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Abstract

This research is an elaborationof research conducted by Luc Steels [STEELS94a].

First Steels' genetic learning algorithm is implemented on a real robot and some

basic behaviours are learned. Among these are backward movement, forward

movement and halting behaviour. Also a combination of these behaviours using

tendencies is tested. Examples of results are presented and some instabilities in

the long term behaviour are discussed.

Then some more complex behaviour systems are tested. These are one di-

mensional obstacle avoidance and two dimensional obstacle avoidance. Results

of the experiments are presented. The results show that the Steels' system is

capable of learning rather complex behaviours, but that it is very dependent on

initial parameters.

Also some theoretical arguments are presented to support the fact that the

system can only learn behaviour systems in which there is a direct functional de-

pendency between the actuator and the sensor. Some suggestions are presented

on how to extend the system.
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Chapter 1

Introduction

Autonomous agents, or robots, that operate in a nontrivial environment need

an ability to adapt themselves to that environment. Static behaviour can be

good in one particular environment, but can be disastrous in another. An

environment can also be too complex to be modeled accurately by the designer

of the behaviour. An agent with the ability to adapt itself to changes in the

environment has the advantage. Hence the need for learning algorithms.

1.1 Learning Algorithms

Learning algorithms exist in about as many variations as there are people re-

searching them. But it is quite possible to �nd some criteria that a learning

algorithm has to ful�ll if it has to be successfully applied to adapting behaviour

of autonomous agents.

First of all, the learning algorithm should be able to learn on-line. The agent

is learning as it operates, so o�-line learning algorithms that must be trained

without directly using the learned material are out of the question. Next, the

algorithm should be immune to noise. The robot's sensors will not always give

reliable results and an action will not always give the same response. Learning

algorithms that cannot cope with inconsistent training data are not usable.

Third, the algorithm should be able to learn with a minimum of feedback

from the environment. The robot can only communicate with the environment

through its sensors and its actuators and it is usually not possible to present

the robot with examples of what to do and with explanation of what it is doing

right or wrong through these. Clearly, some kind of reinforcement learning is

necessary.

A last and perhaps not so obvious criterium which such a learning system

has to ful�ll is that it has to be provably stable in the long run. If this would

not be the case, it would not be safe to use it in real world applications, as one
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would never know if the system could collapse suddenly.

The algorithm that was used in this research is a variation on a genetic

algorithm, (for an excellent introduction into genetic algorithms, see [GB89])

but many other approaches could have been used as well, for example classi�er

systems [GB89, HOL86] or neural networks [HKP91]. But the genetic approach

was chosen because this research is a continuation of [STEELS94a]. The reason

why genetic algorithms were chosen in that paper will be summarized in the

next section.

1.2 Autonomy

The goal of this research was to test a truly autonomous learning algorithm. The

criteria which an autonomous learning system must ful�ll have been discussed

briey in the previous section. But why would we want to use autonomous

agents anyway? They have been used, because it is believed that (arti�cial)

intelligence is linked with mobility and autonomous operation. See for example

[MOR89].

But as this research is an elaboration of Luc Steels' [STEELS94a] research it

is especially necessary to explain the philosophy on which he bases the learning

system in his paper. Steels writes: \We want to stay at the sub- or presymbolic

level in which the dynamics of the world is directly coupled to an internal dy-

namics without prior segmentation or categorization." This e�ectively rules out

symbolic learning methods and even classi�er systems, that also operate on the

basis of categorization and classi�cation. Furthermore he �nds it essential that

di�erent parts of the system cooperate on an equal basis: \We want instead

to create a `level playing �eld' in which one behavioral module cannot inhibit

another one. Di�erent modules must cooperate or compete with each other in

order to achieve a coherent behavior."

To achieve these objectives Steels uses a set of cooperating and competing

parallel processes that are trained by a genetic algorithm. The system will be

described in some detail in chapter 2. Steels also wants the system to be capable

of open-ended evolution and thus of generating its own learning-targets.

Not many experiments have been done with really autonomous robots. A lot

of robots are being used in the real world, but almost none of these has on-line

learning capabilities. In other experiments learning robots are simulated in a

computer after which perhaps the �nal solution is tried on a real robot (see

for example [CHH93]). Other experiments with learning robots were concerned

with learning of high level behaviours as opposed to the low level behaviours

in this paper. For a collection of papers on learning robots, see for example

[VELDE93].

In this paper Steels' learning system is tested on a real robot. In chapter 2

the learning system is described in some detail. In chapter 3 the results of the

experiments are presented. Experiments with open-ended evolution have not
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yet been performed. In the second part of this paper a theoretical discussion is

presented about the limitations of the system and some suggestions are made

on how to extend the repertoire of possible behaviours.
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Chapter 2

Methodology

The behaviours of the robots in this paper have been implemented using a

variation on the Process Description Language, or PDL, of the Arti�cial In-

telligence Laboratory of the Free University of Brussels [STEELS94a]. The

variation consisted of using a genetic algorithm to generate a population of very

simple processes. This genetic algorithm was then used to �nd the most optimal

combination of processes.

2.1 PDL

The basic objects of PDL are quantities and processes. Quantities represent the

internal states of the robot and its connections to the outside world in the form

of real numbers (originally they are integer numbers, but in this research real

numbers were chosen by reason of analytical simplicity). If a quantity represents

the value of a sensor, it is called an input quantity, and it can be used by the

robot to obtain information about the outside world. If a quantity is connected

to an actuator of the robot, it is called an output quantity and it can be used to

perform actions on the outside world.

Processes are small pieces of terminating C or C++ code that do not have

local variables. They can only work with data through quantities by either

inspecting their value or by proposing to add a value (possibly a negative value)

to the quantity. Processes need to terminate, because the PDL cycle is based

on processes that complete their execution.

