
Project Study Neural Networks

On the dynamic behaviour of
back propagation networks

October 28, 1994

By Alex Wulms
St. Nr. 8949670

1. Introduction

page 1

1. Introduction

As neural networks are often used to solve problems which are not completely
understood or which are hard to solve with the more traditional AI techniques,
it is important to know how well a neural network can learn to solve such a
problem.

One category of problems that can be solved with a neural network, is the
category of association problems; each input of the problem space has to be
associated with a correct output. These association problems are often solved
with so-called back propagation (BP) networks. A BP network will be trained
with a set of inputs of the problem space and the correct outputs that are corre-
sponding to these inputs. During the training session, the weights of the net-
work will converge to a point in the network’s weight space, in which the
problem examples will be known to the network; when the network has
reached this point in its state space, it can give the correct output for each
example input. However, due to the nature of the network, it can not always
learn the problem exactly; the output produced by the network when pre-
sented with an input problem, will sometimes only be an approximation of the
exact output. Therefore it is usually hard to tell when the network has learned
the problem.

To understand more of the problem of determining when the BP network
has learned the association problem, the dynamic behaviour of the neural net-
work during its training should be studied. To investigate this dynamic behav-
iour of a BP network, a tool has been developed under OSF/Motif that can
trace the internal state of a BP network during a training session. This report
gives the results of the investigations done with this tool.

This report has the following structure. The following section gives a
description of BP networks and which variant has been used in the tool. Sec-
tion 3 will describe the properties of BP networks and the problems which can
arise with them. In section 4 will be explained which parameters can be set to
investigate the network and in section 5 the various ways to train the network
with the tool will be given. Section 6 will describe which properties of the net-
work can be viewed with the tool and some traces made with the tool will be
analysed. In section 7 some conclusions will be given and some topics for fur-
ther research can be found in section 8. The report will end with an appendix
showing the exact solution for the ID1 function learned by a one layer net-
work.

2. BP networks

BP networks are in fact so-called feed forward networks with a special learn-
ing algorithm: the error BP algorithm.

In general, a neural network consists of some units with (directed) connec-
tions between them. It is possible to associate a weight with each of these con-
nections. For a BP network, these weights will be updated during the training
session with the aid of the learning rule.

In a feed forward network, the units are placed in a number of layers with
only directed connections from the units in a layer i to the units in the layer

2. BP networks

page 2

i+1. A feed forward network consists of minimal two layers: an input layer
and anoutput layer. When the network consists of more layers, all the layers
between the input layer and the output layer, will be calledhidden layers with
hidden units. There exist two different conventions to count the number of
layers in a feed forward network: one convention is to count the input layer,
the hidden layers and the output layer while in the other convention only the
hidden layers and the output layer will be counted. The trend is moving
towards counting only the hidden layers and the output layer, thus only count-
ing the layers that perform computations. Therefore, this convention will also
be used in this report. So the most simple feed forward network is in fact a one
layer network.

In Figure 1 the naming convention used in the formulas in this report and in
the source of the tool, will be shown.

The problem description will be inputted to the network by binding the right
activation values to the input units of the network; it will be bounded to the
units A01..A0n. The input unit A00 has a special function which will be dis-
cussed later. In the following steps, the feed forward network will feed these
activation values forward to the following layers as follows:

Let Aij denote the activation of unit j in layer i, then the following formula
can be used to calculate Ai+1,k:

with hi+1,k thenetinput for unit Ai+1,k:

and with g some (non-linear)activation function. It is possible to choose any
continuous differentiable function for g. A very convenient choice is to use a
sigmoid function. This has also be done in the tool: the tool uses the following

W012W002

W011W001

W000 W010

W121W120W111W110W101W100

A00 A01 A02

A10 A11

A22A21A20

ALayerIndex
 = activations[layer].activation[index]

WLayerToFrom
 = weights[layer].weight[to][from]
(the connection from unit ALayerFrom
to unit ALayer+1To)

nlayer
 = activations[layer].nr_elements

n0 = 3

n2 = 3

n1 = 2

Figure 1. A two layer feed forward network, showing the naming con-
vention used in this report and in the tool

Ai 1 k,+ g hi 1 k,+()=

hi 1 k,+ WikjAij
j 0=

ni

∑=

2. BP networks

page 3

sigmoid function to calculate the activations:

This activation function restricts the activation values to a range of (0...1).
In fact, when calculating the netinput hij of a unit Aij , one also needs to sub-

tract a threshold value from the weighted sum over the activations; this
threshold value sets a minimum value for the weighted sum over the activa-
tions to make the netinput pass the zero boundary. When using for example a
binary threshold function for the activation function g (g(h) = 1 for h > 0, 0
otherwise), the threshold value determines when the unit becomes active. On
the other hand, when using a non-linear function, the threshold value is
merely abias value, shifting the input to the activation function up or down.
A very convenient way to implement a bias, is to clamp the activation of the
units Ai0 to a fixed value of 1: in this manner, the value Ai0*W ik0 forms a bias
value for unit Ai+1,k. The advantage of this method is that the bias values can
also be trained, as the bias value is determined by the weight Wik0, which will
be updated by the BP learning mechanism.

A BP network can be trained in the following manner:
- first calculate the current output for an example input by feeding the input
forwards through the network.
- calculate for each output unit, the difference between the desired output
value and the current output value, which will be called the error for that unit.
- propagate the error values back to the underlaying layers.
- update the weights Wikj according to these error values with the so-called
gradient descent rule; the total error of the network can be expressed as an
error measure or cost function E[w], with w the weight vector, of which the
minimum has to be found during the training session. This minimum can be
approached by adapting the weights proportional to the gradient of this cost
function.

