Chapter 0

Introduction

In 1962 C.A. Petri presented the foundations for a new theory for describing informa-
tion flows [74, 75]. These foundations were based on both theoretical and practical
considerations. In contrast to the classical automata theory, where the states are
global and a transition leads from one global state to another, in this theory states
are distributed over local states and a transition alters several of these local states. A
central idea of this theory is, that the effect of transition occurrences is purely local
and that no assumptions are made with respect to the existence of a global control.
Consequently, the theory is truly non-sequential.

This theory resulted in a model based on nets. These nets are bipartite graphs,
obtained by viewing states and transitions as dual concepts. In this model of Con-
dition/FEvent systems (C/F systems), the local states, called conditions, can have two
values. C/E systems, or actually several variants of them, have a rich semantic theory
for describing their behaviour at several levels of abstraction. For instance, transi-
tion systems, trace languages, and event structures have been used to represent their
behaviour from different points of view.

Already at an early stage in the investigation of C/E systems an important gen-
eralization of this model was proposed in which the local states can have a finite
but arbitrary number of values rather than only two. This generalization was called
Place/Transition systems (P/T systems). Initially, the main interest in these objects
was due to the fact that they were recognized to be mathematically equivalent to the
model of Vector Addition Systems, discovered independently by Karp and Miller in
connection with their work on parallel program schemata [49]. Since then, the model
of P/T systems has turned out to be a model for concurrent systems which is in several
respects a more attractive model than C/E systems. The model of P/T systems is the
main subject of study in this thesis. From now we refer to this model simply as Petri
nets.

The aim of this thesis is to investigate ways to describe the behaviour of Petri nets,
which is not as well-understood as that of C/E system. To achieve this we investigate
conservative extensions of the transition system semantics, the trace semantics, and
the event structure semantics of (variants of) C/E systems. We hope that in this way
we contribute to a better insight in the aspects of concurrency which play a significant
role at the level of Petri nets.
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In this introduction we first discuss in Section 0.1 the model of Petri nets. One can
take several points of view in analyzing the behaviour of these Petri nets. They are
presented in Section 0.2. In Section 0.3 we then discuss how the language of category
theory can be used to study the relationship between Petri nets and various models
used for describing the behaviour of Petri nets. Finally, in Section 0.4 we give some
historical background of the theory of Petri nets, and in Section 0.5 we outline the
contents of this thesis.

0.1 Petri Nets

The Petri net model is operational in the sense that it is based on the notions of
states and transitions between states. This is similar to the approach in the classical
sequential automata theory. In Petri nets however, (global) states are distributed over
“local” states. These local states are represented as tokens in the places of the Petri
net. Each transition is connected to certain input and output places according to a
fixed directed and weighted neighbourhood relation. Then a transition occurrence is
purely local: only those places to which a transition is connected are involved.

In Petri nets, places may contain multiple, indistinguishable tokens (which may be
viewed as available resources), and transitions are not labelled. The dynamic behaviour
of Petri nets is given by the firing rule. This firing rule specifies that transitions can
occur if the input places of these transitions contain “enough” tokens, and that the
effect of transition occurrences consists of removing some tokens from the input places
and putting some tokens into the output places.

The Petri net in the following standard example illustrates this firing rule.

Example 0.1.1

In Figure 0.1 a Petri net is given which models a system with a producer and
a consumer. The producer repeatedly produces two items and then puts them in a
buffer, which can contain an arbitrary, finite number of items (represented by tokens).
The consumer repeatedly removes one item from the buffer and then consumes this
item. In the initial state of the system, called the initial marking, places p; and ¢; both
contain one token and the other places are empty. At the initial marking, the transition
produce can occur. If it occurs, 1t removes a token from place p;, and puts two tokens
into place py. At the initial marking also the transition stop can occur. As p; contains
only one token, the transitions produce and stop cannot both occur, although each of
them can occur individually. After the transition produce has occurred, the transition
put in buffer can occur, which has the effect that two tokens are removed from place
p2, two tokens are put in place buffer, and one token is put in place p;. In the resulting
marking the transitions produce and remove from buffer can occur. In fact, they can
occur together, because each place contains enough tokens for both transitions.

Finally observe that there is no upper bound on the number of tokens that can be
put in place buffer, because the producer can repeatedly put items into the buffer. O

Several of the notions considered in this thesis have been developed first in the

context of variants of the original model of C/E systems such as elementary net systems
[81, 88, 80, 89] and the net systems from [57, 98] which we call here safe net systems.
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produce

consume

Figure 0.1: A producer and a consumer

In the terminology used for these net systems, places are called conditions, transi-
tions are called events, and markings are called cases. Actually, markings which assign
more than one token to a place are not considered in the approach followed for these
net systems, and so cases are sets of conditions (which contain a token). Also, a dif-
ferent firing rule is used. Rather than inspecting only the input conditions to see if an
event can occur, now also the output conditions must be inspected. In an elementary
net system an event can occur iff each of its input conditions contains a token and all
of its output conditions are empty. The effect of an occurrence of an event is the same
as for Petri nets: the tokens from the input conditions are removed and tokens are put
into the output conditions. For safe net systems this firing rule is relaxed by allowing
an event to occur if all its input conditions hold and the only output conditions that
are not empty are those that are also input conditions.

Elementary net systems and safe net systems are closely related to 1-safe Petri nets.
A Petri net is 1-safe if it has the property that no execution of it according to the firing
rule leads to a place with two or more tokens. As far as the dynamic behaviour is
concerned, elementary net systems and safe net systems which are contact-free can be
viewed as 1-safe Petri nets [81, 98]. Elementary net systems and safe net systems are
called contact-free if they have the property that the holding of the input conditions
of an event guarantees that the event can occur. Thus contact-free elementary net
systems can be considered as a subclass of 1-safe Petri nets, while the class of contact-
free safe net systems can be identified with the class of 1-safe Petri nets.

For the behavioural notions considered in this thesis, for every elementary net
system or safe net system there exists a contact-free elementary net system or contact-
free safe net system, respectively, which yields the same behaviour [81, 98]. For the
sake of uniformity in the presentation we will mainly consider 1-safe Petri nets rather
than (contact-free) elementary net systems or (contact-free) safe net systems in this
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thesis.

Observe that elementary net systems and safe net systems are defined through
their firing rule, whereas the definition of 1-safe Petri nets is behavioural, i.e. given in
terms of reachable markings.

The models of 1-safe Petri nets, elementary net systems, and safe net systems have
a very rich and elegant theory for analyzing their behaviour (see, e.g., [78, 67, 98]).
It seems however that in order to lift this theory to the level of arbitrary Petri nets,
much more problematic aspects of concurrency must be confronted. On the other
hand, there are several reasons why Petri nets form an attractive model to work with.

First of all, the model of Petri nets is mathematically equivalent to the model of
Vector Addition Systems [49] which has been discovered independently of Petri nets.
These Vector Addition Systems, and hence also Petri nets, give rise to some interesting
decision problems [49]. Using a similar idea, Petri nets can also be viewed as simple
examples of multiset rewrite systems which have gained a lot of attention recently.
From this viewpoint a Petri net is a set of places together with a set of rewrite rules
(i.e. transitions). Each rewrite rule specifies how a multiset of places (the input places
of the transition) can be rewritten to another multiset of places (the output places of
the transition).

In the programming language I' of Banatre and Le Métayer [4] multisets are pro-
posed as a suitable datastructure for parallel programming. A I' program consists of
rewrite rules where each rewrite rule has an associated condition. The existence of
those conditions is the main difference with Petri nets. If a multiset of data satisfies
the condition associated with a certain rewrite rule for this multiset, then a “chem-
ical reaction” can take place which replaces the multiset according to this rewrite
rule. The I' language treats parallellism at the logical level, because no global control
is specified over the actions which are performed. This is quite different from sev-
eral conventional parallel programming languages where arrays are used as the main
datastructure and a global control is specified for the actions, so that parallellism is
treated at the implementation level.

The Chemical Abstract Machine (CHAM) of Berry and Boudol [7] is also based on
the idea of multiset rewriting. One of the extra features of the CHAM is that it has a
“membrane” construct allowing to “encapsulate” parts of the data. The CHAM can
be used for describing the operational semantics of process calculi such as (a fragment
of) Milner’s w-calculus [62]. Also in [25] multiset rewrite systems (in fact Petri nets)
are used for describing the operational semantics of a fragment of the m-calculus.

A second reason why Petri nets form an attractive model to work with is that they
have a very smooth algebraic structure. A common way, see, e.g., [78], to describe
the effect of transition occurrences in a Petri net N on the number of tokens in each
place is to use a matrix representation N of N. Consider, e.g., the Petri net depicted
in Figure 0.1. Then this Petri net has the following matrix representation.
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put in remove
stop produce buffer  from buffer consume
1 —1 —1 1 0 0
P2 0 2 -2 0 0
€1 0 0 0 —1 1
o 0 0 0 1 —1
buffer 0 0 2 —1 0

Such a matrix representation of a Petri net is useful for analyzing certain properties
of the Petri net. In particular, this matrix representation is used for determining the
S-invariants and T-invariants of a Petri net N [51, 78]. S-invariants are solutions x
of the equation N .2 =0 (where NT is the transpose of V) and T-invariants are
solutions y of the equation IV -y = 0. S-invariants represent those linear combinations
of places for which the number of tokens remains constant. They are useful for, e.g.,
analyzing liveness and safeness properties of the Petri net. T-invariants on the other
hand represent linear combinations of transitions the occurrence of which does not
change the original marking. For instance, the S-invariants of the Petri net depicted

0

0

in Figure 0.1 are all vectors A- | 1 | with A € N. This implies that the number
1
0

of tokens in ¢; and ¢y (which is 1 initially) remains constant, and no other linear
combination of places has a constant token count. The T-invariants of this Petri nets

0

1
are all vectors A- | 1 | with A € N. Thus, if in an arbitrary marking the transitions

2

2
produce and put in buffer both occur an equal number of times and the transitions
remove from buffer and consume both also occur an equal number of times which is
twice the number of occurrences of produce, then the resulting marking is the same as
the original one.

The algebraic nature of Petri nets is used explicitly by Winskel in [95]. There it
was observed that a Petri net is essentially a 2-sorted algebra, where one sort is the
set of multisets over places and the other sort is the set of multisets over transitions.
This algebra has three operations: one constant which gives the initial marking, a
matrix which gives the number of tokens removed by each transition from each place,
and a matrix which gives the number of tokens put by each transition in each place.
Thus these last two operations map multisets of transitions to multisets of places and
the subtraction of the two matrices is the matrix /N described above. One of the
motivations for this view of Petri nets is that it leads to a natural notion of morphisms
between Petri nets which is discussed later in this introduction.

In a similar fashion, also Montanari and Meseguer have exploited the algebraic
nature of Petri nets [59]. They made use of the fact that a Petri net can be viewed
as a graph, the nodes of which are the multisets over the places, and the arrows of
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which are the transitions of the Petri net, where the source and target of an arrow are
multisets over the input- and output places of the transition, respectively. Actually,
this is not an ordinary graph, because the set of nodes of the graph has in addition a
(free) monoid structure (with multiset addition as its operation and the empty multiset
as its unit). Also this view of Petri nets gives rise to a natural notion of morphisms
between Petri nets. By defining an operation of parallel composition on the arrows,
the monoid structure on the nodes can be extended to the arrows. In this way a Petri
net itself may be viewed as a monoid. An interesting consequence of the algebraic
view proposed by [59] is that it allows to treat Petri net computations at several levels
of abstraction in an algebraic way.

A third reason why Petri nets form an attractive model to work with, is that they
are a more powerful tool for modelling systems than 1-safe Petri nets. As such they
also form the basis for the model of Coloured Petri nets from Jensen which is used in
several industrial applications [47].

Finally, Petri nets seem to have a natural relationship to linear logic [31, 23]. This
relationship is as yet not completely worked out in a satisfactory manner. It is our hope
however that a deeper understanding of the behaviour of Petri nets will contribute to
the formulation of a model theory for linear logic in terms of Petri nets.

0.2 The Behaviour of Petri Nets

Petri nets are very concrete objects. In order to analyze their behaviour, it is useful to
get r1d of details by relating them to more abstract models of concurrency. In this way
it becomes possible to identify Petri nets which have essentially the same behaviour.
This is useful for, e.g., defining a notion such as place refinement [69]. More abstract
models may also serve as an intermediate step for obtaining a Petri net semantics for
process algebras such as CCS [65].

For 1-safe Petri nets, or actually variants of C/E systems such as (contact-free)
elementary net systems and (contact-free) safe net systems, several models have proved
to be very successful for describing their behaviour. Roughly, a distinction can be
made between linear time models, in which non-conflicting (initial parts of) “runs” of
a concurrent system are represented, and branching time models where also conflicts
are taken into account. Thus for the linear time models there are several objects
associated with one 1-safe Petri net, each corresponding to a different way in which
conflicts are resolved in (an initial part of) a run.

A linear time semantics for 1-safe Petri nets or elementary net systems has been
proposed via its non-sequential processes [76, 11, 67]. These processes are based on
(labelled) causal nets and represent the runs of 1-safe Petri nets (or elementary net
systems). Causal nets are acyclic nets in which the places are non-branching. As
a consequence, no forward or backward conflicts occur. Thus causal nets induce a
partial ordering relation over its places and transitions which, when restricted to the
transitions, leads to a partial order description of the transition occurrences in the
original Petri net. The corresponding reachable markings of the original Petri net are
represented as slices, i.e. maximal unordered sets of places, in the causal net.
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The branching aspects of a 1-safe Petri net, while still maintaining the distribution
of a state over local states, can be represented by relaxing the conditions on causal
nets to allow forward conflicts, leading to the notion of occurrence nets [66, 96]. In this
way also initial parts of “branching runs” can be represented, the resulting objects of
which are called branching processes in [24]. With this approach it is now however
also possible to capture the behavioural aspects of a 1-safe Petri net in a single object,
its unfolding [66]. A transition in the unfolding can be viewed as corresponding to the
“event” of the occurrence of a transition in the Petri net.

In the two approaches mentioned above, the model describing the behaviour of a
1-safe Petri net still has a notion of a distributed state. Abstracting in a Petri net from
the distribution of a global state over local states leads to a transition system model.
Transition systems are obtained from nets by the classical case graph/marking dia-
gram construction, see, e.g., [78]. For elementary net systems it is sufficient to consider
sequential transition systems because the concurrency in the net can be recovered from
the sequential case graph by certain diamond properties [39]. In [68] a characterization
is given of the transition systems, called elementary transition systems, obtained in
this way. For 1-safe Petri nets and safe net systems however, these diamond properties
do not apply, so that more structure in the transition system is necessary to represent
concurrency. In this case it is sufficient to work with asynchronous transition systems
[6, 86]. In this model concurrency is represented explicitly by a (global) binary in-
dependence relation over actions. A characterization of the asynchronous transition
systems corresponding to 1-safe Petri nets is given in [98].

A linear time semantics for 1-safe Petri nets while abstracting from the distribution
of a global state over local states can be given by using Mazurkiewicz’ trace theory to
represent the non-conflicting runs of a 1-safe Petri net [55, 56]. Here the concurrency
present in the net is also formalized in a binary independence relation over its actions,
i.e. transitions. This independence relation induces an equivalence relation over the
sequential runs (firing sequences) of the net. Each of the resulting equivalence classes,
which are called traces, represents a single non-sequential run.

Mazurkiewicz’ trace theory has turned out to be a model for concurrency which is
also of independent interest, see, e.g., [20, 56, 1]. On the one hand it is a language-
based model. On the other hand trace theory can also be studied algebraically in the
context of free partially commutative monoids [8, 28]. Furthermore, traces also admit
a graphical representation in terms of independence graphs, thus supporting the claim
that it is a partial order model for concurrency (see, e.g., [56]).

As a branching time semantics model for the behaviour of 1-safe Petri nets which
abstracts from the distribution of a global state over local states, prime event structures
have been proposed [66]. Here the relationship between the transition occurrences in
a l-safe Petri net, called events, is described by both an ordering relation and a
binary conflict relation over the events. Prime event structures also occur as concrete
representations of certain Scott Domains [85]. In this way [66] provides a connection
between 1-safe Petri nets and domain theory.

The models mentioned above are summarized in the following diagram.
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linear time branching time

distributed state | 1-safe Petri nets causal nets occurrence nets
global state asynchronous Mazurkiewicz’ prime event
transition systems | trace languages structures

The models in the first row have a notion of a distributed state, whereas the models
in the second row have only a notion of a global state. From left to right the models
are increasingly more abstract. It turns out that the different types of semantics are
closely related. For the relationships between the various models mentioned above,

see, e.g., [66, 67, 84, 70, 98].

An interesting question that now arises is, to what extent the above approaches
can be lifted to arbitrary Petri nets. This would then lead to a description of the
behaviour of Petri nets from different points of view. It turns out however, that for
Petri nets much more problematic aspects of concurrency must be dealt with.

: : S
a
Figure 0.2: A Petri net in which @ can occur only once

Also for arbitrary Petri nets, non-sequential processes based on causal nets have
been proposed as a description of their behaviour [34, 9, 11]. The notion of non-
sequential processes is based on the intuition concerning the behaviour of 1-safe Petri
nets by viewing the tokens in a place more or less as “coloured”, i.e. distinguishable,
entities. Consider, e.g., the Petri net depicted in Figure 0.2. In this Petri net the
transition @ can occur only once. However, by viewing the tokens as distinguishable
entities a distinction is made between the occurrence of a with the left token in s and
the occurrence of a with the right token in s. Such a colouring of tokens is not very
satisfactory because it destroys the possibility of viewing Petri nets as simple multiset
rewrite systems. It also leads to the counter-intuitive result that 1-safe Petri nets
and arbitrary Petri nets give rise to the same set of behaviours. To deal with these
problems, an equivalence relation over processes is defined in [9] in order to identify
processes which differ only in the colouring of the tokens.

An alternative description of the runs of a Petri net is given in [59, 18]. Based on
the graph representation of a Petri net, net computations are defined as the arrows
obtained by closing the arrows of the graph with respect to operations of parallel and
sequential composition. Some natural axioms are then defined to identify “equivalent”
computations. It turns out that the equivalence classes obtained in this way correspond
exactly to the equivalence classes of processes from [9].

With respect to the branching time models, occurrence nets have been used [33,
35, 24, 60] for defining also the unfolding of not necessarily 1-safe Petri nets. In
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[60, 61] the more sophisticated notion of decorated occurrence nets is introduced.
These approaches again lead to an event structure semantics for Petri nets in terms
of prime event structures [24, 60]. In all these approaches for giving a branching time
semantics for Petri nets however, the tokens are treated again as coloured entities.

The aim of this thesis is to give a proper generalization of the second row in the
diagram when going from 1-safe Petri nets to arbitrary Petri nets. Thus we look for a
transition system semantics, a trace semantics, and an event structure semantics for
Petri nets. By thus abstracting from the distribution of a global state over local states,
it seems easier to avoid assumptions involving some kind of colouring of the tokens.

The behaviour of Petri nets in terms of transition systems is given by its marking
diagram, see, e.g., [78], which is a transition system in which the transitions are labelled
with multisets of concurrently occurring transitions of the Petri net. A characterization
of the transition systems associated with Petri nets has been given in [63].

The semantics for 1-safe Petri nets in terms of Mazurkiewicz’ traces cannot be lifted
directly to the model of arbitrary Petri nets. The problem is that because a place may
now contain many tokens, concurrency (and conflict) are no longer global structural
relations, but depend on the current marking. Moreover, concurrency between transi-
tions at a marking can no longer be characterized through a binary relation.

To deal with these problems, we introduce local trace languages. These local trace
languages generalize Mazurkiewicz’ trace languages along three dimensions. Firstly,
we consider multiset sequences instead of ordinary sequences. Secondly, we consider
independence relations that are context-dependent, where the context is defined by a
multiset sequence. Thirdly, we specify in the independence relation a finite multiset of
actions that can occur concurrently at a context rather than just a pair of symbols that
may commute as in the classical case. It is then straightforward to lift the standard
notions from trace theory to the, much richer, new setting. It turns out that the trace
semantics for Petri nets obtained in this way agrees with the semantics in terms of
equivalence classes of processes and of equivalence classes of occurrence sequences from
[9].

One of the advantages of our trace semantics for Petri nets is, that it also serves as a
basis for a branching time semantics for Petri nets in terms of event structures. In order
to give such a branching time semantics for Petri nets, we propose a generalization of
the prime event structure semantics for 1-safe Petri nets with the help of a new class of
event structures, called local event structures. These event structures are easy to define
and require just a purely local concurrency axiom; no global order theoretic properties
are demanded. It turns out that a subclass of local event structures can be advocated
as a partial solution to the problem of identifying the event structures that correspond
to the behaviour of Petri nets. The solution is partial in that in the event structure
semantics for Petri nets that is being proposed here, auto-concurrency is filtered out
from the behaviour of Petri nets. Auto-concurrency is the phenomenon by which
multiple instances of a transition become enabled at a marking. This is impossible
in a 1-safe Petri net. Even though our event structure semantics is restricted in this
sense, the event structure semantics is a non-trivial proper extension of the prime event
structure semantics for 1-safe Petri nets. Moreover, our event structure semantics does
not assume any colouring of tokens, in contrast to the branching time semantics for
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Petrinets via (decorated) occurrence nets and prime event structures mentioned above.

0.3 The Categorical Approach

Given a semantic model to be used for representing the behaviour of Petri nets, a
semantic map associates a behavioural object from the chosen model with each Petri
net. An obvious question that arises is, how to show that such a map is the “right”
one. As we argue in this section, the language of category theory (see, e.g., [53, 5, 77]),
and in particular the notion of an adjunction, is ideally suited for this purpose.

The models for concurrent systems that we consider are meant to model dynamic
systems. Hence it is reasonable to equip the various models with (structure-preserving)
morphisms to capture the fact that within a model one system is capable of simulating
another system. Defining a composition operation for morphisms and an identity
morphism for each object leads then to a representation of a model as a category.

The models we consider are at different levels of abstraction. With each object
in a concrete model a semantic map associates an object in an abstract model by
“forgetting” some of the structure. Now in order to compare the two models, it is
reasonable to look also for a map in the other direction. Such a map can be defined
by associating with each object in the abstract model an object in the concrete model
by a “free” construction, leading to a canonical representative in the concrete model
for all objects which have the same abstract representation. If the dynamic behaviour
of systems is also preserved by these maps, then they can be extended to functors
between the corresponding categories. Within category theory the fact that such a
pair of a “forgetful” functor and a “free” functor “fit together nicely” is expressed by
the universality of the constructions as given through the notion of an adjunction. In
this way an adjunction between two categories is a formal way to express that one
model is more abstract than another model.

Ideally, the functor to the abstract model gives a taithtul description of the concrete
model in the sense that applying first the “free” and then the “forgetful” construction
to an abstract object yields the same object (up to isomorphism). An adjunction with
this property is called a co-reflection.

In comparing different models of concurrency via adjunctions we follow the ap-
proach laid out by others. The same method has also been used in, e.g., [94, 96, 68,
63, 98, 60].

The categorical approach also has the advantage that it allows one to treat useful
constructions within a model in a uniform way. For instance, the categorical product
of two objects in a category corresponds in general to the parallel composition of the
two systems, whereas their co-product often corresponds to a non-deterministic choice
between these systems. Having an adjunction between two categories now means that
such universal constructions can often be transported easily from one model to the
other.

With respect to Petri nets, their underlying algebraic structure is in particular
useful for defining morphisms between them. As mentioned above, a Petri net can
be viewed as a 2-sorted algebra with three operations [95]. This leads to a natural
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notion of morphisms as maps between the sorts which preserve the three operations. In
these morphisms a transition in one Petri net is simulated by a multiset of transitions
in another Petri net. However, in [95] it is argued that such a general notion of
morphism is often undesirable, so that an extra restriction is imposed which requires
that a transition in one Petri net is simulated by at most one transition in another Petri
net. For 1-safe Petri nets the resulting morphisms lead to a category for which there
exist adjunctions with the categories of occurrence nets and prime event structures
[94].

In [68] it appeared to be necessary to use a slight modification of these morphisms
in order to obtain a co-reflection between the category of elementary net systems and
the category of elementary transition systems. Similar modifications have been used
in [63] in the context of Petri nets in order to obtain a co-reflection between a category
of transition systems and the category of Petri nets. In this thesis we also use these
Petri net morphismes.

A notion of Petri net morphism which is similar to the one from [95] can also
be obtained via the graph representation of Petri nets [59]. These morphisms from
[59] are defined as graph morphisms which are in addition monoid morphisms when
restricted to the nodes. For 1-safe Petri nets the two notions of morphism coincide

[60].

0.4 Historical Background

In this section we give some background concerning the history of net based models.

The foundations for net theory were laid by C.A Petri in 1962 [74, 75]. In the
following years the research concentrated mainly on the model of C/E systems, see,
e.g., [38].

The investigation of the non-sequential behaviour of net based models has been
carried out mostly in the context of these C/E systems or variants such as elementary
net systems. This investigation started with the introduction of processes of C/E
systems by Petri [76]. Since then the underlying causal nets were also extensively
investigated in their own right, see, e.g., [12, 27, 11].

In [55] Mazurkiewicz’ traces were introduced in order to represent the non-sequential
runs of C/E systems. Since then trace theory has developed into a model for concur-
rency which has an extensive theory on its own. See [20] for an overview. Research
directions within trace theory include the connection with the existing theory of free
partially commutative monoids [15, 8], the representation of traces as dependence
graphs [2], and the study of infinite traces [29].

Prime event structures were introduced by Nielsen, Plotkin, and Winskel in [66] as
concrete representations of certain Scott domains. This paper has also established the
relationship of prime event structures to (a variant of) C/E systems. The connection
between prime event structures and Scott’s information systems [85] also led to the
investigation of several generalizations of prime event structures by Winskel [92, 96].

The investigation of the model of Petri nets used in this thesis started in the early
70’s. An early reference in which these systems appear is [37].
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The early research on Petri nets took mainly the point of view of classical automata
theory and dealt with issues concerning decidability, complexity, and formal languages.
Several basic decidability results were given by Karp and Miller in [49] for Vector
Addition Systems, a model equivalent to Petri nets. Their results include, e.g., the
decidability of boundedness, i.e. the problem of existence of an upper bound on
the number of tokens that any place can have in a reachable marking. One of the
most famous results in this area is the decidability of the reachability problem, i.e.
the problem whether a given marking is reachable [54, 50]. Other important results
include the undecidability of marking equivalence, i.e. the problem whether two Petri
nets have the same set of reachable markings [36]. An overview of work on decidability
and complexity issues for Petri nets is given in [26]. Classes of formal languages
generated by Petri nets were investigated among others by Hack [36] and Peterson
[72, 73]. An overview of the developments in this area is given in [45]. Whereas the
above mentioned work concentrates on the sequential languages generated by Petri
nets, the non-sequential languages generated by Petri nets, called subset languages,
have been investigated in [82].

On the one hand, as described above, net based models have been given a semantics
in terms of other models. On the other hand, there has also been research on how
nets themselves can be used in order to give a “true concurrency” semantics to other
models, see, e.g., [93, 17, 32, 71, 25]. One of the advantages of this line of research has
been a better structural understanding of Petri nets. Also the research on refinement
operations (see, e.g., [69]), categorical constructions [95, 63], and the Petri Box calculus
[10] has led to a better insight into the structure of Petri nets.

Whereas for modelling practical systems Petri nets are more attractive than C/E
systems or elementary net systems, their applicability in practical situations is still
limited. To overcome this problem many generalizations of Petri nets have been stud-
ied. These include timed Petri nets, stochastic Petri nets, Petri nets with inhibitor
arcs, high-level nets, etc. One of the most successful generalizations of Petri nets is the
generalization to Coloured Petri nets developed by Jensen [46]. These Coloured Petri
nets are streamlined variants of the high-level nets introduced by Genrich and Laut-
enbach [30]. The initial motivation for the introduction of Coloured Petri nets was to
allow an easier computation of invariants. The model of Coloured Petri nets extends
the model of ordinary Petri nets by adding structure to the tokens in places. Later
they were also made hierarchical in order to extend their applicability. An overview of
the theory of Coloured Petri nets and of some of their industrial applications is given

in [47].

0.5 Outline of the Thesis

After the preliminaries given in Chapter 1, Petri nets are introduced in Chapter 2. In
this chapter also morphisms between Petri nets are defined which leads to the category
of Petri nets.

In Chapter 3 multiset transition systems are introduced. The notion of a region,
which plays a central role in this thesis, is defined in terms of these multiset transition
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systems. Then, based on results from Mukund [63, 64], the semantics for Petri nets
in terms of multiset transition systems is investigated. Characterizations are given of
the classes of multiset transition systems associated with Petri nets and 1-safe Petri
nets. Finally, the universality of the constructions is stated in categorical terms.

In Chapter 4 local traces are introduced in order to give a trace semantics for
Petri nets. A characterization is given of the class of local trace languages associated
with Petri nets. Based on this characterization the universality of the construction
is proved. Then the trace semantics is compared with the classical trace semantics
for 1-safe Petri nets in terms of Mazurkiewicz’ traces. Finally in this chapter, the
relationship to the approach from [9] is investigated.

Chapter 5 introduces local event structures in order to give an event structure
semantics for Petri nets. The semantics for Petri nets in terms of a subclass of these
local event structures is defined and it is proved that it extends the classical semantics
for 1-safe Petri nets in terms of prime event structures. Then the universality of the
semantics is proved for the subcategory of Petri nets without auto-concurrency. At
the end of this chapter a possible extension of local event structures that allows to
deal with auto-concurrency is discussed.

In Chapter 6 the relationship between local event structures introduced in Chap-
ter 5 and some well-known classes of event structures is investigated in categorical
terms. Finally, the Discussion in Chapter 7 mentions some open problems with re-
spect to the previous chapters that we consider worth investigating.
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Chapter 1

Preliminaries

In this chapter we fix notations and conventions used throughout the thesis.

1.1 Multisets, Sequences, Functions, and Partial
Orders

Let A be a set, possibly empty or infinite. The set of finite subsets of A is denoted by
Pr(A). Elements of Pr(A) will be referred to as steps (over A).

A multiset (over A) is a function v : A — N. A multiset u over A is finite if
Yacat(a) < oo. The set of finite multisets over A is denoted by Mp(A). We use
u,u' uq, ug, v, etc. to range over Mp(A). Note that the empty multiset 0 : A — N
with 0(a) = 0 for all « € A, is a member of Mp(A).

For u € Mp(A), |u| =Y ,c4 u(a) is the number of elements in u. For two multisets
u,v € Mp(A), their sum u +v € Mp(A) is defined by (u + v)(a) = u(a) + v(a) for all
a € A; we write v < wif u = v+w for some w € Mp(A). If u,v € Mp(A) are such that
v < u, then v is called a submultiset of u and u—wv is the (unique) multiset w such that
u = v+ w. The sum of an arbitrary finite set of finite multisets {u; € Mp(A) |7 € I}
is denoted by > ;c;ui. For a € A and k € N we let £ - a denote the finite multiset over
A with (k- a)(b) = kif b=a and (k- a)(b) = 0 otherwise.

By A* we denote the free monoid generated by A. The product operation is
concatenation and the elements of A* are called sequences (over A). The unit element
of A* is the empty word A. Let AT = A* — {A} be the set of non-empty sequences
over A.

Elements of (Pr(A))* will be referred to as step sequences (over A). We view
(Pr(A))*t as a (free) monoid: the unit element is § € Pp(A) and the product operation
is the accordingly modified usual concatenation operation. Thus pl) = 0p = p for all
p € (Pp(A))*, where p) denotes the product of p and 0.

Elements of (Mp(A))* will be referred to as multiset sequences (over A). We
also view (Mp(A))t as a (free) monoid; the unit element is 0 € Mp(A) and the
product operation is the accordingly modified usual concatenation operation. Thus
PO =0p=p.

In the context of sequences we may refer to A as an alphabet.

15
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In this thesis we view sequences, i.e. elements from A*, as step sequences, i.e. el-
ements from (Pp(A))*. Similarly, we view step sequences as multiset sequences. For-
mally this can be achieved by defining monoid homomorphisms s4 : A* — (Pp(A))*
and my : (Pp(A))t — (Mp(A))" in the following way: s4(A) = 0, sa(a) = {a}, for
all a € A, and ma(0) =0, ma(u) € Mp(A) with u € Pp(A) is given by ma(u)(a) =1
if a € v and ma(u)(a) = 0 otherwise. Throughout the thesis we will avoid this nota-
tional complication and, e.g., simply write a for s4(a) and u for m4(u). All notions
defined for (Mp(A))*t are carried over to (Pp(A))* and A* through the maps s4 and
ma.

Fora € A and p € (Mp(A))*t, we let num,(p) denote the number of times a occurs
in p. Thus

numy(0) = 0 and num,(pu) = num,(p) + u(a).
For p € (Mp(A))*, let mset(p) denote the finite multiset (over A) of elements of A in
p. Thus for all a € A,
mset(p)(a) = numy(p).
For p € (Mp(A))*, let |p| denote the number of elements in p, that is

|p| = |mset(p)];

we let alph(p) denote the set of elements of A occurring in p, that is
alph(p) = {a € A | num,(p) > 0}.

Finally, for A’ C A, let proj 4 : (Mp(A))t — (Mp(A"))* be the homomorphism which
erases all symbols which are not in A’. Thus, for u € Mgp(A), proj 4 (u) € Mp(A’) is
given by proj 4, (u)(a) = u(a) for all a € A’

Let A and B be sets and let f : A — B be a partial function. Then for u C A and
v C B, let
flu)y={be B|da € u. f(a) =0}

and let
fTfv)y={ac A|Fbe . f(a) = b}.

The function f is lifted to multisets in the following way. Let i Mp(A) — Mp(B)
be the multiset extension of f, given by:

Thus f(u)(b) =0if b & f(A). Note that if u is a step over A, then the multiset f(u) is
in general not a step over B due to the fact that f may not be injective on u, so that
flu) # f(u) The homomorphic extension of f to multiset sequences is also denoted
by f By viewing ordinary sequences as step sequences, and step sequences as multiset
sequences, this also defines f on ordinary sequences and step sequences. To simplify
the notation, we write f rather than f in what follows. Because we do not consider
multiset extensions with domain Pp(A) this will not lead to ambiguities.
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Given a partial order (X, <), we let for x € X,
le={yeX|y<a}

be the downward-closure of @ (with respect to <). For z,y € X we say that @ and y
are compatible (under <), denoted by x T y, if

dze X. (e <zand y < 2).

1.2 Category Theory

In the Introduction in Chapter 0 it has been argued that category theory is a suitable
framework for comparing different models. In this section we briefly mention some
basic notions and results from category theory which are used in this thesis. We do
not give any formal definitions. These can be found in, e.g., [53, 5, 77].

A category consists of a collection of objects and a collection of morphisms between
objects which contains for each object A an identity morphism id4 and which has a
composition operator “o” for morphisms.

A notion of morphism induces in a standard way a notion of isomorphism: a
morphism f: A — B is called an isomorphism if there exists a morphism g : B — A
such that go f = id4 and fog = idp. In that case A and B are said to be isomorphic,
and this is denoted by A = B.

Restricting the objects and morphisms of a category, while preserving identity
and composition, leads to the notion of a subcategory. If for every two objects in
the subcategory all morphisms in the original category between these objects are also
morphisms in the subcategory, then the subcategory is full. If the subcategory has the
same objects as the original category, then the subcategory is wide.

Categories can be related by functors. A functor F' from a category C to a category
D is a map from the objects and morphisms of C to the objects and morphisms of D
respectively, such that a morphism f from A to B is mapped to a morphism F(f)
from F'(A) to F(B), identities are preserved, and compositions are preserved. The
functor F' is called full if for every two objects A and B of C and for every morphism
g from F(A) to F(B) there exists a morphism f from A to B such that F'(f) = g¢.
The functor F' is called faithful if for every two objects A and B of C and for every
two morphisms f and ¢ from A to B, F(f) = F(g) implies that f = g.

If C is a subcategory of D then i¢ p, or briefly ¢, denotes the inclusion functor from
C to D. Then for an object A of C and a morphism f of C, we will often simply write
A and f for the object ¢(A) of D and the morphism i(f) of D, respectively.

The most important notion from category theory in this thesis is the notion of an
adjunction. An adjunction between two categories C and D consists of a functor F
from C to D, a functor G from D to C, and morphisms vg from A to G(F(A)) for
every object A of C, with the following property. Suppose A is an object of C, B is
an object of D, and f is a morphism from A to G/(B). Then there exists a unique
morphism ¢ from F(A) to B such that the following diagram commutes.
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A \ F(A)
G(F(A)
f Ig
69
vy V
G(B) B

The morphisms vy form the unit of the adjunction. The functor F'is called the
left adjoint and the functor GG the right adjoint.

Alternatively, F' and GG can be proved to be an adjunction by showing the existence
of morphisms eg from F(G(B)) to B for every object B of D, with the following
property. If A is an object of C, B is an object of D, and ¢ is a morphism from F'(A)
to B, then there exists a unique morphism f from A to G/(B) such that the following
diagram commutes.

A F(A
F(f)
I f g
\
F(G(B))
; / €g
G(B) B

The morphisms e¢g form the co-unit of the adjunction.
If the morphisms which form the unit of the adjunction are isomorphisms, then
the adjunction is called a co-reflection. In this case we write

cC___ oD

to express that there is a co-reflection between C and D. If the morphisms which
form the co-unit of the adjunction are isomorphisms, then the adjunction is called a
reflection. In this case

C > 5D
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is written to express the fact that there is a reflection between C and D. If both the unit
and co-unit consist of isomorphisms, then the categories C and D are (categorically)
equivalent. A logically equivalent characterization is that C and D are equivalent iff F
is a full and faithful functor, and for every object B of D there exists an object A of
C such that F(A) = B.

Adjunctions can be composed in the following way. Suppose F' : C — D and
G : D — C form an adjunction with F' the left adjoint, and I/ : D — Eand G' : £ — D
form an adjunction with [ the left adjoint. Then the compositions F'oF' : C — & and
Go@': & — C also form an adjunction, with o I the left adjoint. Moreover, if both
adjunctions are co-reflections then also their composition is a co-reflection. Similarly,
if both adjunctions are reflections, then their composition is also a reflection.
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Chapter 2

Petri Nets

In this chapter the model of Petri nets is introduced. In Section 2.1 the Petri nets
which form the main subject of investigation are defined. We also introduce in this
section the subclasses of 1-safe Petri nets and co-safe Petri nets. Some observations
on behavioural aspects of the various classes are formulated. Finally, in Section 2.2 we
equip Petri nets with structure-preserving morphisms, leading to a category of Petri
nets.

2.1 Petri Nets

A Petri net has as its underlying structure a weighted directed bipartite graph. The
nodes are partitioned into places and transitions. Places are marked, i.e. they contain
an arbitrary finite number of fokens. A marked place is a local state of the Petri net.
The transitions represent the actions of the system. The arc-weights are given by a
weight function. This weight function gives the number of tokens each transition takes
from each place and puts in each place if it occurs. The initial global state of the Petri
net is an initial marking of the places, defined as a multiset of places.

Definition 2.1.1
A Petri net is a quadruple N = (S, T, W, M,,,) where

e S is a set of places and T is a set of transitions such that SN7T = ()

o W:(SxT)U(T xS)— Nis a weight function

o M;, : S — N is the initial marking of N. O
Note that a Petri net may be infinite. Also note that a Petri net can have isolated

elements.

Let My denote the set of all markings of a Petri net IV, i.e. the set of all functions
M : S — N where 5 is the set of places of N.

A Petri net is represented graphically by drawing its places as circles, its transi-
tions as boxes, and by drawing a directed arc between a place and a transition if the
corresponding weight is greater than 0. If this weight is greater than 1 then the arc is

21
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labelled with this weight. The initial marking is represented by drawing in each place
its number of tokens.
In Figure 2.1 and Figure 2.2 the Petri nets Ny and N, are depicted which will be

used frequently as an example.

Cc S

1 O—1
N

Figure 2.1: The Petri net N,

Figure 2.2: The Petri net N,

Given a Petri net N = (S, T, W, M;,) and an element x € S U T, let
(*z)v ={y € SUT | W(y,z) > 0}
be the set of input elements of = (in N') and let
(2 )y ={y € SUT | W(z,y)> 0}

be the set of output elements of = (in N).

The dynamic behaviour of Petri nets is defined by a firing rule. This firing rule
describes when (finite multisets of) transitions can occur at a marking, and what the
effect is when they do.
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Definition 2.1.2
Let N = (S, T, W, M;,) be a Petri net, let M, M" € My, and let u € Mp(T). Then

(1) wis enabled at M, denoted by Mu)n, if

Vs € S.M(s) > > u(t) W(s, 1)

tel
(2) u can occur at M and lead to M', denoted by M[u)yM’', if

M[u)y and Vs € S. M'(s) = M(s) +>_u(t)- (W(t,s) — W(s,1)).

te’l
O

Thus a transition ¢ is enabled at a marking M if each of its input places s has a
sufficient number of tokens: M(s) > W (s,t). An arbitrary finite multiset of transitions
is enabled at a marking if each place contains enough tokens for each transition in the
multiset.

Note that if N is a Petri net and M[u)yM’, then also M[v)y for all v < w.
Moreover, if v < wu and M"” € My is such that M[v)yM”, then M"[u — v)yM’'. This
observation, that occurrences of multisets can be split arbitrarily, will be frequently
used in the sequel.

The effect of an occurrence of a transition is purely local in that it only influences
the markings of the places it is connected to. In particular, a step consisting of
transitions with disjoint environments is enabled at a marking if the transitions are
enabled individually.

Lemma 2.1.3
Let N = (S, T,W, M,;,) be a Petri net, let M € My, and let u € Pr(T) be such
that
(Vt € u. M[t)n) and

Vi ty € u.(ty £tz = ((*t)nv U (G°)n) N ((*ta)n U (12°)y) = 0).

Then
M[U>N

a

When analyzing the behaviour of Petri nets it is not necessary to consider all its
markings; only the reachable markings are of interest.

Definition 2.1.4
Let N = (S, T, W, M;,) be a Petri net. The set RMy C My of reachable markings
of N is the least set containing M;, such that

(M € RMpy and M[U>NM/) =M e RMy.
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In defining the dynamic behaviour of Petri nets we use multisets of transitions
rather than sets. The Petri net N, depicted in Figure 2.2 illustrates that it is indeed
possible that multiple instances of a transition are enabled at a reachable marking,
because at its initial marking there are enough tokens in s for two instances of the
transition a to occur. This phenomenon is called auto-concurrency. As we will see in
Chapter 5 auto-concurrency may severely complicate the behavioural analysis of Petri
nets. In several simpler models of net theory such as 1-safe Petri nets, elementary net
systems and safe net systems auto-concurrency cannot occur.

For analyzing the behaviour of Petri nets we are not just interested in single occur-
rences of multisets of transitions, but rather in sequences of these occurrences starting
from the initial marking.

Definition 2.1.5
Let N = (S,T,W, M,,) be a Petri net.

(1) An occurrence sequence of N is a sequence Mouy Myusy. .. u, M, with n > 0 and

with uq,...,u, € Mp(T) and M,,..., M, € RMy such that

L4 MO = Mzn
® \V/1 S 7 S n. Mi_l[ui>NMi.

(2) The set MFSy C (Mp(T))* of multiset firing sequences of N is the set of all
p € (Mp(T))" for which there exists an occurrence sequence Mouy Myus . .. u, M,
of N with p = uy...u,. O

Multiset firing sequences are more abstract than occurrence sequences in the sense
that two Petri nets which have the same set of multiset firing sequences may have
different sets of occurrence sequences. For a fixed Petri net however, each multiset
firing sequence uniquely determines the intermediate markings.