All the processes are ran in a parallel fashion. When all processes are �n-

ished, their proposed additions to a quantity are summed up and added to the

former value of the quantity. Then the output-quantities are written to the

actuators and the values of the sensors are written into the input-quantities and

the processes are cycled again.

PDL has many more features, among which is an easy portability among
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Cycling of Processes

Activating of Actuators

Reading of Sensors Updating of Quantities

Figure 2.1: The PDL-cycle.

platforms. In this paper no in depth description of the syntax, features and

philosophy of PDL will be undertaken. The interested reader is referred to [?].

2.2 The Processes used in this Paper

Although PDL-processes can be made arbitrarily complex, it is an essential

part of the PDL-philosophy to keep processes as simple as possible and to let

complexity emerge from their interactions. For that reason and for reasons of

easy implementation of the genetic algorithm, the processes in this research have

been kept extremely simple. Essentially they have the following form:

c

l

p

= �(

p

� q

k

p

) (2.1)

In which c

l

p

is the change of quantity l proposed by process p, q

k

p

is the value

of the quantity k that process p monitors and 

p

is the desired value (or the

gauge value) of the monitored quantity. There also is a constant � with which

the di�erence is scaled.

This process e�ectively tries to keep quantity k

p

on the value 

p

by inu-

encing quantity l

p

. Whether process p is e�ective or not has to be determined

by the genetic algorithm.

The total change of any quantity q

i

can now be determined by the following

summation:

�q

i

=

X
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p

=i)

c

l

p

g (2.2)

Where P is the set of all processes. The new value of a quantity is determined by

adding the change to the old value. Of course the situation is di�erent for input

quantities. These have values that are determined by the sensors. Processes

can legally propose changes to input quantities, but these will have no e�ect.

2.3 The Learning System

When the robot �rst starts, a behaviour system is generated at random. This

means that processes of the form of equation 2.1 are generated at random. The

l

p

is taken from the range [0; N �1] where N is the number of output quantities
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and k

p

is taken from the range [0 : : : M � 1] where M is the number of input

quantities in the system. The gauge value is taken from the set f��; 0;�g where

� is an arbitrary, but conveniently chosen number. For a system with N input

quantities and M output quantities there are 3N �M di�erent procestypes.

In our system the processes are stored per processtype. For every di�erent

process that appears in the random initialization of the processes, a processtype

is created in the robot and the number of instances of this processtype is set to 1.

If this processtype happens to be created again, then the number of instances

is increased by one. In the remainder of this paper we will sometimes use p

and the word `process' to refer to a certain processtype, instead of to a single

process. The number of instances is then written as n

p

and P will be the set of

processtypes.

The PDL-system will now be cycled for a certain number of cycles, which we

will callW or the window size. After this the processes are evaluated according

to how well they correlate with the satisfaction of the system. This satisfaction

is a real number that indicates how well the robot is performing its task. The

better the task is performed, the higher the satisfaction. In the experiments

the way the satisfaction is calculated is programmed by hand, but in future

experiments the robot must determine its own satisfaction.

Processes are said to correlate well with the satisfaction if the average of

their proposed changes (c

l

p

) is in the same direction of the average change of

the quantity they want to change (q

l

p

) if the satisfaction has increased, or if

their proposed changes were in the opposite direction of the total change when

the satisfaction has decreased. The size of the proposed changes relative to the

total proposed change in the same direction is also taken into account when

determining the strength of the correlation.

To determine this correlation, we �rst need to know the contribution b

p;t

of

a process p at time t. This is calculated as follows:
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(2.3)

Where �

+

q

l

p

is the summation over all the positive contributions to quantity

q

l

and �

�

q

l

p

is the summation over all negative contributions. All these values

are taken at time t, but to simplify the notation, we have left out all the su�xes

t.

The b

p

are sampled at every cycle of the system. But not every cycle a genetic

step is performed. This is done only every W steps. After these cycles, the

numbers of the di�erent processtypes are updated with the following formula:

n

p;t+W

= n

p;t

+

$

�

t+W

�

P

W�1

i=0

b

p;t+i

W

n

p;t

%

(2.4)

Where � is a constant that determines the speed of growth of processes and

�

t+W

is �1 if the satisfaction has decreased between time t and t+W and 1 if
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the satisfaction has increased. If the satisfaction has stayed equal, then �

t+W

is

set to a random number in the range h�1; 1i

2.4 Maintenance of Diversity

Some rudimentary precautionswere taken to preserve diversity in the population

so that the system will not end up in a local maximum. One of the measures

was the setting of � to a random value if no change in satisfaction happened.

Another measure was to insert a random new process (not a processtype!) if

the satisfaction stayed constant or the number of processtypes got less than a

certain limit.

The details of the experiments will be discussed in chapter 3 with the results.

A remark that can be made is that the measures to maintain diversity seem a bit

ad hoc. They are copied from the work by Steels [STEELS94b], but it appears

that some improvements are in order. Actually the whole genetic algorithm

seems to be liable to improvement. But this will be discussed in chapter 8.

The reader must be aware that between di�erent experiments minor mod-

i�cations were sometimes made to the software. These modi�cations will be

described and explained in chapter 3 about the experiments.
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Chapter 3

First Practical Results

The genetic system was implemented on a real robot. This robot, called `Lola'

is based on a standard B12 mobile robot base from Real World Interface Inc. It

is enhanced with all kinds of sensors (touch, infra-red, light, speed and distance)

and can ride around by using a battery-powered electric motor. It also has a

PC-compatible computer on board, on which the control-software can be run.

The robot is thus capable of completely autonomous behaviour.

3.1 The First Experiments

The �rst experiments that were performed are meant to duplicate the results

that were obtained through simulation in [STEELS94b]. The experiments in this

paper involved forward movement, backward movement and halting behaviour.

These very simple behaviours cause the robot to move forward, backward and

to stop, respectively.

