The Merlin Process Transactions,
specified with Socca

Master’s thesis of Joris HOppener

supervised by S. Sachweh & L. Groenewegen

Preface

The first half year of 1994, I've been in Dortmund. In this half year, I've made the main part of
this thesis at the University of Dortmund. Constructing such a thesis costs of course a lot of
time. Constructing a good thesis also requires good supervisors. | was lucky. In Dortmund,
Sabine Sachweh supervised me. Because of my domicile in Dortmund, Sabine has helped me a
lot. The many and fruitful discussions with Sabine and her perfectionism realy inspired me.

Darum will ich Sabine herzlich danken, dal3 sie mir betreuen wollte und fur ihre Zeit, die sie
frei gemacht hat. Ich bin wirklich sehr froh, daf3 Du mir betreuen wolltest.

Naturlich will ich auch Prof. Schéafer danken, fur die Méglichkeit um ein halbes Jahr in Dort-
mund an die Universitat zu arbeiten. Es hat mir sehr gefallen um ein halbes Jahr ein Teil zu
sein von der Lehrstuhl.

In Leiden, | had also a supervisor. This supervisor, Luuk Groenewegen, helped me to under-
stand Socca. Before | went to Dortmund, he has taught me for half a year the ins and outs in
Socca and PARADIGM. Furthermore, | really appreciated it, that Luuk went to Dortmund, so
he could hear my lecture over my work.

Hartelijk bedankt Luuk. Je enthousiasme over het werk was voor mij erg aanstekelijk en de
discussies waren erg leerzaam en gezellig.

Furthermore, my professor in Leiden, Prof. Engels, has helped me to go to Dortmund. | have
seen him a couple of times in Dortmund. We then both talked in German, instead of Dutch.
This made it easier for my german colleagues to understand where we talked about.

Besides making this thesis, | have also helped Gerald Junkermann in Dortmund, to make clear
what the differences are between Socca and Escape. To make this distinction more clear, |
have written a paper for him. Escape is developed by Gerald and is used to describe the process
model in Merlin with use of EER and state charts. Therefore, Socca and Escape have some
resemblance.

Contents

1 General Introduction

2 Introduction to the PSDE Merlin

3 Introduction to the process transactions
4 Introduction to Socca

5 Specifcation

5.1 Data perspective

5.2 External behaviour

5.3 Import list of the uses relationships

5.4 Internal behaviour

5.5 PARADIGM
5.5.1 The manager locks
5.5.2 The manager Pess_AF Transaction
5.5.3 The manager Auto Transaction

6 Problems and solutions in Socca

6.1 Problems

6.2 Remarks

6.3 Guidelines

6.4 General weaknesses

6.5 A new version of PARADIGM in Socca
7 Motivation for using Socca
8 Conclusions

9 Literature

10 Appendix

12

17
17
24
35
37
58
58
68
79

84
84
85
85
86
88
94
96
99

101

1. General introduction

This master’s thesis is mainly written at the University of Dortmund. In this thesis, concepts,
developed at the University of Leiden and the University of Dortmund are used.

The used concepts of Dortmund are over the Merlin process transaction model. Merlin is a
Process centred Software Development Environment. To control parallel access on the docu-
ments, which are created during the software development process, a process transaction
model is used.

The specification formalism Socca, developed in Leiden is used to specify this transaction
model.

This thesis has two goals.

First, Socca will be tested by using Socca to specify a very complex system. In this way, it is
tried to find weaknesses and problems in Socca.

Second, it will be shown how systems can be described. Often systems are described in a tex-
tual way or with use of code. The process transaction model will be described with the specifi-
cation language Socca. It will be find out whether a specification language like Socca fulfils all
expectations like a high level of abstraction, easy to understand and a clear structure compared
to plain text or code.

In the next chapters, first introductions into the concepts are given.
In chapter 2, a general introduction to Merlin is given. In chapter 3, the Merlin process trans-
actions are discussed. The introduction to Socca will be given in chapter 4.

After the introductions, the specification follows in chapter 5.

In chapter 6 and 7, the results of chapter 5 are evaluated concerning the above two defined
goals. In chapter 8, a general conclusion on the total thesis is given.

In chapter 5, not the complete PARADIGM part in Socca is discussed. In the appendix, the
total PARADIGM part of the specification can be found.

2. Introduction to the PSDE Merlin

This section contains a very brief introduction to Merlin, which is a prototype of a Process-
centred Software Development Environment (PSDE). A Process-centred Software Develop-
ment Environment coordinates and supports development activities in a software process,
according to an underlying process description. This prototype is developed by Dortmund
University and STZ, a Dortmund based software house. Information concerning Merlin can be
found in [JPSW 94], [PSW 92], [Wo 94].

A process description in the PSDE Merlin can be described by the following four entities:
- Activities: A collection of tasks, which achieve a goal (e.g. specify, edit, compile or test)

- Roles: Groups of activities, which are logically highly related (e.g. project manager, pro-
grammer, tester)

- Documents: Objects of any type, produced during the software development process (e.g.
c-modules, test plans, specifications).

- Resources: Technical resources such as tools and people, who participate in the produc-
tion of software (e.g. editors and debuggers).

For instance, a c-module (Document) is implemented (Activity) by a Programmer (Role),
using an editor (Resource).

When an engineer starts Merlin, he gets two windows on his screen. These two windows are
called the WorkBench window and the WorkingContext window.

The WorkBench window is the main window and appears after Merlin is started. In this win-
dow, one can set the project one wants to work for and the role in this project. Now, the
corresponding WorkingContext window can be requested.

In the WorkingContext window, all documents, which are needed by an engineer to perform a
particular role, are displayed. The activities on the documents can be selected with context
sensitive menus. The relations between the documents are presented by labelled arrows.
Furthermore, the engineer can set the tool he wants to use for a certain activity.

In a project, an engineer may have several roles. This means that for each role in a specific
project, the engineer gets another working context.

In figure 1, the Merlin interface of an engineer, called Miller, with the role programmer and
the project merlin_demo_project is presented. All the buttons and menus of the windows in
figure 1 will now be explained.

The WorkBench window has four buttons. With the Accounting button, the engineer can login
or logout. The Project and the Role button are needed to choose the project respectively the
role. If the entry working context is chosen from the menu of the button Tool, the Working-
Context window appears.

In the WorkingContext window of Miller, four accessible documents are displayed. Next to
each document, the activities, which Miller can start on the documents, can be chosen with

context sensitive menus. The documents don’t have the same type. Two of them are c-mod-
ules and two of them are specifications. In the example, Miller is a programmer.

FE MWINDOW - User: miller Role:r programmer

Na "
Ident : miller Project ! merlin_demo_project
Update =4 |

Browser

FIGURE 2.1. Interface of the PSDE Merlin.

The engineer can set the kind of tool, he wants to use for a specific activity, with the Configu-
rations button.

With the Filter Settings button, the engineer can filter some documents or documents types out
of his working context. In this way, the engineer isn’'t bothered with momentary unnecessary
information.

The WorkingContext button is used to shut down the working context and the Browser button
is needed to structure the document graph in the working context in a different way.

When an activity is performed and its result influences the working context of an engineer,
this engineer is informed about the changes by the update flag in the top left corner. Then, the
engineer can choose whether he wants his working context to be updated.

A document consists of the contents and the status. The contents is the text or binary represen-
tation and the status shows where the document is in its life cycle. When a certain mile stone is
reached, the status of the document is changed by the process engine or the engineer.

As already mentioned, an engineer only has a document in his working context, if he needs
this document to perform an activity. When the engineer has finished a document, or when the
engineer can’t work on a document, before other activities are finished, it is irrelevant for the
engineer to see this document in his working context. Whether a document is relevant for an

engineer or not depends on the status of the document and on the underlying process
description.
The next example makes the usage of document status in Merlin more clear. In figure 2 and 3,

not the total screen dump is given. Only the parts of the screen, in which we are interested, are
shown.

list

rint
m3 c executable_in -
C - Module o

implemented_in

list

rint |
m3_spec
Specification

Program

list test_cases_are_

pr int described_in
m3_spec ms3_tp
Debugger: m3_prg — p_ Test Plan
Specification
status: m3_prg Editor: m3 tp - status: m3_tp
e ————————————
- P —
module_rejected — not_yet_planned
= |
—~
Programmer Peter v Tester Anja

FIGURE 2.2. Cooperation between a programmer and a tester.

The programmer Peter has three documents in his working context. Peter needs the specifica-
tion to implement the c-module. The activities on the specification are list and print. So, Peter
can only read the specification. Peter has already completed the c-module and is now using the
debugger, to check whether the implementation is correct.

Anja will test the ¢ module, which is just completed by Peter. To test the ¢ module, Anja has
made a test plan. For that goal, she has read access on the specification. In this test plan, the
test strategy and the test cases are described.

On this moment, Peter has completed debugging successfully and Anja has created her test
plan. The status of the documents m3_prg and m3_tp are changed. The two working contexts
of Anja and Peter can be updated. In figure 3, the updated working contexts are presented.

edit

edit list list
pri rint | Brint_
m2_c mSﬁSp-ec implemented_in - m3_C
imports_are_ C - Module Specification C-Module
Specified_in test_case$_are.
descri e?ifinf used_in

implemented_in list

list imports/are_ - print
i ! list m3_tp —
Test Plan mo_
m2_spec Test Frame
Specification Specﬁcation .
imports el status:m3_tf
imports —— not_yet_implemented
I -St —_— implemented
print I m3_spec a3)
Specification _— .
P Programmer Peter — v Tester Anja

FIGURE 2.3. Updated working contexts.

Peter can now implement the ¢ modules m1_c and m2_c. Only after successful implementa-
tion of the m3_c module, the m1_c and m2_c module can be implemented, because the m1_c
and the m2_c module import the m3_c module. If Anja would reject the m3_c module, it
would be given back to Peter. The documents m1_c and m2_c would disappear out of the
working context of Peter, because m3_c has not been implemented successfully. To imple-
ment both ¢ modules, Peter can read three specifications.

Anja writes a test frame. With use of this frame, a test program has to be created. Anja creates
m3_tf, with use of the already created test plan and the specification. Anja can’t write in the
test plan any more. Eventually, Anja has finished editing and can now change the status of the
document m3_tf.

The process engine makes sure that the working contexts of the engineers are updated.
Besides this, the process engine also starts activities on documents, that needs no user interac-
tion. For instance, the process engine automatically compiles a ¢ module, when a programmer
just implemented a ¢ module successfully.

As generally observed, a lot of cooperative work exists in a process-centred Software Devel-
opment Environment. To coordinate the parallel access on documents in Merlin, a process
transaction model was defined, which is described in the following chapter.

3. Introduction to the process transactions

In the previous chapter a short introduction of Merlin, a Process centered Software
Development Environment (PSDE), is given. Such a PSDE supports the coordination of all the
activities, executed by engineers and the process engine. Without coordination, two or more
engineers could simultaneously work on the same document, without knowing from each other.
This would very fast lead to inconsistencies. To make sure that all the activities on documents
are coordinated, process transactions are used.

This chapter is a summing-up of the dissertation of Stefan Wolf [WO 94]. The biggest part of
this chapter can be found back in chapter 6 of this dissertation.

The process engine initiates process transactions. It either initiates them, because an activity of
the engineer needs a process transaction or the process engine initiates a transaction as a
reaction on the transaction of the engineer.

When an engineer changes the status of a document, this can have impact on other documents
and their status. If for instance the status of a specification module has be&osepketeby

an engineer, the process engine changes the status of the related C module from the value
Incompleteback toNot yet implemented

Whenever a transaction is initiated, the process engine or the engineer wants to have access on
the contents and status of a document. To guarantee, that parallel access on documents won't
lead to inconsistency of the documents, locks and time stamps are used by the transaction
model.

Pessimistic transactions can ask for locks on contents and/or status of a document. These locks
restrict the access on this contents or status for other transactions. If a transaction has obtained
a write lock, no other transaction may read or write on this contents or status. Granting such a
request would be incompatible. If a transaction holds a read lock, other transactions may only
read this specific data, but can’t change the data. If a transaction requests a lock, but it can'’t
obtain the lock immediately, because other transaction(s) already hold this lock and granting
the request is not compatible, there is a conflict. Either the transaction, which requested the
transaction, or the transaction(s), which hold the lock have to be aborted.

Optimistic transactions can ask for time stamps on contents and status of a document. Time
stamps don’t restrict the access on the documents. At the end of execution, a transaction (let's
call it now T1), which uses time stamps, will check whether other transactions used its
documents. If the activities of these transactions are in conflict with the activities of T1 on this
document, the transaction T1 will be aborted and the changes of the document, made by
transaction T1, aren’t stored.

Transaction T1 uses a log, to check whether other transactions used its documents. In the log,
all the information of released locks and already used time stamps is stored. With this
information, it is checked whether time stamps of transaction T1 are in conflict. It is also
checked whether the time stamps of transaction T1 are in conflict with transaction, which now
have locks.

Checking of time stamps is called validating.

The engineers and the process engine use tools to work on the documents. An engineer uses
interactive tools and the process engine uses batch tools.

There are five types of transactions. Three types of transactions are initiated, because the
engineer starts an activity. Two types of transactions are initiated, because they react on
changes made by the activities of the engineers.

If the engineer opens its working context, the process engine checks whether this context has
to be under pessimistic protection. If this is the case, a Pess_AF transaction will be started.
Otherwise, the engineer can choose whether he wants pessimistic protection on whole its
working context or only (optimistic or pessimistic) protection on a document of its working
context, if he is using this document.

First the three types of transactions, which are initiated when an activity is started, are given.

Pess_ Akt

This transaction is initiated, when the engineer wants an interactive tool with pessimistic
protection to work on the document. The working context is in this case not build under
pessimistic protection.

The transaction of this type obtains locks on one contents and status of the document, it wants
to work on.

After the locks are obtained, the transaction protects that the engineer can work on the
document safely. After the engineer is finished, the transaction will commit. This means that
the locks are released and that information about this releasing is inserted in the log. After that,
the transaction will be deleted.

Pess AF

This transaction is initiated, when the engineer starts the working context and either the process
engine or the engineer want that the working context has pessimistic protection.

The transaction of this type obtains locks on more then one document. The complete working
context of the engineer will be locked. The working context of an engineer consists of all
documents, where on the engineer has access with a specific role.

When the engineer is working on its documents and some information of the working context
is changed, the engineer can refresh the working context. Refreshing means, that the locks of
documents, which are no longer part of the working context, will be released and that locks on
documents, which have become part of the working context, are requested. Also all the changed
contents and status values of the documents are saved.

At the end, when the engineer leaves the working context, the transaction is committed and the
log is updated.

Opt_Akt

This transaction is initiated, when the engineer wants an interactive tool with optimistic
protection. The working context is of course not build with pessimistic protection.

A transaction of this type uses time stamps, instead of locks, to access contents and status. Only
one contents and status of a document will be stamped.

At the end, the time stamps are validated. This means, it is checked whether other transactions
had conflicting parallel access on the document of this transaction. If the validation is not

successful, the transaction is aborted. Otherwise, the time stamps are changed in locks and the
type of the transaction is changed in Pess_Akt. The purpose of changing the type in Pess_Akt
will be explained right away.

Now the two types of transaction, initiated to react on changes made by activities of the
engineers, are described.

Both Auto and Kons transactions can be started, when an engineer has changed the status of a
document. When an interactive tool has been used, the status of this document can be changed.
The interactive tool had one of the three above described sorts of protection (Pess_Akt,
Pess_AF, Opt_Akt).

Kons

A transaction can request as many locks, as it needs. So, a transaction may lock only a status of
a document and not the contents itself.

After the locks are obtained, the transaction can use batch tools. At the end, the transaction is
committed.

Auto
The Auto transaction behaves quite similar to the Kons transaction. It can also ask for as many
locks it wants and use a batch tool. The difference between these two types is the priority of the

type.

Both Auto and Kons are pessimistic transactions.

A transaction of the type Kons makes sure that the state of the project will stay consistent.
The consistency of the project has to be guaranteed, therefore it must be avoided that the
execution of a Kons transaction is delayed. The execution of a Kons transaction is delayed,
when it can’t obtain some locks, because another transaction has these locks.

A transaction of the type Auto performs some changes in the project state, which are less
important. Therefore, it is not a real problem, when the execution of a Auto transaction is
delayed for a short time.

Therefor, the type Kons has a higher priority then the type Auto because the higher the priority,
the more likely it is that such a transaction wins the conflict over a lock.

Pessimistic engineer transactions are transactions of the type Pess_Akt or Pess_AF. This means
that such a pessimistic transaction uses locks to restrict the access on documents or status.
Optimistic transactions are of the type Opt_Akt. Such an optimistic transactions doesn’t restrict
the access on the contents and status of the document, it was started on.

As already told, Auto and Kons transactions, are initiated as a reaction on engineer transactions.
This results in nested transactions in the Process Transaction Model.

Transactions of the type Pess_Akt, Pess_AF and Opt_Akt are parent transactions. Transactions
of the type Kons and Auto are child transactions.

Kons and Auto transactions propagate changes, which are done in an engineer transaction.

Their is no limitation on the order and number of transactions of the type Auto and Kons, which
follow after a specific father transaction (of the type Pess_Akt, Pess_AF and Opt_Akt).

The child transaction inherits the locks from its parent. It is only possible that two write locks

exist on a contents or status, when a child inherits the write lock of its father.

It is of course possible, that a transaction requests a lock, when there is already a transaction,
which holds this lock. If the request is not compatible, then there is a conflict.

To solve this and also other kinds of conflicts, which are caused by parallel access,
synchronization rules are defined.

Synchronization rules

Rule 1
When an engineer-initiated transaction, of the type Opt_Akt, Pess_Akt or Pess_AF, has write
access on a document, it must have (read or write) access on the status of this document.

Rule 2

When an Opt_Akt transaction starts child transactions, the Opt_Akt transaction has to be
validated successfully and it has to be converted in a pessimistic transaction of the type
Pess_Akt. The time stamps on the documents and status are changed in locks.

Rule 3
Every transaction type has a priority. The order between priority of the transaction types is the
following:

Kons

Pess_AF Pess_Akt

N

Auto

|

Opt_Akt

A—B

A has a higher priority as B

Rule 4

When a conflict occurs between two Pess_AF, two Pess_Akt or a Pess_AF and Pess_Akt
transaction over a lock on a document or its status, the transaction, which requests the lock, will
be aborted.

Rule 5
If a conflict occurs between two Kons transactions over a lock on a document or its status, the
transaction, which requests the lock, will be aborted.

Rule 6

If a conflict occurs between a Kons transaction and a Pess_Akt or Pess_AF transaction over a
lock on a document, the Pess_Akt or Pess_AF transaction, when this transaction has not started
any child transactions yet, will be aborted.

Rule 7
If a conflict occurs between a Kons transaction and a Pess_Akt or Pess_AF transaction over a
lock on a document, the Pess_Akt or Pess_AF transaction, when this transaction has started

child transactions, will release this lock.

Rule 8

If a conflict occurs between a Kons transaction and a Pess_Akt or Pess_AF transaction over a

lock on a status, the Pess_Akt or Pess_AF transaction will release the lock.

Rule 9

If a conflict occurs between an Opt_Akt transaction and an other transaction of a certain type
over a lock or time stamp on a document or its status, the Opt_Akt transaction will be aborted.

Rule 10

If a conflict occurs between an Auto transaction and a pessimistic transaction over a lock on a

document or status, the auto transaction will be aborted.

Rule 11

A nested transaction will end normally, when child transactions are aborted.

pess_Akt pess_Akt | pess_AF| pess_AF | gpt Akt kons auto
(no Subtr.) | (with Subtr.) (no Subtr.)| (with Subtr.) -
\l \l \l \l Abort Abort
SR 4 SR 4 SR 4 SR 4 SR9 SR 6,8 SR 10
pess_Ak
Abort Abort Abort Abort \l Abort \l
\/ \/ \l \l Abort \l Abort
SR 4 SR 4 SR 4 SR 4 SR9 SR 6,8 SR 10
pess_AH \l
Abort Abort Abort Abort ‘l Abort
SRQ\l SRQ\I SRQ\l srzg\l SRQ\l SR9 SR\!
opt_Akt
Abort Abort Abort Abort Abort Abort Abort
Loclk /;g.lgretlsec Lock releasefi Loo}< /;glgr?sec Lock releasefi\ aport Abort
SR 6,8 SR 7,8 SR 6,8 SR 7,8 SR 9 SR'5 SR 10
kons
\l \/ \/ \l \/ Abort \l
\l \/ \l Abort
SR 10 SR 10 SR 10 SR 10 SR 9 SR 10 SR 10
auto
Abort Abort Abort Abort \l Abort Abort

10

In the above matrix, the synchronization rules are presented in another way. In each matrix
field, it is presented how transactions will react if a conflict occurs and which synchronization
rule prescribes this reaction.

A field in the above matrix has to be interpreted in the following way. A transaction Ti, which
is requesting a lock or validating, with a type in the left column, is in conflict with a transaction
Tj of the type in the top row. The left part of a matrix field gives the solution for transaction Ti,
the right part the solution for transaction Tj.

The transaction concepts, described in this chapter, are specified in chapter 5. The formalism,
which is used to describe this process transaction model, is called Socca. Socca will be
described in the following chapter.

11

4. Introduction to Socca

The specification formalism Socca is developed at Leiden University.

The idea behind Socca is the separation of concern, which finds expression in the combination
of the best fitting (parts of) different formalisms.

Socca uses three perspectives to define a specification, namely data perspective, behaviour
perspective and process perspective. The process perspective is still in development, which
has as consequence that this perspective won’t come back in this master thesis. The process
perspective should describe the data flow.

