
Chapter 0

Introduction

In 1962 C.A. Petri presented the foundations for a new theory for describing informa-

tion ows [74, 75]. These foundations were based on both theoretical and practical

considerations. In contrast to the classical automata theory, where the states are

global and a transition leads from one global state to another, in this theory states

are distributed over local states and a transition alters several of these local states. A

central idea of this theory is, that the e�ect of transition occurrences is purely local

and that no assumptions are made with respect to the existence of a global control.

Consequently, the theory is truly non-sequential.

This theory resulted in a model based on nets. These nets are bipartite graphs,

obtained by viewing states and transitions as dual concepts. In this model of Con-

dition/Event systems (C/E systems), the local states, called conditions, can have two

values. C/E systems, or actually several variants of them, have a rich semantic theory

for describing their behaviour at several levels of abstraction. For instance, transi-

tion systems, trace languages, and event structures have been used to represent their

behaviour from di�erent points of view.

Already at an early stage in the investigation of C/E systems an important gen-

eralization of this model was proposed in which the local states can have a �nite

but arbitrary number of values rather than only two. This generalization was called

Place/Transition systems (P/T systems). Initially, the main interest in these objects

was due to the fact that they were recognized to be mathematically equivalent to the

model of Vector Addition Systems, discovered independently by Karp and Miller in

connection with their work on parallel program schemata [49]. Since then, the model

of P/T systems has turned out to be a model for concurrent systems which is in several

respects a more attractive model than C/E systems. The model of P/T systems is the

main subject of study in this thesis. From now we refer to this model simply as Petri

nets.

The aim of this thesis is to investigate ways to describe the behaviour of Petri nets,

which is not as well-understood as that of C/E system. To achieve this we investigate

conservative extensions of the transition system semantics, the trace semantics, and

the event structure semantics of (variants of) C/E systems. We hope that in this way

we contribute to a better insight in the aspects of concurrency which play a signi�cant

role at the level of Petri nets.

1

2 CHAPTER 0. INTRODUCTION

In this introduction we �rst discuss in Section 0.1 the model of Petri nets. One can

take several points of view in analyzing the behaviour of these Petri nets. They are

presented in Section 0.2. In Section 0.3 we then discuss how the language of category

theory can be used to study the relationship between Petri nets and various models

used for describing the behaviour of Petri nets. Finally, in Section 0.4 we give some

historical background of the theory of Petri nets, and in Section 0.5 we outline the

contents of this thesis.

0.1 Petri Nets

The Petri net model is operational in the sense that it is based on the notions of

states and transitions between states. This is similar to the approach in the classical

sequential automata theory. In Petri nets however, (global) states are distributed over

\local" states. These local states are represented as tokens in the places of the Petri

net. Each transition is connected to certain input and output places according to a

�xed directed and weighted neighbourhood relation. Then a transition occurrence is

purely local: only those places to which a transition is connected are involved.

In Petri nets, places may contain multiple, indistinguishable tokens (which may be

viewed as available resources), and transitions are not labelled. The dynamic behaviour

of Petri nets is given by the �ring rule. This �ring rule speci�es that transitions can

occur if the input places of these transitions contain \enough" tokens, and that the

e�ect of transition occurrences consists of removing some tokens from the input places

and putting some tokens into the output places.

The Petri net in the following standard example illustrates this �ring rule.

Example 0.1.1

In Figure 0.1 a Petri net is given which models a system with a producer and

a consumer. The producer repeatedly produces two items and then puts them in a

bu�er, which can contain an arbitrary, �nite number of items (represented by tokens).

The consumer repeatedly removes one item from the bu�er and then consumes this

item. In the initial state of the system, called the initial marking, places p

1

and c

1

both

contain one token and the other places are empty. At the initial marking, the transition

produce can occur. If it occurs, it removes a token from place p

1

, and puts two tokens

into place p

2

. At the initial marking also the transition stop can occur. As p

1

contains

only one token, the transitions produce and stop cannot both occur, although each of

them can occur individually. After the transition produce has occurred, the transition

put in bu�er can occur, which has the e�ect that two tokens are removed from place

p

2

, two tokens are put in place bu�er , and one token is put in place p

1

. In the resulting

marking the transitions produce and remove from bu�er can occur. In fact, they can

occur together, because each place contains enough tokens for both transitions.

Finally observe that there is no upper bound on the number of tokens that can be

put in place bu�er, because the producer can repeatedly put items into the bu�er. 2

Several of the notions considered in this thesis have been developed �rst in the

context of variants of the original model of C/E systems such as elementary net systems

[81, 88, 80, 89] and the net systems from [57, 98] which we call here safe net systems.

0.1. PETRI NETS 3

2

buffer

remove
from

buffer

consume

produce

2

stop

put in
buffer

p
1

c1

p
2

c
2

2

Figure 0.1: A producer and a consumer

In the terminology used for these net systems, places are called conditions, transi-

tions are called events, and markings are called cases. Actually, markings which assign

more than one token to a place are not considered in the approach followed for these

net systems, and so cases are sets of conditions (which contain a token). Also, a dif-

ferent �ring rule is used. Rather than inspecting only the input conditions to see if an

event can occur, now also the output conditions must be inspected. In an elementary

net system an event can occur i� each of its input conditions contains a token and all

of its output conditions are empty. The e�ect of an occurrence of an event is the same

as for Petri nets: the tokens from the input conditions are removed and tokens are put

into the output conditions. For safe net systems this �ring rule is relaxed by allowing

an event to occur if all its input conditions hold and the only output conditions that

are not empty are those that are also input conditions.

Elementary net systems and safe net systems are closely related to 1-safe Petri nets.

A Petri net is 1-safe if it has the property that no execution of it according to the �ring

rule leads to a place with two or more tokens. As far as the dynamic behaviour is

concerned, elementary net systems and safe net systems which are contact-free can be

viewed as 1-safe Petri nets [81, 98]. Elementary net systems and safe net systems are

called contact-free if they have the property that the holding of the input conditions

of an event guarantees that the event can occur. Thus contact-free elementary net

systems can be considered as a subclass of 1-safe Petri nets, while the class of contact-

free safe net systems can be identi�ed with the class of 1-safe Petri nets.

For the behavioural notions considered in this thesis, for every elementary net

system or safe net system there exists a contact-free elementary net system or contact-

free safe net system, respectively, which yields the same behaviour [81, 98]. For the

sake of uniformity in the presentation we will mainly consider 1-safe Petri nets rather

than (contact-free) elementary net systems or (contact-free) safe net systems in this

4 CHAPTER 0. INTRODUCTION

thesis.

Observe that elementary net systems and safe net systems are de�ned through

their �ring rule, whereas the de�nition of 1-safe Petri nets is behavioural, i.e. given in

terms of reachable markings.

The models of 1-safe Petri nets, elementary net systems, and safe net systems have

a very rich and elegant theory for analyzing their behaviour (see, e.g., [78, 67, 98]).

It seems however that in order to lift this theory to the level of arbitrary Petri nets,

much more problematic aspects of concurrency must be confronted. On the other

hand, there are several reasons why Petri nets form an attractive model to work with.

First of all, the model of Petri nets is mathematically equivalent to the model of

Vector Addition Systems [49] which has been discovered independently of Petri nets.

These Vector Addition Systems, and hence also Petri nets, give rise to some interesting

decision problems [49]. Using a similar idea, Petri nets can also be viewed as simple

examples of multiset rewrite systems which have gained a lot of attention recently.

From this viewpoint a Petri net is a set of places together with a set of rewrite rules

(i.e. transitions). Each rewrite rule speci�es how a multiset of places (the input places

of the transition) can be rewritten to another multiset of places (the output places of

the transition).

In the programming language � of Banâtre and Le M�etayer [4] multisets are pro-

posed as a suitable datastructure for parallel programming. A � program consists of

rewrite rules where each rewrite rule has an associated condition. The existence of

those conditions is the main di�erence with Petri nets. If a multiset of data satis�es

the condition associated with a certain rewrite rule for this multiset, then a \chem-

ical reaction" can take place which replaces the multiset according to this rewrite

rule. The � language treats parallellism at the logical level, because no global control

is speci�ed over the actions which are performed. This is quite di�erent from sev-

eral conventional parallel programming languages where arrays are used as the main

datastructure and a global control is speci�ed for the actions, so that parallellism is

treated at the implementation level.

The Chemical Abstract Machine (CHAM) of Berry and Boudol [7] is also based on

the idea of multiset rewriting. One of the extra features of the CHAM is that it has a

\membrane" construct allowing to \encapsulate" parts of the data. The CHAM can

be used for describing the operational semantics of process calculi such as (a fragment

of) Milner's �-calculus [62]. Also in [25] multiset rewrite systems (in fact Petri nets)

are used for describing the operational semantics of a fragment of the �-calculus.

A second reason why Petri nets form an attractive model to work with is that they

have a very smooth algebraic structure. A common way, see, e.g., [78], to describe

the e�ect of transition occurrences in a Petri net N on the number of tokens in each

place is to use a matrix representation N of N . Consider, e.g., the Petri net depicted

in Figure 0.1. Then this Petri net has the following matrix representation.

0.1. PETRI NETS 5

stop produce

put in

bu�er

remove

from bu�er

consume

p

1

�1 �1 1 0 0

p

2

0 2 �2 0 0

c

1

0 0 0 �1 1

c

2

0 0 0 1 �1

bu�er 0 0 2 �1 0

Such a matrix representation of a Petri net is useful for analyzing certain properties

of the Petri net. In particular, this matrix representation is used for determining the

S-invariants and T-invariants of a Petri net N [51, 78]. S-invariants are solutions x

of the equation N

T

� x = 0 (where N

T

is the transpose of N) and T-invariants are

solutions y of the equation N � y = 0. S-invariants represent those linear combinations

of places for which the number of tokens remains constant. They are useful for, e.g.,

analyzing liveness and safeness properties of the Petri net. T-invariants on the other

hand represent linear combinations of transitions the occurrence of which does not

change the original marking. For instance, the S-invariants of the Petri net depicted

in Figure 0.1 are all vectors � �

0

B

B

B

B

B

B

@

0

0

1

1

0

1

C

C

C

C

C

C

A

with � 2 N. This implies that the number

of tokens in c

1

and c

2

(which is 1 initially) remains constant, and no other linear

combination of places has a constant token count. The T-invariants of this Petri nets

are all vectors � �

0

B

B

B

B

B

B

@

0

1

1

2

2

1

C

C

C

C

C

C

A

with � 2 N. Thus, if in an arbitrary marking the transitions

produce and put in bu�er both occur an equal number of times and the transitions

remove from bu�er and consume both also occur an equal number of times which is

twice the number of occurrences of produce, then the resulting marking is the same as

the original one.

The algebraic nature of Petri nets is used explicitly by Winskel in [95]. There it

was observed that a Petri net is essentially a 2-sorted algebra, where one sort is the

set of multisets over places and the other sort is the set of multisets over transitions.

This algebra has three operations: one constant which gives the initial marking, a

matrix which gives the number of tokens removed by each transition from each place,

and a matrix which gives the number of tokens put by each transition in each place.

Thus these last two operations map multisets of transitions to multisets of places and

the subtraction of the two matrices is the matrix N described above. One of the

motivations for this view of Petri nets is that it leads to a natural notion of morphisms

between Petri nets which is discussed later in this introduction.

In a similar fashion, also Montanari and Meseguer have exploited the algebraic

nature of Petri nets [59]. They made use of the fact that a Petri net can be viewed

as a graph, the nodes of which are the multisets over the places, and the arrows of

6 CHAPTER 0. INTRODUCTION

which are the transitions of the Petri net, where the source and target of an arrow are

multisets over the input- and output places of the transition, respectively. Actually,

this is not an ordinary graph, because the set of nodes of the graph has in addition a

(free) monoid structure (with multiset addition as its operation and the emptymultiset

as its unit). Also this view of Petri nets gives rise to a natural notion of morphisms

between Petri nets. By de�ning an operation of parallel composition on the arrows,

the monoid structure on the nodes can be extended to the arrows. In this way a Petri

net itself may be viewed as a monoid. An interesting consequence of the algebraic

view proposed by [59] is that it allows to treat Petri net computations at several levels

of abstraction in an algebraic way.

A third reason why Petri nets form an attractive model to work with, is that they

are a more powerful tool for modelling systems than 1-safe Petri nets. As such they

also form the basis for the model of Coloured Petri nets from Jensen which is used in

several industrial applications [47].

Finally, Petri nets seem to have a natural relationship to linear logic [31, 23]. This

relationship is as yet not completelyworked out in a satisfactory manner. It is our hope

however that a deeper understanding of the behaviour of Petri nets will contribute to

the formulation of a model theory for linear logic in terms of Petri nets.

0.2 The Behaviour of Petri Nets

Petri nets are very concrete objects. In order to analyze their behaviour, it is useful to

get rid of details by relating them to more abstract models of concurrency. In this way

it becomes possible to identify Petri nets which have essentially the same behaviour.

This is useful for, e.g., de�ning a notion such as place re�nement [69]. More abstract

models may also serve as an intermediate step for obtaining a Petri net semantics for

process algebras such as CCS [65].

For 1-safe Petri nets, or actually variants of C/E systems such as (contact-free)

elementary net systems and (contact-free) safe net systems, several models have proved

to be very successful for describing their behaviour. Roughly, a distinction can be

made between linear time models, in which non-conicting (initial parts of) \runs" of

a concurrent system are represented, and branching time models where also conicts

are taken into account. Thus for the linear time models there are several objects

associated with one 1-safe Petri net, each corresponding to a di�erent way in which

conicts are resolved in (an initial part of) a run.

A linear time semantics for 1-safe Petri nets or elementary net systems has been

proposed via its non-sequential processes [76, 11, 67]. These processes are based on

(labelled) causal nets and represent the runs of 1-safe Petri nets (or elementary net

systems). Causal nets are acyclic nets in which the places are non-branching. As

a consequence, no forward or backward conicts occur. Thus causal nets induce a

partial ordering relation over its places and transitions which, when restricted to the

transitions, leads to a partial order description of the transition occurrences in the

original Petri net. The corresponding reachable markings of the original Petri net are

represented as slices, i.e. maximal unordered sets of places, in the causal net.

0.2. THE BEHAVIOUR OF PETRI NETS 7

The branching aspects of a 1-safe Petri net, while still maintaining the distribution

of a state over local states, can be represented by relaxing the conditions on causal

nets to allow forward conicts, leading to the notion of occurrence nets [66, 96]. In this

way also initial parts of \branching runs" can be represented, the resulting objects of

which are called branching processes in [24]. With this approach it is now however

also possible to capture the behavioural aspects of a 1-safe Petri net in a single object,

its unfolding [66]. A transition in the unfolding can be viewed as corresponding to the

\event" of the occurrence of a transition in the Petri net.

In the two approaches mentioned above, the model describing the behaviour of a

1-safe Petri net still has a notion of a distributed state. Abstracting in a Petri net from

the distribution of a global state over local states leads to a transition system model.

Transition systems are obtained from nets by the classical case graph/marking dia-

gram construction, see, e.g., [78]. For elementary net systems it is su�cient to consider

sequential transition systems because the concurrency in the net can be recovered from

the sequential case graph by certain diamond properties [39]. In [68] a characterization

is given of the transition systems, called elementary transition systems, obtained in

this way. For 1-safe Petri nets and safe net systems however, these diamond properties

do not apply, so that more structure in the transition system is necessary to represent

concurrency. In this case it is su�cient to work with asynchronous transition systems

[6, 86]. In this model concurrency is represented explicitly by a (global) binary in-

dependence relation over actions. A characterization of the asynchronous transition

systems corresponding to 1-safe Petri nets is given in [98].

A linear time semantics for 1-safe Petri nets while abstracting from the distribution

of a global state over local states can be given by using Mazurkiewicz' trace theory to

represent the non-conicting runs of a 1-safe Petri net [55, 56]. Here the concurrency

present in the net is also formalized in a binary independence relation over its actions,

i.e. transitions. This independence relation induces an equivalence relation over the

sequential runs (�ring sequences) of the net. Each of the resulting equivalence classes,

which are called traces, represents a single non-sequential run.

Mazurkiewicz' trace theory has turned out to be a model for concurrency which is

also of independent interest, see, e.g., [20, 56, 1]. On the one hand it is a language-

based model. On the other hand trace theory can also be studied algebraically in the

context of free partially commutative monoids [8, 28]. Furthermore, traces also admit

a graphical representation in terms of independence graphs, thus supporting the claim

that it is a partial order model for concurrency (see, e.g., [56]).

As a branching time semantics model for the behaviour of 1-safe Petri nets which

abstracts from the distribution of a global state over local states, prime event structures

have been proposed [66]. Here the relationship between the transition occurrences in

a 1-safe Petri net, called events, is described by both an ordering relation and a

binary conict relation over the events. Prime event structures also occur as concrete

representations of certain Scott Domains [85]. In this way [66] provides a connection

between 1-safe Petri nets and domain theory.

The models mentioned above are summarized in the following diagram.

8 CHAPTER 0. INTRODUCTION

linear time branching time

distributed state 1-safe Petri nets causal nets occurrence nets

global state asynchronous Mazurkiewicz' prime event

transition systems trace languages structures

The models in the �rst row have a notion of a distributed state, whereas the models

in the second row have only a notion of a global state. From left to right the models

are increasingly more abstract. It turns out that the di�erent types of semantics are

closely related. For the relationships between the various models mentioned above,

see, e.g., [66, 67, 84, 70, 98].

An interesting question that now arises is, to what extent the above approaches

can be lifted to arbitrary Petri nets. This would then lead to a description of the

behaviour of Petri nets from di�erent points of view. It turns out however, that for

Petri nets much more problematic aspects of concurrency must be dealt with.

a
s

Figure 0.2: A Petri net in which a can occur only once

Also for arbitrary Petri nets, non-sequential processes based on causal nets have

been proposed as a description of their behaviour [34, 9, 11]. The notion of non-

sequential processes is based on the intuition concerning the behaviour of 1-safe Petri

nets by viewing the tokens in a place more or less as \coloured", i.e. distinguishable,

entities. Consider, e.g., the Petri net depicted in Figure 0.2. In this Petri net the

transition a can occur only once. However, by viewing the tokens as distinguishable

entities a distinction is made between the occurrence of a with the left token in s and

the occurrence of a with the right token in s. Such a colouring of tokens is not very

satisfactory because it destroys the possibility of viewing Petri nets as simple multiset

rewrite systems. It also leads to the counter-intuitive result that 1-safe Petri nets

and arbitrary Petri nets give rise to the same set of behaviours. To deal with these

problems, an equivalence relation over processes is de�ned in [9] in order to identify

processes which di�er only in the colouring of the tokens.

An alternative description of the runs of a Petri net is given in [59, 18]. Based on

the graph representation of a Petri net, net computations are de�ned as the arrows

obtained by closing the arrows of the graph with respect to operations of parallel and

sequential composition. Some natural axioms are then de�ned to identify \equivalent"

computations. It turns out that the equivalence classes obtained in this way correspond

exactly to the equivalence classes of processes from [9].

With respect to the branching time models, occurrence nets have been used [33,

35, 24, 60] for de�ning also the unfolding of not necessarily 1-safe Petri nets. In

0.2. THE BEHAVIOUR OF PETRI NETS 9

[60, 61] the more sophisticated notion of decorated occurrence nets is introduced.

These approaches again lead to an event structure semantics for Petri nets in terms

of prime event structures [24, 60]. In all these approaches for giving a branching time

semantics for Petri nets however, the tokens are treated again as coloured entities.

The aim of this thesis is to give a proper generalization of the second row in the

diagram when going from 1-safe Petri nets to arbitrary Petri nets. Thus we look for a

transition system semantics, a trace semantics, and an event structure semantics for

Petri nets. By thus abstracting from the distribution of a global state over local states,

it seems easier to avoid assumptions involving some kind of colouring of the tokens.

The behaviour of Petri nets in terms of transition systems is given by its marking

diagram, see, e.g., [78], which is a transition system in which the transitions are labelled

with multisets of concurrently occurring transitions of the Petri net. A characterization

of the transition systems associated with Petri nets has been given in [63].

The semantics for 1-safe Petri nets in terms of Mazurkiewicz' traces cannot be lifted

directly to the model of arbitrary Petri nets. The problem is that because a place may

now contain many tokens, concurrency (and conict) are no longer global structural

relations, but depend on the current marking. Moreover, concurrency between transi-

tions at a marking can no longer be characterized through a binary relation.

To deal with these problems, we introduce local trace languages. These local trace

languages generalize Mazurkiewicz' trace languages along three dimensions. Firstly,

we consider multiset sequences instead of ordinary sequences. Secondly, we consider

independence relations that are context-dependent, where the context is de�ned by a

multiset sequence. Thirdly, we specify in the independence relation a �nite multiset of

actions that can occur concurrently at a context rather than just a pair of symbols that

may commute as in the classical case. It is then straightforward to lift the standard

notions from trace theory to the, much richer, new setting. It turns out that the trace

semantics for Petri nets obtained in this way agrees with the semantics in terms of

equivalence classes of processes and of equivalence classes of occurrence sequences from

[9].

One of the advantages of our trace semantics for Petri nets is, that it also serves as a

basis for a branching time semantics for Petri nets in terms of event structures. In order

to give such a branching time semantics for Petri nets, we propose a generalization of

the prime event structure semantics for 1-safe Petri nets with the help of a new class of

event structures, called local event structures. These event structures are easy to de�ne

and require just a purely local concurrency axiom; no global order theoretic properties

are demanded. It turns out that a subclass of local event structures can be advocated

as a partial solution to the problem of identifying the event structures that correspond

to the behaviour of Petri nets. The solution is partial in that in the event structure

semantics for Petri nets that is being proposed here, auto-concurrency is �ltered out

from the behaviour of Petri nets. Auto-concurrency is the phenomenon by which

multiple instances of a transition become enabled at a marking. This is impossible

in a 1-safe Petri net. Even though our event structure semantics is restricted in this

sense, the event structure semantics is a non-trivial proper extension of the prime event

structure semantics for 1-safe Petri nets. Moreover, our event structure semantics does

not assume any colouring of tokens, in contrast to the branching time semantics for

10 CHAPTER 0. INTRODUCTION

Petri nets via (decorated) occurrence nets and prime event structures mentioned above.

0.3 The Categorical Approach

Given a semantic model to be used for representing the behaviour of Petri nets, a

semantic map associates a behavioural object from the chosen model with each Petri

net. An obvious question that arises is, how to show that such a map is the \right"

one. As we argue in this section, the language of category theory (see, e.g., [53, 5, 77]),

and in particular the notion of an adjunction, is ideally suited for this purpose.

The models for concurrent systems that we consider are meant to model dynamic

systems. Hence it is reasonable to equip the various models with (structure-preserving)

morphisms to capture the fact that within a model one system is capable of simulating

another system. De�ning a composition operation for morphisms and an identity

morphism for each object leads then to a representation of a model as a category.

The models we consider are at di�erent levels of abstraction. With each object

in a concrete model a semantic map associates an object in an abstract model by

\forgetting" some of the structure. Now in order to compare the two models, it is

reasonable to look also for a map in the other direction. Such a map can be de�ned

by associating with each object in the abstract model an object in the concrete model

by a \free" construction, leading to a canonical representative in the concrete model

for all objects which have the same abstract representation. If the dynamic behaviour

of systems is also preserved by these maps, then they can be extended to functors

between the corresponding categories. Within category theory the fact that such a

pair of a \forgetful" functor and a \free" functor \�t together nicely" is expressed by

the universality of the constructions as given through the notion of an adjunction. In

this way an adjunction between two categories is a formal way to express that one

model is more abstract than another model.

Ideally, the functor to the abstract model gives a faithful description of the concrete

model in the sense that applying �rst the \free" and then the \forgetful" construction

to an abstract object yields the same object (up to isomorphism). An adjunction with

this property is called a co-reection.

In comparing di�erent models of concurrency via adjunctions we follow the ap-

proach laid out by others. The same method has also been used in, e.g., [94, 96, 68,

63, 98, 60].

The categorical approach also has the advantage that it allows one to treat useful

constructions within a model in a uniform way. For instance, the categorical product

of two objects in a category corresponds in general to the parallel composition of the

two systems, whereas their co-product often corresponds to a non-deterministic choice

between these systems. Having an adjunction between two categories now means that

such universal constructions can often be transported easily from one model to the

other.

With respect to Petri nets, their underlying algebraic structure is in particular

useful for de�ning morphisms between them. As mentioned above, a Petri net can

be viewed as a 2-sorted algebra with three operations [95]. This leads to a natural

0.4. HISTORICAL BACKGROUND 11

notion of morphisms as maps between the sorts which preserve the three operations. In

these morphisms a transition in one Petri net is simulated by a multiset of transitions

in another Petri net. However, in [95] it is argued that such a general notion of

morphism is often undesirable, so that an extra restriction is imposed which requires

that a transition in one Petri net is simulated by at most one transition in another Petri

net. For 1-safe Petri nets the resulting morphisms lead to a category for which there

exist adjunctions with the categories of occurrence nets and prime event structures

[94].

In [68] it appeared to be necessary to use a slight modi�cation of these morphisms

in order to obtain a co-reection between the category of elementary net systems and

the category of elementary transition systems. Similar modi�cations have been used

in [63] in the context of Petri nets in order to obtain a co-reection between a category

of transition systems and the category of Petri nets. In this thesis we also use these

Petri net morphisms.

A notion of Petri net morphism which is similar to the one from [95] can also

be obtained via the graph representation of Petri nets [59]. These morphisms from

[59] are de�ned as graph morphisms which are in addition monoid morphisms when

restricted to the nodes. For 1-safe Petri nets the two notions of morphism coincide

[60].

0.4 Historical Background

In this section we give some background concerning the history of net based models.

The foundations for net theory were laid by C.A Petri in 1962 [74, 75]. In the

following years the research concentrated mainly on the model of C/E systems, see,

e.g., [38].

The investigation of the non-sequential behaviour of net based models has been

carried out mostly in the context of these C/E systems or variants such as elementary

net systems. This investigation started with the introduction of processes of C/E

systems by Petri [76]. Since then the underlying causal nets were also extensively

investigated in their own right, see, e.g., [12, 27, 11].

In [55] Mazurkiewicz' traces were introduced in order to represent the non-sequential

runs of C/E systems. Since then trace theory has developed into a model for concur-

rency which has an extensive theory on its own. See [20] for an overview. Research

directions within trace theory include the connection with the existing theory of free

partially commutative monoids [15, 8], the representation of traces as dependence

graphs [2], and the study of in�nite traces [29].

Prime event structures were introduced by Nielsen, Plotkin, and Winskel in [66] as

concrete representations of certain Scott domains. This paper has also established the

relationship of prime event structures to (a variant of) C/E systems. The connection

between prime event structures and Scott's information systems [85] also led to the

investigation of several generalizations of prime event structures by Winskel [92, 96].

The investigation of the model of Petri nets used in this thesis started in the early

70's. An early reference in which these systems appear is [37].

12 CHAPTER 0. INTRODUCTION

The early research on Petri nets took mainly the point of view of classical automata

theory and dealt with issues concerning decidability, complexity, and formal languages.

Several basic decidability results were given by Karp and Miller in [49] for Vector

Addition Systems, a model equivalent to Petri nets. Their results include, e.g., the

decidability of boundedness, i.e. the problem of existence of an upper bound on

the number of tokens that any place can have in a reachable marking. One of the

most famous results in this area is the decidability of the reachability problem, i.e.

the problem whether a given marking is reachable [54, 50]. Other important results

include the undecidability of marking equivalence, i.e. the problem whether two Petri

nets have the same set of reachable markings [36]. An overview of work on decidability

and complexity issues for Petri nets is given in [26]. Classes of formal languages

generated by Petri nets were investigated among others by Hack [36] and Peterson

[72, 73]. An overview of the developments in this area is given in [45]. Whereas the

above mentioned work concentrates on the sequential languages generated by Petri

nets, the non-sequential languages generated by Petri nets, called subset languages,

have been investigated in [82].

On the one hand, as described above, net based models have been given a semantics

in terms of other models. On the other hand, there has also been research on how

nets themselves can be used in order to give a \true concurrency" semantics to other

models, see, e.g., [93, 17, 32, 71, 25]. One of the advantages of this line of research has

been a better structural understanding of Petri nets. Also the research on re�nement

operations (see, e.g., [69]), categorical constructions [95, 63], and the Petri Box calculus

[10] has led to a better insight into the structure of Petri nets.

Whereas for modelling practical systems Petri nets are more attractive than C/E

systems or elementary net systems, their applicability in practical situations is still

limited. To overcome this problem many generalizations of Petri nets have been stud-

ied. These include timed Petri nets, stochastic Petri nets, Petri nets with inhibitor

arcs, high-level nets, etc. One of the most successful generalizations of Petri nets is the

generalization to Coloured Petri nets developed by Jensen [46]. These Coloured Petri

nets are streamlined variants of the high-level nets introduced by Genrich and Laut-

enbach [30]. The initial motivation for the introduction of Coloured Petri nets was to

allow an easier computation of invariants. The model of Coloured Petri nets extends

the model of ordinary Petri nets by adding structure to the tokens in places. Later

they were also made hierarchical in order to extend their applicability. An overview of

the theory of Coloured Petri nets and of some of their industrial applications is given

in [47].

0.5 Outline of the Thesis

After the preliminaries given in Chapter 1, Petri nets are introduced in Chapter 2. In

this chapter also morphisms between Petri nets are de�ned which leads to the category

of Petri nets.

In Chapter 3 multiset transition systems are introduced. The notion of a region,

which plays a central role in this thesis, is de�ned in terms of these multiset transition

0.5. OUTLINE OF THE THESIS 13

systems. Then, based on results from Mukund [63, 64], the semantics for Petri nets

in terms of multiset transition systems is investigated. Characterizations are given of

the classes of multiset transition systems associated with Petri nets and 1-safe Petri

nets. Finally, the universality of the constructions is stated in categorical terms.

In Chapter 4 local traces are introduced in order to give a trace semantics for

Petri nets. A characterization is given of the class of local trace languages associated

with Petri nets. Based on this characterization the universality of the construction

is proved. Then the trace semantics is compared with the classical trace semantics

for 1-safe Petri nets in terms of Mazurkiewicz' traces. Finally in this chapter, the

relationship to the approach from [9] is investigated.

Chapter 5 introduces local event structures in order to give an event structure

semantics for Petri nets. The semantics for Petri nets in terms of a subclass of these

local event structures is de�ned and it is proved that it extends the classical semantics

for 1-safe Petri nets in terms of prime event structures. Then the universality of the

semantics is proved for the subcategory of Petri nets without auto-concurrency. At

the end of this chapter a possible extension of local event structures that allows to

deal with auto-concurrency is discussed.

In Chapter 6 the relationship between local event structures introduced in Chap-

ter 5 and some well-known classes of event structures is investigated in categorical

terms. Finally, the Discussion in Chapter 7 mentions some open problems with re-

spect to the previous chapters that we consider worth investigating.

14 CHAPTER 0. INTRODUCTION

Chapter 1

Preliminaries

In this chapter we �x notations and conventions used throughout the thesis.

1.1 Multisets, Sequences, Functions, and Partial

Orders

Let A be a set, possibly empty or in�nite. The set of �nite subsets of A is denoted by

P

F

(A). Elements of P

F

(A) will be referred to as steps (over A).

A multiset (over A) is a function u : A ! N. A multiset u over A is �nite if

P

a2A

u(a) < 1. The set of �nite multisets over A is denoted by M

F

(A). We use

u; u

0

; u

1

; u

2

; v, etc. to range over M

F

(A). Note that the empty multiset 0 : A ! N

with 0(a) = 0 for all a 2 A, is a member of M

F

(A).

For u 2M

F

(A), juj =

P

a2A

u(a) is the number of elements in u. For two multisets

u; v 2M

F

(A), their sum u+ v 2M

F

(A) is de�ned by (u+ v)(a) = u(a) + v(a) for all

a 2 A; we write v � u if u = v+w for some w 2M

F

(A). If u; v 2M

F

(A) are such that

v � u, then v is called a submultiset of u and u�v is the (unique) multiset w such that

u = v + w. The sum of an arbitrary �nite set of �nite multisets fu

i

2 M

F

(A) j i 2 Ig

is denoted by

P

i2I

u

i

. For a 2 A and k 2 N we let k � a denote the �nite multiset over

A with (k � a)(b) = k if b = a and (k � a)(b) = 0 otherwise.

By A

�

we denote the free monoid generated by A. The product operation is

concatenation and the elements of A

�

are called sequences (over A). The unit element

of A

�

is the empty word �. Let A

+

= A

�

� f�g be the set of non-empty sequences

over A.

Elements of (P

F

(A))

+

will be referred to as step sequences (over A). We view

(P

F

(A))

+

as a (free) monoid: the unit element is ; 2 P

F

(A) and the product operation

is the accordingly modi�ed usual concatenation operation. Thus �; = ;� = � for all

� 2 (P

F

(A))

+

, where �; denotes the product of � and ;.

Elements of (M

F

(A))

+

will be referred to as multiset sequences (over A). We

also view (M

F

(A))

+

as a (free) monoid; the unit element is 0 2 M

F

(A) and the

product operation is the accordingly modi�ed usual concatenation operation. Thus

�0 = 0� = �.

In the context of sequences we may refer to A as an alphabet.

15

16 CHAPTER 1. PRELIMINARIES

In this thesis we view sequences, i.e. elements from A

�

, as step sequences, i.e. el-

ements from (P

F

(A))

+

. Similarly, we view step sequences as multiset sequences. For-

mally this can be achieved by de�ning monoid homomorphisms s

A

: A

�

! (P

F

(A))

+

and m

A

: (P

F

(A))

+

! (M

F

(A))

+

in the following way: s

A

(�) = ;, s

A

(a) = fag, for

all a 2 A, and m

A

(;) = 0, m

A

(u) 2M

F

(A) with u 2 P

F

(A) is given by m

A

(u)(a) = 1

if a 2 u and m

A

(u)(a) = 0 otherwise. Throughout the thesis we will avoid this nota-

tional complication and, e.g., simply write a for s

A

(a) and u for m

A

(u). All notions

de�ned for (M

F

(A))

+

are carried over to (P

F

(A))

+

and A

�

through the maps s

A

and

m

A

.

For a 2 A and � 2 (M

F

(A))

+

, we let num

a

(�) denote the number of times a occurs

in �. Thus

num

a

(0) = 0 and num

a

(�u) = num

a

(�) + u(a):

For � 2 (M

F

(A))

+

, let mset(�) denote the �nite multiset (over A) of elements of A in

�. Thus for all a 2 A,

mset (�)(a) = num

a

(�):

For � 2 (M

F

(A))

+

, let j�j denote the number of elements in �, that is

j�j = jmset(�)j;

we let alph(�) denote the set of elements of A occurring in �, that is

alph(�) = fa 2 A j num

a

(�) > 0g:

Finally, for A

0

� A, let proj

A

0

: (M

F

(A))

+

! (M

F

(A

0

))

+

be the homomorphism which

erases all symbols which are not in A

0

. Thus, for u 2 M

F

(A), proj

A

0

(u) 2 M

F

(A

0

) is

given by proj

A

0

(u)(a) = u(a) for all a 2 A

0

.

Let A and B be sets and let f : A! B be a partial function. Then for u � A and

v � B, let

f(u) = fb 2 B j 9a 2 u: f(a) = bg

and let

f

�1

(v) = fa 2 A j 9b 2 v: f(a) = bg:

The function f is lifted to multisets in the following way. Let

^

f :M

F

(A)!M

F

(B)

be the multiset extension of f , given by:

^

f(u)(b) =

X

f(a)=b

u(a):

Thus

^

f (u)(b) = 0 if b 62 f(A). Note that if u is a step over A, then the multiset

^

f(u) is

in general not a step over B due to the fact that f may not be injective on u, so that

f(u) 6=

^

f(u). The homomorphic extension of

^

f to multiset sequences is also denoted

by

^

f . By viewing ordinary sequences as step sequences, and step sequences as multiset

sequences, this also de�nes

^

f on ordinary sequences and step sequences. To simplify

the notation, we write f rather than

^

f in what follows. Because we do not consider

multiset extensions with domain P

F

(A) this will not lead to ambiguities.

1.2. CATEGORY THEORY 17

Given a partial order (X;�), we let for x 2 X,

#x = fy 2 X j y � xg

be the downward-closure of x (with respect to �). For x; y 2 X we say that x and y

are compatible (under �), denoted by x " y, if

9z 2 X: (x � z and y � z):

1.2 Category Theory

In the Introduction in Chapter 0 it has been argued that category theory is a suitable

framework for comparing di�erent models. In this section we briey mention some

basic notions and results from category theory which are used in this thesis. We do

not give any formal de�nitions. These can be found in, e.g., [53, 5, 77].

A category consists of a collection of objects and a collection of morphisms between

objects which contains for each object A an identity morphism id

A

and which has a

composition operator \�" for morphisms.

A notion of morphism induces in a standard way a notion of isomorphism: a

morphism f : A! B is called an isomorphism if there exists a morphism g : B ! A

such that g �f = id

A

and f �g = id

B

. In that case A and B are said to be isomorphic,

and this is denoted by A � B.

Restricting the objects and morphisms of a category, while preserving identity

and composition, leads to the notion of a subcategory. If for every two objects in

the subcategory all morphisms in the original category between these objects are also

morphisms in the subcategory, then the subcategory is full. If the subcategory has the

same objects as the original category, then the subcategory is wide.

Categories can be related by functors. A functor F from a category C to a category

D is a map from the objects and morphisms of C to the objects and morphisms of D

respectively, such that a morphism f from A to B is mapped to a morphism F (f)

from F (A) to F (B), identities are preserved, and compositions are preserved. The

functor F is called full if for every two objects A and B of C and for every morphism

g from F (A) to F (B) there exists a morphism f from A to B such that F (f) = g.

The functor F is called faithful if for every two objects A and B of C and for every

two morphisms f and g from A to B, F (f) = F (g) implies that f = g.

If C is a subcategory of D then i

C;D

, or briey i, denotes the inclusion functor from

C to D. Then for an object A of C and a morphism f of C, we will often simply write

A and f for the object i(A) of D and the morphism i(f) of D, respectively.

The most important notion from category theory in this thesis is the notion of an

adjunction. An adjunction between two categories C and D consists of a functor F

from C to D, a functor G from D to C, and morphisms �

A

from A to G(F (A)) for

every object A of C, with the following property. Suppose A is an object of C, B is

an object of D, and f is a morphism from A to G(B). Then there exists a unique

morphism g from F (A) to B such that the following diagram commutes.

18 CHAPTER 1. PRELIMINARIES

f

A

B

G F A(())

F A()

G g()

G B()

g!

υ A

The morphisms �

A

form the unit of the adjunction. The functor F is called the

left adjoint and the functor G the right adjoint.

Alternatively, F and G can be proved to be an adjunction by showing the existence

of morphisms �

B

from F (G(B)) to B for every object B of D, with the following

property. If A is an object of C, B is an object of D, and g is a morphism from F (A)

to B, then there exists a unique morphism f from A to G(B) such that the following

diagram commutes.

! f g

A

B

F A()

F f()

F G B(())

G B()

εB

The morphisms �

B

form the co-unit of the adjunction.

If the morphisms which form the unit of the adjunction are isomorphisms, then

the adjunction is called a co-reection. In this case we write

C D

to express that there is a co-reection between C and D. If the morphisms which

form the co-unit of the adjunction are isomorphisms, then the adjunction is called a

reection. In this case

C D

1.2. CATEGORY THEORY 19

is written to express the fact that there is a reection between C and D. If both the unit

and co-unit consist of isomorphisms, then the categories C and D are (categorically)

equivalent. A logically equivalent characterization is that C and D are equivalent i� F

is a full and faithful functor, and for every object B of D there exists an object A of

C such that F (A) � B.

Adjunctions can be composed in the following way. Suppose F : C ! D and

G : D ! C form an adjunction with F the left adjoint, and F

0

: D ! E and G

0

: E ! D

form an adjunction with F

0

the left adjoint. Then the compositions F

0

�F : C ! E and

G�G

0

: E ! C also form an adjunction, with F

0

�F the left adjoint. Moreover, if both

adjunctions are co-reections then also their composition is a co-reection. Similarly,

if both adjunctions are reections, then their composition is also a reection.

20 CHAPTER 1. PRELIMINARIES

Chapter 2

Petri Nets

In this chapter the model of Petri nets is introduced. In Section 2.1 the Petri nets

which form the main subject of investigation are de�ned. We also introduce in this

section the subclasses of 1-safe Petri nets and co-safe Petri nets. Some observations

on behavioural aspects of the various classes are formulated. Finally, in Section 2.2 we

equip Petri nets with structure-preserving morphisms, leading to a category of Petri

nets.

2.1 Petri Nets

A Petri net has as its underlying structure a weighted directed bipartite graph. The

nodes are partitioned into places and transitions. Places are marked, i.e. they contain

an arbitrary �nite number of tokens. A marked place is a local state of the Petri net.

The transitions represent the actions of the system. The arc-weights are given by a

weight function. This weight function gives the number of tokens each transition takes

from each place and puts in each place if it occurs. The initial global state of the Petri

net is an initial marking of the places, de�ned as a multiset of places.

De�nition 2.1.1

A Petri net is a quadruple N = (S; T;W;M

in

) where

� S is a set of places and T is a set of transitions such that S \ T = ;

� W : (S � T) [(T � S)! N is a weight function

� M

in

: S !N is the initial marking of N . 2

Note that a Petri net may be in�nite. Also note that a Petri net can have isolated

elements.

LetM

N

denote the set of all markings of a Petri net N , i.e. the set of all functions

M : S ! N where S is the set of places of N .

A Petri net is represented graphically by drawing its places as circles, its transi-

tions as boxes, and by drawing a directed arc between a place and a transition if the

corresponding weight is greater than 0. If this weight is greater than 1 then the arc is

21

22 CHAPTER 2. PETRI NETS

labelled with this weight. The initial marking is represented by drawing in each place

its number of tokens.

In Figure 2.1 and Figure 2.2 the Petri nets N

1

and N

2

are depicted which will be

used frequently as an example.

ca

b

s
1

s
2

s
3

Figure 2.1: The Petri net N

1

a

b

s

2

Figure 2.2: The Petri net N

2

Given a Petri net N = (S; T;W;M

in

) and an element x 2 S [T , let

(

�

x)

N

= fy 2 S [T j W (y; x) > 0g

be the set of input elements of x (in N) and let

(x

�

)

N

= fy 2 S [T j W (x; y) > 0g

be the set of output elements of x (in N).

The dynamic behaviour of Petri nets is de�ned by a �ring rule. This �ring rule

describes when (�nite multisets of) transitions can occur at a marking, and what the

e�ect is when they do.

2.1. PETRI NETS 23

De�nition 2.1.2

Let N = (S; T;W;M

in

) be a Petri net, letM;M

0

2 M

N

, and let u 2M

F

(T). Then

(1) u is enabled at M , denoted by M [ui

N

, if

8s 2 S:M(s) �

X

t2T

u(t) �W (s; t)

(2) u can occur at M and lead to M

0

, denoted by M [ui

N

M

0

, if

M [ui

N

and 8s 2 S:M

0

(s) = M(s) +

X

t2T

u(t) � (W (t; s)�W (s; t)):

2

Thus a transition t is enabled at a marking M if each of its input places s has a

su�cient number of tokens: M(s) � W (s; t). An arbitrary �nite multiset of transitions

is enabled at a marking if each place contains enough tokens for each transition in the

multiset.

Note that if N is a Petri net and M [ui

N

M

0

, then also M [vi

N

for all v � u.

Moreover, if v � u and M

00

2 M

N

is such that M [vi

N

M

00

, then M

00

[u� vi

N

M

0

. This

observation, that occurrences of multisets can be split arbitrarily, will be frequently

used in the sequel.

The e�ect of an occurrence of a transition is purely local in that it only inuences

the markings of the places it is connected to. In particular, a step consisting of

transitions with disjoint environments is enabled at a marking if the transitions are

enabled individually.

Lemma 2.1.3

Let N = (S; T;W;M

in

) be a Petri net, let M 2 M

N

, and let u 2 P

F

(T) be such

that

(8t 2 u:M [ti

N

) and

8t

1

; t

2

2 u: (t

1

6= t

2

) ((

�

t

1

)

N

[(t

1

�

)

N

) \ ((

�

t

2

)

N

[(t

2

�

)

N

) = ;):

Then

M [ui

N

:

2

When analyzing the behaviour of Petri nets it is not necessary to consider all its

markings; only the reachable markings are of interest.

De�nition 2.1.4

Let N = (S; T;W;M

in

) be a Petri net. The setRM

N

�M

N

of reachable markings

of N is the least set containing M

in

such that

(M 2 RM

N

and M [ui

N

M

0

))M

0

2 RM

N

:

2

24 CHAPTER 2. PETRI NETS

In de�ning the dynamic behaviour of Petri nets we use multisets of transitions

rather than sets. The Petri net N

2

depicted in Figure 2.2 illustrates that it is indeed

possible that multiple instances of a transition are enabled at a reachable marking,

because at its initial marking there are enough tokens in s for two instances of the

transition a to occur. This phenomenon is called auto-concurrency. As we will see in

Chapter 5 auto-concurrency may severely complicate the behavioural analysis of Petri

nets. In several simpler models of net theory such as 1-safe Petri nets, elementary net

systems and safe net systems auto-concurrency cannot occur.