The robot has disposal of one sensor and one actuator. The sensor returns

the distance the robot has covered in the previous cycle. As the average cycle

time is �xed this is a measure of the robot's speed. The actuator sets the velocity

of the robot. However the sensor measures the velocity independently from the

setting of the actuator. The robot now has to learn the connection between

these two quantities.

The results are presented in �gures 3.1 and 3.2 for forward and backward

movement.The behaviours take place convincingly.

The results for halting behaviour are presented in �gure 3.3. To test if the

halting behaviour was real, an arti�cial disturbance was introduced by accel-

erating the robot through a touch-sensor reex. These simple reexes were

maintained in the robot to prevent it from damaging itself by trying to ride

through a wall. The disturbances caused the peaks in the graph at cycles 800

and 900. If it had come to a halt because there were no processes left to drive

9
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Figure 3.1: Forward movement.

description value

Number of processes at start 50

Value of � (see equation 2.1) 0.01

Values of 

p

(see equation 2.1) -25, 0, 25

Speed to be learnt -25, 0, 25

Value of � ( see equation 2.4) 10

Table 3.1: Parameters of the learning system.

it, then it would not have come to a halt again after the disturbance. But it did

reduce its speed to zero, so the halting behaviour was real.

One must keep in mind that these results are only examples. The graphs are

made from single runs of the robot that showed the correct behaviour. Di�erent

runs give di�erent graphs, which look similar, but are by no means the same.

In table 3.1 the parameters of the system are given.

The periodicity shown in the graphs for forward and backward movement

is an artifact. This was caused by the fact that the results were periodically

written to the oppy disk drive of the robot. This caused a periodic lengthening

of the process cycle and thus an apparent increase of the robot's speed (because

it covered more distance). In later experiments this e�ect was removed by using

a RAM-disk instead of a oppy disk.
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Figure 3.2: Backward movement.

3.2 Changing Tendencies

The previous experiments were undertaken with a �xed goalvalue for the quan-

tities. But what we �nally want is a robot that can operate independently

using open-ended evolution. It then has to be able to choose its own behaviour

systems. This can be implemented by using tendencies. A tendency is associ-

ated with a certain behaviour system. If the robot has a certain tendency, the

accompanying behaviour system is active. The tendency is actually associated

with a (control-) goal, which is expressed as a value that has to be achieved by

a speci�ed quantity.

The tendencies can now be turned on and o�. In the beginning a random

tendency was turned on. If it became active, the processes belonging to that

tendency were allowed to inuence the quantities. All other processes were held

inactive. The processes belonging to the active quantity were also the only ones

that were used in the genetic search. If the goalvalue had been attained, or if

the system had ran too long without reaching the goalvalue, another tendency

was generated randomly.

This approach has the result that behaviour systems are trained one after

another. In the beginning behaviour systems will react slowly to a changing

tendency, but later in the run when the behaviour systems have been trained

su�ciently they will react much quicker. This is shown in the �rst part of �gure

3.4.

In the second part of the graph, an undesirable e�ect is seen to happen.

Here the behaviour systems still seem to be active, but their goalvalues are not

reached anymore. An explanation can be found in the numbers of the di�erent

processtypes, shown for forward movement in �gure 3.5.
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Figure 3.3: Halting behaviour.

In the beginning the process \solving" the problem (50�q

0

) grows and holds

the absolute majority and all other processes have zero instances. But then,

around generation number 140, processes that damage the solution appear and

grow in number. We are now confronted with the strange e�ect that processes

that were �rst exterminated by the genetic algorithm, because they were found

to be inferior, are now favoured although they still are detrimental to the system.

Apparently some processes get assigned a �tness to which they have no right.

How this can happen is still very unclear. In chapter 4 some possible causes are

discussed. Also some situations are presented in which it can be proven that

the system will assign the correct �tness. Further drawbacks of the system are

discussed in chapter 6.
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Figure 3.4: Value of the wheelcounter.
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Chapter 4

Some Remarks about the

First Results

The results of the �rst experiments with the genetic learning PDL system imple-

mented on a robot showed great promise. The system most de�nitely learns and

it learns very quickly , independently and on-line, which are all prerequisites for

a learning system on an autonomous robot. Some caution is in order, though.

Long term behaviour of the system does not seem to be particularly stable,

the system is very dependent on its initial parameters and the system has only

been used in a very simple setting with only one sensor and one actuator. We

will now discuss the system and its problems in some more detail. The system

discussed will, unless speci�ed otherwise, be a system with two quantities, one

sensor and one actuator that react to each other and that have a more or less

linear relation. Systems with multiple sensors and actuators are more di�cult

to analyze. These kinds of systems will be discussed in chapter 6.

4.1 Initial Behaviour

An unpleasant behaviour of the system that was observed was the impossibility

to learn if the number of processes at the start was chosen too high. The system

then remained in an oscillatory state with the quantities' values very near zero.

The oscillations were observed when the parameters of the system were as in

table 3.1 and the number of processes (per behaviour system) was increased to

100 or more.

A possible explanation of this e�ect is that if the number of processes gets

too high, their inuences tend to average each other out. The relative di�erences

between the numbers of instances of the di�erent processtypes gets smaller when

the number of processes increases. If the relative inuence per processtype gets

too small, then the number of instances of this process will never change, so
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there will never be any evolution.

If this is the right explanation or not has not been investigated. The problem

was solved very e�ectively by limiting the number of processes per behaviour

system to about 50 divided among six di�erent processtypes at initialization.

Another possible solution (if more processes are needed) could be to use real

numbers for the number of instances and thus e�ectively allowing non integer

numbers of instances or to use extra noise in the beginning in order to \shake"

the system out of local maxima.