In the following section, the components of Socca will be briefly described. First the data per-
spective is defined. For further information over Socca, one could read [EG 93] and in [Gr 91]
more information concerning PARADIGM can be found.

Data perspective

In the data perspective, the static structure of the system and its relation to its environment are
described, by an object oriented approach with use of EER.

Besides the influence of sub-systems on other sub-systems, it will also be examined, what
influences the system and what is influenced by the system. The major components (classes)
of the system and the environment are modelled with use of EER.

To specify the data perspective, all the classes have to be specified and for each class, the
export operations and attributes are given.

Furthermore, with four different sorts of relations, the dependencies between the classes are
modelled. These relations are: Inheritance, Composed-of, Uses and General relations.

These four relations result in three diagrams. These are: Class hierarchy (including inheritance
and composed-of), General relations between the classes and the Uses relations between the
classes.

After the data perspective, the behaviour perspective is defined in the Socca specification.

Behaviour perspective

The behaviour perspective concentrates on the operations, which realize the transformation on
the data. Especially the allowed sequence of operations stands central in this observation.
The behaviour perspective can be divided in three parts, namely external behaviour, internal
behaviour and PARADIGM.

External behaviour

In this part, the behaviour of a class, which is visible from outside, is specified. To specify the
external behaviour of a class, the allowed sequences for calling the exported operations are

12

defined by means of State Transition Diagrams (STD’s).

A State Transition Diagram exists of states, which are connected with arrows (transitions). If
the behaviour processes the transitions, the state of the behaviour will be changed.

In this paper, a state chart feature is used to extend the STD’s.

Sometimes, a STD has a couple of states, which have the same transition to a specific state X.
Until now, all the transitions were given by there own arrow, in a Socca specification. This
makes a STD sometimes difficult to survey.

With this next feature, a polygon is drawn around all those states, which have the same transi-
tion to state X. Now, only one arrow is drawn for this transition. This arrow starts at the poly-

gon and ends in state X.

In figure 1, an example is given.
Trans_A

O L

Trans_C Trans_C

FIGURE 4.1. The same STD’s, with and without the feature.

In figure 2, a small example of an external behaviour is given.

Use_lInter_Tool
Starting
tool

FIGURE 4.2. External behaviour.

In this external behaviour, a class has one export operation Use_Inter_Tool. By calling this
export operation, the behaviour goes from diatralto stateStarting Tool The tool is

started and the behaviour can stay in ss&#eting Toolor go to stat®&eutraland ask a new

tool.

Next the internal behaviour is presented.

Internal behaviour

The behaviour of each export operation is described. The export operation calls other export
operations and internal operations of its own class. So, the internal behaviour specifies the
allowed sequence of internal operations and of calling of export operations. To specify this
sequence, again State Transition Diagrams (STD’s) are used.

The calling of another export operation is shown in the STD by the prefix “call”.

The internal behaviour of an operation is activated, when this operation is called by an export

13

operation. The activation is shown in a STD by the prefix “act”.
In figure 3 and 4, two small examples of internal behaviours are given.

I-tool Act_ Ask for call_Use_
canbe | | o0 Inter_Tool
used I-tool

FIGURE 4.3. int-Ask_Tool: STD of the internal behaviour.

This internal behaviour describes the request for an interactive tool.

The transition ‘Act_I-tool’ activates this internal behaviour. After activation, an export opera-
tion is called. The name of this export operation is Use_Inter_Tool. This export operation
makes sure that an interactive tool is started.

Tool

Tool
Act_ m Start_Tool
can be

asked / Use_Tool asked

FIGURE 4.4. int-Use_Inter_Tool: STD of the internal behaviour.

This internal behaviour describes that the interactive tool is started.
The internal operation Start_Tool actually starts the tool.

Next, the third and last part of the behaviour perspective is presented.

PARADIGM.

PARADIGM is developed at the Leiden University by L. Groenewegen [Gr 91]. PARADIGM
stands for PARallelism, its Analysis, Design and Implementation by a General Method. PAR-
ADIGM can be used to manage several to each other related (parallel) processes.

In this part, the coordination of the communication is specified. There are two sorts of coordi-
nation, which are modelled:

- Coordination of all internal behaviours of a class X.

This is the coordination between an external behaviour X and the internal behaviour belonging
to the same object.

- Coordination of all internal behaviours, which call export operations of a class X.

This is the coordination between any internal behaviour of an operation, calling export opera-

tions of class X, and the external behaviour X.

This coordination is managed by the external behaviour of class X.
All the internal behaviours are called employees. The external behaviour is called manager.

To describe the coordination, several subprocesses and traps are defined for each employee. A

14

subprocess is a part of an internal behaviour. Some states and transitions of the internal behav-
iour are left out in the subprocess. In this way, the internal behaviour is restricted. This restric-
tion of this internal behaviour reflects in what state the external behaviour is.

Traps are (sets of) states in a subprocess, in which an employee is ready to switch from one
subprocess to another. A trap hasn’t got any outgoing transitions. When the behaviour is in a
trap, it can only leave the trap by switching from the current subprocess to a next subprocess.

In PARADIGM, it is described:

- in which subprocess an employee has to be, depending on the state of the manager.

- which trap triggers a transition between two states of the external behaviour of the manager.
PARADIGM will be explained by the following example.

The above specified internal behaviours are used as employees. The manager is the above
specified external behaviour.

As already mentioned, two sorts of employee exists. The first kind of employees are from the
same class, as the manager. The second kind of employees, are those calling export operations
of the class from the manager. In figure 5, the second kind of employee is presented. In figure
6, the first kind of employee is visualized.

s-1

I-tool Act_ @ call_Use_ I-tool
can be | Too|

asked Use_lnter_TooIW nter_Too asked

'Ask for I-tool
I-tool asked
t-2
FIGURE 4.5. int-Ask_Tool’s subprocesses and traps.

The two subprocesses (s-1 and s-2) are a part of the same internal behaviour. In subprocess s-
1, the behaviour is busy with the operation. When it has called the operation Use_Inter_Tool,
the employee is in trap t-1.

In subprocess s-2, the employee can't call the operation Use_Inter_Tool.

When the employee is in one of the traps (t-1 or t-2), it is ready to switch to the other subproc-
ess.

Tool
Start_Tool Tool
asked started

15

s-4

Tool Act Tool Tool
can be =
asked/ Use_Tool asked started
t-4
FIGURE 4.6. Use_Inter_Tool's subprocesses and traps.

In subprocess s-3, the internal behaviour can’t be started. If the behaviour has reached trap t-3,
it can switch to subprocess s-4.

In subprocess s-4, the internal behaviour can be activated. If the internal behaviour is in trap t-
4, the behaviour has really started, i.e. the operation is busy starting the interactive tool.

int-1
t-3

&) &)

int-2
t-4

FIGURE 4.7. Manager of two employee.

The external behaviour of figure 1 is taken as a manager. IiN&atel the two employees

are in subprocess s-1 and s-3. If the external behaviour goes tStatsiteg Too) the behav-

iour of the employees have to be in trap t-1 and t-3. When the employee is in trap t-1, the
export operation has called the operation Use_Inter_Tool.

In external stat&tarting Tool the employees have switched from subprocess. The internal
behaviour of Use_Inter_Tool can now be activated.

If the external behaviour goes to stiieutral both employees switch again of subprocess.
The internal behaviour Use_Inter_Tool is activated and the operation Ask_Tool can call the
export operation Use_Inter_Tool again.

This concludes the short introduction of the behaviour perspective and Socca. Next, the speci-
fication of the process transaction model with use of Socca will be presented.

16

5. Specification

In this chapter, the process transaction model of the PSDE Merlin of chapter 3 are specified
with the specification language Socca, which has been briefly described in chapter 4. The first
perspective of Socca is the data perspective.

It is assumed, that the reader understands the contents of the previous chapters. This will ena-
ble the reader to understand the following specification of the process transaction model eas-
ier.

5.1 Data Perspective

As already described in the previous chapter, Socca starts with the data perspective. The data
perspective models the static structure of the components of the PSDE Merlin and more
detailed the process transaction model. Description of such a static structure will be based on
EER concepts. The contents of this section is described in a step-wise manner. There are
roughly three steps.

First, complex structured objects are described by class hierarchies consisting of class defini-
tions as well as of part-of and is-a relationships.

Second the missing general relationships are added.

Third, it will be indicated which of the classes indeed use the operations exported by other
classes.

In figure 5.1.1, the class hierarchy is given. The PSDE Merlin consists of four subclasses.
The Process Description, which contains the information over the kind of software develop-
ment process.

The Project Description, which contains the necessary information over the project, like all the
documents, information over project members and tool software. A documents consists of the
contents and a status.

The Process Engine controls the working context and work bench by executing the process
description.

The fourth subclass is Cooperation Model, which enables the communication between the
user and the process engine via the WorkBench Window and the WorkingContext Window.
Furthermore, it coordinates all activities of all users by a process transaction concept

With use of the WorkBench Window, the engineer can choose the right project, where on he
wants to work with a specific role and he can request for the WorkingContext Window.

The WorkingContext Window consists of all the documents, which can be used by an engi-
neer.

The class Process Transaction Model makes sure that all the activities won'’t jeopardise the
consistency of the data. Therefore, it coordinates all the access on documents. A transaction
can be either optimistic or pessimistic. There are five types of process transactions distin-
guished: Opt_Akt, Pess_Akt, Pess_AF, Kons and Auto Transaction. The types Auto, Kons,
Pess_Akt and Pess_AF are always pessimistic and the type Opt_Akt is optimistic.

To control access on contents and status, locks and time stamps are used. Pessimistic transac-
tions only use locks and optimistic transactions only time stamps. When a transaction is suc-

17

cessfully ended, information about their locks or time stamps is stored in tuples, which built
up the log. The log is used by the Opt_Akt transaction, to check at the end of its execution
whether there was no parallel access on the document or status, it had worked on.

PSDE

Merlin

Project Process Cooperation Process

Description Engine Model Description
Project Document Tool Working Process Trans. Work
Member Software Context Model Bench

Status Contents Locks TimeStamp Process Log
Transaction

Tuple
optimiStic
Transaction Transaction
Pess_Akt. Pess_AF. Kons Auto Opt_Akt
Transaction Transaction Transaction Transaction Transaction

FIGURE 5.1.1. Class hierarchy.

The black dot indicates that the number of instances participating in a relationship may be
between zero and n. The small triangles indicate is-a relationships and the small diamonds
indicate part-of relationships.

Because this data perspective is used to give an overview of the Merlin structure, not all the
classes will be used in the further specification, as this thesis is focused on the process transac-
tion model.

Therefore, the classes PSDE Merlin, Project Description, Project Member, Tool Software,
Process Description and Cooperation Model are not considered in the remaining specification,
i.e. they are out of scope.

In the dissertation of Stefan Wolf [Wo 94], the internal organisation of the log is not clearly
described. There is described, that some information is inserted in the log, after a lock or time
stamp is released. The only information is given on page 152 of the dissertation, where it is
shown, how in the Merlin implementation the log is filled with information of a released lock.
As no term was given for an entry of the log, the term tuple is used in this thesis to denote one
entry in the log. Insertion of such a tuple in the log can be compared withSE&R Topera-

tion on page 152 in the dissertation of Stefan Wolf.

18

The attributes and export operations of the relevant classes in figure 5.1.1 are given separately
in figure 5.1.2, for the sake of readability.

At this moment, it is sufficient to have a general idea what the meaning of the export opera-
tions and attributes in figure 5.1.2 are. Later on in the behaviour perspective, these export
operations will be described in more detail.

TimeStamp Locks Tuple Process Transaction Process Engine
Doc_Name Doc_Name Doc_Name Identifier St We
; ar
Object_Type Object_Type Object_Type Type st _WC
: 0
Access_Type Write Access_Type User_Name st pt_A)
; art_Ac
Time Read_List Time Role —
Get_Read_Lock Create tunl Lock_List Stop_Act
reate_tuple
Create_TS Get_Write_Lock Delet _t pl Ident_Father_Trang Refresh
elete_tuple
Clean_TS Get_Lock_Father P Commit
Insert_Tuple
Release_Lock ; . Abort
) Conflict_with_Tuplef?
Conflict Create_Trans
Compatibility
Auto Trans Kons Trans Pess_AF Trans Pess_Akt Trans Opt_Akt Trans
Type = {Auto} Type = {Kons} Type = {Pess_AF} Type = {Pess_Akt} Type = {Opt_Akt,
Pess_Akt}
Remove_Lock TS_List
Update_Lock
Set_TS
Validate
Optimistic Trans Pessimistic Trans Working Context Document
— Type = {Pess_AF,
Type = {Opt_Akt, P {P _Akt Create_WC Doc_Name
Pess_Akt] €SS_AKL, Lo
Akt} Auto,Kons} Delete WC Doc_Type 9
Ask_Lock Refresh_Display Contents
Conflict_with_Log?
Status Engineer Contents Add_Tuple_in_Log
Doc_Status User_Name Doc_Contents
Role
New_Status Start_Inter_Tool
Stop_lInter_Tool
Use_Batch_Tool
Save_Copy
Create_Copy
Copy_in_Privat

FIGURE 5.1.2. Attributes and operations

At first the meaning of the important attributes will be explained.

The attribute Doc_Name represents the name of an document. Each document has an attribute
Object_Type. The value of this type is either contents or status. The attribute Access means
how the contents or status of a document is accessed. A time stamp or lock can only have
read- or write access.

The attribute Lock_List contains all the locks, which have been set by a transaction. Analo-
gously TS_List contains all the time stamps set by an Opt_Akt transaction. The attribute Type
of class Opt_Akt Transaction can have both the values Opt_Akt and Pess_Akt. This is so,
because after successful validation of an Opt_Akt transaction the value of the attribute Type
will change to Pess_Akt.

Now some important operations will be explained.

The operation Ask_Lock requests a lock on a contents or on a status. A request doesn’t mean
that the lock will be obtained, butdan be obtained. Analogously, the operation Set_TS is

19

used to set a time stamp on a contents or status. After such an operation, it is certain that a time
stamp is created. In the class Lock, there are three kinds of operations to get a lock. A read
lock with Get_Read_Lock, a write lock with Get_Write_Lock and a child transaction obtains
the lock of its father with Get_Lock Father. Release_Lock is used to release a lock. In class
TimeStamp, Create_TS is used to create a time stamp and Clean_TS to delete the time stamp.

The five classes Auto -,Kons -, Pess_AF -, Pess_Akt and Opt_Akt Transaction inherit all the
operations and attributes from their parent class Process Transaction and from Pessimistic
Transaction or Optimistic Transaction.

It would be wise to look at figure 5.1.2 once more, after the rest of the data perspective has
been read. The meaning of some operations will then be perhaps more clear.

The next step is to describe the general relationships between the relevant classes in more
detail.

The creation of a transaction has to be controlled. This is done by the Process Engine. The
Process Engine can start a transaction as a reaction on a demand of the engineer. The engineer
can express his demands to the process engine through the working context or the work bench.
Via the work bench, the working context can be created and displayed. Because of the demand
of the engineer, a transaction of the type Pess_AF, Pess_Akt or Opt_Akt is created. The proc-
ess engine can also start transactions to keep the project consistent or to use automatically cer-
tain tools. These transactions are of the type Auto and Kons.

Document

TimeStamp

Process
Ol Transaction

coorc@

Process
Engine

Log

Working
Context

Engineer

FIGURE 5.1.3. General relationships.

20

A transaction is always related to a name of an Engineer. This is the name of the Engineer,
who directly or indirectly initiates a transaction. The indirectly initiated transactions are of the
type Auto and Kons and are called child transactions. These child transactions are initiated
when a parent transaction, which is initiated directly by the engineer, is stopped. The child
transactions change the project situation, because of the impact of the execution of the parent
transaction.

This Engineer has of course always a role. Therefore the name of the Engineer and his/her role
are related to the transaction.

When a transaction is created, the transaction gets an unique identifier. A child transaction also
gets an unique identifier. To use documents, the transaction asks for time stamps or requests
locks. A lock on the contents or status will make sure that no other (incompatible) lock can
lock this contents or status. So a lock restricts the access on a document.

A time stamp doesn't restrict the access. An Opt_Akt Transaction checks at the end of its exe-
cution with use of the time stamps, whether there was a conflicting parallel access on the con-
tents or status of the document, it worked on.

The time stamps are cleaned (deleted), when the optimistic operation is validated. The type of
the transaction will be changed in Pess_Akt, after the validation was successful. Now, the
transaction can initiate child transactions. If the validation was unsuccessful, the Opt_Akt
Transaction will be aborted.

When a transaction is requesting a lock, it is checked whether this request won't give a con-
flict. A conflict does arise, when the requesting lock isn’t compatible with the lock(s), which

are already held on the contents or status. Which transaction(s) have to release a lock or have
to be aborted depend partly on the type of the involving transactions. If a conflict doesn'’t arise,
the lock request is granted and the lock is set.

The precise rules for synchronizing this conflict are summarized in the Process Transaction
chapter.

In the Log, it is stored when which locks have been released by committed transactions and
when which time stamps are cleaned by successfully validated transactions. When a lock is
released or a time stamp is cleaned, a tuple will be created, containing the necessary informa-
tion about this lock or time stamp. The tuple is inserted in the log, when the transaction is
committing or is validated successfully. Aborted transactions and unsuccessfully validated
Opt_Akt transactions don'’t insert information in the Log. When an Opt_Akt transaction is val-
idating, it will look in the Log to check whether some other transaction, which has already
released the locks or time stamps on this document or time stamp, is in conflict with this
opt_Akt transaction. If there is a conflict, this Opt_Akt transaction must abort. The data used
by this Opt_Akt transaction could be inconsistent.

The third and last step for describing the data perspective is to indicate which of the classes
indeed use the operations exported by other classes. All the uses-relationships are graphically
given in figure 5.1.4.

The classes Engineer and Work Bench are out of the scope of the model of this specification.
This means, that it is interesting what the influence is of these classes on the model and which
operations are imported by it, but it is not interesting, which export operations are offered by
these two classes.

21

The classes Engineer and Work Bench have no export operations in this model. The engineer
uses (Usesl) the Work Bench to tell the Process Engine what working context has to be
shown. The engineer also uses (Uses2) the Working Context to trigger the start of interactive
tools on documents.

The WorkBench uses (Uses3) the Process Engine to pass the information through from the
engineer. The Process Engine uses (Uses4) the WorkBench, to update the display of the work
bench window.

The WorkingContext uses (Usesb) the Process Engine to start interactive tools on documents.
The Process Engine uses (Uses6) the WorkingContext to update the window.

The Process Engine uses the Status (Uses11) and the Contents (Uses12), to save a new status
or to start and stop tools on the contents.

The class Process Transactions uses (Uses14) Contents to create and save copies of the con-
tents in the data base.

The Process Engine initiates and controls the process transactions (Uses7).

The Uses8 and the Uses9 relation in figure 5.1.4 shows that the Process Engine uses other
export operations, when it controls a pessimistic or optimistic transactions. There are also
some operations of the class Pess_AF Transaction, which are used by the Process Engine. This
is made clear through the Uses10 relation.

Status

Contents

Uses14

Process Transaction|

Opt_Akt Uses16 TimeStamp
Trans

Work
Bench

Pessimistic
Transaction

Kons Trans Usesl7

Usés1 Locks

Process /UM Auto Trans
Engine
\Usessz\

Engineer

Pess_Akt Uses18

Tuple
Trans P

Uses20

N\ Pess_AF

/useﬁf | [_Trans
Working

Context

Uses19

Log

Uses15

Out of scope :

FIGURE 5.1.4. Import / export diagram.

22

The class Pess_AF Transaction only uses (Uses13) the Working Context, when the working
context has to be deleted, because the transaction has to be aborted.

The Uses15 relation shows that one transaction can trigger transactions to abort.

A transaction can abort its self. This happens when the transaction requests a lock, which it
can’t obtain or when an Opt_Akt Transaction is validated unsuccessfully.

Or a transaction can abort other transactions, which were in conflict with this transaction and
have to release a specific lock.

All the Process Transactions use (Uses17) the class Lock. Also the class Opt_Akt Transaction
uses the class Lock, because after successful validation, the type of the transaction is changed
in Pess_Akt and the transaction has changed its time stamps into locks.

All the Process Transactions also use (Uses18) class Tuple. The class Log inserts (Uses20) the
tuples in its contents. Therefore, all the Transactions also use (Uses19) the class Log.

Only Opt_Akt Transaction uses (Uses16) the class Time Stamp.

This concludes the data perspective of the specification. Next, the behaviour perspective will
be presented. The behaviour perspective will be started with the external behaviour.

23

5.2 External behaviour

The previous section has discussed the data perspective. The classes are defined, by giving
there attributes and operations. How the behaviour of the classes is, has been globally indi-
cated. This section will define the external behaviour of these classes. This external behaviour
is visible from outside, specifying the allowed sequences for calling the exported operations.
As already mentioned, some classes are only used in the data perspective, which means that no
external behaviour will be specified for these classes. Furthermore, from the superclasses Doc-
ument, Process Transaction, Optimistic Transaction and Pessimistic Transaction, the external
behaviour is not given, because it is sufficient to give the external behaviour of their sub-
classes.

The behaviour of the exported operations is defined in the internal behaviour section. This
internal behaviour comes afterwards. The internal behaviour specifies the allowed sequences
of private operations and of calls of operations imported from elsewhere.

To describe the behaviour, state transition diagrams (STD) are used.