For analyzing the behaviour of Petri nets we are not just interested in single occur-

rences of multisets of transitions, but rather in sequences of these occurrences starting

from the initial marking.

De�nition 2.1.5

Let N = (S; T;W;M

in

) be a Petri net.

(1) An occurrence sequence of N is a sequence M

0

u

1

M

1

u

2

: : : u

n

M

n

with n � 0 and

with u

1

; : : : ; u

n

2M

F

(T) and M

0

; : : : ;M

n

2 RM

N

such that

� M

0

= M

in

� 81 � i � n:M

i�1

[u

i

i

N

M

i

.

(2) The set MFS

N

� (M

F

(T))

+

of multiset �ring sequences of N is the set of all

� 2 (M

F

(T))

+

for which there exists an occurrence sequenceM

0

u

1

M

1

u

2

: : : u

n

M

n

of N with � = u

1

: : : u

n

. 2

Multiset �ring sequences are more abstract than occurrence sequences in the sense

that two Petri nets which have the same set of multiset �ring sequences may have

di�erent sets of occurrence sequences. For a �xed Petri net however, each multiset

�ring sequence uniquely determines the intermediate markings.

Given a Petri net N and � 2 MFS

N

with � = u

1

: : : u

n

, let (M

�

)

N

denote the

unique marking M

n

of N such that M

0

u

1

M

1

u

2

: : : u

n

M

n

is an occurrence sequence of

N .

Due to the possibility of auto-concurrency in Petri nets, we have associated with a

Petri net a set of multiset sequences rather than a set of step sequences. In Chapter 5

it will sometimes be necessary to \ignore" auto-concurrency from the behaviour of

Petri nets. This can be done through the following notion.

De�nition 2.1.6

Let N = (S; T;W;M

in

) be a Petri net. The set SFS

N

� (P

F

(T))

+

of step �ring

sequences of N is given by

SFS

N

= MFS

N

\ (P

F

(T))

+

:

2

2.1. PETRI NETS 25

In the above de�nition we use the convention given in Chapter 1 that step sequences

are viewed as multiset sequences.

For some of our constructions, it is for the categorical results necessary to restrict

our attention to co-safe Petri nets, which do not exhibit any auto-concurrency at all

in their behaviours.

De�nition 2.1.7

A Petri net N is co-safe if MFS

N

= SFS

N

. 2

The Petri net N

1

depicted in Figure 2.1 is co-safe, whereas the Petri net N

2

depicted

in Figure 2.2 is not co-safe. Co-safe Petri nets arise for instance as the targets of the

net semantics constructed for the process algebra called Petri Box Calculus [10]. This

follows from the work of [19].

Another abstraction can be made from the set of multiset �ring sequences by only

considering the sequential representatives.

In the following de�nition we use the convention from Chapter 1 that ordinary

sequences are viewed as step sequences by the monoid homomorphism which maps

each element of the alphabet to the singleton containing this element.

De�nition 2.1.8

Let N = (S; T;W;M

in

) be a Petri net. The set FS

N

� T

�

of �ring sequences of N

is given by

FS

N

= SFS

N

\ T

�

:

2

Now we turn to the important subclass of 1-safe Petri nets. A 1-safe Petri net

has the property that it has no reachable markings in which a place carries 2 or more

tokens.

Note that in any Petri net with this property, transitions that are connected to a

place by an arc with weight 2 or more, will never be enabled at a reachable marking.

As a consequence, these transitions and the arcs incident with them can be removed

from the Petri net without a�ecting its set of multiset �ring sequences. Hence we

might as well exclude such transitions right away in the de�nition of 1-safe Petri nets.

Usually when the behaviour of 1-safe Petri nets is investigated, as in, e.g., [96, 9,

24, 60, 64], a restriction is imposed which forbids isolated transitions. For 1-safe Petri

nets it is this condition which prevents auto-concurrency. Also for our results on 1-safe

Petri nets we exclude auto-concurrency by adopting such a restriction.

The above considerations lead to the following formal de�nition of 1-safe Petri nets.

De�nition 2.1.9

A Petri net N = (S; T;W;M

in

) is 1-safe if

(1) 8M 2 RM

N

:8s 2 S:M(s) � 1

(2) 8s 2 S:8t 2 T: (W (s; t) 2 f0; 1g and W (t; s) 2 f0; 1g)

26 CHAPTER 2. PETRI NETS

(3) 8t 2 T: (

�

t)

N

[(t

�

)

N

6= ;. 2

Observe that (1) and (3) together imply that every transition has at least one input

place. Also observe that, while (2) and (3) are conditions imposed on the structure

of the Petri net, the \crucial" characteristic property (1) is not a structural property

but de�ned in behavioural terms, i.e. reachable markings.

In Figure 2.3 and Figure 2.4 two 1-safe Petri nets N

3

and N

4

are depicted. These

Petri nets will be used to illustrate the several behavioural notions for 1-safe Petri

nets.

a

b

ds2

s3

s
4

s1

s5

Figure 2.3: The 1-safe Petri net N

3

a

b

d
s3

s
4

s1

s5

Figure 2.4: The 1-safe Petri net N

4

Since 1-safe Petri nets do not exhibit auto-concurrency, every 1-safe Petri net is

co-safe. The class of co-safe Petri nets is however a non-trivial extension of the class

of 1-safe Petri nets. The Petri net N

1

depicted in Figure 2.1 is an example of a Petri

net which is co-safe, but not 1-safe.

2.1. PETRI NETS 27

By Lemma 2.1.3 a �nite set of transitions of a Petri net is enabled at a reachable

marking if the transitions are enabled individually and have disjoint environments.

From the following easy to prove lemma it follows that for 1-safe Petri nets the converse

also holds.

Lemma 2.1.10

Let N = (S; T;W;M

in

) be a 1-safe Petri net, let M 2 RM

N

, and let u 2 P

F

(T).

Then

M [ui

N

,

((8t 2 u:M [ti

N

) and

8t

1

; t

2

2 u: (t

1

6= t

2

) ((

�

t

1

)

N

[(t

1

�

)

N

) \ ((

�

t

2

)

N

[(t

2

�

)

N

) = ;)):

2

Thus for a 1-safe Petri net the concurrent behaviour in terms of its step �ring

sequences can be recovered from its sequential behaviour by the binary relation over

its transitions consisting of all pairs of transitions with disjoint environments.

Another consequence of Lemma 2.1.10 is that concurrent steps within 1-safe Petri

nets can be recovered from concurrent pairs of transitions.

Lemma 2.1.11

Let N = (S; T;W;M

in

) be a 1-safe Petri net, let M 2 RM

N

, and let u 2 P

F

(T).

Then

M [ui

N

, 8t

1

; t

2

2 u:M [ft

1

; t

2

gi

N

:

2

a cb

Figure 2.5: The Petri net N

5

28 CHAPTER 2. PETRI NETS

For a general Petri net it is possible that a set of transitions is enabled at one

reachable marking, but not at another reachable marking, even though at both mark-

ings the transitions are enabled individually. This is for instance the case for the Petri

net N

5

depicted in Figure 2.5. In this Petri net the set fa; bg is enabled initially, but

if c occurs �rst then only one of the transitions a and b can occur. As a consequence

of Lemma 2.1.10 such a situation cannot arise for 1-safe Petri nets. For 1-safe Petri

nets it is possible to characterize concurrency (and conict) as a global property.

Lemma 2.1.12

Let N = (S; T;W;M

in

) be a 1-safe Petri net, let M 2 RM

N

, and let u 2 P

F

(T).

Then

M [ui

N

, ((8t 2 u:M [ti

N

) and 9M

0

2 RM

N

:M

0

[ui

N

):

2

Several of the notions we consider in the context of Petri nets are generalizations

of corresponding notions de�ned �rst in the context of net classes closely related to 1-

safe Petri nets such as elementary net systems and safe net systems, which are variants

of the original model of C/E systems. To conclude this section we briey introduce

these models. The purpose is to argue that it is indeed possible to transport several

behavioural notions de�ned originally for these net systems to the context of (1-safe)

Petri nets. In the rest of this thesis these net systems will however only play a minor

role.

For elementary net systems, see, e.g., [81], we speak of conditions instead of places,

events instead of transitions, and cases instead of markings.

De�nition 2.1.13

An elementary net system is a quadruple N = (B;E;F; c

in

) where

(1) B is a set of conditions and E is a set of events such that B \ E = ;

(2) F � (B � E) [(E �B) is a ow relation such that

8e 2 E:9b 2 B: ((b; e) 2 F or (e; b) 2 F):

(3) c

in

� B is the initial case of N . 2

Given an elementary net system N = (B;E;F; c

in

), let for x 2 B [E,

(

�

x)

N

= fy 2 B [E j (y; x) 2 Fg

be the set of input elements of x (in N) and let

(x

�

)

N

= fy 2 B [E j (x; y) 2 Fg

be the set of output elements of x (in N).

Sometimes it is demanded that the underlying net of an elementary net system

is simple, which means that every element is uniquely characterized by its input and

2.1. PETRI NETS 29

output elements. Following [64] this is not required here. Usually it is also demanded

that an elementary net system has no isolated conditions. With respect to the notions

considered in this thesis, this restriction is however not necessary. Hence we have

omitted it, in order to streamline the de�nition with the de�nition of 1-safe Petri nets.

The global states of an elementary net system are given by sets of conditions which

hold. For an elementary net systemN = (B;E;F; c

in

), let C

N

denote the set of all these

global states, which are called cases. Thus C

N

is the set of all subsets of conditions of

N .

The class of 1-safe Petri nets is de�ned in terms of reachable markings. The class

of elementary net systems on the other hand has a purely structural de�nition. For

elementary net systems \1-safeness" is ensured by the de�nition of its �ring rule.

For an elementary net system an event can occur at a given case if all its input

conditions hold and none of its output conditions hold. The e�ect of the occurrence

of an event is that all its input conditions cease to hold and all its output conditions

begin to hold.

De�nition 2.1.14

Let N = (B;E;F; c

in

) be an elementary net system, let c; c

0

2 C

N

, and let e 2 E.

Then

(1) e is enabled at c, denoted by c[ei

N

, if

�

e � c and e

�

\ c = ;

(2) e can occur at c and lead to c

0

, denoted by c[ei

N

c

0

, if

c[ei

N

and c

0

= (c �

�

e) [e

�

:

2

Note that for elementary net systems concurrency is not represented explicitly in

the de�nition of the dynamic behaviour. The reason is, that for elementary net systems

concurrency can be recovered from the sequential behaviour through certain diamond

properties [81, 39].

The set of reachable cases of an elementary net system is de�ned similar to the set

of reachable markings of a Petri net.

De�nition 2.1.15

Let N = (B;E;F; c

in

) be an elementary net system. Then the set RC

N

� C

N

of

reachable cases of N is the least set containing c

in

such that

(c 2 RC

N

and c[ei

N

c

0

)) c

0

2 RC

N

:

2

In order to see if an event can occur both its input conditions and its output

conditions must be inspected. For contact-free elementary net systems it is su�cient

to inspect only the input conditions of events at reachable cases.

30 CHAPTER 2. PETRI NETS

De�nition 2.1.16

An elementary net system N = (B;E;F; c

i

) is contact-free if

8e 2 E:8c 2 RC

N

: (

�

e � c) e

�

\ c = ;):

2

a b a

Figure 2.6: Two elementary net systems which are not contact-free

In Figure 2.6 two elementary net systems are depicted. Neither of them is contact-

free. For the �rst elementary net system the event a can only occur if the event b

occurs �rst. Whereas events are allowed to have self-loops, i.e. input and output

conditions with a non-empty intersection as in the second elementary net system in

Figure 2.6, these events can never occur.

As far as the behavioural notions in this thesis are concerned, there exists for

each elementary net system a contact-free elementary net system which has the same

behaviour. This contact-free elementary net system is obtained by complementing

the conditions, see, e.g., [81]. It is easy to see that every contact-free elementary

net system can also be viewed as a 1-safe Petri net which has the same (sequential)

dynamic behaviour. On the other hand, viewing a 1-safe Petri net as an elementary

net system does not always lead to a system which has the same dynamic behaviour,

due to the di�erence in the �ring rule in the presence of self-loops.

The above mentioned mismatch between contact-free elementary net systems and

1-safe Petri nets disappears for the variant of elementary net systems as used in [57, 98].

These net systems are here called safe net systems.

The underlying structure of safe net systems is the same as for elementary net

systems. Thus a safe net system N is also a quadruple consisting of a set B of

conditions, a set E of events, a ow relation F , and an initial case c

in

. Given an

element x 2 B [E, its input elements (

�

x)

N

and output elements (x

�

)

N

are de�ned

in the same way as for elementary net systems. Again C

N

denotes the set of all cases

of N , which is the set of all subsets of conditions of N .

The only di�erence with elementary net systems is that safe net systems have a

less restrictive �ring rule.

De�nition 2.1.17

Let N = (B;E;F; c

in

) be a safe net system, let c; c

0

2 C

N

, and let e 2 E. Then

(1) e is enabled at c, denoted by c[e)

N

, if

�

e � c and e

�

\ (c�

�

e) = ;

2.1. PETRI NETS 31

(2) e can occur at c and lead to c

0

, denoted by c[ei

N

c

0

, if

c[e)

N

and c

0

= (c�

�

e) [e

�

:

2

Thus for a safe net system an event can occur if its input conditions hold and its

output conditions only hold if these conditions are also input conditions of the event.

The e�ect of the occurrence of an event is the same as for elementary net systems.

De�nition 2.1.18

Let N = (B;E;F; c

in

) be a safe net system. Then the set RC

N

� C

N

of reachable

cases of N is the least set containing c

in

such that

(c 2 RC

N

and c[e)

N

c

0

)) c

0

2 RC

N

:

2

In view of the modi�cations in the �ring rule for safe net systems with respect to

the �ring rule for elementary net systems, the de�nition of contact-freeness of safe net

systems is modi�ed accordingly.

De�nition 2.1.19

A safe net system N = (B;E;F; c

i

) is contact-free if

8e 2 E:8c 2 RC

N

: (

�

e � c) e

�

\ (c�

�

e) = ;):

2

If we view the elementary net systems from Figure 2.6 as safe net systems, then the

�rst safe net system is not contact-free, but the second safe net system is contact-free.

In the �rst safe net system the event a can still not occur initially, but in the second

system the event a can occur.

Whereas the class of contact-free elementary net systems can be viewed as a proper

subclass of the class of 1-safe Petri nets, the classes of contact-free safe net systems

and 1-safe Petri nets are essentially the same. Stated formally, the map obtained by

viewing a contact-free safe net system as a 1-safe Petri net is a bijection between the

two classes.

In the rest of this thesis we will often omit the subscript

N

for the notions de�ned

in this section when the Petri net, elementary net system, or safe net system N is clear

from the context.

32 CHAPTER 2. PETRI NETS

2.2 The Category PN

In this section we de�ne morphisms between Petri nets which leads to a category of

Petri nets.

Several proposals for Petri net morphisms have been made in the literature. Here

we use the modi�ed version of Winskel's morphisms from [95] which is used by Mukund

in [63]. In [95] a Petri net morphism from N

1

to N

2

consists of a partial function from

the transitions of N

1

to the transitions of N

2

and a multirelation from the places of

N

1

to the places of N

2

. These maps are required to preserve the initial marking and

the environment of transitions.

In [63] it appeared to be necessary to modify these morphisms in order to show the

universality of the transition system semantics for Petri nets. The modi�cations are

twofold. Firstly the multirelation between the places is now required to be a partial

function in the \reverse" direction rather than an arbitrary multirelation. Secondly the

condition that the initial marking should be preserved is relaxed by only demanding

preservation for \related" places.

These modi�cations with respect to Winskel's morphisms are similar to the modi-

�cations proposed in [68] in the context of elementary net systems. Recall that every

elementary net system can be viewed as a Petri net, which is 1-safe if the elementary

net system is contact-free. If we view elementary net systems as Petri nets in this way,

the morphisms from [68] coincide with our notion of morphism between Petri nets.

De�nition 2.2.1

Let N

i

= (S

i

; T

i

;W

i

;M

i

), i = 1; 2, be a pair of Petri nets. A PN-morphism from

N

1

to N

2

is a pair (�; �) of partial functions � : S

2

! S

1

and � : T

1

! T

2

such that

(1) 8s

2

2 S

2

: (�(s

2

) is de�ned)M

2

(s

2

) = M

1

(�(s

2

)))

(2) 8t

1

2 T

1

: (�(t

1

) is unde�ned) �

�1

(

�

t

1

) = �

�1

(t

1

�

) = ;)

(3) 8t

1

2 T

1

: (�(t

1

) is de�ned)

(3a) �

�1

(

�

t

1

) =

�

�(t

1

) and �

�1

(t

1

�

) = �(t

1

)

�

and

(3b) 8s

2

2

�

�(t

1

):W

2

(s

2

; �(t

1

)) = W

1

(�(s

2

); t

1

) and

(3c) 8s

2

2 �(t

1

)

�

:W

2

(�(t

1

); s

2

) = W

1

(t

1

; �(s

2

))). 2

In Figure 2.7 an example of a PN-morphism (�; �) is given, where the functions �

and � are as indicated by the dotted arrows.

If (�; �) is a PN-morphism from N to N

0

then a transition t in N is \simulated" by

�(t) in N

0

whenever �(t) is de�ned; otherwise it is \suppressed" in N

0

. The relation

�

�1

does not relate places which di�er with respect to their initial marking. Moreover,

this relation preserves the environment of transitions, thus ensuring that for places

in N

0

which prevent the occurrence of �(t), there exist corresponding places in N

which prevent the occurrence of t. Consequently PN-morphisms preserve the dynamic

behaviour of Petri nets. This is stated in the next lemma which is originally from [63].

2.2. THE CATEGORY PN 33

a b c

Figure 2.7: An example of a PN-morphism (�; �)

Lemma 2.2.2

Let N

i

= (S

i

; T

i

;W

i

;M

i

), i = 1; 2, be Petri nets and let (�; �) be a PN-morphism

from N

1

to N

2

. De�ne for M 2 RM

N

1

, the marking

^

M 2 M

N

2

by:

8s 2 S

2

:

^

M(s) =

(

M(�(s)) if �(s) is de�ned

M

2

(s) otherwise.

If

M

0

[u

1

i

N

1

M

1

[u

2

i

N

1

: : : [u

n

i

N

1

M

n

is an occurrence sequence of N

1

, then

^

M

0

[�(u

1

)i

N

2

^

M

1

[�(u

2

)i

N

2

: : : [�(u

n

)i

N

2

^

M

n

is an occurrence sequence of N

2

. 2

Thus if (�; �) is a PN-morphism, then it preserves the dynamic behaviour in terms

of multiset �ring sequences (under �). PN-morphisms however also enforce restrictions

on the structure of the Petri nets, which may not involve the dynamic behaviour. For

instance, removing in the �rst Petri net in Figure 2.7 the place with two tokens in

the initial marking does not change its dynamic behaviour in terms of multiset �ring

sequences, but it destroys the PN-morphism between the two Petri nets.

The Petri nets which arise out of our later constructions will all have the property

that they are S-simple, which means that each place is uniquely characterized by its

initial marking and its input and output transitions.

De�nition 2.2.3

A Petri net (S; T;W;M

in

) is S-simple if

8s

1

; s

2

2 S: ((M

in

(s

1

) =M

in

(s

2

) and 8t 2 T: (W (s

1

; t) = W (s

2

; t) and

W (t; s

1

) = W (t; s

2

)))) s

1

= s

2

):

2

34 CHAPTER 2. PETRI NETS

For S-simple Petri nets without isolated places, a PN-morphism is completely de-

termined by its transition function, which follows from another result by Mukund

[63].

Lemma 2.2.4

Let (�

1

; �) and (�

2

; �) be a pair of PN-morphisms from N

1

to N

2

where N

1

is

S-simple and for every place s of N

1

,

�

s [s

�

6= ;. Then �

1

= �

2

. 2

With the notion of PN-morphism we can now de�ne a category of Petri nets.

De�nition 2.2.5

PN is the category which has Petri nets as its objects and PN-morphisms as

its arrows. The identity morphism associated with an object is the pair of identity

functions on places and transitions; composition of PN-morphisms (�

1

; �

1

) from N

1

to

N

2

and (�

2

; �

2

) from N

2

to N

3

is the PN-morphism (�

1

� �

2

; �

2

� �

1

) from N

1

to N

3

.

2

It is easy to verify that the composition of PN-morphisms is indeed a PN-morphism,

so that the category PN is well-de�ned.

For the sublasses of Petri nets de�ned in Section 2.1 we have the following subcat-

egories of PN .

De�nition 2.2.6

PN s is the full subcategory of PN the objects of which are 1-safe Petri nets.

PNS is the full subcategory of PN the objects of which are co-safe Petri nets. 2

Note that PN s is also a full subcategory of PNS.

With respect to universal constructions within the category of Petri nets, the empty

net (;; ;; ;; 0) is both the initial and terminal object in PN . As shown in [63],

the category PN also has products and co-products. The product of two Petri nets

corresponds to the synchronous parallel composition. The co-product of two Petri

nets is however less standard. It can be viewed as either a non-deterministic choice

or an asynchronous parallel composition, depending on the similarity of the two Petri

nets. The morphisms considered in [95] and in [59] (for the category of Petri nets with

an initial marking) give rise to categories which do not have co-products in general.

There co-products are shown to exist for the subcategory of 1-safe Petri nets ([95])

and the category of Petri nets in which the initial marking is a set ([59]).

By Lemma 2.2.2, both multiset �ring sequences and �ring sequences are preserved

under PN-morphisms. On the other hand, step �ring sequences are in general not

preserved under PN-morphisms due to the fact that PN-morphisms may map concur-

rent transitions in the �rst Petri net to the same transition in the second Petri net

(as for the PN-morphism depicted in Figure 2.7). This leads to auto-concurrency in

the second Petri net, so that step �ring sequences in the �rst Petri net correspond to

multiset �ring sequences in the second Petri net.

This can be avoided by considering only PN-morphisms that map concurrent tran-

sitions to di�erent transitions. Such PN-morphisms will be referred to as being co-

injective.

2.2. THE CATEGORY PN 35

De�nition 2.2.7

Let (�; �) be a PN-morphism from N

1

= (S

1

; T

1

;W

1

;M

1

) to N

2

. Then (�; �) is

co-injective if

8t; t

0

2 T

1

: ((t 6= t

0

and �(t) and �(t

0

) are both de�ned and

9M 2 RM

N

1

:M [ft; t

0

gi

N

1

)) �(t) 6= �(t

0

)):

2

The category of Petri nets with co-injective PN-morphisms will play a role in

Section 5.7.

De�nition 2.2.8

PNC is the wide subcategory of PN the arrows of which are co-injective PN-

morphisms. 2

Note that by Lemma 2.2.2 PN-morphisms between co-safe Petri nets are always

co-injective. In other words, PNS is a full subcategory of PNC.

36 CHAPTER 2. PETRI NETS

Chapter 3

Multiset Transition Systems

With each Petri net we have associated a state space consisting of its reachable mark-

ings. These markings assign to each place of the Petri net a certain number of tokens

and can thus be viewed as distributed global states, with the marked places as local

states. For the analysis of the dynamic behaviour of a Petri net however, the exact

distribution of the global states over local states is not essential.

Abstracting from this distribution leads to the model of multiset transition systems

[52, 63], the subject of this chapter. The multiset transition systemmodel is an easy to

understand model for concurrent systems which is capable of capturing the concurrent

and branching aspects of the behaviour of Petri nets, but which only has a notion of

a global state.

Multiset transition systems are also a convenient framework for de�ning the basic

notion of a (generalized) region [63, 40]. Regions provide a decomposition of global

states into local states. The notion of a region plays a fundamental role in this thesis

whenever we want to synthesize a Petri net from a behavioural description. Regions

then yield places of Petri nets. The regions we use here form a generalization of the

notion of a region from [22].

Thus the purpose of this chapter is twofold. Firstly, multiset transition systems are

investigated as a model for concurrency used for representing the behaviour of Petri

nets. Secondly, multiset transition systems serve as a general framework for de�ning

notions to be used also in later chapters.

In Section 3.1 multiset transition systems are introduced. Then in Section 3.2 the

notion of a (generalized) region is de�ned. In Section 3.3 a multiset transition system

is associated with each Petri net, its marking diagram. Then a characterization is

given of those multiset transition systems, called PN-transition systems, which are

isomorphic to such a marking diagram. This characterization is based on the notion of

a region. In Section 3.4 a characterization is given of those multiset transition systems

which are isomorphic to the marking diagram of a 1-safe Petri net. It is shown that an

equivalent representation of these multiset transition systems can be obtained using

asynchronous transition systems. Finally, in Section 3.5 the characterization of PN-

transition systems from Section 3.3 is used to express the relationship between multiset

transition systems and Petri nets in a categorical framework.

37

38 CHAPTER 3. MULTISET TRANSITION SYSTEMS

This chapter mainly summarizes results fromMukund [63, 64] where missing proofs

can be found.

3.1 Multiset Transition Systems

In this section we consider transition systems in which the transitions are labelled with

multisets of actions over a given alphabet. In this way concurrency between actions is

represented explicitly in the transition relation. The occurrence of the empty multiset

is meant to denote inactivity at a state.

De�nition 3.1.1

(1) A multiset transition diagram is a triple (Q;X;�!) where Q is a set of states,

X is an alphabet of actions, and �!� Q�M

F

(X)�Q is a multiset transition

relation such that

(q; 0; q

0

) 2�! , q = q

0

:

(2) A multiset transition system is a quadruple (Q;X;�!; q

in

) where (Q;X;�!) is

a multiset transition diagram and q

in

2 Q is an initial state. 2

In contrast to [52, 63] we do not impose any conditions at this moment guaranteeing

reachability of states and/or substep properties.

For a multiset transition diagram TD = (Q;X;�!) we write q

u

�! q

0

rather than

(q; u; q

0

) 2�!. For q; q

0

2 Q and � 2 (M

F

(X))

+

we write q

�

�! q

0

, if there exist

q

0

; : : : ; q

n

2 Q and u

1

; : : : ; u

n

2M

F

(X) where n � 1, such that

� q

0

= q and q

n

= q

0

and

� � = u

1

: : : u

n

and

� 81 � i � n: q

i�1

u

i

�! q

i

.

We write q

�

�! if there exists q

0

2 Q such that q

�

�! q

0

.

An important subclass of multiset transition systems is obtained when all transi-

tions are labelled with multisets containing at most one element.

De�nition 3.1.2

(1) A sequential transition diagram is a multiset transition diagram (Q;X;�!) such

that

q

u

�! q

0

) juj � 1:

(2) A sequential transition system is a multiset transition system (Q;X;�!; q

in

)

such that (Q;X;�!) is a sequential transition diagram. 2

3.2. REGIONS 39

Note that a multiset transition system could be viewed as a sequential transition

system which has M

F

(X) as its underlying alphabet. One of the reasons why we do

not take this point of view is that we want morphisms between multiset transition

systems to preserve the actions in the multisets in a consistent way.

Morphisms between multiset transition systems should capture the fact that tran-

sitions in one multiset transition system can be \simulated" in the other.

De�nition 3.1.3

Let TS

i

= (Q

i

;X

i

;�!

i

; q

i

), i = 1; 2, be a pair of multiset transition systems. An

MTS-morphism from TS

1

to TS

2

is a pair (f; g) with f : X

1

! X

2

a partial function

and g : Q

1

! Q

2

a total function such that

(1) g(q

1

) = q

2

(2) q

u

�!

1

q

0

) g(q)

f(u)

�!

2

g(q

0

). 2

In [68] G-morphisms between sequential transition systems are introduced. When

restricted to sequential transition systems, MTS-morphisms coincide with these G-

morphisms.

For a multiset transition system TS let id

TS

denote the identity MTS-morphism

which is the pair of identity functions on the states and the actions of TS , respectively.

Then an MTS-morphism (f; g) from TS

1

to TS

2

is an MTS-isomorphism i� there

exists an MTS-morphism (f

0

; g

0

) from TS

2

to TS

1

such that (f

0

� f; g

0

� g) = id

TS

1

and (f � f

0

; g � g

0

) = id

TS

2

.

3.2 Regions

Because they only have a notion of a global state, transition systems are more abstract

than Petri nets. In this section (generalized) regions of multiset transition diagrams are

de�ned in order to be able to decompose global states of multiset transition diagrams

into local states. The results in this section will be used throughout the thesis.

In [22] regions have been introduced in the context of (partial) 2-structures in order

to characterize the state spaces of elementary net systems. These regions are called

elementary regions here and they are de�ned, as in [68], in the context of sequential

transition diagrams.

De�nition 3.2.1

Let TD = (Q;X;�!) be a sequential transition diagram. An elementary region

of TD is a set r � Q satisfying the following conditions.

(1) (q

a

�! q

0

and q 2 r and q

0

62 r)) 8q

1

a

�! q

0

1

: (q

1

2 r and q

0

1

62 r).

(2) (q

a

�! q

0

and q 62 r and q

0

2 r)) 8q

1

a

�! q

0

1

: (q

1

62 r and q

0

1

2 r).

An elementary region r of TD is non-trivial if r 6= ; and r 6= Q. 2

40 CHAPTER 3. MULTISET TRANSITION SYSTEMS

The notion of an elementary region for sequential transition diagrams is lifted to

sequential transition systems in the obvious way. Thus given a sequential transition

system TS = (Q;X;�!; q

in

), we refer to the elementary regions of its underlying

sequential transition diagram (Q;X;�!) as the elementary regions of TS . We use

eR

TS

to denote the set of non-trivial elementary regions of a sequential transition

system TS .

An elementary region of a sequential transition system TS = (Q;X;�!; q

in

) is a

set of states such that transitions labelled with the same action have the same crossing

relation with respect to this set: either they are all leaving, or they are all entering,

or they are not crossing the set at all. Let for a 2 X,

�

a = fr 2 eR

TS

j 9q

a

�! q

0

: (q 2 r and q

0

62 r)g

be the set of input regions of a and

a

�

= fr 2 eR

TS

j 9q

a

�! q

0

: (q 62 r and q

0

2 r)g

be the set of output regions of a.

Example 3.2.2

a

a

b

b

q
0

q1
q2

q3

Figure 3.1: A sequential transition system TS

Let TS be the sequential transition system depicted in Figure 3.1. The elementary

regions of TS are the trivial elementary regions ; and fq

0

; q

1

; q

2

; q

3

g, the input region

fq

0

; q

1

g of b, the input region fq

0

; q

2

g of a, the output region fq

2

; q

3

g of b, and the

output region fq

1

; q

3

g of a. 2

Elementary regions of sequential transition systems are closely related to conditions

of elementary net systems. In fact, with each sequential transition system TS an

elementary net system can be associated which has the non-trivial elementary regions

of TS as its conditions and has as its events those actions a for which

�

a [a

�

6= ;.

The ow relation is such that for each event a,

�

a =

�

a and a

�

= a

�

. Finally, the

initial case consists of those non-trivial elementary regions which contain the initial

state. It is interesting to note that the elementary net system obtained in this way

3.2. REGIONS 41

is contact-free. This follows easily from the fact that if r is a non-trivial elementary

region of TS , then its complementQ� r is also a non-trivial elementary region of TS .

In this construction of an elementary net system from a sequential transition sys-

tem, the (global) states of the transition system are viewed as being composed of

non-trivial regions. The regions containing a state are interpreted as conditions that

hold in that state.

In the case of Petri nets, local states are more complex. Instead of being true

or false, a local state is a place with an arbitrary number of tokens. Moreover, the

relationship between a place and a transition of a Petri net is now a pair of natural

numbers as given by the weight function.

These observations lead to the following de�nition of a (generalized) region [63, 40]

as a multiset of states such that each action has a �xed e�ect on these multisets. In

contrast to elementary regions, generalized regions are de�ned for arbitrary multiset

transition diagrams.

De�nition 3.2.3

Let TD = (Q;X;�!) be a multiset transition diagram. A (generalized) region of

TD is a function r : Q [X ! N [(N�N) satisfying the following conditions.

(1) 8q 2 Q: r(q) 2 N and 8a 2 X: r(a) 2 N�N.

For a 2 X we write r(a) = (

r

a; a

r

).

(2) q

u

�! q

0

) (r(q) �

P

a2X

u(a) �

r

a and r(q

0

) = r(q) +

P

a2X

u(a) � (a

r

�

r

a)).

A generalized region r of TD is non-trivial if

9a 2 X: r(a) 6= (0; 0):

R

TD

is the set of non-trivial regions of TD. 2

Similar to the situation for sequential transition diagrams, the notion of a gener-

alized region is lifted to multiset transition systems. Thus given a multiset transition

system TS = (Q;X;�!; q

in

), we refer to the (generalized) regions of its underlying

multiset transition diagram (Q;X;�!) as the (generalized) regions of TS , and we use

R

TS

to denote the set of non-trivial regions of TS .

That the notion of a (generalized) region is indeed a generalization of an elementary

region can be seen as follows. Let r be an elementary region of a sequential transition

diagram TD = (Q;X;�!). Then r corresponds to the generalized region r

0

of TD

which is de�ned as follows:

(1) 8q 2 Q: r

0

(q) =

(

1 if q 2 r

0 if q 62 r

(2) 8a 2 X: r

0

(a) =

8

>

<

>

:

(1; 0) if r 2

�

a

(0; 1) if r 2 a

�

(0; 0) otherwise.

42 CHAPTER 3. MULTISET TRANSITION SYSTEMS

Example 3.2.4

Consider again the sequential transition system TS depicted in Figure 3.1. This

transition system has an in�nite number of regions. Some examples of regions are

given in the following table:

region a b q

0

q

1

q

2

q

3

r

1

(1; 0) (0; 0) 1 0 1 0

r

2

(0; 0) (1; 0) 2 2 1 1

r

3

(1; 2) (0; 0) 3 4 3 4

r

4

(1; 2) (2; 6) 3 4 7 8

r

5

(1; 1) (1; 1) 1 1 1 1

The region r

1

in this table corresponds to the elementary region fq

0

; q

2

g. 2

There is now a natural way to associate a Petri net with a multiset transition

system by taking for the places of the Petri net the non-trivial regions of the multiset

transition system.

De�nition 3.2.5

Let TS = (Q;X;�!; q

in

) be a multiset transition system. The Petri net associated

with TS is tn(TS) = (R

TS

;X;W;M

in

) where

� W : (R

TS

�X) [(X �R

TS

)! N is such that

8r 2 R

TS

:8a 2 X: (W (r; a) =

r

a and W (a; r) = a

r

)

� M

in

: R

TS

! N is such that

8r 2 R

TS

:M

in

(r) = r(q

in

):

2

Actually, we have assumed in the de�nition of tn(TS) that R

TS

\X = ;. We can

do this without loss of generality, because otherwise we could work with a Petri net

obtained by indexing every place r 2 R

TS

in an appropriate way. For this new Petri

net similar results can be derived. We will ignore this possible notational complication

here.

Example 3.2.6

In Figure 3.2 the multiset transition system TS from Figure 3.1 is depicted together

with a part of the (in�nite) Petri net tn(TS). The places of tn(TS) which are drawn

are the regions of TS from Example 3.2.4 and the non-trivial elementary regions of

TS (see also Example 3.2.2). The elementary regions are indicated as dotted circles.

2

For a state q 2 Q of a multiset transition system TS = (Q;X;�!; q

in

), de�ne the

marking M

q

2 M

tn(TS)

by:

8r 2 R

TS

:M

q

(r) = r(q):

Then the dynamic behaviour of tn(TS) is related to that of TS in the following way.

3.2. REGIONS 43

a

a

b

b

q
0

q1
q2

q3

a b

2

2 6

2

r3 r1 r4

r
2

r5

Figure 3.2: A sequential transition system with its associated Petri net

Lemma 3.2.7

Let TS = (Q;X;�!; q

in

) be a multiset transition system with associated Petri net

tn(TS) = (R

TS

;X;W;M

in

). Then

(1) q

u

�! q

0

)M

q

[ui

tn(TS)

M

q

0

(2) q

in

�

�!) � 2 MFS

tn(TS)

.

Proof.

(1) Suppose q

u

�! q

0

. Then by the de�nition of a region, for all r 2 R

TS

, M

q

(r) =

r(q) �

P

a2X

u(a)�

r

a =

P

a2X

u(a)�W (r; a) and henceM

q

[ui

tn(TS)

. Moreover, for

all r 2 R

TS

, M

q

0

(r) = r(q

0

) = r(q)+

P

a2X

u(a) � (a

r

�

r

a) = M

q

(r)+

P

a2X

u(a) �

(W (a; r)�W (r; a)). Now we can conclude that M

q

[ui

tn(TS)

M

q

0

.

(2) Follows immediately from (1) and the observation that M

q

in

= M

in

. 2

As the following example shows, neither the converse of (1) nor the converse of (2)

in the above lemma holds in general.

Example 3.2.8

Let TS = (Q;X;�!; q

in

) be the sequential transition system depicted in Figure 3.3

where q

in

= q

0

. In TS there is no upperbound on the number of a

0

s that can occur.

It is easy to see that r : Q [X ! N�N is a region of TS i� r(q

0

) �

r

a, r(q

0

) �

r

b,

r(q) = r(q

0

) + b

r

�

r

b, and 8i � 0: r(q

i

) = r(q

0

) + i � (a

r

�

r

a). Consequently, for every

region r of TS and a 2 X, a

r

�

r

a.

The Petri net tn(TS) is depicted in Figure 3.4 where only some of the in�nite

number of places are drawn.

From the characterization of the regions of TS given above it easily follows that

for all i � 0, r(q

i

) � r(q

0

) �

r

b and henceM

q

i

[bi

tn(TS)

. On the other hand, q

i

b

�! only

holds for i = 0, so the converses of part (1) and (2) of Lemma 3.2.7 do not hold. 2

44 CHAPTER 3. MULTISET TRANSITION SYSTEMS

q

q

q

q

.
.

.

a

a

a

b

2

1

0

Figure 3.3: A sequential transition system TS

It is easy to see that for every multiset transition system TS , the Petri net tn(TS)

is S-simple and has no isolated places. Moreover, it is saturated in the sense that no

new non-isolated places can be added without changing the behaviour (in terms of

multiset �ring sequences).

Next we show how to extend the map tn to MTS-morphisms in such a way that

whenever � is an MTS-morphism from TS

1

to TS

2

, its image tn(�) is a PN-morphism

from tn(TS

1

) to tn(TS

2

). In the de�nition of this extension we use inverse regions.

So let TS

i

= (Q

i

;X

i

;�!

i

; q

i

), i = 1; 2, be a pair of multiset transition systems and

let � = (f; g) be an MTS-morphism from TS

1

to TS

2

. De�ne for a region r of TS

2

,

�

�1

(r) : Q

1

[X

1

! N [(N�N) by:

(1) 8q 2 Q

1

: �

�1

(r)(q) = r(g(q))

(2) 8a 2 X

1

: �

�1

(r)(a) =

(

r(f(a)) if f(a) is de�ned

(0; 0) otherwise.

Lemma 3.2.9

Let TS

i

= (Q

i

;X

i

;�!

i

; q

i

), i = 1; 2, be multiset transition systems, let � = (f; g)

be an MTS-morphism from TS

1

to TS

2

, and let r be a region of TS

2

. Then �

�1

(r) is

a region of TS

1

. 2

Proof.

Suppose q

u

�!

1

q

0

. Then g(q)

f(u)

�!

2

g(q

0

) by the de�nition of MTS-morphism. Since

r is a region of TS

2

this implies that �

�1

(r)(q) = r(g(q)) �

P

b2X

2

(f(u))(b) �

r

b =

P

a2X

1

u(a) �

�

�1

(r)

a and �

�1

(r)(q

0

) = r(g(q

0

)) = r(g(q)) +

P

b2X

2

(f(u))(b) � (b

r

�

r

b) =

�

�1

(r)(q) +

P

a2X

1

u(a) � (a

�

�1

(r)

�

�

�1

(r)

a). 2

3.2. REGIONS 45

a

b
.

.
.

2 3

. . .

6

Figure 3.4: The Petri net tn(TS)

For elementary regions (viewed as generalized regions) this notion of inverse region

coincides with the notion of the inverse of an elementary region as de�ned in [68].

Let TS

i

, i = 1; 2, be a pair of multiset transition systems and let � = (f; g) be an

MTS-morphism from TS

1

to TS

2

. Then de�ne tn(�) = (�

�

; �

�

) where �

�

= f and

�

�

: R

TS

2

!R

TS

1

is given by:

�

�

(r) =

(

�

�1

(r) if �

�1

(r) is non-trivial

unde�ned otherwise.

Lemma 3.2.10

Let TS

i

= (Q

i

;X

i

;�!

i

; q

i

), i = 1; 2, be a pair of multiset transition systems and

let � = (f; g) be an MTS-morphism from TS

1

to TS

2

. Then tn(�) = (�

�

; �

�

) is a

PN-morphism from tn(TS

1

) = (R

TS

1

;X

1

;W

1

;M

1

) to tn(TS

2

) = (R

TS

2

;X

2

;W

2

;M

2

).

Proof.

Let r 2 R

TS

2

be such that �

�

(r) is de�ned. Then M

2

(r) = r(q

2

) = r(g(q

1

)) =

�

�1

(r)(q

1

) = M

1

(�

�1

(r)). This proves condition (1) in the de�nition of a PN-morphism.

Let a 2 X

1

be such that �

�

(a) is unde�ned. Then f(a) is unde�ned, and therefore

�

�1

(r)(a) = (0; 0) for all r 2 R

TS

2

. Now assume that r 2 R

TS

2

is such that r 2

�

�1

�

(

�

a) [�

�1

�

(a

�

). Thus W

1

(�

�

(r); a) +W

1

(a; �

�

(r)) > 0. Since �

�

(r) = �

�1

(r), this

leads to �

�1

(r)(a) = �

�

(r)(a) = (W

1

(�

�

(r); a);W

1

(a; �

�

(r))) 6= (0; 0), a contradiction.

Hence �

�1

�

(

�

a) = �

�1

�

(a

�

) = ;, which proves that tn(�) satis�es condition (2) in the

de�nition of a PN-morphism.

Finally, assume that a 2 X

1

is such that �

�

(a) = f(a) is de�ned with �

�

(a) = b.

Then (�

�

(r))(a) = �

�1

(r)(a) = r(f(a)) = (

r

b; b

r

) for all r 2 R

TS

2

. Hence r 2

�

b if and

only if �

�

(r) 2

�

a, that is r 2 �

�1

�

(

�

a). Similarly it can be proved that �

�1

�

(a

�

) = b

�

.

46 CHAPTER 3. MULTISET TRANSITION SYSTEMS

Moreover, for all r 2

�

b, W

1

(�

�

(r); a) = W

2

(r; b) and, for all r 2 b

�

, W

1

(a; �

�

(r)) =

W

2

(b; r). This proves condition (3) in the de�nition of a PN-morphism. 2

3.3 PN-Transition Systems

In the previous section we have seen how to associate a Petri net tn(TS) with a

multiset transition system TS . In this section we de�ne for each Petri net a so-called

marking diagram. Such a marking diagram is the multiset transition system induced

by the �ring rule. Marking diagrams are multiset transition systems, but not all

multiset transition systems can be obtained as marking diagrams. A characterization

is provided of those multiset transition systems that are marking diagrams (modulo

isomorphism). The characterization of marking diagrams is in terms of regions.

This set-up from [63, 64] is again a generalization of the approach to the charac-

terization of the state spaces of elementary net systems [22, 68].

De�nition 3.3.1

Let N = (S; T;W;M

in

) be a Petri net. The marking diagram of N is the multiset

transition system nt (N) = (RM

N

; T;�!

N

;M

in

) where

M

u

�!

N

M

0

, (M [ui

N

M

0

and M;M

0

2 RM

N

):

2

In Figure 3.5 the Petri net N

1

from Figure 2.1 is depicted together with its marking

diagram.

De�nition 3.3.2

A multiset transition system TS is a PN-transition system if there exists a Petri

net N such that TS � nt(N). 2

The following three axioms, de�ned for an arbitrary multiset transition system

TS = (Q;X;�!; q

in

), turn out to characterize the PN-transition systems.

(PT1) 8q 2 Q:9� 2 (M

F

(X))

+

: q

in

�

�! q.

(PT2) (8r 2 R

TS

: r(q) = r(q

0

))) q = q

0

.

(PT3) (8r 2 R

TS

: r(q) �

P

a2X

u(a) �

r

a)) q

u

�!.

The �rst axiom requires that every state is reachable, as is the case in the marking

diagram of a Petri net where the states are the reachable markings.

