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Abstract

This thesis provides an overview of the research and development of a water level

prediction system for Hoek van Holland during storm situations. The prediction

in this project is done with neural networks.

Example storm situations are a very important factor for the quality of the neural

network, but the database used in this project did not contain many severe storm

situations. In this thesis several techniques and implementations are discussed

for covering the lack of severe storm situations.

In this project two neural network architectures are used, radial basis networks

and feed-forward networks. This last architecture is working well for predicting

storms. This network can predict surge levels with a standard deviation of 14,18

centimeter, six hours in advance. This result is better than the results obtained

by current prediction methods. Our approach is data-driven and we expect that

we can improve our results if more data becomes available.
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Chapter 1

Introduction

In this chapter we introduce the reader to the project. In section 1.1 we give

information concerning the background of this project. In section 1.2 we give a

short introduction to the working environment and in section 1.3 we give more

details about the StormWarning Service of the National Institute for Coastal and

Marine Management. In section 1.4 we discuss the currently available prediction

methods for forecasting the water level. Finally in section 1.5 we give a short

overview of the rest of this project.

1.1 Background of this project

In 1989 the Directorate North Sea of the Dutch department Public Works and

Water Management (Dutch: Rijkswaterstaat) had the idea to construct a water

level prediction system which uses neural network techniques. A few years later

this has been implemented. This system continuously predicts the water level

for various locations in the Netherlands. When the expected water level is just

around the average the system performs well. But when the expected water level

is above the average, like in storm-situations, the system shows a systematic error

between the predicted water level and the real water level.

So the next step is to predict the water height at storm-situations using neural

networks. The National Institute for Coastal and Marine Management (Dutch:

RijksInstituut voor Kust en Zee, see section 1.2) initiated this project in order to

react as accurate as possible on coming storms.

The primary aim of this project is to develop a neural network which can predict

the highest water level during storm situations at Hoek van Holland. If the neural

computation approach gives good results, then further research will be done.
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1.2. WORKING ENVIRONMENT

Figure 1.1: Overview of measuring locations

1.2 Working environment

The project is carried out at the research department of the department Infor-

mation, Technology & Systems (ITS) at the National Institute for Coastal and

Marine Management, in The Hague. As part of the Ministry of Transport, Public

Works and Water Management, the National Institute for Coastal and Marine

Management provides advice and information on:

� coastal 
ood protection;

� the sustainable use of estuaries, coasts and seas.

The knowledge and information function of the National Institute for Coastal and

Marine Management is managed through account plans for the regions: North

Sea , Wadden Sea and Delta Area.

1.3 Storm Warning Service

In the night of 1 February 1953 1835 people where killed and 135.000 hectares

in the southern part of the Netherlands where 
ooded. This was the biggest


ooding catastrophe in recent Dutch history. After this disaster people realized

that the Netherlands lacked adequate protection against 
ooding. After 1953

2



1.4. AVAILABLE PREDICTION METHODS

many dams and dykes where build and the Oosterschelde is guarded by a storm

surge-barrier. The catastrophe in 1953 shows that accurate water level prediction

is very important for the national safety of most of the Netherlands. Prediction

of the water level on coming storms is not only valuable for the Netherlands but

also for many other countries in the world. In Table 1.1 we show some regions

where severe 
oodings occurred.

Date Region Maximum surge level Lives lost

1170, 1219, 1287 Zuider Zee unknown 100.000

1864, 1876 Bangladesh unknown 250.000

September 1900 Galveston, Texas 4.5 m 6.000

January/February 1953 Southern North Sea 3.0 m 2.000

March 1962 Atlantic Coast, USA 2.0 m 32

November 1970 Bangladesh 9.0 m 500.000

Table 1.1: Estimated results of some historical storm surge events

If a high water level is expected then the Storm Warning Service (SVSD) watches

and forecasts the coming water level. The purpose of the SVSD is to inform the

dyke and dam authorities and other persons in the Dutch tidal region about the

occurrence of high water levels whenever a storm surge is expected. It is the SVS-

D's task to issue warnings and give information concerning expected and actual

tidal rises and storm surges and to recommend dyke watches. This information

is intended responsible for the bodies in the coastal area and the estuary on lower

river areas that are responsible for the protection of the land against high water

levels. Only in exceptional cases the SVSD supplies major port authorities with

information.

The SVSD-warning levels, di�erent types of surges and some typical situations

are shown in Table 1.2.

1.4 Available prediction methods

To predict the water level we need information about the tide, water level and

the weather forecast. The Royal Meteorological Institute (KNMI) takes care of

predicting the weather. In order to create an appropriate weather forecast the

KNMI runs an atmospheric model four times a day, which generates a thirty

hour forecast. With the forecast of wind- and atmospheric pressure area's the

Directorate-General of Public Works and Water Management (RWS) can predict

the water movement of the North Sea. This is done with the Continental Shelf

Model (CSM). This model comprises the North Sea and a part of the Atlantic

3



1.4. AVAILABLE PREDICTION METHODS

Sector Schelde West of Holland Den Helder Harlingen Delfzijl Exceedance Frequency

Measuring Location Vlissingen Hoek van Holland Den Helder Harlingen Delfzijl In One Year

Prewarning level 310 200 - - 260 +/- 5

Warning level 330 220 190 270 300 +/- 2

Border level 350 260 225 305 350 0.5

Alarm level (dyke guarding) 370 280 260 330 380 +/- 0.2

High tides 305{350 210{260 165{225 225{305 260{350 5{0.5

Low storm surges 350{385 260{300 225{275 305{350 350{410 0.5{0.1

Medium storm surges 385{440 300{360 275{340 350{415 410{495 10

�

1 � � � 10

�

2

High storm surges 440{495 360{430 340{395 415{465 495{560 10

�

2 � � � 10

�

3

Uncommon high storm surges 495{550 430{505 395{445 465{505 560{620 10

�

3 � � � 10

�

4

Extreme storm surges � 550 � 505 � 445 � 505 � 620 � 10

�

4

1 February 1953 455 385 325 334 307

3/4 January 1976 394 298 297 369 435

29 en 30 August 1996 361 197 122 165 218

Highest level known 455 385 325 369 460

Table 1.2: Water levels of SVSD Base Locations in Centimeters Above NAP

Ocean. In order to predict the water level, the CSM divides the prediction area

in areas of 8 by 8 kilometers. The following phenomena are handles within this

model:

� water transport;

� tide movement;

� the friction at the bottom of the sea;

� the forces on the water due to the earth rotation;

� the drying out and the 
ooding of a sand bank;

� the e�ects of variations in the atmospherical pressure;

� the forces of the wind that e�ects the water.

In the nineties the whole prediction protocol was improved with a few 'new'

techniques, like:

� improvement of the wind model;

� using an improved Continental Shelf Model;

� data-assimilation using the Kalman �lter.

To illustrate the e�ects of the introduction of these improvements on the SVSD

forecasts we compare the results of di�erent periods in Table 1.3.

The Storm Warning Service (SVSD) uses various models (CSM , KNMI forecast

and other) to predict the water level during storm situations, but most important

and hard to model is the knowledge of the storm-experts from the SVSD. With

4



1.5. ORGANIZATION

Period 1986-1995 1986-1990 1991-1995

Standard deviation 20.1 23.6 17.2

Mean deviation -11.1 -11.9 -10.4

Number of observations 30 14 16

Table 1.3: Improvement of SVSD forecasts 1986-1995

SVSD KNMI 6h CSM

Period Std Mean deviation # Std Mean deviation # Std Mean deviation #

1954 � � �1995 26.0 -7.2 83 29.2 -4.4 83 30.4 -19.5 24

1954 � � �1983 29.2 -5.1 51 33.3 -2.2 51 - - -

1984 � � �1995 19.7 -10.5 32 21.2 -7.8 32 30.4 -19.5 24

1954 � � �1965 24.5 -13.2 11 24.5 36.2 11 - - -

1966 � � �1975 32.9 -9.0 22 36.2 8.7 22 - - -

1976 � � �1985 24.5 4.2 20 26.5 13.9 20 - 49.0 1

1986 � � �1995 20.1 -11.1 30 21.8 -8.5 30 27.2 -22.5 23

1991 � � �1995 17.2 -10.4 16 19.8 -8.6 16 24.6 -27.1 16

1954 � � �1994 26.4 -7.3 79 29.7 -4.4 79 30.5 -15.6 20

1986 � � �1990 23.6 -11.9 14 24.6 -8.5 14 32.0 -12.1 7

Table 1.4: Accuracy SVSD-predictions 1954 - 1995 at Hoek van Holland

their experience in recognizing di�erent situations they can predict the water

height very well. In Table 1.4 the accuracy of the predictions at di�erent peri-

ods are presented. These tables show that the current accuracy of the water level

prediction using models is increased. This improvement results in a better predic-

tion for SVSD. The Directorate-general of Public Works and Water Management

expects to achieve the target value of a standard deviation of 15 centimeter for a

six hours prediction in an operational environment in the near future.

1.5 Organization

Within this project we examine the possibilities to �nd a prediction method for

severe storm situations using neural networks. The research which is done is

discussed in the following chapters:

� In chapter 2 we discuss the natural e�ects that in
uence the water level,

like showers and wind;

� In chapter 3 we give more detail on the data set which has been used in

this project;

5



1.5. ORGANIZATION

� We discuss the methods and models used in chapter 4;

� In chapter 5 we present the results of the project;

� Finally in chapter 6 we evaluate the project and give directions to future

research.

A small dictionary is included as an Appendix.
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Chapter 2

Natural e�ects that in
uence the

water level

The water level at the Dutch coast is in
uenced by the tidal cycles and the

interaction between the atmosphere and the water surface. In this chapter we

discuss these more or less unpredictable natural e�ects on the movement of the

water. First, in section 2.1 we give more detail about the tidal cycles of the

water level. After this we discuss in section 2.2 di�erent water level terms. In

section 2.3 we discuss the in
uence of the wind on the water level, in section 2.4

we give more detail about the in
uence of the atmospheric pressure, and �nally in

section 2.5 we give more detail about the extreme and important storm-situations.

2.1 Tidal cycles

First, it is important to give a interpretation of the term tide which will be used

further on. We de�ne tide as a periodic movement which is directly related to

some periodic geographic force in amplitude and phase. So the meteorological

components are non-tidal. We use the term astronomical water level for the sum

of the periodical movement of water level at a certain location and time. To de-

scribe the non-tidal components which in
uence the water level (like wind force

and direction of the wind) we use the term residual. So, the real water level at a

location at a speci�c time is the addition of the astronomical tide and the residual.