We will start with the description of the external behaviour of the subclasses of the class Proc-
ess Transaction. In order to understand exactly what has to be specified, the export operations
of the class Kons Transaction are listed down below. The first three operations are the same for
all the Process Transaction subclasses, as they are inherited. The operation Ask_Lock is used
by all the subclasses of Pessimistic Transaction.

Create_Trans
Commit
Abort
Ask_Lock

The external behaviour of the class Kons Transaction is shown in figure 5.2.1.

FIGURE 5.2.1. Kons Transaction: STD of the external behaviour.

In the statéNon existingthe transaction is still not created. By using the transition
Create_Trans, the operation is started and theGtagdion starteds reached. Eventually the

24

transaction is created and the stat@nsact createds reached.

The transaction can start to ask locks. If the lock request can’t be accepted, because the lock
request causes a conflict with an already obtained lock of another Kons Transaction, the trans-
action will be aborted. This is shown by the s#abert started A Kons transaction always

loses a conflict, when it requests a lock, held by another Kons transaction. If it is held by
another type of transaction, the Kons transaction will win the conflict.

If the locks request is accepted, the lock is obtained and the transaction can request more
locks.

Only in the beginning, the transaction asks for locks. When all the locks are obtained, it will
start to execute. This means that some values in the database are changed with or without the
use of tools. When the transaction is finished executing, the transaction will be committed.

The transaction of the type Auto is also initiated by the Process Engine. Here are the opera-
tions of the class Auto Transaction.

Create_Trans
Commit
Abort
Ask_Lock

Auto Transaction has the same export operations as Kons Transaction. The external behaviour
of Auto Transaction is shown in figure 5.2.2. The external behaviours of Auto Transaction and
Kons Transaction are pretty similar, as one can see.

Ask_l.ock

Abort Lock
A
Aborted Aho ‘
started equested

. Commit
nms a
started

FIGURE 5.2.2. Auto Transaction: STD of the external behaviour.

The difference is that now not from one state but from three states thalstatstartedcan

be reached.

Similar with the previous external behaviour of Kons Transaction, a transaction of the type
Auto, called T1, can be aborted when it is requesting a lock, which is already set by another
transaction, called T2 (stalt®ck requested When the priority of the transaction T1 is lower
then the priority of transaction T2, the lock won't be obtained and the Auto transaction T1 has
to be aborted.

When a transaction T2 with a higher priority is requesting a lock, which has been set by the

25

transaction T1 of the type Auto, the lock has to be released by T1. This can happen in the
stated_ocks can be requested, ExecaelLock requestedlhe transaction T1 then has to be
aborted, because its lock is released premature.

Before the description of the other external behaviours is given, an important remark will be
mentioned once more.

The instances of a Kons Transaction and Auto Transaction are always child transactions. The
process engine starts such a child transaction, after the engineer has executed his parent trans-
action but before this parent transaction is committed. The process engine starts such child
transactions to react on the changes in the data, which is caused by the work of the engineer.
How this happens and how a child transaction influences its father will become more clear,
when the external behaviour of the subclasses of Engineer initiated Transaction are described.

Next, the external behaviour of the class Pess_Akt Transaction is described. First, of course,
the export operations are listed and in figure 5.2.3 the state transition diagram is shown.

Create_Trans
Commit
Abort
Ask_Lock

Create/ Creatio mAski Lock/ Cont . Ohocc(lim Ask_Lock
Trans reques
g - starteg W started obtained

p Exec: /
Commit\ commit .
o child
started trans

FIGURE 5.2.3. Pess_Akt Transaction: STD of the external behaviour.

After the transaction is created (stdtansact createdthe transaction always first asks for a

lock on the contents and then on the status of the document. When all the locks are obtained,
the statd_ocks are obtained reached. The transaction can start to execute.

If the Pess_Akt Transaction T1 requests a lock and it can’t obtain this lock, then this transac-
tion T1 has to be aborted (the transaction goes from eitheiCziateequest startedr state

26

Status request startead stateAbort started.

It is possible that a lock request from another transaction of type T2 will get a lock, which is
held by this Pess_Akt transaction T1. This happens when the priority of transaction T2 is
higher then the priority of a Pess_Akt transaction. The lock will be released and transaction T1
can be aborted. This can only happen in the sGdasrequest started, Lock on cont obtained,
Status request started, Locks are obtaiardExecute

At the end of the transaction, when the engineer has finished working on the document, child
transactions can be started before the transaction is committed. The behaviour is then in the
stateExecute child transactiomhose child transactions are of the class Auto Transaction or
Kons Transaction. Transactions of the type Auto and Kons can't initiate child transactions.
Whether such a child transaction aborts or commits is not important for the execution of the
Pess_Akt Transaction. After a child transaction is ended, a new child transaction can be started
or the parent transaction can be committed. A child transaction has the possibility to inherit
the locks from its parent.

If a lock, which is from a parent and its child, has to be released, because a transaction with a
higher priority wants this lock, then both the child and the parent release the lock. The parent
transaction will not be aborted, in this case.

By committing the (parent) transaction, the s@benmit starteds reached.

In figure 5.2.4, the STD of the external behaviour of the class Pess_AF Transaction is given.
The export operations of the class Pess_AF Transaction are the following:

Create_Trans
Commit
Abort
Ask_Lock
End_Lock

Create/ Creatio Aborted
Abort
g/ —Trans\ started
AbGTt started

Lock
Ask_Lock
on cont

obtaingd

request
started

Ask_Lock

lock

Remove_Lock

FIGURE 5.2.4. Pess_AF Transaction: STD of the external behaviour.

27

The external behaviours of Pess_Akt- and Pess_AF Transaction have some similarities. There
are two main differences between the external behaviours.

First, a transaction of the type Pess_Akt locks the contents and status of one document. A
transaction of the type Pess_AF can lock more then one document. A transaction of the type
Pess_AF locks all the contents and status of the documents in the working context of the engi-
neer.

Second, a transaction of the type Pess_AF anticipates when the working context of the engi-
neer is refreshed. This means, that during execution, it can ask for new locks and release some
already obtained locks, depending on the changes in the working context. All the contents and
status, which are locked, will be saved in the data base. Because of this refreshing, child trans-
actions will be started when a tool is stopped. This means, that the execution of child transac-
tions is a part of the execution of the Pess_AF transaction. Therefore tHexstaiee child
transactionis vanished in the above behaviour.

Furthermore also this transaction can be aborted by not getting a requested lock (transaction
goes from stat€ont request started, Ask lock startedStatus request started stateAbort

started. A transaction of the type Pess_AF can also be aborted, by releasing a conflicting

lock, which is requested by another transaction with a higher priority (Eatesite, Remove

lock started, Ask lock started, Update lock started, Refresh, Locks are obtained, Cont request
started, Lock on cont obtain@shd Status request startgd

After execution, the transaction can start child transactions and will eventually commit.

The fifth and last subclass of Process Transaction is the class Opt_Akt Transaction. The export
operations of this class are the following.

Create_Trans
Commit
Abort

Set TS
Validate

Create Creatio Transact Set TS @ m Set_TS ‘Staul's
- — stamping on cont stamping
g/ —'rans started create W @99/:1/ tarted

Execute

Validal

te
Abort - Exec\ commit /Commit
Validatiol
Aborted |—___ Aha child = g
started started trans started

FIGURE 5.2.5. Opt_Akt Transaction: STD of the external behaviour.

The external behaviour of class Opt_Akt Transaction has some similarities with class
Pess_Akt Transaction. The big difference is, that an Opt_Akt transaction sets time stamps and

28

a Pess_Akt transaction requests locks.

When the transaction is created (in sttEnsact created the transaction sets time stamps.

First one time stamp on the contents and then another time stamp on the status of a document
is set.

After the time stamp have been set, the transaction is executing. Eventually, it will stop exe-
cuting.

The transaction will then be validated. Validation means, it is checked whether a lock or a time
stamp in the past or a lock, which is now obtained by a transaction, is in conflict with one of
the time stamps of the Opt_Akt transaction.

If a time stamp of an Opt_Akt transaction is in conflict with another time stamp or lock, the
transaction will be aborted (state Abort started is reached). The data used by this transaction
could be inconsistent.

If the transaction is validated positive, all the time stamps are cleaned and changed in locks.
The type of the transaction is changed from Opt_Akt to Pess_Akt. Then, the transaction can
start child transactions and will eventually be committed

This finishes the discussion of the external behaviours of the five Process Transaction classes.
Now the external behaviour of the class Time Stamp is described.

First the list with export operations is given. In figure 5.2.6, the external behaviour of the class
TimeStamp is shown.

Create_TS
Clean_TS

f

Non \ create TS/ Stam Stamp Stam, Stam
_ Clean_TS p P

- creation = deletion
existing started created started deleted

FIGURE 5.2.6. TimeStamp: STD of the external behaviour.

When an Opt_Akt transaction is started, it will need time stamps. By using the operation
Create_TS, creation of a time stamp is started. This means that the external behaviour changes
from stateNon existingo stateStamp creation started.

Eventually, the time stamp is not needed any more. The Clean_TS operation is started to
delete the time stamp (ste&@& deletion starteid reached).

The next external behaviour is from class Log. The list of the export operations of the class
Log is:

Add_Tuple_in_Log
Conflict_with_Log?

Add_Tuple_ Conflict_with_Log?

N in_Log >
Insertiol Checking
in log histrory

tarted started

FIGURE 5.2.7. Log: STD of the external behaviour.

29

If a transaction of the type Opt_Akt is validating, it checks in the log whether the time stamp,
which is now valuating, is not in conflict with an already released lock or time stamp.
Furthermore, the log inserts tuples in its contents.

Next, the external behaviour of class Tuple is given. The list of the export operations of the
class Tuple is:

Create_tuple
Insert_tuple
Conflict_with_Tuple?
Delete_tuple

Tuple
deletion

Tuple
—_—
deleted
Conflict_with_Tuple?

Tuple Tuple Looking
insertion i in tuple
started inserted started

FIGURE 5.2.8. Tuple: STD of the external behaviour.

Tuple
creation

Insert-tuple

If a transaction isommitting or refreshing, it puts information about its released locks in the
log.

When a tuple is created, information from the lock is stored into the tuple. After it has been
created, it is inserted in the log.

If a transaction igalidating, it can put information about its cleaned time stamp(s) in the log.
First, the time stamps are validated, until all the stamps are validated successfully or there is a
conflict between this validating stamp and a time stamp or lock of another transaction.

When a time stamp is validated successfully, a tuple is created. Information from the time
stamp is stored into the tuple, which is created.

If none of the time stamps were in conflict, all the tuples, created by this transaction, are
inserted in the log. This means that the external behaviour(s) of the tuple(s) will go from state
Tuple createdo stateTuple insertion started

If a time stamp is in conflict, all the tuples, which are created until now by this transaction, are
deleted. This only happens when the transaction is validated unsuccessfully.

A validating Opt_Akt transaction can look in inserted tuples. An Opt_Akt transaction then

checks whether its time stamps are in conflict with other already released locks or time
stamps.

30

Now the external behaviour of the class Locks will be described. The list of export operations
is:

Get_Write_Lock
Get_Read_Lock
Get_Lock_Father
Release Lock
Compatibility
Conflict

Get\ Read_Lock

Get_Lock_Father

Compatiblity

Compat Conflict Confli
checking solving
started starteg

Neutral |<——————

Release_Lock Releas;_Lock

Starting
0 releas¢

FIGURE 5.2.9. Locks: STD of the external behaviour.

When nobody wants to release or ask for a lock, the behaviour is in theestiétal In this

state, zero or more locks can be set on this data (contents or status of a document).

If a transaction only wants to release its lock, it asks for the operation Release Lock and
reaches the staftarting to release

If a transaction requests a lock, it first checks whether the transaction(s), which hold this lock
and the requesting lock are compatible. If for instance no transactions hold a lock on this con-
tents or status, then the request is compatible. If a child requests for a lock, which is already
hold by its father, then the request is also compatible. The father can have for instance a write-
lock and the child can then also request and obtain this write-lock, although two write-locks
on the same contents or statususeally incompatible.

If the requesting lock and the transaction(s), which hold the lock aren’t compatible, then there
is a conflict. Either the requesting lock won’t be accepted (external behaviour then goes to
stateNeutral) or the transaction(s), which hold the lock, have to release this lock (external
behaviour goes to staBtarting to ReleageThis depends on the priority of the involving
transactions.

When the request is either compatible or wins the conflict, a lock on a contents or status will
be set.

31

The Opt_Akt transaction also uses the class Lock. When the Opt_Akt transaction is validating,
it has to know whether locks, which are already set, are incompatible with its time stamps.

If the time stamps are incompatible, then the Opt_Akt transaction also won’t win the conflict.
If the time stamps are compatible, then the time stamps are changed into locks.

The next class, of which the external behaviour is described, is the class Process Engine.
The export operations are:

Start WC
Stop_WC
Start_Act
Stop_Act
Refresh

activity

Stop

wcC
started

FIGURE 5.2.10. Process Engine: STD of the external behaviour.

The process engine controls the creation of the working context. A working context can be
created with pessimistic protection. This means that a Pess_AF transaction is initiated and that
the contents and status of all documents in the working context will be locked. Such a pessi-
mistic protection is chosen by either the process engine or the user.

If all the contents and status of the working context have to be locked, but the Pess_AF trans-
action loses a conflict with another transaction, which already holds a lock on a contents or
status of this working context, the working context won'’t be created.

The engineer can start interactive activities. This means that an interactive tool is started.
When the working context isn’t build with a Pess_AF transaction, an Opt_Akt or Pess_Akt
transaction will be created and the tool is started within this transaction.

On one moment, an engineer can work with several interactive tools. Before the working con-
text is stopped, all the interactive activities of the engineer have to be stopped.

The working context can also be refreshed by the process engine. Refresh means, that some
documents of the working context will leave the working context and some new ones will
appear in the working context. If the working context is build with pessimistic protection, the
Pess_AF transaction also has to refresh its locks.

32

The export operations of the class Working Context are:

Create_ WC
Delete WC
Refresh_Display

reation

Create_W wcC Refresh_Display
started Gpdate

display
/@te_%c
Deletio

started
wcC

tarted

FIGURE 5.2.11. Working Context: STD of the external behaviour.

The working context will first be created. When the working context is created, the display can
be updated. The display is only updated, when the process engine refreshes the working con-
text. The new display will show the new contents and status of the working context.

When the working context isn’t needed any more, it is deleted.

The export operations of the class Contents are:

Start_Inter_Tool
Stop_Inter_Tool
Use Batch_Tool
Save_Copy
Create_Copy
Copy_in_Privat

FIGURE 5.2.12. Contents: STD of the external behaviour.

An interactive - or a batch tool can be used, to work on a document. The transactions of the
type Pess_Akt, Pess_AF and Opt_Akt only support interactive tools. Transactions of the type
Auto and Kons only support batch tools.

An Auto or Kons transaction only support one batch tool at a certain point in time. One opera-

33

tion is used to control the batch tool.

The beginning and ending of an activity (and therefore a tool) are directly initiated by the
engineer. For this reason, two operations are used to control the interactive tool, one operation
to start the tool and one operation to stop the tool.

Copies of the contents of a document can be created and saved. A copy is saved in a private
directory, when the transaction, which supported the execution on this contents, is aborted. If
the transaction will be committed, the copy will be saved in the data base.

The export operation for the class Status is:

New_Status

New_Status
Change
status
@ tarted
FIGURE 5.2.13. Status: STD of the external behaviour.

The operation New_Status makes sure, that the status of a document is changed in a new sta-
tus.

This finishes the discussion of the external behaviours of all the classes. Next, it is indicated
for each class, which (export) operations it imports from elsewhere.
After that, the internal behaviour of each operation of each class is specified.

34

5.3 Import list of the uses relationships

To know what export operations an internal behaviour may import from an other class, for
each uses relationship of the import / export diagram in the data perspective (figure 5.1.4.) a
list of probably imported operations is presented.

Uses3
Start. WC (User_Name, Role)

Uses5

Stop_WC (User_Name, Role)

Start_Act (User_Name, Role, Doc_Name, Activity)
Stop_Act (User_Name, Role, Doc_Name, Activity)
Refresh (User_Name, Role)

Uses6

Create_WC (User_Name, Role)
Delete_ WC ()

Refresh_Display ()

Uses7
Create_Trans (Ident, Type, User_Name, Role, Ident_Father_Trans)
Commit ()

Uses8
Set TS (Access_Type, Doc_Name, Object_Type)
Validate ()

Uses9
Ask _Lock (Access_Type, Doc_Name, Object_Type)

Usesl0
Remove_Lock (Access_Type, Doc_Name, Object_Type)
Update_Lock (Access_Type, Doc_Name, Object_Type)

Usesll
New_Status (Doc_Status)

Uses12

Start_Inter_Tool (Ident)
Stop_Inter_Tool (Ident)
Use_Batch_Tool (Ident)

Uses13
Delete_ WC ()

35

Usesl4

Create_Copy (Ident)
Save_Copy (ldent)
Copy_in_Privat (Ident)
Stop_Inter_Tool (Ident)

Usesl15
Abort ()

Usesl16
Create_TS (TS_List, Access_Type, Object_Type, Doc_Name, Time)
Clean_TS (TS_List, Ident)

Usesl7

Get_Write_Lock (Object_Type, Ident, Lock_List)

Get_Read_Lock (Object_Type, Ident, Lock_List)

Get_Lock_Father (Access_Type, Object_Type, Ident, Ident_Father_Trans, Lock_List)
Release Lock (Object_Type, Acces_Type, Ident, Lock List)

Conflict (Object_Type, Type)

Compatibility (Object_Type, Access_Type)

Usesl18

Create_tuple (Object_Type, Access_Type, Doc_Name)
Insert_tuple (End_of _Log_Contents)

Delete_tuple ()

Usesl19
Conflict_With_Log? (Doc_Name, Access_Type, Object_Type, Time)
Add_Tuple_in_Log (Time)

Uses20
Conflict_With_Tuple? (Doc_Name, Access_Type, Object_Type, Time)

With use of the list of the imported operations, the internal behaviours of each export opera-
tion can be specified. Specifying the internal behaviour for every export operation of each
class is the next step.

36

5.4 Internal behaviour

For each export operation, its internal behaviour is specified in this section. The name of an
internal behaviour is composed of the name of the corresponding export operation and the pre-
fix ‘int-".

Within the internal behaviour of an export operation two different types of operations can
occur.

The first type of operation in an internal behaviour is the from elsewhere imported operation.
When this occurs, the convention is to add ‘call_’ as a prefix to the name of the imported oper-
ation from somewhere else. It is a reminder that the transition labelled with the corresponding
exported operation as well as the internal behaviour of the same exported operation are not
necessarily synchronized, i.e. taking place at the same time of the call. This means that after
the call is made, the internal behaviour can start to execute the next operation, without waiting
for the calling operation to finish.

The second type of operations consists of those without the prefix ‘call_'. These are merely
internal operations. Those having the prefix ‘act_’ reflect some internal communication
between an internal behaviour and the external behaviour. It denotes the preliminary activa-
tion of the internal behaviour as a whole, while it is not actually going. This can be compared
to a computer program already submitted to the operating system of a computer without hav-
ing started its execution: it has only been scheduled.

First, the internal behaviours of the export operations of class Tuple are specified. Before the
internal behaviours of the operations of class Tuple are given, the names of the export opera-
tions are listed in the same order as the internal behaviours are specified.

Create_tuple

Insert_tuple

Delete_tuple
Conflict_with_tuple?

The first internal behaviour of an export operation of class Tuple is:
Create_Tuple (Object_Type, Acces_Type, Doc_Name)

Creste Act_ Creation, Init_ Tuple \Set_Doc oc Nam et_Object /pc/sraSet_Acces Rea\;\i//(Get_Time Tim
can be — it

tuple
asked / Create\ asked P made / Name \jnserte Type \jnserte/ —TYP® \ insert insertgd

FIGURE 5.4.1. int-Create_Tuple: STD of the internal behaviour.

A tuple is created, when a transaction releases a lock, because it is committing or refreshing,
when a lock is updated during refreshing and when an Opt_Akt transaction cleans a time
stamp.

All the relevant information about this lock or time stamp is inserted in the tuple. In the tuple
is also the time of its creation stored.

As already mentioned in the data perspective, the functionality of a tuple can be compared
with the INSERT operation of Stefan Wolf’s dissertation. As one can see on page 152 of the
dissertation, not four but five information items are inserted in the log. The identifier of the
transaction is also inserted. This is however irrelevant to put this information in the log and

37

therefore this is left out in this specification.

The second operation of the class Tuple is:
Insert_Tuple (End_of Log_Contents)

Tuple
Insert\ pct @ Tuple_at_the // P
can be = inserted
asked / Insert Wend_of_the_L in log

FIGURE 5.4.2. int-Insert_Tuple: STD of the internal behaviour.

Once the tuple is created, it can be inserted in the log or deleted. A tuple is inserted in the log,
when a transaction is committing or refreshing or when an Opt_Akt transaction is validated
successfully.

If it is inserted in the log, the tuple is added at the end of the log.

The third operation of the class Tuple is:
Delete_Tuple ()

Deletion\ Act_ Deletion\ Delete _tuple/ TUP'e
can be
asked Delete asked deleted

FIGURE 5.4.3. int-Delete_Tuple: STD of the internal behaviour.

When an Opt_Akt transaction is validating and one of its time stamps is in conflict, all the
already created tuples of its successfully validated time stamps have to be deleted. The tuples,
which are deleted, were not yet inserted in the log.

The fourth and last operation of the class Tuple is:
Conflict_with_Tuple? (Doc_Name, Access_Type, Object_Type)

; Check\Doc_Name ; h
Conflict\ Act — — Object_Type Acces -
can be == for confligt Doc_Nanjerr=PE-Doc/stat y Ik
hecked Conflictd 5qkeq,/ €aual? \@fﬁd} equal? \ checkeg/ COmMPpatible?