The axiom (PT2) mirrors the property of the marking diagram of a Petri net that

a state (i.e. reachable marking) is uniquely characterized by the number of tokens in

each place.

By the de�nition of a region, the occurrence of a multiset of transitions implies

that each region has enough \tokens" for this multiset to occur. The axiom (PT3)

now states that the fact that each region contains enough tokens is not only necessary

for a multiset of transitions to occur, but also su�cient. Thus this mirrors the property

that the marking diagram of a Petri net contains all enablings at reachable markings.

3.3. PN-TRANSITION SYSTEMS 47

ca

b

s
1

s
2

s
3

s
3

s
1 + s

2
+ s

3

s
1 + 2s

2 + s
3

s
2

s
3+

2s
2 + s

3

b + c

b

c

c

c

b + c

a

a

a

a + c

a + c
b

b

.
.

.

.

.
.

.

.

c

c

c

b + c

s
1

s+ 3

Figure 3.5: The Petri net N

1

with its marking diagram

Example 3.3.3

Consider the multiset transition system TS depicted in Figure 3.3. From the

characterization of its regions in Example 3.2.8 it follows that for every i � 1 and for

every r 2 R

TS

, r(q

i

) � r(q

0

) �

r

b. Axiom (PT3) would then imply that also q

i

b

�!

for all i � 1. Hence TS does not satisfy (PT3).

The multiset transition system nt(N

1

) depicted in Figure 3.5 on the other hand,

satis�es all three axioms (PT1), (PT2), and (PT3). 2

The axioms (PT2) and (PT3) are quite strong. For instance, they guarantee that

multisets can be split into arbitrary submultisets.

Lemma 3.3.4

Let TS = (Q;X;�!; q

in

) be a multiset transition system satisfying (PT1), (PT2),

and (PT3). Then

q

u

�! q

0

) 8v � u:9q

00

2 Q: (q

v

�! q

00

and q

00

u�v

�! q

0

):

48 CHAPTER 3. MULTISET TRANSITION SYSTEMS

2

It is fairly easy to prove that every PN-transition system satis�es (PT1), (PT2),

and (PT3). Using the map tn from multiset transition systems to Petri nets as de�ned

in Section 3.2 it can be proved (see [63]) that the converse is also true.

Lemma 3.3.5

Let TS be a multiset transition system satisfying (PT1), (PT2), and (PT3). Then

TS � nt(tn(TS)). 2

Hence we have the following characterization of PN-transition systems.

Theorem 3.3.6

A multiset transition system is a PN-transition system i� it satis�es the axioms

(PT1), (PT2), and (PT3). 2

Thus for every Petri net N there exists a saturated Petri net, namely tn(nt(N)),

which has an isomorphic marking diagram. In a sense made more precise in Section 3.5

the Petri net tn(nt (N)) is the \best" representative among all Petri nets with the same

(up to isomorphism) marking diagram.

Example 3.3.7

ca

b

3

2
2

3

2

2

. . . .

Figure 3.6: The Petri net tn(nt(N

1

))

For the multiset transition system nt(N

1

) depicted in Figure 3.5, the Petri net

tn(nt (N

1

)) is drawn in Figure 3.6 where only some of the in�nite number of places

are given. Every region r of nt (N

1

) satis�es, e.g., the condition that r(s

1

+ s

3

) =

r(s

1

+ s

2

+ s

3

) + c

r

�

r

c = r(s

1

+ s

3

) + a

r

�

r

a+ c

r

�

r

c and hence

r

a+

r

c = a

r

+ c

r

.

Another condition which every region r of nt(N

1

) satis�es is that a

r

�

r

a. 2

3.4. 1-SAFE PN-TRANSITION SYSTEMS 49

3.4 1-Safe PN-Transition Systems

In this section we investigate the relationship between 1-safe Petri nets and multiset

transition systems. First a characterization is given of the PN-transition systems

associated with 1-safe Petri nets. This characterization is from [64].

De�nition 3.4.1

A PN-transition system TS is 1-safe if there exists a 1-safe Petri net N such that

TS � nt(N). 2

To characterize the 1-safe PN-transition systems we need the notion of a 1-safe

region. Similar to how regions correspond to the places of an arbitrary Petri net, the

1-safe regions correspond to the places of a 1-safe Petri net.

De�nition 3.4.2

Let TS = (Q;X;�!; q

in

) be a multiset transition system. A region r of TS is

1-safe if

8q 2 Q: r(q) 2 f0; 1g and 8a 2 X: r(a) 2 f(0; 0); (0; 1); (1; 0); (1; 1)g:

sR

TS

is the set of non-trivial 1-safe regions of TS . 2

Note that the generalized regions corresponding to the elementary regions of a

sequential transition system are 1-safe.

The following four axioms, formulated for an arbitrary multiset transition system

TS = (Q;X;�!; q

in

), turn out to characterize the 1-safe PN-transition systems.

(PT1) 8q 2 Q:9� 2 (M

F

(X))

+

: q

in

�

�! q.

(PT2') (8r 2 sR

TS

: r(q) = r(q

0

))) q = q

0

.

(PT3') (8r 2 sR

TS

: r(q) �

P

a2X

u(a) �

r

a)) q

u

�!.

(PT4) 8q 2 Q:8a 2 X:9k 2 N: (q

u

�!) u(a) < k).

The axioms (PT2) and (PT3) are strengthened by formulating them with respect

to 1-safe regions. For 1-safe PN-transition systems the axiom (PT4) is required as a

counterpart for condition (3) in the de�nition of 1-safe Petri nets, which prevents auto-

concurrency. Now suppose TS satis�es (PT1), (PT2'), and (PT3'), but not (PT4).

Then auto-concurrency in TS is still possible. If q

2�a

�!, then, for every 1-safe region

r of TS , r(q) � 2 �

r

a and thus

r

a = 0. Hence we also have that r(q) � k �

r

a for

all k 2 N. This implies by (PT3') that q

k�a

�! for all k 2 N and every 1-safe region

r of TS . Hence in order to forbid auto-concurrency in TS , it is su�cient to forbid

unbounded auto-concurrency at each state in TS as in (PT4).

It is easy to verify that the marking diagram of a 1-safe Petri net satis�es these four

axioms. The proof of the converse is again based on a map from multiset transition

systems to Petri nets. This map is de�ned by taking in the de�nition of the map tn

only the 1-safe regions into account.

50 CHAPTER 3. MULTISET TRANSITION SYSTEMS

De�nition 3.4.3

Let TS = (Q;X;�!; q

in

) be a multiset transition system which satis�es the axioms

(PT1), (PT2'), (PT3'), and (PT4). Then ts(TS) = (sR

TS

;X;W;M

in

) is the Petri net

with

� W : (sR

TS

�X) [(X � sR

TS

)! N is such that

8r 2 sR

TS

:8a 2 X: (W (r; a) =

r

a and W (a; r) = a

r

)

� M

in

: sR

TS

! N is such that

8r 2 sR

TS

:M

in

(r) = r(q

in

):

2

Lemma 3.4.4

Let TS be a multiset transition system which satis�es the axioms (PT1), (PT2'),

(PT3'), and (PT4). Then ts(TS) is a 1-safe Petri net. 2

For a multiset transition system TS which satis�es the three axioms (PT1), (PT2),

and (PT3), Lemma 3.3.5 implies that the Petri net tn(TS) yields a marking diagram

which is isomorphic to TS . If TS satis�es the (stronger) axioms (PT1), (PT2'), (PT3'),

and (PT4), then also the 1-safe Petri net ts(TS) has a marking diagram isomorphic

to TS .

Lemma 3.4.5

Let TS be a multiset transition system satisfying (PT1), (PT2'), (PT3'), and

(PT4). Then TS � nt(ts(TS)). 2

This then leads to the following characterization of 1-safe PN-transition systems

[64].

Theorem 3.4.6

A multiset transition system is a 1-safe PN-transition system i� it satis�es the

axioms (PT1), (PT2'), (PT3'), and (PT4). 2

To conclude this section we investigate an alternative representation of the marking

diagram of a 1-safe Petri net.

In the marking diagram of an arbitrary Petri net every multiset of transitions which

is enabled at a reachable marking is represented explicitly. By Lemma 2.1.10 however,

concurrency in a 1-safe Petri net can also be derived from its sequential behaviour

through a binary relation over its transitions. This leads to the model of asynchronous

transition systems [86, 6] which can be used to give an equivalent representation of

the marking diagram of a 1-safe Petri net.

De�nition 3.4.7

An asynchronous transition system is a quintuple TS = (Q;X;=); q

in

; Ind) where

(Q;X;=); q

in

) is a sequential transition system and Ind � X � X is a symmetric,

irreexive independence relation which satisfy the following conditions.

3.4. 1-SAFE PN-TRANSITION SYSTEMS 51

(1) a 2 X) 9q; q

0

2 Q: q

a

=) q

0

.

(2) (q

a

=) q

0

and q

a

=) q

00

)) q

0

= q

00

.

(3) ((a; b) 2 Ind and q

1

a

=) q

2

and q

1

b

=) q

3

)) 9q

4

2 Q: (q

2

b

=) q

4

and q

3

a

=) q

4

).

(4) ((a; b) 2 Ind and q

1

a

=) q

2

and q

2

b

=) q

4

)) 9q

3

2 Q: (q

1

b

=) q

3

and q

3

a

=) q

4

).

2

Condition (1) states that every action occurs in some transition and condition (2)

demands that the underlying sequential transition system is deterministic. Conditions

(3) and (4) capture the intuition behind the independence relation that two indepen-

dent actions cannot prevent each others occurrence. Moreover, if two independent

actions can occur at a given state after then the state reached after both of them have

occurred, does not depend on the order of their occurrence.

In general an asynchronous transition system may contain independencies between

actions which are never enabled at the same state. We say that an asynchronous

transition system TS = (Q;X;=); q

in

; Ind) is reduced i�

8(a; b) 2 Ind :9q 2 Q: (q

a

=) and q

b

=)):

There is an obvious way to view each asynchronous transition system as a mul-

tiset transition system. Given an arbitrary asynchronous transition system TS =

(Q;X;=); q

in

; Ind), de�ne at(TS) = (Q;X;�!; q

in

) where �!� Q� P

F

(X) �Q is

such that

(q

u

�! q

0

with u = fa

1

; : : : ; a

n

g and juj = n),

(q

a

1

:::a

n

=) q

0

and 81 � i; j � n: (i 6= j) (a

i

; a

j

) 2 Ind :))

Thus a step of actions can occur in at(TS) at a given state i� the actions are

pairwise independent and every possible interleaving of the actions can occur at this

state.

In general, di�erent asynchronous transition systems may be mapped to the same

multiset transition system by at . When restricted to reduced asynchronous transition

systems however, the map at is injective. A reduced asynchronous transition system

TS can then be recovered uniquely from its multiset transition system representation

under at : if at(TS) = (Q;X;�!; q

in

), then TS = (Q;X;=); q

in

; Ind) where

� q

a

=) q

0

, q

a

�! q

0

� Ind = f(a; b) j a 6= b and 9q 2 Q: q

fa;bg

�!g.

Next we show how to associate an asynchronous transition system with every 1-

safe Petri net. Lemma 2.1.12 and Lemma 2.1.11 suggest the following de�nition of an

independence relation to capture concurrency in a 1-safe Petri net.

52 CHAPTER 3. MULTISET TRANSITION SYSTEMS

De�nition 3.4.8

Let N = (S; T;W;M

in

) be a 1-safe Petri net. The independence relation Ind

N

�

T � T associated with N is given by:

Ind

N

= f(t

1

; t

2

) 2 T � T j t

1

6= t

2

and 9M 2 RM

N

:M [ft

1

; t

2

gi

N

g:

2

Note that the independence relation associated with a 1-safe Petri net is irreexive

and symmetric.

For the 1-safe Petri nets N

3

and N

4

depicted in Figure 2.3 and Figure 2.4 we have

that Ind

N

3

= ; and Ind

N

4

= f(a; b); (b; a)g.

Alternatively we could have given a structural de�nition of the independence rela-

tion associated with a 1-safe Petri net N as in, e.g., [98]:

Ind

0

N

= f(t

1

; t

2

) j (

�

t

1

[t

1

�

) \ (

�

t

2

[t

2

�

) = ;g:

The independence relation de�ned in this way also captures by Lemma 2.1.10 the

concurrency in a 1-safe Petri net. On the other hand, two transitions of a 1-safe Petri

net can have disjoint environments without ever being concurrent at some reachable

marking. This is for instance the case for the transitions a and c of the Petri net

depicted in Figure 3.7.

a b c

Figure 3.7: a and c have disjoint environments, but are never concurrent

For technical reasons we prefer to work with the minimal independence relation

Ind

N

which only contains independencies between transitions which can actually be

enabled together.

Using this independence relation Ind

N

there is an obvious way to associate a (re-

duced) asynchronous transition system with every 1-safe Petri net.

De�nition 3.4.9

Let N = (S; T;W;M

in

) be a 1-safe Petri net. Then the asynchronous transition

system associated with N is sa(N) = (RM; T;=)

N

;M

in

; Ind

N

) , where

M

u

=)

N

M

0

, (juj � 1 and M

u

�!

N

M

0

):

2

From Lemma 2.1.10 it easily follows that this de�nition agrees (via the map at)

with the de�nition of the marking diagram as given in Section 3.1.

3.5. A CO-REFLECTION BETWEEN PT S AND PN 53

Theorem 3.4.10

Let N be a 1-safe Petri net. Then nt(N) � at(sa(N)). 2

By the de�nition of Ind

N

, the asychronous transition system sa(N) is reduced.

Hence at gives a bijection between the marking diagrams associated with 1-safe Petri

nets and the asynchronous transition systems associated with 1-safe Petri nets. In

other words, the asynchronous transition system associated with a 1-safe Petri net

yields an equivalent representation of its marking diagram.

For elementary net systems it is even su�cient to associate a sequential transition

system with it in order to capture its concurrent behaviour, because for this model

arbitrary interleaving of occurrences implies that these occurrences are in fact concur-

rent.

However, for a 1-safe Petri net and also for a safe net system it is in general

not possible to extract its concurrent transition system behaviour from its sequential

transition system behaviour due to the behaviour in the presence of self-loops. Hence

for 1-safe Petri nets concurrency must be represented explicitly in their associated

transition system semantics.

Example 3.4.11

In Figure 3.8 the 1-safe Petri nets N

3

from Figure 2.3 and N

4

from Figure 2.4

are depicted together with their marking diagrams. Both marking diagrams have the

same (up to isomorphism) sequential behaviour, but they di�er in their concurrent

behaviour. 2

3.5 A Co-reection Between PT S and PN

In Section 3.3 the marking diagram of a Petri net is de�ned through the map nt . In

this section it is shown that this map from Petri nets to PN-transition systems can be

lifted to a functor which has a left adjoint.

The notion of morphism between multiset transition systems as de�ned in Sec-

tion 3.1 leads to the following de�nition.

De�nition 3.5.1

Let PT S be the category which has PN-transition systems as its objects and MTS-

morphisms as its arrows. The identity morphism associated with an object TS is id

TS

;

the composition of MTS-morphisms (f; g) from TS

1

to TS

2

and (f

0

; g

0

) from TS

2

to

TS

3

is the MTS-morphism (f

0

� f; g

0

� g) from TS

1

to TS

3

. 2

By Lemma 2.2.2 PN-morphisms preserve occurrence sequences. Using this obser-

vation the map nt from Petri nets to PN-transition systems is now extended to a

functor.

So let N

i

, i = 1; 2, be a pair of Petri nets and let (�; �) be a PN-morphism from

N

1

to N

2

. Then de�ne nt((�; �)) = (f; g) where f = � and g : RM

N

1

! RM

N

2

is

given by g(M) =

^

M where

^

M is as de�ned in Lemma 2.2.2. Thus

g(M)(s) =

(

M(�(s)) if �(s) is de�ned

M

2

(s) otherwise.

54 CHAPTER 3. MULTISET TRANSITION SYSTEMS

a

b

ds2

s3

s
4

s1

s5

s + s + s

s + s + s s + s + s

s + s + s

s

a

a

b

b

d

1 2 3

2 3 4 1 2 5

2 4 5

2

a

b

d
s3

s
4

s1

s5 a

a

b

b

d

s + s1 3

s + s3 4

4 5s + s

s + s1 5a + b

0

Figure 3.8: The Petri nets N

3

and N

4

with their marking diagrams

Note that by Lemma 2.2.2, g(M) is indeed a reachable marking of N

2

.

From Lemma 2.2.2 it also immediately follows that nt maps PN-morphisms to

MTS-morphisms. Hence we have the following result.

Lemma 3.5.2

nt is a functor from PN to PT S. 2

In Section 3.2 a map tn has been de�ned, associating a Petri net with every mul-

tiset transition system. By Lemma 3.2.10, this construction can be extended to the

corresponding morphisms.

The restriction of tn to the category PT S is also denoted by tn .

Lemma 3.5.3

tn is a functor from PT S to PN . 2

3.5. A CO-REFLECTION BETWEEN PT S AND PN 55

The fact that the category of PN-transition systems is more abstract than the

category of Petri nets can now be phrased in categorical terms [63].

Theorem 3.5.4

tn : PT S ! PN and nt : PN ! PT S form a co-reection with tn the left adjoint

and the arrows id

TS

as unit. 2

The unit of this adjunction is indeed an MTS-isomorphism by Lemma 3.3.5. Thus

starting with a PN-transition system TS , the marking diagram of the saturated Petri

net tn(TS) is MTS-isomorphic to TS . On the other hand, starting with a Petri net N ,

the (saturated) Petri net tn(nt(N)) associated with its marking diagram nt (N) has

itself a diagram which is isomorphic to nt (N). Moreover, the co-unit of the adjunction

gives for each Petri net N

0

which has the same (up to isomorphism) marking diagram

as N a PN-morphism from tn(nt (N)) to N

0

.

Finally, a similar relationship can be established for the category of 1-safe PN-

transition systems and the category of 1-safe Petri nets.

De�nition 3.5.5

Let PT Ss be the full subcategory of PT S the objects of which are 1-safe PN-

transition systems. 2

The restriction of nt to PN s is also denoted by nt .

In Section 3.4 the map ts from 1-safe PN-transition systems to 1-safe Petri nets

is de�ned by associating with each such transition system a (1-safe) Petri net which

has the 1-safe regions as its places. Similar to how the map tn from arbitrary multiset

transition systems is extended to morphisms, the map ts is now extended to the

corresponding morphisms.

Let TS

i

, i = 1; 2, be a pair of 1-safe PN-transition systems and let � = (f; g) be

an MTS-morphism from TS

1

to TS

2

. Then de�ne ts(�) = (�; �) where � = f and

� : sR

TS

2

! sR

TS

1

is given by:

�(r) =

(

�

�1

(r) if �

�1

(r) is non-trivial

unde�ned otherwise.

Note that ts is well-de�ned because if r is a 1-safe region of TS

2

, then �

�1

(r) is a

region of TS

1

which is also 1-safe.

We then have the following result from [64] stating that the category of 1-safe

PN-transition systems is a more abstract representation of the category of 1-safe Petri

nets.

Theorem 3.5.6

ts : PT Ss ! PN s and nt : PN s ! PT Ss form a co-reection with ts the left

adjoint and the arrows id

TS

as unit. 2

A similar result has been proved independently in [98] where a co-reection is

established between the category of safe net systems and a subcategory of asynchronous

transition systems.

56 CHAPTER 3. MULTISET TRANSITION SYSTEMS

Chapter 4

A Trace Semantics for Petri Nets

The dynamic behaviour of a Petri net is de�ned through the �ring rule (De�ni-

tion 2.1.2) in terms of transition occurrences and (reachable) markings. An (initial

part of an) execution of the Petri net according to this rule and starting from the initial

marking is here called a run of the Petri net. During a run there may be concurrency

between (occurrences of) transitions, but conicts between transitions are resolved.

Several notions for the representation of �nite runs have already been discussed:

occurrence sequences, multiset �ring sequences, step �ring sequences, and �ring se-

quences. Each of these notions corresponds to a way of observing runs. They are non-

branching in the sense that whenever a conict occurs, a choice is made. Moreover,

due to concurrency, one (�nite) run of the Petri net may have several representations:

a multiset of concurrent occurrences of transitions may be observed as distributed over

varying submultisets in di�erent orders. As a consequence each of these representa-

tions of the �nite runs of a Petri net leads to a behavioural description of the Petri

net which is unstructured in the sense that information on conicts and concurrency

is implicit, scattered, or not present at all.

The aim of this chapter is to provide a semantics for Petri nets based on �nite

runs, in which both the non-sequential and the branching aspects of their behaviour

are captured. The approach we follow is inspired by the trace semantics for 1-safe

Petri nets and elementary/safe net systems, initiated by Mazurkiewicz in [55], and

further investigated in, e.g., [56, 80, 67, 98].

Using Mazurkiewicz' trace theory, the concurrency present in the behaviour of

a 1-safe Petri net (or elementary/safe net system) is captured by the independence

relation over the transitions from De�nition 3.4.8. This independence relation induces

an equivalence relation over the �ring sequences. Each run of the system is represented

by one of these equivalence classes, called traces. A pre�x ordering of the traces

yields a branching structure for the behaviour. This branching structure captures the

relationship between the runs: two traces are ordered i� one of the corresponding runs

is an initial part of the other.

In a general Petri net however, due to the multiplicity of tokens in places, concur-

rency and conict are no longer global notions. Moreover, auto-concurrency has to be

taken into account. To cater for these phenomena we generalize the notion of a trace.

Having done this, it is easy to associate a poset of traces of the new kind with each

57

58 CHAPTER 4. A TRACE SEMANTICS FOR PETRI NETS

Petri net.

This chapter is organized as follows. In Section 4.1 we briey recall the relevant

notions from Mazurkiewicz' trace theory and the trace semantics for 1-safe Petri nets.

In Section 4.2 we �rst discuss the generalizations which are needed to lift the trace

semantics from the level of 1-safe Petri nets to the level of general Petri nets. This

leads to the introduction of local traces. The trace semantics for Petri nets in terms of

these local traces is given in Section 4.3. An axiomatic characterization of the resulting

class of local trace languages is given in Section 4.4. Based on this characterization

the relationship between local trace languages and Petri nets is expressed as a co-

reection between the corresponding categories in Section 4.5. Then in Section 4.6 the

relationship between local traces and Mazurkiewicz' traces is investigated in detail.

A subclass of local trace languages is identi�ed which corresponds to the class of

Mazurkiewicz' trace languages, and it is shown that for 1-safe Petri nets the trace

semantics in terms of Mazurkiewicz' traces agrees with the trace semantics in terms

of local traces. Finally, in Section 4.7 we discuss some related work.

This chapter is based on [41], of which [40] is an extended abstract.

4.1 Mazurkiewicz' Traces and 1-Safe Petri Nets

This section introduces the basic notions from the theory of traces which has been

initiated by Mazurkiewicz [55].

In order to avoid confusion after the local traces have been introduced in this

chapter, all notions from the classical trace theory are pre�xed with an M.

The behaviour of a sequential system can be described by sequential observations

which are sequences over its alphabet of actions. For concurrent systems such as (1-

safe) Petri nets however, such a description fails to capture the concurrency in the

system. By Lemma 2.1.11 however, for 1-safe Petri nets it is possible to represent

concurrency by a binary relation over its transitions. This motivates the consideration

of alphabets together with a binary relation representing concurrency.

De�nition 4.1.1

(1) Let X be an alphabet. An M-independence relation (over X) is a symmetric,

irreexive relation Ind � X �X.

(2) An M-concurrency alphabet is a pair (X; Ind) where X is an alphabet and Ind

is an M-independence relation over X. 2

The intuition behind the independence relation is that sequential observations

which only di�er in the order of adjacent, independent symbols cannot be distin-

guished from each other. This leads to an equivalence relation over sequences as given

in the next de�nition. Similar to how sequences are ordered by a pre�x ordering, also

these equivalence classes of sequences are ordered by a pre�x ordering.

4.1. MAZURKIEWICZ' TRACES AND 1-SAFE PETRI NETS 59

De�nition 4.1.2

Let (X; Ind) be an M-concurrency alphabet.

(1)

�

�

Ind

� X

�

�X

�

is given by:

�

�

�

Ind

�

0

, 9�

1

; �

2

2 X

�

:9(a; b) 2 Ind : (� = �

1

ab�

2

and �

0

= �

1

ba�

2

):

(2) '

Ind

� X

�

� X

�

, the M-equivalence relation induced by (X; Ind), is the least

equivalence relation containing

�

�

Ind

.

(3) For � 2 X

�

, [�]

Ind

= f�

0

2 X

�

j � '

Ind

�

0

g is the M-trace (over (X; Ind))

containing �.

(4) �

Ind

� (X

�

='

Ind

) � (X

�

='

Ind

) is the M-trace ordering relation (over (X; Ind))

given by:

[�]

Ind

�

Ind

[�

0

]

Ind

, 9� 2 X

�

: �� '

Ind

�

0

:

(5) An M-trace language (over (X; Ind)) is a subset of X

�

='

Ind

. 2

If the M-concurrency alphabet (X; Ind) is clear from the context then we may omit

the subscript

Ind

in the above de�ned notions.

An alternative characterization of the equivalence relation '

Ind

is given in the

following lemma from [1].

Lemma 4.1.3

Let (X; Ind) be an M-concurrency alphabet and let �; �

0

2 X

�

. Then � ' �

0

i�

(1) 8a 2 X:num

a

(�) = num

a

(�

0

) and

(2) 8(a; b) 2 (X �X)� Ind : proj

fa;bg

(�) = proj

fa;bg

(�

0

). 2

Thus two sequences � and �

0

are equivalent if and only if all symbols have the

same number of occurrences in � and �

0

and the order of the occurrences of mutually

dependent symbols is the same.

Given an M-concurrency alphabet (X; Ind) we can de�ne, similar to the concatena-

tion of ordinary sequences, for M-traces [�] and [�

0

] over (X; Ind) their concatenation

[�] � [�

0

] = [��

0

]. From Lemma 4.1.3 it easily follows that this concatenation operation

is well-de�ned.

Observe that for each M-trace language TL over some M-concurrency alphabet

(X; Ind) its underlying language f� 2 X

�

j [�] 2 TLg is consistent.

De�nition 4.1.4

Let (X; Ind) be an M-concurrency alphabet and let L � X

�

. Then L is consistent

(with respect to (X; Ind)) if

8� 2 L: [�] � L:

2

60 CHAPTER 4. A TRACE SEMANTICS FOR PETRI NETS

Conversely, every language L � X

�

which is consistent with respect to an M-

concurrency alphabet (X; Ind), is the underlying language of the M-trace language

f[�] j � 2 Lg over (X; Ind).

From now on we specify an M-trace language over (X; Ind) with underlying lan-

guage L as a triple (L;X; Ind). Note that in this way each M-trace language has a

�xed alphabet X and a �xed M-independence relation Ind .

In general not every element from the M-independence relation of an M-trace lan-

guage is needed in order to partition its underlying language into its M-traces. Those

M-trace languages for which every element from the M-independence relation is needed

are called reducedM-trace languages. These reduced M-trace languages will play a role

in Section 4.6.

De�nition 4.1.5

An M-trace language (L;X; Ind) is reduced if

8(a; b) 2 Ind :9�ab�

0

2 L:

2

Morphisms between M-trace languages are de�ned as in [96, 98].

De�nition 4.1.6

Let TL

i

= (L

i

;X

i

; Ind

i

), i = 1; 2, be a pair of M-trace languages. An MTL-

morphism from TL

1

to TL

2

is a partial function f : X

1

! X

2

such that

(1) 8� 2 L

1

: f(�) 2 L

2

(2) 8(a; b) 2 Ind

1

: (f(a) and f(b) are de�ned) (f(a); f(b)) 2 Ind

2

). 2

Thus MTL-morphisms preserve the underlying language and independence between

actions.

For an M-trace language TL let id

TL

denote the identity function on its alphabet.

Then an MTL-morphism f from TL

1

to TL

2

is an MTL-isomorphism i� there exists

an MTL-morphism g from TL

2

to TL

1

such that g � f = id

TL

1

and f � g = id

TL

2

.

Thus clearly, an MTL-morphism f from TL

1

= (L

1

;X

1

; Ind

1

) to TL

2

= (L

2

;X

2

; Ind

2

)

is an MTL-isomorphism i�

(1) f is a bijection

(2) ff(�) j � 2 L

1

g = L

2

(3) 8a; b 2 X

1

: ((a; b) 2 Ind

1

, (f(a); f(b)) 2 Ind

2

).

It is easy to see that MTL-morphisms are behaviour-preserving in the following

sense.

4.1. MAZURKIEWICZ' TRACES AND 1-SAFE PETRI NETS 61

Lemma 4.1.7

Let f be an MTL-morphism from (L

1

;X

1

; Ind

1

) to (L

2

;X

2

; Ind

2

) and let �; �

0

2 L

1

be such that �

�

�

Ind

1

�

0

. Then

f(�)

�

�

Ind

2

f(�

0

) or f(�) = f(�

0

):

2

Thus an MTL-morphism preserves the M-traces in an M-trace language.

In the above de�nition we use the convention given in Chapter 1 that for � 2 L

1

,

f(�) is the homorphic extension of the multiset extension of f , applied to � viewed as

a multiset sequence. Thus on L

1

, f is a total function.

As the last point in this section we de�ne the M-trace semantics for 1-safe Petri

nets [56, 98]. In doing this we use the independence relation Ind

N

associated with a

1-safe Petri net N = (S; T;W;M

in

) as de�ned in De�nition 3.4.8. Recall that

Ind

N

= f(t

1

; t

2

) 2 T � T j t

1

6= t

2

and 9M 2 RM

N

:M [ft

1

; t

2

gi

N

g:

The runs of a 1-safe Petri net are then represented by the M-traces generated by its

�ring sequences.

De�nition 4.1.8

Let N = (S; T;W;M

in

) be a 1-safe Petri net with associated independence relation

Ind

N

. Then

(1) sm(N) = (FS

N

; T; Ind

N

) is the M-trace language associated with N

(2) (sm(N);�

Ind

N

) is the M-trace behaviour of N . 2

It is easy to see that in the above de�nition FS

N

is consistent with respect to

(T; Ind

N

) so that sm(N) is well-de�ned. In part (2) of the above de�nition the re-

striction of �

Ind

N

to sm(N) � sm(N) is also denoted by �

Ind

N

.

In what follows we write

�

�

N

, '

N

, [�]

N

, and �

N

, rather than

�

�

Ind

N

, '

Ind

N

, [�]

Ind

N

,

and �

Ind

N

, respectively. If the 1-safe Petri net N is clear from the context then we

may even omit the subscript N .

Note that by the de�nition of Ind

N

, the M-trace language associated with a 1-safe

Petri net N is reduced.

Example 4.1.9

In Figure 4.1 the 1-safe Petri nets N

3

and N

4

from Figure 2.3 and Figure 2.4 are

depicted together with their M-trace behaviours. For both Petri nets abd and bad are

�ring sequences. Since (a; b) 2 Ind

N

4

, we have that abd '

N

4

bad. On the other hand,

Ind

N

3

= ;, so that abd 6'

N

3

bad. 2

Finally observe that, given a 1-safe Petri net N , we could have used in De�ni-

tion 4.1.8 instead of Ind

N

the structural de�nition of independence as in [56, 98] and

mentioned before:

Ind

0

N

= f(t

1

; t

2

) j (

�

t

1

[t

1

�

) \ (

�

t

2

[t

2

�

) = ;g:

62 CHAPTER 4. A TRACE SEMANTICS FOR PETRI NETS

a

b

d

[a] [b]

[ba]

[bad][abd]

[ab]

Λ[]

a

b

d
[a] [b]

[abd]

[ab]

[]Λ

Figure 4.1: The Petri nets N

3

and N

4

with their M-trace behaviours

It is easy to see that this would not have a�ected the partitioning of FS into equivalence

classes or their pre�x-ordering, but the M-trace language would no longer be reduced.

For technical reasons we prefer the independence relation to describe only those inde-

pendencies between transitions which are concurrent at some reachable marking.

4.2 Local Traces

The M-trace semantics for 1-safe Petri nets explained in the previous section cannot

be carried over directly to general Petri nets. Whereas concurrency in a 1-safe Petri

net can be captured through a binary, global independence relation, for an arbitrary

Petri net, concurrency is neither a global nor a binary property.

Now let us look at these problems for arbitrary Petri nets in some more detail.

The �rst problem is that concurrency is not a global notion for Petri nets: tran-

sitions which are concurrent at one reachable marking may be in conict at another.

As the Petri net N

6

depicted in Figure 4.2 shows, this makes it impossible to form

traces from �ring sequences through a global independence relation as in the previous

section.

4.2. LOCAL TRACES 63

c

a

b

s2

s6

s3

s1

Figure 4.2: The Petri net N

6

For this Petri net both ab and ba are �ring sequences. There are however not

enough tokens for a and b to occur concurrently in the initial marking. Hence a and

b should not be independent, and ab and ba should not be in the same trace. After

the occurrence of c however, there are in the resulting marking enough tokens for the

step fa; bg to occur, so in this marking a and b should be independent, and cab and

cba should be in the same trace.

Thus for general Petri nets we want the current marking to determine if transitions

are independent. Equivalently, we can also say that the (multiset) �ring sequence

leading to this marking should determine the independence of transitions.

A second problem when attempting to lift the approach followed in Section 4.1

to the case of general Petri nets is that concurrency within arbitrary Petri nets can-

not be characterized through a binary relation. For 1-safe Petri nets it follows from

Lemma 2.1.11 that transitions in a set are concurrent at a marking i� each transition

in the set is enabled individually and the transitions in the set are pairwise concurrent

at this marking.

Now consider the Petri nets N

7

and N

8

depicted in Figure 4.3 and Figure 4.4.

Both Petri nets have the same set of �ring sequences and for both Petri nets each

pair of transitions is concurrent at a reachable marking i� both transitions have not

yet occurred. However, in N

8

the transitions a, b, and c can also occur all three

concurrently at the initial marking, which is not possible for N

7

.

Hence for general Petri nets the pairwise concurrency of transitions no longer im-

plies the concurrency of the set as a whole. Moreover, it is now possible for a multiset

of transitions to occur concurrently at a reachable marking due to auto-concurrency

as for the Petri net N

2

depicted in Figure 2.2.

The problems pointed out above lead to the introduction in this section of a gen-

eralization of M-traces. The independencies in this more general set-up are de�ned

locally, i.e. in a context-dependent fashion. In addition they specify, for chosen con-

64 CHAPTER 4. A TRACE SEMANTICS FOR PETRI NETS

a b c

Figure 4.3: The Petri net N

7

a b c

Figure 4.4: The Petri net N

8

texts, which (�nite) multisets are independent. Moreover, the equivalence relation

induced by these independencies is de�ned over multiset sequences.

De�nition 4.2.1

(1) Let X be an alphabet. A local independence relation (over X) is a relation

I � (M

F

(X))

+

�M

F

(X).

(2) A local concurrency alphabet is a pair (X; I), where X is an alphabet and I is a

local independence relation over X. 2

From now on we write L-concurrency alphabet and L-independence relation rather

than local concurrency alphabet and local independence relation, respectively.

The basic notions from the classical trace theory are now lifted in the following

way to the new setting.

De�nition 4.2.2

Let (X; I) be an L-concurrency alphabet.

(1)

:

=

I

� (M

F

(X))

+

� (M

F

(X))

+

is given by:

�

:

=

I

�

0

, 9�

1

; �

2

2 (M

F

(X))

+

:9u; v; u

0

; v

0

2M

F

(X):

4.2. LOCAL TRACES 65

[(1a) � = �

1

uv�

2

and �

0

= �

1

u

0

v

0

�

2

and

(1b) u+ v = u

0

+ v

0

and

(1c) (�

1

; u+ v) 2 I)].

(2)

�

=

I

� (M

F

(X))

+

� (M

F

(X))

+

, the local trace equivalence relation induced by

(X; I), is the least equivalence relation containing

:

=

I

.

(3) For � 2 (M

F

(X))

+

, [�]

I

= f�

0

2 (M

F

(X))

+

j �

�

=

I

�

0

g is the local trace containing

�.

(4)

�

<

I

� ((M

F

(X))

+

=

�

=

)� ((M

F

(X))

+

=

�

=

) is the local trace ordering relation (over

(X; I)) given by:

[�]

I

�

<

I

[�

0

]

I

, 9� 2 (M

F

(X))

+

: ��

�

=

I

�

0

:

(5) A local trace language (over (X; I)) is a subset of (M

F

(X))

+

=

�

=

I

. 2

From now on we also abbreviate the phrase local trace as L-trace. If the L-

concurrency alphabet (X; I) is clear from the context we may omit the subscript

I

in the above de�ned notions.

Note that the ordering relation

�

<

I

from De�nition 4.2.2(4) is well-de�ned: when-

ever �; �

0

2 (M

F

(X))

+

are such that �

�

=

�

0

, then ��

�

=

�

0

� for all � 2 (M

F

(X))

+

.

Thus multiset sequences which are equivalent under the L-trace equivalence rela-

tion can be extended by an arbitrary multiset sequence leading to multiset sequences

which are again equivalent. In the classical case such an operation can be lifted

to a concatenation operation over traces given by [�] � [�

0

] = [��

0

]. However, due

to the context-dependent nature of the L-independence relation, a similar operation

is not well-de�ned for L-traces. Consider, for example, the concurrency alphabet

(fa; b; cg; f(0; fb; cg)g); then bc

�

=

cb, but abc

�

=

acb does not hold.

De�nition 4.2.1 is a generous one in that no restrictions have been imposed on

the L-independence relation. In applications, one might wish to place some suitable

restrictions on the L-independence relation to capture the intended interpretation. For

instance, where the L-trace languages are used to model the behaviour of distributed

systems one might demand:

(D1) (�; u) 2 I) 8v � u: (�; v) 2 I and

(D2) (�; u) 2 I) 8v � u: (�v; u� v) 2 I.

(D1) and (D2) would capture the intuition that (�; u) 2 I denotes the fact that the

occurrences of actions mentioned in u are independent of each other at the state

represented by �.

A third reasonable axiom one could demand would be:

(D3) �

�

=

�

0

) ((�; u) 2 I , (�

0

; u) 2 I).

66 CHAPTER 4. A TRACE SEMANTICS FOR PETRI NETS

This would ensure that I \agrees" with the equivalence relation

�

=

induced by it.

However, we will not require such restrictions at this stage. The L-trace languages

associated with Petri nets will all have L-independence relations satisfying (D1), (D2),

and (D3).

Similar to the speci�cation of M-trace languages we specify an L-trace language

over (X; I) on the basis of its underlying language of multiset sequences in (M

F

(X))

+

.

De�nition 4.2.3

Let (X; I) be an L-concurrency alphabet and let L � (M

F

(X))

+

. Then L is

consistent (with respect to (X; I)) if

8� 2 L: [�] � L:

2

An L-trace language TL over (X; I) is represented uniquely by the triple (L;X; I)

where L = f� j [�] 2 TLg is its underlying language. A triple (L;X; I) with L �

(M

F

(X))

+

consistent with respect to (X; I) represents the L-trace language f[�] j � 2

Lg.

We now de�ne morphisms between L-trace languages. Similar to the morphisms

between M-trace languages, these morphisms are behaviour-preserving in the sense

that they preserve the underlying language and independencies.

De�nition 4.2.4

Let TL

i

= (L

i

;X

i

; I

i

), i = 1; 2, be a pair of L-trace languages. An LTL-morphism

from TL

1

to TL

2

is a partial function f : X

1

! X

2

such that

(1) ff(�) j � 2 L

1

g � L

2

(2) f(f(�); f(u)) j (�; u) 2 I

1

g � I

2

. 2

For an L-trace language TL let id

TL

denote the identity function on its alphabet.

Then an LTL-morphism f from TL

1

to TL

2

is an LTL-isomorphism i� there exists an

LTL-morphism g from TL

2

to TL

1

such that g � f = id

TL

1

and f � g = id

TL

2

. Thus an

LTL-morphism f from TL

1

= (L

1

;X

1

; I

1

) to TL

2

= (L

2

;X

2

; I

2

) is an LTL-isomorphism

i�

(1) f is a bijection

(2) ff(�) j � 2 L

1

g = L

2

(3) f(f(�); f(u)) j (�; u) 2 I

1

g = I

2

.

If TL

1

and TL

2

are LTL-isomorphic then we denote this by TL

1

� TL

2

.

Similar to the situation for MTL-morphisms, LTL-morphisms preserve equivalence

of multiset sequences.

Lemma 4.2.5

Let f be an LTL-morphism from (L

1

;X

1

; I

1

) to (L

2

;X

2

; I

2

) and let �; �

0

2 L

1

be

such that �

:

=

I

1

�

0

. Then f(�)

:

=

I

2

f(�

0

).

4.3. L-TRACES AND PETRI NETS 67

Proof.

Suppose � = �

1

uv�

2

, �

0

= �

1

u

0

v

0

�

2

, u + v = u

0

+ v

0

, and (�

1

; u + v) 2 I

1

. Then

(f(�

1

); f(u) + f(v)) = (f(�

1

); f(u + v)) 2 I

2

by the de�nition of LTL-morphism and

hence f(�) = f(�

1

)f(u)f(v)f(�

2

)

:

=

I

2

f(�

1

)f(u

0

)f(v

0

)f(�

2

) = f(�

0

). 2

Finally note that concurrency must be preserved locally by LTL-morphisms. Con-

sider, e.g., the L-trace language TL = (L;X; I) with X = fa; b; cg, L = (M

F

(X))

+

and I = (M

F

(X))

+

�M

F

(X), and the L-trace language TL

0

= (L;X; I

0

) with I

0

=

I � (fag; fb; cg). Although �

�

=

I

�

0

i� �

�

=

I

0

�

0

for all �; �

0

2 L, the identity function

on X is not an LTL-morphism from TL to TL

0

. Note that on the other hand this

function is an LTL-morphism from TL

0

to TL.

4.3 L-Traces and Petri Nets

In this section a trace semantics for Petri nets is de�ned in terms of L-traces, similar

to the de�nition of the M-trace semantics for 1-safe Petri nets. In order to be able

to do this, we �rst need to associate with each Petri net an L-independence relation.

This L-independence relation should capture the concurrency in the Petri net and be

formulated in terms of multisets (of transitions). For this reason, instead of dealing

with concurrency of a multiset of transitions at a reachable marking, we now deal with

concurrent multisets after a given multiset �ring sequence leading to a marking.

De�nition 4.3.1

Let N = (S; T;W;M

in

) be a Petri net.

(1) The L-independence relation I

N

� (M

F

(T))

+

�M

F

(T) associated with N is the

set

I

N

= f(�; u) j �u 2 MFSg:

(2) The L-concurrency alphabet associated with N is (T; I

N

). 2

In order to simplify the notation we write

:

=

N

,

�

=

N

,

�

<

N

, and [�]

N

instead of

:

=

I

N

,

�

=

I

N

,

�

<

I

N

, and [�]

I

N

, respectively, in what follows.

It is easy to verify that the L-independence relation I

N

associated with a Petri net

N satis�es the properties

(D1) (�; u) 2 I

N

) 8v � u: (�; v) 2 I

N

and

(D2) (�; u) 2 I

N

) 8v � u: (�v; u� v) 2 I

N

mentioned in Section 4.2.

As the next lemma shows, all multiset sequences equivalent with a multiset �ring

sequence of a given Petri net are also multiset �ring sequences of that Petri net.

Lemma 4.3.2

Let N = (S; T;W;M

in

) be a Petri net. Then MFS is consistent with respect to

(T; I

N

).

68 CHAPTER 4. A TRACE SEMANTICS FOR PETRI NETS

Proof.

It is su�cient to prove that �

0

2 MFS whenever �

0

2 (M

F

(T))

+

is such that �

:

=

N

�

0

where � = �

1

uv�

2

2 MFS , �

0

= �

1

u

0

v

0

�

2

, u+ v = u

0

+ v

0

, and (�

1

; u+ v) 2 I

N

. Since

�

1

uv�

2

2 MFS , we also have �

1

uv 2 MFS . Furthermore (�

1

u

0

; v

0

) 2 I

N

because I

N

satis�es the property (D2) mentioned above. Hence �

1

u

0

v

0

2 MFS by the de�nition of

I

N

. Since num

t

(�

1

uv) = num

t

(�

1

u

0

v

0

) for all t 2 T , �

1

uv and �

1

u

0

v

0

lead to the same

marking, and so �

1

uv�

2

2 MFS i� �

1

u

0

v

0

�

2

2 MFS . Since � = �

1

uv�

2

2 MFS this

implies �

0

= �

1

u

0

v

0

�

2

2 MFS . 2

Lemma 4.3.2 implies that I

N

also satis�es the property (D3) mentioned in Sec-

tion 4.2:

(D3) �

�

=

N

�

0

) ((�; u) 2 I

N

, (�

0

; u) 2 I

N

).

The trace semantics for Petri nets is now de�ned as follows.

De�nition 4.3.3

Let N = (S; T;W;M

in

) be a Petri net. Then

(1) nl (N) = (MFS

N

; T; I

N

) is the L-trace language associated with N .