Given a Petri net N and p € MFSy with p = wuy...u,, let (M,)y denote the
unique marking M, of N such that Myu; Mjus...u, M, is an occurrence sequence of

N.

Due to the possibility of auto-concurrency in Petri nets, we have associated with a
Petri net a set of multiset sequences rather than a set of step sequences. In Chapter 5
it will sometimes be necessary to “ignore” auto-concurrency from the behaviour of
Petri nets. This can be done through the following notion.

Definition 2.1.6
Let N = (S,T,W, M;,) be a Petri net. The set SFSy C (Pr(T))" of step firing

sequences of N is given by

SESN = MESx N (Pr(T))*.
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In the above definition we use the convention given in Chapter 1 that step sequences
are viewed as multiset sequences.

For some of our constructions, it is for the categorical results necessary to restrict
our attention to co-safe Petri nets, which do not exhibit any auto-concurrency at all
in their behaviours.

Definition 2.1.7
A Petri net N is co-safe it MESy = SFSy. O

The Petrinet Ny depicted in Figure 2.1 is co-safe, whereas the Petri net Ny depicted
in Figure 2.2 is not co-safe. Co-safe Petri nets arise for instance as the targets of the
net semantics constructed for the process algebra called Petri Box Calculus [10]. This
follows from the work of [19].

Another abstraction can be made from the set of multiset firing sequences by only
considering the sequential representatives.

In the following definition we use the convention from Chapter 1 that ordinary
sequences are viewed as step sequences by the monoid homomorphism which maps
each element of the alphabet to the singleton containing this element.

Definition 2.1.8
Let N = (S,T,W, M;,) be a Petri net. The set FSy C T* of firing sequences of N
is given by
FSy =SFSyNT™.

a

Now we turn to the important subclass of I-safe Petri nets. A 1-safe Petri net
has the property that it has no reachable markings in which a place carries 2 or more
tokens.

Note that in any Petri net with this property, transitions that are connected to a
place by an arc with weight 2 or more, will never be enabled at a reachable marking.
As a consequence, these transitions and the arcs incident with them can be removed
from the Petri net without affecting its set of multiset firing sequences. Hence we
might as well exclude such transitions right away in the definition of 1-safe Petri nets.

Usually when the behaviour of 1-safe Petri nets is investigated, as in, e.g., [96, 9,
24, 60, 64], a restriction is imposed which forbids isolated transitions. For 1-safe Petri
nets it is this condition which prevents auto-concurrency. Also for our results on 1-safe
Petri nets we exclude auto-concurrency by adopting such a restriction.

The above considerations lead to the following formal definition of 1-safe Petri nets.

Definition 2.1.9
A Petrinet N = (S, T, W, M;,) is 1-safe if

(1) VM € RMy.¥s € 5. M(s) < 1

(2) Vse SVt e T.(W(s,t)€{0,1} and W(t,s) € {0,1})
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(3) Yt e T.(t)y U (1) 2 0. O

Observe that (1) and (3) together imply that every transition has at least one input
place. Also observe that, while (2) and (3) are conditions imposed on the structure
of the Petri net, the “crucial” characteristic property (1) is not a structural property
but defined in behavioural terms, i.e. reachable markings.

In Figure 2.3 and Figure 2.4 two 1-safe Petri nets N5 and N, are depicted. These
Petri nets will be used to illustrate the several behavioural notions for 1-safe Petri

nets.

Figure 2.3: The 1-safe Petri net N3

Figure 2.4: The 1-safe Petri net Ny

Since 1-safe Petri nets do not exhibit auto-concurrency, every 1l-safe Petri net is
co-safe. The class of co-safe Petri nets is however a non-trivial extension of the class
of 1-safe Petri nets. The Petri net Ny depicted in Figure 2.1 is an example of a Petri
net which is co-safe, but not 1-safe.
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By Lemma 2.1.3 a finite set of transitions of a Petri net is enabled at a reachable
marking if the transitions are enabled individually and have disjoint environments.
From the following easy to prove lemma it follows that for 1-safe Petri nets the converse

also holds.

Lemma 2.1.10

Let N = (S,T,W, M,,) be a 1-safe Petri net, let M € RMy, and let u € Pp(T).
Then

M[U>N =
(Vt € u. M[t)n) and

Vi, by € u. (t1 #£ Lty = ((*t)n U (G°)n) N ((*t2)v U (12°)n) = 0)).

a

Thus for a 1-safe Petri net the concurrent behaviour in terms of its step firing
sequences can be recovered from its sequential behaviour by the binary relation over
its transitions consisting of all pairs of transitions with disjoint environments.

Another consequence of Lemma 2.1.10 is that concurrent steps within 1-safe Petri
nets can be recovered from concurrent pairs of transitions.

Lemma 2.1.11

Let N = (S,T,W, M,,) be a 1-safe Petri net, let M € RMy, and let u € Pp(T).
Then

M[U>N A= \V/tl,tz € u. M[{t17t2}>N

Figure 2.5: The Petri net Nj



28 CHAPTER 2. PETRI NETS

For a general Petri net it is possible that a set of transitions is enabled at one
reachable marking, but not at another reachable marking, even though at both mark-
ings the transitions are enabled individually. This is for instance the case for the Petri
net N5 depicted in Figure 2.5. In this Petri net the set {a, b} is enabled initially, but
if ¢ occurs first then only one of the transitions ¢ and b can occur. As a consequence
of Lemma 2.1.10 such a situation cannot arise for 1-safe Petri nets. For 1-safe Petri
nets it is possible to characterize concurrency (and conflict) as a global property.

Lemma 2.1.12

Let N = (S,T,W, M,,) be a 1-safe Petri net, let M € RMy, and let u € Pp(T).
Then

Mu)y & (Vt € u. M[t)n) and AM' € RMyn. M'[u)n).
O

Several of the notions we consider in the context of Petri nets are generalizations
of corresponding notions defined first in the context of net classes closely related to 1-
safe Petri nets such as elementary net systems and safe net systems, which are variants
of the original model of C/E systems. To conclude this section we briefly introduce
these models. The purpose is to argue that it is indeed possible to transport several
behavioural notions defined originally for these net systems to the context of (1-safe)
Petri nets. In the rest of this thesis these net systems will however only play a minor
role.

For elementary net systems, see, e.g., [81], we speak of conditions instead of places,
events instead of transitions, and cases instead of markings.

Definition 2.1.13
An elementary net system is a quadruple N = (B, E, F, ¢;,) where

(1) B is a set of conditions and E is a set of events such that BN E = 0

(2) FC(BxFE)U(FE x B)is a flow relation such that
Vee E.dbe B.((b,e) € For (e,b) € F).
(3) ¢in € B is the initial case of N. 0O
Given an elementary net system N = (B, F, F,¢;,,), let for « € BUFE,
Ce)n={ye BUE | (y,x) € F}
be the set of input elements of  (in N) and let
(2" )v={y € BUE | (x,y) € I'}

be the set of output elements of = (in N).
Sometimes it is demanded that the underlying net of an elementary net system
is simple, which means that every element is uniquely characterized by its input and
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output elements. Following [64] this is not required here. Usually it is also demanded
that an elementary net system has no isolated conditions. With respect to the notions
considered in this thesis, this restriction is however not necessary. Hence we have
omitted it, in order to streamline the definition with the definition of 1-safe Petri nets.

The global states of an elementary net system are given by sets of conditions which
hold. For an elementary net system N = (B, F, F, ¢;,), let Cx denote the set of all these
global states, which are called cases. Thus Cy is the set of all subsets of conditions of
N.

The class of 1-safe Petri nets is defined in terms of reachable markings. The class
of elementary net systems on the other hand has a purely structural definition. For
elementary net systems “l-safeness” is ensured by the definition of its firing rule.

For an elementary net system an event can occur at a given case if all its input
conditions hold and none of its output conditions hold. The effect of the occurrence
of an event is that all its input conditions cease to hold and all its output conditions

begin to hold.

Definition 2.1.14
Let N = (B, E, F,c¢;,) be an elementary net system, let ¢, ¢ € Cy, and let e € E.
Then

(1) eis enabled at ¢, denoted by c[e)n, if

*ceCcande*Nec=10

(2) e can occur at ¢ and lead to ¢/, denoted by cle)nc/, if
cle)y and ¢ = (¢ —*e) Ue®.
O

Note that for elementary net systems concurrency is not represented explicitly in
the definition of the dynamic behaviour. The reason is, that for elementary net systems
concurrency can be recovered from the sequential behaviour through certain diamond
properties [81, 39].

The set of reachable cases of an elementary net system is defined similar to the set
of reachable markings of a Petri net.

Definition 2.1.15
Let N = (B, E, F,c;,) be an elementary net system. Then the set RCx C Cy of
reachable cases of N is the least set containing ¢;, such that

(c € RCy and cle)nc) = ¢ € RCx.
O

In order to see if an event can occur both its input conditions and its output
conditions must be inspected. For contact-free elementary net systems it is sufficient
to inspect only the input conditions of events at reachable cases.
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Definition 2.1.16
An elementary net system N = (B, £, F,¢;) is contact-free if

Ve€e E.Nce RCy.(*e Cec=e*Ne=10).

a b a
Figure 2.6: Two elementary net systems which are not contact-free

In Figure 2.6 two elementary net systems are depicted. Neither of them is contact-
free. For the first elementary net system the event a can only occur if the event b
occurs first. Whereas events are allowed to have self-loops, i.e. input and output
conditions with a non-empty intersection as in the second elementary net system in
Figure 2.6, these events can never occur.

As far as the behavioural notions in this thesis are concerned, there exists for
each elementary net system a contact-free elementary net system which has the same
behaviour. This contact-free elementary net system is obtained by complementing
the conditions, see, e.g., [81]. It is easy to see that every contact-free elementary
net system can also be viewed as a 1-safe Petri net which has the same (sequential)
dynamic behaviour. On the other hand, viewing a 1-safe Petri net as an elementary
net system does not always lead to a system which has the same dynamic behaviour,
due to the difference in the firing rule in the presence of self-loops.

The above mentioned mismatch between contact-free elementary net systems and
1-safe Petri nets disappears for the variant of elementary net systems as used in [57, 98].
These net systems are here called safe net systems.

The underlying structure of safe net systems is the same as for elementary net
systems. Thus a safe net system N is also a quadruple consisting of a set B of
conditions, a set F of events, a flow relation F', and an initial case ¢;,. Given an
element @ € B U F, its input elements (*z)x and output elements (x*)y are defined
in the same way as for elementary net systems. Again Cy denotes the set of all cases
of N, which is the set of all subsets of conditions of N.

The only difference with elementary net systems is that safe net systems have a
less restrictive firing rule.

Definition 2.1.17
Let N = (B, E, F,c;,) be a safe net system, let ¢, € Cy, and let e € E. Then

(1) eis enabled at ¢, denoted by c[e)n, if

*eCcand e*N(c—"e)=1
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(2) e can occur at ¢ and lead to ¢/, denoted by cle)nc/, if

cle)y and ¢ = (¢ —*e)U €.

Thus for a safe net system an event can occur if its input conditions hold and its
output conditions only hold if these conditions are also input conditions of the event.
The effect of the occurrence of an event is the same as for elementary net systems.

Definition 2.1.18
Let N = (B, FE, F,c;,) be a safe net system. Then the set RCn C Cy of reachable

cases of N is the least set containing ¢;, such that

(c € RCx and cle)nc’) = ¢ € RCx.

In view of the modifications in the firing rule for safe net systems with respect to
the firing rule for elementary net systems, the definition of contact-freeness of safe net
systems is modified accordingly.

Definition 2.1.19
A safe net system N = (B, E, F,¢;) is contact-free if

Vee E.Nce RCy. (e Ce=e*N(c—"e)=10).

It we view the elementary net systems from Figure 2.6 as safe net systems, then the
first safe net system is not contact-free, but the second safe net system is contact-free.
In the first safe net system the event a can still not occur initially, but in the second
system the event a can occur.

Whereas the class of contact-free elementary net systems can be viewed as a proper
subclass of the class of 1-safe Petri nets, the classes of contact-free safe net systems
and 1-safe Petri nets are essentially the same. Stated formally, the map obtained by
viewing a contact-free safe net system as a 1-safe Petri net is a bijection between the
two classes.

In the rest of this thesis we will often omit the subscript x for the notions defined
in this section when the Petri net, elementary net system, or safe net system N is clear
from the context.
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2.2 The Category PN

In this section we define morphisms between Petri nets which leads to a category of
Petri nets.

Several proposals for Petri net morphisms have been made in the literature. Here
we use the modified version of Winskel’s morphisms from [95] which is used by Mukund
in [63]. In [95] a Petri net morphism from Nj to N; consists of a partial function from
the transitions of Vi to the transitions of N; and a multirelation from the places of
Nj to the places of Ny. These maps are required to preserve the initial marking and
the environment of transitions.

In [63] it appeared to be necessary to modify these morphisms in order to show the
universality of the transition system semantics for Petri nets. The modifications are
twofold. Firstly the multirelation between the places is now required to be a partial
function in the “reverse” direction rather than an arbitrary multirelation. Secondly the
condition that the initial marking should be preserved is relaxed by only demanding
preservation for “related” places.

These modifications with respect to Winskel’s morphisms are similar to the modi-
fications proposed in [68] in the context of elementary net systems. Recall that every
elementary net system can be viewed as a Petri net, which is 1-safe if the elementary
net system is contact-free. If we view elementary net systems as Petri nets in this way,
the morphisms from [68] coincide with our notion of morphism between Petri nets.

Definition 2.2.1
Let N; = (S5;,T;, Wi, M;), i = 1,2, be a pair of Petri nets. A PN-morphism from
Ny to Ny is a pair (4, n) of partial functions 5 : Sy — Sy and 5 : Ty — Tj such that

(1) Vs € Sy.(3(s2) is defined = My (s2) = Mq(3(s2)))
(2) Vit € Tyi.(n(t1) is undefined = 71 (%) = 7HH,*) = 0)
(3) Yty € Th. (n(t1) is defined =

(3a) B7H(*t1) = *n(t1) and B7'(:*) = n(t1)* and
(3b) Vs € *n(ty). Wa(s2,n(t1)) = B(s2),t1) and
(3c) Vsz € n(t1)*. Wa(n(t1), s2) t1, B(s2))). O

Wl(
Wl(

In Figure 2.7 an example of a PN-morphism (3, n) is given, where the functions /3
and n are as indicated by the dotted arrows.

If (3,n) is a PN-morphism from N to N’ then a transition ¢ in N is “simulated” by
n(t) in N whenever 7(t) is defined; otherwise it is “suppressed” in N'. The relation
37! does not relate places which differ with respect to their initial marking. Moreover,
this relation preserves the environment of transitions, thus ensuring that for places
in N’ which prevent the occurrence of n(t), there exist corresponding places in N
which prevent the occurrence of . Consequently PN-morphisms preserve the dynamic
behaviour of Petri nets. This is stated in the next lemma which is originally from [63].
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Figure 2.7: An example of a PN-morphism (5, 7)

Lemma 2.2.2
Let Ny = (S;,Ti, Wi, M;), @ = 1,2, be Petri nets and let (3,7) be a PN-morphism
from Ny to Ny. Define for M € RMy;,, the marking M € My, by:

M(3(s)) if B(s) is defined

Vs € Sy M(s) = { Msy(s) otherwise.

If
Mo[U1>N1M1 [UQ>N1 Cee [un>N1Mn

is an occurrence sequence of Ny, then

~

Moln(us))ov, Mi[n(uz)), - - - In(wn)) v, My
is an occurrence sequence of Nj. a

Thus if (8,7n) is a PN-morphism, then it preserves the dynamic behaviour in terms
of multiset firing sequences (under ). PN-morphisms however also enforce restrictions
on the structure of the Petri nets, which may not involve the dynamic behaviour. For
instance, removing in the first Petri net in Figure 2.7 the place with two tokens in
the initial marking does not change its dynamic behaviour in terms of multiset firing
sequences, but it destroys the PN-morphism between the two Petri nets.

The Petri nets which arise out of our later constructions will all have the property
that they are S-simple, which means that each place is uniquely characterized by its
initial marking and its input and output transitions.

Definition 2.2.3
A Petri net (5,7, W, M,,) is S-simple if

Vs1,82 € S.((Min(s1) = Min(s2) and ¥t € T. (W (s1,1) = W{(sg,t) and
Wit,s1) =W(t,s3))) = 51 = s2).
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For S-simple Petri nets without isolated places, a PN-morphism is completely de-
termined by its transition function, which follows from another result by Mukund

[63].

Lemma 2.2.4
Let (B1,n) and (f2,m) be a pair of PN-morphisms from N; to Ny where Np is
S-simple and for every place s of Ny, *sU s* # (. Then 8, = 53,. a

With the notion of PN-morphism we can now define a category of Petri nets.

Definition 2.2.5

PN is the category which has Petri nets as its objects and PN-morphisms as
its arrows. The identity morphism associated with an object is the pair of identity
functions on places and transitions; composition of PN-morphisms (/1,71) from N to
Ny and (f33,n2) from Ny to N3 is the PN-morphism (1 o 83,72 0 n1) from N; to Ns.
O

It is easy to verify that the composition of PN-morphisms is indeed a PN-morphism,
so that the category PN is well-defined.

For the sublasses of Petri nets defined in Section 2.1 we have the following subcat-

egories of PN.

Definition 2.2.6
PN's is the full subcategory of PA the objects of which are 1-safe Petri nets.
PN'S is the full subcategory of PA the objects of which are co-safe Petri nets. O

Note that PAs is also a full subcategory of PAN'S.

With respect to universal constructions within the category of Petri nets, the empty
net (0,0,0,0) is both the initial and terminal object in PA . As shown in [63],
the category PN also has products and co-products. The product of two Petri nets
corresponds to the synchronous parallel composition. The co-product of two Petri
nets is however less standard. It can be viewed as either a non-deterministic choice
or an asynchronous parallel composition, depending on the similarity of the two Petri
nets. The morphisms considered in [95] and in [59] (for the category of Petri nets with
an initial marking) give rise to categories which do not have co-products in general.
There co-products are shown to exist for the subcategory of 1-safe Petri nets ([95])
and the category of Petri nets in which the initial marking is a set ([39]).

By Lemma 2.2.2, both multiset firing sequences and firing sequences are preserved
under PN-morphisms. On the other hand, step firing sequences are in general not
preserved under PN-morphisms due to the fact that PN-morphisms may map concur-
rent transitions in the first Petri net to the same transition in the second Petri net
(as for the PN-morphism depicted in Figure 2.7). This leads to auto-concurrency in
the second Petri net, so that step firing sequences in the first Petri net correspond to
multiset firing sequences in the second Petri net.

This can be avoided by considering only PN-morphisms that map concurrent tran-
sitions to different transitions. Such PN-morphisms will be referred to as being co-
injective.
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Definition 2.2.7
Let (8,n) be a PN-morphism from Ny = (51, Ty, Wi, My) to No. Then (3,7n) is

co-injective if
Vi, t' e Ty. ((t # 1" and 5(t) and n(t') are both defined and

IM € RMy,. M{t,1'})n,) = n(t) # n(t)).
O

The category of Petri nets with co-injective PN-morphisms will play a role in
Section 5.7.

Definition 2.2.8
PNC is the wide subcategory of PN the arrows of which are co-injective PN-
morphisms. a

Note that by Lemma 2.2.2 PN-morphisms between co-safe Petri nets are always
co-injective. In other words, PA'S is a full subcategory of PNC.
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Chapter 3

Multiset Transition Systems

With each Petri net we have associated a state space consisting of its reachable mark-
ings. These markings assign to each place of the Petri net a certain number of tokens
and can thus be viewed as distributed global states, with the marked places as local
states. For the analysis of the dynamic behaviour of a Petri net however, the exact
distribution of the global states over local states is not essential.

Abstracting from this distribution leads to the model of multiset transition systems
[52, 63], the subject of this chapter. The multiset transition system model is an easy to
understand model for concurrent systems which is capable of capturing the concurrent
and branching aspects of the behaviour of Petri nets, but which only has a notion of
a global state.

Multiset transition systems are also a convenient framework for defining the basic
notion of a (generalized) region [63, 40]. Regions provide a decomposition of global
states into local states. The notion of a region plays a fundamental role in this thesis
whenever we want to synthesize a Petri net from a behavioural description. Regions
then yield places of Petri nets. The regions we use here form a generalization of the
notion of a region from [22].

Thus the purpose of this chapter is twofold. Firstly, multiset transition systems are
investigated as a model for concurrency used for representing the behaviour of Petri
nets. Secondly, multiset transition systems serve as a general framework for defining
notions to be used also in later chapters.

In Section 3.1 multiset transition systems are introduced. Then in Section 3.2 the
notion of a (generalized) region is defined. In Section 3.3 a multiset transition system
is associated with each Petri net, its marking diagram. Then a characterization is
given of those multiset transition systems, called PN-transition systems, which are
isomorphic to such a marking diagram. This characterization is based on the notion of
a region. In Section 3.4 a characterization is given of those multiset transition systems
which are isomorphic to the marking diagram of a 1-safe Petri net. It is shown that an
equivalent representation of these multiset transition systems can be obtained using
asynchronous transition systems. Finally, in Section 3.5 the characterization of PN-
transition systems from Section 3.3 is used to express the relationship between multiset
transition systems and Petri nets in a categorical framework.

37
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This chapter mainly summarizes results from Mukund [63, 64] where missing proofs
can be found.

3.1 Multiset Transition Systems

In this section we consider transition systems in which the transitions are labelled with
multisets of actions over a given alphabet. In this way concurrency between actions is
represented explicitly in the transition relation. The occurrence of the empty multiset
is meant to denote inactivity at a state.

Definition 3.1.1

(1) A multiset transition diagram is a triple (Q, X, —) where Q) is a set of states,
X is an alphabet of actions, and —C ) x Mp(X) x @) is a multiset transition
relation such that

(¢,0,¢) e— < ¢=¢"

(2) A multiset transition system is a quadruple (Q, X, —, ¢;n) where (@, X, —) is
a multiset transition diagram and ¢;, € () is an initial state. a

In contrast to [52, 63] we do not impose any conditions at this moment guaranteeing
reachability of states and/or substep properties.

For a multiset transition diagram TD = (Q, X, —) we write ¢ — ¢’ rather than
(q,u,q') €—. For q,¢' € Q and p € (Mp(X))* we write ¢ - ¢/, if there exist
Goy -+ qn € Q and uq, ..., u, € Mp(X) where n > 1, such that

e ¢o=q and ¢, = ¢ and
® p=1uy...u, and
o V1 <i<n.g — g

We write ¢ =2 if there exists ¢/ € Q such that ¢ - ¢/
An important subclass of multiset transition systems is obtained when all transi-
tions are labelled with multisets containing at most one element.

Definition 3.1.2

(1) A sequential transition diagram is a multiset transition diagram (@), X, —) such
that
¢ — ¢ = |Ju| <1

(2) A sequential transition system is a multiset transition system (Q, X, —, ¢in)
such that (@), X, —) is a sequential transition diagram. O
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Note that a multiset transition system could be viewed as a sequential transition
system which has Mp(X) as its underlying alphabet. One of the reasons why we do
not take this point of view is that we want morphisms between multiset transition
systems to preserve the actions in the multisets in a consistent way.

Morphisms between multiset transition systems should capture the fact that tran-
sitions in one multiset transition system can be “simulated” in the other.

Definition 3.1.3

Let TS, = (Qi, X, —4,¢:), ¢ = 1,2, be a pair of multiset transition systems. An
MTS-morphism from TSy to TS5 is a pair (f,g) with f: X7 — X3 a partial function
and ¢ : ()1 — ()7 a total function such that

(1) 9(91) =q2
(2) ¢ 1 ¢ = g9(g) 2% 9(q). 0

In [68] G-morphisms between sequential transition systems are introduced. When
restricted to sequential transition systems, MTS-morphisms coincide with these G-
morphisms.

For a multiset transition system TS let id ¢ denote the identity MTS-morphism
which is the pair of identity functions on the states and the actions of TS, respectively.
Then an MTS-morphism (f,¢) from TSy to TS, is an MTS-isomorphism iff there
exists an MTS-morphism (f’,¢') from TS, to TS such that (f' o f,¢' 0og) = idrs,

and (fo f',gog') =idrps,.

3.2 Regions

Because they only have a notion of a global state, transition systems are more abstract
than Petrinets. In this section (generalized) regions of multiset transition diagrams are
defined in order to be able to decompose global states of multiset transition diagrams
into local states. The results in this section will be used throughout the thesis.

In [22] regions have been introduced in the context of (partial) 2-structures in order
to characterize the state spaces of elementary net systems. These regions are called
elementary regions here and they are defined, as in [68], in the context of sequential
transition diagrams.

Definition 3.2.1
Let TD = (Q, X,—) be a sequential transition diagram. An elementary region
of TD is a set r C () satisfying the following conditions.

(1) (qu’anqurandq’Qr):>‘v’qli>q{.(q1Erandq{Qr).
(2) (¢ == ¢ andggrand ¢ €r) =Yg — ¢. (¢ € r and ¢} € ).

An elementary region r of TD is non-trivial if r # §) and r # Q. O



40 CHAPTER 3. MULTISET TRANSITION SYSTEMS

The notion of an elementary region for sequential transition diagrams is lifted to
sequential transition systems in the obvious way. Thus given a sequential transition
system TS = (Q, X, —,¢in), we refer to the elementary regions of its underlying
sequential transition diagram (@, X,—) as the elementary regions of T)S. We use
eRr1s to denote the set of non-trivial elementary regions of a sequential transition
system T1S.

An elementary region of a sequential transition system TS = (Q, X, —, ¢;,) is a
set of states such that transitions labelled with the same action have the same crossing
relation with respect to this set: either they are all leaving, or they are all entering,
or they are not crossing the set at all. Let for a € X,

a={rceRrs|I¢g—q¢. (¢g€randq &r)}
be the set of input regions of a and

a®={r€eRrs|Iq—>¢. (¢¢rand ¢ €r)}
be the set of output regions of a.

Example 3.2.2
RE
/ \
a; a4,
\ /
%

f

Figure 3.1: A sequential transition system TS

Let TS be the sequential transition system depicted in Figure 3.1. The elementary
regions of T'S are the trivial elementary regions ) and {qo, g1, g2, g3}, the input region
{qo,q1} of b, the input region {qo,q2} of a, the output region {¢2,¢3} of b, and the
output region {q,¢s3} of a. O

Elementary regions of sequential transition systems are closely related to conditions
of elementary net systems. In fact, with each sequential transition system TS an
elementary net system can be associated which has the non-trivial elementary regions
of TS as its conditions and has as its events those actions a for which °a U a® # 0.
The flow relation is such that for each event a, *a = °a and a®* = «°. Finally, the
initial case consists of those non-trivial elementary regions which contain the initial
state. It is interesting to note that the elementary net system obtained in this way
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is contact-free. This follows easily from the fact that if r is a non-trivial elementary
region of T'S, then its complement () — r is also a non-trivial elementary region of T'S.

In this construction of an elementary net system from a sequential transition sys-
tem, the (global) states of the transition system are viewed as being composed of
non-trivial regions. The regions containing a state are interpreted as conditions that
hold in that state.

In the case of Petri nets, local states are more complex. Instead of being true
or false, a local state is a place with an arbitrary number of tokens. Moreover, the
relationship between a place and a transition of a Petri net is now a pair of natural
numbers as given by the weight function.

These observations lead to the following definition of a (generalized) region [63, 40]
as a multiset of states such that each action has a fixed effect on these multisets. In
contrast to elementary regions, generalized regions are defined for arbitrary multiset
transition diagrams.

Definition 3.2.3
Let TD = (Q, X, —) be a multiset transition diagram. A (generalized) region of
TD is a function r : Q U X — N U (N x N) satisfying the following conditions.

(1) Vge Q.r(q) € N and Va € X.r(a) € N x N.

For a € X we write r(a) = ("a,a”).

(2) =5 ¢ = (r(q) 2 Tyex ula) -"a and r{q") = r(g) + pex ula) - (a” - "a)).

A generalized region r of TD is non-trivial if
Ja € X.r(a) # (0,0).
R rp 1s the set of non-trivial regions of TD. O

Similar to the situation for sequential transition diagrams, the notion of a gener-
alized region is lifted to multiset transition systems. Thus given a multiset transition
system TS = (Q, X, —, ¢n), we refer to the (generalized) regions of its underlying
multiset transition diagram (@, X, —) as the (generalized) regions of TS, and we use
R s to denote the set of non-trivial regions of T'S.

That the notion of a (generalized) region is indeed a generalization of an elementary
region can be seen as follows. Let r be an elementary region of a sequential transition
diagram TD = (@, X,—). Then r corresponds to the generalized region ' of TD
which is defined as follows:

if r
W vee Qo ={ it

(1,0) ifre’a
(2) Yae X.r'(a) =% (0,1) ifre€a®
0,0

(0,0) otherwise.
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Example 3.2.4

Consider again the sequential transition system TS depicted in Figure 3.1. This
transition system has an infinite number of regions. Some examples of regions are
given in the following table:

region a b Go | 41 | 92 | 43
1 (LO) | (0,0) | 1L O | 1|0
) (0,0) | (L,o) [ 22| 1]1
T3 (1,2) | (0,0) [ 3 | 4|3 |4
Ty (1,2) | (2,6) | 3 |4 | 7|8
s (L (L, (1111
The region 7 in this table corresponds to the elementary region {¢o, ¢2}. a

There is now a natural way to associate a Petri net with a multiset transition
system by taking for the places of the Petri net the non-trivial regions of the multiset
transition system.

Definition 3.2.5

Let TS = (@, X, —, ¢in) be a multiset transition system. The Petri net associated
with TS is tn(TS) = (Rrs, X, W, M;,,) where

o W:(Rps x X)U(X x Rypg) — N is such that
Vr € Res.Va e X. (W(r,a) ="a and W(a,r) =a")

e M, : Rrs — N is such that
Vr € Rrs. Mm(r) = T(qm).
O

Actually, we have assumed in the definition of tn(TS) that Ryzs N X = (. We can
do this without loss of generality, because otherwise we could work with a Petri net
obtained by indexing every place r € R g in an appropriate way. For this new Petri
net similar results can be derived. We will ignore this possible notational complication
here.

Example 3.2.6

In Figure 3.2 the multiset transition system TS from Figure 3.1 is depicted together
with a part of the (infinite) Petri net ¢tn(7S). The places of tn(TS) which are drawn
are the regions of TS from Example 3.2.4 and the non-trivial elementary regions of

TS (see also Example 3.2.2). The elementary regions are indicated as dotted circles.
O

For a state ¢ € ) of a multiset transition system 7'S = (Q, X, —, ¢in), define the
marking M, € My, (rs) by:

Vr € Rys. My(r) = r(q).
Then the dynamic behaviour of tn(7T5S) is related to that of TS in the following way.
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Figure 3.2: A sequential transition system with its associated Petri net

Lemma 3.2.7
Let TS = (@, X, —, ¢in) be a multiset transition system with associated Petri net

tn(TS) = (Rrs, X, W, M,,). Then
(1) ¢ == ¢ = M,[u)un(s) My
(2) qin ——=>p€ MEFS i(1s)-
Proof.

(1) Suppose ¢ — ¢’. Then by the definition of a region, for all r € Rrs, M,(r) =
r(q) > Yaexula)"a =Y ex u(a) - W(r,a) and hence M,[u)(rs)y. Moreover, for
all v € Rore, My(r) = r(g) = r{g) & S (@) (0" —"a) = My(r) 4 Fpex ()
(W(a,r) —W(r,a)). Now we can conclude that M[u) g, rs) M.

(2) Follows immediately from (1) and the observation that M, = M,,. 0

As the following example shows, neither the converse of (1) nor the converse of (2)
in the above lemma holds in general.

Example 3.2.8

Let TS = (Q, X, —, ¢in) be the sequential transition system depicted in Figure 3.3
where ¢, = qo. In TS there is no upperbound on the number of a’s that can occur.
It is easy to see that r : QU X — N x N is a region of TS iff r(qo) > "a, r(qo) > b,
r(q) =1(qo) + b0 —"b,and Vi > 0.7(q;) = r(qo) + ¢ - (a" — "a). Consequently, for every
region r of T'S and a € X, ¢" > "a.

The Petri net tn(71S) is depicted in Figure 3.4 where only some of the infinite
number of places are drawn.

From the characterization of the regions of T'S given above it easily follows that
for all © > 0, 7(¢;) > r(qo) > "b and hence Mg, [b)n(1s). On the other hand, ¢ LN only
holds for ¢ = 0, so the converses of part (1) and (2) of Lemma 3.2.7 do not hold. O



44 CHAPTER 3. MULTISET TRANSITION SYSTEMS

Figure 3.3: A sequential transition system TS

It is easy to see that for every multiset transition system TS, the Petri net tn(T95)
is S-simple and has no isolated places. Moreover, it is saturated in the sense that no
new non-isolated places can be added without changing the behaviour (in terms of
multiset firing sequences).

Next we show how to extend the map tn to MTS-morphisms in such a way that
whenever ¢ is an MTS-morphism from T'S; to TS5, its image tn(¢) is a PN-morphism
from tn(TS1) to tn(TS3). In the definition of this extension we use inverse regions.

Solet T'S; = (Qi, Xiy —i,qi), ¢ = 1,2, be a pair of multiset transition systems and
let ¢ = (f,¢) be an MTS-morphism from 7S to T)5;. Define for a region r of TS5,
¢~ Hr): Q1 UX; — NU(N x N) by:

(1) Vg€ Q1. ¢7'(r)(q) = r(g(q))

(2) Ya € X1 671 (r)(a) = {(éfé))) if f(a) is defined

otherwise.

Lemma 3.2.9

Let TS, = (Q:, Xi, —i,¢i), © = 1,2, be multiset transition systems, let ¢ = (f, g)
be an MTS-morphism from TSy to T'S3, and let r be a region of 7'S;. Then ¢~!(r) is
a region of TSj. O

Proof.
flu)

Suppose ¢ —1 ¢'. Then ¢(q) =2 g(q ) by the definition of MTS-morphism. Since
r is a region of TS this implies that ¢7'(r)(¢) = r(g(q)) = Yiex, (f(u))(b) - b =

Saex, u(a) 7 Wa and ¢~ H()(d) = r(g(q)) = r(9(9) + Ziex, (F(w))(b) - (0 = "b) =
671 (r)(9) + Taex, ula) - (a* ) =47 a), H
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#

i

Figure 3.4: The Petri net tn(T5)

For elementary regions (viewed as generalized regions) this notion of inverse region
coincides with the notion of the inverse of an elementary region as defined in [68].

Let TS;, © = 1,2, be a pair of multiset transition systems and let ¢ = (f,¢) be an
MTS-morphism from 7Sy to TS;. Then define tn(¢) = (54, ns) where 5, = f and
B : Rrs, — Rys, is given by:

B,(r) = o1 (r) if 67%(r) is non-trivial
| undefined otherwise.
o defined oth
Lemma 3.2.10
Let TS, = (Q:, Xiy, —i, i), © = 1,2, be a pair of multiset transition systems and

let ¢ = (f,g) be an MTS-morphism from TSy to T)S;. Then tn(¢) = (Bs,14) is a
PN-morphism from tn(7S51) = (Rrs,, X1, Wi, My) to tn(TS2) = (Rrs,, X2, Wa, Ms).

Proof.

Let r € Ryg, be such that B4(r) is defined. Then My(r) = r(¢q2) = r(g9(q1)) =
¢~ (r)(q1) = Mi(¢7*(r)). This proves condition (1) in the definition of a PN-morphism.

Let a € X; be such that ny(a) is undefined. Then f(a) is undefined, and therefore
¢~ Y(r)(a) = (0,0) for all r € Ryg,. Now assume that r € Rrg, is such that r €
ﬂ;l('a) U ﬂ;l(a'). Thus Wi (Bs(r),a) + Wi(a, Bs(r)) > 0. Since By4(r) = ¢~ '(r), this
leads to ¢! (r)(a) = Bs(r)(a) = (Wi(Bs(r),a), Wi(a, B4(r))) # (0,0), a contradiction.
Hence ﬂ;l('a) = ﬂ;l(a') = (), which proves that tn(¢) satisfies condition (2) in the
definition of a PN-morphism.

Finally, assume that « € X is such that ng(a) = f(a) is defined with ng(a) = b.
Then (B4(r))(a) = 67 (r)(a) = r(f(a)) = ("b,b") for all r € Ryg,. Hence r € *b if and
only if B4(r) € *a, that is r € ﬂ;l('a). Similarly it can be proved that ﬂ;l(a') = b°.
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Moreover, for all r € *b, Wi(5,(r),a) = Wy(r,b) and, for all r € b*, Wi(a, Bs(r))
W3(b,r). This proves condition (3) in the definition of a PN-morphism.

O

3.3 PN-Transition Systems

In the previous section we have seen how to associate a Petri net tn(7S) with a
multiset transition system TS. In this section we define for each Petri net a so-called
marking diagram. Such a marking diagram is the multiset transition system induced
by the firing rule. Marking diagrams are multiset transition systems, but not all
multiset transition systems can be obtained as marking diagrams. A characterization
is provided of those multiset transition systems that are marking diagrams (modulo
isomorphism). The characterization of marking diagrams is in terms of regions.

This set-up from [63, 64] is again a generalization of the approach to the charac-
terization of the state spaces of elementary net systems [22, 68].

Definition 3.3.1
Let N = (S,T,W, M;,) be a Petri net. The marking diagram of N is the multiset
transition system nt(N) = (RMy,T,—n, M;,) where

M~y M' & (Mu)yyM' and M, M’ € RMy).
O

In Figure 3.5 the Petri net Ny from Figure 2.1 is depicted together with its marking
diagram.

Definition 3.3.2
A multiset transition system TS is a PN-transition system if there exists a Petri

net N such that T'S = nt(N). O

The following three axioms, defined for an arbitrary multiset transition system
TS = (Q, X, —, ¢in), turn out to characterize the PN-transition systems.

(PT1) Vg€ Q.3pc (Mp(X)*t. qin 2 ¢.
(PT2) (Vr € Rrs.r(q) = r(d)) = ¢ =4
(PT3) (Vr € Rys.7(q) > Ypexula) - "a) = ¢ —.

The first axiom requires that every state is reachable, as is the case in the marking
diagram of a Petri net where the states are the reachable markings.

The axiom (PT2) mirrors the property of the marking diagram of a Petri net that
a state (i.e. reachable marking) is uniquely characterized by the number of tokens in
each place.

By the definition of a region, the occurrence of a multiset of transitions implies
that each region has enough “tokens” for this multiset to occur. The axiom (PT3)
now states that the fact that each region contains enough tokens is not only necessary
for a multiset of transitions to occur, but also sufficient. Thus this mirrors the property
that the marking diagram of a Petri net contains all enablings at reachable markings.
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1 O—1
N

_ N\
\\ /\
\\ /\
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1

Figure 3.5: The Petri net Ny with its marking diagram

Example 3.3.3

Consider the multiset transition system TS depicted in Figure 3.3. From the
characterization of its regions in Example 3.2.8 it follows that for every : > 1 and for
every r € Ryg, r(¢;) > r(qo) > "b. Axiom (PT3) would then imply that also ¢; —
for all 7 > 1. Hence TS does not satisfy (PT3).

The multiset transition system nt(Ny) depicted in Figure 3.5 on the other hand,
satisfies all three axioms (PT1), (PT2), and (PT3). O

The axioms (PT2) and (PT3) are quite strong. For instance, they guarantee that
multisets can be split into arbitrary submultisets.

Lemma 3.3.4
Let TS = (Q, X, —, ¢in) be a multiset transition system satisfying (PT1), (PT2),
and (PT3). Then

¢— ¢ =YVv<udd" €qQ.(¢g— ¢ and ¢" == ¢').
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a

It is fairly easy to prove that every PN-transition system satisfies (PT1), (PT2),
and (PT3). Using the map tn from multiset transition systems to Petri nets as defined
in Section 3.2 it can be proved (see [63]) that the converse is also true.

Lemma 3.3.5
Let T'S be a multiset transition system satisfying (PT1), (PT2), and (PT3). Then
TS = nt(tn(T9)). O

Hence we have the following characterization of PN-transition systems.

Theorem 3.3.6
A multiset transition system is a PN-transition system iff it satisfies the axioms

(PT1), (PT2), and (PT3). =

Thus for every Petri net N there exists a saturated Petri net, namely tn(nt(N)),
which has an isomorphic marking diagram. In a sense made more precise in Section 3.5
the Petri net tn(nt(N)) is the “best” representative among all Petri nets with the same
(up to isomorphism) marking diagram.

Example 3.3.7

—0O 4o
A/

Figure 3.6: The Petri net tn(nt(Ny))

For the multiset transition system nt(N;) depicted in Figure 3.5, the Petri net
tn(nt(Ny)) is drawn in Figure 3.6 where only some of the infinite number of places
are given. Every region r of nt(Ny) satisfies, e.g., the condition that r(s; + s3) =
r(s1+ 82+ 83)+c —"c=r(s1+383)+a —"a+c —"cand hence "a +"¢c=a" + .
Another condition which every region r of nt(Ny) satisfies is that " > "a. O
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3.4 1-Safe PN-Transition Systems

In this section we investigate the relationship between 1-safe Petri nets and multiset
transition systems. First a characterization is given of the PN-transition systems
associated with 1-safe Petri nets. This characterization is from [64].

Definition 3.4.1
A PN-transition system TS is I-safe if there exists a 1-safe Petri net NV such that
TS = nt(N). O

To characterize the 1-safe PN-transition systems we need the notion of a I-safe
region. Similar to how regions correspond to the places of an arbitrary Petri net, the
1-safe regions correspond to the places of a 1-safe Petri net.

Definition 3.4.2
Let TS = (@, X,—, ¢n) be a multiset transition system. A region r of TS is
1-safe if

Va € Q.r(g) € (0,1} and Ya € X. r(a) € {(0,0),(0,1), (1,0), (1, 1)}
sR g is the set of non-trivial 1-safe regions of T'S. O

Note that the generalized regions corresponding to the elementary regions of a
sequential transition system are 1-safe.

The following four axioms, formulated for an arbitrary multiset transition system
TS = (Q, X, —, ¢in), turn out to characterize the 1-safe PN-transition systems.

(PT1) Vg e Q.3p € (Mp(X))*. qin - q.

(PT2%) (Vr € sRrs.r(q) =7(¢") = ¢ =1

(PT3’) (Vr € sRys.7(q) > Yy ula)-7a) = ¢ —.
(PT4) Vg€ Q.Va€ X.3k € N. (¢ ——= u(a) < k).

The axioms (PT2) and (PT3) are strengthened by formulating them with respect
to 1-safe regions. For 1-safe PN-transition systems the axiom (PT4) is required as a
counterpart for condition (3) in the definition of 1-safe Petri nets, which prevents auto-

concurrency. Now suppose TS satisfies (PT1), (PT2%), and (PT3’), but not (PT4).

Then auto-concurrency in TS is still possible. If ¢ ﬂ, then, for every 1-safe region
rof TS, r(¢) > 2-"a and thus "a = 0. Hence we also have that r(¢) > k- "a for

all & € N. This implies by (PT3") that ¢ £ for all k € N and every l-safe region
r of TS. Hence in order to forbid auto-concurrency in TS, it is sufficient to forbid
unbounded auto-concurrency at each state in TS as in (PT4).

It is easy to verify that the marking diagram of a 1-safe Petri net satisfies these four
axioms. The proof of the converse is again based on a map from multiset transition
systems to Petri nets. This map is defined by taking in the definition of the map tn
only the 1-safe regions into account.
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Definition 3.4.3

Let TS = (@, X, —, ¢;n) be a multiset transition system which satisfies the axioms
(PT1), (PT2%), (PT3"), and (PT4). Then ts(TS) = (sRrs, X, W, M,,) is the Petri net
with

o W:(sRps x X)U(X x sRgg) — N is such that
Vr € sRysg.Va € X. (W(r,a) ="a and W(a,r) =a")

o M, : sRrs — N is such that
Vr € sRrg. Mm(T) = T(Qm).