This natural phenomenon results in a di�erence in water level at the Dutch

coast from two till four meters. Using the so-called harmonic analysis it is pos-

sible to determine the astronomical water level. This is the expected water level

when no atmospherical e�ects are in
uencing the water level. So it is possible

to compute the astronomical water level for a larger period. Every year, the

Directorate-General of Public Works and Water Management publishes a book

with the computed tidal cycles [22].
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2.2. HIGH- AND LOW WATER

The periodical water level di�erence (astronomical tide) at the Dutch coast is

caused by the gravitational pull between the sun, moon and earth, and the spin-

ning force that corresponds with their movement. The following periodical move-

ments in
uence the atmospherical water level:

� earth rotation (0.997 day);

� elliptical orbit of the moon around the earth (27.32 days);

� elliptical orbit of the earth around the sun (365.26 days);

� rotation of the moon-orbit around the earth (8.85 years);

� orientation moon-orbit versus earth-orbit (18.6 years).

2.2 High- and low water

The tidal low water is the minimum tidal level reached during a cycle. The actual

level of low water may be greater or less than the estimated tidal level, because of

meteorological e�ects (see chapter 2). Similarly high water is the highest water

level reached during a cycle.

Figure 2.1: Mean tide of Hoek van Holland

The largest di�erences between tides in Holland occur at Bath in the Wester-

schelde, the mean of this di�erence is 4.75 meters. The smallest tide di�erences

occur at Den Helder where the mean of the di�erence is 1.37 meters. In �gure 2.2

we present the mean high water and low water at the Dutch coast, in order to

illustrate the di�erences between tides. This �gure shows that the biggest dif-

ference between the tidal high water and low water can be found at Vlissingen.

This di�erence decreases until Den Helder, after Den Helder it increases.

8



2.3. WIND EFFECTS

Figure 2.2: Mean High- and Low water at the Dutch coast

The height change, the low water level and the high water level vary throughout

the month. The tides build up to a maximum and fall to a minimum twice a

month.

The tides with the largest di�erence between high and low water are called springs

and those with the smallest di�erence are called neaps. Spring tides happen just

after every full and new moon, when the sun, moon and earth are in line. Be-

cause of the regular motion of the sun, moon and earth, spring tides in the North

Sea occur roughly a few days after the full and new moons, and for any given

location, always at roughly the same time of day.

More detailed information on tides in the Netherlands can be found in [21] and

[22].

2.3 Wind e�ects

Due to the interaction between atmosphere and the seas the real water level at

Hoek van Holland di�ers one to two meters from the computed astronomical level.

At approximately 18 per cent of the total time the deviation is bigger than 30

centimeter. The direction and the power of the wind are important parameters

for the real water level. In this section we give an overview of some e�ects that

occur in the North Sea.

Sea wind

When, in the summer time, the land is warmed up by the sun the atmospheric

pressure at land drops. The air at sea is not warmed up so the pressure at open

sea remains nearly the same. The di�erence in atmospheric pressure results in

9



2.4. ATMOSPHERIC PRESSURE

a wind which is blowing towards the land, which is called sea wind. These air-

movements are only local, so the e�ect on the water level of the North Sea can

be neglected.

The oscillation e�ect

The North Sea behaves like a big tub, the water in it oscillates from the English

coast towards the Dutch coast and backwards. Oscillations occur in the following

situations:

� after a strong south-west wind before a coming wind front. During this the

water level is lowered. If the wind lies down, the water level stops abruptly

with lowering;

� dropping of wind from the north;

� quick variations in atmospheric pressure.

The oscillation is initialized by a quick change in water level. If we assume a

situation with a quick lowering of the water level, then we see that after approxi-

mately eighteen hours after the change half of the water returns. And again after

eighteen hours a quarter of the original lowering goes away.

The estimated pattern of the tides is modi�ed by irregular factors like the at-

mospheric pressure and the winds acting on the sea surface. Figure 2.3 shows

an example situation where meteorological factors in
uences the actual water

height.

2.4 Atmospheric pressure

Changes in atmospheric pressure produce changes in the forces acting vertically

on the sea surface. The term inverted barometer e�ect describes the water level

change during this situation.

An increase in atmospheric pressure of one millibar will produce a decrease in sea-

level of one centimeter. This response of sea-level is called the inverted barometer

e�ect. During a typical year tropical pressures may vary between 980 millibar

and 1030 millibar. For the standard atmospheric pressure of 1013 millibar this

implies a range of static sea levels between +33 centimeter and -17 centimeter.

10



2.5. STORM SURGE DEVELOPMENT IN THE NORTH SEA

Figure 2.3: In
uences on the tide during a storm in January 1993

2.5 Storm surge development in the North Sea

We use the term storm surge to describe a phenomena wherein sea level rises

above the normal tide level when polar depressions move from the ocean along or

across a coastal region. The North Sea has been described as a splendid sea for

storm surges (see [6]) because it is open to the North Atlantic Ocean the polar

depressions, which travel across this entrance from west to east, are able to set

the water in motion.

Surges are generated by wind-forces acting over the sea north and northwest

of Scotland and by atmospheric pressure forces travelling from the deep Atlantic

to the shallow North Sea. When these water movements are heading to the North

Sea they are a�ected by geographic forces and by the shallowing water as they

approach the narrow region in the south. Because the surges travel like the tides

from north to south along the coast of Scotland, England and the Netherlands,

reliable warnings are possible. The most occurring situation which lead to storm

surges is a depression which crosses from West to East the North and the center

of the North Sea.
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Chapter 3

Data analysis

In this chapter we describe the input data which are used to predict the water

level at a certain time. In the following sections we present the data-storage and

-retrieval system (section 3.1) used for collecting water level information, the time

systems which are used in the database (section 3.2), and the water level data,

which are described in section 3.3). In section 3.4 we discuss the meteorological

data, and in section 3.6 we give more detail about the selection and classi�cation

of the complete data set. Finally in section 3.7 we discuss the gaps in the data.

3.1 Data storage & retrieval

The Monitoring System Water (MSW) supplies continuous information on the

present water level of Dutch coastal and inland waters.

The central MSW computer is connected to the British east coast by a permanent

telephone connection, so British North Sea water level information is available in

the MSW-system.

The measurement network comprises more than 160 measuring stations, approx-

imately 25 junction and sub junction stations and a central computer system.

Each measuring station is connected by a permanent telephone line or by radio

to a (sub)junction station. The data from these stations are sent to the central

computer system in The Hague. Mean values are determined at the measuring

stations every 10 seconds. After automatic monitoring, these 10 second mean

values are converted in the central computer system into 10 minute mean values,

which are stored in the database. MSW supplies information for:

� research and description of the hydrology of the country;

� warning services during storm surges or river 
oods;

� control of locks, weirs and storm surge barriers;

12



3.2. TIME SYSTEMS

Figure 3.1: MSW Organization

� management of water distribution by weir and lock operators;

� navigation.

3.2 Time systems

The data from the database which we used in this project uses the Universal Time

Coordinates (UTC) as a system of time. Universal Time Coordinates (UTC) is

equivalent to Greenwich Mean Time (GMT), which is the system of time used

in meteorology. UTC uses no summer- or winter time system and is one hour

earlier than Middle European Time (MET). The parts of the databases which

are based on the MET system are converted to UTC.

3.3 Water level data

The water level data can be split up into two types: the astronomical water level,

which is discussed in section 2.1 and the real water level which is the same as

the addition of the astronomical water level and the residual.

In this project the astronomical data of the following locations are available:

AUK, DFZ, EPF, HVH, K13, LOW, NTS and VLI (see Table 3.1).

The astronomical data is of importance for the exactness of the prediction, be-

cause the high water at storm surges is partially caused by a high astronomical

level. The astronomical level can also be used to teach the location depended

sinus-like tide to the network.

13



3.4. METEOROLOGICAL DATA

Location ID Location name

AUK Auk�eld Platform

DFZ Delfzijl

EPF Euro Platform

HVH Hoek van Holland

K13 K13 Platform

LOW Lowestoft

NTS North Shield

VLI Vlissingen

VR Vlakte van de Raan

VZU Vak Zuid

Table 3.1: Available locations in this project

The real water level measurements are also of great importance for the estima-

tion of the highest water level during storms. The water level data give besides

information about the interaction between the surface of the sea and the mete-

orological in
uences, information about the wave-like water level heightening or

lowering which crosses the estuary between Scotland and Norway and arrives at

the North Sea. The measurements at the English coast give more information

about the speed of traveling of the wavelike-disturbance.

In this project the real water level of the locations AUK, DFZ EPF HVH, K13,

LOW, NTS, VLI and VR are available.

3.4 Meteorological data

The atmospheric pressure and specially the inverted barometer e�ect (section 2.4)

are of secondary importance for the prediction of the water level at Hoek van

Holland, so it su�ces to just some few atmospherical pressure data. The following

atmospheric pressure locations are available in this project: AUK, EPF, HVH

and VZU (for explanation of the codes see Table 3.1).

The wind data is of great importance for the exactness of the neural prediction

system. The wind has two components, the wind velocity and the direction of

the wind, and hence we can represent it as a vector. If we represent this vector

in polar coordinates there will be a discontinuous behavior in the representation

of the direction of the wind. In order to avoid this problem, we use the following

transformations:

� wind x = wind velocity * cos(direction of the wind)

14



3.5. DATABASE DESCRIPTION

� wind y = wind velocity * sin(direction of the wind)

If we use this representation and the wind changes direction from 1 degree to 360

degrees as in �gure 3.2, the di�erence is only 1 degree and not 359 degrees. The

locations AUK, EPF, HVH, K13, VR and VZU are available in the wind data

�les.

Figure 3.2: Change in the direction of the wind during a storm

3.5 Database description

The database with the water level and meteorological information consists of

numerous �les with for every data type di�erent �les. These �les are named as

follows:

Water level data

The data that describes the astronomical water level are placed in several �les

which �lename has the following format: wthYYMM.LOC. The letters YYMM

stand for the year/month combination which the �le describes. In this project

we used data from the period January 1990 until March 1996. The location LOC

is the identi�cation of the location which is described in this �le. The values in

these �les are in centimeter above NAP

1

. The �le in which the water level mea-

surements are stored is named wtoYYMM.LOC, which has the same conventions

as the astronomical water level data �les.