(2) (nl (N);

�

<

N

) is the L-trace behaviour of N . 2

In part (2) of the above de�nition, the restriction of

�

<

N

to nl (N)� nl (N) is also

denoted by

�

<

N

.

By the following lemma every L-trace in the L-trace language associated with a

Petri net contains at least one sequential representative, in which all multisets are

singletons. Hence it is su�cient to consider the L-traces generated by the �ring se-

quences.

Lemma 4.3.4

Let N = (S; T;W;M

in

) be a Petri net and let � 2 MFS . Then

9�

0

2 FS : �

�

=

�

0

:

Proof.

Suppose � = �

1

u�

2

with juj > 1. Then by the de�nition of I

N

, (�

1

; u) 2 I

N

.

Let t 2 T be such that u(t) � 1. Then �

�

=

�

1

(u � t)t�

2

. Repeatedly applying this

reasoning yields the required �

0

2 FS with �

�

=

�

0

. 2

Example 4.3.5

The L-trace behaviour of the Petri net N

6

from Figure 4.2 is depicted in Figure 4.5.

In N

6

independence of a and b is determined by the history (current marking). Since

(0; fa; bg) 62 I

N

6

, the step �ring sequences ab and ba are not equivalent (under

�

=

N

6

).

On the other hand, (c; fa; bg) 2 I

N

6

. Thus abc

�

=

N

6

bac, because abc

:

=

N

6

acb

:

=

N

6

cab

:

=

N

6

cba

:

=

N

6

bca

:

=

N

6

bac. In this reasoning we used apart from (c; fa; bg) 2 I

N

6

also that (a; fb; cg); (0; fa; cg); (0; fb; cg); (b; fa; cg) 2 I

N

6

.

4.4. PN-TRACE LANGUAGES 69

c

a

b

[0]

[a] [b]

[c]

[ba]

[ac] [bc]

[abc]

[ab]

Figure 4.5: The Petri net N

6

with its L-trace behaviour

In Figure 4.6 a Petri net N

9

is depicted together with its L-trace behaviour. In the

L-trace behaviour of N

9

the traces [a] and [c] have upperbounds [ac] and [abc], but

they have no least upperbound. In other words, the L-trace behaviour of N

9

is not

consistently complete. This contrasts with the situation for 1-safe Petri nets where

the M-trace behaviour is always consistently complete.

Finally, the Petri net N

1

from Figure 2.1 and its L-trace behaviour are depicted in

Figure 4.7. 2

4.4 PN-Trace Languages

In this section we characterize those L-trace languages, called PN-trace languages,

which are isomorphic to an L-trace language associated with a Petri net. The approach

is similar to the approach followed in Section 3.3 where PN-transition systems are

characterized.

70 CHAPTER 4. A TRACE SEMANTICS FOR PETRI NETS

a b c

[0]

[a]

[b]

[c]

[ab]

[ac]

[bc]

[abc]

Figure 4.6: The Petri net N

9

with its L-trace behaviour

For L-trace languages four axioms are proposed of which it is easy to prove that

every PN-trace language satis�es them. To prove the converse, with every L-trace

language satisfying the four axioms a Petri net is associated by viewing the L-trace

language as a multiset transition system and then applying the map tn de�ned in

Section 3.2. Then the L-trace language generated by this Petri net and the original

L-trace language are proved to be isomorphic.

De�nition 4.4.1

An L-trace language TL is a PN-trace language if there exists a Petri net N such

that TL � nl (N). 2

One of the axioms appearing in the characterization of PN-trace languages is a

regional axiom, which we use to capture the fact that all runs of a Petri net are

represented in its associated L-trace language. In order to formulate this axiom we

view L-trace languages as multiset transition diagrams. The regions of an L-trace

language can then be de�ned in terms of this multiset transition diagram.

Let TL = (L;X; I) be an L-trace language. Then TL gives rise to the multi-

set transition diagram (L=

�

=

;X;�!

TL

) where �!

TL

, the multiset transition relation

associated with TL, is given by:

[�]

u

�!

TL

[�

0

], �u

�

=

�

0

:

We refer to the regions of this multiset transition diagram as the regions of TL. Also

we let R

TL

denote the set of non-trivial regions of (L=

�

=

;X;�!

TL

).

So a region of TL is a function r : L=

�

=

[X !N[(N�N) satisfying the following

conditions.

(1) 8[�] 2 L=

�

=

: r([�]) 2 N and 8a 2 X: r(a) 2 N�N.

4.4. PN-TRACE LANGUAGES 71

ca

b

[0]

[a]

[aa]

[b]

[ab]

[aab]

[ac]

[aac]
[abc]

[aabc]

.
. .

.

[aacc]

[aabcc]

.
. .

.

.
. .

.

Figure 4.7: The Petri net N

1

with its L-trace behaviour

(2) �u

�

=

�

0

) (r([�]) �

P

a2X

u(a) �

r

a and r([�

0

]) = r([�]) +

P

a2X

u(a) � (a

r

�

r

a)).

The four axioms that turn out to characterize the PN-trace languages can now be

formulated. They are stated in terms of an arbitrary L-trace language TL = (L;X; I).

(PL0) L 6= ;.

(PL1) �u 2 L) � 2 L.

(PL2) �u 2 L, (�; u) 2 I.

(PL3) � 2 L) ((8r 2 R

TL

: r([�]) �

P

a2X

u(a) �

r

a)) �u 2 L).

The �rst two axioms require that TL is non-empty and (its underlying language is)

pre�x-closed. Note that together they ensure that 0 2 L. The third axiom states that L

\agrees" with the L-independence relation I. Thus (PL2) together with (PL1) ensures

72 CHAPTER 4. A TRACE SEMANTICS FOR PETRI NETS

that the multisets in multiset sequences in L are all independent in the corresponding

context. Moreover, (PL2) states that I is minimal in the sense that it contains no

other independencies, and it also guarantees by the consistency of L a submultiset

property in the sense that if �u 2 L, then also �v(u � v) 2 L for every v � u. The

�nal axiom (PL3) for characterizing the PN-trace languages corresponds to the axiom

(PT3) for characterizing the PN-transition systems. This axiom captures the fact that

all runs of a Petri net are represented in its associated L-trace language.

The characterization of PN-transition systems also mentions the following regional

axiom:

(PT2) (8r 2 R

TS

: r(q) = r(q

0

))) q = q

0

.

As the following example shows, we cannot have a similar axiom for characterizing the

PN-trace languages.

Example 4.4.2

a

b

d

[0]

[a] [b]

[ba]

[bad][abd]

[ab]

Figure 4.8: The Petri net N

3

with its L-trace behaviour

In Figure 4.8 the Petri net N

3

from Figure 2.3 is depicted together with its L-trace

behaviour. For every r 2 R

nl(N

3

)

, r([ab]) = r([0]) + a

r

+ b

r

�

r

a �

r

b = r([ba]), but

ab 6

�

=

ba. Hence the L-trace language associated with N

3

has two di�erent L-traces at

which every non-trivial region of nl (N

3

) has the same value. 2

Now we turn to the proof that every PN-trace language satis�es these axioms.

First of all, we prove in the following lemma that all axioms are preserved under

LTL-isomorphisms.

Lemma 4.4.3

Let TL

i

= (L

i

;X

i

; I

i

), i = 1; 2, be a pair of L-trace languages such that TL

1

� TL

2

.

Then, for each i = 0; 1; 2; 3, TL

1

satis�es (PLi) i� TL

2

satis�es (PLi).

4.4. PN-TRACE LANGUAGES 73

Proof.

Preservation of (PL0), (PL1), and (PL2) follows immediately from the de�nition

of LTL-isomorphism.

In order to prove that TL

2

satis�es (PL3) if TL

1

does, let f be an LTL-isomorphism

from TL

2

to TL

1

. Suppose � 2 L

2

and �u 62 L

2

. Then we also have f(�) 2 L

1

and f(�u) 62 L

1

by the de�nition of LTL-isomorphism. Hence by (PL3) there exists

r 2 R

TL

1

such that r([f(�)]

I

1

) <

P

a2X

1

(f(u))(a) �

r

a. De�ne the function

r

0

: (L

2

=

�

=

I

2

) [X

2

! N [(N�N) by:

(1) 8[�

0

]

I

2

2 L

2

=

�

=

I

2

: r

0

([�

0

]

I

2

) = r([f(�

0

)]

I

1

)

(2) 8a 2 X

2

: r

0

(a) = r(f(a)).

Note that r

0

is well-de�ned by Lemma 4.2.5. Since by Lemma 4.2.5, [f(�

1

)]

I

1

f(v)

�!

TL

1

[f(�

2

)]

I

1

whenever [�

1

]

I

2

v

�!

TL

2

[�

2

]

I

2

, it is easy to see that r

0

is a non-trivial region

of TL

2

. Moreover, r

0

([�]

I

2

) = r([f(�)]

I

1

) <

P

a2X

1

(f(u))(a) �

r

a =

P

b2X

2

(f(u))(f(b)) �

r

f(b) =

P

b2X

2

u(b) �

r

0

b. Hence TL

2

satis�es (PL3). Since � is symmetric, this com-

pletes our proof. 2

In order to show that every PN-trace language satis�es (PL0) through (PL3), we

now only have to prove that every L-trace language associated with a Petri net satis�es

these four axioms.

As a �rst step in proving this, the following lemma shows that every place s of a

Petri net N = (S; T;W;M

in

) determines a region rhsi of its associated L-trace language

nl (N) in the following way. De�ne rhsi : (MFS=

�

=

) [T ! N [(N�N) by:

(1) 8[�] 2 MFS=

�

=

: rhsi([�]) = M

�

(s)

(2) 8t 2 T: rhsi(t) = (W (s; t);W (t; s)).

Thus for each t 2 T , the function rhsi gives the number of tokens t takes from s and

the number of tokens t puts in s and, for each [�] 2 MFS=

�

=

, rhsi gives the number of

tokens in s after the multiset �ring sequence �. Note that rhsi is well-de�ned because

if �; �

0

2 MFS are such that �

�

=

�

0

, then mset(�) = mset(�

0

) and hence M

�

= M

�

0

.

Lemma 4.4.4

Let N = (S; T;W;M

in

) be a Petri net and let s 2 S. Then rhsi is a region of

nl (N).

Proof.

Suppose [�]

u

�!

nl(N)

[�

0

]. Then rhsi([�]) = M

�

(s) �

P

t2T

u(t)�W (s; t) =

P

t2T

u(t)�

rhsi

t and rhsi([�

0

]) = M

�

0

(s) = M

�

(s) +

P

t2T

u(t) � (W (t; s) �W (s; t)) = rhsi([�]) +

P

t2T

(t

rhsi

�

rhsi

t). 2

74 CHAPTER 4. A TRACE SEMANTICS FOR PETRI NETS

Using the above lemma we can prove the following result.

Lemma 4.4.5

Every PN-trace language satis�es the axioms (PL0) through (PL3).

Proof.

By Lemma 4.4.3 it is su�cient to prove that the L-trace languages associated with

Petri nets satisfy these four axioms.

So let N = (S; T;W;M

in

) be a Petri net. From the de�nition of MFS and I

N

it

follows directly that nl (N) satis�es (PL0), (PL1), and (PL2).

In order to prove that (MFS ; T; I

N

) satis�es (PL3), suppose � 2 MFS and �u 62

MFS . Then by the de�nition of MFS there exists s 2 S such that M

�

(s) <

P

t2T

u(t) �

W (s; t). Consider the region rhsi de�ned above. Then rhsi([�]) = M

�

(s) <

P

t2T

u(t) �

W (s; t) =

P

t2T

u(t) �

rhsi

t. This implies that rhsi is non-trivial. This proves that nl (N)

satis�es (PL3). 2

To prove that every L-trace language which satis�es the axioms (PL0) through

(PL3) is a PN-trace language, a map ln from such L-trace languages to Petri nets is

de�ned, using the map tn from multiset transition systems to Petri nets de�ned in

Section 3.2.

De�nition 4.4.6

Let TL = (L;X; I) be an L-trace language satisfying (PL0) through (PL3). Then

ln(TL), the Petri net associated with TL, is the Petri net obtained by applying tn to

the multiset transition system (L=

�

=

;X;�!

TL

; [0]). Thus ln(TL) = (R

TL

;X;W;M

in

)

where

� W : (R

TL

�X) [(X �R

TL

)! N is such that

8r 2 R

TL

:8a 2 X: (W (r; a) =

r

a and W (a; r) = a

r

)

� M

in

: R

TL

!N is such that

8r 2 R

TL

:M

in

(r) = r([0]):

2

Example 4.4.7

Consider the Petri net N

1

and its L-trace behaviour depicted in Figure 4.7. The

Petri net ln(nl (N

1

)) is depicted in Figure 4.9 with only some of its in�nite number of

places. The places of ln(nl (N

1

)) are the non-trivial regions of nl (N

1

). Observe that

the regions of nl (N

1

) do not necessarily satisfy the condition

r

a+

r

c = a

r

+ c

r

. This

contrasts with the situation in nt(N

1

), the marking diagram of N

1

which is depicted

in Figure 3.5. The regions r

1

, r

2

, r

3

, etc. are examples of places which do not have

a counterpart in the Petri net tn(nt(N

1

)) depicted in Figure 3.5, associated with the

marking diagram of N

1

. 2

4.4. PN-TRACE LANGUAGES 75

ca

b

3

2
2

3

2

2

7 8

. . . .

. . . .

2 3

r1

2 3 4
r r r

Figure 4.9: The Petri net ln(nl (N

1

))

As an intermediate step in the proof that an L-trace language TL = (L;X; I)

satisfying the axioms (PL0) through (PL3) is LTL-isomorphic to the L-trace language

generated by the Petri net ln(TL), we prove separately that L = MFS

ln(TL)

. First

however we show that for every place s of ln(TL), i.e. a region of TL, the region rhsi

of nl (ln(TL)) associated with s in the way described in Lemma 4.4.4 and the region

s of TL agree on all elements that their domains have in common. Thus, after having

shown that L = MFS

ln(TL)

, it follows that the non-trivial regions of nl (ln(TL)) are

precisely the places of ln(TL).

Lemma 4.4.8

Let TL = (L;X; I) be an L-trace language satisfying (PL0) through (PL3) with

ln(TL) = (R

TL

;X;W;M

in

) and let s 2 R

TL

. Then

8a 2 X: rhsi(a) = s(a) and

8� 2 (L \MFS

ln(TL)

): rhsi([�]

ln(TL)

) = s([�]

I

):

Proof.

By the de�nition of rhsi we have that for each a 2 X, rhsi(a) = (W (s; a);W (a; s)),

and this equals s(a) according to the de�nition of ln(TL). Similarly, rhsi([0]

ln(TL)

) =

76 CHAPTER 4. A TRACE SEMANTICS FOR PETRI NETS

M

in

(s) by the de�nition of rhsi and s([0]

I

) = M

in

(s) by the de�nition of ln(TL).

Note that 0 2 L \MFS

ln(TL)

. Now let us assume that rhsi([�]

ln(TL)

) = s([�]

I

) for all

� 2 L\MFS

ln(TL)

with j�j < n where n � 1. Let � 2 L\MFS

ln(TL)

be such that � = �

0

u

where j�

0

j < n and j�

0

uj � n. Note that [�

0

]

ln(TL)

u

�!

nl(ln(TL))

[�]

ln(TL)

and [�

0

]

I

u

�!

TL

[�]

I

. Then rhsi([�]

ln(TL)

) = M

�

(s) = M

in

(s) +

P

a2X

num

a

(�) � (W (a; s) �W (s; a)).

Thus rhsi([�]

ln(TL)

) = M

in

(s) +

P

a2X

num

a

(�

0

) � (W (a; s) � W (s; a)) +

P

a2X

u(a) �

(W (a; s) �W (s; a)) = rhsi([�

0

]

ln(TL)

) +

P

a2X

u(a) � (W (a; s) �W (s; a)) = s([�

0

]

I

) +

P

a2X

u(a) � (W (a; s) �W (s; a)) by the induction hypothesis and this in turn equals

s([�

0

]

I

) +

P

a2X

u(a) � (a

s

�

s

a) = s([�]

I

) because s is a region of L. Consequently

rhsi(a) = s(a) for all a 2 X and rhsi([�]

ln(TL)

) = s([�]

I

) for all � 2 L\MFS

ln(TL)

. 2

Using the correspondence described in this lemma between the regions of the orig-

inal L-trace language and the regions of the L-trace language generated by the Petri

net associated with this L-trace language, we can prove the following result.

Lemma 4.4.9

Let TL = (L;X; I) be an L-trace language which satis�es the axioms (PL0) through

(PL3). Then L =MFS

ln(TL)

.

Proof.

In order to prove that L � MFS

ln(TL)

, let � 2 L. Then it easily follows from (PL1)

that [0]

I

�

�!

TL

. Hence we have by Lemma 3.2.7(2) that � 2 MFS

ln(TL)

.

In order to prove that MFS

ln(TL)

� L, let � 2 MFS

ln(TL)

. If � = 0, then � 2 L by

the non-emptiness and pre�x-closedness of L. Now assume that � = �

0

u with u 6= 0.

Using an inductive argument we assume that �

0

2 L. Moreover, by Lemma 4.4.8,

s(�

0

) = rhsi(�

0

) = M

�

0

(s) for all s 2 R

TL

. Now assume to the contrary that � =

�

0

u 62 L. Then by (PL3), there exists r 2 R

TL

such that r(�

0

) <

P

a2X

u(a) �

r

a. This

would imply that M

�

0

(r) <

P

a2X

u(a) �W (r; a). But this contradicts the fact that

�

0

u 2 MFS

ln(TL)

. Hence �

0

u 2 L. 2

We now have that the underlying language of the original L-trace language and the

set of multiset �ring sequences of the Petri net associated with this L-trace language

are equal. In order to prove that the original L-trace language and the L-trace lan-

guage generated by this Petri net are isomorphic, the only thing left to prove is that

concurrency is preserved.

Lemma 4.4.10

Let TL = (L;X; I) be an L-trace language which satis�es the axioms (PL0) through

(PL3). Then TL � nl (ln(TL)).

Proof.

By Lemma 4.4.9, L = MFS

ln(TL)

. Moreover, by (PL2), I = f(�; u) j �u 2 Lg =

f(�; u) j �u 2 MFS

ln(TL)

g = I

ln(TL)

. Hence id

TL

is an LTL-isomorphism from TL to

nl (ln(TL)). 2

4.5. A CO-REFLECTION BETWEEN PT L AND PN 77

From Lemmas 4.4.5 and 4.4.10 we obtain the following result.

Theorem 4.4.11

An L-trace language is a PN-trace language i� it satis�es the axioms (PL0) through

(PL3).

4.5 A Co-reection Between PT L and PN

The relationship between Petri nets and PN-trace languages established in the previous

section can also be expressed in a categorical framework. We show in this section how

the maps ln and nl can be extended to functors forming a co-reection.

De�nition 4.5.1

Let PT L be the category which has PN-trace languages as its objects and LTL-

morphisms as its arrows. The identity morphism associated with an object TL is id

TL

;

composition of LTL-morphisms is composition of partial functions. 2

The map nl can be extended to a functor from PN to PT L as follows.

Let N

i

, i = 1; 2, be a pair of Petri nets and let (�; �) be a PN-morphism from N

1

to N

2

. Then de�ne nl ((�; �)) = �.

Then the following result follows immediately from Lemma 2.2.2.

Lemma 4.5.2

nl is a functor from PN to PT L. 2

Now we extend the map ln to a functor from PT L to PN . Recall that applying ln

amounts to viewing �rst a PN-trace language TL = (L;X; I) as a multiset transition

system lt (TL) = (L=

�

=

;X;�!

TL

; [0]), and then applying the map tn from Section 3.2

which yields the Petri net ln(TL) = tn(lt(TL)). When extending ln to the arrows of

PT L we follow the same route: �rst lt is extended to the arrows of PT L; next we use

the de�nition of tn on MTS-morphisms as given in Section 3.2.

So let TL

i

= (L

i

;X

i

; I

i

), i = 1; 2, be a pair of PN-trace languages with lt (TL

i

) =

(L

i

=

�

=

I

i

;X

i

;�!

TL

i

; [0]

I

i

), and let f be an LTL-morphism from TL

1

to TL

2

. Then

de�ne lt(f) = (f; g) where g : L

1

=

�

=

I

1

! L

2

=

�

=

I

2

is given by g([�]

I

1

) = [f(�)]

I

2

. Note

that g is well-de�ned by Lemma 4.2.5. From Lemma 4.2.5 it also easily follows that

lt(f) is an MTS-morphism from lt(TL

1

) to lt(TL

2

). Hence by Lemma 3.2.9 there

exists for each region r of TL

2

an inverse region lt (f)

�1

(r) of TL

1

. In what follows we

write f

�1

(r) instead of lt(f)

�1

(r). Thus f

�1

(r) : L

1

=

�

=

I

1

[X

1

!N[(N�N) is given

by:

(1) 8[�]

I

1

2 L

1

=

�

=

I

1

: f

�1

(r)([�]

I

1

) = r([f(�)]

I

2

)

(2) 8a 2 X

1

: f

�1

(r)(a) =

(

r(f(a)) if f(a) is de�ned

(0; 0) otherwise.

78 CHAPTER 4. A TRACE SEMANTICS FOR PETRI NETS

Now de�ne ln(f) = tn(lt (f)). Thus ln(f) = (�

f

; �

f

) where �

f

= f and �

f

:

R

TL

2

! R

TL

1

is given by:

�

f

(r) =

(

f

�1

(r) if f

�1

(r) is non-trivial

unde�ned otherwise.

Lemma 4.5.3

ln is a functor from PT L to PN .

Proof.

By Lemma 3.2.10, whenever TL

1

and TL

2

are PN-trace languages, and f is an LTL-

morphism from TL

1

to TL

2

, then ln(f) is a PN-morphism from ln(TL

1

) to ln(TL

2

).

Hence it is su�cient to prove that ln preserves identities and respects composition.

Clearly ln preserves identities. Now assume that f

1

is an LTL-morphism from TL

1

to TL

2

with ln(f

1

) = (�

f

1

; �

f

1

) and f

2

is an LTL-morphism from TL

2

to TL

3

with

ln(f

2

) = (�

f

2

; �

f

2

). Suppose ln(f

2

�f

1

) = (�

f

2

�f

1

; �

f

2

�f

1

). Then �

f

2

�f

1

= f

2

�f

1

= �

f

2

��

f

1

.

Because ln(TL) is S-simple and has no isolated places we have by Lemma 2.2.4 that

ln(f

2

�f

1

) = (�

f

2

�f

1

; �

f

2

�f

1

) = (�

f

1

��

f

2

; �

f

2

��

f

1

) = (�

f

2

; �

f

2

)�(�

f

1

; �

f

1

) = ln(f

2

)�ln (f

1

).

2

Next we prove the main result of this section stating that ln and nl form a co-

reection with ln as the left adjoint.

We �rst de�ne the PN-morphisms which turn out to form the co-unit of the ad-

junction.

Given a Petri net N = (S; T;W;M

in

) with nl (N) = (MFS ; T; I

N

) and ln(nl (N)) =

(R

nl(N)

; T;

^

W;

^

M

in

), let �

S

: S !R

nl(N)

be de�ned by:

�

S

(s) =

(

rhsi if rhsi is non-trivial

unde�ned otherwise.

Furthermore, de�ne �

T

: T ! T by: �

T

(t) = t. Note that �

S

is well-de�ned by

Lemma 4.4.4.

Lemma 4.5.4

Let N = (S; T;W;M

in

) be a Petri net with nl (N) = (MFS ; T; I

N

) and ln(nl (N)) =

(R

nl(N)

; T;

^

W;

^

M

in

). Then (�

S

; �

T

) is a PN-morphism from ln(nl (N)) to N .

Proof.

Suppose s 2 S is such that �

S

(s) is de�ned. Then

^

M

in

(�

S

(s)) =

^

M

in

(rhsi) =

rhsi([0]

N

) = M

in

(s) which proves condition (1) in the de�nition of PN-morphism.

Because �

T

is a total function, condition (2) in the de�nition of PN-morphism

trivially holds.

In order to prove condition (3), suppose t 2 T . If s 2 �

�1

S

(

�

t) then we must have that

rhsi 2

�

t, that is

^

W (rhsi; t) > 0. This implies that

rhsi

t > 0 and hence W (s; t) > 0.

This proves that s 2

�

t =

�

�

T

(t). On the other hand, if s 2

�

�

T

(t) =

�

t, then

rhsi

t = W (s; t) > 0. This implies that rhsi is non-trivial and

^

W (rhsi; t) =

rhsi

t > 0.

Then rhsi 2

�

t and hence s 2 �

�1

S

(

�

t). Moreover,W (s; �

T

(t)) = W (s; t) =

^

W (rhsi; t) =

^

W (�

S

(s); t). Similarly it can be proved that �

�1

S

(t

�

) = �

T

(t)

�

and W (�

T

(t); s) =

^

W (t; �

S

(s)). This proves condition (3) in the de�nition of PN-morphism. 2

4.6. L-TRACE LANGUAGES AND M-TRACE LANGUAGES 79

Now we can prove the main result of this section.

Theorem 4.5.5

ln : PT L ! PN and nl : PN ! PT L form a co-reection with ln the left adjoint

and the arrows id

TL

as unit.

Proof.

Let TL = (L;X; I) be an PN-trace language, let N = (S; T;W;M

in

) be a Petri

net, and let f be an LTL-morphism from TL to nl (N) = (MFS

N

; T; I

N

). We must

show that there is a unique PN-morphism (�; �) from ln(TL) = (R

TL

;X;W

TL

;M) to

N such that the following diagram commutes.

N(N

f

((,))

!(,)β η

β η

)

(())

()TL

TL

TL

ln

ln

nl

nl

nl

id TL

De�ne (�; �) by (�; �) = (�

S

; �

T

) � ln(f). Hence � : S ! R

TL

is such that for all

s 2 S, �(s) = f

�1

(rhsi) if f

�1

(rhsi) is non-trivial and �(s) is unde�ned otherwise. The

function � : X ! T is such that f = �. Because (�

S

; �

T

) and ln(f) are PN-morphisms

by Lemma 4.5.4 and Lemma 4.5.3 respectively, and because the composition of PN-

morphisms is again a PN-morphism, the pair (�; �) is a PN-morphism.

Since nl ((�; �)) = � = f , it is clear that the diagram commutes. Moreover, (�; �) is

the unique PN-morphism for which the diagram commutes, because if (�

0

; �

0

) is such

that the diagram commutes, then � = �

0

by the de�nition of nl , and hence also � = �

0

by Lemma 2.2.4. 2

From this proof it easily follows that the PN-morphisms (�

S

; �

T

) de�ned above form

the co-unit of this adjunction.

4.6 L-Trace Languages and M-trace Languages

Based on the intuition underlying L-traces, there is a natural way to view M-trace

languages as L-trace languages. In this section we show that this leads to a bijection

between the class of reduced M-trace languages and a certain subclass of L-trace

languages. It turns out that for 1-safe Petri nets the trace semantics in terms of

M-trace languages agrees with the trace semantics in terms of L-trace languages via

this bijection. Finally we show that this bijection between M-trace languages and

80 CHAPTER 4. A TRACE SEMANTICS FOR PETRI NETS

a subclass of L-trace languages can be extended to their corresponding categories,

leading to a categorical equivalence.

Given an M-concurrency alphabet (X; Ind), let

I

Ind

= f(�; u) j � 2 (M

F

(X))

+

and u 2 P

F

(X) and 8a; b 2 u: (a 6= b) (a; b) 2 Ind)g

be the L-independence relation associated with (X; Ind).

So in I

Ind

a set of symbols is independent i� all symbols in the set are pairwise

independent in Ind . Moreover, such sets are independent in every possible context,

thus reecting the globality of the M-independence relation Ind . Thus for each M-

concurrency alphabet (X; Ind) with M-equivalence'

Ind

given through

�

�

Ind

, we obtain

an L-concurrency alphabet (X; I

Ind

) and hence an L-equivalence relation

�

=

I

Ind

through

:

=

I

Ind

.

In what follows we write �

^

�

�

Ind

�

0

and �

^

'

Ind

�

0

rather than �

:

=

I

Ind

�

0

and �

�

=

I

Ind

�

0

,

respectively. If Ind is clear from the context then we may omit the subscript

Ind

in

^

�

�

Ind

and

^

'

Ind

.

Clearly, an alternative characterization of

^

�

�

is given by:

8�; �

0

2 (M

F

(X))

+

: �

^

�

�

�

0

, 9�

1

; �

2

2 (M

F

(X))

+

; u; v; u

0

; v

0

2 P

F

(X):

[(1) � = �

1

uv�

2

and �

0

= �

1

u

0

v

0

�

2

and

(2) u [v = u

0

[v

0

and u \ v = u

0

\ v

0

= ;

(3) 8a; b 2 u [v: (a 6= b) (a; b) 2 Ind)]. 2

By the following lemma I

Ind

agrees with Ind when restricted to ordinary sequences.

(Recall that we view ordinary sequences as step/multiset sequences by the monoid

homomorhism which maps each action a to the singleton containing a).

Lemma 4.6.1

Let (X; Ind) be an M-concurrency alphabet and let �; �

0

2 X

�

. Then

� '

Ind

�

0

, �

^

'

Ind

�

0

:

Proof.

Since �

�

�

Ind

�

0

implies that �

^

�

�

Ind

�

0

, we also have that � '

Ind

�

0

implies that

�

^

'

Ind

�

0

. The implication in the other direction follows easily from Lemma 4.1.3. 2

Each M-trace language (L;X; Ind) leads to an L-trace language which has as its

underlying language the set

^

L of those multiset sequences which are equivalent (under

^

'

Ind

) to some element from L. Note that

^

L � (P

F

(X))

+

. Since we prefer to work

with reduced systems, we choose for the underlying L-independence relation of this

L-trace language however not I

Ind

, but the least L-independence relation guaranteeing

that steps in

^

L are independent. Consequently, information about independencies in

Ind which are not \used" in

^

L is lost.

So given an M-trace language TL = (L;X; Ind), de�ne ml(TL) = (

^

L;X;

^

I) where

�

^

L =

S

f[�]

I

Ind

j � 2 Lg

4.6. L-TRACE LANGUAGES AND M-TRACE LANGUAGES 81

�

^

I = f(�; u) j �u�

0

2

^

Lg.

Since L � X

�

� (P

F

(X))

+

, it is easy to see that also

^

L � (P

F

(X))

+

and

^

I �

(P

F

(X))

+

� P

F

(X).

From the de�nition of

^

L, it is immediately clear that

^

L is consistent with respect

to (X; I

Ind

). As the following lemma shows,

^

L is also consistent with respect to (X;

^

I)

so that ml(TL) is indeed an L-trace language.

Lemma 4.6.2

Let TL = (L;X; Ind) be an M-trace language. Then ml (TL) = (

^

L;X;

^

I) is an

L-trace language.

Proof.

It must be proved that

^

L is consistent with respect to (X;

^

I). Suppose �

:

=

^

I

�

0

and

� 2

^

L � (P

F

(X))

+

. Then there exist �

1

; �

2

2 (P

F

(X))

+

and u; v; u

0

; v

0

2 P

F

(X) such

that � = �

1

uv�

2

, �

0

= �

1

u

0

v

0

�

2

, u\ v = u

0

\ v

0

= ;, u [v = u

0

[v

0

, and (�

1

; u[v) 2

^

I.

By the de�nition of

^

I there exists �

1

(u [v)�

00

2

^

L. Since �

1

(u [v)�

00

^

'

Ind

�

0

for some

�

0

2 L � X

�

, this implies that (a; b) 2 Ind for all a; b 2 u [v with a 6= b. Hence

�

^

�

�

Ind

�

0

. Thus �

0

2

^

L because � 2

^

L. This proves that

^

L is consistent with respect to

(X;

^

I). 2

When restricted to reduced M-trace languages, the map ml is injective. In fact, a

class of ML-trace languages can be identi�ed, which through ml is in bijective corre-

spondence with the class of reduced M-trace languages.

De�nition 4.6.3

An L-trace language TL = (L;X; I) is an ML-trace language if it satis�es the

following three conditions.

(ML1) (�; u) 2 I , 9�

0

2 (P

F

(X))

+

: �u�

0

2 L

(ML2) �u�

0

2 L) 8a 2 X:u(a) � 1

(ML3) (�

1

uv�

2

2 L and u; v 2 P

F

(X) and u \ v = ; and 9� 2 L:8a; b 2 u [

v: (�; fa; bg) 2 I)) �

1

(u [v)�

2

2 L. 2

Condition (ML1) states that the L-independence relation of TL agrees with the un-

derlying language of TL. Condition (ML2) forbids \auto-concurrency" in TL. Finally,

condition (ML3) captures both globality of concurrency and the fact that arbitrary

concurrency can be derived from binary concurrency.

Note that in the presence of (ML2), the condition u; v 2 P

F

(X) from (ML3)

is already satis�ed. Also note that (ML1) and (ML2) together imply that I �

(P

F

(X))

+

� P

F

(X).

Lemma 4.6.4

Let TL = (L;X; Ind) be an M-trace language. Then ml (TL) = (

^

L;X;

^

I) is an

ML-trace language.

82 CHAPTER 4. A TRACE SEMANTICS FOR PETRI NETS

Proof.

By Lemma 4.6.2, ml(TL) is an L-trace language.

It is clear that ml(TL) satis�es (ML1) and (ML2). Now suppose �

1

uv�

2

2

^

L is

such that u\v = ; and, for all a; b 2 u[v, there exists �fa; bg�

0

2

^

L. Then for all such

�fa; bg�

0

2

^

L, �fa; bg�

0

^

'

Ind

�

00

for some �

00

2 L by the de�nition of

^

L. This implies

that (a; b) 2 Ind for all a; b 2 u [v with a 6= b and hence �

1

uv�

2

^

�

�

Ind

�

1

(u [v)�

2

. We

can now conclude that �

1

(u [v)�

2

2

^

L. 2

Now we de�ne the map lm from the class of ML-trace languages to the class of

reduced M-trace languages which turns out to be the inverse of ml .

Given an ML-trace language TL = (L;X; I), de�ne lm(TL) = (L

TL

;X; Ind

TL

)

where

� L

TL

= L \X

�

� Ind

TL

= f(a; b) j a 6= b and 9(�; fa; bg) 2 Ig.

Lemma 4.6.5

Let TL = (L;X; I) be an ML-trace language. Then lm(TL) = (L

TL

;X; Ind

TL

) is

a reduced M-trace language.

Proof.

Suppose �

1

ab�

2

�

�

Ind

TL

�

1

ba�

2

where �

1

ab�

2

2 L

TL

� L and (a; b) 2 Ind

TL

. In

order to prove that lm(TL) is an M-trace language, it is su�cient to prove that then

also �

1

ba�

2

2 L

TL

. By the de�nition of Ind

TL

, a 6= b and there exists (�; fa; bg) 2 I.

Then by (ML1) there exists �fa; bg�

0

2 L. From (ML3) it then follows that also

�

1

fa; bg�

2

2 L and hence (�

1

; fa; bg) 2 I by (ML1). Then �

1

ab�

2

:

=

I

�

1

ba�

2

, and so

�

1

ba�

2

2 L by the consistency of L. Moreover, �

1

ba�

2

2 L \X

�

because �

1

ab�

2

2 X

�

.

This proves that �

1

ba�

2

2 L

TL

.

In order to prove that lm(TL) is reduced, suppose (a; b) 2 Ind

TL

. Then a 6= b and

there exists (�; fa; bg) 2 I. This implies that there exists �fa; bg�

0

2 L by (ML1). Now

it easily follows from (ML1) that �fa; bg�

0

�

=

I

�

1

ab�

0

1

for some �

1

ab�

0

1

2 L\X

�

= L

TL

.

2

As the following lemma shows, the L-independence relation of an ML-trace lan-

guage TL agrees with the M-independence relation of lm(TL).

Lemma 4.6.6

Let TL = (L;X; I) be an ML-trace language with lm(TL) = (L

TL

;X; Ind

TL

) and

let � 2 L and �

0

2 (P

F

(X))

+

. Then

�

:

=

I

�

0

, �

^

�

�

Ind

TL

�

0

:

Proof.

Suppose �

:

=

I

�

0

where � = �

1

uv�

2

, �

0

= �

1

u

0

v

0

�

2

, u[v = u

0

[v

0

, u\v = u

0

\v

0

= ;,

and (�

1

; u[v) 2 I. Then for all a; b 2 u[v with a 6= b, �

:

=

I

�

1

fa; bg(u[v�fa; bg)�

2

and hence also �

1

fa; bg(u [v � fa; bg)�

2

2 L. This implies that for all a; b 2 u [v

with a 6= b, (�

1

; fa; bg) 2 I by (ML1), and hence (a; b) 2 Ind

TL

. Thus �

^

�

�

Ind

TL

�

0

.

4.6. L-TRACE LANGUAGES AND M-TRACE LANGUAGES 83

Now suppose �

^

�

�

Ind

TL

�

0

where � = �

1

uv�

2

, �

0

= �

1

u

0

v

0

�

2

, u [v = u

0

[v

0

, u \ v =

u

0

\ v

0

= ;, and, for all a; b 2 u [v with a 6= b, (a; b) 2 Ind

TL

. Then by the de�nition

of Ind

TL

and (ML1) there exist �

0

1

fa; bg�

0

2

2 L for all a; b 2 u [v with a 6= b. Then

�

1

(u [v)�

2

2 L by (ML3), and hence (�

1

; u [v) 2 I by (ML1). This implies that

�

:

=

I

�

0

. 2

Using this lemma we can now prove the desired bijection.

Theorem 4.6.7

ml is a bijection from the class of reduced M-trace languages to the class of ML-

trace languages, with inverse lm.

Proof.

In order to prove that ml is injective, suppose TL

i

= (L

i

;X

i

; Ind

i

), i = 1; 2,

are reduced M-trace languages such that ml (TL

1

) = ml (TL

2

) = (L;X; I). Then

X

1

= X

2

= X by the de�nition of ml . Moreover, L =

S

f[�]

I

Ind

1

j � 2 L

1

g =

S

f[�]

I

Ind

2

j � 2 L

2

g. In order to prove that L

1

� L

2

, let � 2 L

1

� L. Then �

^

'

Ind

2

�

0

for some �

0

2 L

2

. Hence also � '

Ind

2

�

0

by Lemma 4.6.1. Thus � 2 L

2

by the

consistency of L

2

. Similarly it can be proved that L

2

� L

1

and hence L

1

= L

2

.

In order to prove that Ind

1

= Ind

2

, suppose (a; b) 2 Ind

1

. Then there exists �ab�

0

2

L

1

because TL

1

is reduced. Moreover, �ab�

0

^

�

�

Ind

1

�fa; bg�

0

and hence �fa; bg�

0

2 L.

This implies that �fa; bg�

0

^

'

Ind

2

�

00

for some �

00

2 L

2

. It now easily follows that

(a; b) 2 Ind

2

. This proves that Ind

1

� Ind

2

. Similarly we have that Ind

2

� Ind

1

and

hence Ind

1

= Ind

2

. We can conclude that ml is injective.

Suppose TL = (L;X; I) is an ML-trace language with lm(TL) = (L

TL

;X; Ind

TL

)

and ml(lm(TL)) = (

^

L;X;

^

I). It must be proved that L =

^

L and I =

^

I.

Suppose � 2 L. Then it easily follows from (ML1) that there exists �

0

2 L \X

�

=

L

TL

with �

�

=

I

�

0

. Hence �

^

'

Ind

TL

�

0

by Lemma 4.6.6. Since �

0

2 L

TL

, we then have

that � 2

^

L by the de�nition of ml . This proves that L �

^

L.

Now suppose � 2

^

L. Then �

^

'

Ind

TL

�

0

for some �

0

2 L

TL

�

^

L. Hence �

0

2 L\X

�

by

the de�nition of lm. Then �

�

=

I

�

0

by Lemma 4.6.6 and hence � 2 L by the consistency

of L. This proves that

^

L � L and hence L =

^

L. Then also I =

^

I by (ML1). We can

now conclude that ml is a bijection with inverse lm. 2

Thus the class of reduced M-trace languages can be viewed as a subclass of the

class of L-trace languages. Note that it would have been possible to de�ne ml such

that it is injective on the class of all M-trace languages, by taking I

Ind

for the L-

independence relation of ml ((L;X; Ind)). The reason for restricting our attention to

M-trace languages which are reduced is, that we want the bijection to be such that it

maps the M-trace language sm(N) associated with a 1-safe Petri net N to the L-trace

language nl (N) associated with N . Next we show that this goal is achieved with the

present de�nition of ml .

First we need the following lemma.

Lemma 4.6.8

Let N be a 1-safe Petri net, let � 2 SFS , and let �

0

2 (P

F

(T))

+

. Then

�

:

=

N

�

0

, �

^

�

�

Ind

N

�

0

:

84 CHAPTER 4. A TRACE SEMANTICS FOR PETRI NETS

Proof.

First assume that �

:

=

N

�

0

. Suppose � = �

1

uv�

2

, �

0

= �

1

u

0

v

0

�

2

, u [v = u

0

[v

0

,

u \ v = u

0

\ v

0

= ;, and (�

1

; u [v) 2 I

N

. Then �

1

(u [v) 2 SFS by the de�nition of

I

N

. Moreover, for all t; t

0

2 u [v with t 6= t

0

, M

�

1

[ft; t

0

gi and hence (t; t

0

) 2 Ind

N

.

This implies that also �

^

�

�

Ind

N

�

0

.

Now assume that �

^

�

�

Ind

N

�

0

and suppose � = �

1

uv�

2

, �

0

= �

1

u

0

v

0

�

2

, u[v = u

0

[v

0

,

u\v = u

0

\v

0

= ;, and for all t; t

0

2 u[v with t 6= t

0

, (t; t

0

) 2 Ind

N

. Then M

�

1

2 RM

because � 2 SFS , and henceM

�

1

[u[vi by Lemma 2.1.10. Thus �

1

(u[v) 2 SFS . This

implies by the de�nition of I

N

that (�

1

; u [v) 2 I

N

. We can conclude that �

:

=

N

�

0

.

2

Now we can prove that the trace semantics for Petri nets in terms of L-traces

extends the trace semantics for 1-safe Petri nets in terms of M-traces.

Theorem 4.6.9

Let N = (S; T;W;M

in

) be a 1-safe Petri net with sm(N) = (FS ; T; Ind

N

) and

nl (N) = (MFS ; T; I

N

). Then ml(sm(N)) � nl (N).

Proof.

First note that MFS = SFS because N is 1-safe. Let ml (sm(N)) = (L; T; I). In

order to prove that L � SFS , let � 2 L. Then �

^

'

Ind

N

�

0

for some �

0

2 FS � SFS .

By Lemma 4.6.8 also �

�

=

N

�

0

. This then implies by Lemma 4.3.2 that � 2 SFS . This

proves that L � SFS .

Now suppose � 2 SFS . Then there exists �

0

2 FS � L such that �

�

=

N

�

0

. Then

again by Lemma 4.6.8, also �

^

'

Ind

N

�

0

. Hence � 2 L. This proves that L = SFS . Then

also I

N

= f(�; u) j �u 2 SFSg = f(�; u) j �u 2 Lg = I. Hence id

nl(N)

is the required

LTL-isomorphism. 2

To conclude this section we prove that the bijection between ML-trace languages

and reduced M-trace languages can be lifted to a categorical equivalence.

De�nition 4.6.10

LetMT L be the category which has reduced M-trace languages as its objects and

MTL-morphisms as its arrows. The identity morphism associated with an object is the

identity function on its alphabet and composition of arrows is composition of partial

functions. 2

Even though we only consider the category of reduced M-trace languages, every

M-trace language can in fact be represented canonically as such a reduced M-trace

language. This follows from the easy to prove observation that MT L is a full co-

reective subcategory of the category which has all M-trace languages as its objects.

De�nition 4.6.11

LetMLT L be the category which has ML-trace languages as its objects and LTL-

morphisms as its arrows. The identity morphism associated with an object TL is id

TL

;

composition of arrows is composition of partial functions. 2

4.6. L-TRACE LANGUAGES AND M-TRACE LANGUAGES 85

In order to extend the mapml to a functor, de�neml(f) = f for an MTL-morphism

f between reduced M-trace languages.

Lemma 4.6.12

ml is a functor fromMT L to MLT L.

Proof.

Let TL

i

= (L

i

;X

i

; Ind

i

), i = 1; 2, be reduced M-trace languages and let f be an

MTL-morphism fromTL

1

to TL

2

. It is by Lemma 4.6.4 su�cient to prove thatml (f) =

f is an LTL-morphism from ml(TL

1

) = (

^

L

1

;X

1

;

^

I

1

) to ml(TL

2

) = (

^

L

2

;X

2

;

^

I

2

).

