but distinct events
(a,i), (b,7) € ev(x) such that (a,7) <, (b,7) and (b,7) <, (a,7). Then
(a,i + |ula) <uzo (0,7 + |ulp) and (b, 5 + |ulp) <uyo (@,7+ |u|,) and thus by
lemma 24 again (a,b) € I. As (a,i) and (b, j) were arbitrarily chosen we can
apply the if part of lemma 24 to conclude that x =; y. O

From lemma 24 we conclude that each Mtrace is an event-preserving set. Thus
each Mtrace p € A*/ =, defines a partial order Po(p) = (ev(p), <,, 1), which is
the labelled intersection of the occurrence total orders of the words in p.

Example continued
We had A = {a,b,c} and I = {(b,¢),(c,b)}. We can look at the partial
order of each Mtrace. In this example we show the partial orders of some
Mtraces. First we construct the Hasse diagram of Po({aba)r) depicted in
figure 13).

(a,.l) (b:1) (a,.2)

Figure 13: Po({aba);)

The equivalence class {(aba); has only one element. The equivalence class
(abcy; has however 2 elements. To illustrate the differences in the partial
order of these Mtraces the Hasse diagram of Po({abc)s) is drawn in figure 14.

(b,1)
(a,1) .

(c.1)
Figure 14: Po({(abc))

There are also equivalence classes with 3 elements. The last figure 15 has the
Hasse diagram of the Mtrace (bbc)r, an equivalence class with 3 elements.
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(c.1)
Figure 15: Po((bbe)y)

As a corollary to lemma 24 we obtain the following relationship between the
incomparable events in an Mtrace and its underlining independence relation.

Lemma 25 Let A be an alphabet and I be an independence relation over A. Let

p be a Mtrace and (a, i), (b,]) € ev(p).

If (a,7) || pogp) (b,7) then (a,b) € I.

Proof:
Suppose (a, i), (b,j) € ev(p) are such that (a,i) |[pop) (b,7). Then there
exist u, v € p such that (a,i) <, (b,7) and (b, ) <, (a,i). Since u,v € p we
have u =; v. Applying lemma 24 we can conclude that (a,b) € I. O

The opposite of the lemma, (a,b) € I implies (a,%) ||por) (b, ) for some 4,7 is
however not true. This will be illustrated in the following example.

Example continued
Let A = {a,b,c} be an alphabet and let I = {(b, ¢), (¢,b)}.
For the Mtrace p = (cab); = {cab} the Hasse diagram of Po(p) is pictured
in figure 16.

(c,-l) (a.,l) (b.,l)

Figure 16: Po(p)

Thus (b,c) € I but (b,1) ||pog) (c,1) does not holds.

The next lemma shows that Mtraces are event-preserving sets which coincide
with the linearizations of their labelled posets.

Lemma 26 Let A be an alphabet and I be an independence relation. Let u € A*.
Then (u)yr = LE(Po({u)1)).
Proof:
As (u); € LE(Po({u)r)) always holds, by theorem 17, we only have to prove
the converse inclusion. So let € LE(Po({u)s)). Then ev(z) = ev(u).

30



Assume that there are distinct (a, i), (b,j) € ev(x) such that (a,i) <, (b,7)
and (b,j) <, (a,i). Then (a,%) ||poquy,) (b,j) and hence by lemma 25
(a,b) € I. Then by lemma 24 x =; u and the inclusion is proven. Thus the
statement holds.

This result can also be directly concluded from lemma 13. We know that
u € LE(Po(u)) and if w € (u); then u =po(quy,) w. O

Thus when we have two observations which are linearizations of the same partial
order of a Mtrace we can by lemma 26 conclude that these observations are in
the same Mtrace and therefore are equivalent observations.

Lemma 27 Let A be an alphabet and I be an independence relation over A.

Let u,v € A*. u =7 v if and only if Po({u)r) = Po({v)).

Proof:
The only-if direction is trivial, so we only have to prove that if Po({(u);) =
Po((v)r) then v =; v. By lemma 26 we know LE(Po({u);)) = (u); and
LE(Po({v);)) = (v);. Thus Po({u);) = Po({v);) implies (u); = (v);. O

Note that =; can be represented by partial orders since (u); = LE(Po({u))).
Moreover Po is injective.

The property =; can be represented by partial orders, from lemma 26, can be
strengthened to the property =; can be modularly represented by partial orders.

Theorem 28 Let A be an alphabet and I an independence relation over A.
=; can be modularly represented by a partial order.
Proof:
That =; can be represented by partial orders follows from lemma 26. Then
we have to prove the two properties. First we have <.y, N Ey, X B, = <(y,.
Let w € A* such that F,, = F, and wy € (uv); for some x € A*. Proof
with induction on |u| — |z|, where z is the longest common prefix of u and
w. Let |u| —|z| =0, then u = w and w € (u);.
Suppose it has been proven for 0 < |u| — |z| < k. Assume |u| — |z| =k + 1.
Let w = xay; and u = xbys for some a,b € A and y;,y, € A*.
Note that a # b. We have (a, |x]o + 1) || pouv)) (bs |2]s + 1) since
wy,uv € (uv)r . From lemma 25 follows (a,b) € I. Thus there exist
w', !, ys, ys € A* such that u' = xabys € (u)r and w' = zabyy € (w);. The
longest common prefix of u' and w' is zab and by the induction hypothesis
we have zaby} € (u);. Therefore (w); = (u);.
Second we have to prove that <(,y, N t,(Ey) X tu(Ey) = tu(<ey,)-
Let w € A* such that F,, = F, and yw € (uv); for some x € A*. Proof with
induction on |v| — ||, where x is the longest common suffix of u and w.
Let |v| — |z| = 0, then v = w and w € (v);.
Suppose it has been proven for 0 < |v| — |z| < k.

31



Assume |v| — |z| = k+ 1. Let w = yyaz and v = yobx for some a,b € A and
y1,ys € A*. Note that a # b. Since yw,uv € (uv); we have
(a, |uv]e — |2]a) ||Po(uvy;) (bs|uv|s — |z|p). From lemma 25 follows (a,b) € 1.
Thus there exist w', v/, y3,y5 € A* such that w' = yibar € (w); and uv' =
ysbax € (v);. The longest common suffix of w’ and v’ is bax and by the
induction hypothesis we have yibazr € (v);. Therefore (w); = (v);.

We can conclude that the theorem holds. [

6.2 Prefix graphs

Definition

Let A be an alphabet and I be an independence relation over A. Let x,y €
A*.

1. The concatenation of two Mtraces (x); and (y); is denoted by
(@)1 - (y)r and (@)1 - (Y)r = (@y)r;

2. The trace monoid over A and I denoted by M(A,I) is the quotient
monoid A*/ =;, with concatenation - and unit (€);;

3. The prefiz ordering <y on M(A,I) is defined in the following way:
(x)r <1 (y); if there exists w € A* such that (x); - (w); = (y);.

The operation - is well-defined. If 2’ € (x); and 3 € (y); then, since =; is a
congruence, vy =; 2'y =; 'y’ and thus (zy); = (2'y');.
Note that - is associative and so (z)r - ((y)r - (2)1) = (zyz);r = (&)1 - (¥)1) - (2)1.
We will usually omit - and simply write (z);(y); rather than (x); - (y);.
Since - is well-defined, the ordering <; is also well-defined.

Note that (e); <; p for all p € M (A, I) and hence (€); is the least element of
the poset (M(A,I),=<).

Example continued
When we have A = {a,b,c} and I = {(b,¢), (c,b)}, as before, we can con-
struct the Hasse diagram, figure 17, for the prefix-ordering. Because the set
M (A, I) is very large we depicted only the restriction of the set M(A,I) to
all words with length less then 4.
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With this prefix ordering we can define a graph with Mtraces for nodes and the
prefix ordering defining the edges.

Definition
Let A be an alphabet and I be an independence relation over A.
Define the prefiz graph of M (A, ) as the elgraph with initial node
G(A,I)=(M(A,I), A, —=,,(e)r), where
(@)1 ===, (y)1 if (x)r{a)r = (y)r.

The next lemma shows that the relation —=, has a strong connection with the
ordering <. This connection is in fact so strong that we can conclude that p <7 ¢
for two vertices of G(A, I) implies p —*—, ¢ for some a € A and vice versa.



Lemma 29 Let A be an alphabet and I an independence relation over A. Let
p,q € M(A,I). p <1 q if and only if p —5—, q for some a € A.
Proof:
If p <-; ¢ then there exists w € A* such that p{w) = ¢q. From the definition
of <-; follows that w # € and |w| < 1. Then we know that there exists
a € A such that p - (a); = ¢. By the definition of —=, we have p %5, ¢.
If p ==, q then p <; ¢ and p # ¢. Suppose p <; z <; q then there
exists v, w € A* such that ¢ = z(w); = p(v);(w)r = p{a);. Then there can
be two situations. First v = a and w = e. But then z = ¢ in contrast with
2z < ¢q. The second situation is v = € and w = a. Then p = z and thus by
definition p < q.
Thus the statement holds. [J
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Figure 18: G(A,I)
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Example continued
The prefix graph is depicted in figure 18. The only difference between fig-
ure 17 and figure 18 is that the edges are labelled. This resemblence is
specified in lemma 29.

The defined prefix graph is a reldepgraph with root (e);.

Theorem 30 Let A be an alphabet and I be an independence relation over A.
G(A,I) is a reldepgraph.
Proof:
As observed before, (€); is the least element of the poset (M (A, I),<). Since
by repeated application of lemma 29, p < ¢ if and only if p ié[ q for some
w € A*, it now follows that (€); is a root of G(A, I).
We have that G(A, I) is deterministic since if p —*5—, ¢ and
p ——, ¢ for some p,q,¢ € M(A,I) and a € A then p(a); = ¢ and
p(a); = ¢'. Therefore ¢ = ¢'.
Finally that G(A, I) is event-preserving can be seen as follows. Suppose
we have p ——, ¢ and p ———, ¢ for some p,q € M(A,I) and u,v € A*.
Then ¢ = p(v); and ¢ = p{u);. Since =; is cancellative we know (v); = (u);.
Since Mtraces are event preserving, |u|, = |v], for all @ € A. Hence G(A,I)
is event-preserving.
Thus we can conclude that G(A, ) is a reldep-graph. [J

6.3 Some properties of prefix graphs

Let A be an alphabet and I an independence relation over A.

If we investigate the prefix graph we can conclude that the prefix graph has certain
properties. In this section these properties are proven. First we already know
that the prefx graph is deterministic. But if we consider a vertex and we look at
the labels of the edges which are directed to this vertex then we can conclude that
the prefix graph is also co-deterministic. The explanation and thus the proof is
very simple. The prefix graph is co-deterministic since =; is cancellative. Thus if
there are two edges labelled with a to a vertex, then the two vertices from which
the edges are directed have to be the same congruence class and are therefore the
same.

Theorem 31 Let A be an alphabet and I be an independence relation over A.

Then G(A,I) is co-deterministic.

Proof:
Suppose there are (v)7, (w);,p € M(A,I) and a € A such that (v); ——=, p
and (w); —=, p. Then we know p = (va); and p = (wa);. Since =; is
cancellative we have v = w. Thus the theorem holds. [J
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The next theorem shows that the prefix graph has the compatible forward di-
amond property. This property holds since we have an independence relation
which has no requirements on the future or past of the executions. Then if from
a vertex p there are edges labelled with a to ¢; and with b to ¢, and there exists
a vertex p’ such that ¢; and ¢ are before p’, the events a and b have to be con-
current and there exist a vertex ¢ such that the requirements for the compatible
forward diamond property are satisfied.

Theorem 32 Let A be an alphabet and I be an independence relation over A.
Then G(A, I) has the compatible forward diamond property.

Proof:

Assume we have the nodes (u);,p € M(A,I) and a,b € A with a # b such
that (ua)r, (ub); € M(A,I) and (uav); = (ubw); = p for some v,w € A*.
From the if-proof of lemma 24 we know uav,bvy =; uabvivy =; ubav vy for
some vy, vy € A* with b ¢ alph(vy). The Mazurkiewicz trace equivalence is
cancellative thus if uabv,vy, =; ubav vy then uab =; uba and (uab); 3, p.
We can therefore conclude that G(A, I') has the compatible forward diamond
property. [l

Example continued
In the prefix graph depicted before in figure 18 is easy to see that the prefix
graph does not always have the forward diamond property.

The prefix graph has the backward diamond property. If there exists a vertex ¢
to which two edges are directed labelled with @ and b then we know that these
events a and b are concurrent by the given independence relation. Thus then the
requirements of the backward diamond property are satisfied.

Theorem 33 Let A be an alphabet and I be an independence relation over A.

Then G(A, I) has the backward diamond property.

Proof:
Suppose we have p, (v);, (w); € M(A,I) and a,b € A such that (v); —>_ p
and (w); L@, p where a # b. Thus va =; wb. Since =; is event-preserving
there exist vy, vy € A* such that va = vibvga with b ¢ alph(vs). By lemma 24
we know that (b,c) € I for all ¢ € alph(vqa).
Hence va = vibvea =1 vivba =5 viveab =5 wb. Since =; is cancellative
we have (v1v9); ig[ (v); and (vv9); —==, (w);. Hence G(A,T) has the
backward diamond property. [

The result of the next lemma is used in the proof of theorem 35.

Lemma 34 Let A be an alphabet and I be an independence relation over A. Let
p,g € M(A,I) and a,b € A.
If {ab,ba} C Path, ,(G(A,I)) then (a,b) € I.
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Proof: i i
{ab,ba} C Path, ,(G(A,I) implies p a—b>EI q and p ﬂ)zz q.
Thus p{ab); = ¢ and p(ba); = q. Suppose u € p for some u € A*, then we
know that uab =; uba and by lemma 24 (a,b) € I. O

Even though the prefix graph does not have the forward diamond property, it
satisfies the cube axiom. Because whenever a and b may occur independently of
one another after a certain history then a and b can occur independently of one
another after each other history of events.

Theorem 35 Let A be an alphabet and I be an independence relation over A.
Then G(A,I) satisfies the cube axiom.
Proof:
Suppose we have p, p1,p2,q € M(A,I) and a,b,c € A such that
{ab,ba} C Path,,, (G(A,I)), {bc,cb} C Path,,,(G(A,I)),
and {bac, bca} C Path, ,(G(A,I)). By lemma 34 we know (a,b), (b,c) € I.
If {bac,bca} C Path,q,(G(A,TI)) then {ac,ca} C Pathyw, (G(A,I)) and
thus by lemma 34 (a,c) € I.
If we know that (a,c) € I then p{ac); = p{ca);.
Therefore {ac,ca} C Path,,,(G(A,I)) with p3 = p{ac);.
Since (a,b),(a,c), (b,c) € I we have (abc); = {abe,ach,cba,cab} U
{bac,bca}. Then {abc, ach, cba, cab} C Path, (G(A,I)). O

It is easy to see that the prefix graph satisfies the inverse cube axiom as stated
in the next theorem.