Tuple is
in conflict,

FIGURE 5.4.4. int-Conflict_with_Tuple?: STD of the internal behaviour.

38

An Opt_Akt transaction checks whether its time stamp is in conflict with a tuple.

First, it is checked whether the tuple and the time stamp accessed the same document. The
next check is whether both the tuple and the time stamp had a lock on the status or contents of
the same document. The last check is to compare the access. It is checked whether the access
of the tuple and the time stamp are incompatible.

If all the checks are positive, the time stamp is in conflict with the tuple.

This concludes the specification of the internal behaviours of class Tuple. Now, the internal
behaviour of the operations of class Log is given. The operations of this class are:

Conflict_with_Log?
Add_Tuple_in_Log

The first name of the export operation of class Log is :
Conflict_with_Log?(Doc_Name, Access_Type, Object_Type, Time)

ict Act_ Chep Find_first
) conflict
conflict?\ ssked _tuple

FIGURE 5.4.5. int-Conflict_with_Log?: STD of the internal behaviour.

An Opt_Akt transaction checks whether one of its time stamps is in conflict with a tuple in the
log.

When the internal behaviour is activated, it first searches for the first tuple in the log, which
was created just after this Opt_Akt transaction created the time stamp, it is now validating. If
there is no tuple, the time stamp is not in conflict. Otherwise, it is checked whether this tuple is
in conflict with the time stamp.

If there is no conflict between the time stamp and the tuple, the next tuple is retrieved from the
log. When no new tuples can be retrieved any more, it is concluded that the time stamp isn’t in
conflict with a tuple.

If there is a conflict between a tuple and a time stamp, the time stamp is validated unsuccess-
fully.

39

The second export operation of class Log is:
Add_Tuple_in_Log (Time)

Tuple _Act_Add_ _ Find_end_of call_Insert_Tuple Insert
can be tuple ~ Contents tuple | ———
added/ Tuple_in_Log asked asked :

FIGURE 5.4.6. int-Add_Tuple_in_Log: STD of the internal behaviour.

An already created tuple will be added to the log. First, the end of the log is found. At the end
of the log, the new tuple is inserted.

Next, the internal behaviours of the operations of the class TimeStamp are specified. First the
operations are listed.

Create_TS
Clean_TS

The first operation of the class TimeStamp is:
Create_TS (TS_List, Access_Type, Object_Type, Doc_Name, Time)

TS @ Empty Set_ oc._ Na e Set_ Doc/Sta Set
can be stamp stamp Write
created/Create TW stamp WDOC Nam mserte b]ect Type\inserted/p¢ceg Typ inserted

Get_Time

Time
inserted nsert_TS
TS

inserted
in TS_Li

FIGURE 5.4.7. int-Create_TS: STD of the internal behaviour.

When a time stamp will be created, its attributes receive a value. So, in the internal behaviour,
the attributes Doc_Name, Object_Type and Access_Type are set. In the attribute Time, the
time of creation of the time stamp is inserted. Moreover, this time stamp is added to the list of
time stamps, TS_List, of the Opt_Akt transaction.

The second and last operation of class TimeStamp is:
Clean_TS (TS_List, Ident)

TS TS
b Act_ m Find_TS m Remove_TS @ Delete_stamp [Stamp
can be — -

cleane Clean_TS @lnyst WfromeSlest \\Ly deleted

FIGURE 5.4.8. int-Clean_TS: STD of the internal behaviour.

40

The time stamp has to be cleaned (deleted). This time stamp is removed from the list of the
Opt_Akt Transaction and deleted.

Now the internal behaviour of the export operations of the class Lock will be described. The
operations of the class Lock are:

Compatibility
Conflict
Get_Write
Get_Read
Get_Father
Release Lock

The first operation of class Lock is:
Compatibility (Object_Type, Access_Type)

Not
Compatible

Lock_Father

Compat Search_ Loc
No_locks

—— check
od Compat|b|l|ty\a\l_(/d/ for_Lock found set?
ske! -

Lock of \ Reqg_or_set
father —
checked ——

FIGURE 5.4.9. int-Compatibility: STD of the internal behaviour.

A transaction uses this operation to check, whether its lock request is compatible with possibly
obtained lock(s) on the contents or status of a document. This specific contents or status is
called data X.

First, it is checked, whether there is no lock on data X. If there is no lock on data X, the request
is compatible.

Otherwise, it is checked whether the father (if this transaction has a father) of the requesting
transaction already has a lock on data X. If this is the case, the child transaction now inherits
the lock of its father. A child only inherits a lock from its father, when it needs a lock from its
father.

Otherwise, it is checked whether either the transaction(s), which already obtained the lock,
have set a write lock or the requesting transaction wants a write lock. If this is the case, the
requested lock isn’'t compatible with the already obtained lock(s) on data X and there is a con-
flict.

41

If none of the involving transactions already have a write lock or request a write lock, the
request is compatible.

The second operation of class Lock is:
Conflict (Object_Type, Type)

. /Conflict\ Search_/ Lock Highestﬁpriof\/@ﬁé\ Compare_prio_spriorities
conflige check = - priority -
asked for_lock found of_trans_in_lock found of_transactions\ matche

FIGURE 5.4.10. int-Conflict: STD of the internal behaviour.
When it is found out that a lock request is not compatible, this conflict has to be solved.

First the transaction with the highest priority, which holds the conflicting lock, is traced and
found.

After that, the priority of this transaction with the highest priority and the priority of the
requesting transaction are compared.

If the requested transaction has a higher priority, it wins the conflict and the lock request is
accepted.

Otherwise, it loses the conflict and the lock request is rejected.

Priority depends on the type of the transaction. These priority rules are already given in the
chapter Process Transactions.

The third operation of class Lock is:
Get_Write(Object_Type, Ident, Lock_List)

Lock Lockin . .
can be b Insert_Doc_in Listed | Insert_ldent_in
askeg/ Get_Write_Lock asked / Lock_List_of_trans Write_of_Locks

FIGURE 5.4.11. int-Get_Write_Lock: STD of the internal behaviour.

A transaction gets a write lock. Therefore its attribute Lock _List has to be updated. Then the
lock will be really set, by inserting the value Identifier in the attribute Write of class Lock.

42

The fourth operation of class Lock is:
Get_Read(Object_Type, Ident, Lock_List,)

Lock Act Lockin Insert_Doc_in Listed Insert_ldent_in
can be = — Iste == lock set
askeg/ Get_Read_Lock asked /Lock_List_of_trans Read_List_of_Lockg O¢K S€

FIGURE 5.4.12. int-Get_Read_Lock: STD of the internal behaviour.

In the list of locks of the transaction is this lock added. Then a read lock is set, by inserting the
attribute Identifier.

The fifth operation of class Lock is:
Get_Father(Access_Type, Object_Type, Ident, Ident_Father_Trans, Lock List)

Locking, Insert_Doc_in_

W Lock_List_of_tran:

Act_Father_

FIGURE 5.4.13. int-Get_Lock_Father: STD of the internal behaviour.

A child transaction needs a lock, which is already held by its father. The child inherits this
lock.

First the list of locks of the child transaction is updated.

Then a write or a read lock is set. If the child wants a write lock, this is specially marked. This
is done, because normally two write locks are incompatible. If a parent transaction already
holds a write lock, it gives its child the opportunity to set the write lock and therefore to add its
value of the Identifier to the attribute Write.

43

The sixth and last operation of the class Lock is:
Release_Lock (Object_Type, Access_Type, ldent, Lock_List)

Write lock Father_
will be
eleased Lock?
Releasiny Search_for Kind_of_/Access
type
Hock & hocess Typ

will be
eleased

Remove_ldent_from_
Write_of . ocks

Remove_ldent_from_

child Write_of_Locks
Lock
released
Remove _from_
List_of_Locks Repmove_Doc_from_
Lgck_List_of_trans

List
To release a lock, the right contents or status has to be found.
Then a write or read lock has to be released. If a read lock will be released, the value Identifier
is removed from the attribute Read_List. If a write lock will be released, it is checked whether
this lock is inherited by a child transaction or not. In both cases, the attribute Write is updated.
The attribute Write can store two Identifiers. If a child releases its write lock, the child value
will be cleaned. Otherwise the normal value will be cleaned.
At the end, the attribute Lock_List of class Process Transaction, which contains information
over all the obtained locks of a transaction, is updated.

Release_Lock

FIGURE 5.4.14. int-Release_Lock: STD of the internal behaviour.

The internal behaviour of operations of the superclass Process Transaction will now be speci-
fied. The operations of its subclasses are examined afterwards. First, the operations of the
class Process Transaction are listed.

Create_Trans
Commit
Abort

The first operations of the superclass Process Transaction is:
Create_Trans (Ident, Type, User_Name, Role, Ident_Father_Trans)

Not

Act_ Creano Assign Identifie) Set_ Role Check Tra 5Type
created Ccreate asked Identifier Type User_Name Role Type 9
Set_

FIGURE 5.4.15. int-Create_Trans: STD of the internal behaviour.
When a transaction is created, its attributes have to be initiated. The attribute value Identifier is

assigned to this transaction. The values for Type, User_Name and Role are given by the proc-
ess engine. The process engine also gives a value for the attribute Ident_Father_Trans, if this

44

transaction is of the type Auto or Kons.

A specific transaction can of course be created just one time. So, no incoming transitions come
in the statéNot created After the transaction is created, this state will never be entered any
more.

The second operation of the class Process Transaction is:
Commit ()

Trans
deleted

Delete_trans

L' t Save Releas

Commit\ Get_| Lock Get_first Must_Copy_ call_Release
domm|t List \retrieved retrieved be_saved? Copy Lock Lock
asked ock — ! checke - aske

call_Release
” Lock

FIGURE 5.4.16. int-Commit; STD of the internal behaviour.

First, the attribute Lock_List, with the information concerning all the locks held by this trans-
action, is retrieved.

Then a lock from the list is taken and if the information in the copy of a contents is changed, it
is saved. Now the lock can be released, by calling the operation Release_Lock from the class
Locks. Then the information concerning this lock is stored in the log. Therefore, first a tuple
will be created and with the relevant lock information, it is inserted in the log. Then, if other
locks still exist for this transaction, they will also be taken out of the list and be released. If all
the locks are released, the transaction is deleted.

It can happen, that no locks are any more in the list, when the transaction starts committing.
This happens for instance, when all the locks had to be released, when the child transactions
were executing. Then, the behaviour will immediately go from &tk retrievedo state

Trans deleted

45

The third operation of the class Process Transaction is:
Abort ()

Not m . -
Act_ Abort Is_this__ | call_Release elease
aborted’ abort Wtrans_Pes i ' 3‘ Lock

Stop
inter tool
asked

in privat

asked

FIGURE 5.4.17. int-Abort: STD of the internal behaviour.

First, it is checked what type of transaction will be aborted. If it is a transaction of the type
Pess_Akt or Pess_AF, active tools and the working context may be affected. Interactive tools,
which execute with protection of this transaction have to be stopped. After that, if the transac-
tion, which will be aborted, is a Pess_AF transaction, the working context also has to be
deleted.

If the transaction is of the type Opt_Akt, Auto or Kons and has to be aborted, the stopping of
tools is either initiated somewhere else or must not be specifically initiated.

Now, the transaction, which will be aborted, has to release all its locks. It retrieves the list con-
cerning all the locks held by this transaction and then releases all locks from this list. If a lock
is on a contents and it is changed, the contents is copied into a private directory.

It can happen, that no locks are hold by an aborting transaction. This is the case, when an
Opt_Akt transaction is unsuccessfully validated and that no time stamps had yet been changed
in locks.

46

This concludes the specification of the internal behaviours of operations of class Process
Transaction. Next, the operation of the class Pessimistic Transaction is specified. The opera-
tion of this class is:

Ask_Lock (Access_Type, Doc_Name, Object_Type)

call_Abort

FIGURE 5.4.18. int-Ask_Lock: STD of the internal behaviour.

First the operation looks whether the lock request on a contents or status is compatible with
the possibly obtained lock(s). If the request is compatible, the lock is obtained.

Otherwise, the conflict has to be solved.

If the request is rejected, the requesting transaction is aborted.

If the request is accepted, the transactions, which hold a lock on this contents or status, either
are aborted or release this lock. When this lock will be released, the information is saved, if
changed and a tuple is created and together with the information of this lock, inserted in the
log.

After the conflicting transaction(s) have released the lock (and are perhaps aborted), the lock
can be obtained by the requesting transaction. Before the lock is really obtained, it is first
checked whether a copy has to be created. A copy is only created, when the contents of a doc-
ument will be locked.

Either a write or a read lock is obtained. Furthermore, a child can inherit the lock of its father.

47

Now, the internal behaviours of the operations of the class Opt_Akt Transaction are specified.
The operations of this class are:

Set TS
Validate

The first operation of the subclass Opt_Akt Transaction is:.
Set_TS (Access_Type, Doc_Name, Object_Type)

FIGURE 5.4.19. int-Set_TS: STD of the internal behaviour.

When an optimistic transaction asks for a time stamp, the request is always accepted. First, it
is checked whether a copy has to be created. A copy will only be created if a contents of a doc-
ument will be stamped. By calling the operation Create_TS, a read or write time stamp is set.

The second and last operation of subclass Opt_Akt Transaction is:
Validate ()

Create\ call_Creaté Clean
tuple wple tamp
call Add _Tuple_ asked askedCle |_Get_Read

Set_type_to | Insert @ NX
Validated tuple in log
-Pess_Akt g ot nex asked call_Get_Write

Get_next TS

- Stampoall_Conflict /* Conflic
_ Act__ (validation Gl TS Get first . ——=(with Log?
validated valldatlo asked List retneve Ts retrieved with_Log? 4sked

Get_first _tuple

call Dtelelte
UP'® ‘Delete
Abort call_Abort / Tuple tuple
asked selected=—————\ asked
Get_next_tuple

if_Privat Get_next_TS

Copy
in priva can be
asked cleaned

FIGURE 5.4.20. int-Validate: STD of the internal behaviour.

48

To validate all the time stamps, the list with the time stamps first has to be retrieved. Then the
first time stamp of the list will be taken. For this time stamp, but also for the other time stamps
from the list, it is first checked whether a conflicting time stamp or lock exists in the log. If not
it is checked whether a transaction holds a conflicting lock.

If there is or was no conflicting lock, the stamp is changed in a lock. After that, the stamp is
cleaned and a tuple with the information of the time stamp is created.

If more time stamps remain to be validated, the next stamp will be considered.

After successful validation of all time stamps, all the tuples are inserted in the log. At the end,
the type of the transaction changes from Opt_Akt to Pess_Akt. Then, the transaction is suc-
cessfully validated in to a Pess_Akt transaction, with locks.

If there exists a conflicting lock or time stamp, the transaction has to be aborted. First all time
stamps, which are still not cleaned, will be deleted and if its contents is changed, it is saved in
a private directory. Also the tuples are deleted, which have been created during the validation.
So no information will be written in the log. The operation abort makes sure that all relevant
information, already with a lock, will be copied into a private directory and releases the
already obtained locks.

The operations of class Pess_AF Transaction are:
Remove_Lock
Update Lock

The first operation of the subclass Pess_AF Transaction is:
Remove_Lock (Access_Type, Doc_Name, Object_Type)

Lock
remove

Removi emov Search_| Iock Lock \ wMust_Copy_ (S:ave call_Release Releaks call_Create_ ireeln
can be opy Loc uple
asked / Remove_| Loc asked in_Lock_List W be_saved? \cpecke LOCk asked tuple asked

Remove_lock_
from_Lock_List

FIGURE 5.4.21. int-Remove_Lock: STD of the internal behaviour.

When a Pess_AF transaction is refreshing its working context, locks have to be released and
requested. The above operation removes a lock from the Pess_AF transaction.

First, the operations searches for the right lock. It is checked whether the data, on which this
lock is set, has to be saved. Only a contents, which has changed, has to be saved in the data
base. Now the lock can be released and the Log can be updated. At the end, the attribute
Lock_List of the transaction is updated, because this lock is no longer obtained by the transac-
tion.

49

The second and last internal behaviour of class Pess_AF Transaction is:
Update Lock (Access_Type, Doc_Name, Object_Type)

Lock
updated

Lock Act Update\ Search_locl
can be N lock in_Lock_Lis
updated Update_Lock_asked - -

FIGURE 5.4.22. int-Update_Lock: STD of the internal behaviour.

First, the right lock in the Lock_List has to be found. Then it is checked whether a copy has to
be saved. A copy will only be saved, if the lock is on a contents of a document and the con-
tents is changed. After that, a tuple is created with the information of the lock and then it is
inserted in the log.

This concludes the internal behaviour of the class Process Transaction and its subclasses. Now
the operations of the class Process Engine will be described.
The names of the operations are:

Start WC
Stop_WC
Start_Act
Stop_Act
Refresh

50

The first operation of class Process Engine is:
Start. WC (User_Name, Role)

Start WG act_start_WC/Start WC\ Check_AF @ m Ca“‘createm
can be needed? needed Tran

asked
AF trans\User_AF_
not
needed

asked

will be
aborted

FIGURE 5.4.23. int-Start. WC: STD of the internal behaviour.

A working context has to be created. A working context can be build with Pess_AF protection.

It is checked, whether the process model prescribes, that a working context with Pess_AF pro-
tection has to be build. If not, the user can choose, whether he wants such a protection.

If a Pess_AF transaction has to be initiated, the transaction is created and the locks are
requested. Both contents and status of all document of the working context will be locked.

If the lock requests were successful or no pessimistic protection was required, the working
context is created.

The second operation of class Process Engine is:
Stop_WC (User_Name, Role)

Act_Stop_WC@op\W$ callfDeIetefwm m AF_exists? F{ef@\
wcC or
@ @/ W F tra

' Commi call_Commit Ar trans
asked exists

FIGURE 5.4.24. int-Stop_WC: STD of the internal behaviour.

The working context has to be removed. This means that the working context window is
deleted and when the working context is build with Pess_AF protection, the Pess_AF transac-
tion will be committed.

51

The third operation of class Process Engine is:
Start_Act (User_Name, Role, Doc_Name, Activity)

No
Checke m call_Create /reation Trans \ Choose_ £one type
fo AP trans Trans created
A g exists - asked Trans_type\ cposey

call_Ask_Lock

TS
) on status
\ asked

Lock

on status
asked

ransact
will be
aborted

FIGURE 5.4.25. int-Start_Act: STD of the internal behaviour.

An activity may be started. If the working context is build under Pess_AF protection, the inter-
active tool will be immediately started.

Otherwise, there is decided under what kind of protection the activity will be started (optimis-
tic or pessimistic protection). Now, a transaction will be created and locks or time stamps will
be requested. For both the status and the contents of a document, a time stamp or lock will be
requested. If locks or time stamps are obtained, the interactive tool will be started. If a
requested lock won't be obtained, the transaction will be aborted and the activity can not be
executed.

52

The fourth operation of class Process Engine is:
Stop_Act (User_Name, Role, Doc_Name, Activity)

Stop act)__call_Stop. I-tool
asked/ Inter_Tool stopped transaction?
. alidatioly
Validated
asked

Act_Stop_Act

Comml
asked
call_Commj NO

AF trans

New

status

_New_Status

emsts

| Lock

FIGURE 5.4.26. int-Stop_Act: STD of the internal behaviour.

When an activity has to be stopped, the interactive tool will be stopped first. If the activity has
used an optimistic protection, the Opt_Akt transaction has to be validated. A successfully val-
idated transaction and a pessimistic transaction will check, whether the status of the document
is changed. A change of status will result in child transactions. This means that Auto and/or
Kons transactions will be created and that, with or without the usage of tools, data will be

changed.

If the activity used Pess_Akt or Opt_Akt protection, the transaction will be committed, other-
wise, while the working context is build with Pess_AF protection, the transaction will not be

committed.

53

The fifth and final operation of class Process Engine is:
Refresh (User_Name, Role)

call_Refresh_

Disp!
Refresh
can be ACL_ /Refresh AF_exists?
Refresh
asked asked

Lists \Get_Release/ List Get
" " . —=
are created List retrieved first_Lock

Get_List_Locka&. Create_Release &_ Get

new_List_Logk Request_List call_Remove| Lock pnext_Lock

FIGURE 5.4.27. int-Refresh: STD of the internal behaviour.

It is first checked whether the working context is build with pessimistic protection. If not, only
the display will be refreshed.

Otherwise, lists will be made. In the Release_List, the locks which have to be released are
listed. In Request_List, the locks which have to be requested are listed.

Now, all the locks will be released, that are no longer part of the working context. The infor-
mation in these locks will be saved and the log will be updated

Then the attribute Lock_List is used to update all the documents, having a lock.

After that, new locks can be requested, if there are needed any. At the end, the display will be
refreshed.

This concludes the internal behaviours of the operations of class Process Engine. Next, the
operations of the class Contents are specified. All the operations of class Contents are:

Start_Inter_Tool
Stop_Inter_Tool
Use_Batch_Tool
Save_Copy
Create_Copy
Copy_in_Privat

54

The first operation of class Contents is:
Start_Inter_Tool (Ident)

FIGURE 5.4.28. int-Start_Inter_Tool: STD of the internal behaviour.

An interactive tool will be taken, to work on the contents of a document.

The second operation of class Contents is:
Stop_Inter_Tool (Ident)

Close_

Inter_Tool

FIGURE 5.4.29. int-Stop_Inter_Tool: STD of the internal behaviour.

The interactive tool will be closed.