The unity of these water level data is registered in centimeter above NAP.

1

Normaal Amsterdams Peil
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3.6. SELECTION & CLASSIFICATION

Meteorological data

The �les in which the atmospheric pressure are stored are named: ldoYYMM.LOC,

using the same conventions as previously described. The unity of this data is reg-

istered in millibar.

The �les with wind data are named wioYYMM.LOC and are transformed as de-

scribed in section 3.4.

The database contains only real, non-predicted values. In a real situation we only

use predicted values for the meteorological data.

3.6 Selection & classi�cation

storm occurrences
selected

collected storm data

collected storm data
location auk

location dfz

collect

input
configuration file

location
data

storms ....
....

neural network
input

storms
initialize

input

collected storm data
location vzu

generate

Figure 3.3: Data selection process

In �gure 3.3 we present a schematic DFA-representation of the data selection

process used in this project. The processes in this �gure includes the following

steps:

� initialize storms creates a �le with all occurrences of storm situations.

This �le contains the date and time of the highest water heightening during

a certain period. This process uses the database which is described in

section 3.3 and 3.4. The selection of a storm situation is based on the

highest water level during a period of time, which can be adjusted with

parameters when executing this process;
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3.6. SELECTION & CLASSIFICATION

� collect storms reads the previously created �le with storm occurrences

and creates, also using the original database, per location �les containing

all available data during the speci�ed storm situations;

� generate input uses a con�guration �le to create the input for the neural

network. In this con�guration �le the type of data and the hours are spec-

i�ed, in order to create a functional input set;

#

# This �le is an example of a con�guration �le and contains only dummy values

#

# Location File in database Astronomical Real Pressure Wind Hours

hvh storm.hvh 1 0 0 0 32 34 36 38 40 42

vli storm.vli 1 0 0 0 34 38 42

hvh storm.hvh 0 1 0 0 32 34 36

vli storm.vli 0 1 0 0 34

hvh storm.hvh 0 0 1 0 48

Figure 3.4: Small example con�guration �le

The DFA of �gure 3.3 also contains several storage items, these items are de�ned

as follows:

� location data contains the whole database discussed in section 3.3 and 3.4.

� selected storm occurrences is a generated �le which contains the date,

time and real water level of the highest occurring water level during a vari-

able period. This period can be adjusted with a parameter when executing

the program.

� collected storm data of various locations, this collection of �les con-

tains all the data which is available during the storm situation (which is

de�ned in the �le selected storm occurrences);

� input con�guration �le is a �le which is read by the network input gener-

ation software and contains for every location the exact moment for select-

ing various data. In �gure 3.4 we show an example of such a con�guration

�le. If we use this �le we must keep in mind that the highest water level

occurs in 48 hours, so if we select the 42nd hour we select the data at 6

hours before this water level peak;
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3.7. DATA GAPS

� collected data is a �le which contains per storm situation all collected data

which will be imported into the neural network or the reduction algorithm,

which will be discussed in 4.

3.7 Data gaps

The data contains various gaps due to the temporarily disfunctioning of some

measuring locations. The quality of the predictions is su�ering under these gaps.

These gaps occur mostly at the stations Auk�eld Platform, Northshield Platform

and Lowestoft. Before gathering the data some preprocessing was done at the Di-

rectorate North Sea. This covers the reconstruction of water levels, wind dataand

atmospheric pressure at the locations Auk�eld Platform, Northshield Platform,

Lowestoft, K13 Platform and Vlissingen. Reconstruction contains the visual and

computational comparison with neighbour measuring locations. The data con-

tains also some gaps that could not be reconstructed and could not be used for

water level prediction.
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Chapter 4

Description of models and

techniques

This chapter contains an overview of the models and techniques used for the

prediction of the water level. In section 4.1 we discuss the technique used for

reducing the number of input nodes. In section 4.2 we give more detail about

the estimation of the performance of the network. After this, in section 4.3 we

give more detail on the various neural network techniques used. And �nally in

section 4.4 we discuss how the Matlab

1

package is used for the creation of the

water height prediction system.

4.1 Principal component analysis

As a preprocessing technique we used Principal Component Analysis (PCA). The

objective of the technique is to reduce the number of independent variables, or

to ask whether we can explain all the variations observed in our data with fewer

than the original number of dimensions. With this method we can select the

most valuable data points.

PCA is a statistical technique which extracts the main relation in high-dimension-

data. A common way to �nd the principal components of a data set is by cal-

culating the eigenvectors of the correlation-coe�cient-matrix. These vectors give

then directions in the desired data cloud. The projections of the data on the

eigenvectors are the principal components. The corresponding eigenvalues give

an indication of the amount of information the corresponding principal compo-

nents represent. The principal component which corresponds to a large eigenvalue

represents much information in the data set and thus gives us information about

the relations between the data points.

1

Matlab is a registered trademark of The MathWorks, Inc.
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4.1. PRINCIPAL COMPONENT ANALYSIS

PCA is also known as the Karhunen-Lo�eve Transform (see [13]) , Hotelling trans-

form (see [10]), and Eigenvector approach. It is also closely related to Singular

Value Decomposition (see [7]).

Principal Component Analysis is applied to the data in the following way:

Consider a population of random vectors of the form of equation 4.1. Let the

columns of x be the input patterns which will be used by the neural network. So,

input vector i is the vector x

1i

: : :x

Ni

in the N x M matrix of equation 4.1.

x =

0

B

B

B

B
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B
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(4.1)

The mean vector m is a matrix of column averages from x, and is given by

equation 4.2:

m

x

=

P

M

i=1

X

ij

Efxg

N

(4.2)

After computation of the m

x

we compute the covariance matrix C

x

:

C

x

=

P

M

k=1

x

k

x

T

k

M

�m

x

m

x

T

(4.3)

Where T indicates vector transposition.

If elements x

i

and x

j

are uncorrelated, their covariance is zero and therefore

c

ij

= c

ji

= 0 After C

x

S has been constructed, its eigenvalues and unit eigenvec-

tors are extracted and the principal components must be formed. Let �

i

be the

eigenvectors and �

i

the corresponding eigenvalues of C

x

, sorted in descending or-

der, so that �

j

� �

j+1

for j = 1,2,...,n. Let A be a matrix whose rows are formed

by the ordered eigenvectors �

i

. Suppose that A is a transformation matrix that

maps x into vectors denoted by y as in equation 4.4.

y = A(x�m

x

) (4.4)

This equation is the core of the PCA computation. The mean of the y vectors

after this transformation is zero.

In most cases in which principal component analysis is used, the �rst few com-

ponents contain a large part of the total variance. In that case, the original M

dimensional data set can be approximated by a P dimensional (P < M) data

set without substantial loss of information by discarding the p� q highest order

principal components.

The matrix manipulation used to compute the p principal components of X is

given in 4.5.

A = XU (4.5)
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4.2. PERFORMANCE ESTIMATION

where:

� A is a N-by-M matrix with A

ij

is equal to the value of the j

th

principal

component;

� X is a N-by-M matrix with the original input patterns (equation 4.1);

� U is the N-byN matrix whose columns are the eigenvectors of C arranged

from left to right in order of decreasing eigenvalues.

More detailed information on PCA can be found in [11].

4.2 Performance estimation

The standard error of regression, or Root Mean Squared Error (RMSE) is a point

estimate of the average error of prediction. It is the square root of the average

squared error, corrected for degrees of freedom. The RMSE is de�ned as :

RMSE =

1

N

v

u

u

t

N

X

i=1

(x

i

� y

i

)

2

(4.6)

where

� x

i

: Prediction of water height with a neural network

� y

i

: True water height

� N: Number of test points

� i: Testpatternnumber

We also use the bias (which is equal to the mean) to test the performance of the

network. The bias is de�ned as:

Bias = y� x (4.7)

where y is the average of the real values and x is the average of the estimated

values. Obviously, the bias should be as small as possible.

More information on the Principal Error Theory can be found in [5].
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4.3. NEURAL NETWORK MODELS & TECHNIQUES

4.3 Neural network models & techniques

In this section we describe the neural network models and techniques used in this

project. First in section 4.3.1 we give an introduction to the idea behind neural

networks, in section 4.3.2 we describe the speci�c feed-forward backpropagation

architecture, after this we discuss in section 4.3.3 the Levenberg-Marquardt op-

timization, used when training with the backpropagation learning rule. In sec-

tion 4.3.4 we discuss the leave-one-out principle, which is useful when training

with a small data set and in section 4.3.5 we give more detail about bagging,

bumping and balancing, a collection of methods for training with a feed-forward

network, and �nally in section 4.3.6 we discuss another network type: the radial

basis network.

4.3.1 Introduction to Neural Networks

This neural architecture is biological inspired, researchers usually think about the

organization of the brain when considering network con�gurations and algorithm.

In �gure 4.1 we see the a biological neuron. Each biological neuron is a cell

Figure 4.1: Biological Neuron

that uses biochemical reactions to receive, process and transmit information. A

neuron's dendritic tree is connected to a thousand neighbouring neurons. When

one of those neurons �re, a positive or negative charge is received by one of the

dendrites. The strengths of all the received charges are added together through

the processes of spatial and temporal summation.

The arti�cial neuron was designed to mimic the characteristics the biological

neuron. In a neural network there a three di�erent type of layers:

� input layer, a collection of neuron in which the data is presented initially;
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4.3. NEURAL NETWORK MODELS & TECHNIQUES

� output layer, the layer with collection of nodes which represent the output

of the arti�cial neural network;

� hidden layer, a collection of nodes with connections to the input- and

output-layer, this layer is optional and can occur more than once.

In general a neural network is a collection processing elements, interconnected

according to some plan, and processing information both externally and inter-

nally to the processing element. A processing element will take inputs from the

outside world (input layer), from other processing elements (hidden and output

layer), or from itself. Similar to a biological neuron, the processing element will

activate only if the weighted sum of the inputs meets some criteria. It will then

generate an output, based on that criteria (transfer function, see �gure 4.2), and

pass that on to the other processing elements or the outside world (output layer).

These outputs might be compared with some overall Criterion Function, and (in

Figure 4.2: Transfer functions

most kinds of nets) an error condition will be established. Finally, the system

will act on the error signal, depending upon the training style and its associated

training rule.