Theorem 36 Let A be an alphabet and I be an independence relation over A.
Then G(A, I) satisfies the inverse cube azxiom.
Proof:
From theorem 9 and theorem 33 follows that G(A, ) satisfies the inverse
cube axiom. [

6.4 The relation between G(A,I)(p) and Cp, )

Let A be an alphabet and let I be an independence relation over A.
Let p € M(A,I). Define the set of prefixes of p, denoted by Pref(p), as the set
Pref(p) = {q € M(A,I)| there exists w € A* such that q(w); = p}.

The set Pref(p) is the set consisting of those vertices of M (A, I) which are
before p in G(A,I).

Lemma 37 Let A be an alphabet and let I be an independence relation over A.
Let p € M(A,I). Then Pref(p) = Bef(p).

37



Proof:
Pref(p) = {q € M(A,I)| there exists w € A* such that q(w); = p}.
For all w € A* g(w); = p if and only if ¢ ié[ p.

Hence Pref(p) = {q € M(A,I)| there exists a path from ¢ to p € G(A,I)}.
Thus Pref(p) = Bef(p). O

Thus G(p) = (Bef(p), A, —=, |Bef(p)xAxBef(p): (€)1) can now be described as
G(p) = (Pref(p), A, —=, |Pref(p)xAx Pref(p)> (€)r) Which is a reldepgraph.

Example continued
Let A = {a,b,c} and I = {(b,¢),(c,b)}, as before. In figure 19, 20, and 21
G(A, I)({aba)r), G(A, I)({abc)r), and G(A, I)({bbc),) are drawn.

<€>I a b

(a); (ab) ——= (aba);

Figure 19: G(A, I)({aba);)

<6Lb>[
b C
ayf ] . {abe)y
{ac);

Figure 20: G(A, I)({abc);)

5

Figure 21: G(A, I)({bbc))

All the reldepgraphs in the example have the forward diamond property. This
property always holds for restrictions of G(A, I') and is stated in the next theorem.

Theorem 38 Let A be an alphabet and let I be an independence relation over
A. Letp € M(A,I). Then G(A,I)(p) has the forward diamond property.
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Proof:
We know that G(A, I) has the compatible forward diamond property from
theorem 32. From theorem 7 follows that G(A,I)(p) has the forward dia-
mond property. [

When we construct the configuration graph Cpo) for some p € M(A,I) we
get a reldepgraph. The prefix graph G(A,I)(p) is also a reldepgraph and we
can compare these graphs by the translate function (=,, defined in section 3.4,
restricted to the set Pref(p). We denote this restriction by (,.

Note that ¢, is a total function mapping traces (u); € Pref(p) to their set of
events ev(u) C E4. Since (u); € Pref(p) implies that u is a prefix of some v € p
we have by theorem 20 (,((u)1) = ev(u) € Con fpo(p)-

Example continued
Let A = {a,b,c} and I = {(b,c), (c,b)}, as before. We examine the restric-
tions of G(A, I) to the Mtraces (aba);, (abc)r, and (bbc);. The posets of the
Mtraces (aba)r, (abc)r, and (bbe); are already visualised in figures 13 to 15.
The configuration graphs of the partial orders of these Mtraces are drawn
in figure 22, 23, and 24.

b
0 —= {a)} —= {a, b1} —= {a, by, a0}

Figure 22: Cpo((aba);)

{ai, b1}

@ ﬁa {(Ll} (l? (t:) {alablacl}
{alacl}

Figure 23: Cpo((abe))

{bla bZ}
b Cc

% {bi} ;
0 c {bl,Cl}
I e} -~

Figure 24: Cpo((phe);)

{bla b27 Cl}

o

The total function ¢, : Pref(p) — Confpop) is the morphism from G(A, I)(p) to
Cpo(p) as proven in the next theorem.
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Theorem 39 Let A be an alphabet and I be an independence relation over A.
Let p € M(A,I). ¢, is the morphism from G(A,I)(p) to Cpop).
Proof:
We have to show that if ¢ —~—, ¢’ for some ¢,¢' € M(A,I) and a € A then
Gp(q) = ¢(q'). We have (,({€);) = 0 by the definition of ¢,.
Suppose we have ¢,¢' € M (A, I) and a € A such that ¢ —=, ¢’. Then

¢’ = q(a)r and thus ev(q') = ev(q) U {(a, |g|. + 1)}. Hence ¢,(q) — ¢,(¢').
By theorem 10, ¢, is the morphism from G(A,I)(p) to Cpgpy. O

Finally we have the following theorem which shows that the restriction of a prefix
graph to a Mtrace p is isomorphic with the configuration graph of the partial order
of p.

Theorem 40 Let A be an alphabet and I be an independence relation over A.
Letp € M(A,I). Then G(A,I)(p) is isomorphic with Cpe).
Proof:
From lemma 39 we already know that ¢, is the morphism from G(A, I)(p)
to Cpo(p)- We have to show that ¢, is bijective and full.

First we show that ¢, is injective. Suppose we have C' € Con fpo;) such
that C' = (,((v)r) = (((w)r) for some w,v € A*. Thus ev(w) = ev(v).
Suppose there are distinct (a,i),(b,j) € ev(v) such that (a,i) <, (b,J)
and (b, j) <(w), (a,7). Since (w)r, (v)r € Pref(p) we have (a, 1) ||poep) (b, 7)-
From lemma 25 follows that (a,b) € I. We can now use lemma 24 and
conclude that (w)r = (v).

Next we prove that ¢, is surjective.

Suppose C' € Con fpop). We will prove by induction on |C| that there exists
q € M(A,I) such that C' = (,(q).
Let |C] = 0. Then C' = () and by the definition of ¢, we have () = {,({€)r).
Suppose it has been proven for all configurations C' € Confp,(), where
0<[C]<k.
Assume |C| = k + 1, then there exist C" € Con fpou) and e € E4 such that
C"U{e} = C. Then |C'| = k and by the induction hypothesis there exists
(uyr € M(A,T) such that C" = (,((u')r). Let (u)r = (u')1(la(€))s, then
G((u)r) = ev(u) U{(lale), [u']14e) + 1)}

= ()1 U {{ale) iy + 1)}

= C"U{(lale), | |iaeey +1)}. Thus ¢,((u)r) = C.

At last we prove that (, is full. Assume C’ = (,((u);) and " — C.
Then a =l4(e), e ¢ C" and C' = C" U {e} for some e € F,.

G(ua)r) = ev(ua) = ev(u) U {(a, lul, + 1)} = C"U{(a,|ul, +1)}. From
lemma 19 follows (,((ua);) = C.

Having proved that ¢, is bijective and full, we know that G(A4,I)(p) is

isomorphic with Cp,(. O
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6.5 Conclusions

The trace theory developed by Mazurkiewicz is very special since the Mazurkiewicz
trace equivalence can be modularly represented by partial orders, the prefix graph
has the compatible forward and backward diamond property and the configura-
tion graph of a partial order of a vertex is isomorph to the restriction of the prefix
graph to this vertex.

The property Mazurkiewicz trace equivalences can be a modularly represented
by a partial order always holds when the prefiz graph restricted to a vertexr and
the configuration graph of the partial order of the vertex are isomorphic. This be-
cause we know that p = Pathy, (G(A, I)(p)) = Pathme (Crop)) = LE(Po(p)).
Thus the most important result of this section is theorem 40.

Now we can examine in the next section the generalizations of the Mazurkiewicz
trace theory.
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7 Generalization of traces

In this section we consider two different generalizations of Mtraces. In the first
subsection the generalization described by Biermann and Rozoy in [BR95] is
handled. The requirements are a dependency on the past, which results in a
congruence on the right, and an event-preserving equivalence.

The other generalization, by Bauget and Gastin in [BG95], requires an event-
preserving equivalence but now the dependency on the past is more restricted,
which results in a congruence. This all is in the second subsection, section 7.2.

7.1 Congruence on the right

Biermann and Rozoy describe in [BR95] a theory in which possible permutations
of events depend only on their past. This leads to a relation which contains
equivalent executions, represented by words. This relation is not a binary relation
over A, but a binary relation over A*. As in the Mtrace theory it is required that
the relation is event-preserving. In other words the resulting congruence on the
right has to preserve the occurrences of the letters. This crop trace equivalence
is defined in subsubsection 7.1.1. Because we have a congruence on the right
we have not a trace monoid, but in subsubsection 7.1.3 follows the definition of
quasi-concatenation and quasi-prefixes. In the next subsubsection the definition
of the quasi-prefix graph follows. After the restriction of the quasi-prefix graph
we compare two different ways to get the information about the concurrency of
events in a crop trace in subsubsection 7.1.4 and subsubsection 7.1.5.

7.1.1 Crop trace equivalence

Definition
Let A be an alphabet and R C A* x A* an event-preserving relation. Let
x,y € A*.

1. The crop trace equivalence induced by R is &g, the right-congruence
induced by R.

2. [x)r = {# € A*| z =g 2} the equivalence class containing z, is the
crop trace containing x.

Note that crop trace equivalences are event-preserving. Moreover we write [z) if
R is clear.
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7.1.2 Quasi-concatenation and quasi-prefixes

Let A be an alphabet and R an event-preserving relation over A*. In the last
section we defined the crop trace equivalence ~p. If we investigate A*/ ~p we
find that x =~ 2’ does not necessary imply that [yx)r = [yz)g for all y € A*.
Implying that concatenation of crop traces is not well-defined by [y)g[z)r =

[yz) R.

Example
Suppose we have A = {a,b,c} and R = {(bc, cb)}.
Let p = [bc) = {be,cb}, x = be, o' = cb, and q = [a).
Then z,z" € p and ¢[x) # ¢[x") since abc £g acb.
But [x)q = [2")q since bca ~p cba. The last equation is always valid sincexp
is a congruence on the right.

Thus we have no induced concatenation in A*/ ~g. But since ~p is a congruence
on the right, we can define a quasi-concatenation, denoted by ¢. This quasi-
concatenation is defined in the following way: [x)r0v = [zv)g for all x,v € A*.
Now the operation ¢ is well-defined. We will write [z) gOvQw instead of ([x) rpOv)Ow.

Lemma 41 Let A be an alphabet and R an event-preserving relation over A*.
Letp € A*) ~g and u,v € A*.
Then pOuQu = pQuv.
Proof:
Suppose p = [z) g for some word 2z € A*. Then pOudv = [2) gOudv.
We have [2) gQudv = ([2) gOu)Ov = [zu) gOv = [zuv) g = [2) gOuv.
Therefore pQuQv = pOuwv holds. [J

Now we have defined a quasi-concatenation, we can also define a set with prefixes
and an ordering between the crop traces.

Definition
Let A be an alphabet and R an event-preserving relation over A*. Let
pE A* ~R.

I. The set of quasi-prefizes of p, denoted by Pre(p) , is defined by
Pre(p) = {q € A*/ ~p | Fw € A" : 0w = p};

2. The quasi-prefiz ordering denoted by =g, is defined in the following
way [2)r =g [y)r if there exists w € A* such that [2)rOw = [y) .

Note that [e)r < p for all p € A*/ ~p and hence [¢)g is the least element of the
poset (A*/ =g, <g).

The defined quasi-prefix ordering is like the prefix ordering a partial order,
which is stated in the following lemma.
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Lemma 42 Let A be an alphabet and R an event-preserving relation over A*.
The ordering <g is a partial order.
Proof:

First we prove that the ordering <y is reflexive.

Suppose p € A*/ ~p then we have p <p p since pOe = p.

Futher we have to show that <p is anti-symmetric.

Suppose we have p,q € A*/ ~g such that p <g ¢ and ¢ <g p.

Then there exist u,v € A* such that pQu = ¢ and ¢Qv = p.

Hence u =v =€ and p = gq.

The last thing we have to prove is the transitivity of <g.
Assume we have p; <g py and ps <g p3 for some py, pa, p3 € A*/ ~p.
Then there exist u,v € A* such that p;Qu = po and p,Qv = ps.
Hence p;Q(uv) = p3 and p; <g p3. O

7.1.3 Quasi-prefix graphs

Let A be an alphabet and R an event-preserving relation over A*. Using <p we
can define a graph with the crop traces from A*/ ~p as nodes and the quasi-prefix
ordering between these crop traces as edges.

Definition
Let A be an alphabet and R an event-preserving relation over A*. Define
the quasi-prefiz graph of A*/ ~p as the elgraph with initial node
G(A,R,) = (A% =g, A, —~,, [€)r), where [u)r —~, [v)r for some u,v €
A* and a € A if [u)pOa = [v)g.

The quasi-prefix ordering has a strong relation with the function —,.

Lemma 43 Let A be an alphabet and R an event-preserving relation over A*.

Let p,q € A*/ ~p. Then p <r q if and only if ¢ —~, q for some a € A,

Proof:
If p <-g q then there exists w € A* such that pOw = ¢. From the definition of
<-r follows that w # € and |w| < 1. Then we know that there exists a € A
such that pOa = ¢. From the definition of — ., follows that p =, q.

If p 54, g then p < ¢ and p # ¢q. Suppose p < z < ¢ for some

z € A*/ ~p then there exist v, w € A* such that ¢ = 20w = pOvdw = pda.
Then there can be two situations. First v = a and w = e¢. But then z = ¢
and 2z < ¢, a contradiction. Then the second situation. Suppose v = € and
w = a. Then p = z and p < ¢ follows. [

We can prove the next theorem which states that the quasi-prefix graph is a
reldepgraph with root [e€) z.
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Theorem 44 Let A be an alphabet and R an event-preserving relation over A*.

G(A, R,) is a reldepgraph.

Proof:
As observed before, [€)r is the least element of the poset (A*/ ~R; <R)
Since by repeated application of lemma 43, p < ¢ if and only if p —) a4
for some w € A*. It now follows that [¢)g is a root of G(A, R,).

We also have to show that the graph G(A, R,) is deterministic.

Suppose we have py, pa, p3 € A*/ =g such that p; —>5, ps and p; —~, P3
for some a € A. Then py = p;Qa = ps.

If p L>;R q and p Lf;R g then ¢ = pQu = pOv. Since ~p is event-
preserving we have |u|, = |v|, for all @ € A, hence G(A, R,) is event-
preserving.

Since G(A, R, ) is rooted, deterministic, and event-preserving, the elgraph
G(A, R,) with initial node is a reldepgraph. [J

7.1.4 The relation between G(A, R,)(p) and Cpop

We now investigate the restriction of the quasi-prefix graph. First we prove that
the set of quasi-prefixes of a crop trace coincides with the set of all the crop traces
before this crop trace.