Suppose � 2

^

L

1

. Then �

^

'

Ind

1

�

0

for some �

0

2 L

1

. Then because f is an MTL-

morphism from TL

1

to TL

2

, f(�

0

) 2 L

2

. In order to prove that f(�) 2

^

L

2

it is then

su�cient to prove that f(�)

^

'

Ind

2

f(�

0

). Suppose �

1

uv�

2

^

�

�

Ind

1

�

1

u

0

v

0

�

2

with u \ v =

u

0

\ v

0

= ;, u [v = u

0

[v

0

, and (a; b) 2 Ind

1

for all a; b 2 u [v with a 6= b. Then

(f(a); f(b)) 2 Ind

2

for all a; b 2 u [v with a 6= b and f(a) and f(b) both de�ned

because f is an MTL-morphism. Then also f(a) 6= f(b) for all such a; b 2 u[v by the

irreexivity of Ind

2

. Hence f(�

1

)f(u)f(v)f(�

2

)

^

�

�

Ind

2

f(�

1

)f(u

0

)f(v

0

)f(�

2

). We can

now conclude that f(�)

^

'

Ind

2

f(�

0

).

From the de�nition of ml it is clear that then also f(I

1

) � I

2

. This proves that f

is an LTL-morphism from ml (TL

1

) to ml(TL

2

). 2

In order to extend the map lm to a functor, also de�ne lm(f) = f for an LTL-

morphism f between ML-trace languages.

Lemma 4.6.13

lm is a functor from MLT L to MT L.

Proof.

Let TL

i

= (L

i

;X

i

; I

i

), i = 1; 2, be ML-trace languages and let f be an LTL-

morphism from TL

1

to TL

2

. It is by Lemma 4.6.5 su�cient to prove that lm(f) is an

MTL-morphism from lm(TL

1

) = (L

TL

1

;X

1

; Ind

TL

1

) to lm(TL

2

) = (L

TL

2

;X

2

; Ind

TL

2

).

Suppose � 2 L

TL

1

= L

1

\ X

1

�

. Then f(�) 2 L

2

because f is an LTL-morphism.

Hence also f(�) 2 L

2

\X

2

�

= L

TL

2

.

Now suppose (a; b) 2 Ind

TL

1

is such that f(a) and f(b) are both de�ned. Then a 6=

b and, by the de�nition of Ind

TL

1

, there exists (�; fa; bg) 2 I

1

. So (f(�); ff(a); f(b)g) 2

I

2

because f is an LTL-morphism. Moreover, f(a) 6= f(b) by (ML1) and (ML2). Hence

(f(a); f(b)) 2 Ind

TL

2

by the de�nition of Ind

TL

2

. 2

Now we have the following result.

Theorem 4.6.14

MT L and MLT L are equivalent.

86 CHAPTER 4. A TRACE SEMANTICS FOR PETRI NETS

Proof.

It is su�cient to prove that the functor ml is full and faithful, and that for every

object TL of MLT L there exists an object TL

0

of MT L such that ml (TL

0

) � TL.

This last property follows immediately from Theorem 4.6.7. Moreover, from the

de�nition of ml we immediately have that the functor ml is faithful. Finally, if f is

an LTL-morphism inMLT L from TL to TL

0

, then by Lemma 4.6.13 lm(f) = f is an

MTL-morphism from lm(TL) to lm(TL

0

). Sinceml (lm(TL)) = TL andml(lm(TL

0

)) =

TL

0

by Theorem 4.6.7, this proves that ml is also full. Hence we can conclude that

MT L and MLT L are equivalent. 2

4.7 Concluding Remarks

The generalization of the classical trace model introduced in this chapter provides a

tool for the description of the behaviour of Petri nets. What is missing at this stage

is a sound theoretical basis for the theory of local traces.

In the last years there have been several other proposals for extending the theory of

traces. Several of these, though di�erently motivated, focus on similar generalizations,

in particular context-dependency or the use of step sequences (see, e.g., [58, 87, 83,

3, 91, 44]). At present it is however not clear if useful connections can be established

between our approach and the cited related approaches.

For 1-safe Petri nets also processes [76] have been proposed to represent its runs,

leading to a partial order description of the transition occurrences. Such a process

is obtained by partially unfolding the Petri net (starting from the places which are

initially marked) while resolving conicts. Thus processes lead to special kinds of

nets, called causal nets, which are acyclic and in which places have at most one input

and one output transition. The transitions of a causal net represent the occurrences of

transitions in the original Petri net and places represent the tokens in the original Petri

net, where the set of minimal places (i.e. places with no input transitions) corresponds

to the initial marking. It turns out that there is a one-to-one correspondence between

the M-traces and the processes associated with a 1-safe Petri net (see [67] for the proof

in the context of elementary net systems).

Also for general Petri nets causal nets can be used for de�ning processes [34].

Because now Petri nets are not necessarily 1-safe, this however leads to a distinction

between tokens in a place.

In Figure 4.10 the Petri net N

6

from Figure 4.2 is depicted together with two

processes which correspond to the observation of the occurrence of c followed by the

occurrence of a. In the �rst process the transition a occurs where it consumes the

token in place s

2

which was already there in the initial marking whereas in the second

process the transition a consumes the token in place s

2

which has just been put there

by transition c. It has been argued in [9] that such a distinction between tokens in a

place is often undesirable. Therefore it has been suggested that a better representation

of a run is given by an equivalence class of processes. The equivalence relation over

processes is de�ned in such a way that if two places in the causal net are not causally

related and represent tokens in the same place in the original Petri net, then this

4.7. CONCLUDING REMARKS 87

c

a

b

s2

s6

s3

s1

s
3

s
6

s 1

s
2

a

c s
2

s
2

s
3

s
6

s
2

c s
2

s
2a

s 1

Figure 4.10: Two processes of N

6

process is equivalent to the process obtained by \swapping" the parts of the causal

net \after" these places. For instance, in the �rst process in Figure 4.10 the input place

labelled with s

2

of the transition labelled with a and the output place of the transition

labelled with c are two places with the same label which are not causally related. The

(equivalent) process obtained by swapping their consequences is the second process in

Figure 4.10.

It has been shown in [9] that these equivalence classes of processes are in one-to-

one correspondence with equivalence classes of occurrence sequences. This equivalence

relation over occurrence sequences identi�es occurrence sequences which only di�er in

the order of concurrent transitions.

De�nition 4.7.1

Let N = (S; T;W;M

in

) be a Petri net.

(1) �

N

is the least relation over occurrence sequences such that if M

0

t

1

M

1

: : : t

n

M

n

88 CHAPTER 4. A TRACE SEMANTICS FOR PETRI NETS

is an occurrence sequence with n � 0 and if 1 � i � n� 1 is such that

8s 2 S:M

i�1

(s) �W (s; t

i

) +W (s; t

i+1

);

then

M

0

t

1

: : :M

i�1

t

i

M

i

t

i+1

M

i+1

: : : t

n

M

n

�

N

M

0

t

1

: : :M

i�1

t

i+1

M

0

i

t

i

M

i+1

: : : t

n

M

n

where

8s 2 S:M

0

i

(s) = M

i�1

(s) +W (t

i+1

; s)�W (s; t

i+1

):

(2) �

N

is the least equivalence relation containing �

N

. 2

We now show that these equivalence classes of occurrence sequences are again in

one-to-one correspondence with the L-traces generated by a Petri net.

Lemma 4.7.2

Let N = (S; T;W;M

in

) be a Petri net and let � = M

0

t

1

M

1

t

2

: : : t

n

M

n

and �

0

=

M

0

0

t

0

1

M

0

1

t

0

2

: : : t

0

n

M

0

n

with n � 0 be occurrence sequences. Then

� �

N

�

0

, t

1

: : : t

n

�

=

N

t

0

1

: : : t

0

n

:

Proof.

In order to prove the \only if"-part of the lemma it is su�cient to prove that

� �

N

�

0

implies that t

1

: : : t

n

:

=

N

t

0

1

: : : t

0

n

. So suppose that � �

N

�

0

. Then there

exists 1 � i � n � 1 such that t

0

1

: : : t

0

n

= t

1

: : : t

i�1

t

i+1

t

i

t

i+2

: : : t

n

and M

i�1

(s) �

W (s; t

i

) +W (s; t

i+1

) for all s 2 S. This implies that t

1

: : : t

i�1

(t

i

+ t

i+1

) 2 MFS and

hence also (t

1

: : : t

i�1

; t

i

+ t

i+1

) 2 I

N

. Thus t

1

: : : t

n

:

=

N

t

0

1

: : : t

0

1

.

Now in order to prove the \if"-part, it is su�cient to prove that if t

1

: : : t

n

:

=

N

t

0

1

: : : t

0

n

, then � �

N

�

0

. If t

1

: : : t

n

= t

0

1

: : : t

0

n

then this is trivial because then also

� = �

0

, so assume that t

1

: : : t

n

6= t

0

1

: : : t

0

n

. Then there exists 1 � i � n � 1 such that

t

0

1

: : : t

0

n

= t

1

: : : t

i�1

t

i+1

t

i

t

i+2

: : : t

n

and (t

1

: : : t

i�1

; ft

i

; t

i+1

g) 2 I

N

. This implies that

M

i�1

(s) � W (s; t

i

) +W (s; t

i+1

) for all s 2 S, and so � �

N

�

0

. 2

Theorem 4.7.3

Let N = (S; T;W;M

in

) be a Petri net. Then there exists a bijection between nl (N)

and the set of equivalence classes of occurrence sequences associated with N .

Proof.

Follows immediately from Lemma 4.7.2 by observing that for every � 2 MFS there

exists �

0

2 FS such that �

�

=

N

�

0

. 2

4.7. CONCLUDING REMARKS 89

Thus whereas for 1-safe Petri nets there is a one-to-one correspondence between its

M-traces and its processes, for general Petri nets there is a one-to-one correspondence

between the equivalence classes of its processes (via the \swapping" operation) and

its L-traces.

In [59] an algebraic characterization of the runs of a Petri net is given. This is done

by performing a closure on the arrows of the graph representation of a Petri net with

respect to an operation ; for sequential composition and an operation � for parallel

composition. The runs are then represented as equivalence classes of the resulting

arrows where the equivalence relation is de�ned in such a way that it captures the

intended interpretation of the operations ; and �. In [18] it has been shown that these

equivalence classes of arrows coincide with the equivalence classes of processes from

[9], and hence also with our L-traces.

One of the main di�erences between the approaches from [9] and [18] and our

approach is that in the former approaches there is still a notion of a distributed state,

while our trace semantics abstracts from this distribution. As will be shown in the

next chapter, such an abstraction to a global state makes it possible to obtain also a

branching time semantics for Petri nets in terms of event structures.

90 CHAPTER 4. A TRACE SEMANTICS FOR PETRI NETS

Chapter 5

An Event Structure Semantics for

Petri Nets

In the previous chapter a trace semantics for Petri nets has been de�ned by associating

an L-trace language with every Petri net. This trace semantics is based on represen-

tations of the �nite runs of a Petri net, in which conicts are resolved. Even though

the branching aspects of a Petri net can be recovered from its L-traces by ordering

them under a pre�x ordering (resulting in the L-trace behaviour of the Petri net), no

distinction is made between \di�erent" occurrences of the same transition.

The aim of this chapter is to give a branching time semantics for Petri nets by

associating a single object with each Petri net in which the relationship between dif-

ferent occurrences of transitions, called events is explicitly represented. Such objects

are generically called event structures.

In [66] prime event structures have been introduced and it has been shown how they

can be used to represent the behaviour of 1-safe Petri nets. In [66] also a map from

prime event structures to 1-safe Petri nets has been de�ned. Later it was then shown

by Winskel [96] that both maps can be extended to functors, forming a co-reection.

In this chapter we propose a generalization of the prime event structure semantics

for 1-safe Petri nets. To this aim we de�ne a new class of event structures, called

local event structures, and show that a subclass of local event structures with a certain

unique occurrence property can be used to represent the behaviour of Petri nets. For

associating a local event structure with each Petri net, it is however necessary to �lter

out auto-concurrency from the behaviour of Petri nets. In this sense the proposed

event structure semantics is a restricted one.

In Section 5.1 we recall the classical construction from 1-safe Petri nets to prime

event structures. Then in Section 5.2 we introduce local event structures and structure-

preserving morphisms between them. In Section 5.3 a new equivalence relation over

prime intervals is de�ned and this equivalence relation is used to de�ne the unique oc-

currence property. Then in Section 5.4 a map from Petri nets to local event structures

with the unique occurrence property is de�ned. In de�ning this map we use the set of

step �ring sequences rather than the set of multiset �ring sequences of a Petri net. It

is in this sense that we �lter out auto-concurrency. In Section 5.5 we show that the

class of local event structures yielded by Petri nets is exactly the class of local event

91

92 CHAPTER 5. AN EVENT STRUCTURE SEMANTICS FOR PETRI NETS

structures with the unique occurrence property. In proving this we use the regional

construction de�ned in Section 3.2. Then in Section 5.6 we prove that when restricted

to 1-safe Petri nets, our event structure semantics for Petri nets agrees with the prime

event structure semantics for 1-safe Petri nets as given in Section 5.1.

In Section 5.7 we argue with the help of an example that the co-reection result

of Winskel will not go through in the present setting. The reason is that, due to

auto-concurrency, the category of Petri nets is too rich in terms of objects and arrows.

We show that the desired co-reection does go through if we restrict our attention to

either co-safe Petri nets or co-injective PN-morphisms. In Section 5.8 we discuss a

generalization of local event structures, called multiset event structures, which might

lead to a satisfactory event structure semantics for the category of all Petri nets. We

show that there exists an adjunction between the category of multiset event structures

with the unique occurrence property and the category of Petri nets. This adjunction is

however not a co-reection. Finally, in Section 5.9 we have some concluding remarks

and mention some related work.

This chapter is based on [43], of which [42] is an extended abstract.

5.1 Prime Event Structures and 1-Safe Petri Nets

In this section a brief account is given of the prime event structure semantics for 1-safe

Petri nets. We follow here the approach from [98] which di�ers from the original set-up

in [66] by its explicit use of Mazurkiewicz' trace theory. However, rather than de�ning

a map from arbitrary M-trace languages to prime event structures as in [98], we only

apply their construction to the M-trace languages associated with 1-safe Petri nets.

First we introduce prime event structures using the de�nition from [97, 98].

De�nition 5.1.1

A prime event structure is a triple (E;�;#) where E is a set of events, �� E �E

is a partial order, the causal dependency relation, and # � E � E is a symmetric,

irreexive relation, the conict relation, satisfying

(P1) e

0

#e

1

� e

2

) e

0

#e

2

(P2) 8e 2 E: #e is �nite. 2

Thus, by (P1), conicts between events are inherited via the causal dependency

relation. The condition (P2) states that each event has a �nite cause. Note that by

(P1) two causally related events are never in conict.

With each prime event structure P = (E;�;#), a binary concurrency relation

co

P

� E �E can be associated which relates those events that are neither in conict,

nor causally related. Thus

e co

P

e

0

, :(e � e

0

or e

0

� e or e#e

0

):

It is interesting to observe that co

P

is a symmetric and irreexive binary relation, and

hence an M-independence relation over E.

5.1. PRIME EVENT STRUCTURES AND 1-SAFE PETRI NETS 93

A con�guration of a prime event structure P = (E;�;#) is a subset of events

which contains for each of its events the cause of that event, and which does not

contain conicting events.

In order to give a formal de�nition, let c � E. We say that c is downward-closed

i�

8e; e

0

2 E: ((e 2 c and e

0

� e)) e

0

2 c):

We say that c is #-free i�

(c� c) \# = ;:

Then c is a con�guration i� c is downward-closed and #-free. We use C

P

to denote

the set of con�gurations of P and FC

P

to denote the set C

P

\ P

F

(E) of all �nite

con�gurations of P .

As immediate consequences of the above, we have that #e 2 FC

P

for each e 2 E,

and whenever c; c

0

2 C

P

are such that (c� c

0

) \# = ;, then also c [c

0

2 C

P

.

Given a 1-safe Petri net N = (S; T;W;M

in

) with independence relation Ind

N

�

T�T , we now outline a method to de�ne a prime event structure sp(N) which captures

the branching and concurrent aspects of the behaviour of N .

The events of sp(N) correspond to occurrences of transitions in N . Di�erent oc-

currences of one transition should give rise to di�erent events. Whether or not two

occurrences of one transition should be considered to be di�erent, depends on the

histories (i.e. runs of the net) leading to those occurrences. Two occurrences of one

transition which have the same history represent the same event. Also two occurrences

of a transition of which the histories only di�er in the order of occurrence of concurrent

transitions should be considered the same.

Transition occurrences are represented in terms of �ring sequences. Then an equiv-

alence relation is de�ned over these occurrences on the basis of Ind

N

, the independence

relation associated with a 1-safe Petri net N as given in De�nition 3.4.8, and the in-

duced M-equivalence relation '

N

.

Let

sPI

N

= f�t j �t 2 FSg

be the set of sequential prime intervals of N . So sPI

N

is the set of non-empty �ring

sequences of N . A sequential prime interval �t represents the occurrence of transition

t after the �ring sequence �.

The equivalence relation �

N

� sPI

N

� sPI

N

is de�ned as the least equivalence

relation which satis�es the following conditions (S1) and (S2).

(S1) (�t

0

t 2 FS and (t; t

0

) 2 Ind

N

)) �t �

N

�t

0

t.

(S2) (�t; �

0

t 2 sPI

N

and � '

N

�

0

)) �t �

N

�

0

t.

Thus (S1) identi�es sequential prime intervals which are connected by concurrent steps

as given by the independence relation Ind

N

. The condition (S2) identi�es sequential

prime intervals which have equivalent \pasts" under the M-equivalence relation �

N

.

The conditions (S1) and (S2) together ensure that equivalence of sequential prime

intervals under �

N

is completely determined by the \diamonds" in the M-trace be-

haviour of N .

94 CHAPTER 5. AN EVENT STRUCTURE SEMANTICS FOR PETRI NETS

If N is clear from the context then we may omit the subscript

N

in �

N

. In what

follows we let for �t 2 sPI

N

, h�ti

�

N

denote the equivalence class (under �

N

) containing

�t, that is

h�ti

�

N

= f�

0

t

0

2 sPI

N

j �

0

t

0

�

N

�tg:

The equivalence classes h�ti

�

N

will be the events of sp(N).

In order to de�ne the causal dependency and conict relation of sp(N) we need

the following function ev

N

: FS ! P

F

(sPI

N

=�

N

) which associates with each �ring

sequence of N its set of events:

� ev

N

(�) = ;

� ev

N

(�t) = ev

N

(�) [fh�ti

�

N

g.

As the following lemma from [98] shows, all events of a �ring sequence � have a unique

representative in �. In this sense ev

N

(�) is a faithful representation of the events in �.

Lemma 5.1.2

Let N be a 1-safe Petri net and let �t 2 sPI

N

. Then h�ti

�

N

62 ev

N

(�). 2

The next lemma, also from [98], shows that the branching behaviour of a 1-safe

Petri net N as given by the M-trace ordering of its M-traces is also captured by the

function ev

N

: the M-traces of two �ring sequences are ordered i� their associated sets

of events are ordered (under inclusion).

Lemma 5.1.3

Let N be a 1-safe Petri net and let �; �

0

2 FS . Then

[�]

Ind

N

� [�

0

]

Ind

N

, ev

N

(�) � ev

N

(�

0

):

2

Thus in particular � ' �

0

i� ev

N

(�) = ev

N

(�

0

) for two �ring sequences � and �

0

of

a 1-safe Petri net N .

Given a 1-safe Petri net N , a causal dependency relation and a conict relation

over the transitions are de�ned in the following way.

An event e

2

causally depends on an event e

1

if e

2

cannot occur without e

1

having

occurred �rst. That is, no �ring sequence of N has e

2

as an event without having e

1

as

one of its events. The events e

1

and e

2

are in conict if they cannot occur \together".

That is, no �ring sequence of N has both e

1

and e

2

in its set of events.

Thus formally sp(N) is de�ned as follows.

De�nition 5.1.4

Let N be a 1-safe Petri net. Then sp(N) = (E;�;#) is the prime event structure

associated with N where

� E = fh�ti

�

N

j �t 2 sPI

N

g

5.1. PRIME EVENT STRUCTURES AND 1-SAFE PETRI NETS 95

a

b

d

o

{ < a > } { < b > }

{ < a >,< ab >,< abd > }

{ < a >,< ab > }

{ < b >,< ba >,< bad > }

{ < b >,< ba > }

a

b

d

o

{ < a > } { < b > }

{ < a >,< b > }

{ < a >,< b >,< abd > }

Figure 5.1: The 1-safe Petri nets N

3

and N

4

with their associated prime event struc-

tures

� e � e

0

, 8� 2 FS

N

: (e

0

2 ev

N

(�)) e 2 ev

N

(�))

� e#e

0

, 8� 2 FS

N

: (e 2 ev

N

(�)) e

0

62 ev

N

(�)). 2

Example 5.1.5

In Figure 5.1 the 1-safe Petri nets N

3

and N

4

from Figure 2.3 and Figure 2.4

are depicted together with their associated prime event structures. The prime event

structures are depicted through their �nite con�gurations, ordered under inclusion.

Both Petri nets have the same set of sequential prime intervals: sPI

N

3

= sPI

N

4

=

fa; b; ab; ba; abd; badg. For N

3

these sequential prime intervals all generate di�erent

events. For N

4

on the other hand, (a; b) 2 Ind

N

4

implies that a �

N

4

ba and b �

N

4

ab

by (S1). Since (a; b) 2 Ind

N

4

also implies that ab '

N

4

ba, we also have that abd �

N

4

bad

by (S2). 2

For the Petri nets N

3

and N

4

considered in the previous example the poset as given

by the M-trace behaviour (see Figure 4.1) is isomorphic to the poset of the (�nite)

con�gurations of the associated prime event structure (ordered under inclusion). It

turns out that this holds for every 1-safe Petri net. This follows immediately from

96 CHAPTER 5. AN EVENT STRUCTURE SEMANTICS FOR PETRI NETS

Lemma 5.1.3 and the following lemma [98] which characterizes the �nite con�gurations

of the prime event structure associated with a 1-safe Petri net.

Lemma 5.1.6

Let N be a 1-safe Petri net with sp(N) = (E;�;#). Then

FC

sp(N)

= fev

N

(�) j � 2 FSg:

2

Finally we note that also concurrency in a 1-safe Petri net is easily derivable from

its associated prime event structure. This follows from the next lemma (see [98])

stating that two events are in the concurrency relation of the prime event structure i�

the transitions generating these events are concurrent at some reachable marking.

Lemma 5.1.7

Let N be a 1-safe Petri net with sp(N) = (E;�;#) and let h�ti

�

N

; h�

0

t

0

i

�

N

2 E.

Then

h�ti

�

N

co

sp(N)

h�

0

t

0

i

�

N

,

9�

00

t; �

00

t

0

2 sPI

N

: (�

00

t �

N

�t and �

00

t

0

�

N

�

0

t

0

and (t; t

0

) 2 Ind

N

):

2

5.2 Local Event Structures

The approach described in the previous section for 1-safe Petri nets does not work

for general Petri nets. As explained in Chapter 2, for general Petri nets conict and

concurrency are no global relations. This leads us to consider local event structures

where concurrency is speci�ed locally, i.e. per con�guration. This is similar to the

context-dependent concurrency underlying the de�nition of local trace languages in

Section 4.2. The identi�cation of the events associated with a Petri net leads however

to some new problems which will be discussed in Section 5.3.

Whereas for prime event structures the set of (�nite) con�gurations is a derived

notion, a local event structure is de�ned directly as a family of con�gurations. This

is similar to the speci�cation of Winskel's general event structures through families

of con�gurations (see [96] and Chapter 6 of this thesis). In addition to this, such a

family of con�gurations of a local event structure is also equipped with an enabling

relation which speci�es locally, for each con�guration, the possible concurrency of (sets

of) events at that con�guration. This enabling relation satis�es some simple axioms.

De�nition 5.2.1

A local event structure is a triple ES = (E;C;`) where E is a set of events,

C � P

F

(E) is a non-empty set of (�nite) con�gurations (ranged over by c,c

0

, etc.), and

`� C � P

F

(E) is an enabling relation satisfying:

(E0) ; 6= c) 9e 2 c: c� e ` e.

5.2. LOCAL EVENT STRUCTURES 97

(E1) c ` ;.

(E2) c ` u) (c \ u = ; and 8v � u: (c ` v and c [v ` u� v)). 2

Note that (E0) implies that if ; 6= c 2 C, then there exists e 2 c such that c�e 2 C.

Hence ; 2 C, because C is non-empty. The axiom (E2) states that each event can

occur at most once, and that steps can be split arbitrarily into substeps. The axiom

(E2) also implies that if c ` u then c [v 2 C for all v � u.

Note that the axiom (E1) could have been replaced by the condition that the

enabling relation ` is non-empty.

From now on we refer to local event structures as L-event structures.

Example 5.2.2

In Figure 5.2 three L-event structures ES

1

, ES

2

, and ES

3

are depicted. In depicting

an L-event structure (E;C;`) we use the following convention. If c ` u then we draw

a line between c and c [u in case juj = 1 and we draw a dotted line between c and

c [u in case juj � 2. 2

{ b }

o

{ a }

{ a,b }

{ b }

o

{ a }

{ a,b }

{ a,c } { b,c }

{ a,b,c }
{ a,b,d }

{ b }
{ c }

o

{ a }

{ a,b }

ES

1

ES

2

ES

3

Figure 5.2: Three L-event structures

{ b }

o

{ a }

{ a,b }

{ b }

o

{ a }

{ a,b }

ES

4

ES

5

Figure 5.3: L-event structures with the same con�gurations

98 CHAPTER 5. AN EVENT STRUCTURE SEMANTICS FOR PETRI NETS

We would now like to establish some preliminary properties of L-event structures.

Before doing so, we wish to emphasize that the inclusion relation between con�gura-

tions in the present set-up does not carry much information. Consider the L-event

structures ES

1

and ES

2

shown in Figure 5.2) and the L-event structures ES

4

and

ES

5

depicted in Figure 5.3. Clearly the sets of con�gurations of these four L-event

structures are identical. They all have however a di�erent enabling relation.

A partial ordering relation describing reachability between the con�gurations of

an L-event structure would carry more useful information. In order to de�ne this

relation, �rst a multiset transition diagram is associated with each L-event structure.

The multiset transition relation is such that if a step is enabled at a con�guration, then

there is a transition from this con�guration to the con�guration obtained by adding

the step to the original con�guration.

Let ES = (E;C;`) be an L-event structure. Then (C;E;�!

ES

) is the multiset

transition diagram associated with ES where �!

ES

is given by:

c

u

�!

ES

c

0

, (c ` u and c

0

= c [u):

Note that by our drawing conventions for L-event structures, we actually depict the

multiset transition diagram associated with an L-event structure. Also note that there

are no enablings of multisets of events, so that in fact �!

ES

� C � P

F

(E)�C.

The reachability relation v

ES

� C � C is now de�ned by:

c v

ES

c

0

, 9� 2 (P

F

(E))

+

: c

�

�!

ES

c

0

:

It is easy to see that the reachability relation v

ES

is a partial ordering relation. In

what follows we omit the subscript

ES

in v

ES

if ES is clear from the context.

Lemma 5.2.3

Let (E;C;`) be an L-event structure and let c 2 C and e

1

; e

2

2 c be such that

e

1

6= e

2

. Then

(1) 9c

0

2 C: c

0

v c and ((e

1

2 c

0

and c

0

` e

2

) or (e

2

2 c

0

and c

0

` e

1

))

(2) 9c

0

2 C: c

0

v c and (e

1

2 c

0

) e

2

62 c

0

).

Proof.

In order to prove (1), we proceed by induction on k = jcj. If k = 2 then c = fe

1

; e

2

g

and by (E0), c� e

1

` e

1

or c� e

2

` e

2

. In either case the required result follows.

If k > 2 then, again by (E0), there exists e 2 c such that c � e ` e. If e = e

1

or e = e

2

then let c

0

= c � e. Otherwise the required c

0

2 C exists by the induction

hypothesis applied to c� e.

(2) follows immediately from (1) and (E2). 2

5.2. LOCAL EVENT STRUCTURES 99

By Lemma 5.2.3(2) L-event structures satisfy a coincidence freeness property, sim-

ilar to Winskel's general event structures [96].

By (E0), each con�guration c of an L-event structure ES = (E;C;`) is reachable

(in terms of v

ES

) from ;. There may however be various routes from ; to c. Each such

route is given by a sequence of transitions from�!

ES

. This motivates the introduction

of the set SFS

ES

of step �ring sequences of ES and a function cf associating with each

step �ring sequence the con�guration it leads to.

De�nition 5.2.4

Let ES = (E;C;`) be an L-event structure. The set SFS

ES

� (P

F

(E))

+

of step

�ring sequences of ES and the function cf

ES

: SFS

ES

! P

F

(E) are given inductively

by:

� ; 2 SFS

ES

and cf

ES

(;) = ;

� (� 2 SFS

ES

and cf

ES

(�) ` u)) (�u 2 SFS

ES

and cf

ES

(�u) = cf

ES

(�)[u). 2

If the L-event structure ES is clear from the context, then we may omit the sub-

script

ES

in SFS

ES

and cf

ES

.

In this way we obtain the following characterization of the con�gurations of an

L-event structure.

Lemma 5.2.5

Let (E;C;`) be an L-event structure. Then

(1) 8� 2 SFS : (cf (�) 2 C and cf (�) = alph(�))

(2) C = falph(�) j � 2 SFSg

(3) 8�; �

0

2 SFS : (alph(�) = alph(�

0

)) (�u 2 SFS , �

0

u 2 SFS))

(4) 8� 2 SFS :8e 2 E:num

e

(�) � 1.

Proof.

(1) Let � 2 SFS . The proof is by induction on k = j�j. If k = 0 then � = ; and

hence cf (�) = ; 2 C and cf (�) = ; = alph(�). Now assume that k > 0. Then

there exist �

0

2 SFS and ; 6= u 2 P

F

(E) such that cf (�

0

) ` u and � = �

0

u.

Hence cf (�) = cf (�

0

) [u 2 C by (E2) and cf (�) = alph(�) by the induction

hypothesis applied to �

0

.

(2) If � 2 SFS then alph(�) = cf (�) 2 C by (1). Now let c 2 C. We proceed by

induction on k = jcj. If k = 0 then c = ; and hence � = ; 2 SFS is such that

alph(�) = c. Now assume that k > 0. Then by (E0) there exists e 2 c such that

c � e ` e. By the induction hypothesis applied to c � e there exists �

0

2 SFS

such that alph(�

0

) = cf (�

0

) = c � e. Then �

0

e 2 SFS by the de�nition of SFS

and alph(�

0

e) = c.

100 CHAPTER 5. AN EVENT STRUCTURE SEMANTICS FOR PETRI NETS

(3) Let �; �

0

2 SFS be such that alph(�) = alph(�

0

). If u = ; then �u; �

0

u 2 SFS by

(E1). If u 6= ; then cf (�) = cf (�

0

) by (1) and hence �u 2 SFS i� cf (�) ` u i�

�

0

u 2 SFS .

(4) Let � 2 SFS . The proof is by induction on k = j�j. If k = 0 then the claim

clearly holds. Now assume that k > 0. Then there exist �

0

2 SFS and ; 6=

u 2 P

F

(E) such that � = �

0

u and cf (�

0

) ` u. Then num

e

(�

0

) � 1 for all e 2 E

by the induction hypothesis applied to �

0

. Because cf (�

0

) \ u = ; by (E2) and

alph(�

0

) = cf (�

0

) by (1) we can now conclude that also num

e

(�) � 1 for all

e 2 E. 2

Consequently, for a given con�guration c of an L-event structure ES , all step �ring

sequences leading to it have the same set of events occurring in them, namely c.

Conversely, whenever two step �ring sequences have the same set of events occurring

in them, they lead to the same con�guration.

As the last point of this section, we introduce structure-preserving morphisms

between L-event structures.

De�nition 5.2.6

Let ES

i

= (E

i

; C

i

;`

i

), i = 1; 2, be a pair of L-event structures. An LES-morphism

from ES

1

to ES

2

is a partial function f : E

1

! E

2

such that

8c 2 C

1

:8u 2 P

F

(E

1

): (c `

1

u) f(c) `

2

f(u)):

2

Let, for an arbitrary L-event structure ES , id

ES

denote the identity function on its

events. Then an LES-morphism f from ES

1

= (E

1

; C

1

;`

1

) to ES

2

= (E

2

; C

2

;`

2

) is

an LES-isomorphism i� there exists an LES-morphism g from ES

2

to ES

1

such that

g � f = id

ES

1

and f � g = id

ES

2

. It is easy to see that f is an LES-isomorphism from

ES

1

to ES

2

i�

(1) f is a bijection

(2) c `

1

u, f(c) `

2

f(u).

If ES

1

and ES

2

are LES-isomorphic then this is denoted by ES

1

� ES

2

.

We conclude with some properties of LES-morphisms which will be useful in later

sections.

The �rst property shows that LES-morphisms are injective on concurrent steps.

Lemma 5.2.7

Let f be an LES-morphism from (E

1

; C

1

;`

1

) to (E

2

; C

2

;`

2

) and let c 2 C

1

and

e

1

; e

2

2 c be such that e

1

6= e

2

and both f(e

1

) and f(e

2

) are de�ned. Then f(e

1

) 6=

f(e

2

).

Proof.

By Lemma 5.2.3(1) we may assume without loss of generality that there exists

c

0

v c such that e

1

2 c

0

and c

0

`

1

e

2

. By the de�nition of an LES-morphism we then

have f(c

0

) `

2

f(e

2

) and so f(e

2

) 62 f(c

0

) by (E2), and f(e

1

) 2 f(c

0

). 2

5.3. EQUIVALENCE OF PRIME INTERVALS 101

Secondly, LES-morphisms are behaviour-preserving with respect to step �ring se-

quences.

Lemma 5.2.8

Let f be an LES-morphism from ES

1

= (E

1

; C

1

;`

1

) to ES

2

= (E

2

; C

2

;`

2

). Then

f(SFS

ES

1

) � SFS

ES

2

.

Proof.

Let � 2 SFS

ES

1

. We prove by induction on j�j that f(�) 2 SFS

ES

2

. If � = ; then

this is clear, so assume that there exist �

0

2 SFS

ES

1

and ; 6= u 2 P

F

(E

1

) such that � =

�

0

u. Then alph(�

0

) `

1

u. Hence f(alph(�

0

)) `

2

f(u) because f is an LES-morphism.

Since f(�

0

) 2 SFS

ES

2

by the induction hypothesis and f(alph(�

0

)) = alph(f(�

0

)) this

implies that f(�

0

)f(u) = f(�) 2 SFS

ES

2

. 2

5.3 Equivalence of Prime Intervals

In this section a new equivalence relation over prime intervals is de�ned. This equiva-

lence relation will be used in Section 5.4 for de�ning a map from Petri nets to L-event

structures. In this section the equivalence relation is used for de�ning the unique

occurrence property of L-event structures.

For a 1-safe Petri net the events in its associated prime event structure can be ex-

tracted from the M-trace behaviour as equivalence classes of sequential prime intervals.

The equivalence of sequential prime intervals is then determined by the \diamonds"

formed by concurrent steps in the M-trace behaviour. This construction ensures that

the prime event structure associated with a 1-safe Petri net is deterministic in the sense

that at each con�guration di�erent enabled events correspond to di�erent transitions

of the Petri net.

For general Petri nets, a similar approach with L-traces instead of M-traces does

not work. Consider, e.g., the L-trace behaviour of the Petri net N

6

as depicted in

Figure 4.5. Then all prime intervals corresponding to a are connected by diamonds, and

also all prime intervals corresponding to b are connected by diamonds. Now consider

the Petri net N

10

depicted in Figure 5.4 together with its L-trace behaviour. This Petri

net has a transition d added so that d can only occur if both a and b have occurred, but

c has not yet occurred. The two prime intervals corresponding to d are not connected

by diamonds so they would correspond to di�erent events. On the other hand, the

history of both occurrences is the same because the prime intervals corresponding to

a are equivalent and the prime intervals corresponding to b are equivalent. This then

leads to non-determinism in the sense that at the con�guration corresponding to this

history two di�erent events are enabled, while both correspond to the same transition

d of the Petri net.

The above considerations lead us to consider in this section a new equivalence rela-

tion over prime intervals. The equivalence relation we will use to identify occurrences

of a transition is, like condition (S1) in Section 5.1, still based on the diamond property

of concurrency. But instead of lifting simply the M-trace equivalence of (S2), used to

102 CHAPTER 5. AN EVENT STRUCTURE SEMANTICS FOR PETRI NETS

c

a

b

d

s2

s6

s3

s
4

s1

s5

[0]

[a] [b]

[c]

[ba]

[ac] [bc]

[abc][abd] [bad]

[ab]

Figure 5.4: The Petri net N

10

with its L-trace behaviour

identify transition occurrences with equivalent histories, to the level of L-trace equiv-

alence, we have to follow a more complicated approach. The idea is still to identify

transition occurrences with equivalent histories. But now it is taken into account that

this equivalence may not be a direct consequence of concurrency of some events in

these histories, but caused by possible concurrency in another context. In Section 5.4

this equivalence relation is then used for de�ning an event structure semantics for Petri

nets.

The equivalence relation is here however not de�ned in terms of the (multiset)

�ring sequences of Petri nets, but rather in the abstract setting of step sequences,

because the same equivalence relation is also used in this section for de�ning the

crucial unique occurrence property of L-event structures. Whereas in general an event

in an L-event structure may have di�erent (non-equivalent) occurrences, the unique

occurrence property states that there is a bijection between the events in an L-event

structure and their occurrences. In other words, each event has a unique occurrence.

5.3. EQUIVALENCE OF PRIME INTERVALS 103

Instead of using sequential prime intervals as in Section 5.1, we use here prime

intervals with respect to step sequences.

In order to de�ne the equivalence relation, let X be an alphabet and let L �

(P

F

(X))

+

be a set of step sequences satisfying the following two conditions.

(L1) �u 2 L) � 2 L.

(L2) �u 2 L) 8v � u: �v(u� v) 2 L.

The set of prime intervals of L, denoted by PI

L

, is given by:

PI

L

= f�a j �a 2 Lg:

Let int

L

: L ! P

F

(PI) be the function which maps each step sequence to the set of

prime intervals in that sequence. Thus int

L

is given inductively by:

� int

L

(;) = ;

� int

L

(�u) = int

L

(�) [f�a j a 2 ug.

Note that int

L

is well-de�ned, because if �u 2 L, then also � 2 L by (L1) and �a 2 L

for all a 2 u by (L2) and (L1). If L is clear from the context, then we may omit the

subscript

L

in PI

L

and int

L

.

Our desired equivalence relation over prime intervals should be L-consistent in the

sense that it identi�es prime intervals which are connected by concurrent steps and

that it identi�es prime intervals with the same history.

Given an arbitrary equivalence relation R � PI � PI , let for �a 2 PI , h�ai

R

be

the equivalence class (under R) containing �a, that is

h�ai

R

= f�

0

a

0

2 PI j �

0

a

0

R�ag:

Furthermore, let past

R

: L! P

F

(PI=R), the function which maps each step sequence

to the set of equivalence classes of prime intervals in that sequence, be given by:

past

R

(�) = fh�

0

ai

R

j �

0

a 2 int(�)g:

De�nition 5.3.1

Let X be an alphabet and let L � (P

F

(X))

+

be a set of step sequences satisfying

(L1) and (L2). Then an equivalence relation R � PI �PI is L-consistent if it satis�es

the following conditions.

(C1) (�u 2 L and a 2 u)) �aR �(u� a)a.

(C2) �a; �

0

a 2 PI) (past

R

(�) = past

R

(�

0

)) �aR�

0

a). 2

Note that the condition (C1) in the above de�nition is well-de�ned, because when-

ever �u 2 L and a 2 u, then by (L2) �a(u� a); �(u� a)a 2 L and hence by (L1) also

�a 2 L.

The condition (C2) demands that prime intervals �a; �

0

a which have R-equivalent

pasts in the sense that the same R-equivalent prime intervals occur in � and �

0

, should

in turn be R-equivalent.

In general there may be in�nitelymany equivalence relations which are L-consistent.

104 CHAPTER 5. AN EVENT STRUCTURE SEMANTICS FOR PETRI NETS

Lemma 5.3.2

Let X be an alphabet, let L � (P

F

(X))

+

be a set of step sequences satisfying (L1)

and (L2), and let K = fR � PI � PI j R is an L-consistent equivalence relation g.

Then K 6= ; and

T

K 2 K.

Proof.

Since PI �PI is clearly an equivalence relation which is L-consistent, we have that

K 6= ;.

Now let

^

R =

T

K. Then it is clear that

^

R is an equivalence relation. Suppose

�u 2 L and a 2 u. Then �aR �(u � a)a for all R 2 K because each R 2 K satis�es

(C1). Hence also �a

^

R�(u� a)a.

In order to prove that

^

R satis�es (C2), let �a; �

0

a 2 PI be such that past

^

R

(�) =

past

^

R

(�

0

). It su�ces to prove that past

R

(�) = past

R

(�

0

) for every R 2 K. Because in

that case �aR �

0

a for every R 2 K and hence �a

^

R�

0

a.

So, let R 2 K and suppose h�

1

a

1

i

R

2 past

R

(�). Then there exists �

2

a

2

2 int(�)

such that h�

1

a

1

i

R

= h�

2

a

2

i

R

. We then also have that h�

2

a

2

i

^

R

2 past

^

R

(�) = past

^

R

(�

0

).

Then there exists �

3

a

3

2 int(�

0

) such that h�

2

a

2

i

^

R

= h�

3

a

3

i

^

R

. Hence also h�

3

a

3

i

R

2

past

R

(�

0

). Moreover, h�

2

a

2

i

R

= h�

3

a

3

i

R

because

^

R � R. This proves that h�

1

a

1

i

R

2

past

R

(�

0

). Similarly it can be proved that past

R

(�

0

) � past

R

(�).

This proves that past

R

(�) = past

R

(�

0

) for all R 2 K. 2

Given an alphabet X and a set of step sequences L � (P

F

(X))

+

satisfying (L1)

and (L2), there exists by the above lemma a least equivalence relation contained in

PI �PI which is L-consistent. This equivalence relation is denoted by

^

R in the proof

of Lemma 5.3.2.

De�nition 5.3.3

Let X be an alphabet, let L � (P

F

(X))

+

be a set of step sequences satisfying (L1)

and (L2). Then �

L

� PI � PI is the least equivalence relation which is L-consistent.

2

In what follows we write h�ai

L

and past

L

rather than h�ai

�

L

and past

�

L

respec-

tively. If �

L

is the only equivalence relation under consideration, then we may even

omit the subscript

L

.

Lemma 5.3.4

Let X be an alphabet, let L � (P

F

(X))

+

be a set of step sequences satisfying (L1)

and (L2), and let �

1

a

1

; �

2

a

2

2 PI be such that �

1

a

1

�

L

�

2

a

2

. Then

(1) a

1

= a

2

and num

a

1

(�

1

) = num

a

2

(�

2

)

(2) �

1

a

1

�

L

0

�

2

a

2

whenever L

0

� (P

F

(X))

+

is such that L

0

satis�es (L1) and (L2)

and L � L

0

.

5.3. EQUIVALENCE OF PRIME INTERVALS 105

Proof.

In order to prove (1), de�ne the equivalence relation R � PI �PI by: �aR �

0

a

0

i�

a = a

0

and num

a

(�) = num

a

0

(�

0

). It is su�cient to prove that R is L-consistent. Then

the required result follows from the fact that �

L

� R.

Clearly, R satis�es (C1). Let �a; �

0

a 2 PI be such that past

R

(�) = past

R

(�

0

). We

�rst want to argue that num

a

(�

0

) � num

a

(�). If num

a

(�) = 0 then this is trivial,

so assume that num

a

(�) > 0. Then there exists �

1

a 2 int(�) such that num

a

(�

1

) =

num

a

(�) � 1. Then h�

1

ai

R

2 past

R

(�) = past

R

(�

0

). Hence there exists �

2

a 2 int(�

0

)

such that h�

1

ai

R

= h�

2

ai

R

which implies that num

a

(�

1

) = num

a

(�

2

). We now have

num

a

(�

0

) � num

a

(�

2

) + 1 = num

a

(�

1

) + 1 = num

a

(�). Similarly we can prove that

num

a

(�

0

) � num

a

(�) and thus num

a

(�) = num

a

(�

0

). Consequently �aR �

0

a which

implies that R satis�es (C2).

Now in order to prove (2), let L

0

� (P

F

(X))

+

be such that L � L

0

and L

0

satis�es

(L1) and (L2).

De�ne the equivalence relation R � PI

L

� PI

L

by: �aR �

0

a

0

i� �a �

L

0

�

0

a

0

. It is

su�cient to prove that R is L-consistent because then �

L

� R.

Clearly, R satis�es (C1). In order to prove (C2), let �a; �

0

a 2 PI

L

be such that

past

R

(�) = past

R

(�

0

). It is su�cient to show that past

L

0

(�) = past

L

0

(�

0

), because �

L

0

satis�es (C2).