When training with neural networks, we divide the data set into three di�er-

ent subsets:

� training set: a subset of the data set with those patterns which are suited

for training;

� validation set: with this set we compute the error during the training phase;

� test set: when the stopping criteria is reached, the test set will be evaluated

on the trained network.

The validation and the training set are in fact the training part, and the test set

is the test part of the data set.

In �gure 4.3 we give a simple arti�cial neural network that implements the
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4.3. NEURAL NETWORK MODELS & TECHNIQUES

Figure 4.3: Simple Neural Network example

AND function (I1 AND I2). If I1 and I2 is active (value=1) then W1 � I1 will

be added to W2 � I2 . If the threshold value W0 is reached, then the output unit

O1 will be activated.

4.3.2 Feed-forward backpropagation

Before starting the training process, all of the weights must be initialized to small

random values. After the initialization step we follow the backpropagation train-

ing algorithm as is described for example in D.M. Skapura [18]. In this algorithm

we use the ordered vector pairs f(x

1

;y

1

); (x

2

;y

2

); :::; (x

p

;y

p

)g to represent the

training patterns, where each x

i

represents an input patterns vector and each y

i

represents an output pattern vector which is associated with the input vector x

i

.

1 Select the �rst training vector pair from the set of training vector pairs. Call

this �rst vector pair (x;y);

2 Use the input vector x as the output from the input layer of processing ele-

ments;

3 Use equation 4.8 to compute the activation to each unit on the subsequent

layer;

net

i

(t) =

n

X

j=1

w

ij

(t)o

j

(t) (4.8)

4 Apply the appropriate activation function, which we denote as f(net

h

) for

the hidden layer and as f(net

0

) for the output layer, to each unit on the

subsequent layer. Here, appropriate refers to the one activation function

that is best suited to the function to be performed by the layer of units.

The selection of this function will vary by layer and by application;

5 Repeat steps 3 and 4 for each layer in the network;
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6 Compute the error �

o

pk

for this pattern p across all K output layer units by

using formula 4.9;

�

o

pk

= (y

k

� o

k

)f

0

(net

o

k

) (4.9)

7 Compute the error �

h

pj

, for all J hidden layer units by using the recursive

equation:

�

h

pj

= f

0

(net

h

j

)

K

X

k=1

�

o

pk

w

kj

(4.10)

8 Update the connection weight values to the hidden layer by using equation 4.11:

w

ji

(t+ 1) = w

ji

(t) + ��

h

pj

x

i

(4.11)

where � is a small value used to limit the amount of change allowed to any

connection during a single-pattern training cycle;

9 Update the connection weight values to the output layer by using equation 4.12

w

kj

(t+ 1) = w

kj

(t) + ��

o

pk

f(net

h

j

) (4.12)

10 Repeat steps 2 through 9 for all vector pairs in the training set. Call this one

training epoch.

11 Repeat steps 1 through 10 for as many epochs as it takes to reduce the sum

squared error (SSE) to a minimal value. The calculation of the SSE is

performed for the output layer units only, across all P training patterns.

The SSE can be computed like in equation 4.13.

SSE =

P

X

p=1

K

X

k=1

(�

o

pk

)

2

(4.13)

In this project we used a linear output function and a sigmoidal transfer function

in the hidden nodes.

4.3.3 Levenberg-Marquardt optimization

The Levenberg-Marquardt optimization is a more sophisticated and powerful

technique than standard backpropagation which was explained in section 4.3. It

gives often a better performance, but it requires more memory.

The update rule of Levenberg-Marquardt is

�W = (J

T

J+ �I)

�1

J

T

e (4.14)

where J is the Jacobian matrix of derivates of each error to each weight, � is a

scaler and e is an error vector. If � is very large, the expression 4.14 approximates
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backpropagation. If � is small the expression becomes the Levenberg-Marquardt

method. Because this method is faster but tends to be less accurate when near

an error-minima, the scalar � is made bigger as long as the error gets smaller. If

the error increases, � is made smaller.

The increasing of speed when using the Levenberg-Marquardt technique is il-

lustrated on the following small problem

2

:

We will train a two-layer network with �ve hidden neurons in order to approx-

imate a function with 21 points. The distribution of the points is visualized in

�gure 4.4.

Figure 4.4: Points of the approximated function

When using the standard backpropagation rule it took 536 epochs to train until

an acceptable error goal was reached. With the Levenberg-Marquardt optimiza-

tion it took only 8 epochs to reach this same error goal.

We will use the Levenberg-Marquardt optimization to train the neural networks.

More details on this optimization technique can be found in [14] and [12]. An

implementation of the Levenberg-Marquardt technique can be found in [17].

4.3.4 Leave-one-out principle

Leave-one-out is an improvement on sample validation that allows one to use all

of the data for training and still have an estimate of the error on unseen data.

The disadvantage of this method is that you have to retrain the net many times.

This method is suitable for situations in which not may patterns are available.

For example: if we have n patterns to train a network and we use the standard

training method we must split these n patterns in a train- and a test-part. So

many patterns will not be included in the training-phase. If we use leave-one-out

to train and test this network we will be able to use all n patterns for the train

set. To achieve this we �rst pick one pattern p

i

from the whole data set p. The

2

This problem is an adapted version of a demo from the Matlab package
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/* 'i' represents the pattern number which is in the test set */

i = 0;

/* Initialize the array realvalues with the real water heights */

realvalues = InitRealValues(dataset);

/* Repeat these statements until all patterns have been used as a test set */

while ( patternr < ComputeLength(dataset) )

f

/* Pick one pattern i from the data set */

testset = GetOnePattern(dataset, i);

/* Creates a traingsset with pattern number i left out */

trainset = LeavePatternOut(dataset, i);

/* Train the network using the training set */

TrainNetwork(trainset);

/* Test the network using the test set and store the prediction */

prediction[i] = SimulateNetwork(testset);

/* Increment counter to process the next pattern */

i++;

g

/* Evaluate the array prediction, with the predictions done by the network */

EvaluatePredictions(prediction, realvalues);

Figure 4.5: An Implementation of the Leave-One-Out algorithm

training set contains every pattern from p except pattern p

i

, after this we train

the network with this training set. If training is completed we use pattern p

i

for

testing. After the test of this pattern we select another pattern from p, which

has not been selected before and repeat the procedure. We continue this process

until all patterns have been used as a test pattern. After training n networks we

evaluate the predictions and create statistics, like the Root Mean Squared Error

and the Standard Deviation, for the n predicted water levels and the matching

real water levels.

The pseudo-code for the leave-on-out algorithm is given in �gure 4.5.

4.3.5 Bagging, bumping and balancing

An other technique to improve the results of the predictions with the neural net-

work is boot strapping [4] combined with the estimator bagging, balancing and

bumping [9].
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It's a popular strategy to stop training to prevent over�tting in neural networks.

In general training is stopped when the error on the validation set starts increas-

ing. The resulting network depends on the accidental subdivision in training and

validation set, and often also on the, usually random, initial weight con�guration

and chosen minimization procedure. Small changes in the data or di�erent initial

conditions can produce large changes in the estimate. As argued in [1] and [20]

it is in this situation advisable to apply the same procedure several times using

di�erent subdivisions in training and validation set and trying di�erent initializa-

tion values. This technique is called re-sampling. A form of re-sampling is boot

strapping.

In the simplest form of boot strapping, one repeatedly analyze subsamples of

the data (re-sampling). A boot strap sample is a collection of randomly selected

patterns of the whole data set. Depending on what one wants to do, some of the

data points will occur once, some twice and some even more than twice in a boot

strap sample. All patterns that do not occur in a particular sample constitute the

validation set, the boot strap sample itself is the training set. Boot strapping can

not only be used for estimating the generalization error but also for estimating

con�dence bounds for network outputs.

We can combine boot strapping with bagging [1], using this estimator, the predic-

tion on a newly arriving input vector is the average over all network predictions.

So it disregards the performance of the individual networks on the data. An other

estimator is bumping [24], it throws away all networks except the one with the

lowest error on the complete data set. We can also use the intermediate form of

these two estimators, so called balancing [9]. A theoretical analysis of this idea

can be found in [19].

It has been shown that an ensemble of neural networks does not only give more

accurate predictions, but also reveals more information than a single network [9].

Moreover, ensembles of neural networks can be used to give error bars on the

predictions.

4.3.6 Radial basis network

A di�erent approach is to use Radial Basis functions in the neural network. This

is an unsupervised competitive learning technique which was examined �rst by

Moody and Darken ([15], [16]). Radial basis networks may require more neu-

rons than the standard feed-forward backpropagation networks, but often they

can be designed in a fraction of the time it takes to train standard feed-forward

networks. In generally they work best when many training vectors are available.

Radial functions is a characteristic type of function, their response increases or

decreases monotonically with distance from a central point. A typical radial func-
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tion is the Gaussian which, in the case of a scalar input, is given in equation 4.15.

h(x) = exp

 

�

(x� c)

2

r

2

)

!

(4.15)

Its parameters are its center c and its radius r. Figure 4.6 illustrates a Gaussian

radial basis function with center c = 0 and radius r = 1. A radial basis network

Figure 4.6: Gaussian Radial Basis Function

consist of two layers: a hidden layer and a linear output layer. In �gure 4.7 we

show a typical radial basis network. In this �gure each of n components of the

.  .  .  .

.  .  .  .

wj
wmw1

.  .  .  .Xi XnX1

f(x)

.  .  .  . hm(x)h1(x) hj(x)

Figure 4.7: Radial Basis Network

input vector x feeds forward tom basis functions whose outputs are linearly com-

bined with weights w

j

, where 1 � j �m. We can understand how this network

behaves by following an input vector through the input layer to the output neu-

ron. If we present an input vector to such a network, each neuron in the hidden

layer (which contains radial functions) will output a value according to how close

the input vector is to each neuron's output vector. The result is that the neurons
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in the hidden layer with weight vectors di�erent from the input vector will have

outputs near zero. These small outputs will have only a negligible e�ect on the

linear output neurons. If, however, the weight vector is very close to the input

vector the hidden neuron will output a value near one. If a neuron has an output

of one, its output weights in the second layer pass their values to the output layer.

More information on radial basis networks can be found in [8].