Lemma 45 Let A be an alphabet and R an event-preserving relation over A*.
Let p € A*/ ~g. Then Pre(p) = Bef(p).
Proof:
Assume we have y € A*/ ~p such that y € Pre(p). Then we know there
exists u € A* such that yOu = p. Then y .. p and thus there exists a
path labelled with u from y to p. Therefore y € Bef(p).
Assume we have y € A*/ ~p such that y € Bef(p). Then we know
there exists a path from y to p. Suppose this path is labelled with u, where
u € A*. Then y if;R p and thus yOu = p. Therefore y € Pre(p).
We can now conclude that the sets Bef(p) and Pre(p) are equal. [

Note that G(A, R,)(p) = (Bef(p), A, =x~p |Bef(r)x AxBef(p), [€) r) can also be writ-
ten as G(A, R,)(p) = (Pre(p), A, —~, |pre (p)x Ax Pre(p)s [€) R)-

Next we show that all words labelling the paths leading from the root to the
leaf together form this crop trace.

Theorem 46 Let A be an alphabet and R an event-preserving relation over A*.
let [p) € A*/ ~g. Then Path,..(G(A, R,)([p))) = [p)-
Proof:
For all w € A*, if [€)p ——~, [p) then by repeatedly applying lemma 43
[p) = [€)rOw = [w)g. Thus if w € Pathp..(G(A, R.)([p))) then w € [p).
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By induction on |p| we prove that if w € [p) then w €
Pathy,..(G(A, R,)([p))). Let |p| = 0, then p = ¢ and w = e. Then
€ € Pathm..(G(A, R,)([p)))-

Suppose it has been proven for 0 < |p| < k.

Assume |p| = k+1 and w € [p). Then |w| = k + 1, thus there exist w' € A*
and a € A such that w = w'a. Suppose w' € [p'). |p'| = k and by the induc-
tion hypothesis we have w’ € Path,,..(G(A, R,)([p'))). Since w' € [p’) and
w'a € [p) we have [p'y <=, [p). Therefore w € Pathy..(G(A, R,)([p))). O

We know that the crop trace equivalence induced by R is event-preserving, thus
we can construct a partial order of crop traces, as defined in subsection 5.2. Then
by theorem 17 we have the following corollar.

Corollary Let A be an alphabet and R an event-preserving relation over A*.
Let p € A*/ ~g. Then p C LE(Po(p)).

This is the first main difference with the Mazurkiewicz trace theory. If p is a
Mtrace then p = LE(Po(p)), lemma 26. In the next example we show that there
are crop trace equivalences such that p C LE(Po(p)).

Example
Let A = {a,b,c} and R = {(abe,cba)}. Suppose p = [abc)r. The partial
order of p is depicted in figure 25.

(a,1) (b,1) (c,1)

Figure 25: Po([abc(g)

Then LE(Po(p)) = {abe, acb, bac, bea, cab, cba} and p = {abe, cba}.

From the partial order of a crop trace, Po(p), we construct the configuration
graph Cpo). The two graphs, G(A, R,)(p) and Cpop), can be compared using
the translate function (,, which is (=, defined in section 3.4, restricted to Bef(p).

Theorem 47 Let A be an alphabet and R be an event-preserving relation over

A*. Let p € A*/ =g. (, is the morphism from G(A, R,)(p) to Cpop).

Proof:
First we show that (, is a total function. Suppose we have [u)r € Pre(p).
Then there exist v,w € A* such that uw = v € p. By theorem 20 we have
G([uyr) = ev(u) € Confpopy. Thus for all ¢ € Pre(p) we have (,(¢q) =
ev(q) € Confpop). Hence (, is a total function from Pre(p) to Con fpo(y).

Now we have to prove that ¢, is a morphism. We have (,([e)r) = 0 by

the definition of (,.
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Suppose we have ¢,¢' € A*/ =p and a € A such that ¢ —>—, ¢’. Then

q' = qQa and thus ev(q') = ev(q) U {(a, |qlo + 1)}. Hence (,(q) == (q').
By theorem 10, ¢, is the morphism from G(A, R,)(p) to Cpegy. O

From the last corollary we know that Po(p) has the property that p is contained in
the set of linearizations. In contrast to the case of Mtraces however this inclusion
is in general strict. Biermann and Rozoy examined the situation in which the
crop trace p equals the linearizations of the labelled poset Po(p), from [BR95].

Theorem 48 [BR95] Let A be an alphabet and R an event-preserving relation
over A*. Let p € A*/ ~g. If p = LE(Po(p)) then (, is surjective and full.
Proof:

Since p = Le(Po(p), theorem 20 implies that

Confpop) = {ev(z)|z € Prefiz(p)} = {(([u)r)|u € Pre(p)}. Hence ¢, is
surjective.

Assume C' = (' for some C,C" € Confpyy). Then C = ev([u)r) and
C" = ev([ua)r) for some [u)r € Pre(p). By definition [u)gr ——~, [ua)g.
Now we have proven that (, is surjective and full if p = LE(Po(p)). O

In the first example we show that the theorem holds and cannot be strengthened.

Example
Let A = {a,b,c} and R = {(ac, ca), (bc, cb), (bac, bea), (abe, ach), (cab, cba)}.
Let p = [abc)r = {abe, ach, cab, cba, bea, bac}. Tt is easy to see that there
exists no ordering between the events of p. The set of linearizations of the
partial order of p is equal to p. The quasi-prefix graph restricted to p and
the configuration graph of the partial order of p are depicted in figure 26.

[ab)
b
[a) £ [ac) {ar} < 5far, 1}
a g a b
) &), [abe) 0 {01}{a1,b1} —3larbia)
b b a a
b) < N[cb) (b 2 5 nen)

Figure 26: G(A, R,)(p) and Cp(p)

When we investigate these graphs we can conclude that ¢, is surjective, full,
and not injective.

The converse of the theorem does not hold. The next example illustrates this.
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Example
Let A = {a,b} and R = {(abab, baba)}. Let p = [abab)r = {abab, baba}.
The quasi-prefix graph restricted to the crop trace p and the Hasse diagram
of the partial order of p are depicted in figure 27 and 28.

) 75 [ab) 5 [aba) (a,1) (,2)

, > S

b\ [b) == [ba)—= [bab) (bl,l) (b:2)
Figure 27: G(A, R,)(p) and Po(p)

The configuration graph of the partial order of p is depicted in figure 28.
The function ¢, is surjective and full, but p is a strict subset of the set of
linearizations of the partial order of p.

{a1} {ai, b, az}

a b
@ {alabl {alab17a27b2
b b
{bl 2 {ala bla bZ

Figure 28: Cpqp)

Next we consider the case that (, is injective. Then the conclusion G(A, R,)(p)
is co-deterministic is easy.

Theorem 49 [BR95] Let A be an alphabet and R an event-preserving relation
over A*. Let p € A*| =g. If (, is injective then G(A, R,)(p) is co-deterministic.
Proof:
Suppose ¢, is injective and we have [w;)gr —~, [w)g and [wa)r ——~, [W)r
for some w, wy, wy € A* and a € A.

Then G([w)r) = Glwa)r) = G([w)r)\{(a,[w]a)}. ¢y is injective thus
[w1)r = [we)g. Therefore G(A, R,)(p) is co-deterministic. [

First an example is given to illustrate the theorem.

Example
Let A = {a,b,c} and R = {abe,cab}. Let p = [abc) = {abc,cab}. The
quasi-prefix graph, the Hasse diagram of the partial order of p and the
configuration graph of the partial order of p are depicted in figure 29.
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a) > [ab) T S——
€) < > [abc) ®< ¢ {ay,bi,c1}
Ny 2 o feay/ ‘ {q}X’ {ane}/ "

(c,1) (a,1) (b,1)
Figure 29: G(A, R,)(p), Po(p) and Cpop)

Then p = {abe,cab} C LE(Po(p)) = {abe, cab, acb}, (, is injective (and
surjective). The quasi-prefix graph has not the forward nor the backward
diamond property and G(A, R,.)(p) is co-deterministic.

The next example illustrates the fact that the converse of the theorem does not
hold.

Example
Let A = {a,b} and R = {(abab,baba)}. G(A, R,)([abab)), Po(labab)) are
depicted in figure 27 and Cpo(jabasy) in figure 28. We have G(A, R,)([abab))
is co-deterministic, but (iapqpy is N0t injective.

Next we prove that if G(A, R,)(p) has the forward or backward diamond property,
then the function (, is injective and full. Theorem 13 from [BR95]. The two
situations, G(A, R,)(p) has the forward diamond property and G(A, R,)(p) has
the backward diamond property, are divided into two cases. First we consider
the case G(A, R,)(p) has the forward diamond property. Before we can prove in
theorem 55 that G(A, R,)(p) having the forward diamond property implies that
(p is injective and full, we prove some lemmas which are needed in the proof of
the theorem.

In the first lemma we prove that, if G(A, R,)(p) has the forward diamond
property and if we know that there exists a path from vertex x to y, which
contains the letter a, and there exists a path labelled with a from x to a vertex
z then there exists a path from z to y. Further we know that if the path from x
via z to y is labelled with aw’ and the path from x to y is labelled with w then
aw' is a permutation of w. In figure 30 this situation and the situation in the
proof of this lemma is visualized.

Lemma 50 Let A be an alphabet and R an event-preserving relation over A*.
Let p € A*/ ~g. If FD(G(A, R,)(p)) then
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Figure 30: Visualization of lemma 50

for all x,y,z € Pre(p

a

), weE A*  anda € A
- w
fr —n, Y T

= 2, and |w|, > 1 then there exists w' € A* such that

z i)LR y and aw' is a permutation of w.

Proof:
Induction on |u|, where u is the least prefix of w such that |u|, = 1.
Let |u| = 1. Then w = aw” for some w"” € A*. G(A, R,)(p) is deterministic
thus z w—”>;R y. Suppose the statement has been proven for all paths labelled
with w such that the length of the least prefix of w containing a is < k.
Assume |u| = k + 1. Then there exist w;,v € A* such that w = vaw.
Suppose the first letter of v is b, v = bu/, and x —me x, for some
z1 € Pre(p), b € A, and v’ € A*.
FD(G(A, R,)(p)) thus we know that x; —, o and 2 LmR xo for some
xo € Pre(p). Then we have x; M;R Y, T1 —np, To, and 1 < [u'aw |, < k.

Now by the induction hypothesis, there exists w” € A* such that w—”>NR Y
and aw” is a permutation of v/ aw,.

"n*
Thus z %%R y and abw” is a permutation of w.
We can conclude that the lemma holds. [J

Lemma 50 can be generalized to the following lemma. In figure 31 the situation
and the situation during the proof is visualized.

Lemma 51 Let A be an alphabet and R an event-preserving relation over A*.
Letp € A*) =g. If FD(G(A, R,)(p)) then
for all x,y,z € Pre(p) and w,v € A*
if x &;R Y, T L>;R z, and |w|, > |v|, for all a € A then there exists v' € A*
such that z L,;;R y and vv' is a permutation of w.
Proof:
Induction on |v|.
Let |v| = 0 then v = ¢. Thus z i)LR y and w is a permutation of w.
Suppose it has been proven for 0 < |v| < k.
Assume |v| = k + 1. Then v = av' for some a € A and v' € A*. Suppose
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Figure 31: Visualization of lemma 51

x —“5~, 21. By lemma 50 there exists u € A* such that 2z L>;R y and au
is a permutation of w. We have z L>;R Y, 21 v—lmR z, and |u|, > |V'],
for all a € A. Then |v'| = k and by the induction hypothesis we have there

!

exists u' € A* such that z L’m}? y and v'u’ is a permutation of w. Thus

' . .
2z —~p, y and av'v’ = vu' is a permutation of w. O

The last lemma, which is needed for the proof of theorem 55, states that, if
G(A, R,)(p) has the forward diamond property and there are two distinct paths
labelled with w' and w"” from a vertex to two other vertices and w’ is a permutation
of w” then these latter vertices are one and the same. Again a visualization of
this lemma is given in the next figure.

w
T L y
w a
b U1
X V=27 X q
a Uz
" b :
w
9 7
wy

Figure 32: Visualization of lemma 52

Lemma 52 Let A be an alphabet and R an event-preserving relation over A*.

Let p € A*) ~g. If FD(G(A, R,)(p)) then

for all x,y,z € Pre(t) and w',w" € A*

if x LI>;R Y, T w—”>;R z, and |w'|, = |w"|, for all a € A then y = 2.

Proof:
Induction on |w
Let |w'| = 1 then v’ = w" = a for some a € A. G(A, R,)(p) is deterministic
thus y = 2. Suppose the statement has been proven for |w'| < k. Assume
|w'| = k+1. Then there exist w}, w} € A* such that w' = aw] and w" = bw?.
If @ = b we are done, so assume a # b. Let = imR z; and x —me 9 for
some x1,zy € Pre(p). We have FFD(G(A, R,)(p)) thus there exists

|
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q € Pre(p) such that 14 imR q and 19 —~. q. We know z —_ 11,

R
T i@}{ Y, T LmR q, and |wi|, > 1.
By lemma 50 there exists u; € A* such that ¢ &;R y and bu; is a permu-
tation of w]. Similarly there exists us € A* such that ¢ %;R z and aus is
a permutation of w!.
We know ¢ &;R Y, q %;R z, and |u1|, = |ug|, for all @ € A. Then
|u1| = |ug| =k — 1 and by the induction hypothesis we have y = z.

We can conclude that the lemma holds. [J

Finally we can prove that there is a connection between the forward diamond
property of G(A, R,)(p)and the function (,.

Theorem 53 Let A be an alphabet and R an event-preserving relation over A*.

Let p € A*/ ~p.

If FD(G(A, R,)(p)) then (, is injective.

Proof:
Suppose [wy), [wa) € Pre(p) and (,([wi)r) = (,([w2)r) = C for some C' €
Confpop). Then ev(wy) = ev(wy). We have [€)p &;R [wi)r, [€)r %;R
[we) g, and |w1 |, = |wel, for all @ € A. By lemma 52 we have [w;)r = [ws) g.
U

Theorem 54 Let A be an alphabet and R an event-preserving relation over A*.

Let p € A*/ ~p.

If FD(G(A, R,)(p)) then ¢, is full.