O

Lemma 3.4.4
Let TS be a multiset transition system which satisfies the axioms (PT1), (PT2’),
(PT3%), and (PT4). Then ts(TS) is a 1-safe Petri net. O

For a multiset transition system T'S which satisfies the three axioms (PT1), (PT2),
and (PT3), Lemma 3.3.5 implies that the Petri net tn(7S) yields a marking diagram
which is isomorphic to T)S. If TS satisfies the (stronger) axioms (PT1), (PT2’), (PT3"),
and (PT4), then also the 1-safe Petri net ¢s(7'S) has a marking diagram isomorphic
to TS.

Lemma 3.4.5
Let TS be a multiset transition system satisfying (PT1), (PT2"), (PT3’), and
(PT4). Then TS = nt(ts(T9)). O

This then leads to the following characterization of 1-safe PN-transition systems

[64].

Theorem 3.4.6
A multiset transition system is a l-safe PN-transition system iff it satisfies the

axioms (PT1), (PT2%), (PT3), and (PT4). O

To conclude this section we investigate an alternative representation of the marking
diagram of a 1-safe Petri net.

In the marking diagram of an arbitrary Petri net every multiset of transitions which
is enabled at a reachable marking is represented explicitly. By Lemma 2.1.10 however,
concurrency in a l-safe Petri net can also be derived from its sequential behaviour
through a binary relation over its transitions. This leads to the model of asynchronous
transition systems [86, 6] which can be used to give an equivalent representation of
the marking diagram of a 1-safe Petri net.

Definition 3.4.7

An asynchronous transition system is a quintuple TS = (Q, X, =, ¢in, Ind) where
(Q, X, =, qin) is a sequential transition system and Ind C X x X is a symmetric,
irreflexive independence relation which satisfy the following conditions.
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(1) ee X =3¢, €Q.q = ¢.
(2) (== ¢ and ¢ == ¢") = ¢ =¢".
(3) ((a,b) € Ind and ¢; == ¢; and ¢ =2 ¢3) = Jq1 € Q. (¢2 =L g4 and g3 == q1)-

(4) ((a,b) € Ind and ¢ == ¢, and ¢y by q1) = g3 € Q. (1 by g3 and ¢35 == 1)
O

Condition (1) states that every action occurs in some transition and condition (2)
demands that the underlying sequential transition system is deterministic. Conditions
(3) and (4) capture the intuition behind the independence relation that two indepen-
dent actions cannot prevent each others occurrence. Moreover, if two independent
actions can occur at a given state after then the state reached after both of them have
occurred, does not depend on the order of their occurrence.

In general an asynchronous transition system may contain independencies between
actions which are never enabled at the same state. We say that an asynchronous
transition system TS = (Q, X, =, ¢in, Ind) is reduced iff

V(a,b) € Ind.3q € Q. (¢ == and ¢ :b>)

There is an obvious way to view each asynchronous transition system as a mul-
tiset transition system. Given an arbitrary asynchronous transition system 7S =
(Q, X, =, Gin, Ind), define at(TS) = (Q, X, —, ¢in) where —C @ X Pp(X) x @ is
such that

(¢ — ¢ with u = {ay,...,a,} and |u] =n) &

(¢"22" ¢ and V1 < i,j < n.(i # j = (ai,0;) € Ind.))

Thus a step of actions can occur in at(79) at a given state iff the actions are
pairwise independent and every possible interleaving of the actions can occur at this
state.

In general, different asynchronous transition systems may be mapped to the same
multiset transition system by at. When restricted to reduced asynchronous transition
systems however, the map at is injective. A reduced asynchronous transition system
TS can then be recovered uniquely from its multiset transition system representation

under at: if at(71S) = (Q, X, —, ¢in), then TS = (Q, X, =, ¢iy, Ind) where
s ¢=q & q—¢

o Ind ={(a,b)|a#band EIqEQ.q{a—’b}>}.

Next we show how to associate an asynchronous transition system with every 1-
safe Petri net. Lemma 2.1.12 and Lemma 2.1.11 suggest the following definition of an
independence relation to capture concurrency in a 1-safe Petri net.
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Definition 3.4.8
Let N = (S, T,W, M;,) be a l-safe Petri net. The independence relation Indy C
T x T associated with N is given by:

[ndN = {(tl,tz) € TxT | tl 7£ tg and AM € RMNM[{t17t2}>N}

a

Note that the independence relation associated with a 1-safe Petri net is irreflexive
and symmetric.

For the 1-safe Petri nets N3 and Ny depicted in Figure 2.3 and Figure 2.4 we have
that Indy, = 0 and Indy, = {(a,b),(b,a)}.

Alternatively we could have given a structural definition of the independence rela-
tion associated with a l-safe Petri net N as in, e.g., [98]:

Indy = {(t1,t2) | (1 Ut*) N (Y2 U L*) = 0.

The independence relation defined in this way also captures by Lemma 2.1.10 the
concurrency in a 1-safe Petri net. On the other hand, two transitions of a 1-safe Petri
net can have disjoint environments without ever being concurrent at some reachable
marking. This is for instance the case for the transitions a¢ and ¢ of the Petri net
depicted in Figure 3.7.

a b c
Figure 3.7: a and ¢ have disjoint environments, but are never concurrent

For technical reasons we prefer to work with the minimal independence relation
Indyn which only contains independencies between transitions which can actually be
enabled together.

Using this independence relation Indy there is an obvious way to associate a (re-
duced) asynchronous transition system with every 1-safe Petri net.

Definition 3.4.9
Let N = (S,T,W, M,,) be a l-safe Petri net. Then the asynchronous transition
system associated with N is sa(N) = (RM, T, =N, M;,, Indy) , where

M=y M & (Ju<1land M 5 M').

a

From Lemma 2.1.10 it easily follows that this definition agrees (via the map at)
with the definition of the marking diagram as given in Section 3.1.
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Theorem 3.4.10
Let N be a 1-safe Petri net. Then nt(N) = at(sa(N)). O

By the definition of Indy, the asychronous transition system sa(N) is reduced.
Hence at gives a bijection between the marking diagrams associated with 1-safe Petri
nets and the asynchronous transition systems associated with 1-safe Petri nets. In
other words, the asynchronous transition system associated with a 1-safe Petri net
yields an equivalent representation of its marking diagram.

For elementary net systems it is even sufficient to associate a sequential transition
system with it in order to capture its concurrent behaviour, because for this model
arbitrary interleaving of occurrences implies that these occurrences are in fact concur-
rent.

However, for a 1-safe Petri net and also for a safe net system it is in general
not possible to extract its concurrent transition system behaviour from its sequential
transition system behaviour due to the behaviour in the presence of self-loops. Hence
for 1-safe Petri nets concurrency must be represented explicitly in their associated
transition system semantics.

Example 3.4.11

In Figure 3.8 the 1-safe Petri nets N3 from Figure 2.3 and Ny from Figure 2.4
are depicted together with their marking diagrams. Both marking diagrams have the
same (up to isomorphism) sequential behaviour, but they differ in their concurrent
behaviour. O

3.5 A Co-reflection Between P7S and PN

In Section 3.3 the marking diagram of a Petri net is defined through the map nt. In
this section it is shown that this map from Petri nets to PN-transition systems can be
lifted to a functor which has a left adjoint.

The notion of morphism between multiset transition systems as defined in Sec-
tion 3.1 leads to the following definition.

Definition 3.5.1

Let PT S be the category which has PN-transition systems as its objects and MTS-
morphisms as its arrows. The identity morphism associated with an object TS is id 1g;
the composition of MTS-morphisms (f,g) from TSy to TS and (f’,¢') from TS, to
TS5 is the MTS-morphism (f' o f,¢' 0 g) from TSy to TSs. O

By Lemma 2.2.2 PN-morphisms preserve occurrence sequences. Using this obser-
vation the map nt from Petri nets to PN-transition systems is now extended to a
functor.

So let N;, 1 = 1,2, be a pair of Petri nets and let (3,7) be a PN-morphism from
Ny to Ny. Then define nt((8,n)) = (f,g) where f =n and g : RMy, — RMy, is
given by ¢g(M) = M where M is as defined in Lemma 2.2.2. Thus

s = {307 St
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Sz

E

Syt S,tSs

N

S,+S,+S, S,+S,+S,
X /
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Figure 3.8: The Petri nets N3 and N4 with their marking diagrams

Note that by Lemma 2.2.2, g(M) is indeed a reachable marking of Nj.
From Lemma 2.2.2 it also immediately follows that nt maps PN-morphisms to
MTS-morphisms. Hence we have the following result.

Lemma 3.5.2
nt is a functor from PN to PTS. O

In Section 3.2 a map tn has been defined, associating a Petri net with every mul-
tiset transition system. By Lemma 3.2.10, this construction can be extended to the
corresponding morphisms.

The restriction of tn to the category P7S is also denoted by tn.

Lemma 3.5.3
tn is a functor from P7TS to PN O
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The fact that the category of PN-transition systems is more abstract than the
category of Petri nets can now be phrased in categorical terms [63].

Theorem 3.5.4
tn : PTS — PN and nt : PN — PTS form a co-reflection with ¢n the left adjoint

and the arrows id r¢ as unit. O

The unit of this adjunction is indeed an MTS-isomorphism by Lemma 3.3.5. Thus
starting with a PN-transition system TS, the marking diagram of the saturated Petri
net tn(TS5) is MTS-isomorphic to T'S. On the other hand, starting with a Petri net N,
the (saturated) Petri net tn(nt(N)) associated with its marking diagram nt(N) has
itself a diagram which is isomorphic to nt(N). Moreover, the co-unit of the adjunction
gives for each Petri net N’ which has the same (up to isomorphism) marking diagram

as N a PN-morphism from tn(nt(N)) to N'.

Finally, a similar relationship can be established for the category of 1-safe PN-
transition systems and the category of 1-safe Petri nets.

Definition 3.5.5
Let P7Ss be the full subcategory of P7TS the objects of which are 1-safe PN-

transition systems. a

The restriction of nt to PN's is also denoted by nt.

In Section 3.4 the map ts from 1-safe PN-transition systems to 1-safe Petri nets
is defined by associating with each such transition system a (1-safe) Petri net which
has the 1-safe regions as its places. Similar to how the map tn from arbitrary multiset
transition systems is extended to morphisms, the map ts is now extended to the
corresponding morphisms.

Let TS;, ¢« = 1,2, be a pair of 1-safe PN-transition systems and let ¢ = (f,g) be
an MTS-morphism from TS to TSs. Then define ts(¢) = (4,n) where n = f and
B:sRrs, — sRrs, is given by:

B(r) = { ¢~ (r) if ¢~'(r) is non-trivial

undefined otherwise.

Note that ts is well-defined because if r is a l-safe region of TS, then ¢~(r) is a
region of T'Sy which is also 1-safe.

We then have the following result from [64] stating that the category of 1-safe
PN-transition systems is a more abstract representation of the category of 1-safe Petri
nets.

Theorem 3.5.6
ts : PTSs — PNs and nt : PN's — PTSs form a co-reflection with ts the left

adjoint and the arrows id rg as unit. O

A similar result has been proved independently in [98] where a co-reflection is
established between the category of safe net systems and a subcategory of asynchronous
transition systems.
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Chapter 4

A Trace Semantics for Petri Nets

The dynamic behaviour of a Petri net is defined through the firing rule (Defini-
tion 2.1.2) in terms of transition occurrences and (reachable) markings. An (initial
part of an) execution of the Petri net according to this rule and starting from the initial
marking is here called a run of the Petri net. During a run there may be concurrency
between (occurrences of) transitions, but conflicts between transitions are resolved.

Several notions for the representation of finite runs have already been discussed:
occurrence sequences, multiset firing sequences, step firing sequences, and firing se-
quences. Fach of these notions corresponds to a way of observing runs. They are non-
branching in the sense that whenever a conflict occurs, a choice is made. Moreover,
due to concurrency, one (finite) run of the Petri net may have several representations:
a multiset of concurrent occurrences of transitions may be observed as distributed over
varying submultisets in different orders. As a consequence each of these representa-
tions of the finite runs of a Petri net leads to a behavioural description of the Petri
net which is unstructured in the sense that information on conflicts and concurrency
is implicit, scattered, or not present at all.

The aim of this chapter is to provide a semantics for Petri nets based on finite
runs, in which both the non-sequential and the branching aspects of their behaviour
are captured. The approach we follow is inspired by the trace semantics for 1-safe
Petri nets and elementary/safe net systems, initiated by Mazurkiewicz in [55], and
further investigated in, e.g., [56, 80, 67, 98].

Using Mazurkiewicz’ trace theory, the concurrency present in the behaviour of
a l-safe Petri net (or elementary/safe net system) is captured by the independence
relation over the transitions from Definition 3.4.8. This independence relation induces
an equivalence relation over the firing sequences. Fach run of the system is represented
by one of these equivalence classes, called traces. A prefix ordering of the traces
yields a branching structure for the behaviour. This branching structure captures the
relationship between the runs: two traces are ordered iff one of the corresponding runs
is an initial part of the other.

In a general Petri net however, due to the multiplicity of tokens in places, concur-
rency and conflict are no longer global notions. Moreover, auto-concurrency has to be
taken into account. To cater for these phenomena we generalize the notion of a trace.
Having done this, it is easy to associate a poset of traces of the new kind with each

57



58 CHAPTER 4. A TRACE SEMANTICS FOR PETRI NETS

Petri net.

This chapter is organized as follows. In Section 4.1 we briefly recall the relevant
notions from Mazurkiewicz’ trace theory and the trace semantics for 1-safe Petri nets.
In Section 4.2 we first discuss the generalizations which are needed to lift the trace
semantics from the level of 1-safe Petri nets to the level of general Petri nets. This
leads to the introduction of local traces. The trace semantics for Petri nets in terms of
these local traces is given in Section 4.3. An axiomatic characterization of the resulting
class of local trace languages is given in Section 4.4. Based on this characterization
the relationship between local trace languages and Petri nets is expressed as a co-
reflection between the corresponding categories in Section 4.5. Then in Section 4.6 the
relationship between local traces and Mazurkiewicz’ traces is investigated in detail.
A subclass of local trace languages is identified which corresponds to the class of
Mazurkiewicz’ trace languages, and it is shown that for 1-safe Petri nets the trace
semantics in terms of Mazurkiewicz’ traces agrees with the trace semantics in terms
of local traces. Finally, in Section 4.7 we discuss some related work.

This chapter is based on [41], of which [40] is an extended abstract.

4.1 Mazurkiewicz’ Traces and 1-Safe Petri Nets

This section introduces the basic notions from the theory of traces which has been
initiated by Mazurkiewicz [55].

In order to avoid confusion after the local traces have been introduced in this
chapter, all notions from the classical trace theory are prefixed with an M.

The behaviour of a sequential system can be described by sequential observations
which are sequences over its alphabet of actions. For concurrent systems such as (1-
safe) Petri nets however, such a description fails to capture the concurrency in the
system. By Lemma 2.1.11 however, for 1-safe Petri nets it is possible to represent
concurrency by a binary relation over its transitions. This motivates the consideration
of alphabets together with a binary relation representing concurrency.

Definition 4.1.1

(1) Let X be an alphabet. An M-independence relation (over X) is a symmetric,
irreflexive relation Ind C X x X.

(2) An M-concurrency alphabet is a pair (X, Ind) where X is an alphabet and Ind
is an M-independence relation over X. a

The intuition behind the independence relation is that sequential observations
which only differ in the order of adjacent, independent symbols cannot be distin-
guished from each other. This leads to an equivalence relation over sequences as given
in the next definition. Similar to how sequences are ordered by a prefix ordering, also
these equivalence classes of sequences are ordered by a prefix ordering.
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Definition 4.1.2
Let (X, Ind) be an M-concurrency alphabet.

(1) —pme € X* x X* is given by:

p =1map < Ip1,p2 € X7 3(a,b) € Ind. (p = prabpy and p’ = pibap,).

(2) ~paC X* x X*, the M-equivalence relation induced by (X, Ind), is the least
equivalence relation containing .

(3) For p € X*, [plma = {p" € X* | p ~pa p'} is the M-trace (over (X, Ind))

containing p.

(4) 25a < (X*/2pma) X (X*/~=pq) is the M-trace ordering relation (over (X, Ind))
given by:
[Pl ind =ina [p'lma & Fo € X7 po 1,4 p'.

(5) An M-trace language (over (X, Ind)) is a subset of X*/~p,,. 0

If the M-concurrency alphabet (X, Ind) is clear from the context then we may omit
the subscript 7,4 in the above defined notions.

An alternative characterization of the equivalence relation ~p,; is given in the
following lemma from [1].

Lemma 4.1.3
Let (X, Ind) be an M-concurrency alphabet and let p, p" € X*. Then p ~ p' iff

(1) Ya € X.numy(p) = num,(p’) and
(2) V(a,b) € (X x X) — [”d-ij{a,b}(P) = pmj{a,b}(ﬂ/)- O

Thus two sequences p and p’ are equivalent if and only if all symbols have the
same number of occurrences in p and p’ and the order of the occurrences of mutually
dependent symbols is the same.

Given an M-concurrency alphabet (X, Ind) we can define, similar to the concatena-
tion of ordinary sequences, for M-traces [p] and [p'] over (X, Ind) their concatenation
[p] o [p'] = [pp']- From Lemma 4.1.3 it easily follows that this concatenation operation

is well-defined.

Observe that for each M-trace language TL over some M-concurrency alphabet
(X, Ind) its underlying language {p € X* | [p] € TL} is consistent.

Definition 4.1.4
Let (X, Ind) be an M-concurrency alphabet and let . C X*. Then L is consistent
(with respect to (X, Ind)) if
Vpe L.[p] C L.
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Conversely, every language L C X* which is consistent with respect to an M-
concurrency alphabet (X, Ind), is the underlying language of the M-trace language
{lp] | p € L} over (X, Ind).

From now on we specify an M-trace language over (X, Ind) with underlying lan-
guage L as a triple (L, X, Ind). Note that in this way each M-trace language has a
fixed alphabet X and a fixed M-independence relation Ind.

In general not every element from the M-independence relation of an M-trace lan-
guage is needed in order to partition its underlying language into its M-traces. Those
M-trace languages for which every element from the M-independence relation is needed
are called reduced M-trace languages. These reduced M-trace languages will play a role
in Section 4.6.

Definition 4.1.5
An M-trace language (L, X, Ind) is reduced if

V(a,b) € Ind.Ipabp’ € L.

Morphisms between M-trace languages are defined as in [96, 98].

Definition 4.1.6
Let TL; = (L;, Xi, Ind;), ¢+ = 1,2, be a pair of M-trace languages. An MTL-
morphism from TL; to TLs is a partial function f: X; — X, such that

(1) Vpe Li. f(p) € Ly

(2) Y(a,b) € Indy.(f(a) and f(b) are defined = (f(a), f(b)) € Indy). O

Thus MTL-morphisms preserve the underlying language and independence between
actions.

For an M-trace language TL let ¢d 7 denote the identity function on its alphabet.
Then an MTL-morphism f from T'L; to TLy is an MTL-isomorphism iff there exists
an MTL-morphism ¢ from TL; to TL, such that g o f = idrr, and fog = idry,.
Thus clearly, an MTL-morphism f from TL; = (L1, X1, Indy) to TLy = (Ls, X5, Indy)
is an M'TL-isomorphism iff

(1) fis a bijection
(2) {f(p) [ p€ L1} = Lo
(3) Ya,be Xi.((a,b) € Indy < (f(a), f(b)) € Indy).

It is easy to see that MTL-morphisms are behaviour-preserving in the following
sense.
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Lemma 4.1.7
Let f be an MTL-morphism from (Ly, X1, Indy) to (Ls, Xs, Indy) and let p, p’ € Ly
be such that p - j,4,p". Then

Thus an MTL-morphism preserves the M-traces in an M-trace language.

In the above definition we use the convention given in Chapter 1 that for p € L4,
f(p) is the homorphic extension of the multiset extension of f, applied to p viewed as
a multiset sequence. Thus on L1, f is a total function.

As the last point in this section we define the M-trace semantics for 1-safe Petri
nets [56, 98]. In doing this we use the independence relation Indy associated with a

1-safe Petri net N = (5,7, W, M;,) as defined in Definition 3.4.8. Recall that
[ndN = {(tl,tz) & TxT | tl 7£ tg and AM - RMNM[{t17t2}>N}

The runs of a 1-safe Petri net are then represented by the M-traces generated by its
firing sequences.

Definition 4.1.8
Let N = (S5, T, W, M;,) be a 1-safe Petri net with associated independence relation
Indy. Then

(1) sm(N) = (FSn,T, Indy) is the M-trace language associated with N
(2) (sm(N), =puay) is the M-trace behaviour of N. O

It is easy to see that in the above definition FSy is consistent with respect to
(T, Indy) so that sm(N) is well-defined. In part (2) of the above definition the re-
striction of <p,4, to sm(N) x sm(N) is also denoted by =p,4, .

In what follows we write -y, ~y, [p]n, and <y, rather than ~r,q4., ~mdy, [Plindy
and <p,4,, respectively. If the 1-safe Petri net IV is clear from the context then we
may even omit the subscript N.

Note that by the definition of Indy, the M-trace language associated with a 1-safe
Petri net NV is reduced.

Example 4.1.9
In Figure 4.1 the 1-safe Petri nets N3 and N4 from Figure 2.3 and Figure 2.4 are
depicted together with their M-trace behaviours. For both Petri nets abd and bad are

firing sequences. Since (a,b) € Indy,, we have that abd ~y, bad. On the other hand,
Indy, = 0, so that abd %y, bad. 0

Finally observe that, given a 1-safe Petri net N, we could have used in Defini-
tion 4.1.8 instead of Indy the structural definition of independence as in [56, 98] and
mentioned before:

Indy = {(t1,t2) | (*t1 UH*) N (%12 UL*) = 0}
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[abd] [bad]
C a
[ab] [ba]
d
[a] [b]

]

b N

[abd]

e

Al

[ab]

[a] [b]

Figure 4.1: The Petri nets N3 and N4 with their M-trace behaviours

Al

It is easy to see that this would not have affected the partitioning of F'S into equivalence
classes or their prefix-ordering, but the M-trace language would no longer be reduced.
For technical reasons we prefer the independence relation to describe only those inde-
pendencies between transitions which are concurrent at some reachable marking.

4.2 Local Traces

The M-trace semantics for 1-safe Petri nets explained in the previous section cannot
be carried over directly to general Petri nets. Whereas concurrency in a 1-safe Petri
net can be captured through a binary, global independence relation, for an arbitrary
Petri net, concurrency is neither a global nor a binary property.

Now let us look at these problems for arbitrary Petri nets in some more detail.

The first problem is that concurrency is not a global notion for Petri nets: tran-
sitions which are concurrent at one reachable marking may be in conflict at another.
As the Petri net Ng depicted in Figure 4.2 shows, this makes it impossible to form
traces from firing sequences through a global independence relation as in the previous
section.



4.2. LOCAL TRACES 63

Figure 4.2: The Petri net Ng

For this Petri net both ab and ba are firing sequences. There are however not
enough tokens for a and b to occur concurrently in the initial marking. Hence ¢ and
b should not be independent, and ab and ba should not be in the same trace. After
the occurrence of ¢ however, there are in the resulting marking enough tokens for the
step {a,b} to occur, so in this marking ¢ and b should be independent, and cab and
cba should be in the same trace.

Thus for general Petri nets we want the current marking to determine if transitions
are independent. Equivalently, we can also say that the (multiset) firing sequence
leading to this marking should determine the independence of transitions.

A second problem when attempting to lift the approach followed in Section 4.1
to the case of general Petri nets is that concurrency within arbitrary Petri nets can-
not be characterized through a binary relation. For 1-safe Petri nets it follows from
Lemma 2.1.11 that transitions in a set are concurrent at a marking iff each transition
in the set is enabled individually and the transitions in the set are pairwise concurrent
at this marking.

Now consider the Petri nets N; and Ns depicted in Figure 4.3 and Figure 4.4.
Both Petri nets have the same set of firing sequences and for both Petri nets each
pair of transitions is concurrent at a reachable marking iff both transitions have not
yet occurred. However, in Ng the transitions a, b, and ¢ can also occur all three
concurrently at the initial marking, which is not possible for N;.

Hence for general Petri nets the pairwise concurrency of transitions no longer im-
plies the concurrency of the set as a whole. Moreover, it is now possible for a multiset
of transitions to occur concurrently at a reachable marking due to auto-concurrency
as for the Petri net N, depicted in Figure 2.2.

The problems pointed out above lead to the introduction in this section of a gen-
eralization of M-traces. The independencies in this more general set-up are defined
locally, i.e. in a context-dependent fashion. In addition they specify, for chosen con-
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Figure 4.3: The Petri net N

[ L

Figure 4.4: The Petri net Ng

texts, which (finite) multisets are independent. Moreover, the equivalence relation
induced by these independencies is defined over multiset sequences.

Definition 4.2.1

(1) Let X be an alphabet. A local independence relation (over X) is a relation
I C(Mp(X)T x Mp(X).

(2) A local concurrency alphabet is a pair (X, 1), where X is an alphabet and [ is a
local independence relation over X. a

From now on we write L-concurrency alphabet and L-independence relation rather
than local concurrency alphabet and local independence relation, respectively.

The basic notions from the classical trace theory are now lifted in the following
way to the new setting.

Definition 4.2.2
Let (X, ) be an L-concurrency alphabet.

(1) =€ (Mp(X))" x (Mp(X))* is given by:
p=1p & 3p1,p2 € (Mp(X))T. 3u, 0, 0/,0" € Mp(X).
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[(1a) p = pruvpy and p' = p1u'v'py and
(Ib) v+ v =1u"+v" and
(Lc) (p1,u+wv) e I)).

(2) =2, C (Mp(X))" x (Mp(X))*t, the local trace equivalence relation induced by
(X, 1), is the least equivalence relation containing =j.

(3) For p € (Mp(X)*, [plr ={p € (Mp(X))" | p =; p'} is the local trace containing
p-

(4) <1 C(Mp(X)T /=) x (Mp(X))T /=) is the local trace ordering relation (over
(X, 1)) given by:

[plr S1lp]r & o € (Mp(X)T.po =5 p.
(5) A local trace language (over (X, 1)) is a subset of (Mp(X))" /2. O

From now on we also abbreviate the phrase local trace as L-trace. If the L-
concurrency alphabet (X, [) is clear from the context we may omit the subscript ;
in the above defined notions.

Note that the ordering relation <; from Definition 4.2.2(4) is well-defined: when-
ever p,p' € (Mp(X))" are such that p = p’, then po = p'o for all ¢ € (Mp(X))*.

Thus multiset sequences which are equivalent under the L-trace equivalence rela-
tion can be extended by an arbitrary multiset sequence leading to multiset sequences
which are again equivalent. In the classical case such an operation can be lifted
to a concatenation operation over traces given by [p] o [p'] = [pp']. However, due
to the context-dependent nature of the L-independence relation, a similar operation
is not well-defined for L-traces. Consider, for example, the concurrency alphabet

({a, b, ¢}, {(0,{b,c})}); then be = ¢b, but abe = acb does not hold.

Definition 4.2.1 is a generous one in that no restrictions have been imposed on
the L-independence relation. In applications, one might wish to place some suitable
restrictions on the L-independence relation to capture the intended interpretation. For
instance, where the L-trace languages are used to model the behaviour of distributed
systems one might demand:

(D1) (p,u) € I = Vo <u.(p,v) €l and
(D2) (p,u) el =Vo<u.(pv,u—wv)e€l.

(D1) and (D2) would capture the intuition that (p,u) € I denotes the fact that the
occurrences of actions mentioned in u are independent of each other at the state
represented by p.

A third reasonable axiom one could demand would be:

(D3) p=p' = ((pu) €l & (pyu) €1).
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This would ensure that I “agrees” with the equivalence relation = induced by it.

However, we will not require such restrictions at this stage. The L-trace languages
associated with Petri nets will all have L-independence relations satisfying (D1), (D2),
and (D3).

Similar to the specification of M-trace languages we specify an L-trace language

over (X, ) on the basis of its underlying language of multiset sequences in (Mp(X))*.

Definition 4.2.3
Let (X,I) be an L-concurrency alphabet and let L C (Mp(X))*. Then L is
consistent (with respect to (X, 1)) if

Vpe L.[p] C L.

O

An L-trace language TL over (X, I) is represented uniquely by the triple (L, X, I)
where L = {p | [p] € TL} is its underlying language. A triple (L, X, 1) with L C

(Mp(X))T consistent with respect to (X, I) represents the L-trace language {[p] | p €
L}.

We now define morphisms between L-trace languages. Similar to the morphisms
between M-trace languages, these morphisms are behaviour-preserving in the sense
that they preserve the underlying language and independencies.

Definition 4.2.4
Let TL; = (L;, Xi, 1), = 1,2, be a pair of L-trace languages. An LTL-morphism
from TL; to TLs is a partial function f : X; — X, such that

(1) {f(p) [ p€Llr} C L,

(2) {(f(p); f(w)) [ (p,w) € L} € L. O

For an L-trace language TL let id 77 denote the identity function on its alphabet.
Then an LTL-morphism f from TL; to TLy is an LTL-isomorphism iff there exists an
LTL-morphism ¢ from TL, to TL, such that go f = idyy, and fog = idrr,. Thus an
LTL-morphism f from TL; = (L1, X1, [1) to TLy = (Ly, X3, I5) is an LTL-isomorphism
iff

(1) fis a bijection
(2) {f(p) [ peLi} =1L,
(3

) L), f(w) [ (psu) € I} = L.
It TL; and TLy are LTL-isomorphic then we denote this by TL; = TL,.

Similar to the situation for MTL-morphisms, LTL-morphisms preserve equivalence
of multiset sequences.

Lemma 4.2.5
Let f be an LTL-morphism from (L, X1, I1) to (L2, X2, I3) and let p,p" € Ly be
such that p =5 p'. Then f(p) =5, f(p).
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Proof.

Suppose p = pruvpy, pl = pru'v'py, u+ v = u + ', and (p1,u+ v) € [;. Then
(f(p1), f(w)+ f(v)) = (f(p1), f(u+v)) € I3 by the definition of LTL-morphism and
hence f(p) = f(p1)f(u)f(0)f(p2) =1, [(p) (W) f(v')f(p2) = F(p). O

Finally note that concurrency must be preserved locally by LTL-morphisms. Con-
sider, e.g., the L-trace language TL = (L, X,I) with X = {a,b,c}, L = (Mp(X))*
and [ = (Mp(X))t x Mp(X), and the L-trace language TL' = (L, X,I') with I' =
I — ({a},{b,c}). Although p =, p’ iff p =5 p for all p,p’ € L, the identity function
on X is not an LTL-morphism from 7L to TL'. Note that on the other hand this
function is an LTL-morphism from 7L’ to TL.

4.3 L-Traces and Petri Nets

In this section a trace semantics for Petri nets is defined in terms of L-traces, similar
to the definition of the M-trace semantics for 1-safe Petri nets. In order to be able
to do this, we first need to associate with each Petri net an L-independence relation.
This L-independence relation should capture the concurrency in the Petri net and be
formulated in terms of multisets (of transitions). For this reason, instead of dealing
with concurrency of a multiset of transitions at a reachable marking, we now deal with
concurrent multisets after a given multiset firing sequence leading to a marking.

Definition 4.3.1
Let N = (S,T,W, M,,) be a Petri net.

(1) The L-independence relation Iy C (Mp(T))t x Mp(T) associated with N is the
set

In = {(p,u) | pu € MES}.

(2) The L-concurrency alphabet associated with N is (T, In). O

In order to simplify the notation we write =y, =y, Sy, and [p]y instead of =,
v, Siy, and [p]r,, respectively, in what follows.

It is easy to verify that the L-independence relation Iy associated with a Petri net
N satisfies the properties

(D1) (p,u) € In = Vv < wu.(p,v) € Inx and
(D2) (p,u) € In = Vv <u.(pv,u—v) € Iy

mentioned in Section 4.2.

As the next lemma shows, all multiset sequences equivalent with a multiset firing
sequence of a given Petri net are also multiset firing sequences of that Petri net.

Lemma 4.3.2
Let N = (S,T,W, M,,) be a Petri net. Then MFS is consistent with respect to

(T, In).
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Proof.

It is sufficient to prove that p’ € MFES whenever p’ € (Mp(T))" is such that p =y p’
where p = piuvpy € MFS, p' = pyu'v’'py, u 4+ v = + o', and (p1,u + v) € Iy. Since
pruvpy € MFES, we also have pjuv € MFS. Furthermore (p1u',v") € Iy because Iy
satisfies the property (D2) mentioned above. Hence pyu'v’ € MFES by the definition of
In. Since num(pruv) = nums(pru'v’) for all t € T, pyuv and pyuv’ lead to the same
marking, and so pjuvpy € MFS iff pyu'v'py € MFS. Since p = piuvpy € MFS this
implies p' = piu'v'py € MFS. O

Lemma 4.3.2 implies that Iy also satisfies the property (D3) mentioned in Sec-
tion 4.2:

(D3) p=np' = ((p,u) € In & (p',u) € Iy).

The trace semantics for Petri nets is now defined as follows.

Definition 4.3.3
Let N = (S,T,W, M,,) be a Petri net. Then

(1) nl(N)=(MFSy,T,Iy) is the L-trace language associated with N.

(2) (nl(N), Sn) is the L-trace behaviour of N. O

In part (2) of the above definition, the restriction of Sy to nl(N) x nl(N) is also
denoted by Sy.

By the following lemma every L-trace in the L-trace language associated with a
Petri net contains at least one sequential representative, in which all multisets are
singletons. Hence it is sufficient to consider the L-traces generated by the firing se-
quences.

Lemma 4.3.4
Let N = (S,T,W, M,,) be a Petri net and let p € MFS. Then

dp' € FS.p= ).

Proof.

Suppose p = pyrupz with |u| > 1. Then by the definition of Iy, (p1,u) € In.
Let t € T be such that u(f) > 1. Then p = py(u — t)tps. Repeatedly applying this
reasoning yields the required p’ € F'S with p = p'. O

Example 4.3.5

The L-trace behaviour of the Petri net Ng from Figure 4.2 is depicted in Figure 4.5.
In Ng independence of @ and b is determined by the history (current marking). Since
(0,{a,b}) & In,, the step firing sequences ab and ba are not equivalent (under =y, ).
On the other hand, (¢, {a,b}) € In,. Thus abc =y, bac, because abe =y, ach =y,
cab =y, cba =y, bea =y, bac. In this reasoning we used apart from (¢, {a,b}) € Iy,

also that (a,{b,c}), (0, {a,c}),(0,{b,c}),(b,{a,c}) € In,.
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(a] [b]
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Figure 4.5: The Petri net Ng with its L-trace behaviour

In Figure 4.6 a Petri net Ny is depicted together with its L-trace behaviour. In the
L-trace behaviour of Ny the traces [a] and [¢] have upperbounds [ac] and [abc], but
they have no least upperbound. In other words, the L-trace behaviour of Ny is not
consistently complete. This contrasts with the situation for 1-safe Petri nets where
the M-trace behaviour is always consistently complete.

Finally, the Petri net Ny from Figure 2.1 and its L-trace behaviour are depicted in
Figure 4.7. O

4.4 PN-Trace Languages

In this section we characterize those L-trace languages, called PN-trace languages,
which are isomorphic to an L-trace language associated with a Petri net. The approach
is similar to the approach followed in Section 3.3 where PN-transition systems are
characterized.
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[abc]
[ab] [bc]
[ac]
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Figure 4.6: The Petri net Ng with its L-trace behaviour

For L-trace languages four axioms are proposed of which it is easy to prove that
every PN-trace language satisfies them. To prove the converse, with every L-trace
language satisfying the four axioms a Petri net is associated by viewing the L-trace
language as a multiset transition system and then applying the map tn defined in
Section 3.2. Then the L-trace language generated by this Petri net and the original
L-trace language are proved to be isomorphic.

Definition 4.4.1
An L-trace language T'L is a PN-trace language if there exists a Petri net N such
that TL = nl(N). 0

One of the axioms appearing in the characterization of PN-trace languages is a
regional axiom, which we use to capture the fact that all runs of a Petri net are
represented in its associated L-trace language. In order to formulate this axiom we
view [-trace languages as multiset transition diagrams. The regions of an L-trace
language can then be defined in terms of this multiset transition diagram.

Let TL = (L,X,I) be an L-trace language. Then TL gives rise to the multi-
set transition diagram (L/=, X, — 1) where — 1y, the multiset transition relation
assoctated with TL, is given by:

[p] =11 [p] & pu = p'.

We refer to the regions of this multiset transition diagram as the regions of TL. Also
we let Ry denote the set of non-trivial regions of (L/=, X, — 11).

So a region of TL is a function r : [/Z UX — NU(N x N) satisfying the following
conditions.

(1) V[p] € L/= .r([p]) € N and Va € X.r(a) € N x N.
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Figure 4.7: The Petri net Ny with its L-trace behaviour

(2) pu=p' = (r([p]) 2 Ciex ula) - "a and r([p']) = r([p]) + Xoex ula) - (a” = "a)).

The four axioms that turn out to characterize the PN-trace languages can now be
formulated. They are stated in terms of an arbitrary L-trace language TL = (L, X, I).

(PLO) L # 0.

(PL1) pue L= pe€ L.

(PL2) pue L & (p,u) € 1.

(PL3) pe L= ((VreRyp.r([p]) > X,ex ula) - "a) = pu € L).

The first two axioms require that T'L is non-empty and (its underlying language is)
prefix-closed. Note that together they ensure that 0 € L. The third axiom states that L
“agrees” with the L-independence relation I. Thus (PL2) together with (PL1) ensures



72 CHAPTER 4. A TRACE SEMANTICS FOR PETRI NETS

that the multisets in multiset sequences in L are all independent in the corresponding
context. Moreover, (PL2) states that / is minimal in the sense that it contains no
other independencies, and it also guarantees by the consistency of L a submultiset
property in the sense that if pu € L, then also pv(u — v) € L for every v < u. The
final axiom (PL3) for characterizing the PN-trace languages corresponds to the axiom
(PT3) for characterizing the PN-transition systems. This axiom captures the fact that
all runs of a Petri net are represented in its associated L-trace language.

The characterization of PN-transition systems also mentions the following regional
axiom:

(PT2) (Vr € Rrs.r(q) =r(¢)) = q=4"

As the following example shows, we cannot have a similar axiom for characterizing the
PN-trace languages.

Example 4.4.2

[abd] [bad]
C a
[ab] [ba]
d
[a] [b]

Onul ~.

[0]

Figure 4.8: The Petri net N3 with its L-trace behaviour

In Figure 4.8 the Petri net N3 from Figure 2.3 is depicted together with its L-trace
behaviour. For every r € Ryin,), r([ab]) = r([0]) + a" + b —"a —"b = r([ba]), but
ab % ba. Hence the L-trace language associated with N3 has two different L-traces at
which every non-trivial region of nl(/N3) has the same value. O

Now we turn to the proof that every PN-trace language satisfies these axioms.
First of all, we prove in the following lemma that all axioms are preserved under
LTL-isomorphisms.

Lemma 4.4.3
Let TL; = (L;, Xi, I;), ¢ = 1,2, be a pair of L-trace languages such that TL; = TL,.
Then, for each ¢ = 0,1,2,3, TL, satisfies (PLi) iff TL, satisfies (PLi).
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Proof.

Preservation of (PL0), (PL1), and (PL2) follows immediately from the definition
of LTL-isomorphism.

In order to prove that T'L, satisfies (PL3) if TL; does, let f be an LTL-isomorphism
from TLy to TLy. Suppose p € Ly and pu ¢ Ly. Then we also have f(p) € I4
and f(pu) € L1 by the definition of LTL-isomorphism. Hence by (PL3) there exists
r € Ryp, such that »([f(p)]n) < Z.ex,(f(u))(a) - "a. Define the function
' (Le/Z,) U Xy — NU(N x N) by:

(1) Vp'ln € La/=5, - r'([p']R) = r([f(P)]n)
(2) Ya € Xa.1'(a) =r(f(a)).

Note that ' is well-defined by Lemma 4.2.5. Since by Lemma 4.2.5, [f(p1)]z MTLl
[f(p2)]1, whenever [p1];, —= 711, [p2]1,, it is easy to see that r' is a non-trivial region
of Tla. Morcover, ([pl1,) = r{/(p)1n) < Suex, (F(1))(a) "0 = Sex, (F)(F() -
") = Ypex, u(b) - "'b. Hence TL, satisfies (PL3). Since = is symmetric, this com-
pletes our proof. a

In order to show that every PN-trace language satisfies (PL0) through (PL3), we
now only have to prove that every L-trace language associated with a Petri net satisfies
these four axioms.

As a first step in proving this, the following lemma shows that every place s of a
Petrinet N = (9,7, W, M;,) determines a region r(s) of its associated L-trace language
nl(N) in the following way. Define r(s) : (MFS/Z)UT — N U (N x N) by:

(1) V[p] € MES/= .r(s)([p]) = M,(s)
(2) Wt T.r(s)(t) = (W(s,t), W(t,s)).

Thus for each ¢ € T, the function r(s) gives the number of tokens ¢ takes from s and
the number of tokens ¢ puts in s and, for each [p] € MFS /=, r(s) gives the number of
tokens in s after the multiset firing sequence p. Note that r(s) is well-defined because
if p,p’ € MFS are such that p = p', then mset(p) = mset(p’) and hence M, = M.

Lemma 4.4.4
Let N = (S,7,W, M,,) be a Petri net and let s € S. Then r(s) is a region of
nl(N).

s,t) = ZteT“(t

Suppose [p] =) [¢']- Then r(s)([p]) = My(s) = ¥Xyep u(t)-W(s,t ):
1)) = r{s)([p]) +
O

) b
1) = My(s) = Mp(s) + Ziepu(l) - (W(t,s) = W(s, 1)
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Using the above lemma we can prove the following result.

Lemma 4.4.5
Every PN-trace language satisfies the axioms (PL0) through (PL3).

Proof.

By Lemma 4.4.3 it is sufficient to prove that the L-trace languages associated with
Petri nets satisfy these four axioms.

So let N = (5,7, W, M;,) be a Petri net. From the definition of MFS and [y it
follows directly that nl(N) satisfies (PL0), (PL1), and (PL2).

In order to prove that (MFS, T, Iy) satisfies (PL3), suppose p € MFS and pu ¢
MFS. Then by the definition of MFS there exists s € S such that M,(s) < >,cru(t)-
W(s,t). Consider the region r(s) defined above. Then r(s)([p]) = M,(s) < >jer ult)-
Wis,t) =3, cru(t) -7(s}¢. This implies that r(s) is non-trivial. This proves that nl(N)
satisfies (PL3). O

To prove that every L-trace language which satisfies the axioms (PLO) through
(PL3) is a PN-trace language, a map In from such L-trace languages to Petri nets is
defined, using the map tn from multiset transition systems to Petri nets defined in
Section 3.2.

Definition 4.4.6

Let TL = (L, X,I) be an L-trace language satisfying (PL0) through (PL3). Then
In(TL), the Petri net associated with TL, is the Petri net obtained by applying tn to
the multiset transition system (L/=, X, — 7y, [0]). Thus In(TL) = (Rp, X, W, M;,)

where

o W:(Ryppx X)U(X X Rypp) — N is such that

Vr € Rep.Va € X.(W(r,a) ="a and W(a,r) =a")

o M., : Rt — N is such that

Vr € Rrr. Mi(r) = r([0]).