One very convenient choice for the cost functions is the following one:

with the patterns, the desired output for pattern and with the cur-
rent output.

The general form of the gradient descent rule is as follows:

with the change of the weight , thelearning rate and E the cost
function.

When using the above mentioned cost function, this will lead to the follow-
ing formula for updating the weights with the gradient descent rule (see [1]):

with the activation at the input end of the weight and with a
value derived from the error in the activation at the output end of the weight.

g h() 1

1 e
h–

+
----------------=

E w[] 1
2
--- ζi

µ
Ai

µ
–

2

µi
∑=

µ ζi
µ µ Ai

µ

∆Wikj α ∂E
∂Wikj
-------------–=

∆Wikj Wikj α

∆Wikj α δi 1 k,+ Aij
patterns

∑=

Aij Wikj δi 1 k,+

3. Properties and problems of BP

page 4

For an output unit , will be calculated from the error in the output
activation:

with g' the derivative of the activation function g and with the desired out-
put value on unit .

For a hidden unit , will be calculated from the of the units in
the next layer:

As the errors are propagated back through the network in this manner, this
way of updating the weights, is called error back propagation.

For calculating one needs to take the sum over the errors of all the
patterns that are used to train the network. However, in stead of presenting all
the patterns and calculating the afterwards (the batch method), it is also
possible to train the network in an incremental manner: present one pattern to
the network and update the weights immediately, then show the next pattern
and update the weights again, and so on. This incremental method turns out to
have several advantages over the batch method: the network converges faster
in most cases, it will not get stuck as easily in local minima and one does not
need the additional storage which is necessary in the batch mode for storing
the errors. For these reasons, the incremental method has been used in the
tool.

3. Properties and problems of BP

When a BP network is trained, the information which the network has learned
is stored in the weights between the units. During the training session, the
weights will converge to such a point in the weight space, that the cost func-
tion will be in a local minimum. Thus, training the network in the above men-
tioned manner will locally minimize the cost function in an incremental
manner.

However, there are some problems with BP:
1) The cost function is no strict rising function, it can have many local

minima and maxima. When the network is somewhere near a local mini-
mum, it can get stuck in such a local minimum and never reach the global
minimum.

2) The surface of the cost function can be very flat in some areas, which leads
to a very slow convergence in such an area.

3) As updating the weights is done incrementally, the network can oscillate
round a certain point in the weight space: the effect of updating the
weights for one pattern can have the opposite effect of updating the
weights for another pattern. When this happens, the network will oscillate
between these points in the weight space without converging much
towards a minimum.

One way to solve these problems, is to add amomentum parameter β to
the movement through the weight space. Informally spoken, one can compare

Aij δij

δij g' hij() ζj Aij–[]=

ζj
Aij

Aij δij δi 1 k,+

δij g' hij() Wikjδi 1 k,+
k
∑=

∆Wikj

∆Wikj

4. The edit options built into the tool

page 5

the movement through the weight space with the movement of a ball rolling
over the cost surface with a certain momentum (see [2]). Whenβ is set to
zero, this ball will stop rolling after each update, it loses all of its speed. How-
ever, whenβ is set to one, the ball will keep all of its speed after one update,
so it is rolling over the cost surface without experiencing any friction of the
cost surface; it is experiencing a friction free motion through the weight space.

The global effect of this momentum is that the network changes in the direc-
tion of the average movement it would make through the weight space. To
implement the momentum, one has to give a contribution from the previous
weight update to each new weight update. This leads to the following formula
for updating the weights:

The BP network in the tool makes use of this weight update rule with a
momentum parameter. The purpose of the tool is to trace the movement of the
network through the weight space during training to gain more insight in the
effects of using the above mentioned update rule with an incremental update
algorithm.

In this study we want to investigate the behaviour of a neural network dur-
ing the training sessions near a local or a global minimum. This behaviour
may depend on both the learning rateα and the momentum parameterβ. Also
the training order can influence the behaviour. First we will analyse the behav-
iour of a one layer network to see if there is any relationship between the
learning parameters and the path the network walks through the weight space
during the training session and to analyse the behaviour of the network when
the global minimum has been reached. After this, we will also make a start
with the analysis of a two layer network learning the XOR function.
 Furthermore, we want to find a way to determine from the type of (local)
minimum whether the network has reached a good or a bad approximation of
the function to be trained when such a (local) minimum has been reached.
 In this study we will only take a look at the influence of the learning rateα
and the momentum parameterβ.

4. The edit options built into the tool

It is possible to edit some parameters in the tool to set the network and update
rule characteristics. The following options are built into the edit menu:
- Set learn parameters: when selecting this option, a popup menu will

appear in which one can set the learning rateα and the momentum param-
eterβ. The learning rate can be varied between 0 and 10 and the momen-
tum parameter can be varied between 0 and 1.

- Choose network: with this option it is possible to choose the network that
has to be trained: a one layer network or a two layer network. The net-
works have two input units and one output unit. Moreover, the two layer
network has two hidden units in its hidden layer. Furthermore, the net-
works have one bias unit in each layer to achieve the threshold effect

- Choose function: this option can be used to choose the function the net-

∆Wikj t 1+() α δi 1 k,+ Aij β∆Wikj t()+
patterns

∑=

5. The train options built into the tool

page 6

work has to learn: the logical AND function, the logical OR function, the
logical XOR function, the ID1 function (output is input1) and the ID2
function (output is input2). As the values 0 and 1 are limit cases for the
sigmoid function which calculates the output activation, these values will
never be reached when training the network on them. For this reason, the
logical 0 is presented with a value of 0.1 and the logical 1 is presented
with the value of 0.9.