Let h�

3

a

3

i

L

0

2 past

L

0

(�). Then there exists �

4

a

4

2 int

L

0

(�) = int

L

(�) with

h�

3

a

3

i

L

0

= h�

4

a

4

i

L

0

. Then also h�

4

a

4

i

R

2 past

R

(�) = past

R

(�

0

). Hence there ex-

ists �

5

a

5

2 int

L

(�

0

) = int

L

0

(�

0

) with h�

4

a

4

i

R

= h�

5

a

5

i

R

. Then �

4

a

4

�

L

0

�

5

a

5

by the

de�nition of R. Moreover, h�

5

a

5

i

L

0

2 past

L

0

(�

0

). This proves that h�

3

a

3

i

L

0

2 past

L

0

(�

0

).

Similarly it can be proved that past

L

0

(�

0

) � past

L

0

(�) and thus past

L

0

(�) = past

L

0

(�

0

).

2

By Lemma 5.1.2, the events associated with a 1-safe Petri net can occur at most

once in a �ring sequence. For the equivalence classes of �

L

we have a similar result.

Lemma 5.3.5

Let X be an alphabet, let L � (P

F

(X))

+

be a set of step sequences satisfying (L1)

and (L2), and let �a 2 PI . Then h�ai

L

62 past

L

(�).

Proof.

Assume to the contrary that h�ai

L

2 past

L

(�). Then there exists �

0

a

0

2 int(�)

with �a �

L

�

0

a

0

. Then by Lemma 5.3.4(1), a = a

0

and num

a

(�) = num

a

0

(�

0

). On the

other hand, �

0

a

0

2 int(�) implies that num

a

0

(�

0

) < num

a

0

(�), a contradiction. Hence

we must have that h�ai

L

62 past

L

(�). 2

To conclude this section we now use the equivalence relation �

L

to de�ne the

unique occurrence property for L-event structures. This unique occurrence property

states that for each L-event structure ES satisfying this property and for each event

of this L-event structure, all occurrences of this event are essentially the same. By

the following lemma, which follows immediately from the de�nition of the set of step

�ring sequences of an L-event structure, we may indeed use the equivalence relation

�

SFS

ES

.

106 CHAPTER 5. AN EVENT STRUCTURE SEMANTICS FOR PETRI NETS

Lemma 5.3.6

Let ES = (E;C;`) be an L-event structure. Then SFS

ES

� (P

F

(E))

+

satis�es the

conditions (L1) and (L2). 2

Hence given an L-event structure ES we have the equivalence relation �

SFS

ES

. In

what follows we write PI

ES

, int

ES

, �

ES

, h�ei

ES

, and past

ES

rather than PI

SFS

ES

,

int

SFS

ES

, �

SFS

ES

, h�ei

�

ES

, and past

�

ES

respectively.

The unique occurrence property of local event structures is now de�ned in terms

of the equivalence relation �

ES

.

De�nition 5.3.7

An L-event structure ES = (E;C;`) has the unique occurrence property if

(U1) 8e 2 E:9�e 2 PI

ES

(U2) 8�

1

e; �

2

e 2 PI

ES

: �

1

e �

ES

�

2

e. 2

From now on L-event structures satisfying the unique occurrence property will be

referred to as UL-event structures.

The condition (U1) guarantees that each event of an UL-event structure ES has

at least one occurrence, while condition (U2) states that all occurrences of an event

are the same (under �

ES

). Thus for a UL-event structure ES there exists a bijective

correspondence between its events and the equivalence classes of its prime intervals

under �

ES

.

As the following lemma shows, the unique occurrence property is preserved under

LES-isomorphisms.

Lemma 5.3.8

Let ES

i

, i = 1; 2, be a pair of L-event structures such that ES

1

� ES

2

. Then ES

1

has the unique occurrence property i� ES

2

has the unique occurrence property.

Proof.

Follows easily from Lemma 5.2.8. 2

Example 5.3.9

From the L-event structures from Example 5.2.2, ES

1

is not an UL-event structure.

Both ES

2

and ES

3

are UL-event structures. In ES

3

, bc �

ES

3

c and cb �

ES

3

b by (C1),

and hence past

ES

3

(bc) = past

ES

3

(cb). This implies that bca �

ES

3

cba by (C2). Then

a �

ES

3

ca �

ES

3

cba �

ES

3

bca �

ES

3

ba by (C1). Similarly, b �

ES

3

ab, and hence

past

ES

3

(ab) = past

ES

3

(ba). Now abd �

ES

3

bad by (C2), even though fa; bg is not

enabled at ;. 2

5.4. L-EVENT STRUCTURES AND PETRI NETS 107

5.4 L-Event Structures and Petri Nets

In this section we show how an L-event structure can be associated with every Petri

net. The construction is based on the equivalence relation �

SFS

N

de�ned in Section 5.3

over the prime intervals PI

SFS

N

= f�t j �t 2 SFS

N

g associated with the set SFS

N

of

step �ring sequences of a Petri net N . Note that SFS

N

satis�es the conditions (L1)

and (L2) from Section 5.3 which implies that �

SFS

N

can be de�ned. Since associating

an L-event structure with a Petri net N is done on the basis of SFS

N

rather than

MFS

N

, possible auto-concurrency in N is not taken into account. In this sense our

event structure semantics is restricted. In Section 5.7 and Section 5.8 we will say more

about this restriction.

In what follows we write PI

N

, int

N

, �

N

, h�ti

N

, and past

N

rather than PI

SFS

N

,

int

SFS

N

, �

SFS

N

, h�ti

�

N

, and past

�

N

, respectively.

Using these notions we �rst de�ne for each Petri net N an L-event structure nu(N).

Then we prove that nu(N) satis�es the unique occurrence property de�ned in Sec-

tion 5.3 and is thus an UL-event structure.

De�nition 5.4.1

Let N be a Petri net. Then nu(N) = (E;C;`) where

� E = fh�ti

N

j �t 2 PI

N

g

� C = fpast

N

(�) j � 2 SFS

N

g

� `� C � P

F

(E) is given by:

c ` u, 9�v 2 SFS

N

: (past

N

(�) = c and u = fh�ti

N

j t 2 vg):

2

Lemma 5.4.2

Let N be a Petri net. Then nu(N) = (E;C;`) is an L-event structure.

Proof.

Let ; 6= ĉ 2 C. Then there exists �u 2 SFS

N

such that u 6= ; and ĉ = past

N

(�u).

Let t 2 u. Then �(u�t)t 2 SFS

N

. Hence past

N

(�(u�t)) ` h�(u�t)ti

N

. By condition

(C1) we have that �t �

N

�(u � t)t. Then h�ti

N

62 past

N

(�(u � t)) by Lemma 5.3.5.

Hence past

N

(�(u � t)) = past

N

(�u) � h�ti

N

and thus ĉ � h�ti

N

` h�ti

N

. This proves

that nu(N) satis�es (E0).

Since �; 2 SFS

N

for all � 2 SFS

N

, we have that ĉ ` ;, for all ĉ 2 C, and so nu(N)

also satis�es (E1).

Let ĉ 2 C and û 2 P

F

(E) be such that ĉ ` û. Let �u 2 SFS

N

be such that

past

N

(�) = ĉ and û = fh�ti

N

j t 2 ug. Then ĉ \ û = ; by Lemma 5.3.5. Now let

v̂ � û. Let v � u be such that v̂ = fh�ti

N

j t 2 vg. Then �v(u� v) 2 SFS

N

. Hence

ĉ ` v̂ and ĉ [v̂ ` fh�vti

N

j t 2 u � vg. For all t 2 u � v; �(v [t) 2 SFS

N

and so by

condition (C1), �t �

N

�vt. Therefore fh�vti

N

j t 2 u� vg = û� v̂. This proves that

nu(N) satis�es (E2). 2

108 CHAPTER 5. AN EVENT STRUCTURE SEMANTICS FOR PETRI NETS

a

b

d

o

{ < a > } { < b > }

{ < a >,< ab >,< abd > }

{ < a >,< ab > }

{ < b >,< ba >,< bad > }

{ < b >,< ba > }

a

b

d

o

{ < a > } { < b > }

{ < a >,< b > }

{ < a >,< b >,< abd > }

Figure 5.5: The 1-safe Petri nets N

3

and N

4

with their associated L-event structures

Example 5.4.3

In Figure 5.5 the 1-safe Petri nets N

3

and N

4

are depicted together with the L-

event structures nu(N

3

) and nu(N

4

). The L-event structure nu(N

3

) has six events,

for each of which there exists exactly one equivalence class of prime intervals (under

�

nu(N

3

)

). Hence nu(N

3

) has the unique occurrence property. Also in nu(N

4

) there is

a bijective correspondence between its set of events and its set of equivalence classes

of prime intervals: both consist of three elements.

Let N

10

be the Petri net depicted in Figure 5.4. The L-event structure nu(N

10

)

is ES

3

from Example 5.2.2 (where the unique equivalence class corresponding to each

transition has been replaced by the transition itself). Thus, also nu(N

10

) has the

unique occurrence property. 2

The L-event structures associated with the Petri nets in Example 5.4.3 all have

the unique occurrence property. Now we turn to the proof that for any Petri net N ,

the L-event structure nu(N) = (E;C;`) has the unique occurrence property. First it

is shown how the set of step �ring sequences of nu(N) can be derived from the set of

step �ring sequences of N by means of a function seq

N

which associates with every

step �ring sequence of N a step sequence over E.

5.4. L-EVENT STRUCTURES AND PETRI NETS 109

De�ne the function seq

N

: SFS

N

! (P

F

(E))

+

inductively by:

� seq

N

(;) = ;

� seq

N

(�u) = seq

N

(�)fh�ti

N

j t 2 ug.

If the Petri net N is clear from the context, then we may omit the subscript

N

in seq

N

.

Lemma 5.4.4

Let N = (S; T;W;M

in

) be a Petri net. Then seq(SFS

N

) = SFS

nu(N)

.

Proof.

Let nu(N) = (E;C;`). Let � 2 SFS

N

. We prove that seq(�) 2 SFS

nu(N)

and

cf (seq(�)) = past

N

(�) by induction on j�j. If � = ; then this is clear, so assume

that � = �

0

u with �

0

2 SFS

N

and ; 6= u 2 P

F

(T). By the induction hypothesis

seq(�

0

) 2 SFS

nu(N)

and cf (seq(�

0

)) = past

N

(�

0

). We also have, by the de�nition of

`, that past

N

(�

0

) ` û where û = fh�

0

ti

N

j t 2 ug. Hence seq(�

0

)û 2 SFS

nu(N)

and

cf (seq(�

0

)û) = past

N

(�

0

) [û. Since seq(�

0

)û = seq(�) and past

N

(�

0

) [û = past

N

(�),

we can now conclude that seq(�) 2 SFS

nu(N)

and cf (seq(�)) = past

N

(�).

Now let �̂ 2 SFS

nu(N)

. We prove by induction on j�̂j that there exists � 2 SFS

N

with seq(�) = �̂ and past

N

(�) = alph(�̂). If �̂ = ; then � = ; is as required, so

assume that �̂ =

^

�

0

û with

^

�

0

2 SFS

nu(N)

and ; 6= û 2 P

F

(E). By the induction

hypothesis there exists �

0

2 SFS

N

such that seq(�

0

) =

^

�

0

and past

N

(�

0

) = alph(

^

�

0

).

Since past

N

(�

0

) ` û there exist �

1

2 SFS

N

and u 2 P

F

(T) such that �

1

u 2 SFS

N

,

past

N

(�

1

) = past

N

(�

0

), and û = fh�

1

ti

N

j t 2 ug. From past

N

(�

1

) = past

N

(�

0

) and

Lemma 5.3.4(1) it easily follows that num

t

(�

1

) = num

t

(�

0

) for all t 2 T and hence

�

1

and �

0

lead to the same marking. Then we know from �

1

u 2 SFS

N

that also

�

0

u 2 SFS

N

. Moreover, h�

1

ti

N

= h�

0

ti

N

for all t 2 u by condition (C2). Hence

seq(�

0

u) = seq(�

0

)fh�

0

ti

N

j t 2 ug =

^

�

0

û and past

N

(�

0

u) = past

N

(�

0

) [fh�

0

ti

N

j t 2

ug = alph(

^

�

0

) [û = alph(

^

�

0

û). 2

The above lemma allows us to characterize int

nu(N)

, the function associating with

each step �ring sequence of nu(N) its set of prime intervals, as follows.

Lemma 5.4.5

Let N = (S; T;W;M

in

) be a Petri net and let � 2 SFS

N

. Then

int

nu(N)

(seq(�)) = fseq(�

0

)h�

0

ti

N

j �

0

t 2 int

N

(�)g:

Proof.

If � = ; then the claim trivially holds, so assume that � = �

1

u with �

1

2 SFS

N

and

; 6= u 2 P

F

(T) and suppose that int

nu(N)

(seq(�

1

)) = fseq(�

0

)h�

0

ti

N

j �

0

t 2 int

N

(�

1

)g.

Then int

nu(N)

(seq(�)) = int

nu(N)

(seq(�

1

)) [fseq(�

1

)

^

t j

^

t 2 fh�

1

ti

N

j t 2 ugg =

fseq(�

0

)h�

0

ti

N

j �

0

t 2 int

N

(�)g. 2

110 CHAPTER 5. AN EVENT STRUCTURE SEMANTICS FOR PETRI NETS

Lemma 5.4.4 implies a close relationship between the prime intervals of a Petri net

N and the prime intervals of nu(N):

PI

nu(N)

= fseq(�)h�ti

N

j �t 2 PI

N

g:

Using Lemma 5.4.4 and Lemma 5.4.5 it is shown next that there is also a strong cor-

respondence between the equivalence classes of prime intervals under �

N

and �

nu(N)

.

Lemma 5.4.6

Let N be a Petri net and let �

1

t

1

; �

2

t

2

2 PI

N

. Then

�

1

t

1

�

N

�

2

t

2

, seq(�

1

)h�

1

t

1

i

N

�

nu(N)

seq(�

2

)h�

2

t

2

i

N

:

Proof.

If seq(�

1

)h�

1

t

1

i

N

�

nu(N)

seq(�

2

)h�

2

t

2

i

N

, then by Lemma 5.3.4(1) h�

1

t

1

i

N

= h�

2

t

2

i

N

.

In order to prove the implication in the other direction, assume that h�

1

t

1

i

N

=

h�

2

t

2

i

N

. De�ne the equivalence relation R � PI

N

� PI

N

by: �tR�

0

t

0

i�

seq(�)h�ti

N

�

nu(N)

seq(�

0

)h�

0

t

0

i

N

. Suppose that R is SFS

N

-consistent. Since �

N

is

the least equivalence relation which is SFS

N

-consistent it follows that �

N

� R. Hence

�

1

t

1

R�

2

t

2

and thus, by the de�nition of R, seq(�

1

)h�

1

t

1

i

N

�

nu(N)

seq(�

2

)h�

2

t

2

i

N

.

In order to prove thatR satis�es (C1), suppose �u 2 SFS

N

and t 2 u. Since�

N

sat-

is�es (C1), we have h�ti

N

= h�(u�t)ti

N

. We also have, by Lemma 5.4.4, that seq(�u) 2

SFS

nu(N)

. Combining this with �

nu(N)

satis�es (C1) leads to seq(�)h�ti

N

�

nu(N)

seq(�)(û�h�ti

N

)h�ti

N

where û = fh�t

0

i

N

j t

0

2 ug, because . Since seq(�)(û�h�ti

N

) =

seq(�(u � t)), we can now conclude by the de�nition of R that �tR �(u � t)t. This

proves that R satis�es (C1).

Now suppose �t; �

0

t 2 PI

N

are such that past

R

(�) = past

R

(�

0

). In order to

prove that �tR �

0

t, we must show that seq(�)h�ti

N

�

nu(N)

seq(�

0

)h�

0

ti

N

. Because

�

nu(N)

satis�es (C2), it su�ces to prove that past

nu(N)

(seq(�)) = past

nu(N)

(seq(�

0

))

and h�ti

N

= h�

0

ti

N

.

First we prove that past

nu(N)

(seq(�)) = past

nu(N)

(seq(�

0

)). Suppose h�̂

1

^

t

1

i

nu(N)

2

past

nu(N)

(seq(�)). Then there exists �̂

3

^

t

3

2 int(seq(�)) such that h�̂

1

^

t

1

i

nu(N)

=

h�̂

3

^

t

3

i

nu(N)

. By Lemma 5.4.5 there exists �

3

t

3

2 int (�) such that �̂

3

^

t

3

= seq(�

3

)h�

3

t

3

i

N

.

Then h�

3

t

3

i

R

2 past

R

(�) = past

R

(�

0

). Hence there exists �

4

t

4

2 int(�

0

) such that

h�

3

t

3

i

R

= h�

4

t

4

i

R

. Then, again by Lemma 5.4.5, seq(�

4

)h�

4

t

4

i

N

2 int(seq(�

0

)). More-

over, �̂

3

^

t

3

�

nu(N)

seq(�

4

)h�

4

t

4

i

N

by the de�nition of R. Hence h�̂

1

^

t

1

i

nu(N)

=

hseq(�

4

)h�

4

t

4

i

N

i

nu(N)

2 past

nu(N)

(seq(�

0

)). This proves that past

nu(N)

(seq(�)) �

past

nu(N)

(seq(�

0

)). By a symmetric argument we can show that past

nu(N)

(seq(�

0

)) �

past

nu(N)

(seq(�)) and thus past

nu(N)

(seq(�)) = past

nu(N)

(seq(�

0

)).

In order to prove that h�ti

N

= h�

0

ti

N

, it su�ces to prove that past

N

(�) = past

N

(�

0

)

because �

N

satis�es (C2). Let h�

3

t

3

i

N

2 past

N

(�). Then there exists �

4

t

4

2 int(�)

such that h�

3

t

3

i

N

= h�

4

t

4

i

N

. By Lemma 5.4.5 we now have that �̂

4

^

t

4

2 int(seq(�))

where �̂

4

= seq(�

4

) and

^

t

4

= h�

4

t

4

i

N

. Hence h�̂

4

^

t

4

i

nu(N)

2 past

nu(N)

(seq(�)) =

past

nu(N)

(seq(�

0

)). Then there exists �̂

5

^

t

5

2 int (seq(�

0

)) such that h�̂

4

^

t

4

i

nu(N)

=

h�̂

5

^

t

5

i

nu(N)

. By Lemma 5.3.4(1),

^

t

4

=

^

t

5

. By Lemma 5.4.5 there exists �

5

t

5

2 int(�

0

)

such that �̂

5

= seq(�

5

) and

^

t

5

= h�

5

t

5

i

N

. Then

^

t

5

2 past

N

(�

0

), and so h�

3

t

3

i

N

=

5.5. PN-EVENT STRUCTURES 111

^

t

4

=

^

t

5

2 past

N

(�

0

). This proves that past

N

(�) � past

N

(�

0

). Similarly we have that

past

N

(�

0

) � past

N

(�) and thus past

N

(�) = past

N

(�

0

).

This �nishes the proof that R satis�es (C2). We can conclude that

seq(�

1

)h�

1

t

1

i

N

�

nu(N)

seq(�

2

)h�

2

t

2

i

N

. 2

This leads to the desired result that for each Petri net N , nu(N) has the unique

occurrence property.

Theorem 5.4.7

Let N = (S; T;W;M

in

) be a Petri net. Then nu(N) is an UL-event structure.

Proof.

By Lemma 5.4.2, nu(N) is an L-event structure. We must verify that nu(N) sat-

is�es the conditions (U1) and (U2) speci�ed in the de�nition of the unique occurrence

property.

Let nu(N) = (E;C;`). If h�ti

N

2 E then �t 2 SFS

N

and hence past

N

(�) ` h�ti

N

.

Hence nu(N) satis�es (U1). Now in order to prove (U2), let �̂

1

^

t

1

; �̂

2

^

t

2

2 PI

nu(N)

be

such that

^

t

1

=

^

t

2

. By Lemma 5.4.4 there exist �

1

; �

2

2 SFS

N

and t

1

; t

2

2 T such that

�

1

t

1

; �

2

t

2

2 SFS

N

, �̂

1

= seq(�

1

), �̂

2

= seq(�

2

),

^

t

1

= h�

1

t

1

i

N

, and

^

t

2

= h�

2

t

2

i

N

. Since

^

t

1

=

^

t

2

we then have by Lemma 5.4.6, that �̂

1

^

t

1

�

nu(N)

�̂

2

^

t

2

. 2

One of the reasons for giving an event structure semantics for Petri nets is that we

want to distinguish between di�erent occurrences of transitions in a Petri net. The fact

proved in Theorem 5.4.7 that the L-event structures yielded by nu have the unique

occurrence property ensures that in the L-event structure associated with a Petri net

the transition occurrences cannot be distinguished any further.

To conclude this section we give the event structure semantics for one of our running

examples.

Example 5.4.8

In Figure 5.6 the UL-event structure associated with the Petri net N

1

is depicted.

After each event representing an occurrence of a, both an event representing the oc-

currence of b and an event representing the occurrence of c are enabled. Whereas all

events representing occurrences of b are di�erent, due to conicts in the Petri net, the

events representing occurrences of c are the same. 2

5.5 PN-Event Structures

In [66] it is not only shown how to associate a prime event structure with each 1-safe

Petri net, but also a map from prime event structures to 1-safe Petri nets is given.

Our aim is to lift this construction also here; in other words, to set up a map from

UL-event structures to Petri nets. It turns out that the construction we have in mind

works for all L-event structures. Hence we construct a map from L-event structures

to Petri nets.

The map from L-event structures to Petri nets is used in the proof of the main

result of this section which states that all UL-event structures can be obtained (up

112 CHAPTER 5. AN EVENT STRUCTURE SEMANTICS FOR PETRI NETS

ca

b

o

{<a>}

{<a>,<aa>}

{}

{<a>,<ab>}

{<a>,<aa>,<aab>}

{<a>,<ac>}

{<a>,<aa>,<aac>}

{<a>,<ab>,<abc>}

{<a>,<aa>,<aab>,<aabc>}

.
..

{<a>,<aa>,<aab>,<aabc>,<aabcc>}

.
..

.
..

{<a>,<aa>,<aac>,<aacc>}

Figure 5.6: The Petri net N

1

with its associated L-event structure

to isomorphism) from Petri nets through the map nu. Hence the class of L-event

structures yielded by Petri nets is exactly the class of UL-event structures. Thus

whereas for the PN-transition systems and the PN-trace languages regional axioms

are needed for their characterization, for L-event structures the unique occurrence

property su�ces to characterize the PN-event structures.

De�nition 5.5.1

An L-event structure ES is a PN-event structure if there exists a Petri net N such

that ES � nu(N). 2

Given a prime event structure (E;�;#), the causality relation � and the conict

relation # make it possible in [66] to quickly manufacture a suitable set of places.

It is then easy to associate, in a canonical way, a 1-safe Petri net with each prime

event structure. In the setting of general Petri nets, it is far from clear what causality,

concurrency, and conict could mean. Fortunately, we can use again the regional

5.5. PN-EVENT STRUCTURES 113

construction as de�ned in Section 3.2 by representing L-event structures as multiset

transition systems.

Let ES = (E;C;`) be an L-event structure. Then de�ne the multiset transition

system et(ES) = (C;E;�!

ES

; ;) where (C;E;�!

ES

) is the multiset transition dia-

gram associated with ES as de�ned in Section 5.2. Recall that �!

ES

� C�P

F

(E)�C

is given by:

c

u

�!

ES

c

0

, (c ` u and c

0

= c [u):

Thus we can speak now of the regions of ES . So a region of ES is a function

r : C [E ! N [(N�N) satisfying the following conditions.

(1) 8c 2 C: r(c) 2 N and 8e 2 E: r(e) 2 N�N.

(2) c ` u) (r(c) �

P

e2u

r

e and r(c [u) = r(c) +

P

e2u

(e

r

�

r

e)).

From now on we write R

ES

instead of R

et(ES)

.

De�nition 5.5.2

The map en from L-event structures to Petri nets is given by en = tn � et . Hence

en(ES) = (R

ES

; E;W;M

in

) where

� W : (R

ES

� E) [(E �R

ES

)!N is such that

8r 2 R

ES

:8e 2 E: (W (r; e) =

r

e and W (e; r) = e

r

)

� M

in

: R

ES

! N is such that

8r 2 R

ES

:M

in

(r) = r(;):

2

The following lemma shows that en(ES) has the same step �ring sequences as ES .

Moreover, it turns out that MFS

en(ES)

= SFS

en(ES)

and so en(ES) is a co-safe Petri

net. While it easily follows that SFS

ES

� SFS

en(ES)

, the converse inclusion requires a

more complicated proof showing that ES has enough regions to prevent the existence

of \wrong" step �ring sequences in SFS

en(ES)

.

Lemma 5.5.3

Let ES = (E;C;`) be an L-event structure. Then SFS

ES

= MFS

en(ES)

=

SFS

en(ES)

.

Proof.

Let en(ES) = (R

ES

; E;W;M

in

). Let for each e 2 E the function r

e

: C [E !

N [(N�N) be given by:

(1) 8e

0

2 E: r

e

(e

0

) =

(

(1; 1) if e

0

= e

(0; 0) otherwise

(2) 8c 2 C: r

e

(c) = 1.

114 CHAPTER 5. AN EVENT STRUCTURE SEMANTICS FOR PETRI NETS

Then each r

e

is a non-trivial region of ES , and so it is clear that MFS

en(ES)

=

SFS

en(ES)

.

Suppose � 2 SFS

ES

. Then ;

�

�!

ES

. This implies by Lemma 3.2.7(2) that � 2

MFS

en(ES)

= SFS

en(ES)

.

Conversely, suppose that � 2 SFS

en(ES)

. We prove by induction on j�j that � 2

SFS

ES

and, for all r 2 R

ES

, M

�

(r) = r(alph(�)). If � = ; then this is clear, so

assume that � = �

0

u with �

0

2 SFS

en(ES)

and ; 6= u 2 P

F

(E). By the induction

hypothesis �

0

2 SFS

ES

and, for all r 2 R

ES

, M

�

0

(r) = r(alph(�

0

)). We �rst prove that

alph(�

0

) \ u = ;.

Suppose e 2 alph(�

0

). Then de�ne rhei : C [E !N [(N�N) as follows.

(1) 8e

0

2 E: rhei(e

0

) =

(

(1; 0) if e

0

= e

(0; 0) otherwise.

(2) 8c 2 C: rhei(c) =

(

0 if e 2 c

1 otherwise.

Claim 1. rhei 2 R

ES

.

Let us assume that Claim 1 holds. Then we have M

�

0

(rhei) = rhei(alph(�

0

)) = 0. In

addition we know that W (rhei; e) = 1 and, because �

0

u 2 SFS

en(ES)

, we also know

that M

�

0

(rhei) �

P

e

0

2u

W (rhei; e

0

). All this leads to the conclusion that e 62 u. This

proves that alph(�

0

) \ u = ;.

Now we observe that � = �

0

u 2 SFS

ES

if alph(�

0

) ` u. So denote c = alph(�

0

) and

assume that c ` u does not hold. This leads to a contradiction as we show next.

De�ne rhu; ci : C [E !N [(N�N) as follows.

(1) 8e 2 E: rhu; ci(e) =

8

>

<

>

:

(1; 0) if e 2 c

(1; 1) if e 2 u

(0; 1) otherwise.

(2) 8c

0

2 C: rhu; ci(c

0

) = jcj+ juj � 1 +

P

e2c

0

(e

rhu;ci

�

rhu;ci

e).

Claim 2. rhu; ci 2 R

ES

.

Assume that Claim 2 holds. Then M

�

0

(rhu; ci) = rhu; ci(c) = juj � 1 < juj =

P

e2u

rhu;ci

e =

P

e2u

W (rhu; ci; e), a contradiction with �

0

u 2 SFS

en(ES)

. Thus c ` u

and hence � = �

0

u 2 SFS

ES

. Moreover, r(alph(�)) = r(c[u) = r(c)+

P

e2u

(e

r

�

r

e) =

M

�

0

(r) +

P

e2u

(W (e; r)�W (r; e)) = M

�

(r) for all r 2 R

ES

.

Thus if we can prove Claim 1 and Claim 2, then we can conclude that SFS

ES

=

SFS

en(ES)

.

Proof of Claim 1.

To simplify the notation we write r instead of rhei. Suppose c

0

` v. Since c

0

\v = ;

by (E2) we then have that r(c

0

[v) = r(c

0

) � jv \ ej = r(c

0

) +

P

e

0

2v

(e

0r

�

r

e

0

) and

r(c

0

) = r(c

0

[v) + jv \ ej � jv \ ej =

P

e

0

2v

r

e

0

. Hence r is a region of ES which is

clearly non-trivial. This proves Claim 1.

5.5. PN-EVENT STRUCTURES 115

Proof of Claim 2.

In order to simplify the notation, we write r instead of rhu; ci in this proof.

Suppose c

0

2 C and v 2 P

F

(E) are such that c

0

` v. Since c

0

\ v = ; by (E2)

we immediately have that r(c

0

[v) = r(c

0

) +

P

e2v

(e

r

�

r

e). Now we must prove that

r(c

0

) �

P

e2v

r

e.

Let n = jv\ (c[u)j =

P

e2v

r

e. Then we must prove that r(c

0

) � n. Set k = jc

0

\uj

and j = jc

0

\ cj and m = jc

0

\ (E � (c [u))j. Since c \ u = ; and c

0

\ v = ; it

follows that n � jcj + juj � k � j. Moreover, by the de�nition of r, it is clear that

r(c

0

) = jcj+ juj � 1+ k+m� k� j = jcj+ juj � 1+m� j. Hence if m+ k � 1 we are

done. Therefore we assume in the rest of the proof that m = k = 0. In other words,

we assume that c

0

� c. This leads to the equation r(c

0

) = jcj+ juj � 1 � jc

0

j. On the

other hand, n � jcj+ juj � jc

0

j. If n < jcj+ juj � jc

0

j then we at once get r(c

0

) � n. We

now wish to argue that n = jcj+ juj � jc

0

j leads to a contradiction.

To see this, suppose that n = jcj+ juj � jc

0

j. Let v

1

= v \ c and v

2

= v \ u. Then

from c

0

\ v = ; and c

0

� c it follows that v

1

= c� c

0

and v

2

= u. Since c

0

` v we also

have that c

0

` (v

1

[v

2

) by (E2). Again by (E2) we now know that (c

0

[v

1

) ` v

2

. Since

c

0

[v

1

= c and v

2

= u this leads to a contradiction. This proves that n = jcj+ juj� jc

0

j

is not possible, so r(c

0

) � n.

This proves that r is a region of ES . Since u 6= ;, r is also non-trivial. This �nishes

the proof of Claim 2. 2

From the proof of the above lemma it follows that en(ES) is not just a co-safe

Petri net. In fact en(ES) has enough places to ensure that it is a locally sequential

Petri net.

A locally sequential Petri net is a Petri net N = (S; T;W;M

in

) where for each

t 2 T there exists a \private" place s

t

2 S such that M

in

(s

t

) = 1 and, for each x 2 T ,

W (s

t

; x) = W (x; s

t

) = 1 if x = t and W (s

t

; x) = W (x; s

t

) = 0 otherwise.

Thus in a locally sequential Petri net co-safety is guaranteed by purely structural

means.

Recall that our main aim is to associate a Petri net with every UL-event structure.

It turns out that our map en (which acts on all L-event structures), when restricted

to UL-event structures, �ts in very well with the map nu from Petri nets to UL-event

structures given in Section 5.4.

Let ES = (E;C;`) be an UL-event structure with nu(en(ES)) = (

^

E;

^

C;

^

`). De�ne

�

ES

: E !

^

E as follows. Let e 2 E. By the unique occurrence property there exists a

unique equivalence class h�ei

ES

. Now let

�

ES

(e) = h�ei

en(ES)

:

By Lemma 5.5.3, SFS

ES

� SFS

en(ES)

. Hence by Lemma 5.3.4(2), �

ES

(e) is well-

de�ned.

Lemma 5.5.4

Let ES be an UL-event structure. Then �

ES

an LES-isomorphism from ES to

nu(en(ES)) and so ES � nu(en(ES)).

116 CHAPTER 5. AN EVENT STRUCTURE SEMANTICS FOR PETRI NETS

Proof.

Let ES = (E;C;`) and nu(en(ES)) = (

^

E;

^

C;

^

`) and let c 2 C and u 2 P

F

(E).

Suppose c ` u. Let � 2 SFS

ES

be such that alph(�) = c. Then �u 2 SFS

ES

and hence �u 2 SFS

en(ES)

by Lemma 5.5.3. This implies by the de�nition of nu that

past

en(ES)

(�)

^

` û where û = fh�ei

en(ES)

j e 2 ug. In order to prove that �

ES

(c)

^

`�

ES

(u)

we must prove that �

ES

(c) = past

en(ES)

(�) and �

ES

(u) = û.

Suppose e

1

2 c with �

1

e

1

2 PI

ES

such that �

ES

(e

1

) = h�

1

e

1

i

en(ES)

. From e

1

2

alph(�) it follows that there exists �

0

1

e

1

2 int

ES

(�) = int

en(ES)

(�). Moreover, by the

unique occurrence property h�

1

e

1

i

ES

= h�

0

1

e

1

i

ES

and hence, by Lemma 5.3.4(1) and

Lemma 5.5.3, also h�

1

e

1

i

en(ES)

= h�

0

1

e

1

i

en(ES)

. Since h�

0

1

e

1

i

en(ES)

2 past

en(ES)

(�), this

proves that �

ES

(e

1

) 2 past

en(ES)

(�).

Now suppose h�

1

e

1

i

en(ES)

2 past

en(ES)

(�). Then there exists �

0

1

e

1

2 int

en(ES)

(�) =

int

ES

(�) such that h�

1

e

1

i

en(ES)

= h�

0

1

e

1

i

en(ES)

. Hence e

1

2 alph(�) = c and �

ES

(e

1

) =

h�

0

1

e

1

i

en(ES)

. This proves that past

en(ES)

(�) � �

ES

(c) and hence �

ES

(c) = past

en(ES)

(�).

It easily follows that �

ES

(u) = û. Hence �

ES

(c)

^

` �

ES

(u). This proves that �

ES

is an

LES-morphism from ES to nu(en(ES)).

In order to prove that �

ES

is an LES-isomorphism, suppose �

ES

(c)

^

` �

ES

(u). Then

there exists �v 2 SFS

en(ES)

such that �

ES

(c) = past

en(ES)

(�) and �

ES

(u) = fh�ei

en(ES)

j

e 2 vg. This implies that c = alph(�) and u = v. Moreover, �v 2 SFS

ES

by

Lemma 5.5.3 and hence c ` u. Since �

ES

is a bijection, we can conclude that �

ES

is

an LES-isomorphism. 2

From Lemma 5.3.8, Theorem 5.4.7, and Lemma 5.5.4, we now obtain the following

characterization of PN-event structures.

Theorem 5.5.5

An L-event structure is a PN-event structure i� it is an UL-event structure. 2

Example 5.5.6

{ a,b,d }

{ b }

o

{ a }

{ a,b }

o

{ < a > } { < b > }

{ < a >,< ab >,< abd > }

{ < a >,< ab > }

{ < b >,< ba >,< bad > }

{ < b >,< ba > }

Figure 5.7: The L-event structures ES

6

and nu(en(ES

6

))

Let ES

6

be the �rst L-event structure depicted in Figure 5.7. This L-event structure

does not have the unique occurrence property and is hence not a PN-event structure.

5.6. L-EVENT STRUCTURES AND 1-SAFE PETRI NETS 117

The Petri net en(ES

6

) is the saturated version of the Petri net N

3

depicted in Fig-

ure 2.3. The L-event structure nu(en(ES

6

)) is the second L-event structure depicted

in Figure 5.7 (see also Example 5.4.3). Even though ES

6

has the same set of step �ring

sequences as en(ES

6

), the two L-event structures ES

6

and nu(en(ES

6

)) are not iso-

morphic, because the event structure semantics for en(ES

6

) distinguishes more events

than there are present in ES

6

. 2

5.6 L-Event Structures and 1-Safe Petri Nets

This section is devoted to the investigation of the relationship between the prime event

structure semantics for 1-safe Petri nets as given in De�nition 5.1.1 and our proposed

L-event structure semantics for general Petri nets as given in De�nition 5.4.1.

First it is shown how prime event structures can be viewed as L-event structures.

Then it is shown as the main result of this section that the L-event structure semantics

for Petri nets is a strictly conservative extension of the prime event structure semantics

for 1-safe Petri nets: the L-event structure semantics when restricted to 1-safe Petri

nets agrees completely (up to isomorphism) with the prime event structure semantics.

A prime event structure P is viewed as an L-event structure pu(P) the con�gura-

tions of which are the �nite con�gurations of P . The enabling relation is given by the

diamonds in the con�guration structure of P .

Thus de�ne pu(P) = (E;FC

P

;`) where `� FC

P

� P

F

(E) is given by:

c ` u, c \ u = ; and 8v � u: c [v 2 FC

P

:

Lemma 5.6.1

Let P = (E;�;#) be a prime event structure. Then pu(P) = (E;FC

P

;`) is an

L-event structure.

Proof.

In order to prove that pu(P) satis�es (E0), let ; 6= c 2 FC

P

. Let e 2 c be a

maximal event in c in the sense that for all e

0

2 c, e � e

0

implies that e = e

0

. Then

c � e 2 FC

P

and hence c � e ` e. This proves that pu(P) satis�es (E0). From the

de�nition of pu(P) it easily follows that pu(P) satis�es (E1) and (E2). 2

In Chapter 6 this result will be strengthened by showing that the L-event structures

obtained via pu all have the unique occurrence property (hence the name pu rather

than pe). In Chapter 6 we will then also investigate the relationship between prime

event structures and UL-event structures in a categorical framework.

For the moment we use the map pu only for showing that for a 1-safe Petri net

its prime event structure semantics agrees with its L-event structure semantics via pu:

for every 1-safe Petri net N , nu(N) � pu(sp(N)).

Let N be a 1-safe Petri net, nu(N) = (E;C;`), and pu(sp(N)) = (

^

E;FC

sp(N)

;

^

`).

Recall that the events in

^

E are equivalence classes under �

N

of sequential prime

intervals of N and the events in E are equivalence classes under �

N

of prime intervals

of N . The LES-isomorphism �

N

:

^

E ! E that will be used in the proof that nu(N) �

pu(sp(N)) maps each event h�ti

�

N

2

^

E to the event h�ti

�

N

2 E.

118 CHAPTER 5. AN EVENT STRUCTURE SEMANTICS FOR PETRI NETS

In order to show that �

N

is well-de�ned, it must be proved that equivalent sequen-

tial prime intervals under �

N

are also equivalent under �

N

, that is:

8�t; �

0

t

0

2 sPI : (�t �

N

�

0

t

0

) �t �

N

�

0

t

0

):

After having shown this, it must be proved (in order for this map to be an LES-

isomorphism) that �

N

is a bijection. For proving that �

N

is surjective it is su�cient

to prove that each event in E has a sequential representative:

8�t 2 PI :9�

0

t

0

2 sPI : �t �

N

�

0

t

0

:

For proving that �

N

is injective, it must be proved that equivalent sequential prime

intervals under �

N

are also equivalent under �

N

:

8�t; �

0

t

0

2 sPI : (�t �

N

�

0

t

0

) �t �

N

�

0

t

0

):

Once it is proved that �

N

is a bijection, the proof that �

N

is an LES-isomorphism is

fairly easy.

Now we turn to the proof that equivalence under �

N

is preserved. To prove this

we need the following lemma.

Lemma 5.6.2

Let N be a 1-safe Petri net and let �; �

0

2 FS be such that �

�

�

�

0

. Then past

N

(�) =

past

N

(�

0

).

Proof.

Suppose � = �

1

tt

0

�

2

, �

0

= �

1

t

0

t�

2

, and (t; t

0

) 2 Ind

N

. Then by Lemma 2.1.12 also

�

1

ft; t

0

g 2 SFS . Hence �

1

t

0

t � �

1

t because � satis�es (C1). Similarly, �

1

tt

0

� �

1

t

0

.

Hence past

N

(�

1

tt

0

) = past

N

(�

1

t

0

t). Now it easily follows that also past

N

(�) = past

N

(�

0

)

because � satis�es (C2). 2

Lemma 5.6.3

Let N = (S; T;W;M

in

) be a 1-safe Petri net and let �t; �

0

t

0

2 sPI be such that

�t � �

0

t

0

. Then �t � �

0

t

0

.

Proof.

It is su�cient to prove that � satis�es (S1) and (S2) because � is the least equiv-

alence relation satisfying (S1) and (S2). The required result then follows from ���.

In order to prove that � satis�es (S1), suppose �

1

t

2

t

1

2 FS and (t

1

; t

2

) 2 Ind

N

.

Then by Lemma 2.1.10, �

1

ft

1

; t

2

g 2 SFS . Since � satis�es (C1) we then have that

�

1

t

1

� �

2

t

2

t

1

which proves that � satis�es (S1).

Now in order to prove that � satis�es (S2), suppose �

1

t

1

; �

0

1

t

1

2 sPI are such that

�

1

' �

0

1

. Then by repeatedly applying Lemma 5.6.2, past

N

(�

1

) = past

N

(�

0

). This now

implies that �

1

t

1

� �

0

1

t

1

because � satis�es (C2). Hence � satis�es (S2). 2

5.6. L-EVENT STRUCTURES AND 1-SAFE PETRI NETS 119

Given a 1-safe Petri netN with nu(N) = (E;C;`) and pu(sp(N)) = (

^

E;FC

sp(N)

;

^

`),

by the above lemma the map �

N

:

^

E ! E with �

N

(h�ti

�

N

) = (h�ti

�

N

) is well-de�ned.

We now turn to the proof that �

N

is surjective.

Lemma 5.6.4

Let N be a Petri net and let �t 2 PI . Then

9�

0

t 2 sPI : �t � �

0

t:

Proof.

Suppose � = �

1

u�

2

with juj > 1 and t

0

2 u. Then �

1

(u � t

0

)t

0

�

2

t 2 PI . Because

�

1

u 2 SFS and � satis�es (C1), �

1

t

0

� �

1

(u � t

0

)t

0

. This implies that past

N

(�

1

u) =

past

N

(�

1

(u � t

0

)t

0

). Since � satis�es (C2), it easily follows that past

N

(�

1

u�

2

) =

past

N

(�

1

(u� t

0

)t

0

�

2

). Again by (C2), we then also have that �

1

u�

2

t � �

1

(u� t

0

)t

0

�

2

t.

Repeatedly applying the above then yields the required �

0

t 2 sPI

N

with �t � �

0

t.

2

Hence each event h�ti

�

N

in E has a representative �

0

t in sPI which proves that �

N

is surjective.

To prove that �

N

is a bijection, it is now su�cient to prove that �

N

is injective.

This is the most complicated step in our proof that �

N

is an LES-isomorphism.

We have to show that sequential prime intervals which are equivalent under �

N

,

are also equivalent under �

N

. This is done by �rst lifting the equivalence relation

�

N

over sequential prime intervals to an equivalence relation �̂

N

over arbitrary prime

intervals. Then we show that prime intervals which are equivalent under �

N

are also

equivalent under �̂

N

:

8�t; �

0

t

0

2 PI : (�t �

N

�

0

t

0

) �t �̂

N

�

0

t

0

):

After having done this, the injectivity of �

N

follows by proving that sequential prime

intervals which are equivalent under �̂

N

are also equivalent under �

N

:

8�t; �

0

t

0

2 sPI : (�t �̂

N

�

0

t

0

) �t �

N

�

0

t

0

):

Thus, for all �t; �

0

t

0

2 sPI , if �t 6�

N

�

0

t

0

, then �

N

(h�ti

�

N

) = h�ti

�

N

6= h�

0

t

0

i

�

N

=

�

N

(h�

0

t

0

i

�

N

).

Let N be a 1-safe Petri net. The equivalence relation �

N

over sequential prime

intervals is lifted to an equivalence relation over arbitrary prime intervals by replacing

(S1) by condition (C1) and by replacing in (S2) the equivalence relation '

N

by

^

'

N

,

the extension of M-trace equivalence to step sequences de�ned in Section 4.6.

So de�ne �̂

N

� PI � PI as the least equivalence relation which satis�es the fol-

lowing conditions (C1') and (C2').

(C1') (�u 2 SFS and t 2 u)) �t �̂

N

�(u� t)t.

(C2') (�t; �

0

t 2 PI and �

^

'

N

�

0

)) �t �̂

N

�

0

t.

120 CHAPTER 5. AN EVENT STRUCTURE SEMANTICS FOR PETRI NETS

If N is clear from the context then we may omit the subscript

N

in �̂

N

.

In order to be able to prove that �

N

� �̂

N

we �rst need the following two lemmas

with properties of �̂

N

.

The �rst lemma states that prime intervals which are equivalent under �̂

N

are

associated with the same transition and can only di�er in the number of occurrences

of transitions which are independent of this transition.