Example 4.4.7

Consider the Petri net Ny and its L-trace behaviour depicted in Figure 4.7. The
Petri net In(nl(Ny)) is depicted in Figure 4.9 with only some of its infinite number of
places. The places of In(nl(Ny)) are the non-trivial regions of nl(/N7). Observe that
the regions of nl(Ny) do not necessarily satisfy the condition "a + "¢ = a” 4+ ¢". This
contrasts with the situation in nt(Ny), the marking diagram of N; which is depicted
in Figure 3.5. The regions ry, ry, 73, etc. are examples of places which do not have
a counterpart in the Petri net tn(nt(Ny)) depicted in Figure 3.5, associated with the
marking diagram of ;. O
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Figure 4.9: The Petri net In(nl(Ny))

As an intermediate step in the proof that an L-trace language TL = (L, X,[I)
satisfying the axioms (PLO0) through (PL3) is LTL-isomorphic to the L-trace language
generated by the Petri net In(TL), we prove separately that L = MFS,(rr). First
however we show that for every place s of In(TL), i.e. a region of TL, the region r(s)
of nl(In(TL)) associated with s in the way described in Lemma 4.4.4 and the region
s of TL agree on all elements that their domains have in common. Thus, after having
shown that L = MFS,(rp), it follows that the non-trivial regions of ni(In(TL)) are
precisely the places of In(TL).

Lemma 4.4.8
Let TL = (L, X,I) be an L-trace language satisfying (PL0) through (PL3) with
In(TL) = (Rqp, X, W, M;,) and let s € Ryy. Then

Va € X.r(s)(a) = s(a) and
Vp € (LOMES ). r(s)([plu(rr) = s([plr)-

Proof.
By the definition of r(s) we have that for each a € X, r(s)(a) = (W(s,a), W(a, s)),
and this equals s(a) according to the definition of In(TL). Similarly, r(s)([0]s(rr)) =
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M;,.(s) by the definition of r(s) and s([0];) = M;,(s) by the definition of In(TL).
Note that 0 € L N MFSy, (7). Now let us assume that r(s)([pln(rr)) = s([p]r) for all
p € LOMFSy, (1) with |p| < nwheren > 1. Let p € LOMES 1,71y be such that p = p'u
where |p’| <n and |p'u| > n. Note that [p'];,(rr) Ln,(,n(TL)) [Py and [p]1 7
lr. Then (s} ([plin(zny) = My(s) = Min(5) + Toey nimalp) - (W(ars) — W(s,a).
Thus (5} () = Mi(5) + Sy numa(!) - (7 (a,5) — W(s,a)) + Soey ula) -
(W(a,5) ~ W(s,a)) = r(s)([9 i) - Sacx (@) - (W(ars) — W(s,a)) = s(1o1) +
Yeex ula) - (W(a,s) — W(s,a)) by the induction hypothesis and this in turn equals
s([p)1) + Xaex ula) - (a® —*a) = s([p];) because s is a region of L. Consequently
r(s)(a) = s(a) for all @ € X and r(s)([plim(rry) = s([plr) for all p € LOMES (). O

Using the correspondence described in this lemma between the regions of the orig-
inal L-trace language and the regions of the L-trace language generated by the Petri
net associated with this L-trace language, we can prove the following result.

Lemma 4.4.9
Let TL = (L, X, I) be an L-trace language which satisfies the axioms (PL0) through
(PL?)) Then L = MFSln(TL)-

Proof.

In order to prove that L © MFS,(rry, let p € L. Then it easily follows from (PL1)
that [0]; = 7;. Hence we have by Lemma 3.2.7(2) that p € MFS,(r1).

In order to prove that MFSy,(rry € L, let p € MESy (). If p =0, then p € L by
the non-emptiness and prefix-closedness of L. Now assume that p = p'u with u # 0.
Using an inductive argument we assume that p’ € L. Moreover, by Lemma 4.4.8,
s(p) = r(s)(p') = My(s) for all s € Ryp. Now assume to the contrary that p =
p'u ¢ L. Then by (PL3), there exists r € Ry, such that 7(p') < 3, cx u(a)-"a. This
would imply that M, (r) < > ,cxul(a)- W(r,a). But this contradicts the fact that
p'u € MFS,(rry. Hence p'u € L. O

We now have that the underlying language of the original L-trace language and the
set of multiset firing sequences of the Petri net associated with this L-trace language
are equal. In order to prove that the original L-trace language and the L-trace lan-
guage generated by this Petri net are isomorphic, the only thing left to prove is that
concurrency is preserved.

Lemma 4.4.10
Let TL = (L, X, I) be an L-trace language which satisfies the axioms (PL0) through
(PL3). Then TL = nl(In(TL)).

Proof.
By Lemma 4.4.9, L = MFS,(ry. Moreover, by (PL2), I = {(p,u) | pu € L} =

{(p,u) | pu € MESy,(rry} = In(rry. Hence idrp is an LTL-isomorphism from 7L to
nl(In(TL)). O
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From Lemmas 4.4.5 and 4.4.10 we obtain the following result.

Theorem 4.4.11

An L-trace language is a PN-trace language iff it satisfies the axioms (PL0) through
(PL3).

4.5 A Co-reflection Between P7 L and PN

The relationship between Petri nets and PN-trace languages established in the previous
section can also be expressed in a categorical framework. We show in this section how
the maps In and nl can be extended to functors forming a co-reflection.

Definition 4.5.1

Let PT L be the category which has PN-trace languages as its objects and LTL-
morphisms as its arrows. The identity morphism associated with an object TLis id p;
composition of LTL-morphisms is composition of partial functions. a

The map nl can be extended to a functor from PN to PT L as follows.
Let N;, ¢ = 1,2, be a pair of Petri nets and let (3,7) be a PN-morphism from Ny
to Ny. Then define nl((5,7)) = 7.

Then the following result follows immediately from Lemma 2.2.2.

Lemma 4.5.2
nl is a functor from PN to PT L. O

Now we extend the map In to a functor from P7 L to PN. Recall that applying in
amounts to viewing first a PN-trace language TL = (L, X, ) as a multiset transition
system lt(TL) = (L/=, X, —11,[0]), and then applying the map ¢n from Section 3.2
which yields the Petri net In(TL) = tn({t(TL)). When extending In to the arrows of
PT L we follow the same route: first It is extended to the arrows of P7 L; next we use
the definition of tn on MTS-morphisms as given in Section 3.2.

Solet TL, = (L;, X;, I;), t = 1,2, be a pair of PN-trace languages with It(7TL;) =
(Li/ =1, Xi,—11,,[0]1,), and let f be an LTL-morphism from T1L; to TLy;. Then
define It(f) = (f,g) where g : L1/=;,— Lo/, is given by g([p]r,) = [f(p)]r- Note
that ¢ is well-defined by Lemma 4.2.5. From Lemma 4.2.5 it also easily follows that
t(f) is an MTS-morphism from [t(TL;) to lt(TLy). Hence by Lemma 3.2.9 there
exists for each region r of T'Ly an inverse region t(f)™'(r) of TL;. In what follows we
write f~!(r) instead of It(f)~'(r). Thus f~'(r): L1/Z;, UX; — NU(N x N) is given
by:

(1) Vleln, € La/=n - ) (pln) = r(1f(p)]r)

(2) Ya € Xy f~1(r)(a) = { (éfé))) if f(a) is defined

otherwise.
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Now define In(f) = tn(lt(f)). Thus In(f) = (Bf,ns) where ny = f and 5y :
Rrr, — R, 1s given by:

By(r) = f=r) if f7*(r) is non-trivial
AU undefined otherwise.

Lemma 4.5.3
In is a functor from PT L to PN

Proof.

By Lemma 3.2.10, whenever T'L; and TL; are PN-trace languages, and f is an LTL-
morphism from TL; to TLs, then In(f) is a PN-morphism from In(TLy) to In(TL,).
Hence it is sufficient to prove that In preserves identities and respects composition.
Clearly In preserves identities. Now assume that f; is an LTL-morphism from 71,

to TLy with In(f1) = (B1,15) and fo is an LTL-morphism from TLy to TLs with

Zn(fQ) = (6f2777f2)‘ Suppose Zn(fQOfl) = (6f20f1777f20f1)‘ Then MNfzof1 = f20f1 = 1500
Because In(TL) is S-simple and has no isolated places we have by Lemma 2.2.4 that

ln(f2of1) = (ﬂf20f1777f20f1) = (6f1oﬁf2777f2077f1) = (6f2777f2)o(6f1777f1) = ln(fQ)oln(fl)
O

Next we prove the main result of this section stating that /n and nl form a co-
reflection with In as the left adjoint.

We first define the PN-morphisms which turn out to form the co-unit of the ad-
junction.

Given a Petri net N = (S, T, W, M;,) with nl(N) = (MFS,T, Iy) and In(nl(N)) =
(R, T, W, Mm), let €5 :.S — Ry be defined by:

| or(s) if r(s) is non-trivial
€s(s) = undefined otherwise.

Furthermore, define ey : T' — T by: er(t) = t. Note that es is well-defined by
Lemma 4.4.4.

Lemma 4.5.4
Let N = (S, T, W, M;,) be a Petri net with nl(N) = (MFS, T, Iy) and In(nl(N)) =
(Runy, T, W, Myy,). Then (es, er) is a PN-morphism from In(nl(N)) to N.

Proof.

Suppose s € S is such that eg(s) is defined. Then Mm(és(s)) — M, (r(s)) =
r(s)([0]n) = M;,(s) which proves condition (1) in the definition of PN-morphism.

Because e is a total function, condition (2) in the definition of PN-morphism
trivially holds.

In order to prove condition (3), suppose t € T'. If s € €5'(*t) then we must have that
r(s) € *t, that is W(r<5>,t) > 0. This implies that "¢t > 0 and hence W (s,t) > 0.
This proves that s € *t = ®er(t). On the other hand, if s € ®ep(t) = *f, then
")t = W(s,1) > 0. This implies that r(s) is non-trivial and W(r<5>,t) =t > 0.
Then r(s) € *t and hence s € ¢5'(*t). Moreover, W (s, er(t)) = W(s,t) = W(r<5>,t) =
W(eg(s),t). Similarly it can be proved that eg'(t*) = er(t)* and W(er(t),s) =
W(t, €s(s)). This proves condition (3) in the definition of PN-morphism. O



4.6. L-TRACE LANGUAGES AND M-TRACE LANGUAGES 79

Now we can prove the main result of this section.

Theorem 4.5.5
In:PTL — PN and nl : PN — PTL form a co-reflection with In the left adjoint

and the arrows id 7 as unit.

Proof.

Let TL = (L, X,I) be an PN-trace language, let N = (S, T, W, M,,) be a Petri
net, and let f be an LTL-morphism from TL to nl(N) = (MFSn, T, Iy). We must
show that there is a unique PN-morphism (3,7) from In(TL) = (Ryz, X, W, M) to

N such that the following diagram commutes.

TL _ In(TL)
idq )
nl (In(TL))
i (g, n)
()
y ,
nl (N) N

Define (3,n) by (3,n) = (es,er) o In(f). Hence 3 : S — Ry is such that for all
s €8, B(s)= f~Hr(s))if f~1(r(s)) is non-trivial and 3(s) is undefined otherwise. The
function 5 : X — T is such that f = . Because (es, er) and In(f) are PN-morphisms
by Lemma 4.5.4 and Lemma 4.5.3 respectively, and because the composition of PN-
morphisms is again a PN-morphism, the pair (/,7) is a PN-morphism.

Since nl((,n)) = n = f, it is clear that the diagram commutes. Moreover, (3,7) is
the unique PN-morphism for which the diagram commutes, because if (3’,7’) is such
that the diagram commutes, then n = 5’ by the definition of nl, and hence also g = '
by Lemma 2.2.4. a

From this proof it easily follows that the PN-morphisms (eg, e7) defined above form
the co-unit of this adjunction.

4.6 L-Trace Languages and M-trace Languages

Based on the intuition underlying L-traces, there is a natural way to view M-trace
languages as L-trace languages. In this section we show that this leads to a bijection
between the class of reduced M-trace languages and a certain subclass of L-trace
languages. It turns out that for 1-safe Petri nets the trace semantics in terms of
M-trace languages agrees with the trace semantics in terms of L-trace languages via
this bijection. Finally we show that this bijection between M-trace languages and
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a subclass of L-trace languages can be extended to their corresponding categories,
leading to a categorical equivalence.

Given an M-concurrency alphabet (X, Ind), let
I1a = {(p,u) | p € (Mp(X)t and u € Pp(X) and Va,b € u.(a # b = (a,b) € Ind)}

be the L-independence relation associated with (X, Ind).

So in Iy, a set of symbols is independent iff all symbols in the set are pairwise
independent in Ind. Moreover, such sets are independent in every possible context,
thus reflecting the globality of the M-independence relation Ind. Thus for each M-
concurrency alphabet (X, Ind) with M-equivalence ~,; given through - .4, we obtain

an L-concurrency alphabet (X, I7,4) and hence an L-equivalence relation 2y through
=l . X

In what follows we write p 4 p’ and pp,q p rather than p =; . p"and p =, . p/,
respectively. If Ind is clear from the context then we may omit the subscript 7,4 in
i]nd and éInd-

Clearly, an alternative characterization of * is given by:

Vp,pl € (Mp(X ). p 2 g/ < 3pi,pr € (Mp(X))t u,v,u/ 0" € Pr(X).
[(1) p = pruvps and p' = p1u/v'py and
(2) vUv=v'Uv anduNov=u"Nv" =0
(3) Va,be uUv.(a# b= (a,b) € Ind)]. O

By the following lemma [7,; agrees with Ind when restricted to ordinary sequences.
(Recall that we view ordinary sequences as step/multiset sequences by the monoid
homomorhism which maps each action « to the singleton containing a).

Lemma 4.6.1
Let (X, Ind) be an M-concurrency alphabet and let p, p’ € X*. Then

P ~nd p’ =p 2 rnd p/-

Proof.
Since p ~pqp implies that p “p,4p', we also have that p ~p4 p’ implies that
P~ p'. The implication in the other direction follows easily from Lemma 4.1.3. O

Each M-trace language (L, X, Ind) leads to an L-trace language which has as its
underlying language the set L of those multiset sequences which are equivalent (under
~r.q4) to some element from L. Note that I C (Pr(X))*. Since we prefer to work
with reduced systems, we choose for the underlying L-independence relation of this
L-trace language however not Iy,,, but the least L-independence relation guaranteeing
that steps in L are independent. Consequently, information about independencies in
Ind which are not “used” in L is lost.

So given an M-trace language TL = (L, X, Ind), define ml(TL) = (ﬁ,X, f) where

o L= U{[P]Imd | pe L}
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= {(p,u) | pup' € L}.

Since L. € X* C (Pr(X))*, it is easy to see that also L C (Pr(X))*t and I C
(Pe(X))* x Pp(X).

From the definition of L it is immediately clear that I is consistent with respect
to (X, I1nq). As the followmg lemma shows, L is also consistent with respect to (X, ])
so that ml( TL) is indeed an L-trace language.

Lemma 4.6.2 ) )
Let TL = (L, X, Ind) be an M-trace language. Then ml(TL) = (L, X,[) is an

L-trace language.

Proof.

It must be proved that L is consistent with respect to (X, f) Suppose p =; p" and
pE I C (Pr(X))*. Then there exist py, ps € (Pr(X))" and u,v,u’,v" € Pp(X) such
that p = pruvps, p' = pr/v'py, uNov=v'Nov =0, uUv =" U, and (p1,uUv) € I
By the definition of / there exists pruUw)p” € L. Since pr(uwUv)p” 24 p' for some
P € L C X~ this implies that (a,b) € Ind for all ¢,b € u Uwv with a # b. Hence
P “qna p Thus p e L because pE L. This proves that L is consistent with respect to
(Xv ])' a

When restricted to reduced M-trace languages, the map ml is injective. In fact, a
class of ML-trace languages can be identified, which through ml is in bijective corre-
spondence with the class of reduced M-trace languages.

Definition 4.6.3
An L-trace language TL = (L, X,I) is an ML-trace language if it satisfies the
following three conditions.

(ML1) (p,u) el & 3p € (Pp(X))T.pup’ € L
(ML2) pup' € L = Vae X.u(a) <1

(ML3) (piuvpy € Landu,v € Pr(X)andu Nv = @ and dp € L.Va,b € u U
v.(p,{a,b}) €)= pr(uUv)py € L. 0

Condition (ML1) states that the L-independence relation of TL agrees with the un-
derlying language of TL. Condition (ML2) forbids “auto-concurrency” in TL. Finally,
condition (ML3) captures both globality of concurrency and the fact that arbitrary
concurrency can be derived from binary concurrency.

Note that in the presence of (ML2), the condition u,v € Pp(X) from (ML3)
is already satisfied. Also note that (ML1) and (ML2) together imply that I C
(Pp(X))* x Pp(X).

Lemma 4.6.4 ) )
Let TL = (L, X, Ind) be an M-trace language. Then ml(TL) = (L, X,I) is an
ML-trace language.
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Proof.

By Lemma 4.6.2, ml(TL) is an L-trace language.

It is clear that ml(TL) satisfies (ML1) and (ML2). Now suppose pyuvpy € L is
such that uNv = () and, for all a,b € uUv, there exists p{a, b}p’ € L. Then for all such
pla,b}p' € L, pla,byp’ 1,4 p for some p” € L by the definition of L. This implies
that (a,b) € Ind for all a,b € uwUv with a # b and hence pyuvpy ~ 4 p1(uUv)pz. We
can now conclude that pi(uUv)py € L. O

Now we define the map /m from the class of ML-trace languages to the class of
reduced M-trace languages which turns out to be the inverse of ml.
Given an ML-trace language TL = (L, X,[), define Im(TL) = (Lyz, X, Indpyp)

where
o Lyy=LNX"
o Indr;, ={(a,b) | a#band I(p,{a,b}) € I}.

Lemma 4.6.5
Let TL = (L, X,I) be an ML-trace language. Then Im(TL) = (Lyy, X, Ind 1) is

a reduced M-trace language.

Proof.

Suppose p1abps ~1u4,, prbaps where pyabp, € Ly C L and (a,b) € Indgy. In
order to prove that Im(TL) is an M-trace language, it is sufficient to prove that then
also p1bapy € Lyp. By the definition of Ind 7z, a # b and there exists (p, {a,b}) € 1.
Then by (ML1) there exists p{a,b}p’ € L. From (ML3) it then follows that also
pi{a,blps € L and hence (p1,{a,b}) € I by (ML1). Then piabpy =; p1baps, and so
p1baps € L by the consistency of L. Moreover, p1bapy, € L N X* because pyabpy € X*.
This proves that p1baps € Lry.

In order to prove that Im(TL) is reduced, suppose (a,b) € Indpr. Then a # b and
there exists (p, {a,b}) € I. This implies that there exists p{a,b}p’ € L by (ML1). Now
it easily follows from (ML1) that p{a, b}p’ =1 p1abp) for some pyabp) € LNX* = Lyy.
O

As the following lemma shows, the L-independence relation of an ML-trace lan-
guage TL agrees with the M-independence relation of im(TL).

Lemma 4.6.6
Let TL = (L, X,I) be an ML-trace language with Im(TL) = (L1, X, Ind 1) and
let p€ L and p' € (Pr(X))*. Then

P=1p S p g P

Proof.

Suppose p = p’ where p = piuvps, p' = pru'v'py, uUv = o' Uv', uNov = v’ Nov’ =0,
and (p1,uUv) € I. Then for all a,b € wUv with a # b, p =1 p1{a, b} (uUv —{a,b})p:
and hence also pi{a,b}(vUv — {a,b})ps € L. This implies that for all a,b € v U v
with a # b, (p1,{a,b}) € I by (ML1), and hence (a,b) € Ind . Thus p Zp,, p'.
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Now suppose p “pq,, p/ Where p = pyuvps, p' = p1u/v'py, uUv =u' Uv', unov =
u' N’ =10, and, for all a,b € v U v with @ # b, (a,b) € Ind ;. Then by the definition
of Indpy and (ML1) there exist p{a,b}p,, € L for all a,b € v U v with a # b. Then
pr(uUwv)py € L by (ML3), and hence (py,u Uv) € I by (ML1). This implies that

p=rp. n

Using this lemma we can now prove the desired bijection.

Theorem 4.6.7
ml is a bijection from the class of reduced M-trace languages to the class of ML-
trace languages, with inverse Im.

Proof.

In order to prove that ml is injective, suppose TL; = (L;, X;, Ind;), ¢ = 1,2,
are reduced M-trace languages such that ml(TL;) = mi(TLy) = (L,X,I). Then
X1 = X3 = X by the definition of ml. Moreover, L = U{[plr,,, | p € L1} =
U{[/’]Imd2 | p € Ly}. In order to prove that Ly C Ly, let p € Ly C L. Then p =y, p'
for some p’ € L,. Hence also p ~p,4, p' by Lemma 4.6.1. Thus p € Ly by the
consistency of L. Similarly it can be proved that L, C Ly and hence L = L.

In order to prove that Indy = Inds, suppose (a,b) € Indy. Then there exists pabp’ €
Ly because TL; is reduced. Moreover, pabp’ * 1,4, p{a,b}p’ and hence p{a,b}p’ € L.
This implies that p{a,b}p’ =4, p” for some p” € Ly. It now easily follows that
(a,b) € Indy. This proves that Indy; C Indy. Similarly we have that Indy C Ind; and
hence Indy = Ind,. We can conclude that ml is injective.

Suppose TL = (L, X, I) is an ML-trace language with Im(7TL) = (L1, X, Ind1y)
and ml(Im(TL)) = (L X, 1I). It must be proved that L = Land I =1.

Suppose p € L. Then it easily follows from (ML1) that there exists p’ € LN X* =
Ly, with p = p'. Hence p 2p4,, p/ by Lemma 4.6.6. Since p’ € Ly, we then have
that p € L by the definition of ml. This proves that L C L.

Now suppose p € L. Then pLIndTL p' for some p' € Ly C L. Hence p' € LNX* by
the definition of Im. Then p & p’ by Lemma 4.6.6 and hence p € L by the consistency
of L. This proves that L C L and hence L = L. Then also I = [ by (ML1). We can

now conclude that ml is a bijection with inverse Im. a

Thus the class of reduced M-trace languages can be viewed as a subclass of the
class of L-trace languages. Note that it would have been possible to define ml such
that it is injective on the class of all M-trace languages, by taking [,; for the L-
independence relation of ml((L, X, Ind)). The reason for restricting our attention to
M-trace languages which are reduced is, that we want the bijection to be such that it
maps the M-trace language sm(N) associated with a 1-safe Petri net N to the L-trace
language nl(N) associated with N. Next we show that this goal is achieved with the
present definition of ml.

First we need the following lemma.

Lemma 4.6.8
Let N be a 1-safe Petri net, let p € SFS, and let p’ € (Pp(T))*. Then

p=ENP S P hay P
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Proof.

First assume that p =5 p'. Suppose p = pruvps, p' = pru'v'pe, uUv = v U/,
uNov=uvNov =0, and (p1,uUv) € Iy. Then p;(uUv) € SES by the definition of
In. Moreover, for all t,t' € wUwv with t # ¢, M, [{t,t'}) and hence (£,t') € Indx.
This implies that also p ~p.4, p'

Now assume that p =4, p’ and suppose p = pyuvps, p' = p1u'v'py, uUv = v/ U,
uNv=u"Nv' =10, and for all t,#' € uUv with ¢ £ ¢, (t,t') € Indy. Then M,, € RM
because p € SFS, and hence M, [uUv) by Lemma 2.1.10. Thus py(uUv) € SFS. This
implies by the definition of Iy that (p1,u Uwv) € In. We can conclude that p =x p'.
O

Now we can prove that the trace semantics for Petri nets in terms of L-traces
extends the trace semantics for 1-safe Petri nets in terms of M-traces.

Theorem 4.6.9
Let N = (S, T,W, M;,) be a l-safe Petri net with sm(N) = (FS,T, Indy) and
nl(N)= (MFS,T, Iy). Then ml(sm(N)) = nl(N).

Proof.

First note that MFS = SFS because N is l-safe. Let ml(sm(N)) = (L, T,I). In
order to prove that L. C SFS, let p € L. Then p ~p,4, p’ for some p’ € FS C SFS.
By Lemma 4.6.8 also p =y p’. This then implies by Lemma 4.3.2 that p € SFS. This
proves that . C SFS.

Now suppose p € SFS. Then there exists p’ € FS C L such that p =y p’. Then
again by Lemma 4.6.8, also p~p,4, p’. Hence p € L. This proves that L = SFS. Then
also In = {(p,u) | pu € SFS} = {(p,u) | pu € L} = I. Hence id, ) is the required
LTL-isomorphism. a

To conclude this section we prove that the bijection between ML-trace languages
and reduced M-trace languages can be lifted to a categorical equivalence.

Definition 4.6.10

Let MT L be the category which has reduced M-trace languages as its objects and
MTL-morphisms as its arrows. The identity morphism associated with an object is the
identity function on its alphabet and composition of arrows is composition of partial
functions. O

Even though we only consider the category of reduced M-trace languages, every
M-trace language can in fact be represented canonically as such a reduced M-trace
language. This follows from the easy to prove observation that M7 L is a full co-
reflective subcategory of the category which has all M-trace languages as its objects.

Definition 4.6.11

Let MLT L be the category which has ML-trace languages as its objects and LTL-
morphisms as its arrows. The identity morphism associated with an object TLis id p;
composition of arrows is composition of partial functions. a
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In order to extend the map ml to a functor, define ml(f) = f for an MTL-morphism
f between reduced M-trace languages.

Lemma 4.6.12
ml is a functor from M7T L to MLT L.

Proof.

Let TL; = (L;, X;, Ind;), i = 1,2, be reduced M-trace languages and let f be an
MTL-morphism from Tl to T'L,. It is by Lemma 4.6.4 sufficient to prove that m{(f) =
f is an LTL-morphism from ml(TL;) = (ﬁl,Xl,jl) to ml(TLy) = (ﬁz,Xg,jg).

Suppose p € [Aq. Then p ~p,4, p' for some p’ € L;. Then because f is an MTL-
morphism from Tly to TLy, f(p') € Ly. In order to prove that f(p) € L, it is then
sufficient to prove that f(p) ~p.q, f(p'). Suppose pruvps ~pa, pru'v'pe with u Mo =
u'No' =0, uUv =u U, and (a,b) € Indy for all a,b € uw U v with a # b. Then
(f(a), f(b)) € Indy for all a,b € v U v with @ # b and f(a) and f(b) both defined
because f is an MTL-morphism. Then also f(a) # f(b) for all such a,b € uwUwv by the
irreflexivity of Inds. Hence f(p1)f(u)f(v)f(p2) Zma, [(p1)f(W)f(v")f(p2). We can
now conclude that f(p) =54, f(p).

From the definition of ml it is clear that then also f(I1) C 5. This proves that f
is an LTL-morphism from ml(TLy) to mi(TLy). O

In order to extend the map Im to a functor, also define Im(f) = f for an LTL-
morphism f between ML-trace languages.

Lemma 4.6.13
Im is a functor from MLT L to MTL.

Proof.

Let TL; = (L;, Xi, I;), ¢ = 1,2, be ML-trace languages and let f be an LTL-
morphism from TL; to TL,. It is by Lemma 4.6.5 sufficient to prove that Im(f) is an
MTL-morphism from im(TLy) = (Lrg,, X1, Ind g, ) to Im(TLy) = (Lrr,, X2, Ind ry,).

Suppose p € Ly, = L1 N Xy". Then f(p) € Ly because f is an LTL-morphism.
Hence also f(p) € Ly N Xo™ = Lyy,.

Now suppose (a, b) € Ind gy, is such that f(a) and f(b) are both defined. Then a #
b and, by the definition of Ind 11, , there exists (p, {a,b}) € I1. So (f(p),{f(a), f(b)}) €
I because fis an LTL-morphism. Moreover, f(a) # f(b) by (ML1) and (ML2). Hence
(f(a), f(b)) € Indpr, by the definition of Ind ry,. O

Now we have the following result.

Theorem 4.6.14
MTL and MLT L are equivalent.
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Proof.

It is sufficient to prove that the functor ml is full and faithful, and that for every
object TL of MLT L there exists an object TL' of MT L such that ml(TL") = TL.

This last property follows immediately from Theorem 4.6.7. Moreover, from the
definition of ml/ we immediately have that the functor ml is faithful. Finally, if f is
an LTL-morphism in MLT L from TL to TL', then by Lemma 4.6.13 Im(f) = f is an
MTL-morphism from Im( TL) to Im(TL"). Since ml(Im(TL)) = TL and mi(Im(TL")) =
TL' by Theorem 4.6.7, this proves that ml is also full. Hence we can conclude that
MTL and MLT L are equivalent. O

4.7 Concluding Remarks

The generalization of the classical trace model introduced in this chapter provides a
tool for the description of the behaviour of Petri nets. What is missing at this stage
is a sound theoretical basis for the theory of local traces.

In the last years there have been several other proposals for extending the theory of
traces. Several of these, though differently motivated, focus on similar generalizations,
in particular context-dependency or the use of step sequences (see, e.g., [58, 87, 83,
3, 91, 44]). At present it is however not clear if useful connections can be established
between our approach and the cited related approaches.

For 1-safe Petri nets also processes [76] have been proposed to represent its runs,
leading to a partial order description of the transition occurrences. Such a process
is obtained by partially unfolding the Petri net (starting from the places which are
initially marked) while resolving conflicts. Thus processes lead to special kinds of
nets, called causal nets, which are acyclic and in which places have at most one input
and one output transition. The transitions of a causal net represent the occurrences of
transitions in the original Petri net and places represent the tokens in the original Petri
net, where the set of minimal places (i.e. places with no input transitions) corresponds
to the initial marking. It turns out that there is a one-to-one correspondence between
the M-traces and the processes associated with a 1-safe Petri net (see [67] for the proof
in the context of elementary net systems).

Also for general Petri nets causal nets can be used for defining processes [34].
Because now Petri nets are not necessarily 1-safe, this however leads to a distinction
between tokens in a place.

In Figure 4.10 the Petri net Ng from Figure 4.2 is depicted together with two
processes which correspond to the observation of the occurrence of ¢ followed by the
occurrence of a. In the first process the transition a occurs where it consumes the
token in place sy which was already there in the initial marking whereas in the second
process the transition a consumes the token in place s; which has just been put there
by transition ¢. It has been argued in [9] that such a distinction between tokens in a
place is often undesirable. Therefore it has been suggested that a better representation
of a run is given by an equivalence class of processes. The equivalence relation over
processes is defined in such a way that if two places in the causal net are not causally
related and represent tokens in the same place in the original Petri net, then this
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Figure 4.10: Two processes of Ng

process is equivalent to the process obtained by “swapping” the parts of the causal
net “after” these places. For instance, in the first process in Figure 4.10 the input place
labelled with s, of the transition labelled with @ and the output place of the transition
labelled with ¢ are two places with the same label which are not causally related. The
(equivalent) process obtained by swapping their consequences is the second process in
Figure 4.10.

It has been shown in [9] that these equivalence classes of processes are in one-to-
one correspondence with equivalence classes of occurrence sequences. This equivalence
relation over occurrence sequences identifies occurrence sequences which only differ in
the order of concurrent transitions.

Definition 4.7.1
Let N = (S,T,W, M,,) be a Petri net.

(1) ~n is the least relation over occurrence sequences such that if Moty My ...t, M,
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is an occurrence sequence with n > 0 and if 1 <7 <n — 1 is such that
Vs € S. Mi_1(s) > Wi(s,t;) + W(s,tiy1),
then
Moty ... M _yt; Mty Mgy oot My, ~n Moty ... Mty MMy . 8, M,

where

Vs € S. M{(s) = M;_y(s) + W(tiy1,5) — W(s, tiz1).
(2) an is the least equivalence relation containing ~ . O

We now show that these equivalence classes of occurrence sequences are again in
one-to-one correspondence with the L-traces generated by a Petri net.

Lemma 4.7.2
Let N = (S,T,W, M,,) be a Petri net and let { = Myt;Mqty...t,M, and ¢ =

Mt Mt ... t) M/ with n > 0 be occurrence sequences. Then
EmnE Sty t, Ent .t

Proof.

In order to prove the “only if”-part of the lemma it is sufficient to prove that
¢ ~n ¢ implies that ty...t, =y t]...t. So suppose that { ~y &. Then there
exists 1 <7 < n — 1 such that #}...t) = t1.. . ticatipatitipe. . .1, and M;_4(s) >
Wi(s,t;) + W(s,t;41) for all s € S. This implies that ¢1...¢,_1(f; + tiy1) € MFS and
hence also (¢1...%1;_1,t; +tiy1) € In. Thus ty...t, =n ) .. 1.

Now in order to prove the “if”-part, it is sufficient to prove that if #;...1, =xn
ty ...t then & ~n &. If ty...t, = #]...1t/ then this is trivial because then also
£ = ¢, so assume that #1...1, £t} ...t . Then there exists 1 <i < n — 1 such that
oot =t tigtipititie o b, and (Ey ..oty {t, tier}) € In. This implies that
M;_1(s) > Wi(s,t;) + W(s,ti41) for all s € 5, and so & ~y . O

Theorem 4.7.3
Let N = (S,T,W, M;,) be a Petri net. Then there exists a bijection between nl(N)

and the set of equivalence classes of occurrence sequences associated with N.

Proof.
Follows immediately from Lemma 4.7.2 by observing that for every p € MFS there
exists p’ € FIS such that p =y p'. O
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Thus whereas for 1-safe Petri nets there is a one-to-one correspondence between its
M-traces and its processes, for general Petri nets there is a one-to-one correspondence
between the equivalence classes of its processes (via the “swapping” operation) and
its L-traces.

In [59] an algebraic characterization of the runs of a Petri net is given. This is done
by performing a closure on the arrows of the graph representation of a Petri net with
respect to an operation ; for sequential composition and an operation @& for parallel
composition. The runs are then represented as equivalence classes of the resulting
arrows where the equivalence relation is defined in such a way that it captures the
intended interpretation of the operations ; and . In [18] it has been shown that these
equivalence classes of arrows coincide with the equivalence classes of processes from
[9], and hence also with our L-traces.

One of the main differences between the approaches from [9] and [18] and our
approach is that in the former approaches there is still a notion of a distributed state,
while our trace semantics abstracts from this distribution. As will be shown in the
next chapter, such an abstraction to a global state makes it possible to obtain also a
branching time semantics for Petri nets in terms of event structures.
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Chapter 5

An Event Structure Semantics for
Petri Nets

In the previous chapter a trace semantics for Petri nets has been defined by associating
an [-trace language with every Petri net. This trace semantics is based on represen-
tations of the finite runs of a Petri net, in which conflicts are resolved. Even though
the branching aspects of a Petri net can be recovered from its L-traces by ordering
them under a prefix ordering (resulting in the L-trace behaviour of the Petri net), no
distinction is made between “different” occurrences of the same transition.

The aim of this chapter is to give a branching time semantics for Petri nets by
associating a single object with each Petri net in which the relationship between dif-
ferent occurrences of transitions, called events is explicitly represented. Such objects
are generically called event structures.

In [66] prime event structures have been introduced and it has been shown how they
can be used to represent the behaviour of 1-safe Petri nets. In [66] also a map from
prime event structures to 1-safe Petri nets has been defined. Later it was then shown
by Winskel [96] that both maps can be extended to functors, forming a co-reflection.

In this chapter we propose a generalization of the prime event structure semantics
for 1-safe Petri nets. To this aim we define a new class of event structures, called
local event structures, and show that a subclass of local event structures with a certain
unique occurrence property can be used to represent the behaviour of Petri nets. For
associating a local event structure with each Petri net, it is however necessary to filter
out auto-concurrency from the behaviour of Petri nets. In this sense the proposed
event structure semantics is a restricted one.

In Section 5.1 we recall the classical construction from 1-safe Petri nets to prime
event structures. Then in Section 5.2 we introduce local event structures and structure-
preserving morphisms between them. In Section 5.3 a new equivalence relation over
prime intervals is defined and this equivalence relation is used to define the unique oc-
currence property. Then in Section 5.4 a map from Petri nets to local event structures
with the unique occurrence property is defined. In defining this map we use the set of
step firing sequences rather than the set of multiset firing sequences of a Petri net. It
is in this sense that we filter out auto-concurrency. In Section 5.5 we show that the
class of local event structures yielded by Petri nets is exactly the class of local event

91
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structures with the unique occurrence property. In proving this we use the regional
construction defined in Section 3.2. Then in Section 5.6 we prove that when restricted
to 1-safe Petri nets, our event structure semantics for Petri nets agrees with the prime
event structure semantics for 1-safe Petri nets as given in Section 5.1.

In Section 5.7 we argue with the help of an example that the co-reflection result
of Winskel will not go through in the present setting. The reason is that, due to
auto-concurrency, the category of Petri nets is too rich in terms of objects and arrows.
We show that the desired co-reflection does go through if we restrict our attention to
either co-safe Petri nets or co-injective PN-morphisms. In Section 5.8 we discuss a
generalization of local event structures, called multiset event structures, which might
lead to a satisfactory event structure semantics for the category of all Petri nets. We
show that there exists an adjunction between the category of multiset event structures
with the unique occurrence property and the category of Petri nets. This adjunction is
however not a co-reflection. Finally, in Section 5.9 we have some concluding remarks
and mention some related work.

This chapter is based on [43], of which [42] is an extended abstract.

5.1 Prime Event Structures and 1-Safe Petri Nets

In this section a brief account is given of the prime event structure semantics for 1-safe
Petri nets. We follow here the approach from [98] which differs from the original set-up
in [66] by its explicit use of Mazurkiewicz’ trace theory. However, rather than defining
a map from arbitrary M-trace languages to prime event structures as in [98], we only
apply their construction to the M-trace languages associated with 1-safe Petri nets.

First we introduce prime event structures using the definition from [97, 98].

Definition 5.1.1

A prime event structure is a triple (E, <, #) where E is a set of events, <C F x E
is a partial order, the causal dependency relation, and # C FE x FE is a symmetric,
irreflexive relation, the conflict relation, satisfying

(P].) 60#61 S €9 = 60#62
(P2) Ve € E. |e is finite. O

Thus, by (P1), conflicts between events are inherited via the causal dependency
relation. The condition (P2) states that each event has a finite cause. Note that by
(P1) two causally related events are never in conflict.

With each prime event structure P = (FE,<,#), a binary concurrency relation
cop C £ x E can be associated which relates those events that are neither in conflict,
nor causally related. Thus

ccope’ & (e < e or e <eorefte).

It is interesting to observe that cop is a symmetric and irreflexive binary relation, and
hence an M-independence relation over F.
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A configuration of a prime event structure P = (F,<,#) is a subset of events
which contains for each of its events the cause of that event, and which does not
contain conflicting events.

In order to give a formal definition, let ¢ C K. We say that ¢ is downward-closed
iff

Ve, € E.((e €cand € <e)= ¢ €c).
We say that c is #-free iff
(cxe)nN#=0.

Then ¢ is a configuration iff ¢ is downward-closed and #-free. We use Cp to denote
the set of configurations of P and FCp to denote the set Cp N Prp(F) of all finite
configurations of P.

As immediate consequences of the above, we have that |e € FCp for each ¢ € F,
and whenever ¢, € Cp are such that (¢ x ¢) N # = ), then also cU ¢’ € Cp.

Given a 1-safe Petri net N = (5,7, W, M,,) with independence relation Indy C
T xT, wenow outline a method to define a prime event structure sp(/N) which captures
the branching and concurrent aspects of the behaviour of N.

The events of sp(IN) correspond to occurrences of transitions in N. Different oc-
currences of one transition should give rise to different events. Whether or not two
occurrences of one transition should be considered to be different, depends on the
histories (i.e. runs of the net) leading to those occurrences. Two occurrences of one
transition which have the same history represent the same event. Also two occurrences
of a transition of which the histories only differ in the order of occurrence of concurrent
transitions should be considered the same.

Transition occurrences are represented in terms of firing sequences. Then an equiv-
alence relation is defined over these occurrences on the basis of Indy, the independence
relation associated with a 1-safe Petri net NV as given in Definition 3.4.8, and the in-
duced M-equivalence relation ~y.

Let

sPIy ={pt | pt € FS}

be the set of sequential prime intervals of N. So sPIy is the set of non-empty firing
sequences of N. A sequential prime interval pt represents the occurrence of transition
t after the firing sequence p.

The equivalence relation ~yC sPIy x sPIy is defined as the least equivalence
relation which satisfies the following conditions (S1) and (S2).

(S1) (pt't € FS and (t,t') € Indyn) = pt ~n pt't.
(S2) (pt,p't € sPIy and p ~y p') = pt ~n p't.

Thus (S1) identifies sequential prime intervals which are connected by concurrent steps
as given by the independence relation Indy. The condition (S2) identifies sequential
prime intervals which have equivalent “pasts” under the M-equivalence relation ~ .
The conditions (S1) and (S2) together ensure that equivalence of sequential prime
intervals under ~y is completely determined by the “diamonds” in the M-trace be-
haviour of N.
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If N is clear from the context then we may omit the subscript ny in ~y. In what
follows we let for pt € sPIy, (pt)~, denote the equivalence class (under ~y) containing
pt, that is

(pt)my ="t € sPIN | p't ~n pt}.

The equivalence classes (pt)~, will be the events of sp(V).

In order to define the causal dependency and conflict relation of sp(N) we need
the following function evy : FS — Pp(sPIn/~y) which associates with each firing
sequence of N its set of events:

o con(A)=10

o con(pt) = eon(p) U {{pthuy }.

As the following lemma from [98] shows, all events of a firing sequence p have a unique
representative in p. In this sense evy(p) is a faithful representation of the events in p.

Lemma 5.1.2
Let N be a 1-safe Petri net and let pt € sPIn. Then (pt)., € evn(p). O

The next lemma, also from [98], shows that the branching behaviour of a 1-safe
Petri net N as given by the M-trace ordering of its M-traces is also captured by the
function evy: the M-traces of two firing sequences are ordered iff their associated sets
of events are ordered (under inclusion).

Lemma 5.1.3
Let N be a 1-safe Petri net and let p, p’ € FS. Then

[Plinay = [0l 1nay & evn(p) C evn(p).

a

Thus in particular p ~ p" iff evn(p) = evn(p’) for two firing sequences p and p’ of
a l-safe Petri net V.

Given a l-safe Petri net NV, a causal dependency relation and a conflict relation
over the transitions are defined in the following way.

An event e; causally depends on an event e; if e5 cannot occur without e; having
occurred first. That is, no firing sequence of N has e, as an event without having e; as
one of its events. The events e; and e, are in conflict if they cannot occur “together”.
That is, no firing sequence of N has both e; and e in its set of events.

Thus formally sp(N) is defined as follows.

Definition 5.1.4
Let N be a 1-safe Petri net. Then sp(N) = (E, <, #) is the prime event structure
associated with N where

o n={(pt)~y | pt € sPIN}
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a {<a><ab><abd>} {<b><ba><bad>}
{<a><ab>} {<b><ba>}
d
{<a>} {<b>}
b #

{<a><b><abd>}

{<a><b>}

; N

{<a>} {<b>}
Vs

Figure 5.1: The 1-safe Petri nets N3 and Ny with their associated prime event struc-
tures

o c < & Vpe FSy.(¢ € evn(p) = e € evn(p))
o cH#e & Vpec FSy. (e € con(p) = € & evn(p)). O

Example 5.1.5

In Figure 5.1 the 1-safe Petri nets N3 and N4 from Figure 2.3 and Figure 2.4
are depicted together with their associated prime event structures. The prime event
structures are depicted through their finite configurations, ordered under inclusion.
Both Petri nets have the same set of sequential prime intervals: sPIn, = sPIy, =
{a,b,ab, ba,abd,bad}. For N3 these sequential prime intervals all generate different
events. For Ny on the other hand, (a,b) € Indy, implies that a ~n, ba and b ~n, ab
by (S1). Since (a, b) € Indy, also impliesthat ab ~y, ba, we also have that abd ~y, bad
by (52). O

For the Petri nets N3 and N4 considered in the previous example the poset as given
by the M-trace behaviour (see Figure 4.1) is isomorphic to the poset of the (finite)
configurations of the associated prime event structure (ordered under inclusion). It
turns out that this holds for every 1-safe Petri net. This follows immediately from
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Lemma 5.1.3 and the following lemma [98] which characterizes the finite configurations
of the prime event structure associated with a 1-safe Petri net.