Proof:
Suppose we have [w)g, [w2)r € Pre(p) and Cy,Cy € Confpop) such that
G(Jwr)r = Cy and ((Jwa)r = Cy. From theorem 53 follows that [w;)g and
[wy)r are uniquely determined. Assume C; — Cs, then we have to prove
that [wi)r —=ap [W2)R-
From theorem 46 follows [€) g ﬂ)LR [wi)r and [€)g &;R [we)g. Since
Guwi)r = ev(wy) = C and (,([wa)r = ev(we) = Cy we have ev(wy) =
ev(w;) U {(a, |wi], + 1)}. From lemma 51 follows [w)p ——~p, [we)r. O

This all leads to the following theorem.

Theorem 55 Let A be an alphabet and R an event-preserving relation over A*.
Let p e A*/ =p. If FD(G(A, R,)(p)) then ¢, is injective and full.

Example
Let A = {a,b,c} and let R = {(ab,ba), (ach,abc), (bca,bac)}. Let p =
l[abedyr = {abc, ach, bac, beca}. The quasi-prefix graph restricted to p and
the Hasse diagram of the partial order of p are depicted in figure 33.
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[b) == [bc) (a,1)

y a a (1)
g ab) € ylabc) ()
a b b

[ac)

Figure 33: G(A, R,)(p) and Po(p)

In figure 34 the configuration graph of the partial order is given. We know
that G(A, R,)(p) has the forward diamond property, thus the translate func-
tion ¢, is injective and full. Moreover the function is surjective.

{ar} E {ar, e}
@ {alabl} ¢ {alablacl}

{b1} - {br,e1}

Figure 34: Cpop)

Now we concentrate on the other situation, G(A, R,)(p) has the backward dia-
mond property. With this property we also need that G(A, R,)(p) is co-determi-
nistic or else we can not draw any conclusions. In this situation we also need
three lemmas for the proof of theorem 61.

In the first lemma we also have a path labelled with w from a vertex y to
x and a path labelled with v from z to x. If we know that ev(v) C ev(w) then
there exists a path labelled with v’ from ¥y to z and v'v is a permutation of w. In
figure 35 this situation is visualized.

Figure 35: Visualization of lemma 56

Lemma 56 Let A be an alphabet and R an event-preserving relation over A*.
Let p € A*/ ~r. BD(G(A, R,)(p)) and co-deterministic.

53



Forallx y,zEPre( ), weE A, anda € A

y —> ~p T 2 —np @, and |wl|, > 1 implies there exists w' € A* such that

y _>wR z and w'a is a permutation of w.

Proof:
Induction on |u|, where u is the least suffix of w such that |u|, = 1.
Let |u] = 1, then w = w"u = w"a for some w" € A*. G._(t) is co-

"ok
deterministic thus y =,z and w”a is a permutation of w.
Suppose the statement has been proven for all paths with u < k.
Assume |u| = k + 1. Then there exists w” € A* such that w = w"u, also

there exist b € A and u' € A* such that v = au'b and x MIQR q for some

¢ € Pre(p). Thus ¢ —=~, = and 2 —>~R z. G(A,R,)(p) has the back-
ward diamond property thus there exists ¢’ € Pre(p) such that ¢ —~, ¢,

z. Then |w' au’| = k and by the
induction hypothesns there exists w’ € A* such that y —> . ¢ and w'a is

s T, ’i> z, and 2z —
q R q ~R

I
a permutation of w”. Then there exists w’ € A* such that z w—b@R z and
w'ba is a permutation of w.
We can conclude that the lemma holds. [J

Lemma 56 can be generalized like lemma 50, which leads to the next lemma.

Lemma 57 Let A be an alphabet and R an event-preserving relation over A*.
Let p € A*/ ~r. BD(G(A, R,)(p)) and co-deterministic.

For all Y2 € Pre( ) and w,v € A

y 25 LT, 2 —> . T, and |w|a > |vl|, for all a € A implies there exists v' € A*

such that Y —>%R z and v'v is a permutation of w.

Proof:
Induction on |v|.
Let |v| = 0 then v =€ and y L)LR z, where w is a permutation of w.
Suppose it has been proven for 0 < |v| < k.
Assume |v| = k + 1. Then there exist u € A* and a € A such that v = v'a.
Suppose z —> . 21 for some z; € Pre(p). Since |w|, > |v|, for all b € A we
have |w|, > 1. By lemma, 56 there exists u € A* such that y Lf;R 21 and

;X *
ua is a permutation of w. Then z ——_ 21,y —~ 21, and |u| = k. By the
induction hypothesis we have there exists 3’ € A* such that y L,mR z and
u'v" is a permutation of u. Then y L,%R z and u'v'a = u'v is a permutation
of w. [J
The last lemma has as result that if there are two distinct paths from two other
vertices y and z to a vertex x and these path labels are permutations of each
other then these latter vertices y and z are one and the same. This only holds

04



if G(A, R,)(p) has the backward diamond property and if G(A, R,)(p) is co-

deterministic.

Lemma 58 Let A be an alphabet and R an event-preserving relation over A*.
Let p € A*) ~g. If BD(G(A, R,)(p)) and G(A, R,)(p) is co-deterministic then
for all x,Y,z € Pre( ) and w',w" € A*

y —> LT, 2 —> L T and [w'|, = |w"|, for all a € A implies y = z.

Proof.
Induction on |w'|.
Let |w'| = 1, then w' = w” = a for some a € A. G(A,R,)(p) is co-
deterministic thus y = 2. Suppose the statement has been proven for all the
situations in which the paths are labelled with a word of length < k.
Assume |w'| = k + 1. There exist wi,w] € A* such that w' = wja and

w" = wib. G(A, R,)(p) has the backward diamond property thus there exists
q € Pre(p) such that ¢ —>NR q, ¢ —Son

a " 7 b
~n Ty, @ —ng, ¢, and ¢F —4, .

We have y —> .45 q —>~R q, and |wi|y > 1 thus applying lemma 56
there exists w), € A* such that y —) . ¢ and wyb is a permutation of w.

Similarly there ex1sts wy € A* such that z —> » ¢ and wyb is a permutation

of w]. Thus y —> RO 2 1oy . @ and |wy|, = [wy|, for all a € A.
Then |wh| = |wh| = % — 1 and by the induction hypothesis y = z.
We can conclude that the lemma holds. [J

w' '
: & b a
W” E

Figure 36: Visualization of lemma 56

Finally we can prove that if G(A, R,)(p) has the backward diamond property and
is co-deterministic, then ¢, is injective and full. We have divided theorem 61 into
theorem 59 and 60. Thus first we prove that (, is injective.

Theorem 59 Let A be an alphabet and R an event-preserving relation over A*.
Letp e A"/ =g
G(A,R,)(p) has the backward diamond property and is co-deterministic implies
(p s injective.
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Proof:
Suppose we have ¢,¢" € Pre(p) such that (,(¢) = (,(¢'). If (,(q) = (,(q")
then |g|l, = |¢'|, for all a € A, thus ev(q) = ev(q'). Because ¢,q¢" € Pre(p)
there exist paths in G(A, R,)(p) labelled with w', w” € A* from ¢ and ¢ to

p. Thus ¢ leR p and ¢’ w—”@R p.
Also [€)p ——~, q and [€)p —~, ¢ for some v' € ¢ and v" € ¢’. Then

[r L%, pand [r “%~, p. ~g is event-preserving thus [v'w'|, =
[v"w"|, for all a € A. We had ev(q) = ev(q') thus |w'|, = |w"|, for alla € A
From lemma 58 follows ¢ = ¢'. O

And second we prove that ¢, is full if the quasi-prefix graph restricted to a crop
trace has the backward diamond property and is co-deterministic.

Theorem 60 Let A be an alphabet and R an event-preserving relation over A*.

Let p € A*/ ~p.

G(A, R,)(p) has the backward diamond property and is co-deterministic implies

Cp 18 full.

Proof:
Suppose we have [w)g, [w2)r € Pre(p) and Cy,Cy € Confpoy) such that
G([wi)r) = C1 and (,([we)r) = Cy. From theorem 59 follows that [w;) g and
[wy) p are uniquely determined. Assume C; — (Y, then we have to prove
that [wy) g —=~, [ws)g. Let § =" Cy for some w € A*. Then Cy = ev(w)
by lemma 19 and Cy = ev(w) U {(a, |w|, + 1)}. Since [w)g, [we)r € Pre(p)
we have [wi)g i);R p and [w9)p ﬁ);R p for some wuy,us € A*. Since
Gw)r) = ev(wy) = Cy and (p([we)r) = ev(we) = Cy we have ev(w;) =
ev(w) and ev(wy) = ev(w;) U {(a,|w|, +1)}. We know [e)r —a, [wi)r
“en pand [Op —Ba, [Wo)r —xp p- Then |wiugly = |waus|y for all
b€ A. Thus |uy|, = |uzl, — 1. By lemma 57 there exists w’ € A* such that
[wi)r LI>;R [wy) r and w'uy is a permutation of u;. Therefore [w)p ——x~
[w2>R. I

Finally we conclude the following theorem holds.

Theorem 61 Let A be an alphabet and R an event-preserving relation over A*.
Letp € A"/ ~p.

G(A, R,)(p) has the backward diamond property and is co-deterministic implies
Cp 15 injective and full.

Example
Let A ={a,b,c,d} and R = {(abc, acb), (acd, adc), (cbd, cdb)}.
Let p = [abcd). The quasi-prefix graph restricted to p is together with the
partial order of p depicted in figure 37.
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/[&b) [abc)
[€) ° [a) : [ac) [abed) (a,1) <
\
[ad) [acd)

Figure 37: G(A, R,)(p) and Po(p

The configuration graph of the partial order of p is depicted in figure 38.
The quasi-prefix graph restricted to p has the backward diamond property
and is co-deterministic. The function ¢, is injective and full.

b {ala bl < {ala bl) Cl}
a C
@ {al} {aal 701} {ala bl) dl {ala bl) Ci, dl
d
{Cl d } {al,cl,dl

Figure 38: Cpop)

Example
Let R = {(ab, ba), (bc, cb), (abe, ach), (ach, bac), (bac, bea), (bea, cba)} and A =
{a,b,c}. Let p = [abc) = {abe, ach, bac, bea, cba}.

[a) ———=[ac) . (a1)
AN
l€) Lo [b) 2 S[ab) € sfabe) . (b1)
\[@ﬁm . (e,1)

Figure 39: G(A, R,)(p) and Po(p)

The quasi-prefix graph restricted to p is together with the Hasse diagram of
the partial order of p depicted in figure 39.

The configuration graph of the partial order of p is depicted in figure 40.
G(A, R,)(p) has not the backward diamond property and is co-deterministic.
The translate function ¢, is surjective and injective, but not full.

When we have the results of theorem 55 and 61 we can conclude that the following
theorem, stated in [BR95] holds.
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{(Ll} {ala bl}

0 b {b1}{a1,01} tc) {@1,171,01}

N e} 2 (o, e1)

Figure 40: Cpop)

Theorem 62 [BR95] Let A be an alphabet and R an event-preserving relation
over A*. Let p € A*/ ~p.

If FD(G(A, R,)(p)) or BD(G(A,R,)(p)) and G(A,R,)(p) is co-deterministic
then C, is injective and full.

Moreover as Biermann and Rozoy prove in [BR95] G(A, R,)(p) is isomorphic with
Cpro(p) if and only if G(A, R,)(p) has both the forward and backward diamond

property.

Theorem 63 [BR95] Let A be an alphabet and R an event-preserving relation
over A*. Let p € A*/ ~p.
G(A, R,)(p) and Cpopy are isomorphic if and only if G(A, R,)(p) has the forward

and backward diamond property.

If G(A, R,)(p) and Cpo(p) are isomorphic then theorem 21 implies that G(A, R,)(p)
has the forward and backvvard diamond property. If G(A, R,)(p) has the forward
and backward diamond property then G(A, R,)(p) is a distributive lattice and
isomorphic with Cpoy)

Example
Let A = {a,b,c} and R = {(ab,ba), (bac,bca)}. Let p = [abc). Then
p = {abc, bac, bea}. In figure 41 G(A, R,)(p), the partial order of p and the
configuration graph is depicted.

(a,1) (b,1) (c,1)

labc) )
\ 1 [be) / {al}b%{alabl}

< / & {ay, by, c1}
{b:} é{bl,cl}/

Figure 41: G(A, R)(p), Po(p) and Cp,(y)

o8



It is easy to see that the two reldepgraphs are isomorphic and that
G(A, R,)(p) has the forward and backward diamond property.

7.1.5 From Cpo(p) to G(AaRr)(p)

Let A be an alphabet and R an event-preserving relation over A*. In section 7.1.4
we have proven that the total function (, is the morphism from G(A, R,)(p) to
Cpop)- However we can also look at a function ¢, on Confp,,) in order to
establish a morphism from Cp(,) to G(A, R,)(p) is such morphism exists.

Definition
Let A be an alphabet and R an event-preserving relation over A*. The
function v, is defined for all C' € C'on fp,(p) in the following way:
P, (C) = {w € A*|(0, w,C) e—*}.

The function 1), is a total function, But 1, (C') is not always an element of Pre(p).

Example
Let A = {a,b,c,d} and R = {(bdc, bed), (abe, ach), (cbd, cdb), (acd, adc), (dbe, deb)}.
Let p = [abed) r = {abde, abed, acbd, acdb, adeb, adbc}.

[abd)
d
[ab)“ 7 [abc)N_ €
b
a C b
[€) [60\ [ac) [abed)
\ d b
[ad)x—== [acd)
b
[adb)

Figure 42: G(A, R,)([abcd)R)

First we draw the quasi-prefixgraph. G(A, R,)(p) is depicted in figure 42.
The labelled poset Po(p) is depicted in figure 43.

When we have the labelled poset Po(p) we can construct the graph of con-
figurations. This graph is depicted in figure 44.

When we evaluate Cp,y, G(A, R,)(p), and v, we see that if
C = {(a,1),(b,1),(d, 1)} then v,(C) = {abd,adb}. Since abd %pr adb,
Up(C) & Pre(p).

29



Figure 43: Po(p)

{alabl} < {alablacl}

0 {a1}<{a1,01} {al,b1,d1} {al,bl,cl,dl}
b

{aladl {alacladl}
Figure 44: Cpop)

Now we know that the function ¢, is not always a morphism from Cpy) to
G(A, R,)(p).If there exists a path labelled with w from the root to a conﬁguratlon
C then the set 1, (C) contains the set [w).

Lemma 64 Let A be an alphabet and R an event-preserving relation over A*.
Let p € A*) =g, C € Conf(Po(p)), and w € A*. If ) " C then [w)r C ¥, (C).
Proof:

Induction on |C].

Let |C] =0, then C' = . Thus § 5" C and [e) g = 1, ().

Suppose it has been proven for all configurations C’, where 0 < |C’| < k.