4.4 Using Matlab

We used Matlab and its Neural Network Toolbox for creation of the neural net-

works except for the routines described in section 4.3.5, which where developed at

the University of Leiden. The Neural Network Toolbox is a collection of Matlab

functions for the design, training, and simulation of neural networks. It supports

a wide range of network architectures with an unlimited number of processing

elements and interconnections. The toolbox is delivered as Matlab M-�les, en-

abling users to see the algorithms and implementations. A M-�le is a �le which

includes a Matlab program which can be interpreted in Matlab. To illustrate the

computational power of Matlab we show how to compute the covariance matrix

(Y) using the following three Matlab statements:

� [n,p] = size(X);

� X = X - ones(n,1) * mean(X);

� Y = X' * X/(n-1);

In Matlab we developed several train- and simulation-programs which can be

used for further research. More information on these routines can be found in

[23].
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Chapter 5

Results

In this chapter we present the results obtained using the network architectures.

First in section 5.1 we discuss the con�guration used in the test- and train phase.

In section 5.2 we discuss the simulations with the radial basis architecture. Here-

after, in section 5.3, we give more detail about the simulations with the feed-

forward network. In section 5.4 we discuss some of the problems that occurred

during these simulations. And �nally in section 5.5 we give some conclusions on

the simulations.

5.1 Con�guration

In this section we discuss the possible con�gurations which we examined for our

neural architectures.

5.1.1 Network parameters

In order to �nd the optimal network we �rst identify the parameters which can

be adjusted before the training phase. These parameters are:

� data-selection: the water level-, astronomical-, air pressure- and wind

data which de�nes the input of the network (chapter 3);

� reduction of input nodes: the number of reduced nodes after the appli-

cation of PCA (section 4.1);

� distribution of validation-, test- & training set: the number of pat-

terns in each set;

� network architecture: the number of hidden nodes, and the transfer

functions.
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5.1. CONFIGURATION

5.1.2 Validation-, test- and training set

To qualify the generalization ability of the network for storm-situations we split

the input data into three categories, C1, C2 and C3. These categories are com-

posed as follows:

C1 waterheight � 165 (in cm above NAP

1

). The patterns in this category are

not that important for the prediction of the storm.There are many patterns

in this category, so we take a few patterns from this category to train. We

put the other patterns into the validation set.

C2 165 < waterheight < 180 (in cm above NAP). This category is more im-

portant (section 3.6). Every available pattern is a member of the data

set.

C3 waterheight � 180 (in cm above NAP). This category is the most important

category. Just like in category C2, every available pattern is a member of

the data set.

During the development stage of this project we used many con�gurations. In

section 5.2 and 5.3 we give more detail about these con�gurations applied to

di�erent types of neural architectures. We used the categorization to create the

validation-, test- and training set. To create these sets we take a de�ned part of

each category, so that the most severe storms occurs in the training set.

5.1.3 Selection of input data

In order to train the network to an acceptable level we have to carefully select the

data from the database. To achieve this, we made di�erent con�gurations �les

which extract the data from the database. In short, the con�gurations contains

the following information:

� CFA: con�guration based on previous water prediction models;

� CFB: Omit the wind data;

� CFC: Omit the atmospheric pressure data;

� CFD: Con�guration based on CFA, but less data in it;

� CFE: Omit location North-Shields.

1

Normaal Amsterdams Peil
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The de�nition �les for these �ve con�gurations are included as Appendix B.

In total there are 207 situations (input patterns) with a water height greater than

150 centimeter above NAP. During data-selection 29:5 till 37:7 per cent of the

total amount of patterns is lost. In Table 5.1 is shown that some locations, in

particular Auk�eld Platform (AUK), Northshield (NTS), Lowestoft (LOW) and

Partition-South (VZU), do not function well during high water situations.

Unavailable Data at Location

Con�guration # Input nodes # Available Patterns AUK NTS LOW VZU

CFA 94 129 25 47 3 3

CFB 60 146 11 47 3 0

CFC 80 140 14 47 3 3

CFD 77 141 13 47 3 3

CFE 86 170 26 0 6 5

Table 5.1: Data Loss using Di�erent Con�gurations

In Table 5.2 the percentage of data loss per location and per data type is shown.

Location Atmospheric Pressure Astronomical Real Wind

AUK 6.17 52.5 71.6 5.9

DFZ 100.0 0.0 0.0 100.0

EPF 0.0 0.0 1.0 0.0

HVH 0.0 0.0 0.0 0.0

K13 100.0 0.0 0.0 0.0

LOW 100.0 0.0 1.9 100.0

NTS 100.0 0.0 20.1 100.0

VLI 100.0 0.0 0.0 100.0

VR 100.0 100.0 32.8 2.6

VZU 1.3 100.0 100.0 1.0

Table 5.2: Percentage of Data Loss Per Location

5.1.4 Feed-forward network architecture

In order to �nd the appropriate architecture we examined various architectures,

the results are presented in section 5.2 and 5.3.
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5.2. RADIAL BASIS NETWORK

If we consider a layered network with continuous-valued units, with activation

function g(u) = u for output units and g(u) =

1

1+e

�u

for hidden units, a network

implements a set of functions y

i

= F

i

fxkg from input variables x

k

to output

variables y

i

, where fx

k

g means x

1

;x

2

;x

3

; � � � ;x

N

. Considering a network with

no hidden layers, it computes the equation described in 5.1.
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(5.1)

A network with one hidden layer computes:
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(5.2)

and so on. Cybenko examined in [2] the number of hidden layers and hidden

units we need to approximate a particular set of functions like F

i

fx

k

g, to a given

accuracy. He concluded that we need at most two hidden layers, with arbitrary

accuracy obtainable given enough units per layer. It has also been proved in [3]

that only one hidden layer is enough to approximate any continuous function. Of

course the number of hidden layers depend on the used hidden units. In many

cases the necessary number of hidden units is not known.

5.1.5 Model reduction

In order to achieve an acceptable forecast of the water level we have to reduce

the number of input nodes associated with the size of the input matrix. We used

Principal Component Analysis to achieve this (section 4.1).

If we apply Principal Component Analysis to a network input �le with 94 input

parameters we get information about the variance of the corresponding principal

component. If we make a plot then we can determine a reduction factor. In

�gure 5.1 we present the resulting plot of the eigenvalues. In this �gure we see

that component one till ten have great in
uence on the total variance of the data

set. Component 11 till 26 has less in
uence in the total variance of the data set,

the rest of the components can be neglected because they add very little extra

information to the data set.

We tried di�erent reduction factors, in the sections 5.2 and 5.3 we give an overview

of the most important results using di�erent data reduction factors.

5.2 Radial basis network

This section gives results for the radial basis architecture (see also section 4.3.6).

First we give an overview of the di�erent con�gurations used. In section 5.2.2 we
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5.2. RADIAL BASIS NETWORK

Figure 5.1: Plot of Eigenvalues created by Principal Component Analysis

discuss the results when training with the standard radial basis technique. Finally

in section 5.2.3 we apply the leave-one-out technique to radial basis training.

5.2.1 Con�guration

In order to predict as accurate as possible we used the �ve con�gurations de-

scribed in Table 5.3 for the Radial Basis architecture, as explained in section 4.3.6.

This table contains the following columns:

#train. set #test set #val. set

Con�guration C1 C2 C3 C1 C2 C3 C1 C2 C3 DataCon�g

SR1 23 26 25 28 8 6 6 4 3 CFA

SR2 10(180) 7(190) 9(200) 2 2 2 2 2 2 CFA

SR3 47 23 31 14 6 10 7 3 5 CFB

SR4 46 23 29 14 6 8 7 3 4 CFC

LR1 57 38 34 0/1 0/1 0/1 - - - CFA

Table 5.3: Used Con�gurations for Radial Basis Training

� Con�guration: This id of the con�guration used;

� #train. set: The number of patterns in the training set;

� #test set: The number of patterns in the test set, each time only one of

the three categories provide a pattern in this set;
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5.2. RADIAL BASIS NETWORK

� #val. set: The number of patterns in the validation set;

The con�gurations SR1 and SR2 use the data from data con�guration CFA (sec-

tion 5.1.3), where SR2 uses the non-standard categorization where the water

level of the storm situations in category C1 is between 180 and 190 centimeter

above NAP, the water level in C2 is between 190 and 200 centimeter above NAP.

The water level of the storms in C3 is greater than 200 centimeter above NAP.

This new categorization is used to make better predictions on the severe storm

situations. The con�gurations SR3 and SR4 uses more patterns from category

C1 in the training set. This is done to increase the number of patterns in the

learning phase of the network. The con�guration LR1 is used for training with

leave-one-out (see section 4.3.4).

5.2.2 Standard radial basis training

The train- and test results using the con�gurations presented in 5.3 are shown in

Table 5.4. In this overview only the results of training with standard radial basis

are presented, this means training with a train-, test- and validation set. In this

table we see that the standard deviation and root mean square error (section 4.2)

are always better for the categories C1 and C2.

Standard Deviation RMSE

Con�guration C1 C2 C3 all C1 C2 C3 all Input Epochs

SR1 17.33 12.26 21.56 20.87 18.60 11.68 25.88 21.16 18 38

SR1 15.99 11.12 23.56 21.54 16.32 10.61 28.72 22.15 20 39

SR1 18.00 12.27 24.99 22.97 18.40 11.69 30.27 23.67 22 42

SR1 17.33 12.26 21.56 20.87 18.60 11.68 25.88 21.16 24 37

SR1 10.78 11.10 21.70 19.09 11.37 11.17 27.11 20.25 26 35

SR2 11.99 20.29 26.85 24.39 11.49 22.23 40.68 27.51 24 3

SR3 31.17 390.66 385.90 326.29 29.97 396.80 399.39 336.50 14 58

SR4 22.79 10.47 31.47 30.02 26.32 13.50 38.73 31.02 18 57

Table 5.4: Standard Radial Basis Training

5.2.3 Leave-one-out principle

The leave-one-out principle (section 4.3.4) is a method for training when one has

a small amount of data. The results of training using this principle are presented

in Table 5.5.