Lemma 5.1.6
Let N be a 1-safe Petri net with sp(N) = (F, <,#). Then

FC oy ={eon(p) | p € FS}.

a

Finally we note that also concurrency in a 1-safe Petri net is easily derivable from
its associated prime event structure. This follows from the next lemma (see [98])
stating that two events are in the concurrency relation of the prime event structure iff
the transitions generating these events are concurrent at some reachable marking.

Lemma 5.1.7
Let N be a 1-safe Petri net with sp(N) = (F,<,#) and let (pt).,,(p't')n, € E.
Then

<pt>NN COsp(N) <plt/>~N g
p"t, p"t" € sPIn. (p"t ~n pt and p"t" ~n p't" and (¢,1') € Indy).

5.2 Local Event Structures

The approach described in the previous section for 1-safe Petri nets does not work
for general Petri nets. As explained in Chapter 2, for general Petri nets conflict and
concurrency are no global relations. This leads us to consider local event structures
where concurrency is specified locally, i.e. per configuration. This is similar to the
context-dependent concurrency underlying the definition of local trace languages in
Section 4.2. The identification of the events associated with a Petri net leads however
to some new problems which will be discussed in Section 5.3.

Whereas for prime event structures the set of (finite) configurations is a derived
notion, a local event structure is defined directly as a family of configurations. This
is similar to the specification of Winskel’s general event structures through families
of configurations (see [96] and Chapter 6 of this thesis). In addition to this, such a
family of configurations of a local event structure is also equipped with an enabling
relation which specifies locally, for each configuration, the possible concurrency of (sets
of) events at that configuration. This enabling relation satisfies some simple axioms.

Definition 5.2.1

A local event structure is a triple ES = (E,C,F) where F is a set of events,
C C Pp(F)is a non-empty set of (finite) configurations (ranged over by ¢,c/, etc.), and
FC C x Pp(F) is an enabling relation satisfying:

(E0) 0 £c=3Je€cc—ele.
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(E1) cF 0.

(E2) ckFu=(cNu=0and Yo Cu.(cFvand cUvt u—wv)). O

Note that (E0) implies that if § # ¢ € C', then there exists ¢ € ¢ such that c—e € C.
Hence ) € C, because C' is non-empty. The axiom (E2) states that each event can
occur at most once, and that steps can be split arbitrarily into substeps. The axiom
(E2) also implies that if ¢ u then ¢ U v € C for all v C u.

Note that the axiom (E1) could have been replaced by the condition that the
enabling relation - is non-empty.

From now on we refer to local event structures as L-event structures.

Example 5.2.2
In Figure 5.2 three L-event structures £ESy, ES,, and £S5 are depicted. In depicting
an L-event structure (F,C,F) we use the following convention. If ¢ F u then we draw

a line between ¢ and ¢ U u in case |u| = 1 and we draw a dotted line between ¢ and
cUwu in case |u| > 2. O
/{f‘*bf ' {aba}
tacy 7 ‘ A ibe)
{ab} {ab} s N
{a} {b} {a} é {b} {a} {b}
~ ~
ESl ESZ

Figure 5.2: Three L-event structures

{ab} {ab}
{a} {b} {a} {b}
4 4
ES4 ESS

Figure 5.3: L-event structures with the same configurations
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We would now like to establish some preliminary properties of L-event structures.
Before doing so, we wish to emphasize that the inclusion relation between configura-
tions in the present set-up does not carry much information. Consider the L-event
structures ES; and ES shown in Figure 5.2) and the L-event structures ES4 and
ES5 depicted in Figure 5.3. Clearly the sets of configurations of these four L-event
structures are identical. They all have however a different enabling relation.

A partial ordering relation describing reachability between the configurations of
an L-event structure would carry more useful information. In order to define this
relation, first a multiset transition diagram is associated with each L-event structure.
The multiset transition relation is such that if a step is enabled at a configuration, then
there is a transition from this configuration to the configuration obtained by adding
the step to the original configuration.

Let ES = (E,C,F) be an L-event structure. Then (C, F,—gg) is the multiset
transition diagram associated with ES where — gg is given by:

c—psc & (chuand ¢ =cUu).

Note that by our drawing conventions for L-event structures, we actually depict the
multiset transition diagram associated with an L-event structure. Also note that there
are no enablings of multisets of events, so that in fact —gsC C' x Pp(E) x C.

The reachability relation CpsC C x C' is now defined by:
cCpscd & dpe (Pr(E)t.c s .

It is easy to see that the reachability relation Cgg is a partial ordering relation. In
what follows we omit the subscript gg in Cgg if ES is clear from the context.

Lemma 5.2.3
Let (F,C,F) be an L-event structure and let ¢ € C and eq,es € ¢ be such that
€1 # e9. Then

(1) 3¢ e C.d Ccand ((e; € ¢ and ¢ F e3) or (e2 € ¢ and ¢ F e1))

(2) I eC.dCcand (e; € = ex € ).

Proof.

In order to prove (1), we proceed by induction on k = |¢|. If £ = 2 then ¢ = {e1, €2}
and by (E0), ¢ — e; F €1 or ¢ — e F e3. In either case the required result follows.

If & > 2 then, again by (E0), there exists e € ¢ such that c —e b e. If e = ¢
or € = ey then let ¢ = ¢ — e. Otherwise the required ¢’ € C exists by the induction
hypothesis applied to ¢ — e.

(2) follows immediately from (1) and (E2). O
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By Lemma 5.2.3(2) L-event structures satisfy a coincidence freeness property, sim-
ilar to Winskel’s general event structures [96].

By (EO0), each configuration ¢ of an L-event structure ES = (E,C,F) is reachable
(in terms of Cpg) from . There may however be various routes from ) to ¢. Each such
route is given by a sequence of transitions from — gg. This motivates the introduction
of the set SFS gg of step firing sequences of ES and a function ¢f associating with each
step firing sequence the configuration it leads to.

Definition 5.2.4
Let ES = (E,C,F) be an L-event structure. The set SFSgs C (Pp(FE))" of step

firing sequences of ES and the function ¢f pg : SFSgps — Pp(FE) are given inductively
by:

o ) € SI'Sgs and CfES(Q)) =0

o (pe SFSps and ¢f gg(p) F u) = (pu € SFSgg and ¢f gg(pu) = ¢f pg(p)Uu). O

If the L-event structure KS is clear from the context, then we may omit the sub-
script gs in SFSgs and ¢f pg.

In this way we obtain the following characterization of the configurations of an
L-event structure.

Lemma 5.2.5
Let (F£,C,F) be an L-event structure. Then

1) Vpe SFS.(cf(p) € C and cf(p) = alph(p))

(1)
(2) € = {alph(p) | p € SFS}

(3) Yp,p' € SFS. (alph(p) = alph(p’) = (pu € SFS < p'u € SFY))
(4)

4) Vp e SFS.Ve € E.num.(p) < 1.
Proof.

(1) Let p € SFS. The proof is by induction on k& = [p|. If £ = 0 then p = and
hence ¢f(p) =0 € C and ¢f(p) = 0 = alph(p). Now assume that & > 0. Then
there exist p’ € SES and § # u € Pp(F) such that ¢f(p') F v and p = p'u.
Hence ¢f(p) = ¢f(p') Uu € C by (E2) and ¢f(p) = alph(p) by the induction
hypothesis applied to p'.

(2) If p € SFS then alph(p) = ¢f(p) € C by (1). Now let ¢ € C'. We proceed by
induction on k = |¢|. If & =0 then ¢ = ) and hence p = ) € SFS is such that
alph(p) = ¢. Now assume that k& > 0. Then by (E0) there exists e € ¢ such that
¢ — e F e. By the induction hypothesis applied to ¢ — e there exists p’ € SFS
such that alph(p') = ¢f(p’) = ¢ — e. Then p'e € SES by the definition of SFS
and alph(p'e) = c.



100 CHAPTER 5. AN EVENT STRUCTURE SEMANTICS FOR PETRI NETS

(3) Let p,p’ € SFS be such that alph(p) = alph(p’). If u =0 then pu, p'u € SFS by
(E1). If w # 0 then ¢f(p) = ¢f(p’) by (1) and hence pu € SFS iff ¢f(p) - u iff
p'u e SFS.

(4) Let p € SFS. The proof is by induction on k = |p|. If & = 0 then the claim
clearly holds. Now assume that & > 0. Then there exist p’ € SFS and () #
u € Pp(F) such that p = p'u and ¢f (p') b u. Then num.(p') < 1foralle € F
by the induction hypothesis applied to p’. Because ¢f(p') Nu = @ by (E2) and
alph(p’) = ¢f(p") by (1) we can now conclude that also num.(p) < 1 for all
ee b O

Consequently, for a given configuration ¢ of an L-event structure S, all step firing
sequences leading to it have the same set of events occurring in them, namely c.
Conversely, whenever two step firing sequences have the same set of events occurring
in them, they lead to the same configuration.

As the last point of this section, we introduce structure-preserving morphisms
between L-event structures.

Definition 5.2.6
Let ES; = (F;,Ci, ki), 1 = 1,2, be a pair of L-event structures. An LES-morphism
from ES; to ES, is a partial function f: Fy; — F, such that

\V/C € 01Vu - PF(El) (C |_1 U = f(C) |_2 f(U))
O

Let, for an arbitrary L-event structure ES, idps denote the identity function on its
events. Then an LES-morphism f from ES; = (E1,C1,b1) to ESy = (F2,Cy, ) is
an LES-isomorphism iff there exists an LES-morphism ¢ from ES, to ES; such that
go [ =1idgs, and fog=idgs,. Itis easy to see that f is an LES-isomorphism from
ES; to ES, iff

(1) fis a bijection

(2) ek u e fle) b2 f(u).
If £S; and ES, are LES-isomorphic then this is denoted by ES; = ES,.

We conclude with some properties of LES-morphisms which will be useful in later
sections.
The first property shows that LES-morphisms are injective on concurrent steps.

Lemma 5.2.7

Let f be an LES-morphism from (Fy,Cy,bq) to (Ey, Ca,b2) and let ¢ € €7 and
€1,€5 € ¢ be such that e; # ey and both f(ey) and f(e2) are defined. Then f(e;) #
fle2).

Proof.
By Lemma 5.2.3(1) we may assume without loss of generality that there exists
¢ C ¢ such that ¢; € ¢ and ¢ Fy e;. By the definition of an LES-morphism we then

have f(c') 5 f(ez) and so f(ez) € f(c') by (E2), and f(e1) € f(<'). -
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Secondly, LES-morphisms are behaviour-preserving with respect to step firing se-
quences.

Lemma 5.2.8
Let f be an LES-morphism from FES; = (Fy,Cq,F1) to ESy = (F2, Cy,F2). Then
F(SFSgs,) C SFSgs,.

Proof.

Let p € SFSgs,. We prove by induction on |p| that f(p) € SESgs,. If p =0 then
this is clear, so assume that there exist p’ € SFSgg, and § # u € Pp(F;) such that p =
p'u. Then alph(p') b1 u. Hence f(alph(p')) 2 f(u) because f is an LES-morphism.
Since f(p') € SFSgs, by the induction hypothesis and f(alph(p’)) = alph(f(p")) this
implies that f(p")f(u) = f(p) € SFSgs,. O

5.3 Equivalence of Prime Intervals

In this section a new equivalence relation over prime intervals is defined. This equiva-
lence relation will be used in Section 5.4 for defining a map from Petri nets to L-event
structures. In this section the equivalence relation is used for defining the unique
occurrence property of L-event structures.

For a 1-safe Petri net the events in its associated prime event structure can be ex-
tracted from the M-trace behaviour as equivalence classes of sequential prime intervals.
The equivalence of sequential prime intervals is then determined by the “diamonds”
formed by concurrent steps in the M-trace behaviour. This construction ensures that
the prime event structure associated with a 1-safe Petri net is deterministicin the sense
that at each configuration different enabled events correspond to different transitions
of the Petri net.

For general Petri nets, a similar approach with L-traces instead of M-traces does
not work. Consider, e.g., the L-trace behaviour of the Petri net Ng as depicted in
Figure 4.5. Then all prime intervals corresponding to a are connected by diamonds, and
also all prime intervals corresponding to b are connected by diamonds. Now consider
the Petri net Nyg depicted in Figure 5.4 together with its L-trace behaviour. This Petri
net has a transition d added so that d can only occur if both a and b have occurred, but
¢ has not yet occurred. The two prime intervals corresponding to d are not connected
by diamonds so they would correspond to different events. On the other hand, the
history of both occurrences is the same because the prime intervals corresponding to
a are equivalent and the prime intervals corresponding to b are equivalent. This then
leads to non-determinism in the sense that at the configuration corresponding to this
history two different events are enabled, while both correspond to the same transition
d of the Petri net.

The above considerations lead us to consider in this section a new equivalence rela-
tion over prime intervals. The equivalence relation we will use to identify occurrences
of a transition is, like condition (S1) in Section 5.1, still based on the diamond property
of concurrency. But instead of lifting simply the M-trace equivalence of (52), used to



102 CHAPTER 5. AN EVENT STRUCTURE SEMANTICS FOR PETRI NETS

[abd] [abc] [bad]

< \ / b2y
\ (d /
[b]

Figure 5.4: The Petri net Nyg with its L-trace behaviour

identify transition occurrences with equivalent histories, to the level of L-trace equiv-
alence, we have to follow a more complicated approach. The idea is still to identify
transition occurrences with equivalent histories. But now it is taken into account that
this equivalence may not be a direct consequence of concurrency of some events in
these histories, but caused by possible concurrency in another context. In Section 5.4
this equivalence relation is then used for defining an event structure semantics for Petri
nets.

The equivalence relation is here however not defined in terms of the (multiset)
firing sequences of Petri nets, but rather in the abstract setting of step sequences,
because the same equivalence relation is also used in this section for defining the
crucial unique occurrence property of L-event structures. Whereas in general an event
in an L-event structure may have different (non-equivalent) occurrences, the unique
occurrence property states that there is a bijection between the events in an L-event
structure and their occurrences. In other words, each event has a unique occurrence.
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Instead of using sequential prime intervals as in Section 5.1, we use here prime
intervals with respect to step sequences.

In order to define the equivalence relation, let X be an alphabet and let L C
(Pr(X))T be a set of step sequences satisfying the following two conditions.

(L1) pue L= pe L.

(L2) pue L = VYo Cu.pv(u—v) € L.

The set of prime intervals of L, denoted by Pl is given by:
Pl = {pa | pa € L}.

Let inty, : L — Pp(PI) be the function which maps each step sequence to the set of
prime intervals in that sequence. Thus inty is given inductively by:

[ ] th(@) = @

o intr(pu) = intr(p)U{pa|a € u}.

Note that inty, is well-defined, because if pu € L, then also p € L by (L1) and pa € L
for all @ € u by (L2) and (L1). If L is clear from the context, then we may omit the
subscript ;, in Ply, and inty,.

Our desired equivalence relation over prime intervals should be L-consistent in the
sense that it identifies prime intervals which are connected by concurrent steps and
that it identifies prime intervals with the same history.

Given an arbitrary equivalence relation R C Pl x PI, let for pa € PI, {(pa)r be
the equivalence class (under R) containing pa, that is

(payr = {p'd’ € PI | p'd’ R pa}.

Furthermore, let pastg : L — Pp(PI/R), the function which maps each step sequence
to the set of equivalence classes of prime intervals in that sequence, be given by:

pastg(p) = {(p'a)r | p'a € int(p)}.

Definition 5.3.1

Let X be an alphabet and let L C (Pp(X))" be a set of step sequences satisfying
(L1) and (L2). Then an equivalence relation R C PI x PI is L-consistent if it satisfies
the following conditions.

(C1) (pu € L and a € u) = pa Rp(u — a)a.
(C2) pa.p'a € Pl = (pastp(p) = pastp(p') = pa R p'a). O

Note that the condition (C1) in the above definition is well-defined, because when-
ever pu € L and a € u, then by (L2) pa(u — a), p(u — a)a € L and hence by (L1) also
pa € L.

The condition (C2) demands that prime intervals pa, p’a which have R-equivalent
pasts in the sense that the same R-equivalent prime intervals occur in p and p’, should
in turn be R-equivalent.

In general there may be infinitely many equivalence relations which are L-consistent.
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Lemma 5.3.2

Let X be an alphabet, let L C (Pp(X))" be a set of step sequences satisfying (L1)
and (L2), and let K = {R C PI x PI | R is an L-consistent equivalence relation }.
Then K # ) and VK € K.

Proof.

Since PI x PI is clearly an equivalence relation which is L-consistent, we have that
K #0.

Now let & = K. Then it is clear that R is an equivalence relation. Suppose
pu € L and a € u. Then pa R p(u — a)a for all R € K because each R € K satisfies
(C1). Hence also pafx’p(u — a)a.

In order to prove that R satisfies (C2), let pa, p'a € PI be such that pasty(p) =
past 5(p'). It suffices to prove that pastp(p) = pastyp(p’) for every R € K. Because in
that case pa R p'a for every R € K and hence pa fx’p’a.

So, let R € K and suppose (prai)r € pastp(p). Then there exists pyasy € int(p)
such that (pia1)r = (paaz)r. We then also have that (pyas) s € pastz(p) = pastz(p').
Then there exists psaz € int(p') such that (psas)s = (psas)s. Hence also (pszas)r €
pastp(p'). Moreover, (psaz)r = (psas)r because R C R. This proves that (pia1)r €
pastp(p'). Similarly it can be proved that pasty(p’) C pastgy(p).

This proves that pastp(p) = pastp(p’) for all R € K. O

Given an alphabet X and a set of step sequences L C (Pr(X))* satisfying (L1)
and (L2), there exists by the above lemma a least equivalence relation contained in
PI x PI which is L-consistent. This equivalence relation is denoted by R in the proof
of Lemma 5.3.2.

Definition 5.3.3
Let X be an alphabet, let L C (Pp(X))" be a set of step sequences satisfying (L1)

and (L2). Then ~;,C PI x PI is the least equivalence relation which is L-consistent.
O

In what follows we write (pa)r and past; rather than (pa)r, and past, respec-
tively. If ~j is the only equivalence relation under consideration, then we may even
omit the subscript .

Lemma 5.3.4
Let X be an alphabet, let L C (Pp(X))" be a set of step sequences satisfying (L1)
and (L2), and let pyaq, poas € PI be such that piay =y paas. Then

(1) a1 = as and NUM g, (p1) = numaQ(pz)

(2) prar =p paay whenever L' C (Pp(X))" is such that L' satisfies (L1) and (L2)
and L C [,
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Proof.

In order to prove (1), define the equivalence relation R C PI x PI by: pa R p'a’ iff
a = da" and num,(p) = numg(p'). It is sufficient to prove that R is L-consistent. Then
the required result follows from the fact that ~;C R.

Clearly, R satisfies (C1). Let pa, p’a € PI be such that pasty(p) = pastp(p’). We
first want to argue that numg,(p’) > numy(p). If num,(p) = 0 then this is trivial,
so assume that num,(p) > 0. Then there exists pia € int(p) such that num,(p1) =
numg(p) — 1. Then (p1a)r € pastp(p) = pastr(p’). Hence there exists paa € int(p')
such that (pra)r = (p2a)r which implies that num,(p1) = num,(p2). We now have
numg(p') > numg(p2) + 1 = numy(p1) + 1 = numy(p). Similarly we can prove that
numg(p') < numy(p) and thus numy(p) = num,(p'). Consequently pa R p’a which
implies that R satisfies (C2).

Now in order to prove (2), let L' C (Pr(X))* be such that L C L' and L’ satisfies
(L1) and (L2).

Define the equivalence relation R C Pl x Pl by: pa R p'd’ iff pa ~p p'd’. 1t is
sufficient to prove that R is L-consistent because then ~;C R.

Clearly, R satisfies (C1). In order to prove (C2), let pa,p'a € PI;, be such that
pastp(p) = pastp(p'). It is sufficient to show that past;,(p) = past;,(p'), because a2y,
satisfies (C2).

Let (psas)rs € pastp(p). Then there exists psay € intp(p) = intr(p) with
(psas)r = (paas)p. Then also (psas)r € pastr(p) = pastp(p’). Hence there ex-
ists psas € intp(p') = intp(p') with (psas)r = (psas)r. Then pyas ~p psas by the
definition of R. Moreover, (psas)r € past;(p’'). This proves that (psas)r € past;(p').
Similarly it can be proved that past;.(p’) C past;(p) and thus past;,(p) = past.(p').
O

By Lemma 5.1.2, the events associated with a 1-safe Petri net can occur at most
once in a firing sequence. For the equivalence classes of ~; we have a similar result.

Lemma 5.3.5
Let X be an alphabet, let L C (Pp(X))" be a set of step sequences satisfying (L1)
and (L2), and let pa € PI. Then (pa)r, & past;(p).

Proof.

Assume to the contrary that (pa); € past;(p). Then there exists p'a’ € int(p)
with pa ~p, p'a’. Then by Lemma 5.3.4(1), ¢ = o' and num,(p) = numq(p'). On the
other hand, p'a’ € int(p) implies that numy(p’) < numq(p), a contradiction. Hence
we must have that (pa)r, & past;(p). 0

To conclude this section we now use the equivalence relation = to define the
unique occurrence property for L-event structures. This unique occurrence property
states that for each L-event structure ES satisfying this property and for each event
of this L-event structure, all occurrences of this event are essentially the same. By
the following lemma, which follows immediately from the definition of the set of step
firing sequences of an L-event structure, we may indeed use the equivalence relation

RSFS pe -
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Lemma 5.3.6
Let £S = (F,C,F) be an L-event structure. Then SFSps C (Pp(F))" satisfies the
conditions (L1) and (1.2). O

Hence given an L-event structure IS we have the equivalence relation ~grs,.. In
what follows we write Plgg, intgs, ~gs, (pe)rs, and pastpg rather than Plgps .,

INESFS pg > RESFS g (P€)mgs and past,, . respectively.

The unique occurrence property of local event structures is now defined in terms
of the equivalence relation ~pg.

Definition 5.3.7
An L-event structure ES = (E,C,F) has the unique occurrence property if

(Ul) Ve € EEIpe € P[ES

(U2) Vpie, pae € Plgg. pre ~gg poe. 0

From now on L-event structures satisfying the unique occurrence property will be
referred to as UL-event structures.

The condition (Ul) guarantees that each event of an Ul-event structure ES has
at least one occurrence, while condition (U2) states that all occurrences of an event
are the same (under ~pg). Thus for a UL-event structure ES there exists a bijective
correspondence between its events and the equivalence classes of its prime intervals
under ~gg.

As the following lemma shows, the unique occurrence property is preserved under
LES-isomorphisms.

Lemma 5.3.8
Let ES;, 1 =1,2, be a pair of L-event structures such that £S; = ES,. Then ES;
has the unique occurrence property iff S, has the unique occurrence property.

Proof.
Follows easily from Lemma 5.2.8. O

Example 5.3.9

From the L-event structures from Example 5.2.2, £S5 is not an UL-event structure.
Both ES; and ESj3 are UL-event structures. In ESs5, be ~pg, ¢ and ¢b ~gg, b by (C1),
and hence past pg, (bc) = pastgg, (cb). This implies that bca ~gg, cba by (C2). Then
a Rgs, ca Npg, cba ~pg, bea ~gs, ba by (Cl). Similarly, b ~gg, ab, and hence
pastpg,(ab) = pastyg, (ba). Now abd ~gs, bad by (C2), even though {a,b} is not
enabled at (). O
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5.4 L-Event Structures and Petri Nets

In this section we show how an L-event structure can be associated with every Petri
net. The construction is based on the equivalence relation ~grg, defined in Section 5.3
over the prime intervals Plgps, = {pt | pt € SFSn} associated with the set SFSy of
step firing sequences of a Petri net N. Note that SFSy satisfies the conditions (L1)
and (L.2) from Section 5.3 which implies that ~gpg, can be defined. Since associating
an L-event structure with a Petri net N is done on the basis of SFSy rather than
MFS n, possible auto-concurrency in N is not taken into account. In this sense our
event structure semantics is restricted. In Section 5.7 and Section 5.8 we will say more
about this restriction.

In what follows we write Ply, intn, &y, (pt)n, and pasty rather than Plgps,,
INLSES s RSFS s (Pl)ay . and pasty, , respectively.

Using these notions we first define for each Petri net NV an L-event structure nu(N).
Then we prove that nu(N) satisfies the unique occurrence property defined in Sec-
tion 5.3 and is thus an UL-event structure.

Definition 5.4.1
Let N be a Petri net. Then nu(N) = (F,C,F) where

o o= {{pt)n|pt € Ply}
o C'={pasty(p)|p€ SFSn}
o FC C x Pp(F) is given by:

chFus dpv e SESy. (pasty(p) = cand u = {{pt)n | t € v}).

Lemma 5.4.2
Let N be a Petri net. Then nu(N) = (F,C,F) is an L-event structure.

Proof.

Let () #£ ¢ € C. Then there exists pu € SFSy such that v # 0 and ¢ = past y(pu).
Let t € u. Then p(u—t)t € SFSy. Hence pasty(p(u—1)) F (p(u—1)t)n. By condition
(C1) we have that pt =~y p(u — t)t. Then (pt)n & pasty(p(u — 1)) by Lemma 5.3.5.
Hence pasty(p(u — 1)) = pasty(pu) — (pt)n and thus ¢ — (pt)ny F (pt)n. This proves
that nu(N) satisfies (EO).

Since pl) € SESy for all p € SESx, we have that é F 0, for all ¢ € €, and so nu(N)
also satisfies (E1).

Let ¢ € C and 4 € Pp(F) be such that ¢ F 4. Let pu € SFSy be such that
pasty(p) = ¢ and & = {{pt)n | t € u}. Then ¢N & = ) by Lemma 5.3.5. Now let
0 C u. Let v C u be such that © = {(pt)n | £ € v}. Then pv(u —v) € SFSx. Hence
¢kvand cUo {{pvt)n |t €u—v}. Forallt € u—wv,plvUt) € SFSy and so by
condition (C1), pt Ay pvt. Therefore {(pvt)ny |t € u — v} = & — 0. This proves that
nu(N) satisfies (E2). 0
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a {<a><ab><abd>} {<b><ba><bad>}
{<a><ab>} {<b><ba>}
d
{<a>} {<b>}
b #

{<a><b><abd>}

{<a><b>}

; N

{<a>} | {<b>}

Figure 5.5: The 1-safe Petri nets N3 and Ny with their associated L-event structures

Example 5.4.3

In Figure 5.5 the 1-safe Petri nets N3 and N, are depicted together with the -
event structures nu(Ns3) and nu(Ny). The L-event structure nu(N3) has six events,
for each of which there exists exactly one equivalence class of prime intervals (under
R nu(Nz)). Hence nu(Ns) has the unique occurrence property. Also in nu(Ny) there is
a bijective correspondence between its set of events and its set of equivalence classes
of prime intervals: both consist of three elements.

Let Nip be the Petri net depicted in Figure 5.4. The L-event structure nu(Nig)
is £S5 from Example 5.2.2 (where the unique equivalence class corresponding to each
transition has been replaced by the transition itself). Thus, also nu(Ny) has the
unique occurrence property. O

The L-event structures associated with the Petri nets in Example 5.4.3 all have
the unique occurrence property. Now we turn to the proof that for any Petri net NV,
the L-event structure nu(N) = (F,C,F) has the unique occurrence property. First it
is shown how the set of step firing sequences of nu(/N) can be derived from the set of
step firing sequences of N by means of a function seqy which associates with every
step firing sequence of N a step sequence over K.
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Define the function seqy : SFSy — (Pp(FE))" inductively by:
[ ] SeqN(Q)) - @

o seqn(pu) = seqn(p){(pt)n |t € u}.

If the Petri net N is clear from the context, then we may omit the subscript x in seqy.

Lemma 5.4.4
Let N = (S,T,W, M;,) be a Petri net. Then seq(SFSn) = SES ).

Proof.

Let nu(N) = (E,C,F). Let p € SFSy. We prove that seq(p) € SFS,,v) and
cf (seq(p)) = pasty(p) by induction on |p|. If p = ) then this is clear, so assume
that p = p'u with p’ € SFSy and § # w € Pp(T). By the induction hypothesis
seq(p') € SES vy and ¢f (seq(p')) = pasty(p'). We also have, by the definition of
=, that pasty(p') @ where & = {(p't)n | t € u}. Hence seq(p')i € SFS,, ) and
of (seq(p')it) = pasty(p') U di. Since seq(p')i = seq(p) and pasty(p') U@ = past y(p),
we can now conclude that seq(p) € SFS, vy and cf (seq(p)) = pasty(p).

Now let p € SFS,,(n). We prove by induction on |p| that there exists p € SFSx
with seq(p) = p and pasty(p) = alph(p). If p = 0 then p = @ is as required, so
assume that p = p/a with p/ € SES vy and ) # 4 € Pp(L). By the induction
hypothesis there exists p/ € SFSy such that seq(p’) = p' and pasty(p') = alph(p').
Since pasty(p') F @ there exist p; € SFSy and u € Pp(T) such that pju € SFSy,
pasty(p1) = pasty(p'), and @ = {(p1t)n | t € u}. From pasty(p1) = pasty(p’) and
Lemma 5.3.4(1) it easily follows that num.(p1) = num(p’) for all t € T and hence
p1 and p’ lead to the same marking. Then we know from pju € SFSy that also
p'u € SESN. Moreover, (p1t)n = </Z’t>N for all ¢ € u by condition (C2). Hence
seq(p'u) = seq(p){{p't)n | L € u} = p't and pasty(p'u) = pasty(p") U {(p't)y | 1 €
u} = alph(p') UG = alph(p't). O

The above lemma allows us to characterize int,,(v), the function associating with
each step firing sequence of nu(N) its set of prime intervals, as follows.

Lemma 5.4.5
Let N = (S,T,W, M,,) be a Petri net and let p € SFSy. Then

int vy (seq(p)) = {seq(p')(p't)n | p't € intn(p)}.

Proof.

If p = 0 then the claim trivially holds, so assume that p = pyu with p; € SFSy and
0 # u € Pp(T) and suppose that mtnu(N)(seq(pl)) = {Aseq(Ap’)<p’t>N | p't € intn(p1)}-
Then int,,v)(seq(p)) = intyyny(seq(pr)) U {seq(pr)t | t € {(pl)n | 1 € u}} =
{seq(p)(p't)n | p't € intn(p)}- O
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Lemma 5.4.4 implies a close relationship between the prime intervals of a Petri net
N and the prime intervals of nu(N):

Pl = {seq(p)(pt)n | pt € PIn}.

Using Lemma 5.4.4 and Lemma 5.4.5 it is shown next that there is also a strong cor-
respondence between the equivalence classes of prime intervals under ~y and ~,,(v).

Lemma 5.4.6
Let N be a Petri net and let pyty, poty € Ply. Then

piti RN paty & seq(pr)(piti)n R nu(N) seq(p2)(pata) v

Proof.

If seq(p1)(pit1) N Rnuv) seq(p2)(patz) N, then by Lemma 5.3.4(1) (p1t1)n = (pat2)n

In order to prove the implication in the other direction, assume that (pit1)y =
(pat2)n. Define the equivalence relation R C PlIy x Ply by: pt R p't’ iff
seq(p)(pl)n ~auvy seq(p'){p't')n. Suppose that R is SEFSy-consistent. Since ~y is
the least equivalence relation which is SES y-consistent it follows that ~xyC K. Hence
pit1 R paty and thus, by the definition of R, seq(p1)(p1t1)n nuvy seq(p2)(p2ta) N

In order to prove that R satisfies (C1), suppose pu € SFSy and t € u. Since &y sat-
isfies (C1), we have (pt)n = (p(u—t)t)n. We also have, by Lemma 5.4.4, that seq(pu) €
SFS u(ny. Combining this with ~,,(v) satisfies (C1) leads to seq(p)(pl)n ~pu(v)
seq(p)(u—{(pt)n){pt)ny where & = {(pt')n | t' € u}, because . Since seq(p)(t—(pt)n) =
seq(p(u — 1)), we can now conclude by the definition of R that pt R p(u — t)t. This
proves that R satisfies (C1).

Now suppose pt,p't € Ply are such that pastp(p) = pastp(p’). In order to
prove that pt R p't, we must show that seq(p)(pt)n ~nun) seq(p’)(p't)n. Because
Ny satisfies (C2), it suffices to prove that past,,)(seq(p)) = past,,v)(seq(p’))
and (pt)n = (p't)n .

First we prove that past,,v)(seq(p)) = past,,ny(seq(p’)). Suppose (piti)au(n) €

</33f3>m(N). By Lemma 5.4.5 there exists psts € int(p) such that psts = seq(p 3){psts)n.
Then (psts)r € pastp(p) = pastp(p’). Hence there exists psts € int(p’) such that
(psts)r = (pata)r. Then, again by Lemma 5.4.5, seq(ps)(pats)n € int(seq(p’)). More-
over, psls R u(N) 5€q(pa)(pats)n by the definition of R. Hence <[)1f1>nu(]\7) =
(564(p1)prta) ) w(xy € pastoy(seq(s')). This proves that past,uy(seq(p)) ©
past,,ny(seq(p’)). By a symmetric argument we can show that past,,n(seq(p)) C
past vy (seq(p)) and thus past,, ) (seq(p)) = past,, ) (seq(p)).

In order to prove that (pt)n = (p't)n, it suffices to prove that pasty(p) = past y(p'
because ~zy satisfies (C2). Let (psts)n € pasty(p). Then there exists psty € int(p
such that (psts)ny = (pats)n. By Lemma 5.4.5 we now have that pals € int(seq(p

) f1
pastnu(N)(seq(p)). Then there exists psts € int(seq(p)) such that <p1t1>nu(N)
(p

)

= =

where ps = seq(ps) and — (pats)n. Hence <[)4f4>nu(]\r) € pastnu(N)(seq(p))
past ., ny(seq(p’)).  Then there exists psts € int(seq(p')) such that <[)4f4>nu( )
</35f5>nu(N). By Lemma 5.3.4(1) {4 = t5. By Lemma 5.4.5 there exists psts € int(p
such that ps = seq(ps) and s = (psts)n. Then s € past y(p'), and so (psts)n

—
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ty = 15 € pasty(p'). This proves that pasty(p) C pasty(p’). Similarly we have that

past () C pasty(p) and thus pasty(p) = pasty (7).
This finishes the proof that R satisfies (C2). We can conclude that

seq(p1)(prti) N Ry seq(p2)(pala) . 0

This leads to the desired result that for each Petri net N, nu(N) has the unique
occurrence property.

Theorem 5.4.7
Let N = (S,T,W, M,,) be a Petri net. Then nu(N) is an UL-event structure.

Proof.

By Lemma 5.4.2, nu(N) is an L-event structure. We must verify that nu(N) sat-
isfies the conditions (U1l) and (U2) specified in the definition of the unique occurrence
property.

Let nu(N) = (E,C,F). If (pt)n € E then pt € SFSy and hence pasty(p) F (pt)n.
Hence nu(AN) s;atisﬁes (Ul). Now in order to prove (U2), let prty, pats € Pl () be
such that t; = f5. By Lemma 5.4.4 there exist py, py € SFSy and t1,t; € T such that
pit1, pata € SESN, p1 = seq(p1), p2 = seq(p2), t = (p1t1)n, and ty = (pat2)n. Since

t, = t5 we then have by Lemma 5.4.6, that pf, A (V) pata. O

One of the reasons for giving an event structure semantics for Petri nets is that we
want to distinguish between different occurrences of transitions in a Petri net. The fact
proved in Theorem 5.4.7 that the L-event structures yielded by nu have the unique
occurrence property ensures that in the L-event structure associated with a Petri net
the transition occurrences cannot be distinguished any further.

To conclude this section we give the event structure semantics for one of our running
examples.

Example 5.4.8

In Figure 5.6 the UlL-event structure associated with the Petri net Ny is depicted.
After each event representing an occurrence of a, both an event representing the oc-
currence of b and an event representing the occurrence of ¢ are enabled. Whereas all
events representing occurrences of b are different, due to conflicts in the Petri net, the
events representing occurrences of ¢ are the same. 0

5.5 PN-Event Structures

In [66] it is not only shown how to associate a prime event structure with each 1-safe
Petri net, but also a map from prime event structures to 1-safe Petri nets is given.
Our aim is to lift this construction also here; in other words, to set up a map from
UL-event structures to Petri nets. It turns out that the construction we have in mind
works for all L-event structures. Hence we construct a map from L-event structures
to Petri nets.

The map from L-event structures to Petri nets is used in the proof of the main
result of this section which states that all UL-event structures can be obtained (up
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a
N

{<a>,<aa>,<aab><aabc>,<aabcc>}

\{<a> A <aacc>} {<a>,<aa>,<aab>,<aabc>}

Figure 5.6: The Petri net Ny with its associated L-event structure

to isomorphism) from Petri nets through the map nu. Hence the class of L-event
structures yielded by Petri nets is exactly the class of UL-event structures. Thus
whereas for the PN-transition systems and the PN-trace languages regional axioms
are needed for their characterization, for L-event structures the unique occurrence
property suffices to characterize the PN-event structures.

Definition 5.5.1
An L-event structure FS is a PN-event structure if there exists a Petri net N such

that £S = nu(N). 0O

Given a prime event structure (/, <,#), the causality relation < and the conflict
relation # make it possible in [66] to quickly manufacture a suitable set of places.
It is then easy to associate, in a canonical way, a 1-safe Petri net with each prime
event structure. In the setting of general Petri nets, it is far from clear what causality,
concurrency, and conflict could mean. Fortunately, we can use again the regional
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construction as defined in Section 3.2 by representing [-event structures as multiset
transition systems.

Let ES = (E,C,F) be an L-event structure. Then define the multiset transition
system et(ES) = (C, E,—gs,0) where (C, £, — gg) is the multiset transition dia-
gram associated with ES as defined in Section 5.2. Recall that — psC C' x Pr(E)x C
is given by:

c—psc & (chuand ¢ =cUu).

Thus we can speak now of the regions of ES. So a region of ES is a function

r:CUFE — NU(N x N) satisfying the following conditions.

(1) Vee C.r(c) € N and Ve € E.r(e) € N x N.
(2) cFu=(r(c) > Y., eand r(cUu) =r(c)+ X e, (e —"€)).
From now on we write Rps instead of R (gs).

Definition 5.5.2
The map en from L-event structures to Petri nets is given by en = tn o et. Hence

en(ES) = (Rgs, E, W, M;,) where
o W:(Rgs x F)U(E xRgsg) — N is such that

Vr € Rgs.Ve € E.(W(r,e)="e and W(e,r) =¢")

o M., : Rrps — N is such that
Vr € Rgs. Mm(r) = T(@)
O

The following lemma shows that en(FES) has the same step firing sequences as ES.
Moreover, it turns out that MFS.,(gs)y = SIS ., (ps) and so en(ES) is a co-safe Petri
net. While it easily follows that SFSgps C SIS .. (ps), the converse inclusion requires a
more complicated proof showing that FS has enough regions to prevent the existence
of “wrong” step firing sequences in SF'S.,(gs)-.

Lemma 5.5.3
Let ES = (£,C,F) be an L-event structure. Then SFSps = MFS.,(zs) =
SFSen(ES)-

Proof.
Let en(ES) = (Rgs, E,W, M,;,). Let for each e € F the function r. : C U F —

N U (N x N) be given by:

(1,

(0,

) ife=ce

7 AN 1
(1) V'€ E.re(e') = { 0) otherwise

(2) Vee C.re(c) = 1.
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Then each r. is a non-trivial region of ES, and so it is clear that MFS,,(gs) =
SFSen(ES)-

Suppose p € SFSps. Then () —%5pg. This implies by Lemma 3.2.7(2) that p €
MFSen(ES) = SFSen(ES)-

Conversely, suppose that p € SFS.,(gs). We prove by induction on [p| that p €
SIS s and, for all r € Rps, M,(r) = r(alph(p)). If p = 0 then this is clear, so
assume that p = p'u with p’ € SFS,, (gsy and § # v € Pr(K). By the induction
hypothesis p’ € SFS gs and, for all r € Rpg, M, (r) = r(alph(p')). We first prove that
alph(p’) Nu = 0.

Suppose e € alph(p'). Then define r{e) : C U E — N U (N x N) as follows.

, ) L0) =
(1) Ye' € E.r{e)(¢) = { 2070; otherwise.
0 ifecec

(2) Yee C.r(e)(c) = {

1 otherwise.

Claim 1. r(e) € Rpys.

Let us assume that Claim 1 holds. Then we have M, (r(e)) = r(e)(alph(p’)) = 0. In
addition we know that W(r(e),e) = 1 and, because p'u € SFS ., (ks), we also know
that M, (r(e)) > > ., W(r(e),e’). All this leads to the conclusion that e ¢ u. This
proves that alph(p’) Nu = 0.

Now we observe that p = p'u € SFSgg if alph(p’) b u. So denote ¢ = alph(p’) and
assume that ¢ F u does not hold. This leads to a contradiction as we show next.

Define r(u,c) : C UE — N U (N x N) as follows.

(1,0) ifeec
(1) Ye € E.r{u,c)(e) = { (1,1) ife€eu
(0,1) otherwise.

(2) Ve € Crlue)() = [e + Ju] = 1+ X (e —r0le),

Claim 2. 7r{u,c) € Rgs.

Assume that Claim 2 holds. Then M, (r{u,c)) = r{u,c)(c) = |Ju| =1 < |u| =
Seen e = S, W(r{u,c),¢), a contradiction with p'u € SFS .n(gsy. Thus ¢ = u
and hence p = p'u € SFS gg. Moreover, r(alph(p)) = r(cUu) =r(c)+ Y cu(e" —"€) =
My(r)+ Y co(W(e,r) = Wi(r,e)) = M,(r) for all r € Rpgs.

Thus if we can prove Claim 1 and Claim 2, then we can conclude that SFSgs =

SFS o0 (i5)-

Proof of Claim 1.

To simplify the notation we write r instead of r{e). Suppose ¢’ - v. Since ¢ Nv = {)
by (E2) we then have that (¢’ Uv) = r(¢') — [vNe| = r(d) + X, (€7 =€) and
r(d)=r(dUv)+JvNnel > |vNel =Y., "€¢. Hencer is a region of IS which is
clearly non-trivial. This proves Claim 1.
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Proof of Claim 2.

In order to simplify the notation, we write r instead of r(u,c) in this proof.

Suppose ¢/ € C and v € Pp(F) are such that ¢ F v. Since ¢ Nv = @ by (E2)
we immediately have that r(¢' Uv) = r(c') + X.c,(¢" —"¢). Now we must prove that
r(d) 2 Leeu e

Let n = |[vN(cUu)| = 3., "e. Then we must prove that r(¢’) > n. Set k = |/ Nu|
and j = | Neland m = [ N(E — (cUu))|. SincecNu =0 and ¢ Nov =0 it
follows that n < |¢| + |u| — k — j. Moreover, by the definition of r, it is clear that
r(d)=le|+ul—1+k+m—k—j=lc|+|ul/—14+m—j. Henceif m+k > 1 we are
done. Therefore we assume in the rest of the proof that m = k£ = 0. In other words,
we assume that ¢ C ¢. This leads to the equation r(¢') = |¢| 4 |u| — 1 — |¢|. On the
other hand, n < |e|+ |u| — |¢|. If n < |e| + |u] — |¢/| then we at once get r(¢') > n. We
now wish to argue that n = |¢| 4 |u| — |¢| leads to a contradiction.