Assume |C] =k + 1 and () ﬂfk C’ Then there exist e € Ea, C" € Confpop)

and w' € A* such that C" " C’ 0 Cland w = w'la(e). |C'] =k and
by the induction hypothesns we have [w')p C 9,(C"). C'"U{e} = C, thus
Up(C) = ¢p(C" U {e}).
Then [w') rOla(e) € ¥p(C")0La(e)= 1, (C" U {e}) = 4,(C). O
However the function ¢, is a morphism whenever for all paths labelled with w
from the root to a configuration C' ¢,(C) = [w)g.

Theorem 65 Let A be an alphabet and R an event-preserving relation over A*.
Let p € A*) mp. If 0 = C implies 1,(C) = [w)g for all C' € Confpyp and
w € A* then 1, is a morphism.

Proof:
We have wp((l)) = [€)gr- Then we have to prove that C; % C, implies
Up(C1) Bap 1p(Ca). Suppose we have Cy, Cy € Confp,p and e € E4 such

that C; = lA C’2 Suppose () = C; for some w € A*. Then 1,(C}) = [w)g.
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Ci U {e} = Oy, thus ¢,(Cs) = ¢,(Cy U {e}) = 1,(C1)Ola(e). Therefore
Up(C1) ap hp(Ca). O

It is therefore easy to see that if we have a morphism between the configuration
graph of an partial order of a vertex and the quasi-prefix graph of this vertex
then 1, is injective.

Theorem 66 Let A be an alphabet and R an event-preserving relation over A*.
Let p € A"/ =g. If 1y is the morphism from Cpopy to G(A, R,)(p) then 1y, is

imjective.

Proof:
Suppose [w)r = (C1) = ¥(Cy) for some w € A* and Cy,Cy € Con fpep)
By definition we have (wYr = (Cy) = {z € A*| (0,z,Cy) e=*} =(Cy) =
{z € A*| (0, z,Cy) €—*}.
Thus if y € [w)g then ) =5 € and also ) —5 Cy. But Cpogy(p) is
deterministic thus C; = Cs. O

If Cpo(p) is embedded into G(A, R,)(p) then Cp,y and G(A, R,)(p) are isomorphic.
This theorem is from [BR95].

Theorem 67 [BR95] Let A be an alphabet and R an event-preserving relation
over A*. Let p € A*/ =g. If Cpopy C G(A, R,)(p) then Cpopy and G(A, R,)(p)
are isomorphic.
Proof:
We know that ¢, from Confpep to Pre(p) is injective since Cpopy C
G, (A, I)(p). Thus all we have to prove is that 1), is surjective and full.

Let |[w)g| be the length of all the words in the crop trace. First we
prove with induction on |[w)g|, w € A*, that ¢ from Confps) to Pre(p) is
surjective.

Let |[[w)g| = 0, then w = € and ¢ (0)) = [¢) p holds.

Suppose 1 is surjective for all crop traces with words with length less or
equal to k.

Assume |[w)g| = k + 1. There exist a € A and w’ € A* such that w = w'a.
Because a appears behind w' the occurrence of a after w' is allowed by Po(p).
Then |w'| = k and by the induction hypothesis there exist a configuration
C € Confpop) such that ¥(C) = [w')r. Then there exists a configuration
C" such that C" = CU{(a, |w'al,)} and ¢(C") = [w)g. Thus ¢ is surjective.

All we have to prove is that ¢ is full. Suppose [w)gr L;;R [w) rOa
for some w € A* and @ € A. Then [w)r € Pre(p) thus there exists
C € Confpyp) such that w € (C). Also [w)rOa € Pre(p) thus there
exists C" € Confpop) such that wa € ¢,(C"). For all b € A\{a} holds
|wl|, = |walp and |wl|, + 1 = |Jwal,. Therefore C'U {(a, |wal,)} = C'". By the
definition of — we have (C,a,C") €—*. Thus ¢ is full.

Thus G(A, R,)(p) and Cp,() are isomorphic. [
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If we join the theorems 66 and 67 we get the next theorem.

Theorem 68 Let A be an alphabet and R an event-preserving relation over A*.
Let p € A*/ =p. If ¢, is a morphism from Cpop) to G(A, R,) then Cpoyp) and
G(A, R,) are isomorphic.

In the crop trace theory we do not always have a morphism from the configuration
graph of the partial order of a crop trace to the quasi-prefix graph restricted to
the crop trace. However for Mtraces the function 1, is always a morphism.
Moreover then the function v, is always injective, surjective and full, since the
configuration graph and the prefix graph are always isomorphic.

7.1.6 Represented by partial orders

A crop trace equivalence cannot always be represented by partial orders. In the
next example a crop trace equivalence will be given which cannot be represented
by partial orders.

Example
Let A = {a,b} and R = {(aab,baa), (bba,abb). Let p = [aabb)gr. Then
p = {aabb, baab, bbaa, abba}. The quasi-prefix graph and the Hasse diagram
of the partial order of p are depicted in figure 45.

laa)— B [aab)

a (a,1) (a,2)
. ) 4 ab) b : T
[€) < > [abb) —2_N [aabb) . _
b > [b) P [bh) —a 5 (b)) (b2
’ : ba) 2 [baa)

Figure 45: G(A, R,)(p) and Po(p)

The set of linearizations of Po(p) contains also the words abab and baba.
These words are not in p and thus R cannot be represented by partial orders.

7.1.7 Conclusions

First we consider the relation between Mtraces and crop traces. Let A be an
alphabet and I an independence relation over A. Then =; is a congruence, thus
also a right-congruence, and the quasi-concatenation ¢ is well-defined for A*/ =;.
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Since p[v); = pQuv for all p € A*/ =; and v € A* we have G(A,I) = G(A, (Cy),).
This implies that results from last subsubsections also hold for the prefix graphs
of Mtraces. Thus we can conclude that the quasi-prefix graph restricted to a
Mtrace is isomorph to the configuration graph of the partial order of the Mtrace.
This also follows from section 6.

Crop traces lack some properties of Mtraces; the equivalence is not represented
by partial orders, the quasi-prefix graph has not the (compatible) forward or
backward diamond property nor satisfies the (inverse) cube axiom. All these
properties were satisfied by the Mtraces.

We can only conclude that if the quasi-prefix graph of a crop trace has the
forward or backward diamond property and is co-deterministic then the morphism
from the quasi-prefix graph to the configuration graph is injective and surjective.
An interesting result is that if there exists a morphism from the configuration
graph to the quasi-prefix graph then these graphs are isomorphic, which is a
result of the fact that there always exists a morphism from the quasi-prefix graph
to the configuration graph.
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7.2 Congruence

In this subsection we handle the generalization of Bauget and Gastin in [BG95].
Bauget and Gastin describe a theory in which possible permutations of events
depend only on a part of their past. The relation, which defines equivalent
executions, is again event-preserving. Since the permutations of the events only
depend on a part of their past, two equivalent observations will still be equivalent
when they are being observed after the same or equivalent past executions. In
other words we consider congruences which preserve the occurrences of the letters.

This cop trace equivalence is defined in section 7.2.1. We will define the cop
trace monoid and the prefix graph in the next subsubsection. Like with the crop
trace theory we can look at the morphism between the prefix graph and the graph
of configurations, see subsubsection 7.2.3.

7.2.1 Cop trace equivalence

Definition
Let A be an alphabet and R an event-preserving relation over A*.

1. The cop trace equivalence induced by R is defined by =g, the congru-
ence induced by R;

2. (£)r = {z € A*| z =R x} the equivalence class containing x is the cop
trace containing x.

Note that cop trace equivalences are event-preserving. Moreover we write (z) if
R is clear.

7.2.2 The prefix graph and the configuration graph

Let A be an alphabet and R an event-preserving relation over A*. =g is a
congruence thus we have a concatenation - defined as in subsection 6.2 by

(x) - {y) = (xy). The concatenation is well-defined. Because if © =g 2’ and
y =gy then xy =x 2’y =r 2'y'.

With the concatenation - we have a trace monoid as in subsection 6.2, M (A, R)
is the quotient monoid A*/ =g, with concatenation - and unit (¢)p. Thus we
have a prefix ordering <z and a prefix graph G(A, R) = (M (A, R), A, —>=,, (€)r)
similar to Mtraces. Moreover we have the following properties.

Theorem 69 Let A be an alphabet and R an event-preserving relation over A*.
For all p,q € M(A,R) p <r q if and only if p —~—_ q for some a € A.
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Theorem 70 Let A be an alphabet and R an event-preserving relation over A*.
Then G(A, R) is a reldepgraph.

Example
Let A = {a,b,c} and R = {(ac, ca), (be, cb), (cab, cba)}. Let p = (abc)g. The
prefix graph of the cop trace p is depicted in figure 46.

(ab)

[SNe}

Figure 46: G(A, R)(p)

The prefix graph has not the forward diamond property, is not co-
deterministic and does not satisfy the cube nor inverse cube axiom. Thus it
is special when the prefix graph has all these properties.

This example shows that there exist cop trace equivalences such that the prefix
graph has not the forward diamond property and such that the prefix graph is
not co-deterministic.

Example continued

{Ch} {01, 01}
b
@ c {Cl}{a’hbl ¢ {a’hblacl}
b
{b1 {bh 01}
Figure 47: Cpop)

The configuration graph of Po(p) is depicted in figure 47. It is clear that
the prefix graph and the configuration graph are not isomorphic.

65



Example
Let A = {a,b,¢} and R = {(ac, ca), (abc, ach), (cab,cba)}. Let p = (abc)g.
The prefix graph restricted to p is depicted in figure 48.

Figure 48: G(A, R)(p)

In the last example an event-preserving relation is given such that the prefix
graph restricted to a cop trace does not have the backward diamond property.
Thus after these examples we can conclude that the prefix graph restricted to a
cop trace does not have special properties like with Mtraces.

7.2.3 From G(A,S)(p) to Cpoy)

Clearly, each cop trace equivalence =g is a crop trace equivalence ~g, with

S = Ry, since R, = (R;),. Thus we can use the crop trace theory and the
quasi-concatenation, defined as (z)r0a = [z)s0a = [ra)s = (ra)g. Since the
equivalence classes coincide, ¢a defines —__. We define the quasi-prefix graph
G(A,R,) = G(A, S,) = (A*) =5, A, —~g, [€)s). By theorem 44 this is a reldep-
graph.

Example continued
The quasi-prefix graph of [abc)g is depicted in figure 49. The difference
between the crop traces and cop traces is very clear.

b

() == (a) (ab) —= (abc)

Figure 49: G(A, R;)(p)

The translate function restricted to the set Pre(p), denoted by (, as defined in
section 7.1.4, is the morphism from G(A, R)(p) to Cpe(y). Now from theorem 48
follows:

Theorem 71 Let A be an alphabet and R an event-preserving relation over A*.
Let p € M(A,R). If p= LE(Po(p)) then (, is surjective and full.
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From theorem 49 follows:

Theorem 72 Let A be an alphabet and R an event-preserving relation over A*.
Let p € M(A, R). If ¢, is injective then G(A, S)(p) is co-deterministic.

From theorem 62 follows:

Theorem 73 Let A be an alphabet and R an event-preserving relation over A*.
Letp € M(A, R).

If FD(G(A, R)(p)) or BD(G(A, R)(p)) and G(A, R)(p) is co-deterministic then
G(A, R)(p) C Cpogpy and ¢, is full.

From theorem 63 follows:

Theorem 74 Let A be an alphabet and R an event-preserving relation over A*.
Letp € M(A, R).

G(A,R)(p) and Cpogpy are isomorphic if and only if G(A, R)(p) has the forward
and backward diamond property.

We also have the function v, from the the configuration graph of a vertex to the
quasi-prefix graph restricted to the vertex. Since the cop trace equivalence is a
crop trace equivalence we can directly use the result from section 7.1.5.

From theorem 68:

Theorem 75 Let A be an alphabet and R an event-preserving relation over A*.
Let p € M(A,R). If v is a morphism from Cpopy to G(A, R)(p) then Cpopy and
G(A, R)(p) are isomorphic.

7.2.4 Difference between crop and cop traces

In the example of the subsubsections 7.2.2 and 7.2.3 the difference between [)p
and ()g is shown. Since there exists a difference between right-congruences and
congruences there exists a difference between crop and cop traces.

Example
Suppose we have the event-preserving relation R = {(ab,ba)}. Let p =
labc)p and p' = (abc)g. Then p = {abe, bac} and p' = {abc, bac}. However if
we investigate the cop trace (abcab)r and the crop trace [abcab)g then the
cop trace has besides the elements of the crop trace also as the elements abcba
and bacba. Notice that we can not construct an event-preserving relation R’
such that ~p==p.

This example illustrates the fact that there exist right-congruences induced by
event-preserving relations which cannot be described by congruences induced by
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event-preserving relations. Thus we can conclude that the crop trace theory is
more general than crop trace theory.

7.2.5 Conclusions

Cop traces are different from the defined Mtraces. This follows from theorem 74
which states that the prefix graph restricted to a vertex and the configuration
graph of the partial order of the vertex are only isomorphic if the prefix graph
restricted to a vertex has the forward and backward diamond property. In the
first example a prefix graph restricted to a vertex this is shown, which has not the
forward and not the backward diamond property. Like with crop trace theory the
cop trace theory has no properties; the equivalence is not represented by partial
orders, the prefix graph has not the (compatible) forward or backward diamond
property nor satisfies the (inverse) cube axiom.

In subsubsection 7.2.4 there is shown that the crop trace theory is more general
than the cop trace theory.
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8 Restrictions

In this section we consider congruences and right-congruences generated by event-
preserving relations satisfying certain restrictions. First we study the so-called
local traces from [H94]. Next we will study congruences which have a restricted
event-preserving relation. In subsection 8.2 we require that the event-preserving
relation is a context commutation relation, which leads to the theory of cc traces.
Bauget and Gastin describe in [BG95] congruences with a left-context commuta-
tion relation, leading to lcc traces and rcc traces in subsection 8.3. Biermann and
Rozoy describe in [BR95] not only the crop trace theory but also the 1-context
trace theory. This theory can be generalized to the k-context trace theory, which
is formulated in subsection 8.4.

8.1 Subset permutations

Local traces are a generalization of Mtraces. They were introduced in [H94] as
a trace based semantics for non-safe Petri nets. Here we follow the set up of
[KR95]. Local traces are aimed at capturing concurrency between sets of events
occurring after a certain history. Thus concurrency is decribed by means of a
relation between words (histories) and sets of letters.

8.1.1 Local trace equivalence

Let A be an alphabet. A local independence relation over A is a relation
L C A* x Pr(A).

Definition
Let A be an alphabet and L a local independence relation over A. Let
x,y € A*.

1. x =~ y if there exist u,v,w,z € A* and (u, S) € L such that x = uvz,
y =uwwz and |v], = |w|, < 1 for all @ € A, and alph(v) C S.