4.2 Limit on the Number of Processes

There is an important reason to limit the number of processes in a behaviour

system. If the number of instances of a certain processtype exceeds a certain

limit, the changes these processes propose to a quantity will cause it to get a

value that is further away from the gauge value than it was before the \correc-

tion". The result will be an exponentially growing oscillation around the gauge

value.

This can only happen if the correction proposed by all processes together

is more than two times the deviation that was to be corrected. If we have a

processtype of the form:

q

1

 �(x� q

0

)

in which means that the value at the right of the arrow is added to the value

of the term to the left of it. The q

1

is the output quantity, the q

0

is the input

quantity, x is the gauge value and � is the sacling factor. If we also have a

relation between the two quantities of the form:

q

1

= y � q

0

then the maximum number of processes can be found by solving the inequality:

�

�

�

�

M� (x� (x+ �))

y

�

�

�

�

< j�j

which solves to:

M < 2

y

�

(4.1)

In the system tested in this paper (y = 20; � = 0:01) this would result in

a maximum number of 4000 instances of processtypes monitoring q

0

and 200

instances of processtypes monitoring q

1

. These are upper limits that have to be

observed in any case; if these are exceeded the system will always break down.

4.3 Instabilities

The system showed an instability in the long run (see chapter 3). The value of

the goalquantity reached by the system got closer and closer to zero, because the
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number of instances of wrong processes, which we will call parasitic processes

grew. An exact mathematical explanation of this phenomenon has not been

found yet, but some observations can be made.

The �rst observation is that, if the quantities change in only one direction,

the system will increase the number of good processes and decrease the number

of bad processes. This can be supported by the following argument.

Suppose the goalquantity changes in such a direction that the satisfaction

increases. Suppose furthermore that the quantity does not cross one of the

gauge values of the processes. This is a reasonable assumption, because the

breakdown of the system takes place far away from the gauge values of the

processes, anyway. As the changes are in only one direction, all the �q will have

the same sign. For all processes the b

p;t

(see equation 2.3) will also have the

same sign (as no gauge values are crossed). Then obviously for all processes the

summation of the b

p;t

will have the same sign as the b

p;t

themselves. Processes

that have proposed changes in the same direction of the quantity will have a

positive sign, the others will have a negative sign. The value of � (see equation

2.4) will be positive, as the satisfaction has increased. The number of instances

of processes working in the direction of the satisfactionwill increase, of processes

that work in the opposite direction will decrease.

If the quantities have changed in a direction decreasing the satisfaction, then

the argument goes analogously, but with inverted sign for �. The observation

can probably even be extended for unbiased systems whose quantities change

in both directions in one genetic window.

The second observation that can be made is that for reasonable numbers of

processes (that is less than y=�, see equation 4.1) the changes of the quantities

in a completely linear system will be in only one direction. A completely linear

system is a system, in which all the quantities react to each other without delay

and in a completely linear way. In such a system, the change proposed by the

processes will always be less than the distance of the value of the goalquantity

to the average gauge value of the processes. This distance will become smaller

and smaller by the action of the processes, but it will never become zero and it

will also never change sign.

The conclusion that can be drawn from these two observations is that the

breakdown of the system is caused by non-linearities in the outside world to

which the system is not prepared. This looks like a huge problem for a real-

world learning system, but fortunately, the breakdown can be prevented by

limiting the number of instances of processes allowed. Also a mechanism should

be added that removes processes that are not useful. This can simply be done by

multiplying the number of instances of each processtype by a value �; 0 � � < 1.

So although the long-term breakdown of the learning system can be pre-

vented by applying a few simple measures, the exact mechanics of the how and

why are not understood. Why the system starts to break down when a certain

number of processes is reached nor what the connection is between the initial

inability to learn and the long-term breakdown. These gaps in our understand-
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ing of the behaviour of the system severely limits the applicability of it. If we

cannot state the condition under which the system will remain to function, it is

not safe to use it in real-world applications.

On the other hand, we have now got some measures under which a system

exhibits a reasonable long term stability. We can now do some more complex

experiments with the assurance that the system will not suddenly break down.
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Chapter 5

Further Experiments with

the Robot

The experiments with the basic behaviours and with the tendencies were only

a starting point for the experiments with this learning system. The behaviours

that were learnt by the robot in these experiments were very simple indeed.

In this chapter some experiments are described in which the robot is taught

more complex behaviours. The �rst of these is something which could be called

\obstacle avoidance". In fact it is a one dimensional reaction to a touch sensor.

The important thing of this experiment is, that the robot needs to learn a

discontinuous behaviour, something which at �rst sight might seem impossible.

For real obstacle avoidance, the robot has to be able to turn away from an

obstacle, as well as to back away from it. This behaviour is found to be too

complex for a single behaviour system, but an experiment is conducted to check

if a robot can learn to drive straight, when using both a translation and rotation

actuator. This will also be useful for phototaxis behaviour.

The last experiment is indeed concerned with phototaxis. In this experiment

a robot has to orient itself towards a light source by using its rotation actuator.

The robot will not be able to learn this.

5.1 One Dimensional Obstacle Avoidance

In this experiment the repertoire of sensors of the robot was extended with a

touch sensor. When touched, this sensor returned a value that was a function

of the time it was pressed and the pressure with which it was pressed. In fact

the behaviour of the touch sensor is a bit more complex. A typical touch sensor

activation is illustrated in �gure 5.1

The behaviour is caused by the fact that the physical touch sensors of the

robot Lola are 1-bit sensors. They are not sensitive to pressure. Therefore the
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Figure 5.1: Typical touch sensor behaviour.

translation velocity that is set (but possibly not realized) is added to the value

of the touch sensors. Then for every timestep that it is activated a counter

is increased, to simulate the fact that the longer the touch sensor remains de-

pressed, the worse. Lastly, the maximum value of the touch sensor is limited to

(an arbitrary) 255.