We used all available patterns in the training- and testing phase. So we are

more likely to say that the predictions using a network which is trained with this

technique is more stable on more di�erent situations. In Table 5.5 we see that the
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Standard Deviation RMSE

Con�guration C1 C2 C3 all C1 C2 C3 all Input

LR1 16.14 16.68 25.54 19.40 16.54 16.52 28.49 19.33 18

LR1 17.44 17.46 21.46 19.71 17.84 17.18 23.87 19.67 20

LR1 15.20 17.22 19.15 17.95 15.77 17.05 21.50 17.93 22

LR1 15.67 17.31 19.47 18.26 16.04 17.52 22.03 18.33 24

LR1 15.08 13.28 19.87 17.66 15.50 13.22 23.34 17.74 26

Table 5.5: Radial Basis Training using Leave-One-Out

standard deviation compared with the results when training with the standard

radial basis technique from Table 5.4, in most cases is smaller. If we take a look

at category C3 then we see that the most optimal result is achieved when using

22 input nodes.

5.3 Feed-forward network

In this section we present the results for training with a feed-forward network

using the backpropagation learning rule. In section 5.3.1 we discuss the di�erent

types of con�gurations used. In section 5.3.2 we present the results when training

with standard backpropagation. And �nally in section 5.3.3 we discuss the results

of training using the leave-one-out technique.

5.3.1 Con�guration

We used the con�gurations in Table 5.6 for training with feed-forward backprop-

agation. This table contains the same columns as described in section 5.2.1.

We used the following con�guration id's:

� SB1 the same con�guration for leave-one-out and simple training using

backpropagation.

� SB2 more patterns from C3, C2 and C1;

� SB3 Omit the wind data;

� SB4 Omit the atmospheric pressure data;

� SB5 Con�guration based on CFA, but less data in it

� SB6 Omit AukField Platform;
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#train. set #test set #val. set

Con�guration C1 C2 C3 C1 C2 C3 C1 C2 C3 DataCon�g

SB1 23 26 25 28 8 6 6 4 3 CFA

SB2 10(180) 7(190) 9(200) 2 2 2 2 2 2 CFA

SB3 47 23 31 14 6 10 7 3 5 CFB

SB4 46 23 29 14 6 8 7 3 4 CFC

SB5 49 23 26 14 6 8 7 3 4 CFD

SB6 66 26 31 16 8 10 8 4 5 CFE

BL1 43 26 25 0/1 0/1 0/1 - - - CFA

BL2 49 37 22 0/1 0/1 0/1 - - - CFA

BL3 26 29 24 0/1 0/1 0/1 - - - CFA

BL4 57 38 34 0/1 0/1 0/1 - - - CFA

BL5 14(180) 11(190) 13(200) 0/1 0/1 0/1 - - - CFA

Table 5.6: Con�gurations for Backpropagation Training

� BL1 the same con�guration for leave-one-out and simple training using

backpropagation.

� BL2 more patterns from C3, C2 and C1;

� BL3 all patterns from C3, but some patterns from C2 and C1 are left out;

� BL4 all available patterns are in this con�guration;

� BL5 only train on situations greater than 180 cm above NAP;

5.3.2 Standard backpropagation training

After various trials we discovered that a three-layer network with 18-24 input

units and hidden layer one with 14-20 units, hidden layer two with 4-6 layers

performs best. So we focussed on networks with such architecture. In Table 5.7

we present the results when training with standard backpropagation.

Con�guration SB1 worked out very good for the predicting of storms, specially

the architecture with 24 input nodes, 15 units in hidden layer one and 6 units

in hidden layer two. This network can predict storms from category C3 with a

standard deviation of 10:75. Because for this test we had to split the whole data

set into a train-, test- and validation-part the prediction on storms in category

C3 consists of 6 patterns. So we tested this architecture with the leave-one-out

technique, in order to create a more stable network.

5.3.3 Leave-one-out principle

In this section we present the results of the research that was done with a feed-

forward network using backpropagation and the leave one out technique (section
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Standard Deviation RMSE Nodes Used in Layer

Con�guration C1 C2 C3 all C1 C2 C3 all Epochs Input One Two

SB1 15.39 20.32 24.22 20.21 19.95 15.05 29.76 20.18 7 18 14 6

SB1 19.29 23.32 21.36 21.74 23.28 20.84 22.17 21.96 6 18 15 5

SB1 14.70 19.60 23.14 18.48 19.05 14.40 24.82 18.34 7 18 17 5

SB1 13.80 6.38 27.94 18.71 5.420 25.29 28.98 24.62 3 20 14 6

SB1 17.08 18.75 19.53 21.41 16.97 19.02 29.10 20.90 13 20 15 8

SB1 19.36 12.90 36.69 23.19 15.51 21.21 42.51 23.30 13 20 18 4

SB1 17.13 7.66 39.54 25.41 15.63 16.91 48.65 25.93 5 20 19 4

SB1 15.33 2.89 38.93 19.30 20.41 15.39 40.27 19.07 9 20 20 6

SB1 17.83 18.67 34.80 22.36 19.07 20.29 33.36 22.89 13 22 14 5

SB1 19.91 27.00 29.84 24.71 30.06 23.10 28.20 26.65 8 22 14 6

SB1 24.25 25.19 29.46 25.81 24.46 24.38 30.08 25.55 11 22 15 7

SB1 17.46 13.68 29.57 21.23 13.33 19.48 33.16 21.02 10 22 19 6

SB1 21.71 12.84 49.43 30.84 13.77 20.99 59.42 31.14 4 24 14 6

SB1 9.38 4.97 18.84 14.94 11.54 20.17 27.70 20.29 6 24 14 8

SB1 13.09 14.34 10.75 14.91 13.41 15.39 14.15 14.71 7 24 15 6

SB1 13.39 15.05 17.57 14.60 14.56 13.27 21.89 15.57 13 24 15 8

SB1 7.90 6.11 33.81 17.25 12.06 9.53 32.44 16.94 10 24 16 4

SB1 26.81 13.55 28.60 29.99 12.16 34.42 34.19 30.57 3 24 16 6

SB1 7.14 18.63 37.91 19.52 16.81 16.75 33.05 20.87 4 24 16 7

SB1 16.03 4.70 26.30 18.99 16.34 16.49 41.35 18.83 12 24 18 8

SB1 14.29 16.88 21.09 19.75 19.53 13.77 34.91 20.77 4 24 20 5

SB1 11.16 8.38 16.49 15.22 19.63 11.12 31.48 18.74 13 24 20 5

SB1 10.74 25.75 27.24 21.60 27.15 15.16 27.72 22.47 8 26 15 4

SB1 17.93 15.59 28.97 20.88 15.31 20.66 29.57 21.03 9 26 15 7

SB1 17.08 19.40 25.74 23.43 19.49 19.37 35.68 23.27 4 26 17 8

SB2 12.29 7.10 29.76 19.21 14.92 13.97 31.84 18.91 6 24 14 5

SB2 20.65 7.78 19.82 19.50 11.07 20.26 23.49 19.20 11 24 16 4

SB2 21.43 7.06 18.18 21.12 16.01 20.71 29.11 21.62 13 24 17 5

SB3 19.28 21.92 87.58 40.93 45.05 25.40 25.69 90.23 9 14 11 4

SB3 16.30 24.30 44.28 27.01 23.60 19.19 44.07 26.89 13 24 13 6

SB3 13.20 16.30 35.20 21.96 17.02 16.45 37.55 22.06 7 14 17 8

SB3 18.69 18.64 36.42 24.10 18.76 22.30 36.41 24.48 8 14 18 8

SB4 14.21 18.13 32.49 26.80 17.68 18.01 49.16 26.54 4 18 12 8

SB4 19.93 21.24 31.77 27.20 20.69 23.84 41.06 26.92 6 18 14 4

SB4 20.39 17.14 38.93 30.04 16.66 24.31 52.71 29.73 4 18 15 8

SB4 15.70 24.92 35.31 28.87 24.32 19.47 48.57 28.57 4 18 15 6

SB5 15.77 20.52 22.92 19.44 21.05 21.03 21.66 21.15 7 20 15 4

SB5 15.57 14.03 21.15 17.00 13.62 15.94 23.25 16.82 6 20 16 6

SB5 19.89 20.81 25.17 22.37 20.19 22.52 25.93 22.43 5 20 18 4

SB5 18.90 19.15 30.76 22.70 20.35 20.24 31.94 22.88 6 20 20 8

SB6 18.86 25.49 24.73 22.04 24.82 18.57 23.35 21.81 12 24 13 7

SB6 13.58 19.99 36.55 21.07 20.18 14.06 34.46 21.27 11 24 15 5

SB6 13.07 17.04 26.33 18.14 16.92 12.81 30.41 18.61 5 24 17 7

SB6 21.23 19.37 29.01 21.75 19.66 21.09 27.56 21.96 9 24 15 8

SB6 14.01 14.04 21.79 15.38 14.43 14.33 21.91 16.02 4 24 19 5

Table 5.7: Training Results using Standard Backpropagation

4.3.4). Results presented in section 5.3.2 suggest a three layer network with 24

input units, 15 units in hidden layer one, 6 units in hidden layer two and one

output unit. In Table 5.8 we present these results. We used di�erent data sets

to train this network (in Table 5.6 we give more detail about this contents of the

di�erent data sets). In this table we see that the best results are obtained if we

train with all the 129 available patterns.

5.3.4 Bagging, bumping and balancing

In this section we discuss the results when applying balancing, bagging and bump-

ing (section 4.3.5) together with a feed-forward backpropagation network on the

data set. These routines where developed at Leiden University. In Table 5.9 we

present the average results when training with 100 networks, repeated 50 times,

because of the exactness of the predictions. The whole data set is divided into
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Standard Deviation RMSE

Con�guration C1 C2 C3 all C1 C2 C3 all Bias Epochs

BL1 17.46 19.48 25.06 21.77 18.61 18.99 27.26 21.64 0.56 7

BL1 18.25 18.62 25.29 21.71 19.14 18.20 27.31 21.59 0.36 6

BL2 17.45 18.14 23.56 20.85 18.46 17.79 25.40 20.76 0.42 7

BL3 19.37 22.74 27.32 22.36 19.15 21.94 27.10 22.13 0.93 6

BL3 19.70 21.98 29.84 25.58 20.54 21.55 29.53 25.42 -0.51 7

BL2 17.83 17.76 23.90 20.97 18.78 17.41 25.56 20.88 0.26 8

BL4 18.37 14.99 15.01 18.12 20.01 14.74 17.27 18.10 -1.38 6

BL4 17.62 16.41 15.83 18.39 19.71 16.13 17.90 18.40 -1.72 7

BL4 19.24 17.44 14.18 18.88 20.43 17.49 17.03 18.81 0.22 8

BL5 30.69 25.57 34.98 33.96 29.61 29.28 40.37 33.60 2.42 6

BL5 28.17 28.98 23.97 29.36 28.04 29.37 29.65 28.99 0.91 7

BL5 30.69 25.57 34.98 33.96 29.61 29.28 40.37 33.60 2.42 8

Table 5.8: Feed-forward Network using Leave-One-Out

a test- (25 patterns), and train part (104 patterns for training and validation).