The third operation of class Contents is:
Use_Batch_Tool (Ident)

B T00| Act_ B_Tool Close
can be B Tool
started’/Use_B Too Batch_Tool started Batch _Tool

FIGURE 5.4.30. int-Use_Batch_TooI: STD of the internal behaviour.

The batch tool is started, used and eventually it is closed.

The fourth export operation of class Contents is:
Save_Copy

FIGURE 5.4.31. int-Save_Copy: STD of the internal behaviour.

The copy of the contents of a document is saved back in the data base.

The fifth export operation of class Contents is:
Create_Copy

Creat
Copy \ Act_ /\E\Create_Copy_from_ Copy
can be Copy -
create Create_Co@ Doc_Contents_in_DB, ¢eateq

FIGURE 5.4.32. int-Create_Copy: STD of the internal behaviour.

Of the contents of a document, a copy is made. The process engine works on this copy, instead
of working directly on the original in the data base.

The sixth and last export operation of class Contents is:
Copy_in_Privat

No Act ﬁm Save_the_Copy /~ Copy
Copy — in privat |- - -
in priva Copy_|n_Pr|vat@|n_pr|vat_d|recto saved

FIGURE 5.4.33. int-Copy_in_Privat: STD of the internal behaviour.

The contents of this document may not be saved back in the data base. The copy will be stored
in a private directory of the engineer.

The next class is Status. This class has one export operation.
New_Status (Doc_Status)

New status Act_ Set_new_status,
can be 5
asked / New_Status\ ./ in_database

FIGURE 5.4.34. int-New_Status: STD of the internal behaviour.

The new status value of the document is inserted in the data base.

This concludes the internal behaviours of the operations of the subclasses of Document.

The last class, which is specified, is Working Context. the export operations of this class are:
Create_WC

Delete WC
Refresh_Display

56

The first operation of class Working Context is:
Create_WC (User_Name, Role)

wcC

Create ; f :
can be Act_ we Create_Windo Window\Display_Doc’s_
created Create_WC\ jqked created &_Activities i

FIGURE 5.4.35. int-Create_ WC: STD of the internal behaviour.

The working context window is created and the documents and activities, which the engineer
will see, are displayed.

The second operation of class Working Context is:
Delete WC

wcC Delete -
can be Act_ we | Close_Window Windo
deleted/ Delete_WC\ ,qked closed

FIGURE 5.4.36. int-Delete_ WC: STD of the internal behaviour.

The working context window is closed.

The third and last operation of class Working Contetxt is:
Refresh_Display ()

Updat f
P Clear_Display @ Display_Doc’s_

display
asked cleare| &_Activities

Refresh_Displa)

FIGURE 5.4.37. int-Refresh_Display: STD of the internal behaviour.

The display of the already existing working context window will be cleared. Then the new
documents and activities are displayed.

57

5.5 PARADIGM

In the previous sections, the external behaviours of the classes and the internal behaviours of
the export operations are given. In this section, the coordination of the internal behaviours

with use of the external behaviours is given.

The external behaviours are used as managers, to model this coordination. Each manager man-
ages several employees. The employees are internal behaviours of the same class X as the
external behaviour and the internal behaviours, which call operations from this class X.

For each employee, its subprocesses and traps are given.

In this section, from only three classes the managers and all their employees are presented.
These classes are Locks, Auto Transaction and Pess_AF Transaction. The presented managers
and employees are textually explained pretty extensively. By reading this section, one can
understand PARADIGM better, because of the explanation of the diagrams.

Furthermore, in these three managers occur several general problems. These general problems
will be the basis of the next chapter. In this chapter, all the problems, which have been identi-
fied in these three managers, are listed and solutions are proposed.

In the appendix, the rest of the PARADIGM part, without any textual explanation, can be

found.

If one doesn’t understand PARADIGM (completely), it would be wise to read the Socca chap-
ter. The following PARADIGM section is nevertheless not that difficult to understand, because
of extensive textual explanation of the diagrams.

If one wants to know more of the backgrounds of PARADIGM, one can read [Gr 91]. In

[EG 93], another PARADIGM example in Socca is presented,

5.5.1 The manager Locks

The first manager, which is explained, is of the class Locks. In the manager, export operations
of class Locks and some export operations of the class Process Transaction or one of its sub-
classes are coordinated. Some of the export operations of class Process Transaction or one of
its subclasses are used, because these operations call operations of the class Locks.

The employees of the manager Locks are:
Get_Read_Lock
Get_Write_Lock
Get_Lock_Father

Release Lock
Compatibility
Conflict
Ask_Lock
Commit
Remove_Lock
Abort

58

First, all the internal behaviours of the class Locks are presented.

s-1

Lockin Insert_Doc_in Listed Insert_ldent_in
asked / Lock_List_of_trans Read_List_of_Locks'0k set
s-2

LOCkb Act_ m Insert_Doc_in Listed |_Insert_ident_in Read
can be
aske Get_Read_LocWLock_List_of_trans Read_List_of_LodKg !0k set

t-2
FIGURE 5.5.1.int-Get_Read_Lock’s subprocesses and traps w.r.t. Locks.

The internal behaviour Get_Read_Lock is divided in two subprocesses. In subprocess s-1, the
internal behaviour can’t be activated. If the employee is in subprocess s-1 and trap t-1, the
internal behaviour isn’t executing. If the employee would switch to subprocess s-2, the
employee could leave the staieck can be askeahd the internal behaviour can be activated.

In trap t-2, the internal behaviour has stopped executing, because the read lock is set.

Lockin Insert_Doc_in Listed | Insert_Ident_in
asked / Lock_List_of_trans Write_of_Locks

t-3

s-4

LOCkb Act_ Locking nsert_Doc_in Listed | Insert_ident_i Write

canbe | ————=

asked/ Get_Write_Lock, asked /Lock_List_of_trans Write_of_Lock® lock set
t-4

FIGURE 5.5.2.int-Get_Write_Lock’s subprocesses and traps w.r.t. Locks.

The subprocesses and traps of this employee and several employees which follow, have simi-
lar subprocesses and traps as those from the internal behaviour of Get_Read_Lock. The first
subprocess can’t activate the internal behaviour and the state before the internal behaviour is
activated is a trap. In the second subprocess, the internal behaviour can be activated and the
goal of the operation can be reached. The goal of the above employee is to set a write lock.
This goal is represented as a trap. Once, the goal is reached, the internal behaviour can’t exe-
cute any more, unless the employee switches to the other subprocess s-3.

So, in subprocess s-3 and trap t-3, the employee is waiting until it can activate the internal
behaviour and in trap t-4 of subprocess s-4 the goal is reached, which means that a write lock
is set.

59

Locking, Insert_Doc_in_
—=
asked / Lock_List_of_trans

s-6

Lock m .
ocking, Insert_Doc_in
can be |ACt_Father_ ——ob

asked Lock W Lock_List_of_trans

Read lock
set

t-6
FIGURE 5.5.3.int-Get_Lock_Father’s subprocesses and traps w.r.t. Locks.
In trap t-5 of subprocess s-5, the employee is waiting until it can activate the internal behav-
iour.

In trap t-6 of subprocess s-6, the lock, which is already set by its father, is set. This lock can be
a read or write lock. In this subprocess, the trap exists of two states.

Write lock
s-7 will be e_ldent_from_
eleased Lock?
Releasiny Search_for Kind_of_/Access
type
lock $ Access_Typ

will be
eleased

Releasé
can be
asked

Remove _from_
List_of_Locks Rephove_Doc_from_
Lgck_List_of_trans

List
updated,

60

Kind_of_,
Access_Type

_List_of_Locks
Lgck_List_of_trans

List

updated,

FIGURE 5.5.4.int-Release_Lock’s subprocesses and traps w.r.t. Locks.

In trap t-8 of subprocess s-8, the lock is released.

Not
Compatible

Lock_Father?Lock of \ Req_or_set Write
access

Not

Compatib

s-10

Write
access

\ Act @\ Search_

— check
Compatibility for_Lock
ske

ompatiblé

t-11
FIGURE 5.5.5.int-Compatibility’s subprocesses and traps w.r.t. Locks.

Reynove_Doc_from_

61

The first subprocess s-9 can't activate the internal behaviour.

Subprocess s-10 has two traps. So, the operation has two goals.

Either the lock request is compatible with the (possibly) already obtained locks from other
transactions and trap t-11 will be reached. Or the lock request is not compatible, which means
that the lock request is in conflict with the already obtained locks and trap t-10 will be reached.

Conflict Conflict\ Search_/ Lock Highestﬁpriofm Compare_prio_siorities
can be check | —— priority
checked asked for_lock \ found of_trans_in_locw of_transactions\ matche

Reques
not
accepted

8'13 t'lS
Conflict : : : ighes ;
can be Act__ Conflict\ Search_/ Lock Highest_prio_ m Compare_prio_spriorities
checkeg conflict check for_lock of_trans_in_lock riority of_transactions\ matched
asked - found — T found —
Reques
accepted

FIGURE 5.5.6.int-Conflict’s subprocesses and traps w.r.t. Locks.

t-14

Also here, the second subprocess s-13 has two traps.In trap t-13, the requesting transaction has
lost the conflict and in trap t-14, the requesting transaction has won the conflict.

This is the last employee of the class Locks. The next employees are from other classes, call-

ing operations from the class Locks. In this case, all the following employees are from the
class Process transaction, or one of its subclasses.

62

s-15

call_Abort X
ransaction
loses

@ call_ @

Lock Lock Chec ;
Act call)
can be - | comp. - conflict
asked / ASK_LOCK\ asked) compatibility,_asked hecked ~Conflict @ [od
rite — -
t-16 Lt
lock askeg

Lock .

all_Get_Write

- call_Release
0

obtained

Fathel

all_Get_Father
lock asket

t-18

Lock
obtained
Read
lock asked

t-20

Fathel reats
lock asked - tuple
|n|_she asked

with

t-19 | \ransact

Insert

tuple in log
asked

FIGURE 5.5.7.int-Ask_Lock’s subprocesses and traps w.r.t. Locks.

In subprocess s-15, four traps can be reached. When the employee is in either one of these
traps, it has just called an export operation of the class Locks. This call will result in the acti-
vation of the internal behaviour of this operation.

After the call is made and the manager Locks made sure that the internal behaviour of this
operation is activated, the employee switches to subprocess s-19. In subprocess s-19, only a
couple of states are drawn. The employee may be only in these states after calling the opera-
tion. Other states either don’t refer to this instance, or can’t be reached. THeastatetion

wins which can be reached after leaving the dtateshed with transactionis referring to

another instance. And the staté savedor instance can’t be reached any more, after the call

to release the lock is made.

If the above internal behaviour has called Release Lock and the internal behaviour is ended,

63

the employee may be in one of the states of trap t-19. If the employee is in trap t-20, the inter-
nal behaviour, which will set a lock, will end or is ended.

call_Add_Tuple_
" in_Log
Create

Trans
s-21 deleted

Not k List .
Act_ Commit\ Get_Lock Get_first
; : f retrieved
committgdommit asked List v _lock

tuple
asked

Must_Copy.
be_saved?

s-22 Insert
tuple in log
asked
Lock
finished,
t-22 call_Create typle
Release

Lock
asked

FIGURE 5.5.8.int-Commit's subprocesses and traps w.r.t. Locks.

The choice of a trap in subprocess s-21 is similar to the first subprocess of the internal behav-
iour Ask_Lock. This trap occurs after the call is made for an export operation of the class
Locks. The choice of a trap in the first subprocess occurs in the same way with the following

employees.
After the call is made to release a lock, the employee will switch from subprocess s-21 to s-22.

When the internal behaviour Release_Lock is ended, the above employee will or has already
reached trap t-22.

s-23

cal. Add_Tuple_

Remov Act_ /@rms\ Search_lock@ Must_Copy._ Save
can be lock X 5 Copy
asked Remove_LocW in_Lock_List W be_saved? \cpecke

64

Lock Insert
tuple in log
removeg asked

t-24
FIGURE 5.5.9.int-Remove_Lock’s subprocesses and traps w.r.t. Locks.

In trap t-23 of subprocess s-23, the export operation Release_Lock is called. The internal
behaviour of Release_Lock will be activated. Then, the employee switches to subprocess s-24.
If the internal behaviour is in trap t-24, the lock will be released or is released.

s-25
Delete\ trans
Not m ; Save
Act_ Abort | Is_this_ Get_first @ Must_Copy. ‘/C\
0]
aborted/ abort @trans_Pes lock W be_saved? py

in privat

asked

t-26

Release
Lock
asked

FIGURE 5.5.10.int-Abort’s subprocesses and traps w.r.t. Locks.

In trap t-25 of subprocess s-25, the export operation Release_Lock from class Locks is called.
When the internal behaviour of Release_Lock can really be activated, the above internal
behaviour switches to subprocess s-26. In trap t-26, the operation Release_Lock has released
or will release the lock.

65

NN R O~NOIWE
I ON

DOOOunnnnnn
AR i

PLOBOOOOHOD
RIRINI OGN

PPLLOOOO YD
NN O~NGIA R

NN RPO~NOOWR

LROOOOHODD
TR ON

int-11
t-12

PLLPDP PP O DD
JURENTS, TATE

NN R O~NOIWE
NN

QW UIN
NN RO~NOIWR

DONDOOOONOD
PPPLPPDODEO DG
TWROING

int-7
t-1

t-15 V
t-25

Noeoorooang

PLOPOOOO DY
NN O U1
PP OOHOODEDD
N RO 0TI

2 3
5 9V
421 \Y 6
1
5 3 /
in int-14
in t- ;
int-8 int-8
t-22\V t19 V
t-24 t-26

Same

as

before

FIGURE 5.5.11. Locks, manager of ten employees.

For the above manager, the external behaviour of Locks is used. In each state of the manager,
it is specified in what subprocesses all its employees have to be.

We will focus on the statdeutral of the manager, to explain why the employees have to be in

a specific subprocess in a state.

The employee Get_Read_Lock has to be in subprocess s-1. The operation can’t be activated in
the stateNeutral The operations Get_Write_Lock and Get_Lock_Father also can’t be acti-
vated. Therefore, the corresponding employees have to be in subprocess s-3 respectively s-5.
Employee Release_Lock has to be in subprocess s-7 ilNstatial The operation can’t be
activated. If the manager switches to sg&ttating to Releaséhe employee has to be in trap t-

7 and in the new state the employee is switched to subprocess s-8. Operation Compatibility
may not be activated in stdtkeutral The employee is in subprocess s-9. But when the man-
ager wants to go to sta®mpatibility checking startedhe employee has to be in trap t-9 and

in the new state the employee is switched to subprocess s-10. Operation Conflict can’t be acti-
vated and therefore the corresponding employee is in subprocess s-12.

Employee Ask_Lock is in statéeutralin subprocess s-15. In this subprocess, the employee

can trigger the call of an operation of the class Lock. Employee Commit is in state s-21,
because it can trigger the call of operation Release Lock. For the same reason, the employees

66

Remove_lock and Abort are in trap s-23 respective s-25.

A lot of subprocesses are drawn bold in the states of the manager. This means that the
employee, which is drawn bold, can either enter a trap in this state, or has just entered a trap.
Employees, which do not execute and therefore can't enter a trap any more (because they are
already in a trap) are drawn normal. In this way, it is tried to distinct more clearly between
more and less important subprocesses in a specific state.

The sign V occurs several times in the manager. The sign V stands for exclusive or. In the
above manager, it is for instance used when from the¢atiealthe operation Release_Lock

is started. Either the employee Commit has to be in trap t-21 or the employee Remove_Lock
has to be in trap t-23. This means that only one of the operations call Release_Lock. In state
Starting to Release, only one of the two operations will switch from subprocess, because of
course only one of them calls the operation Release_Lock.

From two places in the external behaviour, the export operation Release_Lock can be called.
The problem is that when both operations are ended tdeaseds reached), the states in

which they enter are not the same. Some subprocesses are different.

The reason for this problem is, that both Release_Lock operations are called from another sit-
uation. One Release_Lock is called, because there is a conflict and the other Release_Lock is
called, because a process transaction is for instance committing.

The solution, which is chosen for this problem, is to specify that all the subprocesses in state
Releasedire the same as in the previous state. To model this is ifRslasedvritten down

‘Same as before’.

It can’t be properly modelled in this manager, that the operation Ask_lock of class Process
Transaction calls the operation Abort of class Process Transaction. Because the operation
Abort is only called by the operation Ask_lock, the operation Abort only calls the right
Release_lock operation in the manager. Therefore, the employee Abort can switch from sub-
process, when the right Release_Lock operation is called.

67

5.5.2 The manager Pess_AFrdnsaction

The next two managers are from class Pess_AF Transaction and Auto Transaction. Both man-

agers have the following three employees:
Create_Trans
Commit
Abort

The above three operations are all inherited from the class Process Transaction and therefore
also from the classes Pess_AF Transaction and Auto Transaction.

s-1

Not i i
Creatio Assign Identifie! Set_ Set_ Name Set_ @ Check_Tra S'[ype
—
created asked / Identifier\ gq Type User Name_ Sét Role @ Type .
t-1 e

s-2

Not Act @ Assign /ldentifier ey Type Set @ Set Role Check_Tra
_ L - _
create create@ Identifier\ gt Type set User_Name\\Set/ Role set Type

JType

s-3

Not Act @@\ Assign /dentifier g Type Set @ Set Role Check_Trahs!YPe
_ _ _ _ _ D
create create@ Identifier\ et Type set UserﬁName\\S_‘y Role set Type checked

Trans
t-3
FIGURE 5.5.12. int-Create_Trans’s subprocesses and traps w.r.t. Process Transaction.

The employee Create_Trans has three subprocesses. In subprocess s-1 and trap t-1, the behav-
iour can’t be activated. By switching to either subprocess s-2 or subprocess s-3, the behaviour

can be activated.
The behaviour switches to subprocess s-2 when the transaction, which will be created, is of the

type Auto or Kons and therefore a so-called child transaction.

68

The behaviour switches to subprocess s-3 when the creating transaction will be of the type
Pess_AF, Pess_Akt or Opt_Akt.

Trans
deleted

Delete_trans

s-4

call_Create_typle

) List) Save Releas
ommi et_Loc et_firs! ust_Copy_ call_Release
C t\ Get_Lock Get_first Must_C II_Rel
) retrieved, - Copy Lock
¢ asked List v lock retrieved be_saved? checke _Lock aske
t-4

call_Release
” Lock

call_Save_Ce

Trans
deleted

t-5 Delete_trans

s-5

List Save

Act_ Commit Get_Loc@ Get_first Lock Must_Copy m call_Release Releas
gdommit List ~\/etrieved trieved b a2 \ gt Lock Lock
gdommi asked isf _Jock retrieved be_saved? checke _Loc aske

call_Release
” Lock

FIGURE 5.5.13. int-Commit’s subprocesses and traps w.r.t. Process Transaction.

?

call_Save_Ce

In subprocess s-4 and trap t-4, the behaviour can’t be activated. By switching to subprocess s-
5, the behaviour will be activated. If the trap t-5 is reached, the transaction is committed and
the operation Commit is finished with executing.

s-6

Delete\ trans

Not f i Save
Abort) Is_this_ ‘ | Get_first Lock Must_Copym call_Release elz_leakse
aborted trans_Pesschecked Li - - opy oc!
asked — retrieved be_saved? \ hecked _Lock asked

t-6 call_Release
ock

in privat

asked

69

s-7

t-7

Not m _ . s
Act_ Abort Is_this__ | call_Release vle_leakse
aborted abort trans_Pes i : y ocC
asked _ o _Lock asked

Stop
inter tool
asked

in privat

asked

FIGURE 5.5.14. int-Abort’s subprocesses and traps w.r.t. Process Transaction.

In subprocess s-6 and trap t-6, the behaviour can’t be activated. When the employee switches
to subprocess s-7, the behaviour can be activated. In trap t-7, the transaction is aborted.

70

Besides the three already described employees, the manager Pess_AF Transaction has also
some other ones. These employees are:
Ask_Lock (same instance)
Remove_ Lock
Update_Lock
Refresh
Start WC
Stop_WC
Ask_Lock (other instance)

First, the employees from class Pess_AF Transaction will be described.

t-8

Lock /
obtained

Copy
needed

call_Create_

s-9 t-10

Self

abortion
asked

Lock Chec
Act_ Lock call

can be - | comp.

asked / ASK_LOCK\ asked Compatibility_asked

Lock

obtained

t-9

call_Abort

@ call_

heck Conflict

Copy
needed

call_Create_

checked

FIGURE 5.5.15. int-Ask_Lock’s subprocesses and traps w.r.t. Pess_Akt Transaction.

71

If the subprocess switches to subprocess s-9, the operation will be activated. Either the request
for a lock will be rejected and the transaction will be aborted or the transaction will obtain the

requested lock.
If the transaction will be aborted, trap t-10 will be reached. When the transaction obtains the

lock, trap t-9 will be reached.

The behaviour of the above operation Ask_Lock is partly restricted, when one compares it
with the diagram in the internal behaviour chapter. The reason for this restriction is, that a
Pess_AF transaction can't release a lock from another transaction. It can only abort other

transactions.
cal. Add_Tuple_

Lock
s-11
removeg
n_Log

Remove Save Create
Search lock/ Lock \ pMust Copy_ caII_ReIease Release, call_Create_
lock Copy Lock tuple
asked/ in_ Lock List \etrieved be saved? \ checkeg —LOCk asked tuple asked
call_Release
” Lock

Remove_lock_

from_Lock_List

t-11 call_Save_

s-12

t-12 cal. Add_Tuple_

Removi Act_ /{em\ove\ Search_lock@ Must_Copy._ Save _call Release _ Releas call_Create_ / Create
can be lock . - Copy Lock tuple
asked RemoveiLocW in_Lock_List W be_saved? \cpecke LOCk asked tuple asked

call_Save_Co call Release
”Lock

FIGURE 5.5.16. int-Remove_Lock’s subprocesses and traps w.r.t. Pess_AF Transaction.