2. The local trace equivalence =y, is defined by ~p= (=~ )*.

3. [z, = {z € A*|z =, x} the equivalence class of x, is the local trace
containing x.

Note that we write [z) if L is clear from the context.
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8.1.2 Difference between crop and local traces

It is easy to see that the so defined local trace equivalence is a right-congruence.
The congruence =, is the least right-congruence containing Rj, the relation
defined as follows. For a local independence relation L over A

Ry = {(uwv,uw)| there exist (u,S) € L and S" C S such that |v|, = |w|, =1 for
all a € S" and |v|, = |w|, = 0 for all a € A\S'}.

Theorem 76 Let A be an alphabet and L a local independence relation over A.

Then ~j=~p, .

Proof:
Easy to see is ;= (Rp),, as defined in section 3.4. First we prove that ~,
is symmetric. Suppose we have z,y € A* such that x ~, y. Then there exist
u,v,w,z € A* and (u, S) € L such that © = uvz, y = uwz and |v|, = |w|, <
1 for all @ € A, and alph(v) C S. But then also uwz =~ uwz and thus
y ~p x. Thus &7 U(&p) ! =& and then ~p= ()" = (& U(x~) 1) =
((Rp)r U (Rp); ) ==p,. O

Note that the relation Ry is an event-preserving relation, thus the congruence
on the right generated by Ry is a crop trace equivalence. Thus we have the
quasi-concatenation, ¢, defined as [x);,0a = [ra); and the quasi-prefix graph
G(A, L) = (A*/ =1, A, —~,,[€)1), which is a reldepgraph. We have the quasi-

)
prefix ordering =<, defined as [z); <p [y) if there exists w € A* such that
() Ow = [y)r. If [x) < L[y)r for some a € A then [x);, ——~, [y)L-

The local traces are however more restricted than the crop traces. This will

be illustrated in the next example.

Example
Let A = {a,b,c} and the event-preserving relation R = {(abe,cba)}. Let
p = [abe)r. Then p = {abc,cba} and [a)p and [¢)r are prefixes of [abe) k.
Suppose L = {(e,{a,c}). Then [abc); = {abc}. But we want cba € [abc).
Suppose L' = {(¢,{a,b,c})}. Then [abc); = {abc,ach, bac, bea, cab, cba}.
Thus there exists no local independence relation L such that [abe), = [abe) g.

S

Figure 50: G(A, R,)([abc)r)
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8.1.3 The graph of local traces

In [H94] Kleijn and Rozoy introduce a graph of local traces induced by the local
independence relation L.

Definition
Let A be an alphabet and L a local independence relation.
Let X C A*, Se Pr(A),pe A"/ ~.

1. The operation A : (A*/ ~; xPf(A)) — Pp(A*) is defined in the
following way: pAS = {uv € A*|u € p and v € Lin(S)};

2. The behaviour of L is the set
Beh(L) = {w € A*|3(w',S) € L : w € [w')AS}.

3. [X) is the set of local traces t = [w)}, such that w € X;

4. The language of local traces associated with L is
Lan(L) = [Prefix(Beh(L)));

5. The graph of local traces (associated with L) is the elgraph with initial
node Gy = (Lan(L), A, —,[€)1), where
t st if tOa =t and t,¥ € Lan(L).

The defined graph of local traces is a reldep graph, as shown in the next theorem.

Theorem 77 Let A be an alphabet and L a local independence relation. G, is a
reldep-graph.
Proof:
First we show that [e), is a root of Gy,.
Suppose we have p € Lan(L). With induction on the length of p we prove
that there exists a path from [¢) to p:
Let |p| = 0, then p = [€);, and [¢);, —= p holds.
Suppose there exists a path from [e), to all p € Lan(L) where |p| < k.
Assume |p| = k 4+ 1. Then there exist p' € Lan(L) and a € A such that
p = p'Oa (because of the function Prefiz). Then we have p' —; p and
|p'| = k. By the induction hypothesis we have that there exists a path from
le)r, to p'. Thus there exists a path from [e), to p.
We can conclude that [€); is a root of Gf.
We have that G, is deterministic.
Suppose p 1, ¢ and p —, ¢’ for some p,q,q¢' € Lan(L) and a € A then
pOa = ¢ and pOa = ¢'. Thus ¢ = ¢'.
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At last we prove that G, is event-preserving.
Suppose we have the traces [u)r, [u'), € Lan(L) and we know that v, w are
paths in the graph G, from [u)g to [u')f.
Then [u),Ov = [u),Qw = [u')1, and thus |u/|, = |uv]|, = |uw|, for all a € A.
Thus we can conclude |v|, = |w|, for all a € A.

Having proved that GGy, is rooted, deterministic and event-preserving, we
can conclude that Gy, is a reldepgraph. [J

Since a local trace equivalence is also a crop trace equivalence we can construct
besides the graph of local traces the quasi-prefix graph with the same local inde-
pendence relation. In the next example a quasi-prefix graph and a graph of local
traces is generated for a local independence relation.

Example
In this example we show that there is a difference between the two graphs,
which are both reldep-graphs. First we define a local independence relation
Li:
Ly = {(ba {(L, b})a ((Lb, {(L, C})}

When we have the local independence relation L; we can define the
language of local traces associated with the local independence relation L.
Beh(Ly) = {bab, bba, abca, abac},

Pre(Beh(Ly)) = {e€,a,b,ab, ba, bb, aba, abc, bab, bba, abca, abac}, and
Lan(Ll) = {[6>L1v [a>L17 [b>L17 [ab>L1v [ba>L17 [bb>L1v [aba>L1v [abC>L17 [abaC>L1 }

Now we can construct the graph of local traces associated with the local

independence relation L, in figure 51.

[aba)
[a) P _ab) [abac)
YR [ba) fabc)
b
byt N\ [bab)
b a

[bb)
Figure 51: Gy,

The graph in figure 51 is the graph of local traces associated with the local
independence relation ;. For the local independence relation L; we also
have the local trace equivalence ~,. This trace equivalence is also a
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crop trace equivalence and therefore we can construct the quasi-prefix graph,
denoted by G(A, (Ry,),). Because the quasi-prefix graph is infinite only a
part of G(A, (Ry,),) is shown in figure 52. The graph of local traces, denoted
by Gp,, is embedded into G(A, (Ryr,),) and this is shown by the thick lines
in figure 52.
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The graph of local traces is always embedded into the quasi-prefix graph. The
difference between these graphs is that the parts of the quasi-prefix graph with
no concurrency are left out of the graph of local traces. From the construction of
the language of local traces associated with L we know that Lan(L) is a subset of
A*/ =,. Now we can prove that G, is the restriction of G,.(A, (Ry),) to the set
Lan(L). So far we only knew the restriction of a reldepgraph to a node. But the
restriction of a reldepgraph to a set of nodes means that only the nodes Lan(L)
are used as vertices and only the edges which are between nodes of Lan(L) are
used.
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Theorem 78 Let A be an alphabet and L a local independence relation. G, is
the restriction of G(A, (Ryr),) to the set Lan(L).
Proof:
We know G, and G(A, (Ry),) are each reldepgraphs with root [e),. Clearly
Lan(L) C A*/ =y. By the definition of —,, and —; we have —,, =
{(t,a,t")|t € A*/ ~p and t' = tQa and a € A} and
—r=A{(t,a,t)|t,t' € Lan(L) and t' = tQa and a € A}.
Thus —1=—~, |Lan(r)xAxraen(r) and G, is the the quasi-prefix graph re-
stricted to the set Lan(L). O

From now on we examine the quasi-prefix graph, since the construction of the
graph of local traces is specific for local traces.

8.1.4 Properties of local traces

In this section we show the properties of local traces. First the last example is
continued.

Example continued
Let p = [abac)y,. In figure 53 the quasi-prefix graph restricted to [abac),
is shown. It is clear that G(A, (Ry,),)(p) has the forward and backward
diamond property and G(A, (Rr,),)(p) is co-deterministic.

[aba)

&) 2 _Jay_ b _Jab) [abac)

labc)
Figure 53: G(A, (Rr,),)(p)

However the quasi-prefix graph restricted to a local trace does not always have
the forward diamond property, nor the backward diamond property, nor is always
co-deterministic.

In the next example a local independence relation and a local trace are given
such that the quasi-prefix graph restricted to the local trace does not have the
backward diamond property.

Example

Let A= {a,b,c} and Ly = {(¢,{a,c}), (¢,{a,b}), (a,{b,c})}.
Let p = [abc)r, = {abc, ach, cab, cba}. The quasi-prefix graph restricted to p
is depicted in figure 54.
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[cb)
Figure 54: G(A, (Ryr,):)(p)

The next example a local independence relation and a local trace are given such
that the quasi-prefix graph restricted to the local trace is not co-deterministic
and does not have the forward diamond property.

Example
Let A = {a,b,c} and Ly = {(¢, {a, c}), (¢,{b, c}), (b, {a, c}), (a,{b,c}), (¢, {b,a})}.
Let p = [abc)r,. The quasi-prefix graph restricted to p is depicted in fig-
ure 55.

[abc)

Figure 55: G(A, (Rr,):)(p)

Thus we have the local trace theory which does not have the properties: the
quasi-prefix graph has the (compatible) forward diamond property, the quasi-
prefix graph has the backward diamond property, and the quasi-prefix graph is
co-deterministic. This in contrast with the Mtraces.

The translate function restricted to the set Pre(p), denoted by ¢, as defined
in section 7.1.4, is the morphism from G (A, R)(p) to Cpe(p)- The local trace equiv-
alence is a crop trace equivalence thus we can use the results from section 7.1.4.
We can directly conclude that the following theorems hold.

From theorem 48:
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Theorem 79 Let A be an alphabet and L a local independence relation. Let
p € A*/ =. If p= LE(Po(p)) then (, is surjective and full.

From theorem 49:

Theorem 80 Let A be an alphabet and L a local independence relation. Let
p € A*/ =yp. If ¢, is injective then G(A, (Ry),)(p) is co-deterministic.

From theorem 62:

Theorem 81 Let A be an alphabet and L a local independence relation. Let p €
A*) ~p. If G(A, (RyL),)(p) has the forward diamond property or G(A, (RL),)(p)
has the backward diamond property and is co-deterministic then ¢, s injective
and full.

From theorem 63:

Theorem 82 Let A be an alphabet and L a local independence relation. Let p €
A*/ ~p. G(A,(Rr)r)(p) and Cpepy are isomorphic if and only if (G(A, (Rr),)(p)
has the forward and backward diamond property.

We also have the function v, from the the configuration graph of a vertex to the
quasi-prefix graph restricted to the vertex. Since the local trace equivalence is a
crop trace equivalence we can directly use the result from section 7.1.5.

From theorem 68:

Theorem 83 Let A be an alphabet and L a local independence relation. Let
p € A*/ =p. If 9 is a morphism from Cpop) to G(A, (Ryp),)(p) then Cpopy and
G(A, (Rr),)(p) are isomorphic.

8.1.5 Diagonals in the quasi-prefix graph

Let A be an alphabet and L a local independence relation.

When we have a quasi-prefix graph restricted to a local trace p, and there exist

Q7q17q27ql S Pre(p) SUCh that q L)NL q1, q L)ML q2, q1 L)ML qla and
G2 —~, ¢ for some a,b € A, then a and b do not have to be concurrent after q.
In the next example, from [BR95], this will be shown.

Example

Let A = {a,b,c} and L = {(¢,{a,b}), (¢,{b,c}), (¢,{a,c}), (b,{a,c}),
(¢,{a,b})}. Then we know that after the history a the actions b and ¢
are not concurrent. However abc ~; bac =~ bca ~j, cba =5, cab ~1, acb.
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To illustrate this we have depicted the quasi-prefix graph of the local trace
[abc)p, in figure 56.

RS
=)
[©) = [ac) |

Figure 56: G(A, (Ry),)([abe)r)

Thus we can not conclude that a “diamond” of two directed edges imply that the
two actions involved are concurrent. This leads to the introduction of diagonals
in the quasi-prefix graph.

Definition
Let A be an alphabet and L a local independence relation. The quasi-prefix
graph with diagonals is the elgraph with initial node
Gd(A, (Ry),) = (A*) ~p, A*, =4~ , [€)1), where [u)p —54x, [v)r for some
u,v,y € A*if
there exist (z,5) € L, §',8" C S, and y' € A* such that ' N S" = (),
alph(y) = 5", alph(y') = 8", [u), = [x),0y', and [v)1, = [u)10y.

Now we can construct the quasi-prefix graph with diagonals.

Example continued

Figure 57: Gd(A, (Ryr),)([abc)r)
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We will say that diagonals are useful if the diagonals in the quasi-prefix graph
add information to the interpretation of the quasi-prefix graph. There appears to
be a connection between the property G(A, (Rr),)(p) has the cube and inverse
cube axiom and the property diagonals are useful in the quasi-prefix graph.

Conjecture Let A be an alphabet and L a local independence relation.
G(A, (Rp),) has the cube and inverse cube aziom if and only if diagonals in the
quasi-prefix graph are not useful.

The proof of the if-direction is easy. When diagonals are not useful, the quasi-
prefix graph with diagonals has the forward and backward diamond property.
From theorem 8 and 9 follows that G(A, (Ry),) satisfies the cube and inverse
cube axiom.

8.1.6 Conclusions

The local trace theory is a restriction of the crop trace theory, but the quasi-prefix
graph restricted to a local trace has no special properties. However the difference
between the local trace theory and the crop trace theory has been made clear in
the first example of this subsection. Thus the local trace theory is a restriction of
the crop trace theory since not all the trace equivalences described by crop trace
equivalence can be described by local trace equivalences. An interesting aspect
of the local trace theory is the possibility of creating a graph of local traces which
shows only the part of the quasi-prefix graph with concurrency.
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8.2 Commutations with a context

Bauget and Gastin describe in [BG95] trace equivalences generated by left-context
commutation relations. In subsection 8.3 the equivalences generated by a left-
context commutation relation is handled. In that subsection the equivalences
generated by a right-context commutation relation are also investigated. First
however we examine a trace equivalence generated by a context commutation
relation.

8.2.1 Cc trace equivalence

Let A be an alphabet and C' an event-preserving relation over A*. The relation C'
is a context commutation relation over A if for all (v, w) € C there exist a,b € A
and z,y € A* such that v = xaby and w = xbay.

Definition
Let A be an alphabet and C' a context commutation relation over A. Let
x € A*.

1. The cc trace equivalence induced by C'is defined by =, the congruence
induced by C.

2. (Yo = {z € A*| z =¢ z} the equivalence class containing x is the cc
trace containing x.