Now when a touch sensor gets depressed, it quickly jumps to 255, as the speed

added is usually higher than 255. The counter now begins to increase. When

the robot �nally goes backwards, the speed decreases rapidly and eventually

becomes negative, hence the drop below zero of the touch sensor. When the

touch sensor is released, the value jumps to a positive value again, as the counter

was not yet zeroed. The value of the counter then goes to zero in a linear way.

This might not be the ideal behaviour of a touch sensor, but in the author's

opinion it is a reasonable realistic way of behaviour. The value is dependent of

time and (indirectly) pressure, and a little oscillation at the release is also not

unrealistic.

The robot was quite capable of learning how to back up from obstacles. In

the experiment it was equipped with a forward movement tendency, so it would

bump into an obstacle several times. It did not remember that there was an

obstacle. Once it had backed up a little, its \urge" to move forward became

too strong so that it would ride into the obstacle again. This was hoped to be

solved in the next section in the two dimensional obstacle avoidance.

The results of a sample run of the learning system are shown in �gure 5.2.

In this �gure the values of the three quantities of the robot are shown. These

are the touch sensor, the wheelcounter and the translation velocity. Only the

last is an actuator, the �rst two are sensors. It can be seen that when the robot

runs into an obstacle, it pushes against the obstacle for awhile and then goes
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Figure 5.2: One dimensional obstacle avoidance.

backwards to get free from it. This is repeated several times, with a less and

less strong reaction. The most important processes that are involved in this are

shown in �gure 5.3.

In this �gure the explanation for the discontinuous behaviour of the robot can

be found. An unchanging system of PDL-processes would have great di�culties

implementing the obstacle avoidance without being dependent on the values the

sensors return. The backward movement processes of the touch sensors would

have to compete with the forward movement processes of the tendency. The

number of processes needed for the backward movement would have to depend

on the number of forward movement processes, the value of the touch sensor

and the gauge values of the processes. But this is not the case in our system.

Every time the robot bumps into an obstacle, it \learns" how to avoid the

obstacle by increasing the number of backward movement processes and de-

creasing the number of forward movement processes. When it has cleared the

obstacle and the touch sensor has become silent again, it \forgets" the backward

movement and starts to move forward again.

Unfortunately, every time the robot bumps into an obstacle, the number

of noise processes is also increased. This could be the cause of the weakening

reaction of the robot to the touch sensor. But that could also be caused by its

ever decreasing forward speed, because it gets less and less time to recover from

its contacts with the obstacle.

The parameters of the system in this experiment are shown in table 5.1. The

satisfaction function was the sum of the absolute value of the goalvalue minus

the wheelcounter and the absolute value of the touch sensor.
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Figure 5.3: One dimensional obstacle avoidance.

description value

Number of processes at start 75

Value of � (see equation 2.1) 0.01

Values of 

p

(see equation 2.1) -70, 0, 70

Speed to be learnt 70

Value of � ( see equation 2.4) 10

Table 5.1: Parameters of the learning system.

5.2 Driving Straight

The one dimensional obstacle avoidance is not a very practical behaviour system.

After the robot has \avoided" the obstacle by backing up from it, it completely

forgets that it was there and will run into it again. This shows clearly from

�gure 5.2. In practical obstacle avoidance, the robot usually moves in a two

dimensional environment and avoids obstacles by backing up and changing the

direction in which it moves. The robot will then move forward again, but

as its direction of movement has changed a little bit, it will probably miss

the obstacle. This can be considered true obstacle avoidance. Unfortunately,

preliminary experiments showed that this was a bit too complex for a single

behaviour system. Thus we concentrate on teaching a robot to learn to walk

straight in a two dimensional world.

In order for Lola to be able to change direction and thus to become two

dimensional, we need to add a new sensor and a new actuator. The actuator will

allow her to start a rotation and the sensor will provide her with information

about how quickly she is rotating. We also have to change the satisfaction
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function a little bit. We want the robot to move in straight lines, so we lower

the satisfaction if it is rotating.

That the addition of an extra sensor and an extra actuator is not without

penalty is shown in �gure 5.4. In this �gure the system is shown while learning

to move forward in a straight line. In contrast with the very fast learning of

the system that had only one sensor and one actuator, the system with multiple

sensors learns much slower.
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Figure 5.4: Slow learning with multiple sensors.

This can be explained by two facts. The �rst is that the possible relations

between the sensors and actuators are much more complex. The second is that

the number of di�erent processtypes is much higher, while there are still only

a few that give correct behaviour in the given situation. The extra processes

cause a lot of \noise". There is also a greater risk of reducing the number of

instances of one of the correct processtypes to zero.

These factors slow down the learning process, but as can be seen from the

�gure, does not prevent the robot from learning how to ride in a straight line.

5.3 Phototaxis Failure

The last experiment that was conducted appears to be extremely simple. The

robot has to orient itself towards a light source using two light sensors and a

rotation actuator. The outputs of the two light sensors are preprocessed into one

input quantity representing the di�erence between the two sensors and in one

input quantity representing the average of the two sensors. This is a somewhat

more useful form for the simple PDL processes.
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Unfortunately, the learning task only appears to be simple. In reality the

robot is not able to direct itself towards the light source in any stable way. It

does seem to react on its sensors, turning in the right way when one of the

sensors gets more light than the other, but contrary to what was hoped and

expected, the robot is not able to reach a stable, unchanging position directed

towards the light source.

So although the problem seems at �rst sight to be similar to forward or

backward movement, in that it has to stabilize the value of an input quantity

using output quantities, it is in fact quite di�erent. In the movement experi-

ments, there was a rather direct functional relation between the sensor and the

actuator. In the phototaxis experiment on the other hand, there is no such

functional relation. There is only a functional relation between the integral over

the actuator and the value of the sensor. In such a situation, the PDL-learning

system is usually not able to learn or to perform. This will be discussed in more

detail in chapter 6.
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Chapter 6

Limitations to the PDL

Processes

The processes used in the genetic learning PDL system are very simple indeed.