To see this, suppose that n = |¢| + |u| — |¢/|. Let vy = v N e and vy = vNu. Then
from ¢ Nv =0 and ¢ C ¢ it follows that vy = ¢ — ¢ and vy, = u. Since ¢’ F v we also
have that ¢ F (v Uwy) by (E2). Again by (E2) we now know that (¢’ Uvy) F vy, Since
' Uvy = ¢ and vy = u this leads to a contradiction. This proves that n = |¢| + |u| — ||
is not possible, so r(c¢') > n.

This proves that r is a region of ES. Since u # (), r is also non-trivial. This finishes
the proof of Claim 2. O

From the proof of the above lemma it follows that en(ES) is not just a co-safe
Petri net. In fact en(FES) has enough places to ensure that it is a locally sequential
Petri net.

A locally sequential Petri net is a Petri net N = (5,7, W, M,,) where for each
t € T there exists a “private” place s; € S such that M;,(s;) =1 and, for each z € T,
Wisy,x)=W(x,s) =1if @ =t and W(ss, x) = W(x,s;) = 0 otherwise.

Thus in a locally sequential Petri net co-safety is guaranteed by purely structural
means.

Recall that our main aim is to associate a Petri net with every UL-event structure.
It turns out that our map en (which acts on all L-event structures), when restricted
to UL-event structures, fits in very well with the map nu from Petri nets to UL-event
structures given in Section 5.4.

Let BS = (E,C,F) be an Ul-event structure with nu(en(£S)) = (E, C, li) Define
vps : B — FE as follows. Let e € E. By the unique occurrence property there exists a
unique equivalence class (pe)gs. Now let

UES(e) = <P€>en(ES)-
By Lemma 5.5.3, SFSgs C SFS.,(ps). Hence by Lemma 5.3.4(2), vps(e) is well-
defined.

Lemma 5.5.4
Let ES be an UL-event structure. Then vggs an LES-isomorphism from ES to
nu(en(£S)) and so ES = nu(en(ES)).
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Proof.

Let ES = (E,C,F) and nu(en(ES)) = (E,C,F) and let ¢ € ¢ and u € Pp(E).

Suppose ¢ F u. Let p € SFSgg be such that alph(p) = ¢. Then pu € SFSgs
and hence pu € SFS.,(gs) by Lemma 5.5.3. This implies by the definition of nu that
past.,ps)(p) & where & = {{pe)en(ms) | € € u}. In order to prove that vgg(c) Fogs(u)
we must prove that vps(c) = past,,gs)(p) and vps(u) = .

Suppose €1 € ¢ with piey € Plgg such that vgs(er) = (pre1)en(ps). From ey €
alph(p) it follows that there exists pie; € intgs(p) = inl.,(gs)(p). Moreover, by the
unique occurrence property (pie1)ps = (pie1)gs and hence, by Lemma 5.3.4(1) and
Lemma 5.5.3, also (p1e1)cn(ms) = (p1€1)en(ps)- Since <p1€1>en(E5) € past,,(gs )( ), this
proves that vps(e1) € past,, gs)(p)-

Now suppose (p1€1)en(rs) € past ., ps) (p). Then there exists pie; € inlp(gs)(p) =
intgs(p) such that (prer)e,(ms) = <p1€1>8n(E5) Hence e1 € alph(p) = ¢ and vgg(er) =
(p1e1)en(ms). This proves that past,, gs)(p) € vis(c) and hence vgps(c) = past.,gs)(p)-

It easily follows that vgs(u) = @. Hence vgg(c) = vgs(u). This proves that vgg is an
LES-morphism from ES to nu(en(ES)).

In order to prove that vgg is an LES-isomorphism, suppose vgg(c) . vgs(u). Then
there exists pv € SFS . (gs) such that vgs(c) = pasten(ES)(p) and vgs(u) = {(pe)en(rs) |
e € v}. This implies that ¢ = alph(p) and v = v. Moreover, pv € SFSgs by
Lemma 5.5.3 and hence ¢ F u. Since vgg is a bijection, we can conclude that vgg is
an LES-isomorphism. a

From Lemma 5.3.8, Theorem 5.4.7, and Lemma 5.5.4, we now obtain the following
characterization of PN-event structures.

Theorem 5.5.5
An L-event structure is a PN-event structure iff it is an UL-event structure. O

Example 5.5.6

{<a><ab><abd>} {<b><ba><bad>}
{ab,d}

{<a><ab>} {<b><ba>}

(a} (b} {<a>} {<b>}

~ 7 ~N

Vg o

Figure 5.7: The L-event structures £Sg and nu(en(FESs))

Let 256 be the first L-event structure depicted in Figure 5.7. This L-event structure
does not have the unique occurrence property and is hence not a PN-event structure.
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The Petri net en(FSs) is the saturated version of the Petri net N3 depicted in Fig-
ure 2.3. The L-event structure nu(en(FSs)) is the second L-event structure depicted
in Figure 5.7 (see also Example 5.4.3). Even though FESg has the same set of step firing
sequences as en(FSg), the two L-event structures FESg and nu(en(ESg)) are not iso-
morphic, because the event structure semantics for en(£S¢) distinguishes more events
than there are present in FSs. O

5.6 L-Event Structures and 1-Safe Petri Nets

This section is devoted to the investigation of the relationship between the prime event
structure semantics for 1-safe Petri nets as given in Definition 5.1.1 and our proposed
L-event structure semantics for general Petri nets as given in Definition 5.4.1.

First it is shown how prime event structures can be viewed as L-event structures.
Then it is shown as the main result of this section that the L-event structure semantics
for Petri nets is a strictly conservative extension of the prime event structure semantics
for 1-safe Petri nets: the L-event structure semantics when restricted to 1-safe Petri
nets agrees completely (up to isomorphism) with the prime event structure semantics.

A prime event structure P is viewed as an L-event structure pu(P) the configura-
tions of which are the finite configurations of P. The enabling relation is given by the
diamonds in the configuration structure of P.

Thus define pu(P) = (E, FCp,t) where FC FCp x Pp(FE) is given by:
ctuecnNu=>0and Vo Cu.cUv € FCp.

Lemma 5.6.1
Let P = (K, <,#) be a prime event structure. Then pu(P) = (E, FCp,F) is an

L.-event structure.

Proof.

In order to prove that pu(P) satisfies (EO0), let § # ¢ € FCp. Let ¢ € ¢ be a
maximal event in ¢ in the sense that for all ¢’ € ¢, ¢ < ¢’ implies that ¢ = ¢’. Then
¢ —e € FCp and hence ¢ — e - e. This proves that pu(P) satisfies (E0). From the
definition of pu(P) it easily follows that pu(P) satisfies (E1) and (E2). O

In Chapter 6 this result will be strengthened by showing that the L-event structures
obtained via pu all have the unique occurrence property (hence the name pu rather
than pe). In Chapter 6 we will then also investigate the relationship between prime
event structures and UL-event structures in a categorical framework.

For the moment we use the map pu only for showing that for a 1-safe Petri net
its prime event structure semantics agrees with its L-event structure semantics via pu:
for every l-safe Petri net N, nu(N) = pu(sp(N)).

Let N be a l-safe Petri net, nu(N) = (£,C,F), and pu(sp(N)) = (E,FCSP(N),P).
Recall that the events in E are equivalence classes under ~y of sequential prime
intervals of NV and the events in £ are equivalence classes under &y of prime intervals
of N. The LES-isomorphism Ay : E — E that will be used in the proof that nu(N) =
pu(sp(N)) maps each event (pt)., € E to the event (pt)ay € F.
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In order to show that Ay is well-defined, it must be proved that equivalent sequen-
tial prime intervals under ~py are also equivalent under ., that is:

Vpt, p't" € sPI. (pt ~n p't' = pt = p't').

After having shown this, it must be proved (in order for this map to be an LES-
isomorphism) that Ay is a bijection. For proving that Ay is surjective it is sufficient
to prove that each event in F has a sequential representative:

Vpt € PL.3p't" € sPL.pt ~p p't'.

For proving that Ay is injective, it must be proved that equivalent sequential prime
intervals under ~y are also equivalent under ~y:

Vot, p't" € sPI. (pt =y p't' = pt ~n p't').

Once it is proved that Ay is a bijection, the proof that Ay is an LES-isomorphism is
fairly easy.

Now we turn to the proof that equivalence under ~y is preserved. To prove this
we need the following lemma.

Lemma 5.6.2
Let N be a 1-safe Petri net and let p, p’ € FIS be such that p - p’. Then pasty(p) =

pGStN(P/)-

Proof.

Suppose p = p1tt'pay, p' = p1t'tps, and (1,1) € Indy. Then by Lemma 2.1.12 also
pi{t,t'} € SFS. Hence pit't & pit because ~ satisfies (C1). Similarly, p1tt’ ~ pit'.
Hence past 5 (p1tt’) = pasty(p1t't). Now it easily follows that also past(p) = past y(p')
because & satisfies (C2). O

Lemma 5.6.3
Let N = (S,T,W, M;,) be a 1-safe Petri net and let pt,p't" € sPI be such that
pt ~ p't". Then pt =~ p't’.

Proof.

It is sufficient to prove that s satisfies (S1) and (S2) because ~ is the least equiv-
alence relation satisfying (S1) and (S2). The required result then follows from ~Cas.

In order to prove that a satisfies (S1), suppose pitat; € FS and (t1,12) € Indy.
Then by Lemma 2.1.10, pi{t;,12} € SFS. Since = satisfies (C1) we then have that
p1t1 & paotaty which proves that & satisfies (S1).

Now in order to prove that a satisfies (52), suppose p1ty, pit1 € sPI are such that
p1 =~ pi. Then by repeatedly applying Lemma 5.6.2, pasty(p1) = pasty(p'). This now
implies that pit; &~ pit; because & satisfies (C2). Hence & satisfies (52). a
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Given a 1-safe Petri net N with nu(N) = (E,C,F) and pu(sp(N)) = (E, FC vy, li),
by the above lemma the map Ay : b — E with AN({pt)ay) = ((pt)ny ) 1s well-defined.
We now turn to the proof that Ay is surjective.

Lemma 5.6.4
Let N be a Petri net and let pt € PI. Then

Ap't € sPIL. pt = p't.

Proof.

Suppose p = pyupy with |u] > 1 and t' € u. Then py(u — t')t'pat € PI. Because
pru € SFS and =~ satisfies (C1), pit’ & py(u — t')¥’. This implies that pasty(piu) =
pasty(p1(u — t)t').  Since = satisfies (C2), it easily follows that pasty(prups) =
past y(p1(u — 1) p2). Again by (C2), we then also have that pyupat & pi(u — ')t pat.

Repeatedly applying the above then yields the required p't € sPIy with pt ~ p't.
O

Hence each event (pt)s, in E has a representative p't in sPI which proves that Ay

N
is surjective.

To prove that Ay is a bijection, it is now sufficient to prove that Ay is injective.
This is the most complicated step in our proof that Ay is an LES-isomorphism.

We have to show that sequential prime intervals which are equivalent under =y,
are also equivalent under ~p. This is done by first lifting the equivalence relation
~n over sequential prime intervals to an equivalence relation ~y over arbitrary prime
intervals. Then we show that prime intervals which are equivalent under ~y are also

equivalent under ~y:
Vpt, p't' € PL.(pt =y p't' = pt <y p't).

After having done this, the injectivity of Ay follows by proving that sequential prime
intervals which are equivalent under ~y are also equivalent under ~p:

Vot, p't" € sPI.(pt ~n p't' = pt ~n p't').
Thus, for all pt,p't" € sPI, if pt o4y p't', then An((pt)ny) = (pl)ay # (Pt )y =
AN (1) )-

Let N be a 1-safe Petri net. The equivalence relation ~y over sequential prime
intervals is lifted to an equivalence relation over arbitrary prime intervals by replacing
(S1) by condition (C1) and by replacing in (S2) the equivalence relation ~y by ~y,
the extension of M-trace equivalence to step sequences defined in Section 4.6.

So define ~n C PI x PI as the least equivalence relation which satisfies the fol-
lowing conditions (C1’) and (C27).

(CY1’) (pu € SFS and t € u) = pt ~n p(u — t)t.

(C2’) (pt,p't € PI and p = p') = pt ~n p't.
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If N is clear from the context then we may omit the subscript y in ~y.

In order to be able to prove that ~yC <~ we first need the following two lemmas
with properties of ~y.

The first lemma states that prime intervals which are equivalent under ~py are
associated with the same transition and can only differ in the number of occurrences
of transitions which are independent of this transition.

Lemma 5.6.5
Let N = (S,T,W, M;,) be a l-safe Petri net and let pt, p't’ € PI be such that
pt ~ p't’. Then

t=1"and V" € T.((t,t") & Indn = numw(p) = numm(p')).

Proof.

Define the equivalence relation R C PI x PI by: pit; R paoty iff (11 =t and V1" €
T.((t1,t") & Indn = num(p1) = num(ps))). If R satisfies (C17) and (C2’), then
~ C R, because ~ is the least equivalence relation satisfying (C1’) and (C2’). This
would imply that pt R p’t’ from which the required result follows. Thus it is sufficient
to prove that R satisfies (C1’) and (C2’).

In order to prove that R satisfies (C1’), suppose pyu € SES and t; € u. Then for
all t” € u—ty, (t1,t") € Indy. This implies that pit; R p1(u — t1)t1 which proves that
R satisfies (C1).

Now in order to prove that R satisfies (C2’), suppose pit1, pit; € PI are such that
p1=py. Then for all ty € T, numy,(p1) = numy,(p}) and hence pitq R pit1. This proves
that R also satisfies (C2’). O

Note that in the above lemma we have in particular that prime intervals associated
with a transition which are equivalent under ~, have the same number of occurrences
of this transition. This property, which is similar to Lemma 5.3.4(1), follows from the
irreflexivity of Indy.

In Lemma 5.6.2 it has been proved that M-equivalent firing sequences of a 1-safe
Petri net N have the same past (under ~y). Now we show that we have a similar
property for the equivalence relation ~y.

Lemma 5.6.6
Let N be a l-safe Petri net and let p,p’ € SES be such that p =~ p’. Then

pasto(p) = pasto(p').

Proof.

Suppose p = pruvpy, pl = pu'v'py, uUv = v Uv', uNo =u"Nv' =0, and, for all
t,t' € ulUo with t #¢t, (t,¢') € Indy. Then by Lemma 2.1.10, p;(uvUwv) € SFS. From
(C17) it now easily follows that, for all t € v, pyut ~ p1t and, for all t € v/, pyu't ~ pyt.
Hence past ., (p1uv) = past . (p1u'v’). Since pyuve = pyu'v’c for every prefix o of pa, it
easily follows from (C2’) that also past.(p) = past.(p’). O
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Now we can prove the inclusion &y C ~p.

Lemma 5.6.7
Let N = (S,T,W, M;,) be a l-safe Petri net and let pt, p't’ € PI be such that
pt = p't". Then pt ~ p't'.

Proof.

It is sufficient to prove that ~ satisfies (C1) and (C2) because then ~C ~.

We immediately have that ~ satisfies (C1) because ~ satisfies (C1’). In order
to prove that ~ satisfies (C2), suppose pit1,pit1 € PI are such that past.(p1) =
past ., (py). Let pa, ph € FS be such that p; = py and p] = ph. It is now sufficient to
prove that py & p} because then p; = py & pl, = pi. This would imply that pitq ~ pity
because ~ satisfies (C27).

In order to prove that py = pl,, first note that repeatedly applying Lemma 5.6.6 im-
plies, past.(p2) = pasto(p1) = pasto(p)) = past.(ph). We now proceed by induction
on k= |pa|.

If & = 0 then py = p}, clearly holds, so assume that k& > 0. Let py = psts.
Then because past.(p2) = past.(ph) there exist ph, p4 € T* such that py, = phtsph
and psts ~ pits. Moreover, from Lemma 5.6.5 it easily follows that for all ¢, € T,
nume,(p2) = numy,(ph). Hence we must have by Lemma 5.6.5 that for all ¢, €
alph(py), (t2,t3) € Indyn. This now implies that py &~ phpits. Now by Lemma 5.6.6,
past ., (pa) = pasto(py) = pasto(phpsts). Then by Lemma 5.6.5 we also have that
past.,(ps) = past.(phpy). Then ps = pip% by the induction hypothesis. Hence also
p2 = pats = phplits = ph. This proves that ~ satisfies (C2). O

Thus (sequential) prime intervals which are equivalent under ~y are also equivalent
under ~y. Next we show that for sequential prime intervals this further extends to
equivalence under ~y.

Lemma 5.6.8
Let N be a 1-safe Petri net and let pt, p't" € sPI be such that pt <~ p't’. Then
pt ~ p't.

Proof.

In order to prove that pt ~ p't’, define the relation R C PI x PI by: pit; R poty iff
t1 =ty and Jpity, phts € sPL.(p1 = p} and ps = py and pity ~ phts). Assume for the
moment that R is an equivalence relation which satisfies (C1’) and (C2’). Then ~ C R
because ~ is the least equivalence relation satisfying (C1’) and (C2’). This implies
that pt R p't’, so there exist pit, pit’ € sPI such that p =~ py, p' = p}, and pit ~ pit'.
Then by Lemma 4.6.1, p ~ p; and p’ =~ p}. Now pt ~ pit and p't’ ~ pit’ because ~
satisfies (S2) and thus pt ~ p't’ by the transitivity of ~. So it is sufficient to prove
that R is an equivalence relation which satisfies (C17) and (C2’).

It is easy to see that R is reflexive and symmetric. In order to prove transitivity,
suppose pity R paty R psts. From pity R paty we know that there exist plty, phte € sPI
such that p; & pi, p2 = ph, and pit; ~ phts. Similarly, since poty R psts, there exist
pata, psts € sPI such that py = pl. ps = ph, and phty ~ pits. Then pl = pY and hence
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also ph =~ p4 by Lemma 4.6.1. Hence phty ~ plts because ~ satisfies (52). This implies
that pit; ~ pits by the transitivity of ~. We can now conclude that pty R psts. This
proves that R is an equivalence relation.

In order to prove that R satisfies (C1’), suppose pyu € SFS and #; € u. It must
be proved that pit; R p1(u — t1)t;. We proceed by induction on k = |u|. If &k =1 then
the claim holds by the reflexivity of R. Now assume that £ > 1. Then let {5 € u — 1.
By the induction hypothesis, pit1 R p1(u — {t1,%2})t1. By the transitivity of R it is
then sufficient to prove that pi(u — {t1,12})t1 Rp1(u — t1)t1. Let pf € FS be such
that py(u — {t1,12}) = pi. Then clearly p1(u — t1) = py1(u — {t1, 12} )t2 = pits. Because
~ satisfies (S1) and (¢1,t2) € Indy, we also have that pit; ~ pitat;. Then by the
definition of R, p1(u — {t1,12})t1 R p1(u — t1)t1. This proves that R satisfies (C1’).

Now in order to prove that R satisfies (C2’), suppose pit1, pit; € PI are such that
p1 = py. Let py,ph € FS be such that p; = py and p) = p,. Hence also py = pfy by
the transitivity of ~. By Lemma 4.6.1 we then have that py ~ p}. Thus paty ~ phty
bacause ~ satisfies (S2) and hence pyt; R pit1 by the definition of R. This proves that
R satisfies (C27). We can now conclude that pt ~ p't’. O

Now we can prove the result we are after.

Theorem 5.6.9
Let N = (S,T,W, M;,) be a 1-safe Petri net. Then nu(N) = pu(sp(N)).

Proof.

Let nu(N) = (E,C,F), sp(N) = (£,<,#), and pu(sp(N)) = (£, FCyn).F).
We prove that Ay : £ — E given by Ay({pt)n,) = (pt)n is an LES-isomorphism
from pu(sp(N)) to nu(N). By Lemma 5.6.3, Ay is well-defined, by Lemma 5.6.4
Ay is surjective, and by Lemma 5.6.7 and Lemma 5.6.8 Ay is injective. Moreover,
C = {pasty(p) | p € SFS} = {pasin(p) | p € 'S} = {An(evn(p)) | p € F'S}. Hence
C' = AN(FCyyny) by Lemma 5.1.6. Now let ¢ € FC,,(ny and u € Pp(E). Then it
must be proved that ¢ F o iff An(e) F An(u).

First assume that Ax(c) F Ay(u). Then by Lemma 5.4.2, Ax(c) N An(u) = 0 and,
for all v € An(u), An(c)Uv € C' = An(FC Ny ). Since Ay is a bijection, this implies
that also ¢Nwu = 0 and, for all v C u, cUv € FC,,). Then by the definition of li,

cku.

Now assume that ¢ - u. It must be proved that An(e) B Any(u). By the def-
inition of li, cNu = § and, for all v C u, cUv € FC,,p). This implies that
for all (piti)ey, (pata)ny € w with (prti)ey # (palz)nys (Prlr)ny cOs) (P2t2)ny
and hence by Lemma 5.1.7, (t1,13) € Indy. By Lemma 5.1.6 there exists p € FS
such that evy(p) = ¢. We now prove that, for all (p't)., € u, pt € FS and
(pt)my = (p't)my- Suppose (p't)wy € u. Then cU (p'l)n, € FC ), so there ex-
ists p” € FS with evy(p”) = cU{(p't)~,. Moreover, [plriy = [p"]miy by Lemma 5.1.3.
From Lemma 5.1.2 it easily follows that mset(p”) = mset(p)+t. Hence we must have
that pt ~ p”. This implies that pt € F'S and, by Lemma 5.1.3, cU{(pt)~, = cU{p't)~,.
Hence by Lemma 5.1.2, (pt)~, = (p't)~,. From Lemma 2.1.10 it now easily follows

~N

that pv € SFS where v = {t € T | (p't)~, € u}. Now by the definition of +,
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An(e) = pasty(p) B {{pt)n | t € v} = An(u). This proves that Ay is an LES-
isomorphism from pu(sp(N)) to nu(N). O

Thus our event structure semantics for Petri nets, when restricted to 1-safe Petri
nets, agrees completely (up to isomorphism) with the event structure semantics of [66]
for 1-safe Petri nets. Hence Theorem 5.4.7 and Theorem 5.6.9 together assure us that
our event structure semantics for Petri nets (even with auto-concurrency filtered out)
is an extension of the basic result in [66]. Moreover, the UL-event structure £S5 from
Example 5.4.3 and Example 5.2.2 is an example of a PN-event structure which is not
the image under pu of any prime event structure, so that the extension is strict. This
contrasts with the event structure semantics for Petri nets given in [60] where the same
class of (prime) event structures is used for representing the behaviour of both 1-safe
and general Petri nets.

5.7 A Co-reflection Between ULES and PN S

The back-and-forth constructions established in [66] between 1-safe Petri nets and
prime event structures were later proved by Winskel [96] to be the “right” ones. He
achieved this by equipping both classes of objects with suitable behaviour-preserving
morphisms and showed that the constructions of [66] smoothly lift to a pair of functors
which constitute a co-reflection. Our aim here is to explore to what extent we can
mimic this categorical result in the present, much richer setting. We show that due to
auto-concurrency we cannot obtain a co-reflection between the categories of Ul-event
structures and Petri nets. We do however get a co-reflection for the subcategory of
co-safe Petri nets. This is the main result of this section. A consequence of this result
is that the category of Ul-event structures is a full co-reflective subcategory of the
category of L-event structures.

The notion of LES-morphism defined in Section 5.2 leads to the following definition.

Definition 5.7.1

Let LES be the category which has L-event structures as its objects and LES-
morphisms as its arrows. The identity morphism associated with an object ES is
id gg; composition of LES-morphisms is composition of partial functions.

Let ULES be the full subcategory of LES the objects of which are UlL-event struc-

tures. a

We are looking for a co-reflection between ULES and PN in which the left adjoint
would act as en on the objects of ULES and the right adjoint would act as nu on the
objects of PN

To achieve this, we would like to extend the map nu to become a functor from PN
to ULES in such a way that prime intervals are preserved. This means that whenever
(3,n) is a PN-morphism from N to N’ and {(pt)x is an event of nu(/N) such that n(t) is
defined, then nu((3,n))({(pt)n) is defined. Unfortunately, as the next example shows,
this is not possible.
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_______________ B
a L — N c
e < ______________
{<a><b>} {<c><cc>}
{<a>} {<b>} {<c>}

N

Figure 5.8: A PN-morphism from N to N’ with the UL-event structures nu(/N) and
nu(N')

g

Example 5.7.2

Let (,7) be the PN-morphism from N to N’ from Figure 2.7. This PN-morphism
is depicted together with the UL-event structures nu(N) and nu(N') in Figure 5.8.
The UL-event structure nu(N) has two events, (a)y = (ba)y and (b)ny = (ab)n. Also
the UL-event structure nu(N') has two events, (¢)n+ and (cc)nr. Even though both
n(a) and n(b) are defined, there exists however no LES-morphism f from nu(N) to
nu(N') in which both f({a)n) and f((b)n) are defined. Thus we cannot extend the

map nu to a functor in this way. a

The problem is that in a PN-morphism transitions which can occur concurrently,
may be mapped to the same transition, leading to auto-concurrency. As a consequence,
step firing sequences of the first Petri net may be mapped to multiset firing sequences
of the second Petri net. For this reason we restrict our attention to co-safe Petri nets
in the rest of this section.

In what follows the map nu defined in Section 5.4, when restricted to co-safe Petri
nets, is extended to a functor from PN'S, the category of co-safe Petri nets defined
in Section 2.2, to ULES. Then the map en defined in Section 5.5 is extended to a

functor from LES to PN'S. Once these functors are defined we can prove the desired
co-reflection between ULES and PN'S.
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From Lemma 2.2.2 we already know that for co-safe Petri nets prime intervals are
preserved under PN-morphisms. In the following lemma it is proved that for co-safe
Petri nets also equivalence of prime intervals is preserved under PN-morphisms.

Lemma 5.7.3

Let N; = (S, T:, Wi, M;), ¢ = 1,2, be co-safe Petri nets and let (3,n) be a PN-
morphism from Ny to Ny. Let ¢ € T be such that n(t) is defined and let pt, p't € Py,
be such that pt =y, p't. Then n(p)n(t) ~n, n(p')n(t).

Proof.

Define R C Pln, X Pln, by: pit1 R paty iff (11 = 15 and 5(t1) is undefined) or (n(t1)
and 7(t2) are defined and n(p1)n(t1) ~n, n(p2)n(t2)). Note that R is an equivalence
relation. Suppose R is SISy, -consistent. Then since ~py; is the least equivalence
relation which is SFS n, -consistent, it follows that ~y, C R. Hence pt R p't and thus,
by the definition of R, n(p)n(t) ~n, n(p")n(t). Thus it is sufficient to prove that R
satisfies the conditions (C1) and (C2).

Suppose piu € SFSy, and t; € u. If n(#1) is undefined then we immediately
have that pit1 Rp1(u — t1)t1, so assume that n(t;) is defined. Then n(piu) € SESy,
by Lemma 2.2.2 and n(t;) € n(u). Since ay, satisfies (C1), it then follows that
n(p)n(t) ~=n, n(p1)(n(u) — n(t1))n(t1). Moreover, by Lemma 2.2.2 and the fact
that Ny is co-safe we have that n(p1)(n(u) — n(t1)) = n(pi(u — t1)). This yields
pit1 R p1(u — t1)t; by the definition of R. Thus R satisfies (C1).

Now suppose ot’,0't" € Ply, are such that pastp(o) = pastp(o’). If n(t') is
undefined then we immediately have that ot' Ro’t’, so assume that n(#') is defined.
Suppose pasty, (n(c)) = pasty, (n(c’)). Then since ~y, satisfies (C2) we know that
n(o)n(t') ~n, n(c’)n(t') and hence ot’ Ro't’. Thus in order to prove that R satisfies
(C2), it is sufficient to prove that pasty, (1(c)) = pasty,(n(o’)).

Let (pit1)n, € pasty,(n(c)). Then there exists pyt; € int(o) such that n(ty) is
defined and (p1t1)n, = (n(p2)n(t2))n,. Then also (pata)r € pastp(c) = pastg(o’).
Hence there exists psts € int(o’) such that (pata2)r = (psts)r. Since n(tz) is defined
this implies that 5(f3) is also defined and (n(p2)n(t2))n, = (n(ps)n(ts))n,. More-
over, (n(ps)n(ts))n, € pasty,(n(c’)) by the definition of past. Hence (piti)n, €
pasty,(n(c’)). This proves that pasty, (n(c)) C pasty,(n(c’)). Similarly we have
past (1(0')) € past, () and thus past, (1(0)) = pusty, (n(0")). 0

Now we can extend the map nu to a functor, also denoted by nu, from PN'S to
ULES.

Let N; and Ny be a pair of co-safe Petri nets and let (3,7n) be a PN-morphism
from N; to Na. Suppose nu(Ny) = (Fy,Ci,b1) and nu(Ny) = (Ey, Ca,F2). Then we
define nu((3,7n)) to be the partial function from E; to Fy given by:

undefined  if n(¢) is undefined

Y(pt)n, € Ev.nu((8,)((pt)n,) = { ((p)n(t))n, otherwise.

Note that by Lemma 5.7.3, nu((3,7n)) is well-defined.



126  CHAPTER 5. AN EVENT STRUCTURE SEMANTICS FOR PETRI NETS

Lemma 5.7.4
Let Ny and N3 be co-safe Petri nets and let (3,n) be a PN-morphism from N; to
Ns. Then nu((/,n)) is an LES-morphism from nu(Ny) to nu(Ns).

Proof.

Let nu(Ny) = (F1,C1,1) and nu(Ny) = (F2,C2,F2). Let nu((3,n)) be denoted
by f. Given é by @ we have to prove that f(¢) Fy f(@). So suppose é by @. Then there
exists pu € SFSy, such that é = pasty (p) and & = {(pt)n, | t € u}. By Lemma 2.2.2
we have that n(p),n(pu) € SFSy,. Hence by the definition of o pasty, (n(p)) 2
{(n(p)t')n, | 1" € n(u)}. Now pasty,(n(p)) = {(pat2)n, | pata € int(n(p))} =
{(p)n(t))n, | ity € int(p) with n(iy) defined } = f(pasty, (p)) = f(¢). Fur-
thermore, {(n(p)t")n, | t" € n(u)} = {{n(p)n(t))n, | t € u with y(t) defined} = f(d).
And so f(¢) Fy f(u) as required. O

From the definition of nu it easily follows that nu preserves identities and respects
composition. Hence the following result follows from Theorem 5.4.7 and Lemma 5.7.4.

Theorem 5.7.5
nu is a functor from PN'S to ULES. O

Next the map en is extended to a functor - also denoted by en - from LES to
PN'S. Then we show that this functor is in fact full and faithful. On arrows, en is
defined by interpreting morphisms between L-event structures as morphisms between
their associated multiset transition systems under a map ef, and then applying the
map tn from MTS-morphisms to PN-morphisms as defined in Section 3.2.

Let ES; = (F;,Ci,k), 1 = 1,2, be a pair of L-event structures and let f be an
LES-morphism from ES; to ES;. Then define et(f) = (f,g) where g : C; — Cy is
given by ¢g(¢) = f(¢). Then it is easy to see that et(f) is an MTS-morphism from
et(FS1) to et(ESz). Hence by Lemma 3.2.9 there exists for every region r of ESy an
inverse region et(f)~'(r) of ES;. In what follows we denote et(f)~*(r) by f~'(r). So
for a region r of ES,, f~'(r): C1 U E; — N U (N x N) is given by:

(1) Vee Cr f7Hr)(e) = r(f(e)

@) vee B (e = { () T defined
)

So en(f) = (8f,ny) where gy = [ and By : Rps, —

otherwise.

Now define en(f) = tn(et(f)
REs, 1s given by:

undefined otherwise.

By(r) = { FUr)if fN(r) is non-trivial

From Lemma 3.2.10 we now immediately have the following result.

Lemma 5.7.6
Let £S; and ES; be L-event structures and let f be an LES-morphism from £S5
to ES3. Then en(f) is a PN-morphism from en(FES;) to en(ESs). a
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Now we are ready to prove that en is a functor, which is full and faithful.

Theorem 5.7.7
en is a full and faithful functor from LES to PN'S.

Proof.

In order to prove that en is a functor from LES to PN'S, it is by Lemma 3.2.10 and
Lemma 5.7.6 sufficient to prove that en preserves identities and respects composition.
Clearly en preserves identities. Assume that f; is an LES-morphism from ES; to £S,
and f; is an LES-morphism from ES; to £55. We have that 4,05, = fa0 /1 =501
Because en(ES) is S-simple we have by Lemma 2.2.4 that en(f20f1) = (Bfops Mo, ) =
(6f1 o 6f2777f2 © 77f1) = (6f2777f2) © (6f1777f1) = en(f2) © en(fl)'

In order to prove that en is full, let ES; = (Eq,C1,F1) and ESy = (Ey, Ca,F2) be
L-event structures and let (3, 7) be a PN-morphism from en(FES1) to en(ESz). We first
prove that n is an LES-morphism from ES; to ES,. Suppose ¢y u. Let p € SFSgg,
be such that alph(p) = ¢. Then pu € SFS gg, and hence we also have, by Lemma 5.5.3,
that pu € SFS.,(gs,). By Lemma 2.2.2 we then have that n(pu) € SFS.,(ps,). Again
by Lemma 5.5.3 we now have that n(pu) € SFSgs,. Hence alph(n(p)) F2 n(u). Because
alph(n(p)) = n(c) we can now conclude that n(c) F2 n(u). This proves that 5 is an
LES-morphism from FES; to ES,. Since en(FES;p) is S-simple Lemma 2.2.4 can be
applied and so en(n) = (f,n). This proves that en is full.

Finally, if f and ¢ are LES-morphisms from £S5 to ES, such that f # ¢ then also
en(f) # en(g) by the definition of en. Hence en is faithful. O

Next we show that en o7 and nu form a co-reflection with en o7 as the left adjoint,
where ¢ is the inclusion functor from ULES to LES.

In order to facilitate the proof of this result we first define the PN-morphisms which
turn out to form the co-unit of the adjunction. To do this the following regions of the
L-event structure associated with a co-safe Petri net are defined.

Let N = (S,T,W, M;,) be a co-safe Petri net with nu(N) = (F,C,F) and let
s € 5. Define ry: CUFE — NU(N x N) by:

(1) ¥p € SFSn.rs(pasty(p)) = M,(s)

(2) Yipt)n € E.rs((pt)n) = (W(s, 1), W(t,s)).

From Lemma 5.3.4(1) it easily follows that part (1) in the definition of ry is well-
defined.

Lemma 5.7.8
Let N = (S,T,W, M,,) be a co-safe Petri net and let s € S. Then r; is a region of
nu(N).

Proof.

Let nu(N) = (E£,C,F). Suppose ¢ F 4. Then there is pu € SFSy such that ¢ =
pasty(p) and & = {(pt)n | 1 € uj. Then ri(¢) = M,(s) = 24, W(s, 1) = Xye, " (pl)n
and r(6UG) = Mou(s) = Mp(s) + Xieu(W(t,5) = W(s,1)) = rs(€) + Lyeu ((pt)n" —
" (pt)n ). =
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For a co-safe Petrinet N = (5,7, W, M;,,) with nu(N) = (£, C,F) and en(nu(N)) =
(Ruuwvy, £, W, M;,,), we define foldg : S — R,y and foldy : . — T by:

Ts if r, 1s non-trivial

(1) Vs € S. foldg(s) = {

undefined otherwise.

(2) ¥{pt)y € E. foldy((pt)x) = 1.

Lemma 5.7.9

Let N = (5,7, W, M;;,) be a co-safe Petri net with nu(N) = (£,C,F) and with
en(nu(N)) = (Ryuwvy, £, W, Myy,). Then (foldg, foldr) is a PN-morphism from
en(nu(N)) to N.

Proof.

Suppose s € S is such that foldg(s) is defined. Then Mm(folds(s)) = Mm(rs) =
rs(0) = M;,(s) which proves condition (1) in the definition of PN-morphism.

Because fold is a total function, condition (2) in the definition of PN-morphism
trivially holds.

In order to prove condition (3), suppose (pt)y € E. If s € fold5'(*(pt)n) then we
must have that ry € *(pt)n, that is W(rs, (pt)n) > 0. This implies that " (pt)y > 0
and hence W(s,t) > 0. This proves that s € *t = *fold;((pt)n). On the other
hand, if s € *fold;({pt)n) = *t, then "(pt)n = W(s,t) > 0. Thus r, is non-trivial
and W(rs,<pt>N) = "(pt)y > 0. Then r, € *(pt)n and hence s € foldgl('<pt>N).
Moreover, W (s, fold;({pt)n)) = W(s,t) = W(rs, (pt)n) = W(folds(s), (pt)n). Simi-
larly it can be proved that folds'({pt)n*) = fold4((pt)n)* and W (fold({pt)n),s) =

A

W ({pt)n, foldg(s)). This proves condition (3) in the definition of PN-morphism. 0O

Now we can prove the main result of this section.

Theorem 5.7.10
enot: ULES — PNS and nu : PNS — ULES form a co-reflection with en the

left adjoint and the arrows vgg as unit.

Proof.

Let ES = (E,C,F) be an UL-event structure, let N = (5,1, W, M;,) be a co-safe
Petri net, and let f be an LES-morphism from ES to nu(N) = (F,C,F). We must
show that there is a unique PN-morphism (3, n) from en(ES) = (Rgs, £, Wgs, M) to

N such that the following diagram commutes.
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ES | en(ES)
nu(en(ES))
i (g n)
()
Yy / ,
nu(N) N

Define (3,n) by (8,n) = (foldg, foldy) o en(f). Hence 8 : S — Rpg is such that
for all s € S, B(s) = f~'(rs) if f~(rs) is non-trivial and S(s) is undefined otherwise.
The function n : EF — T is such that for all e € E, n(e) = undefined if f(e) is
undefined and n(e) = t if f(e) is defined with f(e) = (pt)n. Because (foldg, fold;)
and en(f) are PN-morphisms by Lemma 5.7.9 and Lemma 5.7.6 respectively, and
because the composition of PN-morphisms is again a PN-morphism, the pair (3,n) is
a PN-morphism.

The next thing to prove is that nu((3,n))ovgs = f. Let e € E. Then f(e) is
undefined iff n(e) is undefined iff (nu((5,7n)) o vgg)(e) is undefined. So assume that
f(e) is defined. Let p € SFSgg be such that pe € SFSgg. By the unique occurrence
property p exists. By Lemma 5.5.3 we then have that also p,pe € SFS.,(&s) and
hence Lemma 2.2.2 implies that n(p),n(pe) € SFSy. Furthermore, by Lemma 5.2.8,
f(p); f(pe) € SES yuy.-

We first prove, by induction on |p|, that alph(f(p)) = pasty(n(p)). If p = 0 then
this is clear, so assume that p = p'u with p’ € SFSps and ) # v € Pp(E).

Then alph(f(p)) = alph(f(p'))U f(u) and pasty(n(p)) = pasty(n(p'))Ui where & =
{(n(p"n(e))n | ¢ € uwith n(e’) defined }. By the induction hypothesis, alph(f(p')) =
pasty(n(p")). From f(p'u) € SES vy we have that alph(f(p')) = f(u). On the other
hand, from n(p'u) € SFSy we have that pasty(n(p’)) F 4. It is now sufficient to prove
that f(u) = 4. By the definition of -, alph(f(p")) F f(u) implies that there exists
pruy € SFSy such that alph(f(p')) = pasty(p1) and f(u) = {{(pre1)n | €1 € us}. Let
¢’ € ubesuch that f(e’) is defined. Then there exists e; € uy such that f(e') = (pre1)n.
Then e; = n(e’) by the definition of 5. Since pasty(p1) = alph(f(p")) = past(n(p’))
and ~y satisfies (C2), we must now have that (n(p")n(e’))n = (p1e1)n. This proves
that f(u) = @ and we can conclude that alph(f(p)) = pasty(n(p)).

From f(pe) € SFS,.v) we know that alph(f(p)) F f(e). Then there exists pyes €
SFESn such that alph(f(p)) = pastn(p2) and f(e) = (paea)n. Then ez = n(e) by the
definition of 5. Since pasty(p2) = alph(f(p)) = pasty(n(p)) and ~y satisfies (C2),
we now have that (psea)n = (n(p)n(e))n. This implies that (nu((5,1)) o vgs)(e) =
nu((B,n))((pe)en(rs)) = (n(p)n(e))n = (p2e2)n = f(e) what had to be proved.

Finally, in order to prove that (3, 7) is the unique PN-morphism from en(ES) to N
such that nu((8,n))ovgs = f, assume that (3',7’) is any PN-morphism from en(ES)
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to N such that nu((3’,n')) ovgs = f. Then for all e € F, n(e) is undefined iff f(e)
is undefined iff n(e) is undefined. Now let e € E be such that n’(e) is defined. Let
p € SFS .. (ps) be such that vgs(e) = (pe) cn(rs)-

Then (n(p)n(e))n = nu((B,n))oves(e) = fle) = nu((8',n"))oves(e) = (n'(p)n'(e))n-
Now Lemma 5.3.4(1) guarantees that n(e) = n’(e). This proves that n = n’. We can
now conclude by Lemma 2.2.4 that 5 = /3’ because en(FES) is S-simple.

This proves that en o1 and nu form an adjunction with en o as the left adjoint
and the arrows vgs as unit. By Lemma 5.5.4 the arrows vgg are LES-isomorphisms
and so the adjunction is even a co-reflection. a

It is easy to verify that the arrows (fold 4, fold) form the co-unit of the adjunction
between ULES and PN'S.

Each UL-event structure £S is by Lemma 5.5.4 isomorphic to the UL-event struc-
ture nu(en(ES)). Hence for each co-safe Petri net N, en(nu(N)) yields an UL-event
structure which is isomorphic to the UL-event structure yielded by N. The Petri net
en(nu(N)) has a number of other interesting properties. It is saturated with respect to
the places and each transition can occur exactly once. Hence the Petri net en(nu(N))
may be viewed as a “behavioural unfolding” of N. The associated “fold morphism” is

(fold g, foldy).

As a consequence of Theorem 5.7.10 each L-event structure can in fact be repre-
sented as an UL-event structure in a canonical way.

Corollary 5.7.11
1 ULES — LES and nuoen : LES — ULES form a co-reflection with ¢ the left

adjoint and the arrows vgg as unit.

Proof.

Let ES be an UL-event structure, let ES’ be an L-event structure, and let f be
an LES-morphism from ES to nu(en(ES’)). It must be proved that there is a unique
LES-morphism ¢ from ES to ES’ such that the following diagram commutes.

ES | en(ES) ES
nu(en (ES))
f en(g) 1o
_ nu(en(@))
y / ’ V V
nu(en(ES )) en(ES ) ES

By Theorem 5.7.10 there exists a unique PN-morphism (3,n) from en(ES) to
en(ES’) such that nu((3,7)) o vgs = f. Then because en is full and faithful there



5.8. LOCAL MULTISET EVENT STRUCTURES 131

exists a unique LES-morphism ¢ from ES to ES’ such that en(g) = (8,7n) and hence
nuoen(g)ovgs = f. O

In the beginning of this section we argued that it is not possible to obtain a co-
reflection between ULES and PN. Hence we have restricted the category PA by
cutting down on the objects. Another possibility is to cut down on the arrows of PN
by considering only co-injective PN-morphisms.

From Lemma 2.2.2 we immediately have that if (3, 7) is a co-injective PN-morphism
from Ny to Ny, then n(p) € SFSy, for all p € SFSy; .

It is easy to see that the proof of the co-reflection between ULES and PN'S
still goes through with PAC, the category of Petri nets with co-injective morphisms,
instead of PA'S (where nu is extended to a functor from PNC to ULES in the obvious

way). Hence we also have the following result.