- Choose order: as updating the weights is done incrementally, the order in
which the training set is presented to the network, will determine the path
through the weight space. To analyse the effect of the training order on the
path through the weight space, it is possible to choose with this option in
which order the different inputs are presented to the network. It is only
possible to set fixed training orders in the current version of the tool. One
topic for further research is to analyse the effect of using a random order in
stead of a fixed one.

There are also two other options which can be set in the edit menu. These
options both influence the way in which the diverse graphs are presented on
the screen:
- Set colors: with this option one can choose the colors used in the graphs.
- Set 3D view parameters: the motion through the weight space can be visu-

alized in a three dimensional graph, with each axis of the graph represent-
ing a weights combination. It is possible to rotate the graph round these
axis, move the view position along the axis and translate the graph in the
widget.

5. The train options built into the tool

It is possible to set various train options to influence the way in which the net-
work is trained. The following options can be specified in the tool:
- Reset network: when the tool is started for the first time, the network will

be initialized with random weights. Every time one chooses this option,
the network will be re-initialized with these same random weights. These
random weights are uniformly distributed over the interval [-1.0, 1.0).
Note that it is possible to set new start weights with theNew random
weights option.

- Single step: when choosing this option, the network will be trained with a
training session consisting of one step: all 4 input-output pairs will be pre-
sented to the network in the order as specified with theChoose order
option in the edit menu.

- Train many steps: the tool will make a popup window in which the
number of steps that should be used in one training session, can be set.
When clicking theTrain button in the popup, the network will be trained
with as many steps as specified with the drag bar in the popup.

- New random weights: as mentioned above, is this option intended to
change the random weights which are used to initialise the network. It will
calculate some new random weights and the network will be initialized
with these random weights. From this moment on, these new random
weights will also be used when the network is reset with theReset network

6. The view options built into the tool

page 7

function.
- Set weights to zero: this last option sets all weights in the network to zero

to examine if it is possible to start in the origin of the weight space. This
turned out to be possible which can be explained by the fact that the gradi-
ent of the error function in this peculiar position is not for each pattern,
seperately, zero. It is still an open question whether it is also possible to
start in the origin of the weight space when a batch learning algorithm is
used in stead of an incremental one.

6. The view options built into the tool

This tool presents various views on the behaviour of a BP network. It is possi-
ble to view the total weight space or to zoom in on a part of the weight space
(with thezoomin weight space option). In these two views one can see how
the network walks through the weight space during a training session. Further-
more, it is possible to view the converged weights against alpha; in this view,
the tool will analyse for each alpha between 0 and 1.5 to which point in the
weight space the network will evolve and draw these points in a graph. The
last graphical view the tool offers is a so-called convolution view. This view is
very similar to the previous mentioned view; it shows how the network walks
through its weight space for all alpha between 0 and 1.5.

As the total weight space can be more than 3-dimensional, it is possible to
choose which part of the weight space has to be viewed with the tool. One can
enter an expression combining the weights which have to be combined onto
one axis. Indexing the weights in these expressions has been done somehow
different from the indexing method used in the previous sections; in the previ-
ous section a weight had alayer index, ato index and afrom index. Thelayer
index and theto index will now be combined into one index, the so-calledunit
number index. To determine the unit number of a unit, one can count the units
layer by layer from left to right, skipping the bias units, starting at the first hid-
den layer (if it exists) and counting up to the output layer. This numbering
method is shown in Figure 2 for the two networks which are built into the tool.

One can use weights, constants, the plus (+), minus (-) and multiply (*)
operators and parentheses in an expression. It is also possible to use white
spaces (space and tab) between the various tokens. For example, an expres-
sion combining weight W00 and W01 on one axis might look as follows:
(W00 + 0.2 * W01) / 2. It is also possible to use the implicit multiplication as
used in mathematics by placing nothing at all (or white spaces) between two
operands. Thus, the example expression might also be: (W00 + 0.2 W01) / 2.

bias I1 I2 bias I1 I2

bias

W00 W01 W02

W20
W21 W22

W00 W12

0 0 1

2

Figure 2. The unit and weight numbering used in the graphs

One layer net Two layer net

Unit 0 Unit 2

Unit 1

Unit number
From index

6. The view options built into the tool

page 8

6.1 View total weight space

This option gives a three dimensional view on the movement through the
weight space. When training the network, each training step consists of four
substeps; one substep for each input-output combination. The tool traces the
weights after each complete training step for this view and draws the result of
this trace in the graph. The origin of the axis will always be the point (0,0,0).
It is possible to set the range along the axis with theZoom dragbar. When
pressing theReset trace button, the complete trace will be reset; it will be for-
gotten and the tool will start tracing from the current point in the weight space.
One trace consists of maximal 10000 steps. The tool also shows the calculated
values of the last traced step in a separate window. The buttonZoom in is a
short-cut to popup theZoomin weight space window, which can also be
selected from the view menu and theClose button closes the complete win-
dow. The tool not only gives a 3-dimensional view on the trace, but it also
shows the 2-dimensional projections on the coordinate planes.

Figure 3 shows a trace of a one-layer networking learning the AND func-

tion. The network has first been trained with the momentum parameter set to
zero (β = 0) and then with the momentum parameter set to 0.97 (β = 0.97).
Axis 0 is the -W00 axis (the bias weight), axis 1 is the W01 axis (weight com-
ing from input 1) and axis 2 is the W02 axis (weight coming from input 2).

In the picture ofβ=0, one can see that the weights accurately follow the gra-
dient of the error surface; the graph walks smoothly to the optimum solution
(the minimum of the error measure). However, the network has not reached
the optimum yet after 3003 training steps. The network will reach its optimum
only after approximately 77000 training steps! The error measure at that
moment is equal to 0.009720909070726696.