It is therefore to be expected that they cannot solve all problems. In this chapter

some theoretic arguments are presented as to the limitations of the learnable

functions and some suggestions are made to improve the range of learnable

functions.

6.1 Functional Dependency between Actuator

and Sensor

In order to be able to understand the behaviour of PDL-functions, we have to

get an idea of how the connection between the di�erent quantities in the system

is. For this we assume that there is a function f converting an activator into a

sensor value.

q

0

= f(q

1

) (6.1)

in which q

1

is the actuator- and q

0

is the sensor quantity. This function will

not have to be completely invertible, although we will assume that it is locally

invertible in a later proof. It is also possible that there is no functional relation

between the actuator and the sensor. This will also be discussed later.

We can now give a formula that links the value of quantity q

1

at a certain

timestep with its value at the next timestep. This formula can be derived using

equation 2.1 and combining it with equation 6.1. for convenience we will assume

that 

p

is zero. The resulting formula will then be:

q

1;t+1

= q

1;t

� �f(q

1;t

) (6.2)
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Now if we have a functional relation, there are three possible behaviours of

the system. These are: convergent, divergent and periodical or chaotic. This is

shown in �gures 6.1, 6.2 and 6.3. In these �gures the equation 6.2 is shown and

a trajectory of q

1

when the system is iterated.

-1 +1

+1

-1

0

y = x+af(x)

y=x

Figure 6.1: Convergence of the quantities
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Figure 6.2: Divergence of the quantities

It is obvious that only the �rst form of behaviour is desirable. But what

kinds of functions show exactly this behaviour? They have to avoid chaotic or

periodic behaviour and they have to converge (at least locally) to a solution.

Chaotic and periodic behaviour can be avoided by disallowing functions f

so that x + f(x) does not have local maxima or minima. There are, of course

functions that do have local maxima and local minima and that do not exhibit

chaotic or periodic behaviour, so the condition is su�cient, but not necessary.

If we do have a function with local maxima and minima, we should be aware of

periodic or chaotic behaviour.

Divergence can be avoided by taking care that 0 < f

0

(0) <

2

�

. Divergence

away from the solution does not occur if we can �nd a limit d so that for every

j�j < jdj it is true that:

jf(f

�1

(�)� ��)j < j�j (6.3)
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Figure 6.3: Periodic behaviour of the quantities

This expression was derived by assuming that the sensor quantity q

0

has a

value of �. The actuator quantity must then have a value of f

�1

(�) (hence the

aforementioned local invertibility of the function). This was then substituted

in 6.2 after which equation 6.1 was used to calculate the new value of the

sensor quantity. The condition 6.3 is now derived by making sure that the new

deviation is smaller than the old one.

The inequality can be solved by assuming that � is so small that f(�) can

be approximated by f

0

(0)� and f

�1

(�) by

�

f

0

(0)

. Substituting these and solving

for f

0

(0) (assuming � > 0) yields the aforementioned limits on f

0

(0):

0 < f

0

(0) <

2

�

(6.4)

Note that in the case that the goal value of the sensor is not zero, the derivate

can be taken at this goal value and the formula remains valid. Also compare

this result with that from equation 4.1.

6.2 No Functional Relation

Other interesting problems occur if there is no functional relation between the

value of the actuator quantity and that of the sensor quantity. If this is the case

then a process of the form of equation 2.1 cannot directly control the value of a

sensor. Extra constraints need to be ful�lled for a system to be controllable in

such a case.

An example of such a case was the phototaxis experiment from section 5.3.

An other case where there is no functional relation is when one tries to learn

forward or backward movement to a certain position instead of to a certain

speed. One does not monitor the measured speed in such a case, but the distance

covered by the robot. Preliminary experiments showed that this can also not

be learnt.
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In both these cases there is a functional dependency between the integral

(or the summation in the discrete case) over the actuator and the value of the

sensor. In a situation like that the changes proposed by the PDL-processes

will not necessarily lead to a stable value of the actuator. This is even so in

preprogrammed systems. The PDL-processes will then not only not be able to

learn the desired behaviour, there is not even a way to implement it.

We will attempt some mathematical analysis of the situation where there is

a functional dependency between the integral or summation over the actuator

and the sensor. Cases in which there is another kind of relation or in which

there is no relation whatsoever between the sensor and the actuator can also

exist. But in the former situation, the analysis will be similar and in the latter

no analysis is necessary as it is clear that nothing at all can be learnt.

For the analysis we need two quantities, the sensor at time t q

0;t

and the

actuator at time t, q

1;t

. We will assume that there is one process of the form:

q

1;t+1

= q

1;t

� �(0� q

0;t

)

which is, in fact an ordinary PDL-system with zero as the goal value.

Now we can write q

1;t

in terms of q

1;0

and the series of q

0;�

where 0 � � < t.

In other words:

q

1;t

= q

1;0

� �

t�1

X

�=0

q

0;�

(6.5)

The summation over all the actuator values, S

t

, on which the value of the

sensor is functionally dependent can now also be written in terms of q

1;0

and

the q

0;�

:

S

t

=

t

X

�=0

q

1;�

= (t+ 1)q

1;0

� �

t�1

X

�=0

(t� �)q

0;t

= (t+ 1)q

1;0

� �

t�1

X

�=0

(t� �)f(S

�

)

(6.6)

This might look like a recurrence, but it is in fact not, because S

t

in this formula

is only dependent on S

�

's that have been calculated before. It is true, however

that S

t

can now be written completely in terms of q

1;0

and possibly an S

0

, which

would have to be added separately.