Lemma 5.6.5

Let N = (S; T;W;M

in

) be a 1-safe Petri net and let �t; �

0

t

0

2 PI be such that

�t �̂ �

0

t

0

. Then

t = t

0

and 8t

00

2 T: ((t; t

00

) 62 Ind

N

) num

t

00

(�) = num

t

00

(�

0

)):

Proof.

De�ne the equivalence relation R � PI � PI by: �

1

t

1

R�

2

t

2

i� (t

1

= t

2

and 8t

00

2

T: ((t

1

; t

00

) 62 Ind

N

) num

t

00

(�

1

) = num

t

00

(�

2

))). If R satis�es (C1') and (C2'), then

�̂ � R, because �̂ is the least equivalence relation satisfying (C1') and (C2'). This

would imply that �tR �

0

t

0

from which the required result follows. Thus it is su�cient

to prove that R satis�es (C1') and (C2').

In order to prove that R satis�es (C1'), suppose �

1

u 2 SFS and t

1

2 u. Then for

all t

00

2 u� t

1

, (t

1

; t

00

) 2 Ind

N

. This implies that �

1

t

1

R�

1

(u� t

1

)t

1

which proves that

R satis�es (C1).

Now in order to prove that R satis�es (C2'), suppose �

1

t

1

; �

0

1

t

1

2 PI are such that

�

1

^

'�

0

1

. Then for all t

2

2 T , num

t

2

(�

1

) = num

t

2

(�

0

1

) and hence �

1

t

1

R�

0

1

t

1

. This proves

that R also satis�es (C2'). 2

Note that in the above lemma we have in particular that prime intervals associated

with a transition which are equivalent under �̂, have the same number of occurrences

of this transition. This property, which is similar to Lemma 5.3.4(1), follows from the

irreexivity of Ind

N

.

In Lemma 5.6.2 it has been proved that M-equivalent �ring sequences of a 1-safe

Petri net N have the same past (under �

N

). Now we show that we have a similar

property for the equivalence relation

^

'

N

.

Lemma 5.6.6

Let N be a 1-safe Petri net and let �; �

0

2 SFS be such that �

^

�

�

�

0

. Then

past

�̂

(�) = past

�̂

(�

0

).

Proof.

Suppose � = �

1

uv�

2

, �

0

= �

1

u

0

v

0

�

2

, u [v = u

0

[v

0

, u \ v = u

0

\ v

0

= ;, and, for all

t; t

0

2 u[v with t 6= t

0

, (t; t

0

) 2 Ind

N

. Then by Lemma 2.1.10, �

1

(u[v) 2 SFS . From

(C1') it now easily follows that, for all t 2 v, �

1

ut �̂ �

1

t and, for all t 2 v

0

, �

1

u

0

t �̂ �

1

t.

Hence past

�̂

(�

1

uv) = past

�̂

(�

1

u

0

v

0

). Since �

1

uv�

^

�

�

�

1

u

0

v

0

� for every pre�x � of �

2

, it

easily follows from (C2') that also past

�̂

(�) = past

�̂

(�

0

). 2

5.6. L-EVENT STRUCTURES AND 1-SAFE PETRI NETS 121

Now we can prove the inclusion �

N

� �̂

N

.

Lemma 5.6.7

Let N = (S; T;W;M

in

) be a 1-safe Petri net and let �t; �

0

t

0

2 PI be such that

�t � �

0

t

0

. Then �t �̂ �

0

t

0

.

Proof.

It is su�cient to prove that �̂ satis�es (C1) and (C2) because then �� �̂.

We immediately have that �̂ satis�es (C1) because �̂ satis�es (C1'). In order

to prove that �̂ satis�es (C2), suppose �

1

t

1

; �

0

1

t

1

2 PI are such that past

�̂

(�

1

) =

past

�̂

(�

0

1

). Let �

2

; �

0

2

2 FS be such that �

1

^

' �

2

and �

0

1

^

' �

0

2

. It is now su�cient to

prove that �

2

^

' �

0

2

because then �

1

^

' �

2

^

' �

0

2

^

' �

0

1

. This would imply that �

1

t

1

�̂ �

0

1

t

1

because �̂ satis�es (C2').

In order to prove that �

2

^

'�

0

2

, �rst note that repeatedly applying Lemma 5.6.6 im-

plies, past

�̂

(�

2

) = past

�̂

(�

1

) = past

�̂

(�

0

1

) = past

�̂

(�

0

2

). We now proceed by induction

on k = j�

2

j.

If k = 0 then �

2

^

' �

0

2

clearly holds, so assume that k > 0. Let �

2

= �

3

t

3

.

Then because past

�̂

(�

2

) = past

�̂

(�

0

2

) there exist �

0

3

; �

00

3

2 T

�

such that �

0

2

= �

0

3

t

3

�

00

3

and �

3

t

3

�̂ �

0

3

t

3

. Moreover, from Lemma 5.6.5 it easily follows that for all t

2

2 T ,

num

t

2

(�

2

) = num

t

2

(�

0

2

). Hence we must have by Lemma 5.6.5 that for all t

2

2

alph(�

00

3

), (t

2

; t

3

) 2 Ind

N

. This now implies that �

0

2

^

' �

0

3

�

00

3

t

3

. Now by Lemma 5.6.6,

past

�̂

(�

2

) = past

�̂

(�

0

2

) = past

�̂

(�

0

3

�

00

3

t

3

). Then by Lemma 5.6.5 we also have that

past

�̂

(�

3

) = past

�̂

(�

0

3

�

00

3

). Then �

3

^

' �

0

3

�

00

3

by the induction hypothesis. Hence also

�

2

= �

3

t

3

^

' �

0

3

�

00

3

t

3

^

' �

0

2

. This proves that �̂ satis�es (C2). 2

Thus (sequential) prime intervals which are equivalent under �

N

are also equivalent

under �̂

N

. Next we show that for sequential prime intervals this further extends to

equivalence under �

N

.

Lemma 5.6.8

Let N be a 1-safe Petri net and let �t; �

0

t

0

2 sPI be such that �t �̂ �

0

t

0

. Then

�t � �

0

t

0

.

Proof.

In order to prove that �t � �

0

t

0

, de�ne the relation R � PI �PI by: �

1

t

1

R�

2

t

2

i�

t

1

= t

2

and 9�

0

1

t

1

; �

0

2

t

2

2 sPI : (�

1

^

' �

0

1

and �

2

^

' �

0

2

and �

0

1

t

1

� �

0

2

t

2

). Assume for the

moment that R is an equivalence relation which satis�es (C1') and (C2'). Then �̂ � R

because �̂ is the least equivalence relation satisfying (C1') and (C2'). This implies

that �tR �

0

t

0

, so there exist �

1

t; �

0

1

t

0

2 sPI such that �

^

' �

1

, �

0

^

' �

0

1

, and �

1

t � �

0

1

t

0

.

Then by Lemma 4.6.1, � ' �

1

and �

0

' �

0

1

. Now �t � �

1

t and �

0

t

0

� �

0

1

t

0

because �

satis�es (S2) and thus �t � �

0

t

0

by the transitivity of �. So it is su�cient to prove

that R is an equivalence relation which satis�es (C1') and (C2').

It is easy to see that R is reexive and symmetric. In order to prove transitivity,

suppose �

1

t

1

R�

2

t

2

R�

3

t

3

. From �

1

t

1

R�

2

t

2

we know that there exist �

0

1

t

1

; �

0

2

t

2

2 sPI

such that �

1

^

' �

0

1

, �

2

^

' �

0

2

, and �

0

1

t

1

� �

0

2

t

2

. Similarly, since �

2

t

2

R�

3

t

3

, there exist

�

00

2

t

2

; �

0

3

t

3

2 sPI such that �

2

^

' �

00

2

, �

3

^

' �

0

3

, and �

00

2

t

2

� �

0

3

t

3

. Then �

0

2

^

' �

00

2

and hence

122 CHAPTER 5. AN EVENT STRUCTURE SEMANTICS FOR PETRI NETS

also �

0

2

' �

00

2

by Lemma 4.6.1. Hence �

0

2

t

2

� �

00

2

t

2

because � satis�es (S2). This implies

that �

0

1

t

1

� �

0

3

t

3

by the transitivity of �. We can now conclude that �

1

t

1

R�

3

t

3

. This

proves that R is an equivalence relation.

In order to prove that R satis�es (C1'), suppose �

1

u 2 SFS and t

1

2 u. It must

be proved that �

1

t

1

R�

1

(u� t

1

)t

1

. We proceed by induction on k = juj. If k = 1 then

the claim holds by the reexivity of R. Now assume that k > 1. Then let t

2

2 u� t

1

.

By the induction hypothesis, �

1

t

1

R�

1

(u � ft

1

; t

2

g)t

1

. By the transitivity of R it is

then su�cient to prove that �

1

(u � ft

1

; t

2

g)t

1

R�

1

(u � t

1

)t

1

. Let �

0

1

2 FS be such

that �

1

(u� ft

1

; t

2

g)

^

' �

0

1

. Then clearly �

1

(u� t

1

)

^

' �

1

(u� ft

1

; t

2

g)t

2

^

' �

0

1

t

2

. Because

� satis�es (S1) and (t

1

; t

2

) 2 Ind

N

, we also have that �

0

1

t

1

� �

0

1

t

2

t

1

. Then by the

de�nition of R, �

1

(u� ft

1

; t

2

g)t

1

R�

1

(u� t

1

)t

1

. This proves that R satis�es (C1').

Now in order to prove that R satis�es (C2'), suppose �

1

t

1

; �

0

1

t

1

2 PI are such that

�

1

^

' �

0

1

. Let �

2

; �

0

2

2 FS be such that �

1

^

' �

2

and �

0

1

^

' �

0

2

. Hence also �

2

^

' �

0

2

by

the transitivity of

^

'. By Lemma 4.6.1 we then have that �

2

' �

0

2

. Thus �

2

t

1

� �

0

2

t

1

bacause � satis�es (S2) and hence �

1

t

1

R�

0

1

t

1

by the de�nition of R. This proves that

R satis�es (C2'). We can now conclude that �t � �

0

t

0

. 2

Now we can prove the result we are after.

Theorem 5.6.9

Let N = (S; T;W;M

in

) be a 1-safe Petri net. Then nu(N) � pu(sp(N)).

Proof.

Let nu(N) = (E;C;`), sp(N) = (

^

E;�;#), and pu(sp(N)) = (

^

E;FC

sp(N)

;

^

`).

We prove that �

N

:

^

E ! E given by �

N

(h�ti

�

N

) = h�ti

N

is an LES-isomorphism

from pu(sp(N)) to nu(N). By Lemma 5.6.3, �

N

is well-de�ned, by Lemma 5.6.4

�

N

is surjective, and by Lemma 5.6.7 and Lemma 5.6.8 �

N

is injective. Moreover,

C = fpast

N

(�) j � 2 SFSg = fpast

N

(�) j � 2 FSg = f�

N

(ev

N

(�)) j � 2 FSg. Hence

C = �

N

(FC

sp(N)

) by Lemma 5.1.6. Now let c 2 FC

sp(N)

and u 2 P

F

(

^

E). Then it

must be proved that c

^

` u i� �

N

(c) ` �

N

(u).

First assume that �

N

(c) ` �

N

(u). Then by Lemma 5.4.2, �

N

(c) \ �

N

(u) = ; and,

for all v � �

N

(u), �

N

(c) [v 2 C = �

N

(FC

sp(N)

). Since �

N

is a bijection, this implies

that also c \ u = ; and, for all v � u, c [v 2 FC

sp(N)

. Then by the de�nition of

^

`,

c

^

` u.

Now assume that c

^

` u. It must be proved that �

N

(c) ` �

N

(u). By the def-

inition of

^

`, c \ u = ; and, for all v � u, c [v 2 FC

sp(N)

. This implies that

for all h�

1

t

1

i

�

N

; h�

2

t

2

i

�

N

2 u with h�

1

t

1

i

�

N

6= h�

2

t

2

i

�

N

, h�

1

t

1

i

�

N

co

sp(N)

h�

2

t

2

i

�

N

,

and hence by Lemma 5.1.7, (t

1

; t

2

) 2 Ind

N

. By Lemma 5.1.6 there exists � 2 FS

such that ev

N

(�) = c. We now prove that, for all h�

0

ti

�

N

2 u, �t 2 FS and

h�ti

�

N

= h�

0

ti

�

N

. Suppose h�

0

ti

�

N

2 u. Then c [h�

0

ti

�

N

2 FC

sp(N)

, so there ex-

ists �

00

2 FS with ev

N

(�

00

) = c[h�

0

ti

�

N

. Moreover, [�]

Ind

N

� [�

00

]

Ind

N

by Lemma 5.1.3.

From Lemma 5.1.2 it easily follows that mset (�

00

) = mset(�) + t. Hence we must have

that �t ' �

00

. This implies that �t 2 FS and, by Lemma 5.1.3, c[h�ti

�

N

= c[h�

0

ti

�

N

.

Hence by Lemma 5.1.2, h�ti

�

N

= h�

0

ti

�

N

. From Lemma 2.1.10 it now easily follows

that �v 2 SFS where v = ft 2 T j h�

0

ti

�

N

2 ug. Now by the de�nition of `,

5.7. A CO-REFLECTION BETWEEN ULES AND PNS 123

�

N

(c) = past

N

(�) ` fh�ti

N

j t 2 vg = �

N

(u). This proves that �

N

is an LES-

isomorphism from pu(sp(N)) to nu(N). 2

Thus our event structure semantics for Petri nets, when restricted to 1-safe Petri

nets, agrees completely (up to isomorphism) with the event structure semantics of [66]

for 1-safe Petri nets. Hence Theorem 5.4.7 and Theorem 5.6.9 together assure us that

our event structure semantics for Petri nets (even with auto-concurrency �ltered out)

is an extension of the basic result in [66]. Moreover, the UL-event structure ES

3

from

Example 5.4.3 and Example 5.2.2 is an example of a PN-event structure which is not

the image under pu of any prime event structure, so that the extension is strict. This

contrasts with the event structure semantics for Petri nets given in [60] where the same

class of (prime) event structures is used for representing the behaviour of both 1-safe

and general Petri nets.

5.7 A Co-reection Between ULES and PNS

The back-and-forth constructions established in [66] between 1-safe Petri nets and

prime event structures were later proved by Winskel [96] to be the \right" ones. He

achieved this by equipping both classes of objects with suitable behaviour-preserving

morphisms and showed that the constructions of [66] smoothly lift to a pair of functors

which constitute a co-reection. Our aim here is to explore to what extent we can

mimic this categorical result in the present, much richer setting. We show that due to

auto-concurrency we cannot obtain a co-reection between the categories of UL-event

structures and Petri nets. We do however get a co-reection for the subcategory of

co-safe Petri nets. This is the main result of this section. A consequence of this result

is that the category of UL-event structures is a full co-reective subcategory of the

category of L-event structures.

The notion of LES-morphism de�ned in Section 5.2 leads to the following de�nition.

De�nition 5.7.1

Let LES be the category which has L-event structures as its objects and LES-

morphisms as its arrows. The identity morphism associated with an object ES is

id

ES

; composition of LES-morphisms is composition of partial functions.

Let ULES be the full subcategory of LES the objects of which are UL-event struc-

tures. 2

We are looking for a co-reection between ULES and PN in which the left adjoint

would act as en on the objects of ULES and the right adjoint would act as nu on the

objects of PN .

To achieve this, we would like to extend the map nu to become a functor from PN

to ULES in such a way that prime intervals are preserved. This means that whenever

(�; �) is a PN-morphism from N to N

0

and h�ti

N

is an event of nu(N) such that �(t) is

de�ned, then nu((�; �))(h�ti

N

) is de�ned. Unfortunately, as the next example shows,

this is not possible.

124 CHAPTER 5. AN EVENT STRUCTURE SEMANTICS FOR PETRI NETS

a b c

{ < a >,< b > }

{ < a > } { < b > }

o

{ < c > }

{ < c >,< cc > }

o

Figure 5.8: A PN-morphism from N to N

0

with the UL-event structures nu(N) and

nu(N

0

)

Example 5.7.2

Let (�; �) be the PN-morphism from N to N

0

from Figure 2.7. This PN-morphism

is depicted together with the UL-event structures nu(N) and nu(N

0

) in Figure 5.8.

The UL-event structure nu(N) has two events, hai

N

= hbai

N

and hbi

N

= habi

N

. Also

the UL-event structure nu(N

0

) has two events, hci

N

0

and hcci

N

0

. Even though both

�(a) and �(b) are de�ned, there exists however no LES-morphism f from nu(N) to

nu(N

0

) in which both f(hai

N

) and f(hbi

N

) are de�ned. Thus we cannot extend the

map nu to a functor in this way. 2

The problem is that in a PN-morphism transitions which can occur concurrently,

may be mapped to the same transition, leading to auto-concurrency. As a consequence,

step �ring sequences of the �rst Petri net may be mapped to multiset �ring sequences

of the second Petri net. For this reason we restrict our attention to co-safe Petri nets

in the rest of this section.

In what follows the map nu de�ned in Section 5.4, when restricted to co-safe Petri

nets, is extended to a functor from PNS, the category of co-safe Petri nets de�ned

in Section 2.2, to ULES . Then the map en de�ned in Section 5.5 is extended to a

functor from LES to PNS. Once these functors are de�ned we can prove the desired

co-reection between ULES and PNS.

5.7. A CO-REFLECTION BETWEEN ULES AND PNS 125

From Lemma 2.2.2 we already know that for co-safe Petri nets prime intervals are

preserved under PN-morphisms. In the following lemma it is proved that for co-safe

Petri nets also equivalence of prime intervals is preserved under PN-morphisms.

Lemma 5.7.3

Let N

i

= (S

i

; T

i

;W

i

;M

i

), i = 1; 2, be co-safe Petri nets and let (�; �) be a PN-

morphism from N

1

to N

2

. Let t 2 T be such that �(t) is de�ned and let �t; �

0

t 2 PI

N

1

be such that �t �

N

1

�

0

t. Then �(�)�(t) �

N

2

�(�

0

)�(t).

Proof.

De�ne R � PI

N

1

�PI

N

1

by: �

1

t

1

R�

2

t

2

i� (t

1

= t

2

and �(t

1

) is unde�ned) or (�(t

1

)

and �(t

2

) are de�ned and �(�

1

)�(t

1

) �

N

2

�(�

2

)�(t

2

)). Note that R is an equivalence

relation. Suppose R is SFS

N

1

-consistent. Then since �

N

1

is the least equivalence

relation which is SFS

N

1

-consistent, it follows that �

N

1

� R. Hence �tR �

0

t and thus,

by the de�nition of R, �(�)�(t) �

N

2

�(�

0

)�(t). Thus it is su�cient to prove that R

satis�es the conditions (C1) and (C2).

Suppose �

1

u 2 SFS

N

1

and t

1

2 u. If �(t

1

) is unde�ned then we immediately

have that �

1

t

1

R�

1

(u � t

1

)t

1

, so assume that �(t

1

) is de�ned. Then �(�

1

u) 2 SFS

N

2

by Lemma 2.2.2 and �(t

1

) 2 �(u). Since �

N

2

satis�es (C1), it then follows that

�(�

1

)�(t

1

) �

N

2

�(�

1

)(�(u) � �(t

1

))�(t

1

). Moreover, by Lemma 2.2.2 and the fact

that N

2

is co-safe we have that �(�

1

)(�(u) � �(t

1

)) = �(�

1

(u � t

1

)). This yields

�

1

t

1

R�

1

(u� t

1

)t

1

by the de�nition of R. Thus R satis�es (C1).

Now suppose �t

0

; �

0

t

0

2 PI

N

1

are such that past

R

(�) = past

R

(�

0

). If �(t

0

) is

unde�ned then we immediately have that �t

0

R�

0

t

0

, so assume that �(t

0

) is de�ned.

Suppose past

N

2

(�(�)) = past

N

2

(�(�

0

)). Then since �

N

2

satis�es (C2) we know that

�(�)�(t

0

) �

N

2

�(�

0

)�(t

0

) and hence �t

0

R�

0

t

0

. Thus in order to prove that R satis�es

(C2), it is su�cient to prove that past

N

2

(�(�)) = past

N

2

(�(�

0

)).

Let h�

1

t

1

i

N

2

2 past

N

2

(�(�)). Then there exists �

2

t

2

2 int(�) such that �(t

2

) is

de�ned and h�

1

t

1

i

N

2

= h�(�

2

)�(t

2

)i

N

2

. Then also h�

2

t

2

i

R

2 past

R

(�) = past

R

(�

0

).

Hence there exists �

3

t

3

2 int(�

0

) such that h�

2

t

2

i

R

= h�

3

t

3

i

R

. Since �(t

2

) is de�ned

this implies that �(t

3

) is also de�ned and h�(�

2

)�(t

2

)i

N

2

= h�(�

3

)�(t

3

)i

N

2

. More-

over, h�(�

3

)�(t

3

)i

N

2

2 past

N

2

(�(�

0

)) by the de�nition of past. Hence h�

1

t

1

i

N

2

2

past

N

2

(�(�

0

)). This proves that past

N

2

(�(�)) � past

N

2

(�(�

0

)). Similarly we have

past

N

2

(�(�

0

)) � past

N

2

(�(�)) and thus past

N

2

(�(�)) = past

N

2

(�(�

0

)). 2

Now we can extend the map nu to a functor, also denoted by nu, from PNS to

ULES .

Let N

1

and N

2

be a pair of co-safe Petri nets and let (�; �) be a PN-morphism

from N

1

to N

2

. Suppose nu(N

1

) = (E

1

; C

1

;`

1

) and nu(N

2

) = (E

2

; C

2

;`

2

). Then we

de�ne nu((�; �)) to be the partial function from E

1

to E

2

given by:

8h�ti

N

1

2 E

1

:nu((�; �))(h�ti

N

1

) =

(

unde�ned if �(t) is unde�ned

h�(�)�(t)i

N

2

otherwise.

Note that by Lemma 5.7.3, nu((�; �)) is well-de�ned.

126 CHAPTER 5. AN EVENT STRUCTURE SEMANTICS FOR PETRI NETS

Lemma 5.7.4

Let N

1

and N

2

be co-safe Petri nets and let (�; �) be a PN-morphism from N

1

to

N

2

. Then nu((�; �)) is an LES-morphism from nu(N

1

) to nu(N

2

).

Proof.

Let nu(N

1

) = (E

1

; C

1

;`

1

) and nu(N

2

) = (E

2

; C

2

;`

2

). Let nu((�; �)) be denoted

by f . Given ĉ `

1

û we have to prove that f(ĉ) `

2

f(û). So suppose ĉ `

1

û. Then there

exists �u 2 SFS

N

1

such that ĉ = past

N

1

(�) and û = fh�ti

N

1

j t 2 ug. By Lemma 2.2.2

we have that �(�); �(�u) 2 SFS

N

2

. Hence by the de�nition of `

2

past

N

2

(�(�)) `

2

fh�(�)t

0

i

N

2

j t

0

2 �(u)g. Now past

N

2

(�(�)) = fh�

2

t

2

i

N

2

j �

2

t

2

2 int (�(�))g =

fh�(�

1

)�(t

1

)i

N

2

j �

1

t

1

2 int(�) with �(t

1

) de�ned g = f(past

N

1

(�)) = f(ĉ). Fur-

thermore, fh�(�)t

0

i

N

2

j t

0

2 �(u)g = fh�(�)�(t)i

N

2

j t 2 u with �(t) de�nedg = f(û).

And so f(ĉ) `

2

f(û) as required. 2

From the de�nition of nu it easily follows that nu preserves identities and respects

composition. Hence the following result follows from Theorem 5.4.7 and Lemma 5.7.4.

Theorem 5.7.5

nu is a functor from PNS to ULES . 2

Next the map en is extended to a functor - also denoted by en - from LES to

PNS. Then we show that this functor is in fact full and faithful. On arrows, en is

de�ned by interpreting morphisms between L-event structures as morphisms between

their associated multiset transition systems under a map et , and then applying the

map tn from MTS-morphisms to PN-morphisms as de�ned in Section 3.2.

Let ES

i

= (E

i

; C

i

;`

i

), i = 1; 2, be a pair of L-event structures and let f be an

LES-morphism from ES

1

to ES

2

. Then de�ne et(f) = (f; g) where g : C

1

! C

2

is

given by g(c) = f(c). Then it is easy to see that et(f) is an MTS-morphism from

et(ES

1

) to et(ES

2

). Hence by Lemma 3.2.9 there exists for every region r of ES

2

an

inverse region et(f)

�1

(r) of ES

1

. In what follows we denote et (f)

�1

(r) by f

�1

(r). So

for a region r of ES

2

, f

�1

(r) : C

1

[E

1

! N [(N�N) is given by:

(1) 8c 2 C

1

: f

�1

(r)(c) = r(f(c))

(2) 8e 2 E

1

: f

�1

(r)(e) =

(

r(f(e)) if f(e) is de�ned

(0; 0) otherwise.

Now de�ne en(f) = tn(et (f)). So en(f) = (�

f

; �

f

) where �

f

= f and �

f

: R

ES

2

!

R

ES

1

is given by:

�

f

(r) =

(

f

�1

(r) if f

�1

(r) is non-trivial

unde�ned otherwise.

From Lemma 3.2.10 we now immediately have the following result.

Lemma 5.7.6

Let ES

1

and ES

2

be L-event structures and let f be an LES-morphism from ES

1

to ES

2

. Then en(f) is a PN-morphism from en(ES

1

) to en(ES

2

). 2

5.7. A CO-REFLECTION BETWEEN ULES AND PNS 127

Now we are ready to prove that en is a functor, which is full and faithful.

Theorem 5.7.7

en is a full and faithful functor from LES to PNS.

Proof.

In order to prove that en is a functor from LES to PNS, it is by Lemma 3.2.10 and

Lemma 5.7.6 su�cient to prove that en preserves identities and respects composition.

Clearly en preserves identities. Assume that f

1

is an LES-morphism from ES

1

to ES

2

and f

2

is an LES-morphism from ES

2

to ES

3

. We have that �

f

2

�f

1

= f

2

�f

1

= �

f

2

��

f

1

.

Because en(ES) is S-simple we have by Lemma 2.2.4 that en(f

2

�f

1

) = (�

f

2

�f

1

; �

f

2

�f

1

) =

(�

f

1

� �

f

2

; �

f

2

� �

f

1

) = (�

f

2

; �

f

2

) � (�

f

1

; �

f

1

) = en(f

2

) � en(f

1

).

In order to prove that en is full, let ES

1

= (E

1

; C

1

;`

1

) and ES

2

= (E

2

; C

2

;`

2

) be

L-event structures and let (�; �) be a PN-morphism from en(ES

1

) to en(ES

2

). We �rst

prove that � is an LES-morphism from ES

1

to ES

2

. Suppose c `

1

u. Let � 2 SFS

ES

1

be such that alph(�) = c. Then �u 2 SFS

ES

1

and hence we also have, by Lemma 5.5.3,

that �u 2 SFS

en(ES

1

)

. By Lemma 2.2.2 we then have that �(�u) 2 SFS

en(ES

2

)

. Again

by Lemma 5.5.3 we now have that �(�u) 2 SFS

ES

2

. Hence alph(�(�)) `

2

�(u). Because

alph(�(�)) = �(c) we can now conclude that �(c) `

2

�(u). This proves that � is an

LES-morphism from ES

1

to ES

2

. Since en(ES

1

) is S-simple Lemma 2.2.4 can be

applied and so en(�) = (�; �). This proves that en is full.

Finally, if f and g are LES-morphisms from ES

1

to ES

2

such that f 6= g then also

en(f) 6= en(g) by the de�nition of en . Hence en is faithful. 2

Next we show that en � i and nu form a co-reection with en � i as the left adjoint,

where i is the inclusion functor from ULES to LES .

In order to facilitate the proof of this result we �rst de�ne the PN-morphisms which

turn out to form the co-unit of the adjunction. To do this the following regions of the

L-event structure associated with a co-safe Petri net are de�ned.

Let N = (S; T;W;M

in

) be a co-safe Petri net with nu(N) = (E;C;`) and let

s 2 S. De�ne r

s

: C [E ! N [(N�N) by:

(1) 8� 2 SFS

N

: r

s

(past

N

(�)) = M

�

(s)

(2) 8h�ti

N

2 E: r

s

(h�ti

N

) = (W (s; t);W (t; s)).

From Lemma 5.3.4(1) it easily follows that part (1) in the de�nition of r

s

is well-

de�ned.

Lemma 5.7.8

Let N = (S; T;W;M

in

) be a co-safe Petri net and let s 2 S. Then r

s

is a region of

nu(N).

Proof.

Let nu(N) = (E;C;`). Suppose ĉ ` û. Then there is �u 2 SFS

N

such that ĉ =

past

N

(�) and û = fh�ti

N

j t 2 ug. Then r

s

(ĉ) = M

�

(s) �

P

t2u

W (s; t) =

P

t2u

r

s

h�ti

N

and r

s

(ĉ [û) = M

�u

(s) = M

�

(s) +

P

t2u

(W (t; s)�W (s; t)) = r

s

(ĉ) +

P

t2u

(h�ti

N

r

s

�

r

s

h�ti

N

). 2

128 CHAPTER 5. AN EVENT STRUCTURE SEMANTICS FOR PETRI NETS

For a co-safe Petri netN = (S; T;W;M

in

) with nu(N) = (E;C;`) and en(nu(N)) =

(R

nu(N)

; E;

^

W;

^

M

in

), we de�ne fold

S

: S ! R

nu(N)

and fold

T

: E ! T by:

(1) 8s 2 S: fold

S

(s) =

(

r

s

if r

s

is non-trivial

unde�ned otherwise.

(2) 8h�ti

N

2 E: fold

T

(h�ti

N

) = t.

Lemma 5.7.9

Let N = (S; T;W;M

in

) be a co-safe Petri net with nu(N) = (E;C;`) and with

en(nu(N)) = (R

nu(N)

; E;

^

W;

^

M

in

). Then (fold

S

; fold

T

) is a PN-morphism from

en(nu(N)) to N .

Proof.

Suppose s 2 S is such that fold

S

(s) is de�ned. Then

^

M

in

(fold

S

(s)) =

^

M

in

(r

s

) =

r

s

(;) = M

in

(s) which proves condition (1) in the de�nition of PN-morphism.

Because fold

T

is a total function, condition (2) in the de�nition of PN-morphism

trivially holds.

In order to prove condition (3), suppose h�ti

N

2 E. If s 2 fold

�1

S

(

�

h�ti

N

) then we

must have that r

s

2

�

h�ti

N

, that is

^

W (r

s

; h�ti

N

) > 0. This implies that

r

s

h�ti

N

> 0

and hence W (s; t) > 0. This proves that s 2

�

t =

�

fold

T

(h�ti

N

). On the other

hand, if s 2

�

fold

T

(h�ti

N

) =

�

t, then

r

s

h�ti

N

= W (s; t) > 0. Thus r

s

is non-trivial

and

^

W (r

s

; h�ti

N

) =

r

s

h�ti

N

> 0. Then r

s

2

�

h�ti

N

and hence s 2 fold

�1

S

(

�

h�ti

N

).

Moreover, W (s; fold

T

(h�ti

N

)) = W (s; t) =

^

W (r

s

; h�ti

N

) =

^

W (fold

S

(s); h�ti

N

). Simi-

larly it can be proved that fold

�1

S

(h�ti

N

�

) = fold

T

(h�ti

N

)

�

and W (fold

T

(h�ti

N

); s) =

^

W (h�ti

N

; fold

S

(s)). This proves condition (3) in the de�nition of PN-morphism. 2

Now we can prove the main result of this section.

Theorem 5.7.10

en � i : ULES ! PNS and nu : PNS ! ULES form a co-reection with en the

left adjoint and the arrows �

ES

as unit.

Proof.

Let ES = (E;C;`) be an UL-event structure, let N = (S; T;W;M

in

) be a co-safe

Petri net, and let f be an LES-morphism from ES to nu(N) = (

^

E;

^

C;

^

`). We must

show that there is a unique PN-morphism (�; �) from en(ES) = (R

ES

; E;W

ES

;M) to

N such that the following diagram commutes.

5.7. A CO-REFLECTION BETWEEN ULES AND PNS 129

ES

N(N

f

ES

((,))

!(,)β η

β η

)

(())

en ES()
υ

nu

nu en ES

nu

De�ne (�; �) by (�; �) = (fold

S

; fold

T

) � en(f). Hence � : S ! R

ES

is such that

for all s 2 S, �(s) = f

�1

(r

s

) if f

�1

(r

s

) is non-trivial and �(s) is unde�ned otherwise.

The function � : E ! T is such that for all e 2 E, �(e) = unde�ned if f(e) is

unde�ned and �(e) = t if f(e) is de�ned with f(e) = h�ti

N

. Because (fold

S

; fold

T

)

and en(f) are PN-morphisms by Lemma 5.7.9 and Lemma 5.7.6 respectively, and

because the composition of PN-morphisms is again a PN-morphism, the pair (�; �) is

a PN-morphism.

The next thing to prove is that nu((�; �)) � �

ES

= f . Let e 2 E. Then f(e) is

unde�ned i� �(e) is unde�ned i� (nu((�; �)) � �

ES

)(e) is unde�ned. So assume that

f(e) is de�ned. Let � 2 SFS

ES

be such that �e 2 SFS

ES

. By the unique occurrence

property � exists. By Lemma 5.5.3 we then have that also �; �e 2 SFS

en(ES)

and

hence Lemma 2.2.2 implies that �(�); �(�e) 2 SFS

N

. Furthermore, by Lemma 5.2.8,

f(�); f(�e) 2 SFS

nu(N)

.

We �rst prove, by induction on j�j, that alph(f(�)) = past

N

(�(�)). If � = ; then

this is clear, so assume that � = �

0

u with �

0

2 SFS

ES

and ; 6= u 2 P

F

(E).

Then alph(f(�)) = alph(f(�

0

))[f(u) and past

N

(�(�)) = past

N

(�(�

0

))[û where û =

fh�(�

0

)�(e

0

)i

N

j e

0

2 u with �(e

0

) de�ned g. By the induction hypothesis, alph(f(�

0

)) =

past

N

(�(�

0

)). From f(�

0

u) 2 SFS

nu(N)

we have that alph(f(�

0

))

^

` f(u). On the other

hand, from �(�

0

u) 2 SFS

N

we have that past

N

(�(�

0

))

^

` û. It is now su�cient to prove

that f(u) = û. By the de�nition of

^

`, alph(f(�

0

))

^

` f(u) implies that there exists

�

1

u

1

2 SFS

N

such that alph(f(�

0

)) = past

N

(�

1

) and f(u) = fh�

1

e

1

i

N

j e

1

2 u

1

g. Let

e

0

2 u be such that f(e

0

) is de�ned. Then there exists e

1

2 u

1

such that f(e

0

) = h�

1

e

1

i

N

.

Then e

1

= �(e

0

) by the de�nition of �. Since past

N

(�

1

) = alph(f(�

0

)) = past

N

(�(�

0

))

and �

N

satis�es (C2), we must now have that h�(�

0

)�(e

0

)i

N

= h�

1

e

1

i

N

. This proves

that f(u) = û and we can conclude that alph(f(�)) = past

N

(�(�)).

From f(�e) 2 SFS

nu(N)

we know that alph(f(�))

^

` f(e). Then there exists �

2

e

2

2

SFS

N

such that alph(f(�)) = past

N

(�

2

) and f(e) = h�

2

e

2

i

N

. Then e

2

= �(e) by the

de�nition of �. Since past

N

(�

2

) = alph(f(�)) = past

N

(�(�)) and �

N

satis�es (C2),

we now have that h�

2

e

2

i

N

= h�(�)�(e)i

N

. This implies that (nu((�; �)) � �

ES

)(e) =

nu((�; �))(h�ei

en(ES)

) = h�(�)�(e)i

N

= h�

2

e

2

i

N

= f(e) what had to be proved.

Finally, in order to prove that (�; �) is the unique PN-morphism from en(ES) to N

such that nu((�; �)) � �

ES

= f , assume that (�

0

; �

0

) is any PN-morphism from en(ES)

130 CHAPTER 5. AN EVENT STRUCTURE SEMANTICS FOR PETRI NETS

to N such that nu((�

0

; �

0

)) � �

ES

= f . Then for all e 2 E, �(e) is unde�ned i� f(e)

is unde�ned i� �

0

(e) is unde�ned. Now let e 2 E be such that �

0

(e) is de�ned. Let

� 2 SFS

en(ES)

be such that �

ES

(e) = h�ei

en(ES)

.

Then h�(�)�(e)i

N

= nu((�; �))��

ES

(e) = f(e) = nu((�

0

; �

0

))��

ES

(e) = h�

0

(�)�

0

(e)i

N

.

Now Lemma 5.3.4(1) guarantees that �(e) = �

0

(e). This proves that � = �

0

. We can

now conclude by Lemma 2.2.4 that � = �

0

because en(ES) is S-simple.

This proves that en � i and nu form an adjunction with en � i as the left adjoint

and the arrows �

ES

as unit. By Lemma 5.5.4 the arrows �

ES

are LES-isomorphisms

and so the adjunction is even a co-reection. 2

It is easy to verify that the arrows (fold

S

, fold

T

) form the co-unit of the adjunction

between ULES and PNS.

Each UL-event structure ES is by Lemma 5.5.4 isomorphic to the UL-event struc-

ture nu(en(ES)). Hence for each co-safe Petri net N , en(nu(N)) yields an UL-event

structure which is isomorphic to the UL-event structure yielded by N . The Petri net

en(nu(N)) has a number of other interesting properties. It is saturated with respect to

the places and each transition can occur exactly once. Hence the Petri net en(nu(N))

may be viewed as a \behavioural unfolding" of N . The associated \fold morphism" is

(fold

S

; fold

T

).

As a consequence of Theorem 5.7.10 each L-event structure can in fact be repre-

sented as an UL-event structure in a canonical way.

Corollary 5.7.11

i : ULES ! LES and nu � en : LES ! ULES form a co-reection with i the left

adjoint and the arrows �

ES

as unit.

Proof.

Let ES be an UL-event structure, let ES

0

be an L-event structure, and let f be

an LES-morphism from ES to nu(en(ES

0

)). It must be proved that there is a unique

LES-morphism g from ES to ES

0

such that the following diagram commutes.

! g

ES

ES’

ES

f

ES

(())

(())

(())

υ

ES’)en (

en (ES)

gen ()

nu en ES’

nu en g

nu en ES

By Theorem 5.7.10 there exists a unique PN-morphism (�; �) from en(ES) to

en(ES

0

) such that nu((�; �)) � �

ES

= f . Then because en is full and faithful there

5.8. LOCAL MULTISET EVENT STRUCTURES 131

exists a unique LES-morphism g from ES to ES

0

such that en(g) = (�; �) and hence

nu � en(g) � �

ES

= f . 2

In the beginning of this section we argued that it is not possible to obtain a co-

reection between ULES and PN . Hence we have restricted the category PN by

cutting down on the objects. Another possibility is to cut down on the arrows of PN

by considering only co-injective PN-morphisms.

From Lemma 2.2.2 we immediately have that if (�; �) is a co-injective PN-morphism

from N

1

to N

2

, then �(�) 2 SFS

N

2

for all � 2 SFS

N

1

.

It is easy to see that the proof of the co-reection between ULES and PNS

still goes through with PNC, the category of Petri nets with co-injective morphisms,

instead of PNS (where nu is extended to a functor from PNC to ULES in the obvious

way). Hence we also have the following result.

Theorem 5.7.12

en � i : ULES ! PNC and nu : PNC ! ULES form a co-reection with en the

left adjoint and the arrows �

ES

as unit. 2

5.8 Local Multiset Event Structures

The event structure semantics for Petri nets de�ned in Section 5.4 does not take into

account possible auto-concurrency in a Petri net, because it is based on the set of

step �ring sequences of a Petri net rather than the set of multiset �ring sequences. A

consequence of this restriction is that we only have a co-reection with the category

of UL-event structures for the category of co-safe Petri nets.

In this section we discuss a possibility for generalizing the co-reection between the

category of UL-event structures and the category of co-safe Petri nets (Theorem 5.7.10)

in order to obtain an event structure semantics for the category of all Petri nets.

To this aim we de�ne local event structures with multisets rather than sets (called

LM-event structures) to take auto-concurrency into account, and show that there

exists an adjunction between the category of LM-event structures satisfying the unique

occurrence property (called ULM-event structures) and the category of Petri nets. The

proof of this result proceeds along the same lines as the proof of Theorem 5.7.10 (even

though notationally it is more involved), and hence most of the details are omitted.

The adjunction between the category of ULM-event structures and the category of

Petri nets is however not a co-reection. Moreover, we show that it is not possible to

cut this adjunction down to a co-reection by restricting the category of ULM-event

structures.

Local event structures are generalized by allowing multisets of events in the set of

con�gurations and the enabling relation.

De�nition 5.8.1

A local multiset event structure is a triple ES = (E;C;`) where E is a set of events,

C � M

F

(E) is a non-empty set of (�nite) con�gurations, and `� C �M

F

(E) is an

enabling relation satisfying the following axioms.

132 CHAPTER 5. AN EVENT STRUCTURE SEMANTICS FOR PETRI NETS

(E0') 0 6= c) 9e 2 E: (c(e) > 0 and c � e ` e).

(E1') c ` 0.

(E2') c ` u) 8v � u: (c ` v and c+ v ` u� v). 2

From now on we refer to local multiset event structures as LM-event structures.

As for L-event structures, the unique occurrence property for LM-event structures

is de�ned using an equivalence relation over prime intervals, but now with respect to

multiset sequences.

So let X be a set and let L � (M

F

(X))

+

be a set of multiset sequences satisfying

the following two properties.

(L1') �u 2 L) � 2 L.

(L2') �u 2 L) 8v � u: �v(u� v) 2 L.

The set of prime intervals of L is given by

PI

L

= f�a j �a 2 Lg

and the function int

L

: L ! M

F

(PI

L

) mapping each element from L to the multiset

of multiset prime intervals of L is given by:

� int

L

(0) = 0 and

� int

L

(�u) = int

L

(�) +

P

a2X;u(a)>0

u(a) � �a.

The subscript

L

may again be omitted if L is clear from the context.

Let R � PI � PI be an equivalence relation. Then for �a 2 PI ,

h�ai

R

= f�

0

a

0

2 PI j �

0

a

0

R�ag:

The function past

R

: L!M

F

(PI=R) is given by:

past

R

(�)(h�

1

a

1

i

R

) =

X

�

2

a

2

2h�

1

a

1

i

R

int(�)(�

2

a

2

):

Note that if L is a set of step sequences, then these notions indeed coincide with

the notions de�ned in Section 5.3.

Now R is said to be L-consistent i� it satis�es the following two conditions.

(C1") (�u 2 L and u(a) > 0)) �aR �(u� a)a.

(C2") �a; �

0

a 2 PI) (past

R

(�) = past

R

(�

0

)) �aR �

0

a).

By the following lemma there exists also in this case a least equivalence relation which

is L-consistent.

Lemma 5.8.2

Let X be an alphabet, let L � (M

F

(X))

+

be a set of multiset sequences satisfying

(L1') and (L2'), and let K = fR � PI �PI j R is an L-consistent equivalence relation

g. Then K 6= ; and

T

K 2 K.

5.8. LOCAL MULTISET EVENT STRUCTURES 133

Proof.

Because PI � PI 2 K it is su�cient to prove that

^

R =

T

K is an L-consistent

equivalence relation.

It is clear that

^

R is an equivalence relation which satis�es (C1").

Let �a; �

0

a 2 PI be such that past

^

R

(�) = past

^

R

(�

0

). It su�ces to prove that

past

R

(�) = past

R

(�

0

) for every R 2 K.

So let R 2 K and suppose h�

1

a

1

i

R

2 PI=R. Then because

^

R � R there exist

�

1

1

a

1

1

; : : : ; �

k

1

a

k

1

2 PI for some k � 1 such that h�

i

1

a

i

1

i

^

R

\h�

j

1

a

j

1

i

^

R

= ; for all 1 � i; j � k

with i 6= j and

S

k

i=1

h�

i

1

a

i

1

i

^

R

= h�

1

a

1

i

R

.

From the de�nition of past and the fact that past

^

R

(�) = past

^

R

(�

0

) we then have that

past

R

(�)(h�

1

a

1

i

R

) =

P

�

2

a

2

2h�

1

a

1

i

R

int(�)(�

2

a

2

) =

P

k

i=1

P

�

2

a

2

2h�

i

1

a

i

1

i

^

R

int(�)(�

2

a

2

) =

P

k

i=1

past

^

R

(�)(h�

i

1

a

i

1

i

^

R

) =

P

k

i=1

past

^

R

(�

0

)(h�

i

1

a

i

1

i

^

R

) =

P

k

i=1

P

�

2

a

2

2h�

i

1

a

i

1

i

^

R

int(�

0

)(�

2

a

2

) =

P

�

2

a

2

2h�

1

a

1

i

R

int(�

0

)(�

2

a

2

) = past

R

(�

0

)(h�

1

a

1

i

R

). 2

Let �

L

� PI � PI denote the least equivalence relation which is L-consistent.