In the picture ofβ=0.97 one can see that the movement through the weight
space continually overshoots the shortest route following the gradient; every
time the route has to bend away into a new direction, the movement will keep
something of its speed in the old direction and gradually bend towards the
new direction as forced by the gradient of the error measure. However, due to
the fact that the speed of the movement is much higher, the network will reach

Figure 3. AND function, 3003 steps trained for two values of β

α=0.27,β=0 α=0.27,β=0.97

axis 0: -w00
axis 1: w01
axis 2: w02

projection on the
ground plane

projection on the
side plane

projection on the
back plane

The 3D graph showing
the movement through
the weight space

6. The view options built into the tool

page 9

its optimum a lot sooner; it only needs approximately 2000 steps. Now, the
error measure equals to 0.009720909010578031 in the optimum point.

Note that the error measure in both cases is slightly different. This phenom-
enon will be explained in the following section.

The main advantage of this view is that it visualizes the global movement of
the network through the weight space. However, it also has a disadvantage; as
the weights only change very slightly between two successive steps, it is not
possible to visualize what happens between these two steps. To make this vis-
ible, one has to zoom in on the graph. However, as the tool keeps the origin of
the graphs at (0,0,0) and the weights move away from the origin, the point of
interest will disappear from the window when using the zoom drag bar. To
solve this problem, a second view has been implemented in the tool, the so-
calledZoomin weight space view, which will be discussed in the following
section.

6.2 View zoomin weight space

As mentioned in the previous section, this view has been implemented to trace
the behaviour of the network between successive steps. To achieve this, the
tool now traces the weights after each training substep in stead of after each
complete training step. The origin of the graph will be set equal to the first
weight vector in the trace, so the point of interest will not disappear from the
screen when zooming in on the graph.

Each input/output combination has an own error measure with an own error
surface. The total error measure is the sum of these various error measures. A
consequence of this fact, combined with the incremental update algorithm, is
that the weights will be adapted proportional to the gradient of the error sur-
face introduced by the last used input/output combination. As the tool presents
four different input/output combinations per training step, it can be expected
that the weights will move into four different directions per training step; one
direction per input/output combination. The movement of the weights through
the weight space after one complete training step will be the sum of these four
different movements. This effect has been shown in Figure 4, which shows the

Figure 4. Zoomin trace on the AND function

α=0.27,β=0.97, 3 steps trainedα=0.27,β=0, 20 steps trained

axis 0: -w00
axis 1: w01
axis 2: -w02

6. The view options built into the tool

page 10

first steps of the one layer network, learning the AND function with the same
parameters as in the previous section.

The left picture shows a trace of the training session with the momentum set
to zero. In this case is the effect of moving in another direction after each
input/output combination very strong. The right picture however, shows a
trace of a training session with the momentum set to 0.97. As can be seen
from this picture, the large momentum makes the weights move much more in
the average direction as forced by the total error measure. The individual sub-
steps only have a slight effect on the motion through the weight space.

Note also the effect on the convergence speed: the trace in the left picture
consists of twenty complete training steps, while the trace in the right picture
only consists of three complete training steps. Despite the lesser trained steps,
the weights have moved a longer distance through the weight space.

It is also interesting to look at the movement through the wait space when
the network has converged to the optimal solution. In first instance one might
expect that the network reaches one optimum point in the weight space. How-
ever, this is not the case; the network will still adapt its weights for each indi-
vidual training substep. Only after a complete training step, the network will
arrive in the same point again. This has been shown in Figure 5 for the one
layer network, which has learned the AND function withα=0.27 andβ=0 and
β=0.97 respectively.

As one can see, the weights follow a different route in theβ=0 and in the
β=0.97 case. This is quite logical, as in theβ=0.97 case, the weight change
between two substeps not only depends on the surface of the error measure
but also on the previous weight change. As the route through the weight space
is different in the two cases, the four points that form the possible optima, are
also different and as the error measure is a function of the weight vector, the
error measure will also be slightly different in the two cases. This last fact has
already been shown in the previous section where the error measure for the
optimum solution has been given.

Note that the origin of a graph in Figure 5 consists of the weightvector after
the last training step completed before the trace was started. This is one of the
four points reached when the network is completely converged.

Figure 5. Zoomin trace on the AND function

α=0.27,β=0, completely converged α=0.27,β=0.97, completely converged

axis 0: -w00
axis 1: w01
axis 2: -w02

6. The view options built into the tool

page 11

In the previous traces, the influence of the momentum parameterβ has been
analysed. However, it is also interesting to analyse the effect of the learning
rateα. Therefore, Figure 6 shows two traces of the last steps of a one layer

network, learning the AND function, for two different values ofα. The
parameterβ has been set to 0.31 in both figures.

In the left figure,α has been set to 0.19. It shows the movement through the
weight space from step 71962 to step 71984. The network has reached its opti-
mum after 71984 steps.

In the right figure,α has been set to 0.99. This figure shows the movement
through the weight space from step 14670 to step 14682. After this last step,
the network has reached its optimum.

Note that the network converges only very slowly to its optimum in these
last steps. The convergence is that slow that it looks like the network is going
back towards the same point after each complete training step. That this is not
really the case, can be seen when zooming further in.
 Note also that the shape of the round, which is made through the weight
space in the optimum case, is the same forα=0.19 andα=0.99. The only dif-
ference is that forα=0.19, the round is smaller then forα=0.99. This in con-
tradiction to the case whereβ was varied. In that case, both the shape and the
size of the round changed

6.3 View converged weight against alpha

The previous view has shown that the points to which the network converges,
depend on the learning rateα and the momentum parameterβ. To analyse
these dependencies in more extend, a third view has been implemented. In this
third view, the network is trained until it has reached its optimum state, and
the four points that are reached for the four input/output combinations, are
plotted in a graph. This is done for 300 values ofα, varying from 1.5 to 0.005.