In a real system this extreme determinism will not be possible, as there will

always be some noise. However it is a good starting point for a mathematical

analysis. We can for example investigate what conditions have to be ful�lled

for the system to reach an unchanging state. In such a state q

0;t

will have to

be zero otherwise the actuator will be changed. But it must also be true that

S

t

= S

t+1

because otherwise q

0;t+1

will change as well.

So for the system to be stable at time t it must both be true that q

0;t

=

f(S

t

) = 0 and the di�erence between S

t

and S

t+1

,

P

t�1

�=0

f(S

t

) = 0. Not many

functions ful�ll this criterium, so it is unlikely that a stable state will be reached

in a certain system.
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The limited repertoire of relations between sensors and actuators that can

be learnt by the PDL-system is a disadvantage. In chapter 7 we will discuss a

possibility to extend the repertoire.
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Chapter 7

How to Learn more

Complex Things

The genetic learning PDL system has shown some remarkable learning of sim-

ple behaviour systems like forward movement, backward movement, halting

behaviour and even a rudimentary form of obstacle avoidance. Problems oc-

curred, however, when the behaviour systems that had to be learnt were more

complex or were based on multiple sensors and actuators or consisted of a more

complex relation between sensor and actuator.

Another problemwas, that in most cases, except in the case where tendencies

were used, all processes had an equally big inuence at all times. This was

especially clear in the obstacle avoidance experiment. Here all the processes

were active (and were under the inuence of the genetic algorithm) at the same

time. This resulted in a system that learned how to drive backwards every time

when it encountered an obstacle, but which forgot this once it was clear of the

obstacle.

The tendencies as implemented in the experiment in chapter 3 were of not

much use, as they were controlled with no purpose in mind and without a

learning algorithm. Clearly a more intelligent solution is needed.

7.1 Using a Finite State Machine

Using tendencies as a means to activate and deactivate behaviour systems is

not a bad idea. Only a more exible method of turning them on and o� is

needed. Ideally we would want a system that has one basic element that both

implements the tendencies as well as builds the behaviour systems. However

tendencies seem at the moment to require a rather di�erent mechanism than

the behaviour systems.

Behaviour systems monitor a sensor and inuence an actuator accordingly
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in a dynamical and linear way. Tendencies on the other hand, are switched in a

non linear way when a certain condition has been met. These kinds of behaviour

suggest a �nite state machine that turns on and o� tendencies.

A �nite state machine has an input and an internal state and a set of rules

that determine the next internal state when it receives a certain input when it

is in a certain state. In the case of a �nite state machine controlling behaviour

systems the internal state consists of the active tendencies. The inputs are the

events that can happen to the di�erent active behaviour systems. These events

are for example: achieving maximum satisfaction or not achieving maximum

satisfaction after a certain time limit.

The �nite state machine can now switch between di�erent groups of active

behaviour systems according to the total behaviour of the system. The system

is illustrated in �gure 7.1

List of Tendencies
Rules

Behavioursystems

Input/Output Quantities

Finite State Machine

Outside World

Figure 7.1: Finite state machine controlling behaviour systems.

7.2 Adding Learning Capabilities

The �nite state machine is capable of controlling the behaviour systems in a

coherent way, but it is not very exible. Furthermore it must be determined

beforehand which behaviour systems have to be used at which moments. This

is an undesirable situation, as this might be impossible in certain cases and

because we are researching learning behaviour in the �rst place.

The behaviour systems themselves can learn according to the same rules as

those that were used in the earlier parts of this research. As long as they are

only trained when their tendencies are active. They should also not become too

complex. The system will then have random behaviour in the beginning, but
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will be able to perform rather complex tasks in the end. This is comparable to

a system that has a high level instinct, but that has to learn the basic workings

of its sensors. A system of this kind is in fact very useful, as it is able to adapt

to changes in its sensors and actuators.

However, we would want the system to be able to learn more complex things.

Therefore the �nite state machine must be made exible as well. In other words,

we want the system to learn the rules that govern the transitions between the

di�erent states (that is behaviour systems).

These rules can be modeled as condition action pairs. The condition is the

input and the present state and the action is the next state. We now want a

system that can �nd out which rules are useful and which are not. For this we

need to solve a temporal credit assignment problem, because we do not know

when rules that perform a certain action will receive payo�.

Notice that the system is very similar to a classi�er system. Classi�er sys-

tems also use rules in the form of condition/action pairs and we could consider

the list of behaviour systems and events as the message list. Usually classi�er

system use a system like bucket brigade or Q learning, but we will use a slightly

di�erent scheme.

The credit assignment system for the classi�ers is based on a running average

of the temporal correlation between actions and satisfaction. For every rule a

running average is maintained which will be high (close to 1) if the rule being

active is usually followed by a high satisfaction. The average will be low (close

to -1) if the activation of the rule is usually followed by decreasing satisfaction.

With a

t

the 0 if a rule is not active at time t and 1 if it is active and with

s

t

1 if the satisfaction has increased at time t and -1 if it has decreased, the

following formula can make a reasonable estimate of this correlation:
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(7.1)

Here  and � are constants that determine how quickly the past is forgotten.

This might seem an extraordinarily complex formula, but it can in fact be

calculated by keeping track of only two variables per timestep: the summation

A

tot;t

over the activations and the total of the running average, F

tot;t

. They can

be calculated by:

A

tot;t

= (1� �)a

t

+ �A

tot;t�1

(7.2)

and

F

tot;t

= (1� )A

tot;t

� s

t

+ F

tot;t

(7.3)

We have now got an estimate over all time of how well a rule behaves.

Note that the satisfaction function is something di�erent from the satisfac-

tion functions of the basic behaviour systems. The basic behaviour systems have
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very simple satisfaction functions consisting of one goalvalue and one goalquan-

tity. The satisfaction function of the whole system, on the other hand, can be

arbitrarily complex.