If the subprocess switches to subprocess s-12, the behaviour can be activated and if trap t-12 is
reached, then the lock is removed.

72

Lock

s-13

updated

Must_Copy_

be_saved?

Lock
s-14 updated

t-14

Must_Copy_

be_saved?

FIGURE 5.5.17. int-Update_Lock’s subprocesses and traps w.r.t. Pess_AF Transaction.
If the behaviour has reached trap t-14 in subprocess s-14, the lock has been updated.

The next employees are internal behaviours from other classes, calling operations from the
class Pess_AF Transaction.

t-17

call| Update_

call| Ask_Lock
Lock

Old loc
will be

Update
display

first_Lock

kep

Lists GetﬁReIeaseﬂisN Get_

_List Wfirst_mck

call_Remove| Lock

exists
checked

Get_List_Lock&
new_List_Logk

73

lock
asked
S'18 Get
next_Lock
Display Update New loci Get_ /Req. list
updated display wil be first_LOCK uryi
P asked equeste — retrieved

t-20

Old loc

will be
eleased

call_Remove| Lock

Lock
ended
asked

FIGURE 5.5.18. int-Refresh’s subprocesses and traps w.r.t. Pess_AF Transaction.

In subprocess s-15, three traps can be entered. When the behaviour is in either one of these
traps, an operation from the class Pess_AF Transaction just has been called.

After the call is made, the employee switches to subprocess s-18. If a trap in subprocess s-18 is
entered, then the called operation is finished.

Act_Start_WC/Start WC\ Check_AF @ m call_Creat

needed?
_Trans

AF trans\ User_AF
not -
needed Trans?

asked

on status

ransac
will be
aborted

74

on status
asked

t-23

‘ will be

t-24 aborteg

s-25
Get_Next_/ Lock
Doc on status
asked
€ O
‘ will be
aborteg
s-27

call_Create_ WG

s-28

ransac
will be
aborted

t-28

FIGURE 5.5.19. int-Start. WC'’s subprocesses and traps w.r.t. Pess_AF Transaction.

75

This employee is divided in five subprocesses.

In trap t-21 of subprocess s-21, an export operation of the class Pess_AF Transaction is called.
The transaction will be created. The employee switches to subprocess s-22. If the employee
enters a trap, the transaction already has to be created. By entering trap t-22, the operation
Ask_Lock is called. In trap t-23, all the locks have been obtained and the transaction will pro-
tect the execution on documents. In trap t-24, a requested lock won't be obtained and the
transaction will be aborted. The call for this abortion is made somewhere else. This behaviour
just reacts on that call. In trap t-28 of subprocess s-28, the transaction is aborted.

Act_Stop_WC@(;p\W;: call_DeIele_W@ m AF_exists? m
ked wce deleted
aske aske

t-29
call_Commit Ar trans
exists
Commi
asked

t-30
FIGURE 5.5.20. int-Stop_WC'’s subprocesses and traps w.r.t. Pess_AF Transaction.

s-30

The export operation Commit is called. In trap t-30, the transaction is really committed.

call_Abort .
ransaction

76

s-32 Abort

inished

with
ransact

t-32

FIGURE 5.5.21. int-Ask_Lock’s subprocesses and traps from Kons Transaction w.r.t.
Pess_AF Transaction.

The above employee has to be an instance of the class Kons Transaction, because only a Kons
transaction can win a conflict from a Pess_AF Transaction. By entering trap t-31, a Kons
transaction aborts this Pess_AF transaction.

s
s-3 s-3 S
3 s4 s4 s
6 s-6 s-6 . - o
8 s-8 s-8 int-6 s-4
11 s-11 s-1 s-7 s
13 s-13 s-1 s-9 o
s15 s) t1ov | S92 s
24 s-29 52 LR s
231 s-31, s-3 a1
int8)
t-2 s-2

in t-9 int8

t-25

P00 n

PRI LPPLY
©NUw=
lod
N
~

QPOOODDHEDPDED
WNNR R ROOAW
POt

WwRNP Lo ~w
PLLOOOODOOH
WRNFRRR OO AW

int-8
t-22

WNNR R ROOAW
PEOOODYPDDEP
WNNEPRROORW

nOLLLLLOLOOW
RIS
RONOIWE

s-3
s-3 s-3

s s-4 s-4
s-3 s-3 8 8 38
8 e i 13 313 &
o o . | 52 5 3
51 513 29 2 529 52
s—% s%g S s-31 s-3
S- S-
s-3 s-30
s-3 s-3

WNNRPRRROORW
FONWN

PLOPOLEOOED

FIGURE 5.5.22. Pess_AF Transaction, manager of ten employees.

77

For the above manager is of course the external behaviour of Pess_AF Transaction used.

In a lot of operations the operation Commit is for instance called. Only the operation
Stop_WC calls the operation Commit of the class Pess_AF Transaction. A lot of operation
calls are attribute sensitive. In the above case, it is checked what the value of the attribute Type
is.

It is difficult to model, whether a Kons transaction will release a lock or abort the whole trans-
action. A couple of complex rules make the decision for what will happen. This decision is
made in statdransaction win®f the operation Ask_Lock.

In figure 21, it is only modelled when the operation aborts a Pess_AF transaction, but it can’t
be modelled when a lock will be released. It doesn’t appear in the external behaviour, when a
lock will be released.

In the above manager, some transitions between states aren’t labelled with traps. It is difficult
to model when the behaviour switches from the €agxuteto the stat&kefresh

78

5.5.3 The manager Auto Tansaction

The class Auto transaction has some inherited export operations of class Process Transaction.
We refer to 5.5.2. for the specification of subprocesses and traps of these export operations.
Besides these three already specified employees, the manager also manages the next three

employees.

Ask_Lock (same instance)
Stop_Act
Ask_Lock (other instance)

Copy
needed

checked

call_Create_

s-9 t-10

Self

abortion
asked

Lock Chec
Act_ Lock call
can be ~e _ | comp.
asked / ASK_LOCK\ agked / compatibility._asked

call_Abort

m call_

hecki Conflict

FIGURE 5.5.23. int-Ask_Lock’s subprocesses and traps w.r.t. Auto Transaction.

79

In trap t-8 of subprocess s-8, the internal behaviour can’t be activated. If the employee
switches to subprocess s-9, the behaviour can be activated and the lock can be obtained or the
transaction can be aborted. An Auto transaction can’t release locks of other transactions, it can

only abort other transactions.

Stop act)__call_Stop_
asked / Inter_Tool

Act_Stop_Act

I-tool
stopped’ transaction?
. alidatioly
Validated
asked

New

status

_Status

Commi
asked
call_Commit™ No
AF trans
exists

Create

trans

AF_exists?

s-12
Childs Tool
can be asked
executed

80

New

t-15

status

call| Ask_Lock

Child
will be
aborteg

t-14

s-17

atus

executed

Commi
asked
t-17
Child
t-18 |\ moe
s-19

Commi

t-19

asked

Childs

can be
executed

t-20

Child
will be
aborted

FIGURE 5.5.24. int-Stop_Act’s subprocesses and traps w.r.t. Auto Transaction.

In trap t-11 of subprocess s-11, the call is made to create an Auto transaction. Afterwards, the
transaction can either start to ask locks (trap t-14) or execute (trap t-15). So, if either
New_Status or Use Batch_tool is called, the behaviour has to be in tHexstabte If

another transaction aborts this Auto transaction, the trap t-16 will be entered. In trap t-20, the
transaction is aborted.

call_Abort

s-21

82

inished
with
t-22 [\ransact

FIGURE 5.5.25. int-Ask_Lock’s subprocesses and traps from Kons -, Pess_Akt - or
Pess_AF Transaction w.r.t. Auto Transaction.

The above employee has to be an instance of the class Kons -, Pess_Akt or Pess_AF Transac-

tion, because only such a transaction can win a conflict from an Auto Transaction. In trap t-21,
a transaction has made the call to abort an Auto transaction.

int-1

t-11

FIGURE 5.5.26. Auto Transaction, manager of six employees.

When the operation Stop_Act is executing and it has created an Auto transaction, another
transaction T2 can abort this transaction.

The problem occurs, when Stop_Act is working on an instance of the class Auto Transaction
and during its execution another transaction T2 aborts this instance. This means that T2
changes the state of the external behaviour. The employee of Stop_Act must have traps and
subprocesses, which don’t result from the uses relation. This means that special traps and sub-
processes have to be defined to model the influence of the abort, during execution of
Stop_Act.

It is not always sufficient to model only the uses relation.

83

6. Problems and solutions in Socca

During the creation of the previous specification, a couple of weaknesses of the Socca formal-
ism occurred. Some of the weaknesses are small, but these weaknesses are also listed.

First the problems are listed. For those problems, a solution will be proposed. Then, the
remarks are given. These remarks point out some special situations extra. Also guidelines, to
help the specifier to conquer some classical problems, are listed. If a specifier starts to use
Socca, he will often experience some classical problems during the specification process.
These problems have to be conquered to rewrite that part of the specification. The guide lines
list some classical problems and explain how they can be prevented. At the end, general weak-
nesses of the Socca formalism are listed.

After each point of comment, the page number with an example in the specification of the
described comment is given. It is perhaps not that easy to grasp all the listed points of com-
ment, because they are described in a abstract and general way. Use the page numbers to see
an example in the specification of such a point of comment.

After all the weaknesses are listed, a new idea to use PARADIGM in Socca is proposed to
conquer some of the problems and weaknesses. In chapter 6.5, this new way to embed PARA-
DIGM in Socca is proposed.

As this thesis is devoted to the identification of weaknesses in Socca, this chapter focuses on
those weak sides. The positive aspects are not mentioned here. A more balanced evaluation of
Socca is given in the chapter Conclusion.

6.1 Problems

1

It can happen that two or more operations can call the same operation (Op1l) of a specific
instance, but only one operation actually calls operation Opl and therefore only one operation
starts operation Opl. So, with use of PARADIGMe operation should call the operation

Opl. When the employee Opl is called and therefore switches from subpooeespera-

tion, which made the call, also has to switch from subprocess.

A solution to model this it to extend the PARADIGM part. To model, that omdyemployee
exclusively calls Opl and therefore has to change from subprocess, the exclusive or, a logical
operator is used. The exclusive or is represented by the sign V.

(page 67)

2

One has to choose the operations of an external behaviour carefully. Sometimes, it is question-
able whether an operation has to become part of a class. It can happen that an instance Inl1 of
class C1 can be affected, because an instance In2 of class C2 is updated. In instance In2, infor-
mation concerning Inl is written. Must this updating of instance In2 be specified in the exter-
nal behaviour of C1?

A solution is, that if it is important enough to model this in the external behaviour of class C1,
one could specify a dummy operation in the class C1. Each time instance In2 is updated and
one wants to model this change in the external behaviour of C1, this new operation should be

84

called.
(page 78)

3

As already described in 8, it can occur that an operation Op1 of class C1 can be activated from
several different states in the external behaviour of C1. Problems occur when several of those
operations Opl, which are activated in different states in the external behaviour, stop execut-
ing in the same state (let’s call this state End_state). The problem is that because such an oper-
ation Op1l is called from several different states, at the end of execution for each Opl in the
state End_state some subprocesses can be different.

A solution for this problem is to specify for each Opl, which is activated in a specific state, its
own End_state.

Another solution is to specify a new sort of state. In this state, all the subprocesses are the
same as the state before the behaviour entered this state. The state End_state will become such
a special state. Then, it is no problem whether some subprocesses are different when operation
Opl, activated from different states, stops executing in state End_state.

(page 67)

6.2 Remarks

4

During execution of an operation (Opl), another operation (Op2) can influence the internal
behaviour of this operation. This is so, because Opl and Op2 both use the same instance on
the same moment. This is a rare situation, that two operations use the same instance on the
same moment. The kind of influence on Op1 can be modelled.

(page 83)

5

It can be difficult to model how an operation will be exactly executed. If the operation can fol-
low several ways to its end, it can occur that a couple of complex rules decide which way has
to be taken. Incorporating complex rules into the model is difficult, because this formalism is a
graphical formalism instead of a textual one. The only way often to explain the way, which is
taken, is to discuss this under the diagram in the text.

(page 78)

6.3 Guidelines

6

It is sometimes difficult to specify a trap between states of a manager, because no operation of
this class accomplishes the switch from one state to another.

This could be solved, by adding dummy operations. The only task of such a dummy operation
is to accomplish the switch.

(page 78)

85

7

If several subclasses export the same operation Op1, it can occur that when an operation Op2
calls operation Op1, Op2 will always call Op1l isgecific subclass.

The attribute value of an instance of a subclass is important whether it may be called. When
operation Op2 never calls operation Opl in a specific subclass, Op2 will not be used as an
employee of the manager of this subclass.

(page 78)

8

A certain class C1 has an operation Op1l. It can happen, that this operation Opl can appear
more then one time in the external behaviour of class C1. This means, from more states in the
external behaviour, operation Opl can be activated.

If operation Op2 of another class calls operation Opl, one has to be very careful to specify
from which state in the external behaviour operation Op1l is called by Op2.

(page 67)

9

There are two sorts of employees. One sort of employees is of the same class as the manager
and one sort of employees is of another class then the manager.

With the second sort of employees, one has to choose the states in the subprocesses carefully.
An operation Op1, which calls an operation Op2 of class C2, can use several instances of the
class C2 during execution. It would be preferable when at any moment, the operation Op1 is
referring to just one instance.

When the employee of operation Op1 switches from subprocess after the call of Op2 is made,
it is important to be sure that all the states in this subprocess refer to the same instance of this
class C2. It would become more easily a mess, if in this subprocess there is referred to several
instances of class C2.

(page 63)

10

It is not allowed that several operations of the same class X in the external behaviour of the
class X are activated in all different states and then just after activating enter the same state. If
it would be specified, several operations can be activated in this specific state of the external
behaviour. But only one operation may be activated, because only one operation is called.

6.4 General weaknesses

11

A manager is difficult to survey, because a lot of information over the different subprocesses is
inserted in such a manager.

To structure all the information in such a manager, important subprocesses in a state of a man-
ager are drawn bold. In the less important subprocesses, no execution of the internal behaviour
takes place.

(page 67)

12

The PARADIGM part of the specification is too large, therefore it is difficult to survey the
total PARADIGM part.

86

In the next table, it is presented in what manager occurred what problem or what guide line or
remark has to be used, to make a good specification.

1 2 3 4 5 6 7 8
Time Stamp
Tuple X
Locks X x x
Log X
Status X
Contents X
Kons Transaction X X X X X
Auto Transaction X X X X X X
Pess_ Akt Transaction| x X X X X
Pess_AF Transaction | x X X x X
Opt_Akt Transaction X x x
Working Context X
Process Engine

The guide line 9 and the general weaknesses 11 and 12 occur in each manager. The guide line,
which is described in 10, doesn’t occur in this specification, because when this problem
occurred, it was conquered. So, this guide line is used for whole the specification.

Almost all the problems, which are found and listed, arise from the integration of the PARA-
DIGM formalism in Socca. The problems are not typical PARADIGM problems, but integra-
tion problems. When we are discussing PARADIGM in this and the next chapters, we mean
the PARADIGM embedded in Socca. The embedded PARADIGM is a bit different then stand-
ard PARADIGM [Gr 91].

Beside all the problems, which are listed, it is also questionable whether all the communica-
tion can be described fully. Using only the uses relation, to describe the communication can be
too little. Real answers on this question aren’t given in this master’s thesis.

Remark 5 isn’t that much of a problem. One knows that one loses and wins something, when a
graphical specification is used. In my eyes, we have won absolutely more, then we have lost.

87

6.5 A new version of PARADIGM in Socca

With this new version of PARADIGM, only some weaknesses and problems are discussed. So,
this new version is only a step in the right direction.

General weakness 12 is tried to tackle, because in the solution the PARADIGM part will be
reduced in size.

General weakness 11 is tried to tackle, because in the solution subprocesses won'’t be specified
separate any more. The employee is specified with one diagram, where in all the traps are
given.

Problem 1 is solved, because instead of one view of the manager, two views will be specified.
The semantics of annotation at the transition edges in a manager is different for both views.

The first view on the manager of a class will have employees of its own class.

If the behaviour executes a transition in the manager, which is labelled with a trap of an
employee, ihas to be in this trap.

The second view on the manager will have employees, who call employees of this class.

If the behaviour executes a transition in the manager, which is labelled with a trap of an
employee, itan be in this trap. All the traps or no traps of some employee will be completely
obeyed. Which employees will be obeyed depend on which operations use this instance of the
class. In this way, problem 1 is solved.

The solution will be presented and enlightened with the PARADIGM specification of the class
Auto Transaction.
The first view on the manager of class Auto Transaction has the following employees:
Create_Trans
Commit
Abort
Ask_Lock

Not Act Creatlo Assign /Identifiex g Role
created Create asked Identifier Type User_Name Role

Father_ldent

v
Fathel
identifier

set

FIGURE 1. int-Create_Trans’s goals w.r.t. Auto Transaction.

If one studies the PARADIGM part of the specification or the appendix of this thesis, one can
find a pattern in the way subprocesses and traps are specified for an employee of the same
class as the manager.

The pattern is, that in the first subprocess, it is waiting to activate. The manager allows the
employee to switch from subprocess and the employee will execute and reach its goal, which
is a trap.

In the above diagram, the employee is first in Stimtecreated|f it is started by the manager,

88

it is allowed to activate the operation. If it has reached its goal, the employee is in G_1.

In G_1 is the Auto transaction created.

Goal G-1 can be compared with a trap in standard PARADIGM. As one can see, the trap for
the stateNot createds not specifically given in the above diagram. If the manager wants to
activate the operation, the internal behaviour of the operation can be in only one state. In the
above case is this stetlot created

List Save

Act_ Commit Get_LockA/\ Get_first Lock \ Must_copy_ m call Release [Releas
gdommit List \retrieved retrieved be_saved? copy Lock Lock
g asked _lock — ! checke — aske

call_Save_Ce

FIGURE 2. int-Commit's goals w.r.t. Auto Transaction.

In G_1, the employee has reached its goal and therefore the transaction is committed.

Not \ act @ Is_this_
aborted abort wtrans_AF? checked

call_Delete_wc Gef_Lock_
List

call_Release /Release
Lock
_Lock asked

in privat

asked

FIGURE 3. int-Abort’s goals w.r.t. Auto Transaction.

In G_1 is the transaction aborted.

89

Self

abortion
aske

call_Abort

ransaction

G 1

@ call_ Solve

Lock Chec
= % comp. - conflict
K\ asked / Compatibility_asked heck Conflict asked

all_Get_Write

Copy
needed

checked

FIGURE 4. int-Ask_Lock’s goals w.r.t. Auto Transaction.

This operation has two goals. It either aborts itself, because it couldn’t obtain a lock or it has
obtained a lock. In G_1 will the transaction abort itself. In G_2 is the lock obtained.

Create

Start_
End_1/ Abort
ADQ
Aborted Abort
started End_1

Ask_Lock

End_1
0]
Commit

FIGURE 5. Auto Transaction, first view on manager with four employees.

If a transition is labelled with Start and then an operation name. It means that the operation
may be activated. In the standard PARADIGM part, the employee now would switch from
subprocess. The operation can now be executed. When the transition End, with a number and
then the operation name, is reached, it means that the operation must be finished with execut-
ing and has reached the goal with this specific number. As already explained, an employee has

90

numbered its goals.

Reaching a goal can be compared, with reaching the trap in the (often) second subprocess.
The labels of the manager of figure 5 can be compared with the traps in standard PARADIGM.
The subprocesses in the states of the manager are disappeared. Now, in the states are the
names of the external behaviour. This will make it more clear, why what operation is started or
ended.

All the labels (traps) of a transition in the manager have to be obeyed, when the manager uses
this transition. In the left side of the figure for instance, both Ask_lock must reach goal G_1
and Abort must be activated.

The second view on the manager of the class Auto Transaction has two employees. These two
operations call operations of class Auto transaction.

Stop_Act

Ask_Lock

I-tool
stopped’ transaction?

Act_Stop_Act Stop act call_Stop_
asked / Inter_Tool

Commi
Checked
asked for
call_Commijt” No AF tran:
AF trans
exists

AF_exists?

for new
status

ca 5
tch
Auto
Kons

tran
created

will be
aborted

G 5 G 4
FIGURE 6. int-Stop_Act’s goals w.r.t. Auto Transaction.

An operation, which calls an operation of class Auto Transaction, has several goals. After one
goal is fulfilled, often a new goal has to be reached. In the above employee are seven goals
defined. This employee can be compared with the employee, which is defined in standard
PARADIGM. Each goal is in standard PARADIGM a trap. Just like how it is with a trap, one
can leave the goal, when the manager has said it must have reached this goal. Now, the next
goal can be reached.

91

call_Abort

FIGURE 7. int-Ask_Lock’s goals w.r.t. Auto Transaction.

In goal G_1, the call is made, to abort the transaction. In goal G_2, the transaction is aborted.

IN_1_stop
Create

N_7_stop/ Abort
Aborted ADO
IN_2_ask\ starteg/ IN_1_ask
IN_5_stop

IN_2_stop
IN_2+3_stop

_§_stop N_7_stop
nm 9
a

FIGURE 8. Auto Transaction, second view on manager with two employees.