The popup window that appears after selecting this view, shows 3 graphs at
the same time. It is possible to set the weight combination that has to be

α=0.99,β=0.31, last stepsα=0.19,β=0.31, last steps

Figure 6. Zoomin trace on the AND function

axis 0: -w00
axis 1: w01
axis 2: w02

6. The view options built into the tool

page 12

viewed for each of the graphs.
When the network has reached its optimum state, the value ofα will be

decreased with 0.005 and a new training session will start to find the new opti-
mum value. When the tool starts this new training session, it can continue
with the actual weights combination or it can reset the weights to the initial
values. This can be controlled with theAuto reset button; whenAuto reset is
on, the network will be reset each time. Otherwise, it will continue with the
last weights combination.

Sometimes, the convergence of the network will go wrong; the network can
reach a local minimum or it can arrive on a very flat plane of the cost surface.
In the first case, the network will not converge any further but the error will
still be to big for some input/output combinations. In the second case, the net-
work will only converge very slowly. It can take a few million steps to leave
such a plane. The tool can detect both cases. When such a case arises, the tool
can possibly give a warning and ask what to do next: continue with the current
value ofα or abort the training session and start a new training session with
the next value ofα. Whether the tool gives a warning or not, can be controlled
with theWarnings button; whenWarnings is on, the tool will give the warning
and ask the user what to do. Otherwise, it will abort the training session and
continue with the next value ofα when one of the problems arises.

The last option which can be set is theLog(delta weight tolerance) dragbar.
Each time when the network has been trained one more step, the tool has to
determine whether the network has reached its optimum or not. To determine
this, the network will calculate how much the weights have been changed in
the last training step. When the weight change is less then thedelta weight tol-
erance, the tool assumes that the network has reached its optimum. With the
dragbar, one sets the10log of thisdelta weight tolerance value.

Figure 7 shows three traces of a one layer network, training the AND func-
tion, for three different values ofβ, with theauto reset switch set on. In these

graphs, the same two notions can be found as in Figure 5 and in Figure 6:

Trace 0:β=0.32 Trace 1:β=0.50 Trace 2:β=0.83

Figure 7. Converged weights, AND function, training order: 1234

graph 0: -w00
graph 1: w01
graph 2: w02

The four endpoints
reached by the weight
w02 forα = 1.5,β=0.83

The four endpoints
reached by the weight
w01 forα = 0.75,β=0.83

-(The four endpoints
reached by the weight
w00 forα = 0.375,β=0.83)

6. The view options built into the tool

page 13

1)whenβ varies, the shape of the round through the weight space will vary;
the four lines showing the four points reached after the substeps, walk differ-
ent in the three traces.
2)whenα varies, the shape of the round remains the same, only the size var-
ies.

This picture also makes clear that for a smallerα, the size of four endpoints
which can be reached will be closer to each other and that a linear relationship
exists between the size of the round and the learning rate. However, at the
moment, these last two conclusions can only be applied to a one layer network
learning the AND function, as the path through the weight space, and there-
fore the endpoint which will be reached, is a function of the error measure,
which depends on the network (through the weightvector) and the function to
be trained.

To examine if these conclusions possibly can be generalized, the one layer
network has also been trained with some other functions: the OR function, the
ID1 function and the ID2 function. The traces of these training sessions can be
found in Figure 8.

As can be seen in this figure, the above mentioned conclusions can clearly
be applied to the graph of the OR function; in this graph, the four lines repre-
senting the weights combination after the substeps, linearly converge to one
point for α=0.005. However, it is less clear for the ID1 and ID2 functions. In
these graphs, the four lines all map on to each other, so it is not possible to see
whether they come closer to each other for a smaller value ofα. The graph
only shows that the endpoints reached depend on the learning rate.

To examine why the linear relationship clearly exists for the AND and the
OR function, while it apparently does not exist for the ID1 and the ID2 func-
tion, a mathematical analysis is necessary. For this analysis we will look at the
behaviour of the weight update function for a one layer network which has
reached its optimal state. This network is shown in Figure 9. We will analyse
the weight update function, as the size of the round only depends on the
weight change after each substep.

ID1, β=0.50 ID2, β=0.50

graph 0: -w00
graph 1: w01
graph 2: w02

OR,β=0.50

Figure 8. Converged weights, 3 different functions, training order: 1234

6. The view options built into the tool

page 14

The weight update rule1 for one of the three weights in this network is:

 with δ11 as follows:

As, for the sigmoid function, the derivative g' is equal to g(1-g), this can be
rewritten as (read g as g(h11) andζ asζ1):

Let the error in the calculated output be denoted with e, then e is defined as
follows:

Using this error e makes it possible to rewrite the function to calculateδ as
follows:

When the network has reached it optimum state, the value of e will be very
small compared to the desired outputζ (ζ is 0.1 or 0.9, while e turns out to be
less then 0.01). This makes it possible to approximate the formula forδ as fol-
lows:

This makes the weight update function in or near the optimum case as fol-
lows:

As updating the weights is done in an incremental manner, that is after pre-
senting each individual input/output pattern p, we will get the following func-
tion for each weight update step:

Since the desired activationζp and the input activation are fixed for one
input/output pattern p, this can be rewritten as:

1. The momentum parameterβ is ignored in this analysis

A11

A00 A01 A02

W010 W011 W012

Figure 9. The one layer network considered in this section

∆W01j α δ11A0j
patterns

∑=

δ11 g' h11() ζ1 g h11()–[]=

δ11 g 1 g–() ζ g–()=

e ζ g–=

δ11 ζ e–() 1 ζ– e+() e=

δ11 ζ 1 ζ–() e≈

∆W01j α ζ 1 ζ–()
patterns

∑ eA0j≈

∆W0ij
p αζp

1 ζp
–

e

p
A0j

p≈

A0j
p

∆W01j
p αc

p
e

p≈

6. The view options built into the tool

page 15

This equation shows that for one and the same function, the size of the
round only depends on the value ofα and on the error in the calculated out-
puts. So, when the value of e (which isζ-g), does not depend onα, there will
be a linear relationship betweenα and the size of the round in the optimal
case.

As such a linear relationship exists for both the AND and the OR function,
we can come to the conclusion that the error in the optimum case does not
depend on the value ofα for these two functions. This conclusion is supported
by the following data:

Now we must still explain the graph of the ID1 and the ID2 function. As
these two functions are almost the same (they can be transformed into each
other by swapping input 1 and input 2 with each other), we will only look at
the ID1 function. This function can be learned exactly by a one layer network
which uses the sigmoid function. See Appendix A for the exact solution of the
problem. When the network is being trained, the weights will reach a certain
point in the weight space, were the function will be almost exactly known.
When such a point has been reached, the error, and therefore the weight
change, will be very small. As we are using computers which can only calcu-
late with a certain accuracy, it is possible that the necessary weight change in
one (sub)step will only influence the last digits of the weight. From that
moment on, the network will converge very slow or it will not converge at all.
Due to the shape of the sigmoid function, it is possible that the weightvector is
still not at the exact solution at the moment that the convergence stops.

As the tool looks at the converge speed to determine whether the network
has reached its optimal state, the tool can abort the calculations too early in
such a case. This is exactly what happens with the ID1 function. When the
network output is very close to the desired output, the weight change will be
very small and therefore, the tool will decide that the network has reached the
optimum state and abort the calculations for that value ofα.

Due to the fact that the weight change is bigger for a bigger value ofα, the
weights will come closer to the optimal weight vector whenα is bigger and
remain further away from the optimal weight vector whenα is smaller. So in
this case, the error e (ζ-g) will depend on the value ofα in the near optimal
case. Thus, the graphs will not be linear for ID1 and ID2.

This theory is supported by the fact that the error measure of the ID1 func-
tion is approximately 2.54e-29 at the moment that weight w00, w01 and w02
are equal to -2.1972, 4.3944 and 1.4530e-14 respectively (forα=0.8 and
β=0.50). At that moment, is too small to change both W00 and W01.

error \ alpha 1.03 0.76 0.50 0.27

error 1
error 2
error 3
error 4

9.71e-03
2.35e-06
2.37e-06
2.35e-06

9.71e-03
2.37e-06
2.38e-06
2.36e-06

9.71e-03
2.39e-06
2.39e-06
2.38e-06

9.71e-03
2.40e-06
2.41e-06
2.40e-06

total error 9.72e-03 9.72e-03 9.72e-03 9.72e-03

Table 1: Error measure of a one layer network that has learned the AND function with
momentum parameter β = 0.50, for various values of the learning rate α.

∆W

6. The view options built into the tool

page 16

Only W02 is still influenced.
Note that in the optimal solution, the weights W00, W01 and W02 equal to

approximately -2.1972, 4.3944 and 0 respectively. Thus, all three weights are
close to the optimal point. However, they have not reached it yet.

6.4 View convolution

This fourth view shows the convolution of the training session; the tool trains
the network for 300 different values ofα (reaching from 0.05 to 1.5) and
traces the path through the weight space for each separate value. These traces
are shown in three graphs at a time. It is possible to set the weights combina-
tion which has to be shown in each graph.

As it is not always necessary to view the complete trace, one might for
example only be interested in the last few steps of a training session, it is pos-
sible to set some trace parameters.

The first parameter is theTrace distance; this is the number of steps which
have to be trained between to successive trace steps. Note that one trace step
consists of tracing the weights combination after each of the four substeps
forming one complete training step.

The second parameter is the#steps before trace; the network will be trained
that many steps before the tool starts tracing the path through the weight
space.

The last parameter is theMax #steps to trace; this is the maximum number
of training steps which have to be made after the trace has been started.

The tool will check after every training step whether the network has
reached the optimum point. It does this by checking if the weights have been
changed less then set with theLog(delta weight tolerance) drag bar. If so, the
training session will be aborted and the tool will start with the next value ofα.
Otherwise, the tool will check whether the network has already been trained
the maximum number of steps as set in the last trace parameter. If so, the tool
will again start with the next value ofα and otherwise it will continue with the
current value ofα.

However, one restriction exists for the trace parameters; as it requires far to
much memory to store the complete traces for all 300 values ofα, they have
to be set before the training sessions are started. So it is not possible to change
for example the trace distance during the training session or change the view
on the trace after the training session has been completed.

The convolution window also has anAuto reset button, just as the converged
weights window. When theAuto reset is set on, the weights will be reset
before tracing the network for a new value ofα. Otherwise, the tool will con-
tinue with the last weights combination when switching to the next value ofα.

Figure 10 shows the convolution for three different functions on a one layer
network; the ID1 function, the AND function and the OR function.