We can now use a genetic algorithm to �nd a good population of rules. This

genetic algorithm can for example copy the rules with �tness that is less than

zero with a certain (small) probability and rules with higher than zero �tness

always or with a very high probability. To maintain diversity we will have to

insert new random rules into the population. This can be considered a form of

mutation. The resulting system is shown in �gure 7.2.

List of Tendencies Rules
and fitness function

Behavioursystems

Input/Output Quantities

Classifier System

Outside World

Satisfaction

Genetic Algorithm

Figure 7.2: Learning PDL system with classi�er system.

Many variations on this basic theme can be tried out. The genetic algorithm

proposed is still very primitive and will probably not work very well if we get

too many rules with high �tness. ALso the classi�er system can be extended as

not to allow every active rule to perform its action. Rules will then be chosen

with a probability that is proportional to its �tness.

7.3 Augmenting the Abilities of the Behaviour

Systems

In chapter 6 some arguments were put forward to show that the basic behaviour

systems consisting of simple PDL-processes are a bit too simple for real world

learning tasks. In this section we will show that these are in fact equivalent

to a very simple form of neural network and make a suggestion as to how the

capabilities can be extended.

The simple PDL processes used in this research are very similar to simple

neural networks. This becomes clear if we write the system in a matrix notation.

34



Using equation 2.2 we can write:

~

Q

0

=M

~

Q+

~

G (7.4)

Where

~

Q and

~

Q

0

are the vectors q

0

: : : q

n

of quantities. Vector

~

Q contains the

old values and

~

Q

0

contains the new values.

The elements of matrix M can be calculated by the following formula:

m

ij

= �

X

pjp2P\l

p

=i\k

p

=j

�1 (7.5)

In other words, the matrix elements represent the number of times a certain

quantity is added to another quantity when cycling the system. The scaling

factor � was necessary, because it is also present in the processes themselves.

The vector

~

G consists of the values that are added to quantities in a PDL-

cycle. These are given by equation:

g

i

= �

X

pjp2P\l

p

=i



p

(7.6)

The de�nitions of all the symbols can be found in section 2.2.

In the matrix form of equation 7.4 the PDL system looks remarkably like

the description of a recurrent network with asymmetric inhibiting connections

and linear activation functions. The elements of matrix M are the weights of the

connections and the vector

~

G represents the thresholds of the network nodes.

The quantities themselves map on the nodes. The values of the quantities are

the activations of the nodes.

From neural network theory (see for example [HKP91]) we know that net-

works that have only linear threshold functions are not very powerful. Also

in chapter 6 it was shown that the only type of relation that can be learnt is

a direct functional dependency between actuator and sensor which also has to

ful�ll certain constraints if one wants to avoid chaos or divergence. A somewhat

more powerful basic process could be based on a device from control theory,

known as the PID

�

(for an introduction into control theory, see for example

[DSW90]).

A PID is a device that bases its output on a weighted sum of terms that are

proportional to the derivate of the measured function, to the measured function

itself and to the integral over the measured function. By using the extra terms

one can implement controls between sensors and actuators that do not have a

direct functional dependency.

A genetic algorithm can be used to search for the right weights of the three

terms and for the right combinations of sensors and actuators. In such a genetic

search one could use crossover between individuals having the same sensor and

�

Suggested by drs E.J.W. Boers in a personal communication.
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actuator. One should also take measures to maintain diversity, as it could

be necessary to have multiple sensors inuencing multiple actuators for the

behaviour system to function.

The processes based on PID's are a direct extension of the simple PDL

processes from this thesis if we add a small o�set to their outputs. If we choose

a negative weight for the proportional term of the PID and zero weights for the

other terms they are in fact equivalent. We thus have a real extension to the

old system.

This system has not been implemented yet. For the PID's to work, some

extra information about the quantities has to be maintained and choices have

to be made with what accuracy that is done. Also the genetic algorithm has

to be modi�ed considerably. It cannot be kept a simple as it was in this re-

search. The basic determination of �tness, however, can still be kept the same.

Examples that could be tested with this new system are the phototaxis from

sectionsect:phototaxis and possibly the experiment in which a certain point has

to be reached with translation.
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Chapter 8

Conclusions

The simple PDL processes learning with a genetic algorithm seem to be a

promising learning system. They learn in real time and on line without su-

pervision from a teacher. Furthermore the system learns very quickly.

The system has been implemented on a real robot, which learned forward

movement, halting behaviour and backward movement and also a combination

of these three behaviours. Also a very simple one dimensional obstacle avoid-

ance was learned, but this was found to require constant action of the genetic

algorithm, instead of produce a stable behaviour system.

In the long term behaviour instabilities were found, but these could be

avoided by limiting the number of instances of each processtype and by elimi-

nating unused processes. Also some problems with the extreme dependency on

good staring parameters were found, but these too could be solved by choosing

the right size of the starting population. Unfortunately a sound theoretical basis

for stable behaviour was not found.

Theoretical analysis showed severe limitations to the kinds of behaviours

that can be implemented using the simplest form of PDL-processes. It was

suggested in this paper to use PID's instead. The use of a simple classi�er

system was suggested to get di�erent behaviour systems to cooperate. Both

these suggestions were not tested in an implementation.

Learning PDL processes also appear to be similar to simple neural networks.

It has to be investigated if results from the very rich �eld of arti�cial neural

network research (see e.g. [HKP91]) can be applied to PDL-processes.

Genetic learning PDL processes ful�lled many requirements necessary for

use in a real robot. They learn on-line, without supervision and very quickly

in simple situations. This shows great promise, but unfortunately a very im-

portant requirement for use in real world applications, the provability of stable

behaviour, was not ful�lled. Also the system as tested is not able to imple-

ment more complex or discontinuous behaviours. It is hoped that the suggested

improvements can change this.
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The simple system showed great performance in simple situations. It is

hoped that with the results and suggestions of this paper a more complex system

can be built that performs as well in more complex situations.
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