Please note that the data set is not compressed with Principal Component Analy-

sis.

Bagging Bumping Balancing

RMSE RMSE % decrease RMSE % decrease RMSE % decrease

21.819 20.391 6.87% 17.701 18.87% 17.556 19.54%

Table 5.9: Average of 50 training phases using 100 networks for Bagging, Bump-

ing and Balancing

In Table 5.9 we compare the following four methods for combining the network

outputs:

� standard training, training with the standard feed-forward backpropaga-

tion rule with no special boot strapping technique;

� bagging the average of all predictions of the 100 networks which will lead

to one prediction;

� bumping The network with the best predictions (smallest RMSE) will be

chosen out of the 100 trained networks;

� balancing A weight will be added to each of the 100 trained networks,

with these weights we compute the weighted average of the predictions, the

predictions are the weighted average of the 100 networks.
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Note: The%-sign in this table represents the decrease of the generalization error,

using the speci�ed technique.

C1 C2 C3

Std.dev. Std.dev. RMSE Std.dev. RMSE Std.dev. RMSE

19.485 20.043 12.129 16.908 12.819 20.352 27.244

Table 5.10: Categorized Average of 50 training phases using 100 networks for

Balancing

In table 5.10 we split the results for balancing into the three previously de�ned

categories C1, C2 and C3 (section 3.5. We see that the predictions in the cat-

egory with severe storms (C3) are less better than expected from the result on

the whole test set.

5.4 Problems

The data set contains continuous information from the period January 1990 until

March 1996. It is for the Storm Waring Service very important to predict the

severe storm situations with a great exactness. Not many severe storm situations

are available in the data set, therefore we had to apply the categorization on the

data set. The category C3 does include the severe storms, but also less severe

storms which are not very important for the prediction mechanism. Besides

categorization we applied leave-one-out to the neural networks, with this method

we can say more about the exactness of the predictions.

5.5 Conclusions

If we compare the results from Radial basis training (Table 5.4 and 5.5) with

training with a feed-forward backpropagation network (Table 5.7 and 5.8) we

see that training with a multi layer feed-forward network performs better on

storms of category C3. The results of training with a feed-forward network with

24 input units, 15 units in hidden layer one and 6 units in hidden layer one

are better than training with the same architecture and using leave-one-out. The

results from training with leave-one-out are less better because it uses all patterns

from the data set. On the contrary, standard backpropagation training splits the

data set into a train-, test- and validation part. If we take a look at training with

feed-forward backpropagation using bagging, bumping and balancing, we also see

good results using balancing and bagging. But if we categorize these results in the
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three de�ned categories C1, C2 and C3 we see that the network predicts well on

medium storms, but the prediction on the important severe storms is worser than

the results from predicting with feed-forward backpropagation (section 5.3.3).
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Chapter 6

Project evaluation and conclusion

In this chapter we evaluate the di�erent aspects of this project. In section 6.1

we discuss the working environment at RIKZ and in section 6.2 we discuss the

development of the neural network. After that we evaluate in section 6.3 the

results presented in chapter 5. Finally we discuss future research in section 6.4.

6.1 Working environment

As discussed in section 1.2 the research was done at the research department

of the department Information, Technology & Systems (ITS) at the National

Institute for Coastal and Marine Management, in The Hague. This department

is a great environment to do research because one gets the freedom to choose the

direction in which the project is going to. The available computer infrastructure

can be used very well for performing a project like this. We learned many things

about working in a professional research environment.

6.2 Data selection and network development

The database which we used in this projects contains only data from storm situ-

ations in the period January 1990 until March 1996 (section 3.5). In this period

only a few severe storms occurred, therefore we had to enlarge the data set with

less severe storms, which are not that important for the prediction of the water

level during severe storm situations. To keep track on the heaviness of the storms

we introduced a categorization (section 5.1.2). With this categorization we can

give a more exact picture of the storm predictions. To improve the quality of the

predictions we also used leave-one-out (section 4.3.4) and principal component

analysis (section 4.1). In general we can say that we used techniques to 'recover'

from the lack of severe storm patterns in the neural network input set. As we

look at the results, which are presented chapter 5, we see that it is very impor-

tant how many patterns we use in the input set of the neural network. We can
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conclude that the number of patterns in the input set are a very important factor

for the improvement of the quality of the predictions. Specially the patterns from

severe storms are interesting because more than half of the input patterns is �lled

with medium storm situations (category C1 and C2 which are described in the

categorization of section 5.1.2).

The training and simulation software of the bagging, bumping and balancing

method which is used in this project is developed at Leiden University The other

neural network software is written at the National Institute for Coastal and Ma-

rine Management using the Matlab package (section 4.4). The use of Matlab is

very intuitive, the commands are very well described and are extendable. The

usage of the developed software is described in[23]

6.3 Network results

It has been shown that training with a feed-forward network is functioning well.

Because of the lack of severe storm patterns we used leave-one-out for a better

estimate of the quality of the results. When training with this technique we use

all patterns in the data set as a test pattern, so every resulting water level of

a storm situation is compared with the predicted water level. The reliability of

training with leave-one-out is more secure. With this technique we reach a water

level prediction for the storms of category C3 with a standard deviation of 14.18

centimeter and a Root Mean Squared Error of 17.03 centimeter. Despite of the

good results previously reached with bumping, bagging and and balancing the

results of training with these three methods did not give a better result than

training with leave-one-out. The best results are reached when training with bal-

ancing: a standard deviation of 20.352 centimeter on severe storms.

If we compare the results for training with leave-one-out with the predictions

which are done by the current prediction methods, for approximately the same

period (Table 1.4), we see that the standard deviation of the neural network is

considerable smaller than the StormWarning Service (17.2 centimeter), the Royal

Dutch Meteorological Institute (19.8 centimeter) and the Continental Shelf Model

(24.6). We can conclude that the predictions done by the neural network are more

exact than the predictions done by current prediction methods.

However, we have to be careful in drawing this conclusion. First the network

predictions are done with real wind data, and not with predicted wind data as

in a real situation. Second, the database does not contain many severe storm

situations and probably not all types of storms are covered in the database. If

more storm situations become available, it will be advisable to retrain the net-

work. Lastly, the data base contains reconstructed values from several measuring

locations (section 3.7), in an on-line situation, a reconstruction of the data will
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be a very intensive process.

6.4 Future research

To increase the quality of the predictions it is necessary to gather more storms

before the year 1990, it can also be useful to �ll the gaps in the data such that

there are more storm situations in the database.

Because of the lack of predicted meteorological data, the networks in this project

uses only real wind data. In the future it is worthwhile to do research with pre-

dicted meteorological data, because this method is used in real, on-line storm

predictions.

The research on bagging, bumping and balancing is done in a short period of time.

It seems to be promising to combine these three methods and specially balancing

with leave-one-out and principal component analysis. The results when training

on the uncompressed data set are such that further research is recommended.

For the usability of this storm prediction model it is useful to design a con-

nection between the real time data base with water levels, the database of the

Dutch Royal Meteorological Institute which contains meteorological data and the

storm prediction system. The predictions described in this thesis are only done

with past storm situations.

In this project we also used reconstructed data. If this reconstruction can be done

on-line (during a storm-situation) then a connection between a neural network

in an operational environment can be realized.
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Appendix A: Translation

Dictionary

English Dutch

residual opzet

astronomical water level astronomische water stand

Directorate-General of Public Works Rijkswaterstaat (RWS)

and Water Management

National Institute for Coastal RijksInstituut voor Kust en Zee (RIKZ)

and Marine Management

Principal Component Analysis (PCA) hoofdcomponenten analyse

Royal Meteorological institute Koninlijk Meteorologisch Instituut (KNMI)

Storm Warning Service Stormvloed Waarschuwings Dienst (SVSD)
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Appendix B: Used Con�gurations

CFA:

#INPUT VALUES

#LOC FILE ASTRO REAL PRESS WIND HOURS

hvh ../stormnet/data/storm.hvh 1 0 0 0 32 34 36 38 40 42

vli ../stormnet/data/storm.vli 1 0 0 0 34 38 42

nts ../stormnet/data/storm.nts 1 0 0 0 28 34 42

low ../stormnet/data/storm.low 1 0 0 0 34 38 42

epf ../stormnet/data/storm.epf 1 0 0 0 34 38 42

k13 ../stormnet/data/storm.k13 1 0 0 0 34 38 42

hvh ../stormnet/data/storm.hvh 0 1 0 0 26 28 30 32 34 36 38 40 42

vli ../stormnet/data/storm.vli 0 1 0 0 30 32 34 36 38 40 42

nts ../stormnet/data/storm.nts 0 1 0 0 24 28 32 38 42

low ../stormnet/data/storm.low 0 1 0 0 30 34 38 42

hvh ../stormnet/data/storm.hvh 0 0 1 0 28 34 38 42

auk ../stormnet/data/storm.auk 0 0 1 0 26 36 44 54

k13 ../stormnet/data/storm.k13 0 0 1 0 34 44 54

vzu ../stormnet/data/storm.vzu 0 0 1 0 36 42 50

auk ../stormnet/data/storm.auk 0 0 0 1 28 36 60

k13 ../stormnet/data/storm.k13 0 0 0 1 34 42 54 68

epf ../stormnet/data/storm.epf 0 0 0 1 38 42

hvh ../stormnet/data/storm.hvh 0 0 0 1 34 36 38 42

vzu ../stormnet/data/storm.vzu 0 0 0 1 36 40 42 50

#OUTPUT VALUES

#LOC FILE ASTRO REAL PRESS WIND HOURS

hvh ../stormnet/data/storm.hvh 0 1 0 0 48

CFB:

#INPUT VALUES

#LOC FILE ASTRO REAL PRESS WIND HOURS

hvh ../stormnet/data/storm.hvh 1 0 0 0 32 34 36 38 40 42

vli ../stormnet/data/storm.vli 1 0 0 0 34 38 42

nts ../stormnet/data/storm.nts 1 0 0 0 28 34 42

low ../stormnet/data/storm.low 1 0 0 0 34 38 42
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epf ../stormnet/data/storm.epf 1 0 0 0 34 38 42

k13 ../stormnet/data/storm.k13 1 0 0 0 34 38 42

hvh ../stormnet/data/storm.hvh 0 1 0 0 26 28 30 32 34 36 38 40 42

vli ../stormnet/data/storm.vli 0 1 0 0 30 32 34 36 38 40 42

nts ../stormnet/data/storm.nts 0 1 0 0 24 28 32 38 42

low ../stormnet/data/storm.low 0 1 0 0 30 34 38 42

hvh ../stormnet/data/storm.hvh 0 0 1 0 28 34 38 42

auk ../stormnet/data/storm.auk 0 0 1 0 26 36 44 54

k13 ../stormnet/data/storm.k13 0 0 1 0 34 44 54

vzu ../stormnet/data/storm.vzu 0 0 1 0 36 42 50

#OUTPUT VALUES

#LOC FILE ASTRO REAL PRESS WIND HOURS

hvh ../stormnet/data/storm.hvh 0 1 0 0 48

CFC:

#INPUT VALUES

#LOC FILE ASTRO REAL PRESS WIND HOURS

hvh ../stormnet/data/storm.hvh 1 0 0 0 32 34 36 38 40 42

vli ../stormnet/data/storm.vli 1 0 0 0 34 38 42

nts ../stormnet/data/storm.nts 1 0 0 0 28 34 42

low ../stormnet/data/storm.low 1 0 0 0 34 38 42

epf ../stormnet/data/storm.epf 1 0 0 0 34 38 42

k13 ../stormnet/data/storm.k13 1 0 0 0 34 38 42

hvh ../stormnet/data/storm.hvh 0 1 0 0 26 28 30 32 34 36 38 40 42

vli ../stormnet/data/storm.vli 0 1 0 0 30 32 34 36 38 40 42

nts ../stormnet/data/storm.nts 0 1 0 0 24 28 32 38 42

low ../stormnet/data/storm.low 0 1 0 0 30 34 38 42

auk ../stormnet/data/storm.auk 0 0 0 1 28 36 60

k13 ../stormnet/data/storm.k13 0 0 0 1 34 42 54 68

epf ../stormnet/data/storm.epf 0 0 0 1 38 42

hvh ../stormnet/data/storm.hvh 0 0 0 1 34 36 38 42

vzu ../stormnet/data/storm.vzu 0 0 0 1 36 40 42 50

#OUTPUT VALUES

#LOC FILE ASTRO REAL PRESS WIND HOURS

hvh ../stormnet/data/storm.hvh 0 1 0 0 48

CFD:

#INPUT VALUES

#LOC FILE ASTRO REAL PRESS WIND HOURS

hvh ../stormnet/data/storm.hvh 1 0 0 0 34 40 42

vli ../stormnet/data/storm.vli 1 0 0 0 38 42

nts ../stormnet/data/storm.nts 1 0 0 0 28 34 42
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low ../stormnet/data/storm.low 1 0 0 0 38 42

epf ../stormnet/data/storm.epf 1 0 0 0 38 42

k13 ../stormnet/data/storm.k13 1 0 0 0 38 42

hvh ../stormnet/data/storm.hvh 0 1 0 0 30 32 34 36 38 40 42

vli ../stormnet/data/storm.vli 0 1 0 0 30 32 34 36 38 40 42

nts ../stormnet/data/storm.nts 0 1 0 0 28 32 38 42

low ../stormnet/data/storm.low 0 1 0 0 30 34 42

hvh ../stormnet/data/storm.hvh 0 0 1 0 28 34 42

auk ../stormnet/data/storm.auk 0 0 1 0 26 36 44 54

k13 ../stormnet/data/storm.k13 0 0 1 0 34 44 54

vzu ../stormnet/data/storm.vzu 0 0 1 0 42 50

auk ../stormnet/data/storm.auk 0 0 0 1 28 36 60

k13 ../stormnet/data/storm.k13 0 0 0 1 34 42 54 68

epf ../stormnet/data/storm.epf 0 0 0 1 38 42

hvh ../stormnet/data/storm.hvh 0 0 0 1 34 38 42

vzu ../stormnet/data/storm.vzu 0 0 0 1 36 42 50

#OUTPUT VALUES

#LOC FILE ASTRO REAL PRESS WIND HOURS

hvh ../stormnet/data/storm.hvh 0 1 0 0 48

CFE:

#INPUT VALUES

#LOC FILE ASTRO REAL PRESS WIND HOURS

hvh ../stormnet/data/storm.hvh 1 0 0 0 32 34 36 38 40 42

vli ../stormnet/data/storm.vli 1 0 0 0 34 38 42

low ../stormnet/data/storm.low 1 0 0 0 34 38 42

epf ../stormnet/data/storm.epf 1 0 0 0 34 38 42

k13 ../stormnet/data/storm.k13 1 0 0 0 34 38 42

hvh ../stormnet/data/storm.hvh 0 1 0 0 26 28 30 32 34 36 38 40 42

vli ../stormnet/data/storm.vli 0 1 0 0 30 32 34 36 38 40 42

low ../stormnet/data/storm.low 0 1 0 0 30 34 38 42

hvh ../stormnet/data/storm.hvh 0 0 1 0 28 34 38 42

auk ../stormnet/data/storm.auk 0 0 1 0 26 36 44 54

k13 ../stormnet/data/storm.k13 0 0 1 0 34 44 54

vzu ../stormnet/data/storm.vzu 0 0 1 0 36 42 50

auk ../stormnet/data/storm.auk 0 0 0 1 28 36 60

k13 ../stormnet/data/storm.k13 0 0 0 1 34 42 54 68

epf ../stormnet/data/storm.epf 0 0 0 1 38 42

hvh ../stormnet/data/storm.hvh 0 0 0 1 34 36 38 42

vzu ../stormnet/data/storm.vzu 0 0 0 1 36 40 42 50

#OUTPUT VALUES

#LOC FILE ASTRO REAL PRESS WIND HOURS

hvh ../stormnet/data/storm.hvh 0 1 0 0 48
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air movement, 10

architecture of neural network, 33

astronomical water level, 7, 9, 13, 15

atmospheric pressure, 3, 9{11, 14, 16,

18, 32, 37

backpropagation, 24, 38

bagging, 22, 27, 39, 41, 44

balancing, 22, 27, 39, 41, 44

Bangladesh, 3

Bath, 8

bias, 21

boot strapping, 27

bumping, 22, 27, 39, 41, 44

con�guration, 31

feed-forward network, 37

radial basis network, 35

con�gurations, 49

Continental Shelf Model, see CSM

covariance matrix, 30

CSM, 3, 44

data

astronomical water level, 7, 9, 13,

15

atmospheric pressure, 3, 9{11, 14,

16, 18, 32, 37

data loss, 33

gaps, 18

input, 32

reconstruction, 18

reduction, 19, 34

selection, 16, 43

storage and retrieval, 12

wind, 14, 16, 18, 32, 37

Delfzijl, 4

Delta Area, 2

Den Helder, 8

dendrite, 22

development, 43

dictionary, 48

Directorate North Sea, 1

Directorate-General of Public Works

and Water Management, see

RWS

drying out, 4

Dutch coast, 9

eigenvalue, 19

eigenvector, 19

error, 21

bias, 21

RMSE, 21

estimator, 27

evaluation, 43

feed-forward network, 24, 37

con�guration, 37

leave-one-out, 38

training, 38


ood protection, 2


ooding, 2

future research, 45

Galveston, 3

Gauss function, 29

geographic force, 7

GMT, 13

gravitational pull, 8

Harlingen, 4

harmonic analysis, 7
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high water, 8

Hoek van Holland, 4

Hotelling transform, 20

ITS, 2, 43

Jacobian matrix, 25

Kalman �lter, 4

Karhunen-Lo�eve Transform, 20

KNMI, 3, 4, 44, 45

leave-one-out, 22, 26, 35, 36, 38, 41,

43{45

feed-forward network, 38

radial basis network, 36

Leiden University, 44

Levenberg-Marquardt optimization, 25

low water, 8

m-�les, 30

Matlab

neural network toolbox, 30

matlab, 19, 30

measuring locations, 1

MET, 13

meteorological components, 7

Ministry of Transport, Public Works

and Water Management, 2

Monitoring System Water, see MSW

moon motion, 9

MSW, 12

NAP, 4, 15, 32, 36

National Institute for Coastal andMa-

rine Management, see RIKZ

national safety, 3

neaps, 9

neural network

architecture, 33

backpropagation, 24, 38

biological model, 22

categorization, 32

con�guration, 31

error, 21

feed-forward, 24, 38

introduction, 22

leave-one-out, 22, 26, 35, 36, 38,

41, 43{45

optimization, 25

parameters, 31

radial basis, 28

results, 31{42

transfer function, 23

usability, 45

validation-, test- and training set,

32

neural network toolbox, 30

non-tidal components, 7

North Sea, 2, 9

Oosterschelde, 3

optimization

Levenberg-Marquardt, 25

organization, 5

oscillation e�ect, 10

PCA, 19, 34, 45

periodical movements, 8

prediction methods, 3

Principal Component Analysis, see PCA

principal error theory, 21

problems, 41

radial basis network, 28, 34

con�guration, 35

leave-one-out, 36

training, 36

radial function, 29

re-sampling, 28

reconstruction of data, 18

reduction of data, see data reduction

residual, 7

results, 44

RIKZ, 1, 2, 43, 44

RMSE, 21

Root Mean Squared Error, see RMSE

Royal Meteorological Institute, see KNMI

RWS, 1, 3, 5, 7, 18
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sea wind, 9

Singular Value Decomposition, 20

springs, 9

SSE, 25

storm surges, 4

storm warning service, see SVSD

Sum Squared Error, see SSE

sun motion, 9

SVSD, 2, 4, 44

test set, 32

tidal cycles, 7

tide, 10

tide movement, 4

time systems, 13

training

feed-forward network, 38

radial basis network, 36

training set, 32

transfer function, 23

translation dictionary, 48

usability, 45

UTC, 13

validation set, 32

Vlissingen, 8

Wadden Sea, 2

warning level, 4

Westerschelde, 8

wind

data, 14, 16, 18, 32, 37

e�ects, 3, 5, 7, 9{11

front, 10

working environment, 2, 43

Zuider Zee, 3
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