Theorem 5.7.12
enot : ULES — PNC and nu : PNC — ULES form a co-reflection with en the

left adjoint and the arrows vgg as unit. O

5.8 Local Multiset Event Structures

The event structure semantics for Petri nets defined in Section 5.4 does not take into
account possible auto-concurrency in a Petri net, because it is based on the set of
step firing sequences of a Petri net rather than the set of multiset firing sequences. A
consequence of this restriction is that we only have a co-reflection with the category
of UL-event structures for the category of co-safe Petri nets.

In this section we discuss a possibility for generalizing the co-reflection between the
category of UL-event structures and the category of co-safe Petri nets (Theorem 5.7.10)
in order to obtain an event structure semantics for the category of all Petri nets.
To this aim we define local event structures with multisets rather than sets (called
LM-event structures) to take auto-concurrency into account, and show that there
exists an adjunction between the category of LM-event structures satisfying the unique
occurrence property (called ULM-event structures) and the category of Petri nets. The
proof of this result proceeds along the same lines as the proof of Theorem 5.7.10 (even
though notationally it is more involved), and hence most of the details are omitted.

The adjunction between the category of ULM-event structures and the category of
Petri nets is however not a co-reflection. Moreover, we show that it is not possible to
cut this adjunction down to a co-reflection by restricting the category of ULM-event
structures.

Local event structures are generalized by allowing multisets of events in the set of
configurations and the enabling relation.

Definition 5.8.1

A local multiset event structure is a triple ES = (F, C, ) where E is a set of events,
C C Mp(F) is a non-empty set of (finite) configurations, and FC €' x Mp(F) is an
enabling relation satisfying the following axioms.
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(E0’) 0 #c=3dec E.(c(e)>0and c —ete).
(E1’) cF 0.
(E2’) cFu=Yo<u.(ckvand c+vku—wv). 0

FFrom now on we refer to local multiset event structures as LM-event structures.

As for L-event structures, the unique occurrence property for LM-event structures
is defined using an equivalence relation over prime intervals, but now with respect to
multiset sequences.

So let X be a set and let L € (Mp(X))t be a set of multiset sequences satisfying
the following two properties.

(L1’) pue L= pe L.
(L2’) pu e L = Yo <u.pv(u—v) € L.
The set of prime intervals of L is given by
Pl ={pa| pa € L}

and the function inty : L — Mp(PI1) mapping each element from L to the multiset
of multiset prime intervals of L is given by:

e int(0) =0 and

o intr(pu) = inlL(p) + Laeex u()>oula) - pa.
The subscript 7 may again be omitted it L is clear from the context.
Let R C PI x PI be an equivalence relation. Then for pa € PI,
(pa)p = {p'a" € PI'| p'a’ Rpa}.
The function pasty : L — Mp(PI/R) is given by:
pastp(p)({prax)r) = 3. int(p)(paa).
paaz€{pia1)r

Note that if L is a set of step sequences, then these notions indeed coincide with
the notions defined in Section 5.3.

Now R is said to be L-consistent iff it satisfies the following two conditions.
(C1”) (pu € L and u(a) > 0) = pa R p(u — a)a.
(C2”) pa,p'a € Pl = (pastp(p) = pastr(p') = pa Rp'a).

By the following lemma there exists also in this case a least equivalence relation which
is L-consistent.

Lemma 5.8.2

Let X be an alphabet, let L C (Mp(X))" be a set of multiset sequences satisfying
(L17) and (L.2"), and let K = {R C PI x PI | R is an L-consistent equivalence relation
}. Then K # 0 and N K € K.
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Proof.

Because PI x PI € K it is sufficient to prove that R = (K is an L-consistent
equivalence relation.

It is clear that R is an equivalence relation which satisfies (C17).

Let pa,p'a € PI be such that pastp(p) = pastp(p’). It suffices to prove that
pastp(p) = pastp(p’) for every R € K.

So let R € K and suppose (p1a1)r € PI/R. Then because R C R there exist
pial,...,pka¥ € PI for some k > 1 such that (pjal)zN{pjai)p=0forall 1 <i,j <k
with i # j and Ui {piai) p = (pra1)r.

From the definition of past and the fact that past4(p) = past 4(p’) we then have that
pastp(p)({p1a1)R) = 3 prase(praryn L (p)(p202) = Yy Y psazelpialy, nE(p)(paaz) =
iy pastp(p)((piad) p) = Sy pastp(p)((plal) p) = SEi X ey, (0 (p2as) =
Y ppare(par)r (P )(p2az) = pastp(p’)((pra1)r). -

Let ~;,C PI x PI denote the least equivalence relation which is L-consistent.
The equivalence relation =j has the following properties which can be proved
similar to the proof of Lemma 5.3.4

Lemma 5.8.3
Let X be an alphabet, let L C (Mp(X))" be a set of multiset sequences satisfying
(L17) and (1.27), and let pyaq, p2as € PI be such that piay /1 paas. Then

(1) a1 = ay
(2) prar = paay for every L' C (Mp(X))" satisfying (L.1°) and (L2") with L C L.

a

Let BS = (E,C,F) be an LM-event structure. Then MFSgs C (Mp(E))*T, the
set of multiset firing sequences of ES, and ¢f pg : MFSgps — Mp(FE), the function
which maps each multiset firing sequence to the configuration it leads to, are defined
inductively as:

e 0 € MFSgs and ¢f 54(0) =0
o (p€ MFSgs and ¢f yo(p) Fu) = (pu € MESEs and ¢f go(pu) = ¢f gs(p) + u).

Note that ¢f gg(p) = mset(p) for every p € MFS gs.

The set MFSgs yields an equivalence relation ~yrs ., which is denoted by ~ps
in what follows.

Then ES has the unique occurrence property iff it satisfies the following two con-
ditions.

(Ul’) Ve € E. E|p€ € P[ES

(U2’) Vpie, pae € Plpg. pre =gs pac.
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LM-event structures satisfying the unique occurrence property will be referred to as
ULM-event structures.

Associated with every Petri net NV we have an equivalence relation ~ypg, , from
now on denoted by ~y. Similar to Section 5.4 this equivalence relation is used for
defining a map nm which associates an LM-event structure nm(N) with every Petri
net V.

Definition 5.8.4
Let N = (S,T,W, M,,) be a Petri net. Then nm(N) = (F,C,F) where

o o= {{pt)n|pt € Ply}
o O = {pasty(p) |p € MFS}
o FC C x Mp(FE) is given by:

cku<s dpv € MFS. pasty(p) = ¢ and u = past(pv) — pasty(p).

Theorem 5.8.5
Let N = (S,T,W, M,,) be a Petri net. Then nm(N) is an ULM-event structure.

Proof.
Similar to the proof of Theorem 5.4.7. O

The map nu defined in Section 5.4 associates an UL-event structure with every
Petri net N based on SFS. Because we now use MFS rather than SFS, the map nm
yields for a Petri net N which is not co-safe, an event structure different from nu(N).

Example 5.8.6
For the Petri net N, depicted in Figure 2.2, its associated L- and LM-event structure
are depicted in Figure 5.9. Since Nj is not co-safe, nu(Nz) and nm(Nz) are different.

. { <a>,<aa><aab>} . 2 '<a> + <aab>
NS N
{<a>,<aa>} {<a>,<ab>} 2 <a> <a> + <ab>
{<a>} {<b>} \ <a> <b>
S S el N\ O J/
e T 9

Figure 5.9: The L-event structure nu(Nz) and the LM-event structure nm(N;)
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In nu(N3z) there is an infinite number of events corresponding to a. In nm(Nz)
however, all prime intervals corresponding to @ are equivalent due to auto-concurrency.
Hence nm(Nz) has only one event corresponding to a. In both nu(N;) and nm(N3)
there is an infinite number of events corresponding to b. O

The main reason why the map nu from Section 5.4 cannot be extended to a functor
from PN to ULES is that prime intervals with respect to SES and equivalence of
prime intervals are not preserved under PN-morphisms. Prime intervals with respect
to MFS however, are preserved under PN-morphisms by Lemma 2.2.2. This enables
us to extend nm to a functor from PN to the category of ULM-event structures.

Definition 5.8.7

Let LMES be the category which has LM-event structures as its objects and
LMES-morphisms as its arrows.
An LMES-morphism from an LM-event structure (Fy,Cy,Fq) to an LM-event struc-
ture ( Ky, Cq,F2) is a partial function f: Fy — F3 such that:

\V/C € 01Vu - MF(El) C |_1 U = f(C) |_2 f(U)

The identity morphism associated with an object is the identity function on its events;
composition of LMES-morphisms is composition of partial functions.
Let ULMES be the full subcategory of LMES the objects of which are ULM-event

structures. a

Given a PN-morphism (8,7n) from N; to Ny where nm(Ny) = (Fy,Ci,F1) and
nm(Ng) = (Ey, Cy, b)), define nm((8,n)) = f with f: By — Es given by: f({pt)n;) is
undefined if n(¢) is undefined and f({pt)n,) = (n(p)n(t))n, otherwise for all (pt)n, €
by

In the same way as in Section 5.7 it can be proved that this map is well-defined
and yields a functor.

Theorem 5.8.8
nm is a functor from PN to ULMES. O

Example 5.8.9

Let (4,n) be the PN-morphism from N to N’ from Figure 2.7. As argued in
Example 5.7.2, there is no corresponding LES-morphism from the UL-event structure
nu(N) to the UL-event structure nu(N'). In Figure 5.10 this PN-morphism is depicted,
together with the ULM-event structures nm(N) and nm(N’). The LMES-morphism
nm((S,n)) maps both (a)n and (b)n to (¢)n. O

It is also straightforward to lift the functor en from LES to PN'S to a functor mn

from LMES to PN.
Given an LM-event structure ES = (F, C,F), define the multiset transition system
mt(ES) = (C, E,—gs,0) where

c—psc & (chuand ¢ =c+u).
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Figure 5.10: The ULM-event structures nm(N) and nm(N')

0

Then define mn(FES) = tn(mt(ES)).

The map en associates a Petri net with every L-event structure which has the same
set of step firing sequences. For the map mn we only have the following inclusion which
follows easily from the definition of mn.

Lemma 5.8.10
Let BES = (E,C,F) be an LM-event structure. Then MFSgs € MFS ., (gs). a

Example 5.8.11

Consider the LM-event structure FS; depicted in Figure 5.11. Note that E£S; is
even an ULM-event structure.

Because there is no upperbound on the number of occurrences of a, "a < a” for
every region r of ES7. Thus in mn(FES7), the transition b cannot be disabled by the
occurrence of a. It is easy to see that mn(FES7) is the saturated version of the Petri
net N, depicted in Figure 2.2, and hence MF'S ., (gs,) = MFSy,. Thus MIFSgs, is
properly included in MFES ., (gs,).- O

Let ES = (E,C,F) be an ULM-event structure with nm(mn(FES)) = (E,C’,li)
Again we can define, using Lemma 5.8.3(2) and Lemma 5.8.10, a map vgg : £ —
E by: vgs(e) = (pe)mn(ns) where pe € Plgs. As Example 5.8.11, together with
Example 5.8.6, illustrates, this map is not an LMES-isomorphism as in Lemma 5.5.4.
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'''''

Figure 5.11: The LM-event structure FS~

We now only have the following result, which can be proved in the same way as
Lemma 5.5.4.

Lemma 5.8.12
Let ES be an ULM-event structure. Then vgg is an LMES-morphism from ES to
nm(mn(ES)). a

In order to extend mn to a functor, define given an LMES-morphism f from ES; =
(E1,C1,F1) to ESy = (F2,Cy, k), mt(f) = (f,g) with ¢ : C1 — Cy given by ¢(c¢) =
f(e). Now define mn(f) = tn(mt(f)).

Similar to the proof of Theorem 5.7.7 the following can now be proved.

Theorem 5.8.13
mn is a faithful functor from LMES to PN O

As the following example illustrates the functor mn, even when restricted to

ULMES, is however not full.

Example 5.8.14

Consider the ULM-event structures FESg and ESg depicted in Figure 5.12.

It is easy to see that mn(FESs) and mn(ESy) are the same. Then there is a PN-
morphism from mn(ESs) to mn(FESy), the identity PN-morphism, for which there is
no corresponding LMES-morphism from ESg to £S. O

We do however still have the following result.

Theorem 5.8.15
mn : ULMES — PN and nm : PN — ULMES form an adjunction with mn the

left adjoint and the arrows vgg as unit.

Proof.
Similar to the proof of Theorem 5.7.10. O
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Figure 5.12: ULM-event structures [Ss and IS4 yielding the same Petri net

As we mentioned before, the arrows vgg are not LMES-isomorphisms, and hence
the adjunction is not a co-reflection. As the following example illustrates, the arrows
vpg are not even LMES-isomorphisms for ULM-event structures ES for which there
exists a Petri net N with nm(N) = ES. Hence it is not possible to cut the adjunction
down to a co-reflection by restricting the category of ULM-event structures.

Example 5.8.16

Consider the ULM-event structure ES = nm(Ny) from Example 5.8.6. Then
"(a)gs < (a)gs” for every region r of ES. Hence in the Petri net mn(FES) the transition
(b)ps cannot be disabled by the occurrence of (a)gs. Then it is easy to see that vgg
is not an LMES-isomorphism. O

It might be possible to solve this problem by strengthening the equivalence relation
~ 1. This should be done in such a way that, for the Petri net Ny from Example 5.8.6,
all prime intervals corresponding to b are identified. Then it could be that the adjunc-
tion between ULMES and PN can be cut down to a co-reflection by restricting the
objects of ULMES to ULM-event structures satisfying some “regional” axioms. It is
however not clear at present how all this can be achieved.

A consequence of the co-reflection between ULES and PN'S is that ULES is a
co-reflective subcategory of LES. From Example 5.8.14 it easily follows that we do
not have a similar result in the present setting due to the fact that mn is not full.

5.9 Concluding Remarks

In Section 5.1 prime event structures have been used to give an event structure se-
mantics for 1-safe Petri nets, following the approach from [98]. Prime event structures
have also been proposed as possible candidates for representing the behaviour of gen-
eral Petri nets [61] (see also [24]). In this approach general Petri nets lead to the same
class of event structures as 1-safe Petri nets by viewing the tokens more or less as
“coloured” entities.
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In this chapter we have proposed a proper generalization of the prime event struc-
ture semantics for 1-safe Petri nets. Our event structure semantics in terms of L-event
structures is however restricted in the sense that auto-concurrency is filtered out from
the behaviour of Petri nets. For the objects in the category PA's of 1-safe Petri nets
our event structure semantics agrees with the prime event structure semantics from
[66, 98]. In this chapter we have however restricted this comparison to the level of
objects, due to the (slight) differences between our PN-morphisms and the Petri net
morphisms used in [98].

For 1-safe Petri nets there exists by Lemma 5.1.3 and Lemma 5.1.6 a bijection
between the finite configurations of its associated prime event structure and the M-
traces of its associated M-trace language. Moreover, the posets obtained by equipping
M-traces with their M-trace ordering relation and by equipping the finite configurations
of the prime event structure with the inclusion ordering are isomorphic.

For general Petri nets on the other hand, there is in general no bijection between
the finite configurations of its associated UL-event structure and the L-traces of its
associated L-trace language, because step firing sequences which have the same past
are not necessarily in the same L-trace. This is for instance the case for the Petri net
Ny depicted in Figure 5.4 for which ab 2y,, ba, but pasty, (ab) = pasty, (ba). This
has led us to introduce a new equivalence relation over prime intervals.

The definition of the unique occurrence property of L-event structures is based on
this equivalence relation over prime intervals. These prime intervals are defined in
terms of the step firing sequences of the L-event structure. One might now wonder if
it is necessary to take into account the whole history of event occurrences, as is done in
both prime intervals and condition (C2). In [66] for instance, prime intervals of partial
orders are defined which only consist of pairs of elements such that one “covers” the
other. The equivalence relation over these prime intervals, which is used in [66] to
extract event occurrences from the partial order, then simply identifies prime intervals
which are connected by diamonds. This suggests, in the context of L-event structures,
also a simpler formulation of the unique occurrence property in the following way.

Let S = (E,C,F) be an L-event structure. Then let PI’;q C C' x E be the set of
C-prime intervals of ES, given by:

Plys ={(c,e) e C X E | ¢k e}.

The equivalence relation &y C Pl’q X Pl is defined as the least equivalence relation
such that:

(ckuande€u)= (ce) s (cU(u—e)e).

Then ES = (E,C,F) has the unique C-occurrence property iff it satisfies the following
conditions (U1”) and (U2").

(U1”) Ve e E.3(c,e) € Pl
(U2”) Y(cy,e),(ca,e) € Pllyg. (c1,€) &g (2, €).

The class of L-event structures satistying this C-unique occurrence property is however
not the same as the class of UL-event structures. The reason is that ~;¢ identifies
event occurrences which are distinguished by ~pg.
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{ab,c,d}

Figure 5.13: The L-event structure ES1g

To see this, consider the L-event structure ESqo depicted in Figure 5.13. In ES4,
all diamonds represent concurrency, except that =( F {a,c}) and =(0 + {b,d}). For
each event there is exactly one equivalence class of C-prime intervals under ~7 . For
instance, for the event a we have:

(Q)va) %;2510 ({b}va) %;2510 ({bv d},a) %;2510 ({bv ) d},a) %;2510 ({c, d},a) %;2510 ({c},a).

Hence ESqp has the unique C-occurrence property.

On the other hand, £S1y does not have the unique occurrence property with respect
to A gs,,, because for each event there are two equivalence classes: one containing its
prime intervals starting with a, b, or {a, b}, and one containing its prime intervals
starting with ¢, d, or {¢,d}. So with respect to ~pg,,, there are two distinguishable
occurrences of a in this L-event structure, (a)gs,, and (ca)gs,,. Similarly, there are
also two distinguishable occurrences of the other events.

At present it is not clear, if with the alternative definition of the unique occurrence
property also a co-reflection with the category of co-safe Petri nets can be obtained.



Chapter 6

A Categorical Classification of
Event Structures

In Chapter 5 we have introduced L-event structures and UL-event structures in our
proposal for lifting the prime event structure semantics for 1-safe Petri nets to the level
of general Petri nets. In this chapter we investigate in detail the relationship between
the new (U)L-event structures and some basic classes of event structures which have
appeared in the literature.

In Section 5.1 the prime event structures from [66] have been introduced as sets of
events together with a causal dependency relation and a binary conflict relation. In
this chapter we also consider the generalization of prime event structures used in [96]
in which the conflict relation is replaced by a consistency predicate to express that
there may be arbitrary conflicts between events. These event structures are here called
G-prime event structures.

In addition to (G-)prime event structures we also consider Winskel’s general event
structures [96] (see also [92]) and their stable subclass. These general event structures
are obtained by further generalizing G-prime event structures by replacing the causal
dependency relation by a (global) enabling relation specifying the enabling of events at
consistent sets. In this thesis we refer to these event structures as W-event structures.
Also W-event structures lead to a notion of a configuration. In [96] it has been proved
that an equivalent specification of W-event structures is obtained by means of families
of configurations. In fact, it is sufficient to consider only the finite configurations
because the set of all configurations can be derived from the set of finite configurations
through a standard construction known as ideal completion.

For W-event structures there is no global causal dependency relation over the
events. There is not even a causal dependency relation for the events in a given
configuration. This led in [96, 92] to the notion of a stable W-event structure in which
each event in a configuration is enabled by a unique minimal set of events.

The comparisons between these various classes are performed in a categorical frame-
work by exhibiting adjunctions between the various categories. Recall that in Corol-
lary 5.7.11 it has already been proved that the category ULES of UL-event structures
is a full co-reflective subcategory of the category LES of L-event structures.

In Section 6.1 we prove that the relationship between the category LES of L-
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event structures and the category WES of W-event structures can be expressed as
a reflection, with the left adjoint going from LES to WES. This means that WES
can be viewed as being embedded in LES. A characterization is given of the full
subcategory of LES for which the reflection cuts down to an equivalence.

We then show in Section 6.2 that the reflection between LES and WES can be
further extended to be a reflection between LES and SWES, the category of stable
W-event structures. Also for this reflection a characterization is given of the full
subcategory of LES for which the reflection cuts down to an equivalence.

In Section 6.3 it is shown that a similar reflective relationship can also be established
between ULES and GPES, the category of G-prime event structures. The axioms
needed on Ul-event structures for cutting this reflection down to an equivalence are
the same as for cutting down the reflection between LES and SWES to an equivalence.
This result is closely related to the well-known fact that stable W-event structures and
G-prime event structures correspond to the same class of Scott Domains.

Finally, we show in Section 6.4 that there is also a reflection between ULES and
PES, the category of prime event structures. The corresponding functor from PES
to ULES is an extension of the map pu defined in Section 5.4.

Finally in Section 6.5 we have some concluding remarks.

6.1 L-Event Structures and W-Event Structures

The W-event structures defined now are the general event structures from [96]. They
are defined as families of configurations.

Definition 6.1.1

WES is the category of W-event structures specified as follows.
An object of WES is a W-event structure W = (F, C') where F is a set of events and
C C Pp(F) is a non-empty set of (finite) configurations such that

(W1) 0 £c=3Fe€cc—cel
(W2) ¢Td=cudecC.

An arrow of WES is a WES-morphism f : (E1,C1) — (FEq,Cy) which is a partial
function f : Ey — F5 such that

(1) \V/C - le(c) - CQ
(2) Ye € C1.Vey, ez € c.((f(er) and f(ez) are defined and f(e1) = f(e2)) = e1 =

€).

The identity morphism associated with an object is the identity function on its events
and composition of arrows is composition of partial functions. a

A W-event structure is depicted through its configuration structure, which is the
Hasse diagrams of its configurations, ordered under inclusion. In contrast to the
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{ab,c}

P N

{a,c} {b,c}
{ab}

{a}/ \{b}
/

\ﬂ

Figure 6.1: The W-event structure W,

situation for L-event structures, for W-event structures this inclusion relation does
carry an adequate amount of causal information.

In Figure 6.1 a W-event structure W; is depicted, which represents the “parallel
switch” from [96].

The map we which is defined next yields for each W-event structure an L-event
structure by interpreting diamonds in the configuration structure as concurrency to
be expressed in the enabling relation.

For a W-event structure W = (E, (), define we(W) = (E,C,F) where FC C x
Pr(FE) is given by:

ctuscnNu=0and Vo Cu.cUv € C.

Lemma 6.1.2
Let W be a W-event structure. Then we(W) is an L-event structure.

Proof.

Follows easily from the definitions. a

For the W-event structure W; from Figure 6.1, the L-event structure we(Wi) is
depicted in Figure 6.2.

Clearly not every L-event structure is the image of a W-event structure. First of
all, in contrast to W-event structures the diamonds in the configuration structure of
an L-event structure do not necessarily represent concurrency. (This is for instance the
case for the L-event structures £S; and FES3 depicted in Figure 5.2)). Secondly, two
configurations of an L-event structure may be compatible without their union being a
configuration. This is for instance the case for the UL-event structure FSy; depicted
in Figure 6.3.

We extend we to morphisms, by defining we(f) = f for each WES-morphism f.

Lemma 6.1.3
Let f be a WES-morphism from Wi = (Fy,Cy) to Wy = (Ey, Cy). Then we(f) is
an LES-morphism from we(W;) = (E1,Cy,F1) to we(Wsy) = (Fy, Ca, F2).
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{ab,c}

{ac} N, {be}

£ {ab}
{a}
p

Figure 6.2: The L-event structure we (W)

\{b}
/

{abc)

P N

{ac) {be)

\ /q/

Figure 6.3: The UL-event structure £51;

{a} {b}

Proof.

Suppose that ¢ F; u. Then ¢cNw =0 and cUw € C. Hence f(c) N f(u) = 0 by
condition (2) in the definition of WES-morphism. Moreover, cUv € (4 for all v C u
and so by condition (1), f(cUv) = f(e)U f(v) € Cy for all v C u. Hence f(c) Fy f(u).
O

Lemma 6.1.2 and Lemma 6.1.3 lead to the following result.

Theorem 6.1.4
we is a Tunctor from WES to LES. O

Conversely, a map from L-event structures to W-event structures can be defined
by dropping the local enabling relation representing concurrency, and closing the set
of configurations with respect to union of compatible (with respect to inclusion) con-
figurations.

This leads to the following definition of the map ew from L-event structures to
W-event structures.

For an L-event structure ES = (F,C,F), define ew(ES) = (F, C’) where (' is the
least subset of Pr(F) containing C' which satisfies (W2).
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Note that ew(ES) is well-defined, because both Pr(E) and {C’ C Pr(E) | C C C’
and C’ satisfies (W2)} satisfy (W2).

Lemma 6.1.5 )
Let £S = (E,C,F) be an L-event structure. Then ew(ES) = (F, (') is a W-event

structure.

Proof.

In order to prove that ew(ES) satisfies (W1), let ) £ ¢ € C. If ¢ € C, then there
exists e € IV such that ¢ — e I e because LS satisfies (E0). Hence c —e € €' C C. So
assume that ¢ € C'. Then by the minimality of C there exist c1,Co € C with ¢ T ¢
such that ¢c=ca U cg, |e1| < |e], and |e2| < |e¢|. Thus |c| > 2. Assume that for all
¢|, there exists an e € E such that ¢ —e € (. Then there exist
€1y 6y EF Wlth n = |ep] such that ¢; = {eq,...,¢,}, and {e1,...,¢;} € C for all
0 < i < n. Because |¢1| < |¢| and |ey| < |c| there exists a largest integer k& such that
ke {l,....n} and ¢; & c3. Hence €gy1,...,¢, € ¢3. Then, by the definition of C,
{e1,...,er1}Uca=c—e¢; € C'. This proves that ew(ES) satisfies (W1).

From the definition of ew(ES) we immediately have that ew(FES) satisfies (W2).
O

{abc}

{aC} {bc}
{ab}

s

Figure 6.4: The W-event structure ew(FES11)

For the L-event structure FSi; depicted in Figure 6.3, the W-event structure
w(FS11) is depicted in Figure 6.4.

The definition of ew implies that the set of configurations of an L-event structure is
contained in the set of configurations of its image under ew. As the next lemma shows,
all configurations added by ew are subsets of original configurations. This observation
is used when we extend ew to a functor.

Lemma 6.1.6 ) )
Let ES = (E,C,F) be an L-event structure with ew(ES) = (E,C). Then ¢ € C
implies that there exists ¢ € (' such that ¢ C c.
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Proof.

Let ¢ € C. If ¢ € C then the claim holds trivially, so suppose that ¢ € ' — . Now
assume to the contrary that there exists no ¢ € €' such that ¢ C c. Let ¢/ = €' — {c €
C'|éC Y. Then C C (' b b C d}NnC =10. Suppose
o, ¢1, ¢y € (" are such that ¢; C ¢y and ¢y C ¢p. (' satisfies (W2) and so ¢; U e € C.
By ci1Ucy C o € C'and ¢ € ¢y we have ¢ € ¢; U ¢z. Hence ¢q U ey € €. This leads to
the conclusion that C” satisfies (W2), a contradiction with the minimality of C'. Thus
there exists ¢ € € such that ¢ C c. O

Now define ew(f) = f for each LES-morphism f.

Lemma 6.1.7
Let f be an LES-morphism from ES; = (E17Q17|_1) to ES, = (E27027|_2). Then
ew(f) is a WES-morphism from ew(FS,) = (E1,Ch) to ew(ESy) = (Fa, Cy).

Proof.

Let ¢ € (4. By condition (1) in the definition of WES-morphism, f(¢) € (' should
hold. If ¢ € (', then by condition (E1) in the definition of an L-event structure, ¢ Fy §.
Since f is an LES-morphism, we have in this case f(c¢) F2 0 and so f(c) € Cy C Cs.
Using this observation we now prove by induction on |c| that f(c) € f(éz) always
holds. | = 1, then ¢ € Cy and we are done. Now assume that |c[ > 1
with ¢ € Cl (7. Then by the minimality of Cl there exist e, ez € Cl such that
¢ = Uey, |ei| < |e|, and |ey| < |¢|. Hence f(ey), f(ez) € Cy by the induction
hypothesis. By Lemma 6.1.6 there exists a ¢ € (7 such that ¢ C ¢. We then have
as above that f(¢') € Cy C C,. Thus fler), fle2), f(C) € Cy and fler) € f(¢) and
fle2) € f(). Then f(er) U f(e2) = fle) € (', because (' satisfies (W2).

That condition (2) in the definition of a WES-morphism is satisfied by f can be
seen as follows: let ¢ € ( and €1,€9 € ¢ be such that e; # ey and f(eg) and f(ez)
are both defined. Again Lemma 6.1.6 guarantees the existence of a ¢ € 'y such that
¢ C . Then Lemma 5.2.3(1) gives f(e1) # f(ez). a

Lemma 6.1.5 and Lemma 6.1.7 yield the following result.

Theorem 6.1.8
ew is a functor from LES to WES. O

The functors ew and we are now shown to form an adjunction with as co-unit the
identity arrows idy . Hence this adjunction is a reflection.

Theorem 6.1.9
w: LES — WES and we : WES — LES form a reflection with ew the left

adjoint and the identity arrows idy as co-unit.
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Proof.

First note that the co-unit is well-defined because ew(we(W)) = W for each W-
event structure W.

Let £S = (E,C,F) be an L-event structure, let W = (E’,C") be a W-event struc-
ture, and let ¢ be a WES-morphism from ew(FES) = (E,C’) to W. Then we must
prove that there exists a unique LES-morphism f from ES to we(W) = (E',C’,})
such that the following diagram commutes.

ES ew(ES)
eW )
Ki g ’
kY
ew (we(W))
; y iy
we(W) W

Since ew 1s the identity on arrows, it is sufficient to prove that ¢ is an LES-morphism
from ES to we(W). Suppose ¢ F u. Then cNu =0 and cUv € C, for all v C u by
(E2). Since g is a WES-morphism from ew(F£S) to W we now have that cUv € C' C C
implies g(¢) U g(v) € €, for all v C u, and g(c) N g(u) = 0. Hence g(c) F' g(u). O

Finally we formulate two conditions on L-event structures which can be used to
identify a full subcategory of LES for which the reflection in Theorem 6.1.9 cuts down
to an equivalence.

Let (£,C,F) be an L-event structure. Then (FC) and (D) are defined as follows.
(FC) Ve,d e C.(cTd =cUd €C).
(D) (cnu=0and Vo Cu.cUv € C) = ckF u.

The axiom (FC) is a “forward closure” property stating that configurations which are
compatible (with respect to inclusion) can be joined. The axiom (D) states that all
“diamonds” represent concurrency.

Clearly, for every W-event structure W, the L-event structure we(W) satisfies (FC)
and (D). It is also easy to see that for every L-event structure ES satisfying (FC) and
(D), ES = we(ew(ES)). Hence we have the following corollary of Theorem 6.1.9.

Corollary 6.1.10
WES is equivalent to the full subcategory of LES the objects of which are L-event
structures satisfying (FC) and (D). O
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6.2 L-Event Structures and Stable W-Event Struc-
tures

Stable W-event structures [96] are W-event structures satisfying an additional axiom
guaranteeing that each event is enabled by a unique minimal set of events.

Definition 6.2.1
SWES, the category of stable W-event structures, is the full subcategory of WES
the objects (£, C') of which satisfy

(W3) ¢cTd=cndeC. 0

The W-event structure Wi depicted in Figure 6.1 is an example of a W-event
structure which is not stable: {a,c} T {b,¢}, but not {c¢} € C. The W-event structure
ew(FS11) depicted in Figure 6.4 is stable.

In this section we prove that there is also a reflection between LES and SWES,
by first establishing a reflection between WES and SWES.

For defining a map ws from W-event structures to stable W-event structures, it is
not sufficient to simply add configurations to ensure that (W3) is satisfied, because
this may destroy the condition (W2). This is illustrated in the following example.

Example 6.2.2

{ab,c} {a,b,d} {a,cd} {b,c,d}

%X%M

{ab} {aC} {bd} {cd}
{ad}

\/J/

Figure 6.5: The non-stable W-event structure W,

Let Wy = (F3,C3) be the non-stable W-event structure depicted in Figure 6.5.
Since {a,b} T {b,d} in this W-event structure, {b} must be added to C3 in order to
extend (5 to the set of configurations of a stable W-event structure. Similarly, {a,c} T
{e,d} implies that also {c} must be added to Cy. The resulting set Cy U {{b}, {c}}
satisfies (W3), but it does not satisfy (W2) anymore. Since {b} T {¢}, we also have to
add {b,c}. 0
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This now leads to the following definition of the map ws.
Given a W-event structure W = (F, ('), define C) C Pp(E) with i > 0 inductively
by:

[ C(O) e C
¢ Vi>1.00 =0tV y{cud,end |ed € O with ¢ T ¢ in C0-D},
Now define ws(W) = (F, C’) where ' = Uiso O

Thus for the W-event structure Wy = (FEsy, Cs) considered in Example 6.2.2, we
have that C3" = CoU{{b}, {c}}, O = CWU{{b,¢}}, and CF) = OF 7 for all i > 3.
Hence Cy = Cy U {{b}, {c}, {b,c}}.

Lemma 6.2.3 )
Let W = (E,C) be a W-event structure. Then ws(W) = (E, () is a stable W-event

structure.

Proof.

In order to prove that ws(W) satisfies (W1), let § # ¢ € C. Let k > 0 be minimal
such that ¢ € C®. We prove by induction on k that there exists e € ¢ such that
c—eeC® CC. I k=0 then ¢ € C and since W satisfies (W1), there exists e € ¢
such that c—e € C = C®). Now suppose that k£ > 1. Then by the minimality of k there
exist ¢y, ¢9 € CF=1) with ¢ T ¢g such that ¢ = ¢y U ¢z or ¢ = ¢; N ¢y. By the induction
hypothesis there exist ey,...,¢, € E with n = |¢;| such that ¢ = {ey,...,¢,} and
{e1,...,¢;} € C* =1 for all 0 < ¢ < n. By the minimality of k, ¢ # ¢ and ¢y # c.

First assume that ¢ = ¢;Uez. Let m be the largest integer such that m € {1,...,n}
and e, € ¢;. Hence €41, .., ¢, € ¢3. Then, by the definition of C*)_ {eq, ... en_q}U
s =c—e, € CW.

Now assume that ¢ = ¢; Ney. Let m be the largest integer such that m € {1,...,n}
and e, € ¢;. Hence €41, .., e, & ¢3. Then, by the definition of C*)_ {eq, ... en_11N
s =c—e, € CW.

This proves that ws(W) satisfies (W1). From the definition of ws(W') we immedi-
ately have that ws(W) satisfies (W2) and (W3). O

The map ws is now extended to morphisms by defining ws(f) = f for each WES-
morphism f.

Lemma 6.2.4
Let f be a WES-morphism from Wi = (Eq,Cy) to Wy = (Es, Cy). Then ws(f) is

A

a WES-morphism from ws(W;) = (F4, C’l) to ws(Ws) = (Fa, C3).

Proof.

Let ¢ € C1. It must be proved that f(c¢) € (', and that f is injective on c.

Let £ > 0 be minimal such that ¢ € Cl(k). We prove by induction on k that
fle) € Cz(k) C (5 and that f is injective on ¢. If k = 0 then ¢ € C; and hence fle) €
Cy = 02(0)‘ Since fis a WES-morphism from Wj to Ws, f isinjective on ¢. Now assume
that & > 1. Then there exist cg, 1,0 € Cl(k_l) with ¢; € ¢y and ¢z € ¢g such that
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¢ = c1Uc or ¢ = ¢4 Ney. By the induction hypothesis f(co), f(e1), f(ea) € ( ) and f
is injective on ¢g. Hence f is also injective on ¢. Now f(e1) € f(co) and f(c2) C f(co)
and so by the definition of 02(k) it follows that f(c Ueg) = (cl) U f(e) € 02 and
flesNez) = fler) N fle) € CQ(k). This proves that f(c) € 2 . O

Lemma 6.2.3 and Lemma 6.2.4 yield the following result.

Theorem 6.2.5
ws is a functor from WES to SWES. O

As the next theorem shows ws is the left adjoint to the inclusion functor z from
SWES to WES. The co-unit of this adjunction is given by the identity arrows idw
for each stable W-event structure W. Hence the adjunction is a reflection.

Theorem 6.2.6
s : WES — SWES and 1 : SWES — WES form a reflection with ws the left

adjoint and the identity arrows idy as co-unit.

Proof.

Note that the co-unit is well-defined because ws(W) = W for each stable W-event
structure W.

Let W = (E,C) be a W-event structure, let W’ = (E’,C") be a stable W-event
structure, and let ¢ be a WES-morphism from ws(W) = (E,C’) to W’. Then we
must prove that there exists a unique WES-morphism f from W to W’ such that the
following diagram commutes.

W ws(W)
()
| f g ‘\\
\
ws( W)
| Y idy,
W w

Since ws is the identity on arrows, it is sufficient to prove that ¢g is a WES-morphism
from W to W’. This however follows immediately from the observation that ¢' C (.
O
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The reflections from Theorem 6.1.9 and Theorem 6.2.6 can now be composed which
yields the following result.

Theorem 6.2.7
wsoew : LES — SWES and weor : SWES — LES form a reflection with wso ew

the left adjoint and the identity arrows idy as co-unit. a

In Corollary 6.1.10 a characterization is given of the L-event structures representing
W-event structures, by cutting the reflection between L£LES and WES down to an
equivalence. We now give a similar result for stable W-event structures.

In order to identify a full subcategory for which the reflection in Theorem 6.2.7 cuts
down to an equivalence, define the following “backward closure” property for arbitrary
L-event structures (£, C,F).

(BC) et d=ecndeC.
Then the following result follows easily from Theorem 6.2.7.

Corollary 6.2.8
SWES is equivalent to the full subcategory of LES the objects of which satisty
(FC), (D), and (BC). O

6.3 UL-Event Structures and G-Prime Event Struc-
tures

In this section we investigate the relationship between UlL-event structures and the
generalization of prime event structures from [96]. These event structures from [96]
will be referred to as G-prime event structures in what follows. We prove that, similar
to the relationship between the category of L-event structures and the category of
(stable) W-event structures, there exists a reflection between the category of UL-event
structures and the category of G-prime event structures, with the left adjoint going
from UlL-event structures to G-prime event structures.

A G-prime event structure has a global consistency predicate which specifies which
(finite) sets of events are not in conflict. A consequence is that, in contrast to the
binary conflict relation of prime event structures, G-prime event structures can have
arbitrary sets of conflicting events. In particular a set of events can be in conflict,
while each of its non-trivial finite subsets is conflict-free.

Definition 6.3.1

GPES is the category of G-prime event structures specified as follows.
An object of GPES is a G-prime event structure G = (£, Con, <) where F is a set of
events, <C F X F is a partial order, the causal dependency relation, and Con C Pp(FE)
is the consistency predicate such that

(GO) Vee E.{e} € Con
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(G1) Ve e E. |e is finite
(G2) VX, YCFE.(YCX € Con=Y € Con)
(G3) VX € ConVe,e' e E. (¢! <eec X = XU¢e € Con). O

An arrow of GPES is a GPES-morphism f: (Eq, Cony, <1) — (FEy, Cony, <) which
is a partial function f : Fy — F, such that

(1) Ye € E1.(f(e) is defined =[f(e) C f(le))
(2) VX € Cony. f(X) € Cony
(3) VX € Cony.Ver,ea € X ((f(er) and f(ez) are defined and f(e1) = f(ez)) =

€1 = 62). O

The identity morphism associated with an object is the identity function on its events
and composition of GPES-morphisms is composition of partial functions. a

Let G = (F, Con,<) be a G-prime event structure and let ¢ C E. Again we say
that ¢ i1s downward-closed ift

Ve,e' € E.((e € cand ¢ <e)= ¢ € ¢).
We say that ¢ is consistent iff
VY € Pp(c). Y € Con.

A configuration of G is a subset of events which is downward-closed and consistent.
The set of all configurations of (G is denoted by Cg. The set Cg N Pr(E) of all finite
configurations of (& is denoted by F(C'g.

{a,c} {bc}
{ab}

{c}
{a} {b}

o

Figure 6.6: A G-prime event structure

In Figure 6.6 the configurations of a G-prime event structure are depicted. For this
G-prime event structure the set {a, b, ¢} is downward-closed, but not consistent. Since
the elements in {a,b,c} are however pairwise consistent, there is no ordinary prime
event structure which has the same set of configurations.

The following lemma states some useful properties of G-prime event structures.
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Lemma 6.3.2
Let G = (FE, Con,<) be a G-prime event structure. Then

(1) Vee E. le€ FCq
(2) VY CE(Y € Con & de € Cq. Y € Pr(e)).

Proof.

(1) Let e € E. Clearly, |e is downward-closed. By (G1), |e is finite. By (G2) it is
now sufficient to prove that le € Con. By (G0), {e} € Con. Hence repeatedly
applying (G3) yields that e € Con.

(2) Suppose Y C F is such that Y € Con. Since Y is finite it is sufficient to prove
that |Y € Cg and is finite. By (G1) and the finiteness of YV, |V is also finite.
Repeatedly applying (G3), starting with Y, now yields that Y € Con. Since |Y
is downward-closed, we can conclude that |Y € Cg. The converse implication
follows immediately from the definition of Cg. O

Part (1) implies that, similar to the situation for prime event structures, there
exists for each event of a G-prime event structure a minimal (finite) configuration
containing this event. Part (2) states that the consistency predicate of a G-prime
event structure can be derived from its set of configurations.

A characterization of GPES-morphisms in terms of configurations is stated in the
next lemma.

Lemma 6.3.3
Let Gy = (Fy, Conq, <q) and Gy = (F2, Cong, <3) be G-prime event structures and
let f: Fy — E5 be a partial function. Then f is a GPES-morphism iff

(17) Ve e CG1'f(C) € CG2
(2’) Ve € Cg,.Ver, ez € c.((f(e1) and f(ez) are defined and f(e1) = f(e2)) = €1 =

€).

Proof.

Suppose that f is a GPES-morphism. First we prove condition (27). Let ¢ € (g,
and let ey, €5 € ¢ be such that f(ey) and f(ey) are defined and ey # e3. Then {eq, e2} C
¢ and hence {eq,e2} € Cony. This implies that f(e1) # f(e2) by condition (3) in the
definition of GPES-morphism. This proves condition (27).

Now in order to prove (1), let ¢ € Cg,. It must be proved that f(¢) € Cg,. In order
to prove that f(c) is consistent, let X € Pp(f(c)). We must prove that X € Con,.
Let Y = {e € ¢ | f(e) is defined and f(e) € X}. Hence X = f(Y'). Because X is
finite, we have that Y € Pgr(c) by (2’). This implies that Y € Cony because ¢ € (g .
We can now conclude that X = f(Y) € Cony by condition (2) in the definition of
GPES-morphism. Now in order to prove that f(c) is downward-closed, suppose that
€1 € ¢ and ex € Fy are such that ez <y f(e1) € f(¢). Then by condition (1) in the
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definition of GPES-morphism ey €] f(e1) € f(ler) C f(c¢). This proves that f(c) is
downward-closed, and hence that f(¢) € Cg,.

Now suppose that f satisfies the conditions (1’) and (2’) above. In order to prove
condition (1) in the definition of GPES-morphism, let e; € F; be such that f(eq) is
defined and suppose e; € Fy is such that ey €| f(e1), that is es <5 f(e1). Then by
Lemma 6.3.2(1), | e; € Cg, and hence also f(le1) € Cg, by condition (17). This
implies that f(ley) is downward-closed, and hence that ey € f(leq).

In order to prove condition (2) in the definition of GPES-morphism, suppose X €
Cony. Then by Lemma 6.3.2(2) there exists ¢ € Cg, such that X € Pg(¢). By
condition (1’) we then have that f(c¢) € Cg,. Because f(X) € Pr(f(c)) this implies
that f(X) € Cons.

Finally, condition (3) in the definition of GPES-morphism follows immediately
from Lemma 6.3.2(2) and condition (27). O

Using its finite configurations, we now demonstrate that each G-prime event struc-
ture can be viewed as an Ul-event structure. This is done by interpreting again the
diamonds in the configuration structure of a G-prime event structure as concurrency
expressed through the enabling relation.