8.2.2 Difference between cop and cc traces

It is easy to see that a cc trace equivalence is a cop trace equivalence. Thus
we have the well defined concatenation - between cc traces and a trace monoid
M (A, C). Between the cc traces we have a prefix ordering < such that p <¢ ¢
if and only if there exists w € A* such that p(w)c = q.

We have a prefix graph G(A,C) = (M(A,C), A, ==, (€)¢c), similar to cop
traces such that G(A,C) is a reldepgraph and p —~—_ ¢ for some a € A if and
only if p <¢ ¢.

The difference between cop and cc traces is the relation by which the congru-
ence is induced. The next example illustrates this.

Example
Let A= {a,b,c} and R = {(abc, cba)}. Let p = (abc). Then p = {abe, cba}.
The congruence =g can not be described by a context commutation relation.

Mtraces are cc traces, since the relation C7 is a context commutation relation.
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8.2.3 Properties of cc traces

First some examples are given which illustrate the fact that cc traces have no
special properties concerning the prefix graph.

Example
Let A = {a,b,c} and C = {(ac, ca), (cab, cba), (abe, ach)}. Let p = {abc)e, .
Then p = {abc, ach, cab, cba}. The prefix graph restricted to the cc trace p
is depicted in figure 58.
a
c

(a) (ab)
<e>< % (abe)
(c) (ch)
)(p)

Figure 58: G(A,CY)(p

The prefix graph restricted to p has the forward diamond property, but not
the backward diamond propery. The prefix graph restricted to p is also
co-deterministic.

Example
Let A = {a,b,c} and Cy = {(ac, ca), (be, cb), (cba,cab)}. Let p = {(abc)c,.
The prefix graph restricted to p is depicted in figure 59.

{(ab
b c
(a - {(ac \
R (ahe)
b a
(b}t (cb
(ba

Figure 59: G(A, C3)(p)

The prefix graph restricted to p does not have the forward diamond property,
and is not co-deterministic.
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Thus now we know that the prefix graph of a cc trace does not always have the
(compatible) forward or the backward diamond property. We also know that the
prefix graph of a cc trace is not always co-deterministic.

The translate function restricted to the set Pre(p), denoted by ¢, as defined in
section 7.1.4, is the morphism from G(A, R)(p) to Cpop). A cc trace equivalence
is a cop trace equivalence. Thus we can use the results of section 7.2.3. We can
directly conclude that following theorems hold.

From theorem 71:

Theorem 84 Let A be an alphabet and C' a context commutation relation over
A. Letp e M(A,C). If p= LE(Po(p)) then ¢, is surjective and full.

From theorem 72:

Theorem 85 Let A be an alphabet and C' a context commutation relation over
A. Letpe M(A,C).
If ¢, is injective then G(A, C)(p) is co-deterministic.

From theorem 73:

Theorem 86 Let A be an alphabet and C' a context commutation relation over
A. Letpe M(A,C). If FD(G(A,C)(p)) or G(A,C)(p) is co-deterministic then
G(A,C)(p) C Cpogpy and ¢, is full.

From theorem 74

Theorem 87 Let A be an alphabet and C' a context commutation relation over A.
Letp e M(A,C). G(A,C)(p) and Cpopy are isomorphic if and only if G(A, C)(p)
has the forward diamond property.

The function 1, as defined in section 7.1.5 from the configuration graph of a cc
trace to the prefix graph restricted to the cc trace can be a morphism. Since
the cc trace equivalence is a crop trace equivalence we can use the result from
section 7.1.5.

From theorem 75:

Theorem 88 Let A be an alphabet and C' a context commutation relation over

A. Letp e M(A,C). If ¢ is is a morphism from Cpop) to G(A,C)(p) then Cpop)
and G(A,C)(p) are isomorphic.
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8.2.4 Represented by partial orders

The next theorem has a result which is very important, since it implies that all
congruences which can be represented by partial orders can be generated by a
context commutation relation.

Theorem 89 Let A be an alphabet and R an independence relation over A*. If
=g 1S a congruence which can be represented by partial orders, then = can be
generated by a context commutation relation.

Proof:
Suppose we have u € A*. Let C, be the context commutation relation in-
duced by the labelled poset Po({u)=,). By lemma 13 and 14 we know that
LE(Po({u)=,)) = (u)¢,. Since =g is represented by partial orders we have
LE(Po({u)=,)) = (u)=,. Thus (u)=, = (u)g,. Let C = ueLi‘*C’u then if
u =g v then u =¢ v.

Conversely, suppose u =¢ v, then there exist ug, ... ,up € A* with £ > 0
such that v = wy, v = ug, and u; = w;,vu;, and w1 = i, y;u;, with
(xi,y;) € R for 0 < i <k —1. =g is the congruence generated by R, thus
for all u; =g u;11 0 <i <k —1. Then u =g v.

Thus u=p v & u =¢ v.

Because C' is a contex commutation relation we know that =g can be gen-
erated by a context commutation relation. [

The converse of the theorem does not hold. The next example illustrates this.

Example continued
Let A = {a,b,c,} and Cy = {(ac, ca), (abc, ach), (cab, cba)} We have p =
(abcye, = {abe, ach, cab, cba}. The partial order of p is depicted in figure 60.

(a,.l) (bil) (c,.l)

Figure 60: Po(p)

It is clear that LE(Po(p)) = {abc, acb, bac, bca, cab, cba}. Thus C} is a con-
text commutation relation but =¢, can not be represented by partial orders.

Example
Let A = a,b and C' = {aab,aba} a context commutation relation. The
congruence =¢ can be generated by partial orders. Let p = [a]c = {a} and

q = [balc = {ba}.
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Figure 61: Po(p), Po(q), and Po(pq)

The Hasse diagrams of the partial orders of p, ¢, and pq are depicted in
figure 61. = can be represented by partial orders, however =¢ can not
be modularly represented by partial orders. Since <,, N t,(E,) X t,(E,) #

tp(=q)-

If we compare this result with the result from the Mazurkiewicz trace theory, =;

can be modularly represented by partial orders, we can conclude that cc traces

form a strict generalization of Mazurkiewicz traces.

8.2.5 Diagonals in the prefix graph

Let A be an alphabet and C' a context commutation relation.

As with local traces, diagonals are sometimes useful. First we define the prefix-

graph with diagonals.

Definition
Let A be an alphabet and C' a context commutation relation. The pre-
fix graph with diagonals is the elgraph with initial node Gd(A,C) =
(M(A,C), A*, —q=p, (€)¢), where (u)e Lso=, (V)¢ for some u,v € A*
and a,b € A if there exist z,y,z € A* such that v = zxab, v = z2xba,
(zaby, xbay) € C, and u,v € Pre(zzaby).

The role of diagonals may be connected to the cube and inverse cube axioms.

Conjecture Let A be an alphabet and C' a context commutation relation. Gd(A, C)

has the cube and inverse cube axiom if and only if diagonals are not useful.
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8.2.6 Conclusions

If we have a congruence that can be represented by a partial order then this
congruence can be generated by a context commutation relation. This conclusion
makes the subclass of cc trace equivalences interesting for investigation.

Another important property of cc traces is that we can construct a prefix-
graph with diagonals such that if a vertex can be reached from a vertex through
two concurrent events, then there exists a diagonal in the prefix graph. The
use of diagonals is sometimes not needed. I suspect that diagonals in the prefix
graph are only useful whenever the prefix graph satisfies the cube and inverse
cube axioms.

8.3 Left and right context commutations

In [BG95] Bauget and Gastin describe a trace equivalence which has an event-
preserving relation with a restriction. First the event-preserving relation is a
context commutation relation and second the relation has only a left context.
We have extended this with a context commutation relation with only a right
context.

8.3.1 Lcc trace equivalence and rcc trace equivalence

Let A be an alphabet and C' an event-preserving relation over A*. The relation
C' is a left-context commutation relation over A if for all (v, w) € C there exist
x € Aand a,b € A such that v = zab and w = zba.

The relation C'is a right-context commutation relation over A if for all (v, w) €
C there exist x € A and a,b € A such that v = abr and w = baz.

Definition
Let A be an alphabet, C; a left-context commutation relation over A, and
C, a right-context commutation relation over A. Let x € A*.

1. The lcc trace equivalence induced by Cj is defined by =¢,, the congru-
ence induced by C.

2. (x)c, = {2 € A*|z =¢, x} the equivalence class containg z is the lcc
trace containing x.

3. The rcc trace equivalence induced by C, is defined by =¢ , the congru-
ence induced by C,.
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4. (x)e, = {2z € A*|z =¢, x} the equivalence class containg z is the rcc
trace containing x.

8.3.2 Difference between cc and rcc and lcc traces

The defined rcc and lcc trace equivalences are also cc trace equivalences, since
a right-context commutation relation is a context commutation relation and a
left-context commutation relation is a context commutation relation. We have
the well defined concatenation - between rcc and lcc traces and a trace monoid
M(A, C). Between the rcc and lcc traces we have a prefix ordering < such that
p =¢ ¢ if and only if there exists w € A* such that p(w)c = g.

We have a prefix graph G(A,C) = (M(A,C), A, —=,, (€)¢), similar to cc
traces such that G(A,C) is a reldepgraph and p ——_ ¢ for some a € A if and
only if p <¢ ¢.

The next example shows a congruence induced by a context commutation
relation which can not be induced by a left-context commutation relation nor a
right-context commutation relation.

Example
Let A = {a,b,c} and R = {(abc, acb), (abc,bac)}. Let p = (abc). Then
p = {abc,bac,acb}. The congruence =g can not be described by a left-
context commutation relation nor a right-context commutation relation.

Mtraces are rcc and lcc traces, since the relation C7 is a context commutation
relation without left context and right context.

The translate function restricted to the set Pre(p), denoted by ¢, as defined
in section 7.1.4, is the morphism from G(A, R)(p) to Cpop). Theorem 84 to
theorem 88 also hold for rcc traces and lcc traces.

8.3.3 The link with local traces

Let A be an alphabet and C' be a left-context commutation relation over A.

Local independence relations and left-context commutation relations can be re-
lated. This relation is expressed by the function a : (A* x A*) — (A* x Pr(A))
and is defined in the following way:
a((uab, uba)) = {(zu, {a,b})|x € A*} and
a(C) = rgca(r).

With this function we can prove the next lemma the result of which is used
in the proof of theorem 91.

Lemma 90 Let A be an alphabet, let C be a left-context commutation relation
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over A. Letx,y € A* and a,b € A. xaby =¢ xbay if and only if xaby @a(c) xbay.
Proof:
If zaby =c¢ xbay then (uab,uba) € C for some u € A* such that © = vu.
Thus (vu, {a,b}) € a(C). Therefore zaby ~qcy zay.

If zaby ~ac) vbay then (z,{a,b}) € a(C). From the function o we
know there exists (uab,uba) € C', where u € A* is such that x = vu. Thus
xaby =¢ rbay.

We can conclude that the lemma holds. [

Theorem 91 Let A be an alphabet, let C' a left-context commutation relation
over A. Then =c=~ ).

Proof:
Let w,w’ € A* then w =¢ w' if and only if there exist wy, ... ,w; € A* such
thatw:wg Ecwl éc Ecwk:w’.

With lemma 90 we know this holds if and only if w = wy Ryy w1 Ra(c)
. @a(c) Wy = w'.
Thus if and only if w ~q ) w'. O

Now we know that all the lcc traces are local traces, however there exist local
traces which are not lcc traces. The next example illustrates this.

Example
Let A = {a,b,c} and L = {(¢,{a,b})}. Let p = [abab)y. Then p =
{abab,baab}. Now we want to define a left-context commutation relation
C' such that the lcc trace ¢ = (abab)¢ is equal to the local trace p.
Such C' C {(ab,ba)}. Then g C {abab, abba,baab, baba}. But abba & p,
thus there exist no left-context commutation relation C' such that ===~

Now we can compare the rcc traces with the local traces.

Example
Let A = {a,b,c} and C = {(abe,bac)}. C is a right-context commutation
relation. Let p = (abc)c. Then p = {abe,bac}. Suppose L C {(¢,{a,b})}.
Let ¢ = [abe)y,. Then ¢ C {abc,bac}. Now compare p' = (ab)c and ¢' =
[ab);,. Then p’ = {ab} and ¢’ = {ab,ba}. It is clear that exists no local
independence relation L such that ~;==.

Thus there are rce traces which are not local traces.

Example
Let A = {a,b,c} and L = {(¢,{a,b})}. Let p = [ab);,. Then p = {abba}.
Now we have to define a right-context commutation relation. Suppose C' C
{(ab,ba)}. Then q = (ab)c = {ab,ba}. Now compare p' = [aab); and
¢ = (aab). Then ¢ C {aab,aba} and so ¢ # p = {aab}. Since C is a
right-context commutation relation we can not define that the commutation
(ab, ba) only takes place after an empty word (€)c.

86



Thus there exist local traces which are not rcc traces.

8.3.4 Properties of lcctraces and rcctraces

The lcc traces have no special properties for the prefix graph restricted to a
vertex. The next examples, previously used in subsection 8.2, illustrate this.

Example
Let A = {a,b,c} and Cy = {(ac, ca), (cab, cba), (abc, ach)}. Let p = (abc)c,.
Then p = {abc, ach, cab, cba}. The prefix graph restricted to the lcc trace p
is depicted in figure 62.

(ab)

(cb)
Figure 62: G(A, Cy)(p)

The prefix graph restricted to p has the forward diamond property, but
not the backward diamond propery. The prefix graph restricted to p is
co-deterministic.

Example
Let A = {a,b,c} and Cy = {(ac, ca), (be, cb), (cba,cab)}. Let p = {(abc)c,.
The prefix graph restricted to the lcc trace p is depicted in figure 63.

b
(a
(&) & le)h

Figure 63: G(A, Cy)(p)

The prefix graph restricted to p has not the forward diamond property, and
is not co-deterministic.
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The rcc traces have also no special properties for the prefix graph restricted to a
vertex. This is illustrated in the next examples.

Example
Let A = {a,b, c} and C5 = {(ac, ca), (abd, bad), (bed, cbd)}. Let p = (abed)c, .
Then p = {abcd, acbd, cabd, chad}. The prefix graph restricted to the rcc
trace p is depicted in figure 64.

(abc) 4 _ (abed)

Figure 64: G(A, C3)(p)

The prefix graph restricted to p has the forward diamond property, but
not the backward diamond propery. The prefix graph restricted to p is
co-deterministic.

Example
Let A = {a,b,c,d} and Cy = {(ac, ca), (be, cb), (abd, bad)}. Let p = (abcd)c, .
The prefix graph restricted to the rcc trace p is depicted in figure 65.