The ID1 function has first been traced withβ=0.10 and afterwards with
β=0.50. As one can see, there is not much difference between these two traces.
In both traces, and also in the traces of the AND and the OR function, the net-

6. The view options built into the tool

page 17

work first takes large steps through the weight space, and later on, the steps

will be smaller; the dots showing the weight combination for one value ofα,
are on one end of the graph far apart from each other and on the other end,
close to each other. Also in all cases, the network takes larger steps through
the weight space for a larger value ofα. Note that in the graphs of the ID1
function, showing w02 (graph 2), the weights first decrease to -0.13 and then
increase to 0.016.

In the other two graphs (showing the trace of the AND and the OR func-
tion), the weights increase right from the beginning of the training session.

One big disadvantage of these graphs is, that it is not possible to see in what
order the weight trace for one specific value ofα has been plotted. So one has
to use one of the other view options to see whether the weights for example
have increased from the bottom of the graph to the top of the graph or that
they have decreased instead

The main advantage of these graphs is, that it is possible to see the weight
traces for different values ofα together, so it is easier to get insight in for
example the relationship between the learning rate and the convergence speed.

6.5 Test network

This last view shows some numerical information about the network; it shows
the current output, the desired output and the error measure for the function to
be trained. Furthermore, it shows information about the distance which the
weights have walked through the weight space during one training step. The
tool shows to different distances:
1) The round distance: when the network has reached its endpoint, it will

walk a round through the weight space during one training step. The size

ID1, β=0.10 ID1, β=0.50 AND, β=0.50

graph 0: -w00
graph 1: w01
graph 2: w02

Figure 10. Convolution, various functions, training order: 1234

OR,β=0.50

Trace distance : 100
#steps before trace: 1
max # steps : 50000

6. The view options built into the tool

page 18

of this round is called the round distance. In fact, is this the sum over the
distances walked in the four substeps, so even when the network is still
converging, the round distance is defined.

2) The trend distance: before a training step, the network will be in a certain
point in the weight space. After the training step, the network will be in
another point in the weight space. The distance between these two points
is called the trend distance.

Note that the tool only considers a three dimensional subspace of the total
weight space; it only looks at the three weighted connections to the output unit
to calculate the round and the trend distance.
 Furthermore, the popup window shows the ratio between the round distance
and the trend distance, the change of this ratio since the previous call to the
test network function and the change of this change of the ratio.

These ratios have been built in the tool because theview total weightspace
option showed that sometimes the round distance of the weights to the output
unit, was very large in relation to the trend distance of these same weights. To
examine this in further extent, it was necessary to built this last view in the
tool to show the round distance/trend distance ratio (RTDR). The following
table shows some of these rations for a two layer network training the XOR
function for different values ofα andβ.

Note that the NTDR is only defined as long as the trend distance is not equal
to zero. The network has stopped converging as soon as the trend distance is
zero.

output 1
(0.1)

output 2
(0.9)

output 3
(0.9)

output 4
(0.1)

RTDR ∆RTDR ∆∆RTDR

α = 0.27,β = 0.31, network passes local minimum
0.103
0.101
0.101
0.101
0.101
0.102
0.100
0.100
0.100

0.495
0.496
0.496
0.496
0.496
0.496
0.900
0.900
0.900

0.891
0.895
0.896
0.896
0.896
0.897
0.900
0.900
0.900

0.497
0.496
0.496
0.496
0.496
0.495
0.100
0.100
0.100

1464
3316
4730
5420
4960
2345
 3
 3

not def.

not def.
 1852
 1413
 690
 -460
-2615
-2342
 0
not def.

not def.
not def.
 -439
 -723
-1150
-2155
 272
 2342
not def.

α = 0.23,β = 0.31, network gets stuck in local minimum
0.103
0.101
0.101
0.101
0.100
0.100
0.100
0.100
0.100

0.496
0.496
0.496
0.496
0.496
0.496
0.496
0.496
0.496

0.892
0.895
0.896
0.897
0.897
0.897
0.897
0.898
0.898

0.498
0.497
0.497
0.497
0.497
0.496
0.496
0.496
0.496

 1459
 3895
 6554
 9335
12202
15133
18117
21145
24210

not def.
2436
2659
2782
2866
2931
2984
3028
3066

not def.
not def.

223
123
 85
 65
 52
 44
 38

Table 2: Output produced by a two layer network training the XOR function. The
output is taken every 10000 training steps. Also the RTDR is calculated

6. The view options built into the tool

page 19

In both tables withα=0.23, the network seems to get stuck in a local mini-
mum. As the network behaviour is the same in both tables, we will only
regard the case in whichβ=0.30. This table only shows the results after the
first 90000 training steps. However, the network has been trained up to one
million training steps and it was still in the local minimum. In this table, one
can see that the RTDR increases all the time. And not only the RTDR
increases but also the∆RTDR, which means that the RTDR increases at least
with a quadratic speed. The∆RTDR increases with a decreasing speed. This
can be seen in the∆∆RTDR column. However, when the network was trained
many times it turned out that the∆∆RTDR decreased slower and slower. A
∆∆RTDR of zero seems to be the limit case. This means that the∆RTDR will
become constant in the limit case and the RTDR will grow with a constant
speed in the limit case. As it seems that the network is still in (or near) a local
minimum as long as the RTDR is large, this means that the network will never
leave this local minimum for a=0.23.