Let G = (E, Con, <) be a G-prime event structure. Then define gu(G) = (F, FCq,F
) where FC FC¢q x Pp(FE) is given by:

ctuecnNu=>0and Vo Cu.cUv € FCq.

Lemma 6.3.4
Let G = (F, Con, <) be a G-prime event structure. Then gu(G) = (E, FCq,F) is

an L-event structure.

Proof.

In order to prove that gu(() satisfies (E0), let § # ¢ € FCq. Let ¢ € ¢ be a
maximal event in ¢ in the sense that for all ¢’ € ¢, ¢ < ¢’ implies that ¢ = ¢’. Then
¢ —e € FCq and hence ¢ — e b e. This proves that gu(() satisfies (E0). From the
definition of gu(() it easily follows that gu(() satisfies (E1) and (E2). O

Our next aim is to prove that for each G-prime event structure (G, the L-event
structure gu(G') has the unique occurrence property. The first step is to show that
two step firing sequences of gu(() that lead to the same configuration have the same
past (under ~g,q)).

Lemma 6.3.5
Let G = (E, Con, <) be a G-prime event structure with gu(G) = (E, FCq,F) and
let p1, p2 € SES jy @y be such that alph(py) = alph(pz). Then past(py) = past(p,).

Proof.

The proof is by induction on k& = |py|. If & = 0 then p; = p; = 0 and the
claim clearly holds. Now assume that £ > 0. Then there exist p,p, € SES and
0 # ui,uz € Pp(F) such that p1 = pluq, p2 = phua, ¢f (p}) F ug, and ¢f (py) F us. Let
€1 € up and ey € uy. Since gu(G) satisfies (E2), pj(u1 — e1)er, ph(us — ez)eq € SFS.
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Moreover, because ~,(q) satisfies (C1), past(py) = past(pi(u1 —e1)er) and past(py) =
past(ph(uz — ez)ez).

If e; = ey then alph(p)(u1 — e1)) = alph(py(us — €2)) and hence by the induction
hypothesis past(p}(uy —e1)) = past(p)(uz — ez)). This implies, because ~, () satisfies
(C2), that pi(us — e1)er Ryu(q) phluz — ez)ea. Thus past(pr) = past(pi(us — er)er) =
past(p(ur —e1)) U (p (ur — ex)er) = past(ph(uz — €2)) U (ph(uz — €2)e2) = past(py(uz —
€2)€2) = past(pz).

Now assume that e; # e5. Then it is easy to see that alph(pi) — {e1,e2} € FCq.
By Lemma 6.3.4 and Lemma 5.2.5(2), there exists p € SFS such that alph(p) =
alph(p1) — {e1,ea}. Since pe; € SES and alph(per) = alph(py(uz — €3)), we have by
the induction hypothesis that past(per) = past(py(uy — e2)). Similarly, past(pesy) =
past(pi(uy —e1)). Hence, because ~ (g satisfies (C2), peres Ry ) py(uz — e2)ez and
peser Ry pi(ur — er)er. Since alph(p) = {e1, ea} we also have that pey ~ () peser
and pey Ry @) peies. Summarizing these results we can conclude that past(p,) =
past(py(ur — er)er) = past(py(ur — €1)) U (pi(u1 — er)er) = past(pey) U (peser) =
past(p)U(pes) U {pezer) = past(p)U{perea)U(per) = past(per)U(peres) = past(ph(uz—
€2)) U (py(uz — ez)ez) = past(py(uz — ez)ez) = past(ps). =

Lemma 6.3.6
Let G = (F, Con, <) be a G-prime event structure. Then gu(G) = (E, FCq,F) is

an Ul-event structure.

Proof.

By Lemma 6.3.4, gu(() is an L-event structure. We must show that gu(G') has the
unique occurrence property as stated in Definition 5.3.7.

Let e € E. Then e —e, e € FCq by Lemma 6.3.2(1) and hence |e — e F e. By
Lemma 6.3.4 and Lemma 5.2.5(2), there exists p € SFS such that alph(p) =|e — e.

Then pe € PI and hence condition (Ul) is satisfied. In order to prove that condition
(U2) is satisfied, we first show that pe =~ p'e for all p'e € PI. Then by the
transitivity of ~,, () we have that also p'e ~ () p"e for all p'e, p"e € PI.

So let p'e € PI. Then alph(p'e) € FC¢ and hence alph(p) C alph(p'). We prove
that pe 5, () p'e by induction on |p'|. If alph(p') = alph(p) then past(p) = past(p’)
by Lemma 6.3.5. Hence, because =2, () satisfies (C2), pe ~u(q) p'e. Now assume that
|p'| > |p|. Then there exists ¢’ € alph(p")— alph(p) such that €’ is a maximal element in
alph(p’) under <. Such an €’ must exist because alph(p’) is a finite set and < is a partial
ordering relation. Then alph(p')—e’ € FC¢ and (alph(p')—€")Ue € FCq. Let p"” € SFS
be such that alph(p”) = alph(p’) — ¢'. Then p"e € PI. Since |p"| < |p'|, p"e =4 () pe
by the induction hypothesis. Now alph(p”e’) = alph(p’) and hence by Lemma 6.3.5,
past(p”e’) = past(p’). Then because m2y(q) satisfies (C2), p"e’e 2y ) p'e. Since
alph(p") F {e, e’} and ~ () satisfies (C1), we also have that p”e’e ~ ) p"e. We can
now conclude that pe ~ ) p'e =4 (q) p'e'e =4 (a) p'e. This proves condition (U2).
O

As to be expected, not every UL-event structure can be obtained from a G-prime
event structure by applying gu. For instance, the UL-event structure ES3 in Ex-
ample 5.2.2 cannot be the UL-event structure associated with any G-prime event
structure.
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In order to extend gu to a functor, define gu(f) = f for each GPES-morphism f.

Lemma 6.3.7

Let f be a GPES-morphism from G4 = (Fy, Cony, <) to Gy =
(Es, Cony, <3). Then gu(f) is an LES-morphism from gu(G1) = (Fi, FCq,,F1) to
gu(GQ) = (E27FCG27|_2)‘

Proof.

Suppose that ¢ 1 u. Then cNwu = § and cUu € FCg,. So by condition (2’)
in Lemma 6.3.3, f(c¢)N f(u) = 0. We also have that ¢ Uv € FCgq, for all v C u.
Thus by condition (17) in Lemma 6.3.3, f(cUv) = f(c) U f(v) € FCgq, for all v C u.
Consequently, f(c) b2 f(u). O

The following result now follows immediately from Lemma 6.3.6 and Lemma 6.3.7.

Theorem 6.3.8
gu is a functor from GPES to ULES. O

Next we define a functor from ULES to GPES. This is done by first associating
with each L-event structure a structure ug(FES). In ug(ES) a set of events is consistent
iff the events occur together in some configuration. An event causally depends on
another event iff its occurrence implies that this other event has already occurred.

So let ES = (F,C,F) be an L-event event structure. Then define ug(ES) =
(E, Con, <) where

o <CFExFisgivenby eg <eg&VeeCl(ex €Ec=e1 €¢)
e Con C Pp(FE)is given by Con ={X € Pp(F)|Jce C. X Cc}.

If in ES all events occur in a configuration, then we can prove that ug(FES) is a
G-prime event structure.

Lemma 6.3.9

Let ES = (E,C,F) be an L-event structure which satisfies condition (U1) in the
definition of the unique occurrence property. Then ug(ES) = (E, Con, <) is a G-prime
event structure.

Proof.

Clearly, < is reflexive and transitive. In order to prove that < is anti-symmetric,
suppose €1, ey € F are such that e; < ey and ey < ey. Then, for all ¢ € C, ¢ € ¢ iff
€2 € ¢. By (Ul) there exists ¢ € C such that e; € ¢. By Lemma 5.2.3 there is a ¢’ such
that e; # ey implies e; € ¢ iff e5 € ¢/. Hence e; = e5. This proves that < is a partial
order.

In order to prove that ug(FES) satisfies (GO) and(G1), let e € E. Then by (Ul),
there exists ¢ € C such that ¢ € ¢. Hence {e} € Con. Moreover, e C ¢ and hence
Le is finite. This proves that ug(FS) satisfies conditions (G0) and (G1). Conditions
(G2) and (G3) follow easily from the definition of ug(FES). O
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As usual ug is to be extended to a functor by defining ug(f) = f for each LES-
morphism f. In proving that ug(f) is a GPES-morphism, condition (U2) in the
definition of the unique occurrence property is essential. This is illustrated in the
following example.

Example 6.3.10
Let ESi5 and ESi3 be the L-event structures depicted in Figure 6.7. Note that
£S5 1s not an UL-event structure.

{a,c} {b,c} {de}
{a} {b} {d}
4 9

ESlg ESIS

Figure 6.7: L-event structures FESy3 and ESi3

Define f by f(a) = f(b) = d and f(c¢) = e. Then f is an LES-morphism from FES1»
to ESy3. Since {c} € Cyy(psy,) while f({c}) = {e} € Cuy(rs,,), Lemma 6.3.3 implies
that ug(f) is not a GPES-morphism from ug(F£S12) to ug(FS13). O

Hence arbitrary LES-morphisms are not preserved under ug. LES-morphisms be-
tween L-event structures with the unique occurrence property are however preserved
under ug.

Lemma 6.3.11

Let f be an LES-morphism from ES; = (E1,C1,F1) to ESy = (Ey, Cy,b3) where
ESy and ES5 are UL-event structures. Then ug(f)is a GPES-morphism from ug(£S;) =
(El, COTLl, Sl) to Ug(ESQ) = (EQ, COTLQ, Sz)

Proof.

In order to prove condition (1) in the definition of GPES-morphism, let e € F; be
such that f(e) is defined and suppose e’ €| f(e). We prove that e’ € f(le). If ¢/ = f(e)
then we are done, so assume that €’ # f(e). Let p € SFSgg, be such that pe € Plgg,.
By condition (Ul) in the definition of the unique occurrence property such p exists.
Then alph(pe) € Cy. Hence, because f is an LES-morphism, f(alph(pe)) € Cy. Since
fle) € f(alph(pe)) this implies, because ¢’ <, f(e) and €’ # f(e), that €' € f(alph(p)).
Let €” € alph(p) be such that f(e”) =¢'. If e’ <y e, then € = f(e") € f(le).
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In order to prove that €’ <; e, define R C Plgg, x Plgs, by: preq R poes iff
(e1 = ex # eor (e = e = e and (e € alph(p1) < €’ € alph(pz)))). Assume
that R is an equivalence relation which is SFS gg, -consistent. Then ~gs, C R because
~ g, 1s the least equivalence relation which is SFS gg, -consistent. Since pe € Plgg,,
e” € alph(p), and ES; has the unique occurrence property it then follows that for all
pre € Plgg,, € € alph(p1). Hence e” € ¢ for all ¢ € C; such that e € e. Thus ¢’ < e.

Consequently, what remains to be proved is that R is an equivalence relation which
satisfies (C1) and (C2).

Clearly, R is an equivalence relation. In order to prove that R satisfies (C1),
suppose pru € SFSgg, and eq € u. If e; # e then it is clear that pieq R p1(u — eq)eq,
so assume that e; = e. If €’ & wu then it is clear that pie; Rpi(u — e1)e;. We now
show that ¢’ € u leads to a contradiction. To see this, suppose that ¢” € u. Since
alph(pire1) € Cp and f is an LES-morphism, we must have that f(alph(pier)) =
alph(f(p1)) U f(e) € Cy. Combining this with €' <y f(e) and ¢’ # f(e) yields that
e € alph(f(p1)). On the other hand, we also have that alph(p1) 1 €” and hence by
the definition of LES-morphism f(alph(p1)) F2 f(e”). This leads to a contradition
with f(e”) = ¢ € alph(f(p1)) = f(alph(p1)). We can now conclude that ¢” € u is not
possible. This proves that R satisfies (C1).

Now in order to prove that R satisfies (C2), let pieq, paes € Plgg, be such that
pastp(p1) = pastp(p2). If e; # e then we immediately have that pre; R pgeq. If eq = ¢,
then pie; R paeq because pastp(pr) = pastp(ps) implies that also alph(pr) = alph(ps).
This proves that R satisfies (C2).

Thus R is an equivalence relation satisfying (C1) and (C2) which completes the
proof that ug(f) satisfies condition (1) in the definition of GPES-morphism.

In order to prove condition (2) in the definition of GPES-morphism, let X € Con;.
Then X C ¢ for some ¢ € (4. Since f is an LES-morphism, this implies that f(X) C
f(e) € Cy. Hence f(X) € Cons.

Finally, condition (3) in the definition of GPES-morphism follows immediately
from Lemma 5.2.7. O

The following result is an immediate consequence of Lemma 6.3.9 and Lemma 6.3.11.

Theorem 6.3.12
ug 1s a functor from ULES to GPES. O

Now we prove that ug and gu form an adjunction.

Theorem 6.3.13
ug : ULES — GPES and gu : GPES — ULES form a reflection with ug the left

adjoint and the identity arrows id¢ as co-unit.

Proof.

Let G = (E, Con, <) be a G-prime event structure with gu(G) = (E, FCq,F) and
ug(gu(G)) = (E, Con',<’). First we prove that G = ug(gu(G)).

If X € Con, then it is easy to see that |[X € F(Cg, and hence X € Con’. Conversely,
X € Con' implies that there exists ¢ € FCg such that X C ¢, and hence X € Con.
This proves that Con = Con’'.
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If e1,e5 € E are such that e; < e,, then ey € cfor all ¢ € FC' such that e¢; € ¢, and
hence also e; <’ e,. Conversely, if ¢; <’ e; then we use the observation that |e; € F'Cq
by Lemma 6.3.2(1) to conclude that e; €|es. This proves that G = ug(gu(G)), and
hence that idg is a GPES-isomorphism from ug(gu(G)) to G.

Now let £S = (E”,C,F") be an UL-event structure and let ¢ be a GPES-morphism
from ug(ES) = (E”, Con”,<") to (G. Then we must prove that there exists a unique
LES-morphism f from ES to gu(G) such that the following diagram commutes.

ES ug(ES)
I f g ‘
.\“
ug(9u(G))
; Y idg
gu(G) G

Since ug is the identity on arrows, it is sufficient to prove that ¢ is an LES-morphism
from LS to gu(G). Suppose ¢ F" u. Then cNu =0 and cUv € C C FC 4 pg), for
all v C u, by (E2). Since ¢ is a GPES-morphism from ug(FS) to G we now have
by Lemma 6.3.3 that g(c) U g(v) € FCg for all v C w and g(¢) N g(u) = . Hence
gle) Fg(u). O

The conditions (FC), (BC), and (D) have been shown in Section 6.2 to characterize
within the category LES a full subcategory equivalent to SWES, the category of stable
W-event structures. If we restrict this subcategory further to the full subcategory of
UL-event structures satisfying (FC), (BC), and (D), we obtain a category equivalent
to GPES.

In order to prove this, we first need the following lemma.

Lemma 6.3.14
Let £S = (E,C,F) be an UL-event structure which satisfies (BC) with ug(ES) =
(B, Con,<) and let e € E. Then e € C.

Proof.

Define R C Plgs x Plgs by: pie; Rpaes iff (e = ey # e or (e; = e3 = e and
de € C.(e C alph(pr) N alph(pz) and c U e € C))). We first prove that R is an
equivalence relation satisfying (C1) and (C2).

Clearly, R is reflexive and symmetric. In order to prove that R is transitive, suppose
that pie; R paes R pses. The only non-trivial case is that e; = e5 = e3 = e. Then there
exists ¢; € C such that ¢; C alph(p1) N alph(pz) and ¢ Ue € C and there exists ¢; € C
such that ¢ C alph(p2) N alph(ps) and c;Ue € C. Then ¢; T ez and (qUe) T (caUe)
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and hence by (BC), ¢t Nez € C and (¢ Ue)N(caUe) = (e Nex)Ue € C. Because
(c1Nea) € alph(pr) N alph(ps) this proves that pre; R pses. We can now conclude that
R is transitive, and hence that R is an equivalence relation.

In order to prove that R satisfies (C1), let p € SFSgs and u € Pp(FE) be such that
pu € SFSgg and let € € u. If ¢’ # e then it is clear that pe’ R p(u — €’)e’, so assume
that ¢’ = e. Then alph(p) € C is such that alph(p) C alph(p) N alph(p(u — €’)) and
alph(p) U e € C. Hence pe’ R p(u — €’)e’. This proves that R satisfies (C1).

In order to prove that R satisfies (C2), let p1€’, pae’ € Pl gg be such that pastz(p1) =
pastp(p2). If € # e then it is clear that pie’ Rpae’. If e = €', then pastp(pr) =
pastp(p2) implies that also alph(p1) = alph(pz). Hence alph(p) € C is such that
alph(p1) C alph(p1) N alph(p2) and alph(p1) U e € C. This proves that pie’ R pse’ and
hence that R satisfies (C2).

Because g is the least equivalence relation satisfying (C1) and (C2), we must
have that ~gsC K. Now let ¢ € C be such that e € ¢ and ¢ 1s minimal in the sense
that V¢ € C.((e € ¢ and ¢ C ¢) = ¢ = ¢). Note that ¢ exists by condition (Ul)
in the definition of the unique occurrence property. Then by the minimality of ¢ and
(E0) we have that ¢ — e F e. We also have that |e C ¢ by the definition of <. Now
assume to the contrary that |e # ¢. Then there exists €’ € ¢ such that ¢’ £ e. Hence
there exists ¢ € C' such that e € ¢/ and €’ € ¢/. We may assume that ¢’ is minimal in
the sense that Ve’ € C.((e € "and ' € " and " C /) = " = ¢). Then ¢ —et e
by the minimality of ¢ and (E0). Now let p, p’ € SFS g be such that alph(p) =c—e
and alph(p’) = ¢ — e. Hence pe, p'e € Plgg. By condition (U2) in the definition of the
unique occurrence property, pe xpg p'e, and hence pe R p’e because ~psC R. This
implies that there exists ¢ € C such that ¢’ C alph(p)Nalph(p’) and ¢"Ue € C. Then
d"Ue Ccand e € "Ue, but ¢"Ue # ¢ because e’ € ¢ — (¢ Ue), a contradiction with

the minimality of ¢. We can now conclude that |e = ¢ € C. O

Lemma 6.3.15
Let ES be an UL-event structure which satisfies (FC), (BC), and (D). Then ES =

gu(ug(ES)).

Proof.

Let ES = (E,C,F), ug(ES) = (F, Con, <), and gu(ug(ES)) = (E, FCyygs), ).
First we prove that FC',gs) = C.

Clearly, " C FC,yEs). In order to prove that I'C,,gs)y C C, let ¢ € FC 4 Es).
Then ¢ € Con, and hence there exists ¢ € C such that ¢ C ¢. By Lemma 6.3.14,
le € C for all e € ¢. Because ¢ = {le | ¢ € ¢}, we then have that ¢ € C' by repeatedly
applying (FC). This proves that FCygs) C C, and hence that C' = FC;(gs).

In order to prove that F=F', first assume that ¢ u. Then cNu =0 and cUv €
C = FC yps) for all v C u. Hence ¢ ' u by the definition of I'. Now assume that
ctH u. TheneNu =0 and cUv € FC sy = C for all v C u. Hence ¢ - u by
condition (D). O

From the definition of gu it easily follows that for every G-prime event structure
G, gu(G) satisfies (FC), (BC), and (D). Hence we have the following result from
Lemma 6.3.15 and Theorem 6.3.13.
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Theorem 6.3.16
GPES is equivalent to the full subcategory of ULES the objects of which satisfy
(FC), (D), and (BC). 0

6.4 UL-Event Structures and Prime Event Struc-
tures

As the last point in our comparison of the various categories of event structures we
want to prove that there exists also a reflection between the category of prime event
structures and the category of UL-event structures. In view of Theorem 6.3.13 it
is sufficient to show that there is a reflection between the category of prime event
structures and the category of G-prime event structures.

First we define the category of prime event structures.

Definition 6.4.1

PES is the category which has prime event structures as its objects and PES-
morphisms as its arrows.
A PES-morphism f: (E1, <i,#1) — (Fq, <o, #2) is a partial function f : £y — F
such that

(1) Ye € E1.(f(e) is defined = |f(e) C f(le))
(2) Yei, ez € Fi. ((f(e1) and f(ez) are defined and f(eq)#2f(e2)) = e1t1ea)

(3) Yey, ez )E) FE1.((f(e1) and f(ez) are defined and f(e1) = f(es)) = (e1 = ez or -
61#162 .

The identity morphism associated with an object is the identity function on its events;
composition of PES-morphisms is composition of partial functions. a

In what follows it is sometimes convenient to use the following characterizations of
the conflict relation of a prime event structure.

Lemma 6.4.2
Let P be a prime event structure. Then the following statements are equivalent:

(1) ~(er#tes)
(2) ielu lez € FCP
(3) dc € FCp.{e1,e2} Ce. O

Proof.

(1) = (2): If =(e1#ez) then [e1U [ey is finite and downward-closed because |e;
and |ey are finite (by (P2)) and downward-closed. Moreover, |e;U |ey is #-free by
(P1), because both |e; and |ey are #-free by (P2).

The implications (2) = (3) and (3) = (1) are obvious. O
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Similar to the situation for GPES-morphisms, also for PES-morphisms an alterna-
tive characterization in terms of the (finite) configurations can be given (see also [98]).
This characterization is used as a definition for PES-morphisms in, e.g., [94, 98]. The
proof is similar to the proof of Lemma 6.3.3.

Lemma 6.4.3
Let P = (B1,<q,#1) and P» = (F2, <5,#32) be prime event structures and let
f: Ey — FE5 be a partial function. Then f is a PES-morphism iff

(17) Ve e Cpl.f(c) € Cp,

(27) VC)E Cp,.Vey,ea € c.((f(e1) and f(ez) are defined and f(e1) = f(e2)) = 1 =
€o). O

Proof.

Suppose that f is a PES-morphism. In order to prove (1), let ¢ € Cp. By
condition (2) in the definition of PES-morphism, f(c) is #2-free because ¢ is #1-free.
Now let €3 € Fy be such that e; <y es for some e3 € f(c¢). Then es = f(eq) for
some e; € ¢. Hence condition (1) in the definition of PES-morphisms implies that
ez € f(ler). Since ¢ is downward-closed, we have |e; C ¢ and so e € f(c¢). This
proves that f(c¢) is downward-closed, and hence f(¢) € Cp,. Because each ¢ € Cp, is
#1-free, condition (27) follows immediately from condition (3).

Now suppose that f satisfies the conditions (1’) and (2’) above. In order to prove
condition (1) in the definition of PES-morphism, let e; € E; be such that f(ey) is
defined and suppose ey €| f(e1), that is e; <5 f(e1). Since |e; € Cp,, (17) implies
f(ler) € Cp,. Hence f(ley) is downward-closed and e5 € f(leq). This proves condition
(1).

In order to prove condition (2) in the definition of PES-morphism, suppose f(e;)
and f(ey) are defined and f(ey)#2f(e2). Assume to the contrary that —(e;#ies).
Then by Lemma 6.4.2 there exists ¢ € Cy such that {e1,e3} C ¢. By condition (1) we
also have that f(c) € Cy. Because {f(e1), f(e2)} € f(c), applying Lemma 6.4.2 leads
to =(f(e1)#2f(e2)), a contradiction. This proves that e;#;es.

Finally, in order to prove condition (3) in the definition of PES-morphism, suppose
€1,€9 € Fy are such that f(eq) and f(ez) are defined, ey # ey, and f(e1) = f(e2). Then
by condition (27) there exists no ¢ € Cp, such that {e1,e2} C ¢ and hence Lemma 6.4.2
yields e1#1e,. O

Prime event structures can be viewed as G-prime event structures in which consis-
tency of sets of events follows from the absence of pairwise conflicts.
For a prime event structure P = (E, <, #), define pg(P) = (E, Con, <) where

Con ={X € Pp(F) | X is #-free}.

Lemma 6.4.4
Let P = (E,<,#) be a prime event structure. Then pg(P) = (F, Con,<) is a
G-prime event structure with Cp = C)y(py.
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Proof.

Condition (GO) follows from the irreflexivity of #. Condition (G1) follows imme-
diately from (P2) and condition (G2) follows immediately from the definition of Con.
In order to prove (G3), let X € Con and suppose € < e € X. Then —(e'#¢") for all
¢” € X by (P1) because X is #-free. Moreover, X U {€'} is finite because X is finite,
and hence X U {e'} € Con.

It is easy to see that Cp = C)y(py. O

In order to extend the map pg to a functor, we define again pg(f) = f for each
PES-morphism f.

Lemma 6.4.5
Let f be a PES-morphism from P = (F1, <q,#1) to Py = (F2,<s,#3). Then
pg(f) is a GPES-morphism from pg(P) = (£1, Conq, <1) to pg(Pa) = (Ey, Cong, <5).

Proof.

Condition (1) in the definition of GPES-morphism is satisfied, because it is the
same as condition (1) in the definition of PES-morphism. In order to prove condition
(2),let X € Cony. Then X is #;-free and hence f(X) is #2-free by condition (2) in the
definition of PES-morphism. Moreover, f(X) is finite because X is finite. Hence we
can conclude that f(X) € Cons. Finally, in order to prove condition (3), let X € Con,
and e, e3 € X be such that f(eq) and f(eq) are defined and e; # e3. Then —(e;#1€2)
because X is #;-free. Condition (3) in the definition of PES-morphism now leads to

fler) # flez). m

The following result follows immediately from Lemma 6.4.4 and Lemma 6.4.5.

Theorem 6.4.6
pg is a functor from PES to GPES. O

Conversely, a map from G-prime event structures to prime event structures is
defined by interpreting absence of consistency of events as conflict.
For a G-prime event structure G = (F, Con, <), define gp(G) = (E, <, #) where
# C F x E is given by
e1#ey & {er, e} & Con.

Lemma 6.4.7
Let G = (E, Con,<) be a G-prime event structure. Then gp(G) = (F,<,#)is a
prime event structure with FC g = {X € Pr(F) | X is downward-closed and

Vey,eq € X.{e1,e2} € Con}.

Proof.

First note that < is a partial order and # is symmetric. By (GO0), # is also
irreflexive. In order to prove that gp(() satisfies (P1), let eg, e1,e2 € E be such that
eofter < ez. Then {eg,e1} € Con, and hence by (G2) {eg, e1,e2} & Con. This implies
by (G3) that {eg,e2} & Con. Hence eg#es. This proves condition (P1). Condition
(P2) in the definition of a prime event structure follows immediately from condition
(G1).

From the definition of gp(() it is clear that FC ) = {X € Pp(E) | X is
downward-closed and Veq,es € X. {e1,e2} € Con}. O
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{ab,c}

P N

{a,c} {b,c}
><a’b><
{c}

{a} {b}
4

e

Figure 6.8: The prime event structure gp(G)

A G-prime event structure ¢ may have a strictly smaller set of configurations than
the prime event structure gp((G). This is for instance the case for the G-prime event
structure G depicted in Figure 6.6 for which gp(() is depicted in Figure 6.8.

Define gp(f) = f for each GPES-morphism f.

Lemma 6.4.8
Let f be a GPES-morphism from G4 to Gi5. Then gp(f) is a PES-morphism from

gp(G1) to gp(Ga).

Proof.
Immediate from the definitions of PES-morphism and GPES-morphism. O

Lemma 6.4.7 and Lemma 6.4.8 together imply the following.

Theorem 6.4.9
gp is a functor from GPES to PES. O

Next we prove that gp and pg form an adjunction.

Theorem 6.4.10
gp : GPES — PES and pg : PES — GPES form a reflection with gp the left

adjoint and the identity arrows idp as co-unit.

Proof.

First note that for each prime event structure P, gp(pg(P)) = P, and hence idp is
a PES-isomorphism from gp(pg(P)) to P.

Let G = (F, Con,<) be a G-prime event structure, let P = (E',<',#') be a
prime event structure, and let ¢ be a PES-morphism from gp(G) = (E,<,#) to
P. Then we must prove that there exists a unique GPES-morphism f from G to
pg(P) = (E’, Con', <') such that the following diagram commutes.
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G gp(G)
-‘.‘,\gp( f)
1f g
‘_\‘
ap(PY(P))
; | idp
Pa(P) P

By the definition of gp on arrows, it is sufficient to prove that ¢ is a GPES-morphism
from G to pg(P). Because g satisfies condition (1) in the definition of PES-morphism,
g also satisfies condition (1) in the definition of GPES-morphism. In order to prove
that ¢ satisfies condition (2) in the definition of GPES-morphism, suppose X € Con.
Then X is #-free, and hence ¢g(X) is #'-free by condition (2) in the definition of PES-
morphism. This implies that ¢(X) € Con’. Finally, in order to prove condition (3) in
the definition of GPES-morphism, let X € Con and let ey, e3 € X be such that g(eq)
and g(ey) are defined and e; # es. Then —(e1#£ey). Hence g(er) # g(e2) by condition
(3) in the definition of PES-morphism. This proves that ¢ is a GPES-morphism from
G to pg(P). O

In Section 5.6 a map pu from prime event structures to L-event structures has been
defined. It is easy to see that this map is the same as the composition gu o pg. Thus
by Lemma 6.4.4 and Lemma 6.3.6 the map pu associates an UL-event structure with
each prime event structure.

Now define pu on morphisms by pu(f) = gu o pg(f) for each PES-morphism f.
Furthermore, denote gp o ug by up. Then the following theorem follows immediately

from Theorem 6.3.13 and Theorem 6.4.10.

Theorem 6.4.11
up : ULES — PES and pu : PES — ULES form a reflection with up the left

adjoint and the identity arrows idp as co-unit. a

Also in this case a full subcategory of ULES can be identified for which the re-
flection in Theorem 6.4.11 cuts down to an equivalence. We first identify the full
subcategory of GPES for which the reflection in Theorem 6.4.10 cuts down to an
equivalence.

To this aim we define for G-prime event structures (£, Con, <) the following axiom
expressing that consistency of sets can be recovered from pairwise consistency.

(PG) VX € Pp(E). ((Ve, e € X.{e, €'} € Con) = X € Con). 0

Lemma 6.4.12
PES is equivalent to the full subcategory of GPES the objects of which satisty
(PG).
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Proof.

From the definition of pg it is clear that pg(P) satisfies (PG) for every prime event
structure P. By Theorem 6.4.10 it is then sufficient to prove that pg(gp(G)) = G for
every G-prime event structure (& satisfying (PG).

Let G = (F,Con,<) be a G-prime event structure which satisfies (PG) with
gp(G) = (E,<,#) and pg(gp(G)) = (E,Con’,<). It X € Con, then X is #-free
by (G2), and hence X € Con’. Now suppose that X € Con’. Then for all e,¢’ € X,
—(e#e’), and hence {e, e’} € Con. This implies that also X € Con by (PG). This
proves that Con = Con’ and hence that pg(gp(G)) = G. O

Now we can characterize the full subcategory of ULES for which the reflection
between ULES and PES from Theorem 6.4.11 cuts down to an equivalence. In this
case the axiom (FC) used in Section 6.3 in the context of G-prime event structures
is not strong enough. In the context of prime event structures it must be expressed
that the union of arbitrary finite pairwise compatible sets of configurations is also a
configuration. Thus we now define for UL-event structures (£,C,F) the following

axiom (FC’) which strengthens (FC).
(FC’) VD € Pp(C).((Ve,d € DicT )= Usepc e C).

Theorem 6.4.13
PES is equivalent to the full subcategory of ULES the objects of which satisty
(FC), (BC), and (D).

Proof.

By Lemma 6.4.12 and Theorem 6.3.16 respectively, it is sufficient to prove that
ug(ES) satisfies (PQG) for every UL-event structure ES satisfying (FC’), (BC), and
(D), and that gu(G') satisfies (FC’) for every G-prime event structure G satisfying
(PG).

Let ES = (F,C,F) be an UL-event structure satisfying (FC’), (BC), and (D) with
ug(ES) = (E, Con,<) and let X € Pp(FE) be such that for all e,e’ € X, {e, e’} € Con.
It must be proved that X € Con. For all e,¢’ € X there exists ¢ € C such that
{e, e’} C ¢, and hence by the definition of < also |eU |¢’ C ¢. By Lemma 6.3.14,
le € efor all e € X. Now consider D = {|e | e € X}. Then by (FC") U.epc € C.
Because X C U.ep ¢, this implies that X € Con. This proves that ug(FES) satisfies
(PG).

Now let G = (F, Con,<) be a G-prime event structure satisfying (PG) with
gu(G) = (F, FCg,F) and suppose that D € Pp(FC¢) is such that for all ¢,¢ € D,
¢ 1 . Then for all e,¢’ € U.epe, {€,¢'} € Con, and hence U.cpc € Con by (PG).
Moreover, U.cp ¢ € FC¢ because each ¢ € D is downward-closed. This proves that
gu((G) satisfies (FC’). O

6.5 Concluding Remarks

In this chapter we have investigated the relationship between the categories of L-event
structures and UL-event structures introduced in the previous chapter and several
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existing categories of event structures. In the following diagram our results are de-
picted. Recall that the co-reflection between ULES and LES has been proved in
Corollary 5.7.11.

LES O WES SWES

ULES >—— GPES >——— PES

Thus L-event structures can be viewed as a generalization of (stable) W-event
structures and UlL-event structures can be viewed as a generalization of (G-)prime
event structures. One way in which L-event structures generalize W-event structures
is that the configuration structure may have more structure than given by set inclusion.
Another way to generalize W-event structures is to put more structure in the notion
of a configuration itself. This approach has been taken in [79] where configurations
are posets of events.

Another interesting class of event structures not considered here is the class of
flow event structures [14]. Flow event structures generalize prime event structures by
relaxing the condition imposed upon the causality and conflict relation. In particular,
condition (P1) in the definition of a prime event structure is dropped, the causal
dependency relation need no longer be transitive, and the conflict relation does not
have to be irreflexive. One of the motivations for working with flow event structures is
that they seem to be more suitable for giving an event structure semantics for process
calculi such as CCS. In [13] a map from the class FES of flow event structures to the
class of stable W-event structures is defined. This map is injective and so FES can be
viewed as a proper subclass of the class of stable W-event structures. The following
diagram summarizes the relationship between the various classes of event structures
(where we use the name of the category to denote the class of its objects). In this
diagram an arrow between two classes denotes the fact that the given map from the
first class to the second class is injective. Hence following the arrows we obtain more
general classes of event structures. Note that from Corollary 6.2.8 and Theorem 6.3.16
it follows that in the framework of L-event structures the intersection of the classes

ULES and SWES yields the class GPES.
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/ LES\ .

ULES

SWES

GPES /

\ FES
PES

The classes of (G-)prime event structures and (stable) W-event structures also
have an elegant characterization in terms of domains [85, 16]. The domain theoretic
characterization of prime event structures has been given in [66]. Flow event structures
yield the same class of domains [13]. Winskel has shown [96] that stable W-event
structures yield the same class of domains as G-prime event structures. Finally, the
domains corresponding to W-event structures have been characterized in [21], see also
[96]. For L-event structures and UL-event structures however, it is not yet clear how
one should go about obtaining a domain-theoretic characterization.



Chapter 7

Discussion

In this thesis we have investigated the behaviour of Petri nets at several levels of
abstraction. In particular, we have investigated the transition system semantics from
[63], a trace semantics, and an event structure semantics for Petri nets. These three
types of semantics are increasingly more abstract. The semantic models used for
representing the behaviour of Petri nets are generalizations of the models of transition
systems, trace languages, and event structures, which have been used for giving a
semantics for elementary net systems and 1-safe Petri nets. Also the semantic maps
which have been defined are conservative extensions of the classical ones.

Each of these semantic maps abstracts from the distribution of a global state over
local states. For the transition system semantics this is the only abstraction which
is made. An important question is what are the corresponding models for the other
two types of semantics that do not abstract from the distribution over local states.
For the trace semantics this leads to the equivalence classes of occurrence sequences
or processes from [9]. An interesting open problem is to find the counterpart in this
sense of the event structure semantics for Petri nets in terms of local event structures
introduced in this thesis. A solution to this problem would give some kind of unfolding
of Petri nets generalizing the classical unfolding of 1-safe Petri nets. In contrast to
the unfoldings considered in [61] and [24] such an unfolding would not be based on a
colouring of tokens.

The following diagram gives an overview of the various models.

linear time branching time
distributed state Petri nets equivalence classes 7
of processes
global state multiset local trace local event
transition systems languages structures

Whereas the universality of the transition system semantics and the trace semantics
can be expressed through co-reflections with the category of Petri nets, a similar result
does not hold for the event structure semantics in terms of local event structures. The
problem is that due to auto-concurrency, the category of Petri nets is too rich in
terms of objects and arrows. We have shown that by cutting down on the objects,

169



170 CHAPTER 7. DISCUSSION

i.e. considering co-safe Petri nets, a co-reflection is obtained with the category of
local event structures with the unique occurrence property. In order to get rid of the
restriction of co-safeness, a proposal is given in order to lift local event structures to
handle (finite) multisets of events. In this way an adjunction is obtained between the
resulting category of event structures and the category of all Petri nets. The trouble
with this more general approach is however that this adjunction is not a co-reflection.
To solve this problem it seems that we must somehow find a way of distinguishing
between multiple occurrences of the same transition due to auto-concurrency on the
one hand and to causality on the other hand. It is however not at all obvious at present
how this can be achieved.

The classes of trace languages and event structures which have been used for giving
a semantics for Petri nets have been developed with the particular class of Petri nets
in mind. However, we hope that the models will also turn out to be of independent
interest. This hope is already partly justified by the results in Chapter 6 relating
local event structures to other classes of event structures. In order to investigate the
models, it would be interesting to look for universal constructions within the models.

The construction of the local event structure associated with a Petri net is essen-
tially based on its runs represented as local traces. An interesting general construction
has been used in [48] where a categorical construction is outlined, using an extension of
the Yoneda embedding, in order to construct a behavioural description of a model out
of its observations. It would be interesting to investigate what kind of objects would
result from applying this construction to the observations of Petri nets represented as,
e.g., local traces. This might then lead to an alternative branching time semantics for
Petri nets.
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Samenvatting

In dit proefschrift worden verschillende manieren bekeken om het gedrag van Petri
netten te beschrijven. Het Petri net model is voortgekomen uit een theorie voor de be-
schrijving van informatiestromen met behulp van gedistribueerde toestanden en lokale
toestandsovergangen. Deze theorie werd in 1962 door C.A. Petri geinitieerd. Sindsdien
hebben Petri netten sterk aan populariteit gewonnen, vooral doordat in dit model
het gedistribueerde karakter van concurrente systemen op een natuurlijke manier kan
worden gerepresenteerd. Bovendien blijken Petri netten een elegante onderliggende
algebraische struktuur te hebben, waardoor het mogelijk is om een categorie van Petri
netten te definiéren. Fen voordeel van het beschouwen van modellen als categorieén
is dat hiermee een formeel kader voorhanden komt om de struktuur van modellen
te analyseren en om de onderlinge relaties tussen modellen te beschrijven. Zo kan
men bijvoorbeeld het verschil in abstractie tussen twee modellen formaliseren als een
co-reflectie tussen de twee bijbehorende categorieén, d.w.z. als een paar functors die
tezamen een speciaal soort adjunctie vormen.

Voor eenvoudige net modellen zoals elementaire net systemen en 1-safe Petri net-
ten is er een uitgebreide theorie voor het beschrijven van hun gedrag. Zo worden
transitiesystemen gebruikt om te abstraheren van het gedistribueerde karakter van de
toestanden in de netten. Verder worden Mazurkiewicz’ traces gebruikt om de runs van
zo'n net te beschrijven en prime event structures om de optredens van transities, de
events, en hun onderlinge samenhang te beschrijven.

Bij algemene Petri netten echter kunnen zich situaties voordoen die niet goed uit
te drukken zijn binnen deze modellen. Het is dan ook een niet-triviaal probleem
om de semantiek van Petri netten te geven. Dit proefschrift beschrijft generalisaties
van de bovenstaande gedragsmodellen waardoor het mogelijk wordt om de bestaande
theorie uit te breiden tot het niveau van Petri netten. Een transitiesysteem semantiek
voor Petri netten, nu geformuleerd in termen van multiset transitiesystemen is al
voorgesteld door Mukund. Voor de andere twee benaderingen worden respectievelijk
de gegeneraliseerde traces en de local event structures gebruikt die met dat doel in [41]
en [43] zijn geintroduceerd. In tegenstelling tot de meeste andere generalisaties van
gedragsbeschrijvingen van eenvoudige net modellen tot Petri netten in de literatuur, is
elk van de hier beschreven generalisaties strict. Zo wordt een beter inzicht verkregen
in de gecompliceerde rol van concurrency in het gedrag van Petri netten.

Het proefschrift bestaat uit acht hoofdstukken waarin de drie verschillende manieren
om het gedrag van Petri netten te beschrijven aan de orde komen en waarin achter-
grond, samenhang en relatie met de literatuur worden besproken.

Allereerst wordt in de introduktie in Hoofdstuk 0 enige achtergrond gegeven met
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betrekking tot de geschiedenis van Petri netten en het onderzoek van hun gedrag. In
Hoofdstuk 1 worden enkele notaties ingevoerd, waarna in Hoofdstuk 2 Petri netten
formeel worden geintroduceerd.

In Hoofdstuk 3 wordt het model van multiset transitiesystemen besproken, niet
alleen ter beschrijving van het gedrag van Petri netten, maar ook als kader waarbinnen
een aantal fundamentele begrippen worden gedefinieerd. Door te abstraheren van de
distributie van een toestand van een Petri net over lokale toestanden, kan het gedrag
gerepresenteerd worden door zo'n multiset transitiesysteem. Formeel wordt de relatie
tussen het model van Petri netten en het model van multiset transitiesystemen middels
een resultaat van Mukund uitgedrukt als een co-reflectie tussen deze twee categorieén.

In Hoofdstuk 4 wordt een semantiek voor Petri netten bekeken gebaseerd op de runs
van een Petri net. Hierbij wordt een beschrijving gegeven van de onderlinge samenhang
van de optredens van de transities tijdens een executie. Omdat de conflicten tijdens
een executie al zijn opgelost, wordt bij een dergelijke semantiek ook wel gesproken van
een linear time semantiek. De traces van Mazurkiewicz worden gegeneraliseerd tot
local traces, gedefinieerd met behulp van een onafhankelijkheidsrelatie die informatie
bevat over het mogelijk concurrent optreden van multisets van acties in een bepaalde
context. De relatie tussen het model van Petri netten en het resulterende trace model
kan weer worden uitgedrukt als een co-reflectie tussen de categorieén.

Vervolgens wordt in Hoofdstuk 5 een branching time semantiek voor Petri netten
bekeken waarbij bovendien een expliciet onderscheid wordt gemaakt tussen verschil-
lende optredens van transities. Dit leidt tot een gedragsbeschrijving in termen van
local event structures. De resulterende semantiek is echter enigszins beperkt, omdat
geen rekening wordt gehouden met de mogelijkheid dat in sommige Petri netten tran-
sities concurrent met zichzelf kunnen optreden. Een gevolg hiervan is dat alleen een
co-reflectie kan worden verkregen tussen een categorie van local event structures en de
subcategorie van Petri netten, waarin auto-concurrency niet kan voorkomen.

In Hoofdstuk 6 wordt door middel van adjuncties een classificatie gegeven van
enkele soorten event structures die in de literatuur zijn verschenen. Hieruit blijkt
dat de in Hoofdstuk 5 geintroduceerde local event structures ook formeel kunnen
worden gezien als generalisaties van Winskels event structures en daardoor wellicht
ook onafhankelijk van Petri netten nuttig kunnen zijn.

Tenslotte worden in de discussie in Hoofdstuk 7 de resultaten kort besproken.
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