Each transition has a label, what prescribes in what goal the employee has to be. Each label
consists of the word IN, then the goal and then the name of the operation. There is one special
goal, this is IN_2+3_stop. This goal is build up of two goals. The behaviour has to be in this
constructed goal.

Furthermore, the manager doesn't have to fulfil all the goals. In the transition between the
statesAbort startedandAborted it is possible that either one or both goals have to be fulfilled.

92

If the Auto transaction is aborted by another transaction, both goals have to be fulfilled. If the
transaction aborts itself, only the goal IN_7_stop has to be fulfilled. Whether goals have to be
fulfilled or not depends on whether the operation, which is related to such a goal, calls an oper-
ation of class Auto Transaction.

With this new approach to use PARADIGM in Socca, some information is lost compared to

the old version. The older version specified the coordination on a very fine level. There is no
reason why the level of abstraction can not be lifted a little bit.

For the above example, the new version works very good. One example can however be
given, that a problem occurs with this new version. This is the case, when between two goals
two or more paths in the internal behaviour can be used. If the employee wants to reach the
new goal, it is not specified what path has to be taken. In the old PARADIGM version, it was
made sure that when paths are illegal, some states of the subprocesses were omitted. In this
new PARADIGM version, one could specify also what path can be taken between two goals in
an employee, if one has two or more paths between the goals and it has to be specified what
path can be taken by the employee. For each employee, paths are specified if it is necessary. At
the transition edge of the manager, it is specified what path or paths may be taken to reach the
new goal.

With this new method, a big reduction in size of the PARADIGM part can be reached. In the
above case, a reduction of 50% is achieved. Normally, the reduction will be a bit smaller.
Besides the reduction, the managers are better understandable and problem 1 (the exclusive or
problem) is solved, because two views for one manager are used.

In the above solution, the ideas behind PARADIGM aren’t really changed. The solution manly
proposes another way to visualize PARADIGM.

Besides weaknesses and comments, Socca has also many positive characteristics. The strength
and my personal view on Socca will be taken into account in the chapter Conclusion. In the
next chapter, the weaknesses of how the dissertation is structured, compared to the way the
same theory is specified in Socca, will be identified.

93

7. Motivation for using Socca

Besides testing Socca, another goal is defined in the beginning of the thesis. This goal is what
the strengths are to use a specification language, in this case Socca, to describe a concept. The
concepts, used for this specification, mainly can be found back in [Wo 94]. In this dissertation,
one part was textual description and the other part was code of the process transaction model.

We want to keep this chapter short. Not because, it isn’t an interesting subject to talk about the
usefulness of a specification language. In our eyes, this is a very interesting subject. The rea-
son is that already many important things are said and saying more can only distract the atten-
tion to less important things. Still, some very important results have to be given how the

Merlin theory could be described with Socca.

My personal experiences during specification of the process transaction model with such a
way of describing a concept, are given bellow. These points are difficulties, which we had with
using a textual description and code to describe the Merlin concepts in the dissertation and
how Socca provides more comfort for the reader to understand the theory.

To find information back in code is very difficult. If one wants to learn how the process trans-
action model fits together, one needs a problem description on a higher level, then the Prolog-
like language. A specification will enable the reader to abstract information easier, then the
Prolog-like rules.

A textual description of the concepts will (normally) enable the reader to understand the prob-
lem pretty fast and the reader won't be bothered with details. But the textual description is
often not complete. Sometimes, the description is in contradiction with itself, or some parts of
the concept is missing in the description. A specification is more complete then the textual
description and by reading the data perspective and external behaviour of Socca, the reader
also understands the main parts of the problem.

One of the main characteristics of this specification is the separation of concern, what makes
the specification well structured. Therefore, it is easy to find information in the specification.
The specification has a top down structure. If one wants to know a detail, one will normally
find that in the internal behaviour. Important (static) information can be found faster in the
data perspective. The separation in classes makes the search for information even easier. It is
now more understandable where and who initiates an operation. Besides who initiates an oper-
ation, the coordination between all the operations is also modelled in the PARADIGM part.

In general, the concepts in the dissertation of Stefan Wolf [Wo 94] is consistent and not in con-
tradiction with itself. There are nevertheless some small points of comments over the useful-
ness to model some parts like they are in the process transaction model.

Synchronization rule 1 is partly in contradiction with the rest of the theory.

In this rule, it is prescribed thatrite access on a contents of a document by a transaction of

the type Opt_Akt, Pess_Akt or Pess_AF will have as result that a lock or time stamp on the
status of this document has to be set.

The word write has to be left out, because afterwards it appeared to be the case, that a transac-
tion of the type Opt_Akt, Pess_Akt and Pess_AF always has access on both the contents and
status of the document.

94

Until now, no private directories are implemented in the Merlin prototype. But nevertheless,
the contents, worked on by an aborted transaction, has to be saved in a private directory.

As already mentioned, the identifier of a transaction has to be inserted in the log according to
the theory in [Wo 94]. In the tuple in this specification, it is left out that the identifier is one of
the information items in the tuple. It is unnecessary information to put this in the log.

In the last two chapters the achieved Merlin and Socca goals are evaluated. In general, only

the weak sides are discussed. In the next chapter Conclusion, concluding remarks over Socca
and Merlin will be given.

95

8. Conclusions

If one wants to construct software, it would be wise to follow certain steps. First, one has to
ask the clients for the problem description. Then, the specifier makes a specification and the
client will explain his wishes further during the construction of this specification. Finally, the
software will be constructed based on this specification.

A problem with a lot of specification languages is, that somebody without a computer science
background has difficulties to understand the specification. This somebody is often the client,
who orders a piece of software. Because of this, the specifier and the client have difficulties to
understand each other. The client is not sure, that the specifier understands what he means,
because the client doesn’t understand the specification (very well).

Those specification languages focus to much on the transformation of specification to soft-
ware. The result can be a good piece of software, but not that what the client wants.

Lotos and VDM are for instance textual specification languages, which are code orientated
and not really client friendly.

Socca, on the other hand, is better understandable for people without a computer science back-
ground. Using diagrams is a good step in the direction of client friendly specifications.
Furthermore, EER and STD formalisms in Socca are very classical and because of that well
known. Data perspective and perhaps the external behaviour can be understood by such a cli-
ent. In such a way, the client has a better overview what will be constructed and the client can
give feedback. Of course is the last part of Socca not that easy to understand for somebody
without a computer science background. But the later part is already very much in detail.

We believe that the transformation of Socca into code is also not that difficult. All the impor-
tant operations in the software are specified in the internal behaviour and PARADIGM
describes the communication between all those operations.

In my eyes Socca focuses in the right amount on the development of software by the program-
mer and the problem description with the client.

We really believe in the main ideas behind Socca, but this doesn’t mean that whole the Socca
formalism works smooth. In chapter 6, we have talked about the weak sides of Socca. The
main conclusion of chapter 6 is, that there are some integration problems between PARA-
DIGM and the rest of Socca.

A solution is proposed to try to integrate PARADIGM better in Socca. When | was developing
the PARADIGM part in Socca, | noticed that it took to many paper to explain what had to hap-
pen. My idea was to look whether the subprocesses perhaps could be left out. If no subproc-
esses would exist any more, | could also tackle another problem. | wanted to make the
managers more easy to survey. The result of leaving subprocesses out of the PARADIGM part
in Socca can be read in chapter 6.5.

Still, one problem existed. Could those disgusting exclusive or’s in the manger disappear? |
noticed, that the differences between employees of the class of the manager and employees of
another class then that one of the manager is bigger then expected. These two sorts of employ-
ees have to be divided. | divided them in two views of the same manager. For each view, other
rules exist how the employees have to behave them self.

With these new ideas, PARADIGM can be integrated better in Socca. Only in the size of paper

96

to describe PARADIGM in Socca, a reduction of 40% or more can be achieved. Besides
reduction in paper, it is now easier to read and understand the manager and the employees in
the PARADIGM part.

Furthermore, in chapter 6.3 are guide lines listed. The goal of these guide lines is to make sure,
that the specifier doesn’'t make some classical mistakes.

Besides a solution for the integration problem in chapter 6.5, a new (State chart like) feature is
introduced in this thesis. In some STD’s of the external behaviour, polygons are used to make
figures less crowded. With use of this polygon, several arrows can be left out of the diagram.
This is discussed in chapter 4.

If one compares the specification of the process transaction model with the dissertation [Wo
94], one compares mainly how a piece of theory can be described. One can see quit easily the
difference between the specification language Socca and the textual description and Prolog-
like rules in the dissertation. The Prolog-like rules are a description on a low level and there-
fore difficult to understand and not client friendly. The textual description is on this moment
perhaps the most common used specification language. In a textual description, there is a lack
of structure. Because of this, the described theory is in contradiction with itself or some parts

of the theory are missing or are difficult to find in the description. As already motivated in
chapter 7, using Socca to describe the concepts of the dissertation is more preferable then Pro-
log-rules and plain text.

It is not that difficult to conclude, that it is preferred to use a real specification language, when

one wants to describe a piece of theory. As already pointed out, Socca is a very interesting
alternative to use as a specification language.

97

O. Literature.

[EG 93]

[Gr 91]

[JPSW 94]

[PS 92]

[PSW 92]

[Wo 94]

G. Engels, L.P.J. Groeneweg8pgcification of Coordinated Behaviour

in the Software Development ProceBsoceedings of thé‘%European
Workshop on Software Process Technology (EWSPTZ), Trondheim,
Norwegen, Lecture Notes in Computer Science Bd. 635, Springer, Berlin,
1992.

L.P.J. GroenewegeRarallel Phenomena 1 - 1&niversity of Leiden,

Dep. of Computer Science, Tech. Rep. 86-20, 87-01, 87-05, 87-06, 87-11,
87-18, 87-21, 87-29, 87-32, 88-15, 88-17, 88-18, 90-18, 91-19. 1986-
1991

G. Junkermann, B. Peuschel. W. Schafer, S. Meiin: Supporting
Cooperation in Software Development through a Knowledge-based Envi-
ronment A. Finkelstein, J. Kramer, B. Nuseibeth (Hrs@gftware Proc-
ess Modeling and Technolqod3esearch Studies Press, John Wiley and
sons, England, 1994.

B. Peuschel, W. SchaférKnowledge-Based Software Development
EnvironmentInternational Journal of Software Engineering and Knowl-
edge Engineering, Vol. 2, No.1, pp 79-106, March 1992.

B. Peuschel, W. Schafer, S. Walfknowledge-based Software Develop-
ment Environment Supporting Cooperative Wamternational Journal of
Software Engineering and Knowledge Engineering (SeKe), Vol.2, Nr. 1,
World Scientific Publishing Company, March 1992

S. Wolf, A transaction-based approach to support cooperative software

developmentPhD.-Thesis (in German), University of Dortmund, Depart-
ment of Computer Science, Software-Technology, 1994

98

10. Appendix

In this appendix, the whole PARADIGM patrt is given. For all the managers and their employ-
ees, the diagrams are presented, without any textual explanation. Down below, all the classes
are listed and behind each class name stands a page number. This is the number where one can
find the first employee of this class. For the class Process Transaction, no manager exists. But
the three operations of this class are employees for all its five subclasses.

TimeStamp 100
Tuple 103
Locks 110
Log 117
Status 121
Contents 123
Process Transaction 132
Kons Transaction 134
Auto transaction 139
Pess_Akt Transaction 144
Pess AF Transaction 150
Opt_Akt Transaction 156
Working Context 162
Process Engine 166

99

The first manager will be TimeStamp. The employees of this manager are:

Create_TS
Clean_TS
Set TS
Validate

Create\ New / EMPty Set_ me Set Doc/Stat Set_ Read/_
- = - Write

can be stamp |—=| stamp - .
created asked/ stamp \ create Doc_Nameject_Type inserted/acces Typeinserted

TS
inserted
n TS_Li

s-2

TS
Act_ @ New / Empty Set_ oc._ Na e Set_ Doc/Stal Set /
can be Write

stamp stamp
reate CreatefTW stamp WDOC—Nam inserte bleCt Type\inserted/ncceg Typ inserted

inserted
(n TS_Li

FIGURE l.int-Create_TS'’s subprocesses and traps w.r.t. TimeStamp.

s-3
Ts Out of Stam
b Cleaning F|nd _TS Remove_TS Delete_stamp P
can be
cleaned asked /1n_| LISt found / from_TS_List L|st deleted
t-3
s-4

TS
b Act_ Cleamn Find_TS _Remove_TS_ Delete_stamp|/ Stamp
can be
cleane CIean_TS asked in_List found from _TS_List deleted
t-4

FIGURE 2.int-Clean_TS’s subprocesses and traps w.r.t. TimeStamp.

100

Set TS\ Must_Copy @caﬂ_me
Copy

ime stam)
be_created? s stamp

call_Greate Call_¢

call_Add_Tuple_

call_Get_Write

Get_next TS

List X
Get_TS Get_first

List /\W TS

Get_first _tuple

Save
needed
is checke

Must_copy_
-
g be_saved?

101

s-8

Create
tuple

@ asked

FIGURE 4.int-Validate’s subprocesses and traps w.r.t. TimeStamp.

FIGURE 5. TimeStamp, manager of four employees.

102

The next manager is Tuple. The employees of this manager are:

Create_tuple
Insert_tuple
Delete tuple
Conflict_with_Tuple?
Add_Tuple_in_Log
Conflict_with_Log?
Commit
Validate
Remove_Lock
Update Lock

s-1

Create Creation, Init_ / Tuple \Set Docmet Object / poc/srarSet Acces@ Get_Time,
tuple Writ
asked P made / Name \@rt/ed/ Type \Qe_rt/ed/ _Type w insertgd

can be
asked

t-1

s-2

Create\ At @h\ Init_ met Doc met Object /poc/starSet_AccesgRead/
can be fuple Writel
asked Create@ W Name nsene Type \inserte/ —TYP€ \ inserted

FIGURE 6.int-Create_tuple’s subprocesses and traps w.r.t. Tuple.

s-3

Insertion, Tuple_at_the uple
inserted
asked / €nd_of_the_Log log

s-4

uple
Insert™\ acq Insertion, Tuple_at_thgy” P
can be inserted
Insert asked / €nd_of_the_|

asked 0 in log

t-4
FIGURE 7.int-Insert_tuple’s subprocesses and traps w.r.t. Tuple.

103

s-5

Deletion Deletion) Delete _tuple/ TUPIe
can be

asked asked deleted
s-6

Deletion\ Act_ Deletion\ Delete _tup|
can be
asked / Delete asked

t-6
FIGURE 8.int-Delete_tuple’s subprocesses and traps w.r.t. Tuple.

s-7

Conflict ChecR\Doc_Name_
for conflig

can be

heckeg asked/ edual?

Object_Type_Ho¢/stat Acces
equal? \ .heckeg/ COMPpatible?

Tuple is

in conflic

o @

; Check ;
Conflict Act ompati-
can be | fl'_ for conflig Doc_Nal Doc/Stat biI[i)ty

onflict
hecked asked hecked checked checkegd

Tuple is

in conflic

t-8

FIGURE 9.int-Conflict_with_Tuple’s subprocesses and traps w.r.t. Tuple.

104

Tuple Act Add_ Find_end_of call_Insert_Tug Insert
can be tuple ~ Contents | tuple
added’ Tuple_in_Log asked asked

s-10

Insert Tuple'
tuple ‘
asked in log
t-10
FIGURE 10.int-Add_Tuple_in_Log’s subprocesses and traps w.r.t. Tuple.

No

conflict
found

s-11
Find_
ple

Find_ first Tuple\ call_Conflig

_tuple w with_Tuple

t-11
s-12 No
conflict
found
Checl
tuple
asked

t-12
FIGURE 11.int-Conflict_with_Log’'s subprocesses and traps w.r.t. Tuple.

105

s-13 Trans
deleted

Dell

) List X Save
Commit\ Get_Lock Get_first Must_Copy. c call_Release
; (o]
asked List W _lock W be_saved? checﬁg _Lock

call_Save_

call_Release
” Lock

s-14

Lock

finished,

t-14
FIGURE 12.int-Commit's subprocesses and traps w.r.t. Tuple.

s-15

call_Add_Tuple_

Set_type_to

Validated
-Pess_Akt

Get_next TS

caII_DteIeIte

call_Abort

%aﬂxeet_Read

106

t-16

s-18

call_Add_Tuple_

Set_type_to

Validated

-Pess_Akt

Get_next TS

Get_first _tuple

Save
needed
is checke

Must_copy_
R —

g be_saved?

FIGURE 13.int-Validate’s subprocesses and traps w.r.t. Tuple.

Lock
s-19

removea

emovV Save

Act_ /{\8\ Search_lock/ Lock Must_Copy._ /\ call_Release Release\ call_Create
lock i Copy Lock

4/ Remove_Lock ,cked in_Lock_List retrieved be_saved? checke _Lock aske tuple

call_Release
”Lock

call_Save_

107

s-20

Lock Insert
uple in log
removed asked

t-20 A Log
Create

tuple
asked

FIGURE 14.int-Remove_Lock’s subprocesses and traps w.r.t. Tuple.

Lock
s-21 updated

Lock

can be
updated’ Update_Locl

t-21

call_Save . Copy call_Create_Tuple

tuple in lol

FIGURE 15.int-Update_Lock’s subprocesses and traps w.r.t. Tuple.

108

ONT0ON
2458111122

hOOhhhhdho

hODhhhhhhh

>>>

O—HT0ON
2457111122

RN
nNnnununnnunnnov,

—nood
QPO Deicicioicd
DODOODNO DN

>>>

—ATC0ON
2357911124

HOhhhhhhh o

PRGN
2R ORO R R RORYRY)

FIGURE 16. Tuple, manager of ten employees.

109

The next manager is Locks. The employees of this manager are:
Get_Read_Lock
Get_Write_Lock
Get_Lock_Father

Release_Lock
Compatibility
Conflict
Ask_Lock
Commit
Remove Lock
Abort

s-1

Locking |nsert_Doc_in Listeg)_Insert_ldent_in
asked / Lock_List_of_trans Read_List_of_Lockg!ock set

t-1
s-2
LOCkb Act_ @ Insert_Doc_in Listed Insert_ldent_in Read
can be
aske Get—Read_LOCWLOCk_List_of_trans Read_List_of_Logkg'0Ck set

t-2
FIGURE 17.int-Get_Read_Lock’s subprocesses and traps w.r.t. Locks.

s-3

Locking nsert Doc_in Listed | Insert_Ident_in
asked / Lock_List_of_trans Write_of_Locks

t-3

s-4

Lock Lockin .)
can be AL Insert_Doc_in Listed | Insert_ldent_i
asked Get_Write_Lock_asked / Lock_List_of_trans Write_of_Lockg

Write
lock set
t-4

FIGURE 18.int-Get_Write_Lock’s subprocesses and traps w.r.t. Locks.

110

Locking, Insert_Doc_in_

—=
asked / Lock_List_of_trans

Act_Father_@ Insert_Doc_in_
Lock W Lock_List_of_trans

Read lock

set

t-6

Releasing

Search_for

“List_of_Locks Remove_Doc_from_

Lgck_List_of_trans

will be
eleas

List

updated,

Search_for

_List_of_Locks Repove_Doc_from_

Lgck_List_of_trans

will be
leas!

List

updated,

FIGURE 20.int-Release_Lock’s subprocesses and traps w.r.t. Locks.

111

Not
Compatible

Lock_Father?’Lock of \ Req_or_set /" Write
access

Not
Compatib|

s-10

Write

\ Act_ M Search_
access

— check
Compatlblllty\a\/d/ for_Lock
ske

ompatiblé

t-11
FIGURE 21.int-Compatibility’s subprocesses and traps w.r.t. Locks.

search_/ Lock \ Highest_prio_ /Hi8heSN compare_prio briorities

112

s-13 t-13

search_/ Lock \ Highest_prio_ /H19hes\ compare_prio Priorities

Lock cal Compatib) call_ Solve
— . . - conflict
heck Conflict asked

asked

obtained call_Release

all_Get_Father

t-18

lock asket

113

Lock

obtained

Not k List .
Act_ Commit\ Get_Lock Get_first
; : I retrieved
committgdommit asked List v _lock

Must_Copy

be_saved?

s-22
Lock
finished,
t-22 call_Create Yyple
Release
Lock
asked

FIGURE 24.int-Commit’'s subprocesses and traps w.r.t. Locks.

114

s-23 Lock

removed

Add_Tuple_

emo

Act Search_lock m Must_Copy,

lock
d Remove_LocW in_Lock_ListW be_saved?

s-24 Lock

removed

t-24

s-25
Delete\ trans
Not
Act Get_first @ Must_Copy.

aborted/ abort

lock W be_saved?

Lock

released

FIGURE 26.int-Abort’s subprocesses and traps w.r.t. Locks.

115

M —HMLO
SHELOT- il
DONONOONOON

NO—HMLO
NN NN

hOhhhhhhhn

t-15 V

int-7
t-25

>
S © 4 MOO© —Hm
-
AR bR HOOODHAN NN
o~ N AP Il G
= |7 DOOOhhhn O

NOHNLD
SN Qoisiaiaicd
DhhOhhnddn

>
AN
SIOLOO D Io i)
DHOODhhhh

Pl eraRariaNababeh
DONONNONON

AND—HMLO

DONDhONDh DN N

AL —HMLO

DODHOD DD N

116

int-14

t-19 V

t-8
t-26

Same
as
before

-8
t-22\V
t-24

int-1

FIGURE 27. Locks, mamager of ten employees.