In both tables withα=0.27, the network learns the XOR function. It
approaches and passes the same local minimum, as in which the network gets
stuck forα=0.23. Also in this case, the RTDR first increases. But as can be
seen in the∆∆RTDR column, the∆RTDR is decreasing until it becomes nega-
tive. As soon as this happens, the RTDR starts decreasing and in the first col-
umns one can see that the network has left the local minimum at the time of
the following measurement. Thus, the RTDR is large as long as the network is
approaching or near the local minimum and it will become smaller as soon as
the network is leaving the local minimum.

output 1
(0.1)

output 2
(0.9)

output 3
(0.9)

output 4
(0.1)

RTDR ∆RTDR ∆∆RTDR

α = 0.27,β = 0.30, network passes local minimum
0.103
0.101
0.101
0.101
0.101
0.101
0.100
0.100
0.100

0.495
0.496
0.496
0.496
0.496
0.895
0.900
0.900
0.900

0.891
0.895
0.896
0.896
0.896
0.895
0.900
0.900
0.900

0.497
0.496
0.496
0.496
0.496
0.108
0.100
0.100
0.100

1441
3236
4526
4959
3921

3
3
3

not def.

not def.
 1795
 1290
 433
-1039
-3918
 0
 0
not def.

not def.
not def.
 -505
 -857
-1472
-2897
 3918
 0
not def.

α = 0.23,β = 0.30, network gets stuck in local minimum
0.103
0.101
0.101
0.101
0.100
0.100
0.100
0.100
0.100

0.496
0.496
0.496
0.496
0.496
0.496
0.496
0.496
0.496

0.891
0.895
0.896
0.897
0.897
0.897
0.897
0.897
0.898

0.498
0.497
0.497
0.497
0.496
0.496
0.496
0.496
0.496

 1444
 3866
 6511
 9280
12133
15052
18022
21036
24089

not def.
2422
2646
2769
2853
2918
2970
3014
3052

not def.
not def.

223
123
 85
 65
 52
 44
 38

Table 2: Output produced by a two layer network training the XOR function. The
output is taken every 10000 training steps. Also the RTDR is calculated

7. Conclusions

page 20

A possible explanation for this relation between the RTDR and the distance
to a local minimum is the following one:

Near a local minimum, the network will jump forward and back between
two different points in the weight space that are relative far away from each
other, during one single training step. After one substep the network will jump
to one of these two points and after the substep which follows the nearly
opposite gradient, the network will jump almost back to the point were it came
from. Therefore, the round distance will be very big. However, as the network
jumps almost back to the point where it was before, the trend distance will be
only very small; the network converges only very slow near a local minimum.

Thus, these two aspects combined together (a large round distance and a
small trend distance) can explain why the RTDR is that large sometimes. It
may be possible to make use of this for speeding up the convergence when the
network is near a local minimum; when the RTDR is big, one could adapt the
weights with for example 1000 times the trend distance. At this way, the net-
work will jump a relative large distance in the direction of the trend distance,
possibly jumping over the local minimum. After one such weight update, the
normal training can be used again.

Note that the relationship between the RTDR and the distance to a local
minimum may not exist at all in the general case. At the moment, the exist-
ence of this relationship has only be shown for a two layer network learning
the XOR function.

7. Conclusions

In this report has been shown that the error measure, for a function which can
not be exactly learned, in the global minimum does not have to depend
strongly on the learning parameters. The learning parameters merely influence
the size and the shape of the end round which the network will still make
when it has reached its global minimum. The learning rate influences the size
of the round and the momentum parameters influences the shape of the round.

Furthermore, it is shown that a function which can be solved exactly, does
not necessarily have to be learned exactly by a neural network on a discrete
computer. This can be a consequence of the restricted calculation accuracy of
the computer used.

As a last point, this investigation has shown the existence of a possible rela-
tionship between the RTDR and the distance to a (local) minimum. It may be
possible to make use of this relationship to detect local minima and to avoid
them whenever possible.

8. Topics for future research

In this report, only very few aspects of the dynamic behaviour of BP networks
have been analysed. The exact relationship between the RTDR and the shape
of the weight space can be further analysed. Furthermore, it is possible to look
at the influence of the training order on the behaviour, especially the influence
of a random training order should be further analysed.

9. References

page 21

It is also possible to extend the tool with other activation functions and with
more general forms of back propagation networks. For example, with net-
works which can have connections over larger distances than only one layer,
like the most simple network that can learn the XOR function (see for exam-
ple [3]).

9. References

1. J. Hertz, A. Krogh and R.G. Palmer,Introduction to the theory of neural
computation, Addison Wesley, 1991

2 E.J.W. Boers, H. Kuiper,Biological metaphors and the design of modular
artificial neural networks, Department of Computer Science and Experi-
mental and Theoretical Psychology, Leiden University, 1992

3 I.G. Sprinkhuizen-Kuyper, E.J.W Boers,The Error Surface of the simplest
XOR Network has no local Minima, Technical Report, Department of
Computer Science, Leiden University, 1994

Appendix A. The exact solution of the ID1 function

When the network has learned a function exactly, the error measure will be
zero for all patterns, thus:

This will be solved when

for all patterns and output units i.
As we have only one output unit, we get

with h the netinput of the output unit.
This leads to

for all patterns .
Thus, as we are dealing with the ID1 function, we have to solve the follow-

ing linear system:

E w[] 1
2
--- ζi

µ
Ai

µ
–

2

µi
∑ 0= =

ζi
µ

Ai
µ

– 0=

µ

ζµ 1

1 e
h–

+
----------------– 0=

h
ζµ

1 ζµ
–

ln=

µ

W00 0.1W01 0.1W02+ + 1
9
---ln=

W00 0.1W01 0.9W02+ + 1
9
---ln=

9. References

page 22

The solution of this system is:

which is the exact solution of the ID1 function learned by a one layer network.

W00 0.9W01 0.1W02+ + 9ln=

W00 0.9W01 0.9W02+ + 9ln=

W00
1
9

 2.197224577–≈ln=

W01 81() 4.394449155≈ln=

W02 0=