(ab

(abcy_— 9 (abed)

(ba
Figure 65: G(A, Cy)(p)

The prefix graph is not co-deterministic and does not have the forward
diamond property.
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8.3.5 Represented by partial orders

We know that if a trace equivalence can be represented by partial orders then
the trace equivalence can be generated by a commutation relation. The next
theorem shows the connection between congruences which can be represented by
partial orders and are right-cancellative and congruences which can be generated
by left-context commutation relations.

Theorem 92 [BG95] Let A be an alphabet. If = is a congruence over A which
can be represented by partial orders and is right-cancellative, then = can be gen-
erated by a left-context commutation relation.
Proof:
We know from theorem 89 that = can be generated by a context commuta-
tion relation C'.
Suppose (zaby,zbay) € C then because = is right-cancellative, we know
that (xab, xba) €=c. Since =¢ is a congruence (zaby, xbay) € C' is irrele-
vant and can be replaced by (xab, xba) without changing =¢. Therefore =
can be generated by a left-context relation. [J

The next example shows that there exist lcc trace equivalences which can not be
represented by partial orders.

Example
Let A ={a,b,c} and C = {(ac, ca), (cab, cba), (abe, acb)}. C'is a left context
commutation relation. Let p = (abc)c. Then p = {abc, ach, cab, cba}. The
Hasse diagram of the partial order of p is depicted in figure 66.

(a,.l) (bil) (c,.l)

Figure 66: Po(p)

It is clear that LE(Po(p)) = {abc, ach, bac, bca, cab, cba} and thus that =¢
can not be represented by partial orders.

Similarly a congruence which can be represented by partial orders and which is

left-cancellative can be generated by a right-context commutation relation.

Theorem 93 [BG95] Let A be an alphabet.If = is a congruence over A which is
represented by partial orders and is left-cancellative, then = can be generated by
a right-context commutation relation.

The next example shows that there exist rcc trace equivalences which can not be
represented by partial orders.
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Example
Let A = {a,b,c} and C = {(ach,cab), (abd,bad), (bed,cbd)}. C is a
right-context commutation relation. Let p = (abed)o. Then p =
{abcd, achd, cabd, chad}. The Hasse diagram of the partial order is depicted
in figure 67.

(1) (b.1) (e)
(d,1)

Figure 67: Po(p)

It is clear that LE(Po(p)) = {abcd, acbd,bacd, bead, cabd, cbad} and thus
that =¢ can not be represented by partial orders.

Let A be an alphabet and C' an independence relation over A*. The relation C
is a commutation relation over A if for all (v,w) € C there exist a,b € A such
that v = ab and w = ba.

The next step is to examine a congruence which can be represented by partial
orders and is left and right-cancellative. The next theorem shows that then the
congruence can be generated by a commutation relation.

Theorem 94 [BG95] Let A be an alphabet. Let = be a congruence over A. If =
can be represented by partial orders and is cancellative then = can be generated
by a commutation relation.

Proof:
We know from theorem 89 that = can be generated by a context commuta-
tion relation C'.
Suppose (zaby,xzbay) € C then because = is cancellative we know
(ab, ba) E=¢. Since = is a congruence (zaby, rbay) € C'is irrelevant and can
be replaced by (ab, ba) without changing =¢. Therefore = can be generated
by a commutation relation. [J

If a congruence can be modularly represented by partial orders then the congru-
ence is cancellative.

Theorem 95 Let A be an alphabet and = a congruence over A. If = can be
modularly represented by partial orders then = s cancellative.
Proof:
First we will prove that if = can be modularly represented by partial orders
then = is right-cancellative.
Let u,v,w € A* such that uw = vw. Then F,, = F,,. Thus E, = F,.
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uw = vw implies Po((uw)) = Po((vw)), thus <uuy=<(ww). Since = is
modularly represented by partial orders we know <, N(Ey X Ey)=<(u

and S(vw> ﬂ(EU X EU)=§<U>. We have Eu = EU and S(uw>=§<vw> thus
<wy=<@)y- Then Po((u)) = Po((v)). Now we can conclude that (u) =

lA(LE(Po((u)))) = la(LE(Po((v)))) = (v). Thus u = v.
Similarly we can prove that = is left-cancellative. []

From theorem 94 and theorem 95 follows that a congruence which can be modu-
larly represented by partial orders can be generated by a commutation relation.
On the other hand we also know that a commutation relation can de described as
a independence relation. Thus a commutation relation generates a Mtrace equiv-
alence. In section 6 we concluded that a Mtrace equivalence can be modularly

represented by partial orders. Thus we can conclude that the following theorem
holds.

Theorem 96 = can be modularly represented by partial orders if and only if =
18 a Mazurkiewicz trace equivalence.

8.3.6 Conclusions

In this subsection we have concluded that the cc trace theory is a generaliza-
tion of the rcc trace theory and the lcc trace theory. On the other hand the
Mazurkiewicz trace theory is a specialization of the rcc and lcc trace theory. The
rcc and lce trace equivalences have no special properties, like the (compatible)
forward or backward diamond property. The difference between rcc and lcc traces
is the fact that lcc traces are local traces and rcc traces not. This also implies
that cc traces are dfferent from local traces.

An important result is theorem 96, which states that any congruence which
can be modularly represented by partial orders is a Mazurkiewicz trace equiva-
lence.

8.4 Commutations with a limited left context

As defined in section 6.2 of [BR95]there are also context commutation relations
which have a limited left context. Biermann and Rozoy only describe a context
commutation relation where the left context consists of one letter. In section 8.4.1
we extend this by allowing the left context to exist of words of a certain length.
In the next section the resulting k-context traces will be compared with the local
traces from section 8.1. In section 8.4.4 we define <k-context traces which have a
limited left context the length of which may vary between a limit £ and 0. And of
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course there will be some properties about the relation between the prefix graph
and the graph of configurations.

8.4.1 K-context trace equivalence

A special case of the left context commutation relation is the left context com-
mutation relation with a fixed length of the context.

Let A be an alphabet and C' a left-context commutation relation over A. Let
k> 0. C is a k-context commutation relation over A if C C AF*+2 x AF+2,

The lcc trace equivalence induced by a k-context commutation relation over
A is a k-context trace equivalence.

Example
A well-known example of a k-context commutation relation is the Pro-
ducer/Consumer Paradigm. This example is also described in [BR95].

The principle behind the Producer/Consumer Paradigm is that a con-
sumer can consume after a producer has produced. However a consumer
does not have to consume immediately after the production. The consumer
can build a reserve. The independence relation over A*, where A is an al-
phabet containing p, for produce, and ¢, for consume, is therefore:

C = {(ppc, pep)}-

Note that C' is a 1-context commutation relation over {p,c} leading to a
1-context trace equivalence =¢. The prefixgraph G(A, C)(p) where p is the
1-context trace (pepepepe)—,, is depicted in figure 68.

c

8.4.2 Difference between lcc and k-context traces

It is easy to see that the k-context commutation relation is a left-context com-
mutation relation. Thus k-context traces are lcc traces. However there exist lcc
traces which are not k-context traces. The next example illustrates this.

Example

Let A = {a,b,c} and C = {(ac, ca), (cab, cba), (abc,ach)}. Let p = (abc)c.
C is a left-context commutation relation. Since (ac, ca), (cab, cba) € C' C'is
not a k-context commutation relation. The prefix-graph restricted to the lcc
trace p is depicted in figure 62. Let p'{abc)cr.

Suppose C' = {(ac, ca), (ab, ba), (cb,bc)}. Then
p' = {abe, ach, bac, bea, cab, cba} # p. Suppose C' = {(cab, cba), (abe, ach)}.
Then p' = {abc,ach} # p. We want cab € p’. Since C’ is a 1-context
commutation relation this is not possible.

It is clear that there does not exists a k-context commutation relation
C’ such that ===
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. / \ p

[pcppp] [pepep]

S
[pepepp) [pepepe]

p

\\[pCPCPCP]//

[pepepepc]
Figure 68: G(A4,C)(p)

8.4.3 The link with local traces

Let A be an alphabet, £ > 0 and C be a k-context commutation relation over A.

Local independence relations and k-context commutation relations can be related.
This relation is expressed by the function a : (A* x A*) — (A* x P;(A)) and is
defined in section8.3.3.

The next example shows that there exist local traces which can not be de-
scribed by a k-context trace equivalence.

Example

Let A = {a,b,c} and L = {(¢,{a,b})}. Let p be the local trace containing
cabcab. Then p = {cabcab, cbacab}.

Let C = {(cab,cba)}. C is a l-context commutation relation. Let p' be
the k-context trace containing cabcab then
P = {cabcab, cbacab, cbacba, cabeba}.
It is clear that the k-context trace equivalence = is different from the local
trace equivalence &~y and there does not exists a k-context commutation
relation C’ such that = is equal to ~,.
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Example
Let A = {a,b,c} and C = {(abc, ach), (acd, adc), (cbd, cdb), (deb, dbc)}. Let
p = (abed) . The prefix graph restricted to p is depicted in figure 69.

/[&b) : [abc) d
) —= )<= ac) o 7 [adb)—=— [abed)
x b c 2
[ad) [acd)

Figure 69: G(A,C)(p)

The relation C' is a k-context commutation relation. We have defined a
function « which relates the k-context commutation relation with a local
independence relation. We get the following local independence relation
L' =a(C0):

L' = {(za,{b,c})|x € A*}U {(xa,{c,d}|x € A*}U {(xc,{b,d}|x € A*}U
{(zd, {b,c}z € A*}.

This example shows that the prefix graph restricted to a k-context trace has
no special properties. The prefix graph has not the forward nor the backward
diamond property. If we add to the relation C' the pair (bed,bde) we have a
prefix graph which is not co-deterministic. We can therefore conclude that the
prefix graph has no properties. Since the k-context commutation relation is also
a left-context commutation relation we have the same results as in section 8.3.4.

8.4.4 <K-context trace equivalence

Let A be an alphabet, £ > 0 and C' a commutation relation over A. Then C' is a
<k-context commutation relation over A if for all (v, w) € C there exists x € A*
and a,b € A such that v = zab and w = zba and |z| < k.

The <k-context trace congruence generated by C'is defined by =¢.

All the terminology and notations for k-context trace equivalences will be
used for <k-context trace equivalences.

Example
Let A = {a,b,c} and C = {(ab, ba), (bac,bca)}. The prefix graph restricted
to (abc)c is depicted in figure 70.

This example shows that the prefix graph can have some properties, like the
forward and backward diamond property. From the definition of a <k-context
commutation relation follows that a k-context commutation relation is a <k-
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/ <a>b7 <(Lb> 7(: ((LbC>
() £ (o ()

Figure 70: G(A, C)({abc))

context commutation relation. Thus a k-context trace is a <k-context trace. The
<k-context commutation relation can be rewritten into a k-context commutation
relation by the following function. B((uab, uba)) = {(zuab, ruba)|zu € A*}

B(C) = rgcﬁ(r). However if we compare the congruence induced by 3(C'), where

C is a k-context commutation relation, with the congruence induced by C', we

can conclude that there exists a difference between the congruences. In the next
example this is illustrated.

Example continued
The  resulting  k-context  commutation relation is C’ =
{(aab, aba), (bab, bba), (cab, cba), (bac,bca)}.  But now the prefix graph
restricted to (abc)cr, depicted in figure 71, is not isomorphic to the prefix
graph depicted in figure 70.

() — 2= (a) —2 = (ab) <= (abc)
Figure 71: G(A, C")((abc))

Thus there exist congruences generated by a <k-context commutation relation,
who can not be generated by a k-context commutation relation. The next example
illustrates this.

Example
Let A = {a,b,c} and C = {(ab,ba), (abc,ach)}. C is a <l-context com-
mutation relation. Let p = (ab)c. Then p = {ab,ba}. If we would like to
describe the congruence generated by C', =¢, by a k-context commutation
relation C”, then (ab, ba) is an element of C’. Thus C” has to be a 0-context
commutation relation. But then the restriction b and ¢ are only concurrent
after ¢ can not be described in the 0-context commutation relation C".

8.4.5 Difference between lcc and <k-context traces

It is easy to see that the <k-context commutation relation is a left-context com-
mutation relation. Thus <k-context traces are lcc traces. The difference between
lcc traces and <k-context traces is the restriction on the relation by which the
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congruence is induced. Of course a finite left-context commutation relation can
always be defined as a <k-context commutation relation, where k is the length
of the largest context in the relation left-context commutation relation. In gen-
eral the class of congruences induced by <k-context commutation relations is not
equal to the class of congruences induced by left-context commutation relations.

8.4.6 The link with Mtraces

It is easy to see that the Mtraces, which can be generated by a commutation
relation, are a special kind of k-context traces and <k-context traces and also of
rce traces. The Mtraces are 0-context traces and <0-context traces.

8.4.7 Conclusions

The k-context trace theory is a restriction of the <k-context trace theory. Thus
this implies that there exist local traces which are not <k-context traces. The
Mtrace trace theory is a restriction of the k-context trace theory, and thus of the
<k-context trace theory. The k-context traces and thus <k-context traces have
no properties this in contrast with Mtraces.
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9 Conclusion

We have described several trace equivalences and can conclude that there is a cer-
tain ordering between the different trace equivalences. This ordering is visualized
in figure 72. In fact the diagram is complete: all inclusions are strict and if two
nodes are not connected, they are incomparable. This follows from examples in
the cited subsubsections and with two more examples. The first example shows
that a k-context trace is not a rcc trace and the second example shows that a
local trace is not a cop trace.

I suspected that some of the generalizations would have some properties like
the backward diamond property, but this is not true. All the generalizations of
the Mazurkiewicz trace theory have examples in which the (quasi-)prefix graph
does not have the (compatible) forward diamond property, does not have the
backward diamond property, and is not co-deterministic. For all the general-
izations we have as result that the (quasi-)prefix graph restricted to a trace is
isomorphic to the configuration graph of the partial order of the trace if and only
if the (quasi-)prefix graph restricted to a trace has the forward and backward
diamond property. This result was described by Biermann and Rozoy in [BR95].

When we investigate the theory described by Bauget and Gastin we can con-
clude that all the congruences which can be represented by partial orders can
be generated by context commutation relations. However there exist cc trace
equivalences which can not be represented by partial orders. Thus there exists a
strict subset of cc trace equivalences which can be represented by partial orders.
In subsection 8.3 theorem 96 states that a congruence which can be modularly
represented by partial orders is a Mazurkiewicz trace equivalence. The congru-
ences which can be represented by partial orders and are left-cancellative (or
right-cancellative) are a strict subset of the rcc trace equivalences (or lcc trace
equivalences). Congruences which are cancellative and can be represented by
partial orders are Mazurkiewicz trace equivalences and only these congruences
can be modularly represented by partial orders.
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Figure 72: The ordering between the trace equivalences
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