The next manager will be Log. Its employees are:
Add_Tuple_in_Log
Conflict_with_Log?
Commit
Remove_Lock
Update_Lock
Validate

Find_end of End call_Insert_Tupl Insert
tuple Contents found tuple |———
asked asked

s-2

Tuple Act_Add_| Add Insert Tuple
can be tuple
added/ Tuple_in_Ld asked in log

t-2

Confli Checky Fing_first
can be conflict
checkeg asked

_tuple

117

Check
conflict
asked

s-5

Trans
deleted

Dell

) List X
Commit Get_Lock Get_first
; retrieved
asked List v _lock

Save
Must_Copy. /\ call_Release
. Copy
W be_saved? W _Lock
call_Release
” Lock

call_Save_

s-6

Lock

finished,

FIGURE 30.int-Commit's subprocesses and traps w.r.t. Log.

Lock

s-7

removega

emo
Act Search_lock/ Lock Must_Copy.

lock
d Remove_LocW in_Lock_ListW be_saved?

call_Release

_Lock
call_Release
" Lock

118

s-8 Lock Insert
uple in log
removeg asked

FIGURE 31l.int-Remove_Lock’s subprocesses and traps w.r.t. Log.

Inser

Lock
Update Must Copy Save

can be lock
update Update_| LOW be_saved?

call_Create_Tuple

call_Save . Copy call_Create_Tuple

s-10

Lock
tuple in lof
updated asked

t-10
FIGURE 32.int-Update_Lock’s subprocesses and traps w.r.t. Log.

Lock
tuple in lo
update J
call_Add_Tuple_
t-9 in_Log

119

call_Add_Tuple

Validated

Get_next TS

List X
Get_TS_ Get_first

List W TS

call_Abort

in_Privat

s-13

Log

checked
t-14
FIGURE 33.int-Validate’s subprocesses and traps w.r.t. Log.

1
¥ int-3
\ t-12

(Iltl)(llt{)(lltl)
rO~NOIWE

G

int-4
t-14

FIGURE 34. Log, mamager of six employees.

120

The next manager is Status. Its employees are:
New_Status
Stop_Act

s-1

Set_new_status_

in_database géed

s-2

Validated

t-4

for new
status

AF_exists?

executed

will be
abort

d

New
status

_New_Status

call_Use_

121

New

status
asked

New
status
asked

Auto/
Kons

Childs
can be
executed

-5
FIGURE 36.int-Stop_Act’s subprocesses and traps w.r.t. Status.

tran:
created

t-6

int-1

-3V

int-2

5V
t-6

FIGURE 37.Status, manager of two employees.

122

The next manager is Contents. The employees of this manager are:
Start_Inter_Tool
Stop_Inter_Tool
Use Batch_Tool

Save_Copy
Create_Copy
Copy_in_Privat
Start_Act
Stop_Act
Ask_Lock
Set TS
Abort
Validate
Commit
Remove_Lock
Update_Lock

s-1

FIGURE 38.int-Start_Inter_Tool's subprocesses and traps w.r.t. Contents.

s-3
Sto
I-tool PN ose._ |_Tool
can be |_Tool |———=
topped askeg’/ Nter_Tool \stopped

s-4

I-tool "\ Act_ Stop |_Tool

can be |_Tool

topped top_|_Ta asked topped
t-4

FIGURE 39.int-Stop_Inter_Tool's subprocesses and traps w.r.t. Contents.

123

s-5

New
B_Tool Take_ B_Tool Close_
can be BT oo\ started) Batch_Tool
starte atch_Too
started askeg/ Batch_Too -

s-6

New B_Tool Tool
B_Tool
t-6
FIGURE 40.int-Use_Batch_Tool's subprocesses and traps w.r.t. Contents.

s-7

FIGURE 41.int-Save_Copy'’s subprocesses and traps w.r.t. Contents.

s-9
Create
Copy Create_Copy_from_ / COPY
can be Copy |—— ————=|
created asked / Doc_Contents_in_DB, ¢re5teq

s-10

Copy \ Act Copy
can be =
Create_c
t-10
FIGURE 42.int-Create_Copy'’s subprocesses and traps w.r.t. Contents.

124

No Save_the_Copy.
Copy N N N
in priva in_privat_directo
t-11
s-12

t-12

Contents.

art_Inter_Tool

on status
asked

s-14

| tool

started

t-14
FIGURE 44.int-Start_Act’s subprocesses and traps w.r.t. Contents.

125

AF_exists?
for new

status

AF_exists?

executed

Child
will be
abort

s-17

stopped

t-18

FIGURE 45.int-Stop_Act’s subprocesses and traps w.r.t. Contents.

126

call_Abort

Lock

asked

Lock

obtained

FIGURE 46.int-Ask_Lock’s subprocesses and traps w.r.t. Contents.

127

Set TS\ Must_Copy. _ﬁ@\call_(:reat ’
Copy

be_created?| TS
hecked

s-25

Delete\ trans

Not \ act_ @ Is_this
aborted abort WIrans_AF? checked

call_Delete_ wc GefLock_
List

s-26

FIGURE 48.int-Abort’s subprocesses and traps w.r.t. Contents.

128

s-27

call_Add_Tuple_

Set_type_to

Validated

-Pess_Akt

Get_next TS

call_Abort

t-28
FIGURE 49.int-Validate’s subprocesses and traps w.r.t. Contents.

Trans
deleted

s-29 Dell

) List X Save
Commit Get_Lock Get_first Must_Copy. c call_Release
; o]
asked List W _lock W be_saved? checE}el _Lock

129

FIGURE 50.int-Commit’'s subprocesses and traps w.r.t. Contents.

Lock

Remove_lock_

removed from_Lock_List

cal . Add_Tuple_

emo

Act_ ook Search_lock/ Lock Must_Copy.
oc

d / Remove_Lock ,cped in_Lock_List retrieved be_saved?

call_Release
_Lock

s-32

t-32

130

s-34

<
@
L

Lock’s subprocesses and traps w.r.t. Contents.

FIGURE 52.int-Update

int-8

AL ONION- DD
EPLON-Pedcicicial NI D
DODOODOODhDhhhh

ANMLOOMOOD M
HOOMNO A=A NNNNO M

PR e R
DNV NVNNONONONO

int-5

HANWOOWNHONT
SICPLOO O il eI)
DONDDAODODNDDDN!O

int-7

AN DN DD
SN eicicicicialaicieon
DODODDDDNNODNNoD

MDD~ DD
M Qeiniciciaiaioieenc
DhOODOODNO DN

(o2}
SiepLor- cicicicialaiaioial
NNV OOLNOOOONO

AN OO D
IO eisicicinialaicieo
DHDODNDNOODNDODN OO

FIGURE 52. Contents, manager of fifteen employees.

131

Next, the five managers of the subclasses of Process Transaction will be specified. The five
managers are the external behaviours of the classes Kons Transaction, Auto Transaction,
Pess_AF Transaction, Pess_Akt transaction and Opt_Akt Transaction.

All the managers have the following three employees:
Create_Trans

Commit
Abort

s-1

Not i i
Creatio Assign Identifie) Set_ Set_ Name Set_ @ Check_Tra S‘[ype
” -
created asked / Identifier\ gq Type User_Name set Role @ Type 4
t-1 :

s-2

Not Act @ Assign /ldentifier e Type Set @ Set Role Check_Tra
_ _ L L _
create createw Identifier\ gt Type set User_Name\\sy Role set Type .
Trans
d created

SType

s-3

Not Act @ Assign /ldentifier get Type Set @ Set Role Check_Trahs!YPe
_ - L L C L
create: create@ Identifier\ ~ggt Type set User_Name\\S_y Role set Type checked

Trans
created

t-3

FIGURE 54.int-Create_Trans’s subprocesses and traps w.r.t. Process Transaction.

132

Trans
deleted
Del

s-4
h List X Save
Commit\ Get_Lock Get_first Must_Copy. c call_Release
- 0
asked List W lock W be_saved? checEZ _Lock
t-4 call Save call_Release
- - ” Lock
Trans
deleted,
t-5 Delete_trans
s-5

) List X Lock Save
Commit\ Get_Lock Get_first Must_Copy_ ¢

. retrieved, . opy
asked List v _lock W be_saved? W

call_Save_

s-6
Delete\ trans
Not
Get_first m Must_Copy
aborted lock retrieved be_saved?
t-6

call_Delete_wc GefLock_
List

in privat

asked

133

Trans

deleted

s-7
t-7 Delete\trans

Not m '
Act_ Abort \ Is_this_ | Get_first @ Must_Copy
aborted abort wtrans_AF? checked ; lock W be_saved?

call_Delete_wc Gef_Lock_
List

FIGURE 55.int-Abort’s subprocesses and traps w.r.t. Process Transaction.

The first manager is Kons. This manager has as extra employees.
Ask_Lock
Stop_Act

call_Abort

@ call_ @
- conflict
hecked Conflict W

Lock

call_
—_—
asked / Compatibilit

all_Get_Father

lock asked

134

call_Abort

Checl
Lock call Compatib) call_
i S

comp. -
asked / Compatibilitik_aske heck Conflict

obtained

Act_Stop_Act

Stop act)__Call_Stop_
asked / Inter_Tool

Validated

AF_exists?

executed

Child
will be
abort

135

executed

t-13
New t-15
status
asked
s-14

executed

\\\\\\\ Commi

asked

Child
will be
abort;

s-16

t-16

136

Childs
can be
executed
Commi
t-17 asked
s-18

Childs

can be
executed

t-18

Child
will be
aborted

FIGURE 55.int-Stop_Act’s subprocesses and traps w.r.t. Kons Transaction.

137

int-1

t-11

int-5

int-4

t-17

t-16

FIGURE 56. Kons Transaction, manager of five employees.

138

The next manager is Auto. Extra employees are:
Ask_Lock (same instance)
Stop_Act
Ask_Lock (other instance)

call_Abort

Lock

call m
— conflict
Conflict @

asked

Chec
Lock call @ call_ m

- | comp. - conflict
asked / Compatibility_aske heck Conflict W

obtained

FIGURE 57.int-Ask_Lock’s subprocesses and traps w.r.t. Auto Transaction.

139

Validated

AF_exists?

s-12
Create
trans
asked
executed
Commi
asked

Child

will be
bortee

t-13

executed

Child
will be
abort

New

status
asked

d

New
status

atus

| Lock

Tool

asked

Lock

asked

140

New t-15

status

call| Ask_Lock

Child
will be
aborteg

t-14

s-17

atus

executed

Commi

asked

t-17

Child
will be
aborteg

t-18

Commi

t-19

asked

141

s-20

Childs

can be
executed

t-20

Child
will be
aborted

FIGURE 58.int-Stop_Act’s subprocesses and traps w.r.t. Auto Transaction.

call_Abort

s-21 ransaction

all_Get_Write

Copy
needed

checked

s-22

inished

with
t-22 | \ransact

FIGURE 59.int-Ask_Lock’s subprocesses and traps from Kons -, Pess_Akt - or Pess_AF
Transaction w.r.t. Auto Transaction.

The above employee has to be an instance of the class Kons -, Pess_Akt or Pess_AF Transac-
tion, because only such a transaction can win a conflict from an Auto Transaction.

142

int-1

t-11

FIGURE 60. Auto Transaction, manager of six employees.

143

The next manager is Pess_Akt Transaction. Its extra employees are:
Ask_Lock (same instance)
Start_Act
Stop_Act
Ask_Lock (other instance)

call_Abort

Solve

conflict

Lock

asked

call_Abort

Chec

Lock call m call_ @
- | comp. . conflict

asked / Compatibility_aske; hecked ~ Conflict W

obtained

FIGURE 61.int-Ask_Lock’s subprocesses and traps w.r.t. Pess_Akt Transaction.

144

call_Start_Inter_Tool

art_Inter_Tool

call_Ask_Lock

s-12

| tool

started

call_Start_Inter_Tool

145

Start Took
ocl
| tool
on contents
asked
asked
Lock
on content
obtained

t-15
Lock t-13
on status
asked

ransact

will be

t-14 | Naborted

s-16

I tool
started

Start
| tool
askexd

call_Start_Inter_Tool

on status
asked
6
ransact
will be
aborted

ransact
will be
aborted

FIGURE 62.int-Start_Act’s subprocesses and traps w.r.t. Pess_Akt Transaction.

146

Act_Stop_Act

caII_Stog

Inter_Tool

Stop act
asked

Validated

for new
status

_New_Status

AF_exists?

executed

Child
will be
abortee

s-19

t-19

Commt

asked

FIGURE 63.int-Stop_Act’s subprocesses and traps w.r.t. Pess_Akt Transaction.

147

call_Abort

Lock Check
cal. [comp.
K\ asked Compatibilit_asked

all_Get_Write

s-21 Abort

inished

with
ransact

t-21

FIGURE 64.int-Ask_Lock’s subprocesses and traps from Kons Transaction w.r.t.
Pess_Akt Transaction.

The above employee has to be an instance of the class Kons Transaction, because only a Kons
transaction can win a conflict from a Pess_Akt Transaction.

148

manager of seven employees.

FIGURE 65. Pess_Akt Transaction,

149

The next manager is Pess_AF Transaction. Its extra employees are:
Ask_Lock (same instance)
Remove_Lock
Update_Lock
Refresh
Start. WC
Stop_WC
Ask_Lock (other instance)

Remove_lock_
from_Lock_List

Ask_Lock (same instance), see Pess_Akt manager
cal. Add_Tuple_

Lock
s-11

removeg

n_Log
Remove Save Create
Search lock/ Lock Must Copy caII Release Release\ call_Create_

lock - Copy Lock tuple
asked/ in_Lock_List \[étrieved be_saved? \ cpecieq LOCk asked tuple asked

v call_Save_ call_Release
” Lock
Remove_lock _ [Ilnsler:
] uple in log
st from_Lock_List P i
asked
t-12 catl, Add_Tuple_
n._Log

emov Save Create
Remov: Act_ /(\6\ Search_lock/ Lock Must_Copy._ caII Release Release\ call_Create_
can be lock . Copy Lock tuple
asked / Remove_Lock aqked/ in Lock List \retrieved be_saved? \cpecke L°°k asked tuple asked

Lock
s-13
updated

Lock
Update Must_Copy @ call_Create_Tuple

can be
updated asked be_saved?

t-13

150

Lock

s-14
updated
call_Add_Tuple_
t-14
Act_ @ Must_Copy. @ call_Create_Tuple
locl Copy

it

updated Update_Lock_asked/ be_saved? ‘\checked

t-17

call Ask_Lock call| Update_
Lock

Old loc
will be

Update
display

first_Lock

kep

Lists Get_ReIeaseﬁst\ Get_

_List Wfirst_mck

call_Remove

exists
checked

151

Get
next_Ljoc

- Get
s-18 y call| Ask_Lock call| Update_

Old loc
will be

Update
display
asked

first_Lock

Start WC\ Check AF /AFtran AF trand, Call_Create/” creaiio
needed? d T ted
asked/ _Trans neede _Trans [\ ed create

on status
asked

call_Create_WC

call_Create_WGC

ransac
will be
aborted

152

on status
asked

t-23

‘ will be

t-24 aborteg

s-25
Get_Next_/ Lock
Doc on status
asked
€ O
‘ will be
aborteg
s-27

call_Create_ WG

s-28

ransac
will be
aborted

t-28

FIGURE 68.int-Start_ WC’s subprocesses and traps w.r.t. Pess_AF Transaction.

153

Act_Stop_WC @‘W\W? caII_DeIete_Wm m AF_exists? @
wc deleted or
W @/ U F tral
9

t-2

call_Commit

Commi
ot (.
t-30
FIGURE 69.int-Stop_WC'’s subprocesses and traps w.r.t. Pess_AF Transaction.

call_Abort

Lock

g/ Ask_Lock\ aoked

all_Get_Father

lock asked
call_Create_

s-32

FIGURE 70.int-Ask_Lock’s subprocesses and traps from Kons Transaction w.r.t.
Pess_AF Transaction.

154

The above employee has to be an instance of the class Kons Transaction, because only a Kons

transaction can win a conflict from a Pess AF Transaction.

MO ND
MFODAAANNM

DOODhONOhdhh

—MIOND
3469111223

NDOOOOhhhhh

P RraralraNahabel’
nnnununnnnnn

=AML
3469111223

SSSSSSSSSS

Y @D icicialcicd
DOOONOOONOO

PNl
nnunnnnnnnn

P Rraralaahabel;
nnnunnnnnnon

—ATOND

3468111223
DOOhOOhhhhhh

AN
1468111223

SSSSSSSSSS

—AMUNO
Y @eoiciiaiale
DOODOONhdhOhh

—HMONO,
MO AAAND Y

BDOHBhhhhnD

—AMONO
3568111233

NDOOOOhhhhhh

manager of seven employees.

FIGURE 71. Pess_AF Transaction,

155

The next manager is Opt_Akt Transaction. Its extra employees are:

Validated

Not

validateg

t-10

Set_type_to
-Pess_Akt

call_Abort

call_Add_Tuple_

Set TS
Validate
Start_Act
Stop_Act

Set TS\ Must_Copy
be_createds, COPY

Get_next TS

call_Delete

156

call_Add_Tuple_

Validated

call_Get_Write

t-11 Get_ngxt TS

Not Act_
—_—
validated validatio

List X
Get_TS_ Get_first
List W TS

Get_first_tuple

Save

call_Abort Must_copy_
needed |<——
\s checkgd Pe_saved?

call_Start_Inter_Tool

call_Start_Inter_Tool

157

Choose_

| tool
started

call_Start_Inter_Tool

| tool
o0 s-15
started
call_Start_Inter_Tool t-15
| tool
o0 s-16
started
call_Start_Inter_Tool t-16

t-17 ‘

FIGURE 74.int-Start_Act’s subprocesses and traps w.r.t. Opt_Akt Transaction.

158

caII_Stog

Inter_Tool

Stop act
asked

Validated

for new
status

_New_Status

AF_exists?

executed

Child
will be
abortee

Validated

New

status

New

AF_exists?
_New_Status

AF_exists?

executed

will be
abortee

159

s-20

Validated

Change_of_status?

AF_exists?
for new

_New_Status
status

AF_exists?

Child
will be
abortee

s-21

t-21

Commi

asked

FIGURE 75.int-Stop_Act’s subprocesses and traps w.r.t. Opt_Akt Transaction.

160

FIGURE 76. Opt_Akt Transaction, manager of seven employees.

161

The next manager is Working Context. Its employees are:
Create_WC
Delete WC
Refresh_ WC
Start WC
Stop_ WC
Refresh
Abort

s-1

wcC
can be
created

t-1

Create Create_Windomismay_DOC'S_

wC —

asked W &_Activities \y;
S_

2
wcC
Create : f , s
Act_ ; Window\Display_Doc' Doc’s
can be We Create_Windo — and At
created Create_WC asked created &_Activities displayed
t-2

FIGURE 77.int-Create_ WC'’s subprocesses and traps w.r.t. Working Context.

s-3
wcC Delete ;
can be we Close_Window Windo
deleted asked closed
t-3
s-4

wC Delete i
Act ; Windo
can be — We Close_Windo
deleted/ Delete_ WC\ ;qked closed
t-4

FIGURE 78.int-Delete_WC'’s subprocesses and traps w.r.t. Working Context.

162

Clear_Display ﬁspm\ Display_Doc's_

cleare &_Activities

@ Check_AF ﬁ@&\
eeded?,

@ call_Create@ Trans
n
W _Trans

neede _Trans created
asked

on status
asked

ransac
will be
aborted

s-8

t-8

FIGURE 80.int-Start WC's subprocesses and traps w.r.t. Working Context.

163

Act_Stop_WC/ Stop Wi call_Delete_)

asked

we AF_exists? @\

or
deleted, Fua

call_Commit

Committ

s-10
WC

deleted

t-10

exists
checked

Get_
next_Lock

call_Remove| Lock

Update'
display
asked

t-12
FIGURE 82.int-Refresh’s subprocesses and traps w.r.t. Working Context.

164

s-13

Not \ act_ @ Is_this_
aborted abort \a\skytrans_AF? checke

Delete\ trans

s-14 Lock

Trans

deleted released

retrieved

in privat

int-5
t-11

int-6
t-12

FIGURE 83.Working Context, manager of seven employees.

165

The next manager is Process Engine. Its employees are:
Start. WC
Stop_WC
Start_Act
Stop_Act
Refresh

Start WC\ Check AF ﬁm\ @ Ca"—C’eate® Trans
needed? neede Trans created
asked/ —Trans u - w

on status
asked

Creatiol Trans

asked created retrieved

FIGURE 83.int-Start WC'’s subprocesses and traps w.r.t. Process Engine.

166

Delete m AF_exists? @
wc deleted F or
aske tral

call_Commit

wcC
deleted

call_Start_Inter_Tool

call_Start_Inter_Tool

call_Ask_Lock

on status
asked

167

Trans rans typg

created
chosep

Pess_Al

exists,
elected

call_Stop,

Stop act

asked / Inter_Tool

Validated

call_Com _New_Status

AF_exists?

168

Stop act I-tool Type
checked

asked stopped

Validated

executed

Child
will be
aborteg

t-8
FIGURE 86.int-Stop_Act’s subprocesses and traps w.r.t. Process Engine.

display
asked

first_Lock

Refresh\ AF _exists? [AF tran
exists
checked

List
retrieved ¢

Get

Get_List_Lotk& Create_Release &_ 5
next_Lock

new_List_Logk Request_List call_Remove| Lock

retrieved

169

s-10

Lock
asked

Display Update Req. list
displa
updated asiez retrieved
Refresh AF tran Lists
exists
asked checked gre create

Lists
are
retrieve

pdats
lock
asked

0Old locl List_Lock
will be X
etrieved
kep
List
retrieved

FIGURE 88. Process Engine, manager of five employees.

170