The equivalence relation �

L

has the following properties which can be proved

similar to the proof of Lemma 5.3.4

Lemma 5.8.3

Let X be an alphabet, let L � (M

F

(X))

+

be a set of multiset sequences satisfying

(L1') and (L2'), and let �

1

a

1

; �

2

a

2

2 PI be such that �

1

a

1

�

L

�

2

a

2

. Then

(1) a

1

= a

2

(2) �

1

a

1

�

L

0

�

2

a

2

for every L

0

� (M

F

(X))

+

satisfying (L1') and (L2') with L � L

0

.

2

Let ES = (E;C;`) be an LM-event structure. Then MFS

ES

� (M

F

(E))

+

, the

set of multiset �ring sequences of ES , and cf

ES

: MFS

ES

! M

F

(E), the function

which maps each multiset �ring sequence to the con�guration it leads to, are de�ned

inductively as:

� 0 2 MFS

ES

and cf

ES

(0) = 0

� (� 2 MFS

ES

and cf

ES

(�) ` u)) (�u 2 MFS

ES

and cf

ES

(�u) = cf

ES

(�) + u).

Note that cf

ES

(�) = mset(�) for every � 2 MFS

ES

.

The set MFS

ES

yields an equivalence relation �

MFS

ES

, which is denoted by �

ES

in what follows.

Then ES has the unique occurrence property i� it satis�es the following two con-

ditions.

(U1') 8e 2 E:9�e 2 PI

ES

(U2') 8�

1

e; �

2

e 2 PI

ES

: �

1

e �

ES

�

2

e.

134 CHAPTER 5. AN EVENT STRUCTURE SEMANTICS FOR PETRI NETS

LM-event structures satisfying the unique occurrence property will be referred to as

ULM-event structures.

Associated with every Petri net N we have an equivalence relation �

MFS

N

, from

now on denoted by �

N

. Similar to Section 5.4 this equivalence relation is used for

de�ning a map nm which associates an LM-event structure nm(N) with every Petri

net N .

De�nition 5.8.4

Let N = (S; T;W;M

in

) be a Petri net. Then nm(N) = (E;C;`) where

� E = fh�ti

N

j �t 2 PI

N

g

� C = fpast

N

(�) j � 2 MFSg

� `� C �M

F

(E) is given by:

c ` u, 9�v 2 MFS : past

N

(�) = c and u = past

N

(�v)� past

N

(�):

2

Theorem 5.8.5

Let N = (S; T;W;M

in

) be a Petri net. Then nm(N) is an ULM-event structure.

Proof.

Similar to the proof of Theorem 5.4.7. 2

The map nu de�ned in Section 5.4 associates an UL-event structure with every

Petri net N based on SFS . Because we now use MFS rather than SFS , the map nm

yields for a Petri net N which is not co-safe, an event structure di�erent from nu(N).

Example 5.8.6

For the Petri netN

2

depicted in Figure 2.2, its associated L- and LM-event structure

are depicted in Figure 5.9. Since N

2

is not co-safe, nu(N

2

) and nm(N

2

) are di�erent.

.

o

{ <a> }

{ <a>,<ab> }{ <a>,<aa> }

{ }

...
..

{ <a>,<aa>,<aab> }
...

..
.

<a>

2 . <a> <a> + <ab>

2 .

<a> + <aab>

0

Figure 5.9: The L-event structure nu(N

2

) and the LM-event structure nm(N

2

)

5.8. LOCAL MULTISET EVENT STRUCTURES 135

In nu(N

2

) there is an in�nite number of events corresponding to a. In nm(N

2

)

however, all prime intervals corresponding to a are equivalent due to auto-concurrency.

Hence nm(N

2

) has only one event corresponding to a. In both nu(N

2

) and nm(N

2

)

there is an in�nite number of events corresponding to b. 2

The main reason why the map nu from Section 5.4 cannot be extended to a functor

from PN to ULES is that prime intervals with respect to SFS and equivalence of

prime intervals are not preserved under PN-morphisms. Prime intervals with respect

to MFS however, are preserved under PN-morphisms by Lemma 2.2.2. This enables

us to extend nm to a functor from PN to the category of ULM-event structures.

De�nition 5.8.7

Let LMES be the category which has LM-event structures as its objects and

LMES-morphisms as its arrows.

An LMES-morphism from an LM-event structure (E

1

; C

1

;`

1

) to an LM-event struc-

ture (E

2

; C

2

;`

2

) is a partial function f : E

1

! E

2

such that:

8c 2 C

1

:8u 2M

F

(E

1

): c `

1

u) f(c) `

2

f(u):

The identity morphism associated with an object is the identity function on its events;

composition of LMES-morphisms is composition of partial functions.

Let ULMES be the full subcategory of LMES the objects of which are ULM-event

structures. 2

Given a PN-morphism (�; �) from N

1

to N

2

where nm(N

1

) = (E

1

; C

1

;`

1

) and

nm(N

2

) = (E

2

; C

2

;`

2

), de�ne nm((�; �)) = f with f : E

1

! E

2

given by: f(h�ti

N

1

) is

unde�ned if �(t) is unde�ned and f(h�ti

N

1

) = h�(�)�(t)i

N

2

otherwise for all h�ti

N

1

2

E

1

.

In the same way as in Section 5.7 it can be proved that this map is well-de�ned

and yields a functor.

Theorem 5.8.8

nm is a functor from PN to ULMES . 2

Example 5.8.9

Let (�; �) be the PN-morphism from N to N

0

from Figure 2.7. As argued in

Example 5.7.2, there is no corresponding LES-morphism from the UL-event structure

nu(N) to the UL-event structure nu(N

0

). In Figure 5.10 this PN-morphism is depicted,

together with the ULM-event structures nm(N) and nm(N

0

). The LMES-morphism

nm((�; �)) maps both hai

N

and hbi

N

to hci

N

0

. 2

It is also straightforward to lift the functor en from LES to PNS to a functor mn

from LMES to PN .

Given an LM-event structure ES = (E;C;`), de�ne the multiset transition system

mt(ES) = (C;E;�!

ES

; 0) where

c

u

�!

ES

c

0

, (c ` u and c

0

= c+ u):

136 CHAPTER 5. AN EVENT STRUCTURE SEMANTICS FOR PETRI NETS

a b c

< a > < b >

< a > + < b >

0 0

< c >

2 < c >

Figure 5.10: The ULM-event structures nm(N) and nm(N

0

)

Then de�ne mn(ES) = tn(mt(ES)).

The map en associates a Petri net with every L-event structure which has the same

set of step �ring sequences. For the mapmn we only have the following inclusion which

follows easily from the de�nition of mn.

Lemma 5.8.10

Let ES = (E;C;`) be an LM-event structure. Then MFS

ES

� MFS

mn(ES)

. 2

Example 5.8.11

Consider the LM-event structure ES

7

depicted in Figure 5.11. Note that ES

7

is

even an ULM-event structure.

Because there is no upperbound on the number of occurrences of a,

r

a � a

r

for

every region r of ES

7

. Thus in mn(ES

7

), the transition b cannot be disabled by the

occurrence of a. It is easy to see that mn(ES

7

) is the saturated version of the Petri

net N

2

depicted in Figure 2.2, and hence MFS

mn(ES

7

)

= MFS

N

2

. Thus MFS

ES

7

is

properly included in MFS

mn(ES

7

)

. 2

Let ES = (E;C;`) be an ULM-event structure with nm(mn(ES)) = (

^

E;

^

C;

^

`).

Again we can de�ne, using Lemma 5.8.3(2) and Lemma 5.8.10, a map �

ES

: E !

^

E by: �

ES

(e) = h�ei

mn(ES)

where �e 2 PI

ES

. As Example 5.8.11, together with

Example 5.8.6, illustrates, this map is not an LMES-isomorphism as in Lemma 5.5.4.

5.8. LOCAL MULTISET EVENT STRUCTURES 137

0

a

2. a

3. a

b

.
.

.

Figure 5.11: The LM-event structure ES

7

We now only have the following result, which can be proved in the same way as

Lemma 5.5.4.

Lemma 5.8.12

Let ES be an ULM-event structure. Then �

ES

is an LMES-morphism from ES to

nm(mn(ES)). 2

In order to extendmn to a functor, de�ne given an LMES-morphism f from ES

1

=

(E

1

; C

1

;`

1

) to ES

2

= (E

2

; C

2

;`

2

), mt(f) = (f; g) with g : C

1

! C

2

given by g(c) =

f(c). Now de�ne mn(f) = tn(mt(f)).

Similar to the proof of Theorem 5.7.7 the following can now be proved.

Theorem 5.8.13

mn is a faithful functor from LMES to PN . 2

As the following example illustrates the functor mn, even when restricted to

ULMES , is however not full.

Example 5.8.14

Consider the ULM-event structures ES

8

and ES

9

depicted in Figure 5.12.

It is easy to see that mn(ES

8

) and mn(ES

9

) are the same. Then there is a PN-

morphism from mn(ES

8

) to mn(ES

9

), the identity PN-morphism, for which there is

no corresponding LMES-morphism from ES

8

to ES

9

. 2

We do however still have the following result.

Theorem 5.8.15

mn : ULMES ! PN and nm : PN ! ULMES form an adjunction with mn the

left adjoint and the arrows �

ES

as unit.

Proof.

Similar to the proof of Theorem 5.7.10. 2

138 CHAPTER 5. AN EVENT STRUCTURE SEMANTICS FOR PETRI NETS

a

.2 a

b

a + b

3. a 2 . a + b

..
..

0

a

.2 a

b

a + b

3. a

..
..

0

Figure 5.12: ULM-event structures ES

8

and ES

9

yielding the same Petri net

As we mentioned before, the arrows �

ES

are not LMES-isomorphisms, and hence

the adjunction is not a co-reection. As the following example illustrates, the arrows

�

ES

are not even LMES-isomorphisms for ULM-event structures ES for which there

exists a Petri net N with nm(N) = ES . Hence it is not possible to cut the adjunction

down to a co-reection by restricting the category of ULM-event structures.

Example 5.8.16

Consider the ULM-event structure ES = nm(N

2

) from Example 5.8.6. Then

r

hai

ES

� hai

ES

r

for every region r of ES . Hence in the Petri net mn(ES) the transition

hbi

ES

cannot be disabled by the occurrence of hai

ES

. Then it is easy to see that �

ES

is not an LMES-isomorphism. 2

It might be possible to solve this problem by strengthening the equivalence relation

�

L

. This should be done in such a way that, for the Petri net N

2

from Example 5.8.6,

all prime intervals corresponding to b are identi�ed. Then it could be that the adjunc-

tion between ULMES and PN can be cut down to a co-reection by restricting the

objects of ULMES to ULM-event structures satisfying some \regional" axioms. It is

however not clear at present how all this can be achieved.

A consequence of the co-reection between ULES and PNS is that ULES is a

co-reective subcategory of LES . From Example 5.8.14 it easily follows that we do

not have a similar result in the present setting due to the fact that mn is not full.

5.9 Concluding Remarks

In Section 5.1 prime event structures have been used to give an event structure se-

mantics for 1-safe Petri nets, following the approach from [98]. Prime event structures

have also been proposed as possible candidates for representing the behaviour of gen-

eral Petri nets [61] (see also [24]). In this approach general Petri nets lead to the same

class of event structures as 1-safe Petri nets by viewing the tokens more or less as

\coloured" entities.

5.9. CONCLUDING REMARKS 139

In this chapter we have proposed a proper generalization of the prime event struc-

ture semantics for 1-safe Petri nets. Our event structure semantics in terms of L-event

structures is however restricted in the sense that auto-concurrency is �ltered out from

the behaviour of Petri nets. For the objects in the category PN s of 1-safe Petri nets

our event structure semantics agrees with the prime event structure semantics from

[66, 98]. In this chapter we have however restricted this comparison to the level of

objects, due to the (slight) di�erences between our PN-morphisms and the Petri net

morphisms used in [98].

For 1-safe Petri nets there exists by Lemma 5.1.3 and Lemma 5.1.6 a bijection

between the �nite con�gurations of its associated prime event structure and the M-

traces of its associated M-trace language. Moreover, the posets obtained by equipping

M-traces with their M-trace ordering relation and by equipping the �nite con�gurations

of the prime event structure with the inclusion ordering are isomorphic.

For general Petri nets on the other hand, there is in general no bijection between

the �nite con�gurations of its associated UL-event structure and the L-traces of its

associated L-trace language, because step �ring sequences which have the same past

are not necessarily in the same L-trace. This is for instance the case for the Petri net

N

10

depicted in Figure 5.4 for which ab 6

�

=

N

10

ba, but past

N

10

(ab) = past

N

10

(ba). This

has led us to introduce a new equivalence relation over prime intervals.

The de�nition of the unique occurrence property of L-event structures is based on

this equivalence relation over prime intervals. These prime intervals are de�ned in

terms of the step �ring sequences of the L-event structure. One might now wonder if

it is necessary to take into account the whole history of event occurrences, as is done in

both prime intervals and condition (C2). In [66] for instance, prime intervals of partial

orders are de�ned which only consist of pairs of elements such that one \covers" the

other. The equivalence relation over these prime intervals, which is used in [66] to

extract event occurrences from the partial order, then simply identi�es prime intervals

which are connected by diamonds. This suggests, in the context of L-event structures,

also a simpler formulation of the unique occurrence property in the following way.

Let ES = (E;C;`) be an L-event structure. Then let PI

0

ES

� C �E be the set of

C-prime intervals of ES , given by:

PI

0

ES

= f(c; e) 2 C � E j c ` eg:

The equivalence relation �

0

ES

� PI

0

ES

�PI

0

ES

is de�ned as the least equivalence relation

such that:

(c ` u and e 2 u)) (c; e) �

0

ES

(c [(u� e); e):

Then ES = (E;C;`) has the unique C-occurrence property i� it satis�es the following

conditions (U1") and (U2").

(U1") 8e 2 E:9(c; e) 2 PI

0

ES

(U2") 8(c

1

; e); (c

2

; e) 2 PI

0

ES

: (c

1

; e) �

0

ES

(c

2

; e).

The class of L-event structures satisfying this C-unique occurrence property is however

not the same as the class of UL-event structures. The reason is that �

0

ES

identi�es

event occurrences which are distinguished by �

ES

.

140 CHAPTER 5. AN EVENT STRUCTURE SEMANTICS FOR PETRI NETS

o

{ a } { d }

{ a,b } { a,c } { b,d } { c,d }

{ a,b,c }
{ a,b,d } { a,c,d }

{ b,c,d }

{ a,b,c,d}

{ b } { c }

Figure 5.13: The L-event structure ES

10

To see this, consider the L-event structure ES

10

depicted in Figure 5.13. In ES

10

,

all diamonds represent concurrency, except that :(; ` fa; cg) and :(; ` fb; dg). For

each event there is exactly one equivalence class of C-prime intervals under �

0

ES

10

. For

instance, for the event a we have:

(;; a) �

0

ES

10

(fbg; a) �

0

ES

10

(fb; dg; a) �

0

ES

10

(fb; c; dg; a) �

0

ES

10

(fc; dg; a) �

0

ES

10

(fcg; a):

Hence ES

10

has the unique C-occurrence property.

On the other hand, ES

10

does not have the unique occurrence property with respect

to �

ES

10

, because for each event there are two equivalence classes: one containing its

prime intervals starting with a, b, or fa; bg, and one containing its prime intervals

starting with c, d, or fc; dg. So with respect to �

ES

10

, there are two distinguishable

occurrences of a in this L-event structure, hai

ES

10

and hcai

ES

10

. Similarly, there are

also two distinguishable occurrences of the other events.

At present it is not clear, if with the alternative de�nition of the unique occurrence

property also a co-reection with the category of co-safe Petri nets can be obtained.

Chapter 6

A Categorical Classi�cation of

Event Structures

In Chapter 5 we have introduced L-event structures and UL-event structures in our

proposal for lifting the prime event structure semantics for 1-safe Petri nets to the level

of general Petri nets. In this chapter we investigate in detail the relationship between

the new (U)L-event structures and some basic classes of event structures which have

appeared in the literature.

In Section 5.1 the prime event structures from [66] have been introduced as sets of

events together with a causal dependency relation and a binary conict relation. In

this chapter we also consider the generalization of prime event structures used in [96]

in which the conict relation is replaced by a consistency predicate to express that

there may be arbitrary conicts between events. These event structures are here called

G-prime event structures.

In addition to (G-)prime event structures we also consider Winskel's general event

structures [96] (see also [92]) and their stable subclass. These general event structures

are obtained by further generalizing G-prime event structures by replacing the causal

dependency relation by a (global) enabling relation specifying the enabling of events at

consistent sets. In this thesis we refer to these event structures as W-event structures.

Also W-event structures lead to a notion of a con�guration. In [96] it has been proved

that an equivalent speci�cation of W-event structures is obtained by means of families

of con�gurations. In fact, it is su�cient to consider only the �nite con�gurations

because the set of all con�gurations can be derived from the set of �nite con�gurations

through a standard construction known as ideal completion.

For W-event structures there is no global causal dependency relation over the

events. There is not even a causal dependency relation for the events in a given

con�guration. This led in [96, 92] to the notion of a stable W-event structure in which

each event in a con�guration is enabled by a unique minimal set of events.

The comparisons between these various classes are performed in a categorical frame-

work by exhibiting adjunctions between the various categories. Recall that in Corol-

lary 5.7.11 it has already been proved that the category ULES of UL-event structures

is a full co-reective subcategory of the category LES of L-event structures.

In Section 6.1 we prove that the relationship between the category LES of L-

141

142 CHAPTER 6. A CLASSIFICATION OF EVENT STRUCTURES

event structures and the category WES of W-event structures can be expressed as

a reection, with the left adjoint going from LES to WES . This means that WES

can be viewed as being embedded in LES . A characterization is given of the full

subcategory of LES for which the reection cuts down to an equivalence.

We then show in Section 6.2 that the reection between LES and WES can be

further extended to be a reection between LES and SWES , the category of stable

W-event structures. Also for this reection a characterization is given of the full

subcategory of LES for which the reection cuts down to an equivalence.

In Section 6.3 it is shown that a similar reective relationship can also be established

between ULES and GPES, the category of G-prime event structures. The axioms

needed on UL-event structures for cutting this reection down to an equivalence are

the same as for cutting down the reection between LES and SWES to an equivalence.

This result is closely related to the well-known fact that stable W-event structures and

G-prime event structures correspond to the same class of Scott Domains.

Finally, we show in Section 6.4 that there is also a reection between ULES and

PES, the category of prime event structures. The corresponding functor from PES

to ULES is an extension of the map pu de�ned in Section 5.4.

Finally in Section 6.5 we have some concluding remarks.

6.1 L-Event Structures and W-Event Structures

The W-event structures de�ned now are the general event structures from [96]. They

are de�ned as families of con�gurations.

De�nition 6.1.1

WES is the category of W-event structures speci�ed as follows.

An object of WES is a W-event structure W = (E;C) where E is a set of events and

C � P

F

(E) is a non-empty set of (�nite) con�gurations such that

(W1) ; 6= c) 9e 2 c: c� e 2 C

(W2) c " c

0

) c [c

0

2 C.

An arrow of WES is a WES-morphism f : (E

1

; C

1

) ! (E

2

; C

2

) which is a partial

function f : E

1

! E

2

such that

(1) 8c 2 C

1

: f(c) 2 C

2

(2) 8c 2 C

1

:8e

1

; e

2

2 c: ((f(e

1

) and f(e

2

) are de�ned and f(e

1

) = f(e

2

))) e

1

=

e

2

).

The identity morphism associated with an object is the identity function on its events

and composition of arrows is composition of partial functions. 2

A W-event structure is depicted through its con�guration structure, which is the

Hasse diagrams of its con�gurations, ordered under inclusion. In contrast to the

6.1. L-EVENT STRUCTURES AND W-EVENT STRUCTURES 143

{ a,c } { b,c }

{ a,b,c }

{ b }

o

{ a }

{ a,b }

Figure 6.1: The W-event structure W

1

situation for L-event structures, for W-event structures this inclusion relation does

carry an adequate amount of causal information.

In Figure 6.1 a W-event structure W

1

is depicted, which represents the \parallel

switch" from [96].

The map we which is de�ned next yields for each W-event structure an L-event

structure by interpreting diamonds in the con�guration structure as concurrency to

be expressed in the enabling relation.

For a W-event structure W = (E;C), de�ne we(W) = (E;C;`) where `� C �

P

F

(E) is given by:

c ` u, c \ u = ; and 8v � u: c [v 2 C:

Lemma 6.1.2

Let W be a W-event structure. Then we(W) is an L-event structure.

Proof.

Follows easily from the de�nitions. 2

For the W-event structure W

1

from Figure 6.1, the L-event structure we(W

1

) is

depicted in Figure 6.2.

Clearly not every L-event structure is the image of a W-event structure. First of

all, in contrast to W-event structures the diamonds in the con�guration structure of

an L-event structure do not necessarily represent concurrency. (This is for instance the

case for the L-event structures ES

1

and ES

3

depicted in Figure 5.2)). Secondly, two

con�gurations of an L-event structure may be compatible without their union being a

con�guration. This is for instance the case for the UL-event structure ES

11

depicted

in Figure 6.3.

We extend we to morphisms, by de�ning we(f) = f for each WES-morphism f .

Lemma 6.1.3

Let f be a WES-morphism from W

1

= (E

1

; C

1

) to W

2

= (E

2

; C

2

). Then we(f) is

an LES-morphism from we(W

1

) = (E

1

; C

1

;`

1

) to we(W

2

) = (E

2

; C

2

;`

2

).

144 CHAPTER 6. A CLASSIFICATION OF EVENT STRUCTURES

{ a,c } { b,c }

{ a,b,c }

{ b }

o

{ a }

{ a,b }

Figure 6.2: The L-event structure we(W

1

)

{ a,c } { b,c }

{ a,b,c }

{ b }
{ c }

o

{ a }

Figure 6.3: The UL-event structure ES

11

Proof.

Suppose that c `

1

u. Then c \ u = ; and c [u 2 C. Hence f(c) \ f(u) = ; by

condition (2) in the de�nition of WES-morphism. Moreover, c [v 2 C

1

for all v � u

and so by condition (1), f(c[v) = f(c)[f(v) 2 C

2

for all v � u. Hence f(c) `

2

f(u).

2

Lemma 6.1.2 and Lemma 6.1.3 lead to the following result.

Theorem 6.1.4

we is a functor from WES to LES . 2

Conversely, a map from L-event structures to W-event structures can be de�ned

by dropping the local enabling relation representing concurrency, and closing the set

of con�gurations with respect to union of compatible (with respect to inclusion) con-

�gurations.

This leads to the following de�nition of the map ew from L-event structures to

W-event structures.

For an L-event structure ES = (E;C;`), de�ne ew (ES) = (E;

^

C) where

^

C is the

least subset of P

F

(E) containing C which satis�es (W2).

6.1. L-EVENT STRUCTURES AND W-EVENT STRUCTURES 145

Note that ew (ES) is well-de�ned, because both P

F

(E) and

T

fC

0

� P

F

(E) j C � C

0

and C

0

satis�es (W2)g satisfy (W2).

Lemma 6.1.5

Let ES = (E;C;`) be an L-event structure. Then ew (ES) = (E;

^

C) is a W-event

structure.

Proof.

In order to prove that ew (ES) satis�es (W1), let ; 6= c 2

^

C. If c 2 C, then there

exists e 2 E such that c� e ` e because ES satis�es (E0). Hence c � e 2 C �

^

C. So

assume that c 62 C. Then by the minimality of

^

C there exist c

1

; c

2

2

^

C with c

1

" c

2

such that c = c

1

[c

2

, jc

1

j < jcj, and jc

2

j < jcj. Thus jcj � 2. Assume that for all

ĉ 2

^

C with 1 � jĉj < jcj, there exists an e 2 E such that ĉ� e 2

^

C. Then there exist

e

1

; : : : ; e

n

2 E with n = jc

1

j such that c

1

= fe

1

; : : : ; e

n

g, and fe

1

; : : : ; e

i

g 2

^

C for all

0 � i � n. Because jc

1

j < jcj and jc

2

j < jcj there exists a largest integer k such that

k 2 f1; : : : ; ng and e

k

62 c

2

. Hence e

k+1

; : : : ; e

n

2 c

2

. Then, by the de�nition of

^

C,

fe

1

; : : : ; e

k�1

g [c

2

= c� e

k

2

^

C. This proves that ew (ES) satis�es (W1).

From the de�nition of ew (ES) we immediately have that ew (ES) satis�es (W2).

2

{ a,c } { b,c }

{ a,b,c }

{ b }
{ c }

o

{ a }

{ a,b }

Figure 6.4: The W-event structure ew (ES

11

)

For the L-event structure ES

11

depicted in Figure 6.3, the W-event structure

ew (ES

11

) is depicted in Figure 6.4.

The de�nition of ew implies that the set of con�gurations of an L-event structure is

contained in the set of con�gurations of its image under ew . As the next lemma shows,

all con�gurations added by ew are subsets of original con�gurations. This observation

is used when we extend ew to a functor.

Lemma 6.1.6

Let ES = (E;C;`) be an L-event structure with ew (ES) = (E;

^

C). Then ĉ 2

^

C

implies that there exists c 2 C such that ĉ � c.

146 CHAPTER 6. A CLASSIFICATION OF EVENT STRUCTURES

Proof.

Let ĉ 2

^

C. If ĉ 2 C then the claim holds trivially, so suppose that ĉ 2

^

C�C. Now

assume to the contrary that there exists no c 2 C such that ĉ � c. Let C

0

=

^

C�fc

0

2

^

C j ĉ � c

0

g. Then C � C

0

because C �

^

C and fc

0

2

^

C j ĉ � c

0

g \ C = ;. Suppose

c

0

; c

1

; c

2

2 C

0

are such that c

1

� c

0

and c

2

� c

0

.

^

C satis�es (W2) and so c

1

[c

2

2

^

C.

By c

1

[c

2

� c

0

2 C

0

and ĉ 6� c

0

we have ĉ 6� c

1

[c

2

. Hence c

1

[c

2

2 C

0

. This leads to

the conclusion that C

0

satis�es (W2), a contradiction with the minimality of

^

C. Thus

there exists c 2 C such that ĉ � c. 2

Now de�ne ew (f) = f for each LES-morphism f .

Lemma 6.1.7

Let f be an LES-morphism from ES

1

= (E

1

; C

1

;`

1

) to ES

2

= (E

2

; C

2

;`

2

). Then

ew (f) is a WES-morphism from ew (ES

1

) = (E

1

;

^

C

1

) to ew (ES

2

) = (E

2

;

^

C

2

).

Proof.

Let c 2

^

C

1

. By condition (1) in the de�nition of WES-morphism, f(c) 2

^

C

2

should

hold. If c 2 C

1

, then by condition (E1) in the de�nition of an L-event structure, c `

1

;.

Since f is an LES-morphism, we have in this case f(c) `

2

; and so f(c) 2 C

2

�

^

C

2

.

Using this observation we now prove by induction on jcj that f(c) 2 f(

^

C

2

) always

holds. If jcj = 0 or jcj = 1, then c 2

^

C

1

and we are done. Now assume that jcj > 1

with c 2

^

C

1

� C

1

. Then by the minimality of

^

C

1

there exist c

1

; c

2

2

^

C

1

such that

c = c

1

[c

2

, jc

1

j < jcj, and jc

2

j < jcj. Hence f(c

1

); f(c

2

) 2

^

C

2

by the induction

hypothesis. By Lemma 6.1.6 there exists a c

0

2 C

1

such that c � c

0

. We then have

as above that f(c

0

) 2 C

2

�

^

C

2

. Thus f(c

1

); f(c

2

); f(c

0

) 2

^

C

2

and f(c

1

) � f(c

0

) and

f(c

2

) � f(c

0

). Then f(c

1

) [f(c

2

) = f(c) 2

^

C

2

because

^

C

2

satis�es (W2).

That condition (2) in the de�nition of a WES-morphism is satis�ed by f can be

seen as follows: let c 2

^

C

1

and e

1

; e

2

2 c be such that e

1

6= e

2

and f(e

1

) and f(e

2

)

are both de�ned. Again Lemma 6.1.6 guarantees the existence of a c

0

2 C

1

such that

c � c

0

. Then Lemma 5.2.3(1) gives f(e

1

) 6= f(e

2

). 2

Lemma 6.1.5 and Lemma 6.1.7 yield the following result.

Theorem 6.1.8

ew is a functor from LES to WES . 2

The functors ew and we are now shown to form an adjunction with as co-unit the

identity arrows id

W

. Hence this adjunction is a reection.

Theorem 6.1.9

ew : LES ! WES and we : WES ! LES form a reection with ew the left

adjoint and the identity arrows id

W

as co-unit.

6.1. L-EVENT STRUCTURES AND W-EVENT STRUCTURES 147

Proof.

First note that the co-unit is well-de�ned because ew (we(W)) = W for each W-

event structure W .

Let ES = (E;C;`) be an L-event structure, let W = (E

0

; C

0

) be a W-event struc-

ture, and let g be a WES-morphism from ew (ES) = (E;

^

C) to W . Then we must

prove that there exists a unique LES-morphism f from ES to we(W) = (E

0

; C

0

;`

0

)

such that the following diagram commutes.

! f g

ES

Wwe W()

ew ES()

ew f()

ew we W(())

idW

Since ew is the identity on arrows, it is su�cient to prove that g is an LES-morphism

from ES to we(W). Suppose c ` u. Then c \ u = ; and c [v 2 C, for all v � u by

(E2). Since g is a WES-morphism from ew (ES) to W we now have that c[v 2 C �

^

C

implies g(c) [g(v) 2 C

0

, for all v � u, and g(c) \ g(u) = ;. Hence g(c) `

0

g(u). 2

Finally we formulate two conditions on L-event structures which can be used to

identify a full subcategory of LES for which the reection in Theorem 6.1.9 cuts down

to an equivalence.

Let (E;C;`) be an L-event structure. Then (FC) and (D) are de�ned as follows.

(FC) 8c; c

0

2 C: (c " c

0

) c [c

0

2 C).

(D) (c \ u = ; and 8v � u: c [v 2 C)) c ` u.

The axiom (FC) is a \forward closure" property stating that con�gurations which are

compatible (with respect to inclusion) can be joined. The axiom (D) states that all

\diamonds" represent concurrency.

Clearly, for everyW-event structureW , the L-event structure we(W) satis�es (FC)

and (D). It is also easy to see that for every L-event structure ES satisfying (FC) and

(D), ES � we(ew (ES)). Hence we have the following corollary of Theorem 6.1.9.

Corollary 6.1.10

WES is equivalent to the full subcategory of LES the objects of which are L-event

structures satisfying (FC) and (D). 2

148 CHAPTER 6. A CLASSIFICATION OF EVENT STRUCTURES

6.2 L-Event Structures and StableW-Event Struc-

tures

Stable W-event structures [96] are W-event structures satisfying an additional axiom

guaranteeing that each event is enabled by a unique minimal set of events.

De�nition 6.2.1

SWES , the category of stable W-event structures, is the full subcategory of WES

the objects (E;C) of which satisfy

(W3) c " c

0

) c \ c

0

2 C. 2

The W-event structure W

1

depicted in Figure 6.1 is an example of a W-event

structure which is not stable: fa; cg " fb; cg, but not fcg 2 C. The W-event structure

ew (ES

11

) depicted in Figure 6.4 is stable.

In this section we prove that there is also a reection between LES and SWES,

by �rst establishing a reection between WES and SWES .

For de�ning a map ws from W-event structures to stable W-event structures, it is

not su�cient to simply add con�gurations to ensure that (W3) is satis�ed, because

this may destroy the condition (W2). This is illustrated in the following example.

Example 6.2.2

o

{ a } { d }

{ a,b } { a,c }
{ a,d }

{ b,d } { c,d }

{ a,b,c } { a,b,d } { a,c,d } { b,c,d }

Figure 6.5: The non-stable W-event structure W

2

Let W

2

= (E

2

; C

2

) be the non-stable W-event structure depicted in Figure 6.5.

Since fa; bg " fb; dg in this W-event structure, fbg must be added to C

2

in order to

extend C

2

to the set of con�gurations of a stable W-event structure. Similarly, fa; cg "

fc; dg implies that also fcg must be added to C

2

. The resulting set C

2

[ffbg; fcgg

satis�es (W3), but it does not satisfy (W2) anymore. Since fbg " fcg, we also have to

add fb; cg. 2

6.2. L-EVENT STRUCTURES AND STABLE W-EVENT STRUCTURES 149

This now leads to the following de�nition of the map ws.

Given a W-event structureW = (E;C), de�ne C

(i)

� P

F

(E) with i � 0 inductively

by:

� C

(0)

= C

� 8i � 1: C

(i)

= C

(i�1)

[fc [c

0

; c \ c

0

j c; c

0

2 C

(i�1)

with c " c

0

in C

(i�1)

g.

Now de�ne ws(W) = (E;

^

C) where

^

C =

S

i�0

C

(i)

.

Thus for the W-event structure W

2

= (E

2

; C

2

) considered in Example 6.2.2, we

have that C

(1)

2

= C

2

[ffbg; fcgg, C

(2)

2

= C

(1)

[ffb; cgg, and C

(i)

2

= C

(i�1)

2

for all i � 3.

Hence

^

C

2

= C

2

[ffbg; fcg; fb; cgg.

Lemma 6.2.3

LetW = (E;C) be a W-event structure. Then ws(W) = (E;

^

C) is a stable W-event

structure.

Proof.

In order to prove that ws(W) satis�es (W1), let ; 6= c 2

^

C. Let k � 0 be minimal

such that c 2 C

(k)

. We prove by induction on k that there exists e 2 c such that

c � e 2 C

(k)

�

^

C. If k = 0 then c 2 C and since W satis�es (W1), there exists e 2 c

such that c�e 2 C = C

(0)

. Now suppose that k � 1. Then by the minimality of k there

exist c

1

; c

2

2 C

(k�1)

with c

1

" c

2

such that c = c

1

[c

2

or c = c

1

\ c

2

. By the induction

hypothesis there exist e

1

; : : : ; e

n

2 E with n = jc

1

j such that c

1

= fe

1

; : : : ; e

n

g and

fe

1

; : : : ; e

i

g 2 C

(k�1)

for all 0 � i � n. By the minimality of k, c

1

6= c and c

2

6= c.

First assume that c = c

1

[c

2

. Let m be the largest integer such that m 2 f1; : : : ; ng

and e

m

62 c

2

. Hence e

m+1

; : : : ; e

n

2 c

2

. Then, by the de�nition of C

(k)

, fe

1

; : : : ; e

m�1

g[

c

2

= c� e

m

2 C

(k)

.

Now assume that c = c

1

\c

2

. Let m be the largest integer such that m 2 f1; : : : ; ng

and e

m

2 c

2

. Hence e

m+1

; : : : ; e

n

62 c

2

. Then, by the de�nition of C

(k)

, fe

1

; : : : ; e

m�1

g\

c

2

= c� e

m

2 C

(k)

.

This proves that ws(W) satis�es (W1). From the de�nition of ws(W) we immedi-

ately have that ws(W) satis�es (W2) and (W3). 2

The map ws is now extended to morphisms by de�ning ws(f) = f for each WES-

morphism f .

Lemma 6.2.4

Let f be a WES-morphism from W

1

= (E

1

; C

1

) to W

2

= (E

2

; C

2

). Then ws(f) is

a WES-morphism from ws(W

1

) = (E

1

;

^

C

1

) to ws(W

2

) = (E

2

;

^

C

2

).

Proof.

Let c 2

^

C

1

. It must be proved that f(c) 2

^

C

2

and that f is injective on c.

Let k � 0 be minimal such that c 2 C

(k)

1

. We prove by induction on k that

f(c) 2 C

(k)

2

�

^

C

2

and that f is injective on c. If k = 0 then c 2 C

1

and hence f(c) 2

C

2

= C

(0)

2

. Since f is a WES-morphism fromW

1

toW

2

, f is injective on c. Now assume

that k � 1. Then there exist c

0

; c

1

; c

2

2 C

(k�1)

1

with c

1

� c

0

and c

2

� c

0

such that

150 CHAPTER 6. A CLASSIFICATION OF EVENT STRUCTURES

c = c

1

[c

2

or c = c

1

\c

2

. By the induction hypothesis f(c

0

); f(c

1

); f(c

2

) 2 C

(k�1)

2

and f

is injective on c

0

. Hence f is also injective on c. Now f(c

1

) � f(c

0

) and f(c

2

) � f(c

0

)

and so by the de�nition of C

(k)

2

it follows that f(c

1

[c

2

) = f(c

1

) [f(c

2

) 2 C

(k)

2

and

f(c

1

\ c

2

) = f(c

1

) \ f(c

2

) 2 C

(k)

2

. This proves that f(c) 2 C

(k)

2

. 2

Lemma 6.2.3 and Lemma 6.2.4 yield the following result.

Theorem 6.2.5

ws is a functor from WES to SWES . 2

As the next theorem shows ws is the left adjoint to the inclusion functor i from

SWES to WES . The co-unit of this adjunction is given by the identity arrows id

W

for each stable W-event structure W . Hence the adjunction is a reection.

Theorem 6.2.6

ws : WES ! SWES and i : SWES ! WES form a reection with ws the left

adjoint and the identity arrows id

W

as co-unit.

Proof.

Note that the co-unit is well-de�ned because ws(W) = W for each stable W-event

structure W .

Let W = (E;C) be a W-event structure, let W

0

= (E

0

; C

0

) be a stable W-event

structure, and let g be a WES-morphism from ws(W) = (E;

^

C) to W

0

. Then we

must prove that there exists a unique WES-morphism f from W to W

0

such that the

following diagram commutes.

! f

W

W’

g

idW’

W’

ws W()

ws W’()

()ws f

Since ws is the identity on arrows, it is su�cient to prove that g is a WES-morphism

from W to W

0

. This however follows immediately from the observation that C �

^

C.

2

6.3. UL-EVENT STRUCTURES AND G-PRIME EVENT STRUCTURES 151

The reections from Theorem 6.1.9 and Theorem 6.2.6 can now be composed which

yields the following result.

Theorem 6.2.7

ws �ew : LES ! SWES and we � i : SWES ! LES form a reection with ws �ew

the left adjoint and the identity arrows id

W

as co-unit. 2

In Corollary 6.1.10 a characterization is given of the L-event structures representing

W-event structures, by cutting the reection between LES and WES down to an

equivalence. We now give a similar result for stable W-event structures.

In order to identify a full subcategory for which the reection in Theorem 6.2.7 cuts

down to an equivalence, de�ne the following \backward closure" property for arbitrary

L-event structures (E;C;`).

(BC) c " c

0

) c \ c

0

2 C.

Then the following result follows easily from Theorem 6.2.7.

Corollary 6.2.8

SWES is equivalent to the full subcategory of LES the objects of which satisfy

(FC), (D), and (BC). 2

6.3 UL-Event Structures and G-Prime Event Struc-

tures

In this section we investigate the relationship between UL-event structures and the

generalization of prime event structures from [96]. These event structures from [96]

will be referred to as G-prime event structures in what follows. We prove that, similar

to the relationship between the category of L-event structures and the category of

(stable) W-event structures, there exists a reection between the category of UL-event

structures and the category of G-prime event structures, with the left adjoint going

from UL-event structures to G-prime event structures.

A G-prime event structure has a global consistency predicate which speci�es which

(�nite) sets of events are not in conict. A consequence is that, in contrast to the

binary conict relation of prime event structures, G-prime event structures can have

arbitrary sets of conicting events. In particular a set of events can be in conict,

while each of its non-trivial �nite subsets is conict-free.

De�nition 6.3.1

GPES is the category of G-prime event structures speci�ed as follows.

An object of GPES is a G-prime event structure G = (E;Con;�) where E is a set of

events,�� E�E is a partial order, the causal dependency relation, and Con � P

F

(E)

is the consistency predicate such that

(G0) 8e 2 E: feg 2 Con

152 CHAPTER 6. A CLASSIFICATION OF EVENT STRUCTURES

(G1) 8e 2 E: #e is �nite

(G2) 8X;Y � E: (Y � X 2 Con) Y 2 Con)

(G3) 8X 2 Con:8e; e

0

2 E: (e

0

� e 2 X) X [e

0

2 Con). 2

An arrow of GPES is a GPES-morphism f : (E

1

;Con

1

;�

1

) ! (E

2

;Con

1

;�

2

) which

is a partial function f : E

1

! E

2

such that

(1) 8e 2 E

1

: (f(e) is de�ned)#f(e) � f(#e))

(2) 8X 2 Con

1

: f(X) 2 Con

2

(3) 8X 2 Con

1

:8e

1

; e

2

2 X: ((f(e

1

) and f(e

2

) are de�ned and f(e

1

) = f(e

2

)))

e

1

= e

2

). 2

The identity morphism associated with an object is the identity function on its events

and composition of GPES-morphisms is composition of partial functions. 2

Let G = (E;Con;�) be a G-prime event structure and let c � E. Again we say

that c is downward-closed i�

8e; e

0

2 E: ((e 2 c and e

0

� e)) e

0

2 c):

We say that c is consistent i�

8Y 2 P

F

(c): Y 2 Con:

A con�guration of G is a subset of events which is downward-closed and consistent.

The set of all con�gurations of G is denoted by C

G

. The set C

G

\ P

F

(E) of all �nite

con�gurations of G is denoted by FC

G

.

{ a,c } { b,c }

{ b }
{ c }

o

{ a }

{ a,b }

Figure 6.6: A G-prime event structure

In Figure 6.6 the con�gurations of a G-prime event structure are depicted. For this

G-prime event structure the set fa; b; cg is downward-closed, but not consistent. Since

the elements in fa; b; cg are however pairwise consistent, there is no ordinary prime

event structure which has the same set of con�gurations.

The following lemma states some useful properties of G-prime event structures.

6.3. UL-EVENT STRUCTURES AND G-PRIME EVENT STRUCTURES 153

Lemma 6.3.2

Let G = (E;Con;�) be a G-prime event structure. Then

(1) 8e 2 E: #e 2 FC

G

(2) 8Y � E: (Y 2 Con , 9c 2 C

G

: Y 2 P

F

(c)).

Proof.

(1) Let e 2 E. Clearly, #e is downward-closed. By (G1), #e is �nite. By (G2) it is

now su�cient to prove that #e 2 Con. By (G0), feg 2 Con. Hence repeatedly

applying (G3) yields that #e 2 Con.

(2) Suppose Y � E is such that Y 2 Con. Since Y is �nite it is su�cient to prove

that #Y 2 C

G

and is �nite. By (G1) and the �niteness of Y , #Y is also �nite.

Repeatedly applying (G3), starting with Y , now yields that #Y 2 Con. Since #Y

is downward-closed, we can conclude that #Y 2 C

G

. The converse implication

follows immediately from the de�nition of C

G

. 2

Part (1) implies that, similar to the situation for prime event structures, there

exists for each event of a G-prime event structure a minimal (�nite) con�guration

containing this event. Part (2) states that the consistency predicate of a G-prime

event structure can be derived from its set of con�gurations.

A characterization of GPES-morphisms in terms of con�gurations is stated in the

next lemma.

Lemma 6.3.3

Let G

1

= (E

1

;Con

1

;�

1

) and G

2

= (E

2

;Con

2

;�

2

) be G-prime event structures and

let f : E

1

! E

2

be a partial function. Then f is a GPES-morphism i�

(1') 8c 2 C

G

1

: f(c) 2 C

G

2

(2') 8c 2 C

G

1

:8e

1

; e

2

2 c: ((f(e

1

) and f(e

2

) are de�ned and f(e

1

) = f(e

2

))) e

1

=

e

2

).

Proof.

Suppose that f is a GPES-morphism. First we prove condition (2'). Let c 2 C

G

1

and let e

1

; e

2

2 c be such that f(e

1

) and f(e

2

) are de�ned and e

1

6= e

2

. Then fe

1

; e

2

g �

c and hence fe

1

; e

2

g 2 Con

1

. This implies that f(e

1

) 6= f(e

2

) by condition (3) in the

de�nition of GPES-morphism. This proves condition (2').

Now in order to prove (1'), let c 2 C

G

1

. It must be proved that f(c) 2 C

G

2

. In order

to prove that f(c) is consistent, let X 2 P

F

(f(c)). We must prove that X 2 Con

2

.

Let Y = fe 2 c j f(e) is de�ned and f(e) 2 Xg. Hence X = f(Y). Because X is

�nite, we have that Y 2 P

F

(c) by (2'). This implies that Y 2 Con

1

because c 2 C

G

1

.

We can now conclude that X = f(Y) 2 Con

2

by condition (2) in the de�nition of

GPES-morphism. Now in order to prove that f(c) is downward-closed, suppose that

e

1

2 c and e

2

2 E

2

are such that e

2

�

2

f(e

1

) 2 f(c). Then by condition (1) in the

154 CHAPTER 6. A CLASSIFICATION OF EVENT STRUCTURES

de�nition of GPES-morphism e

2

2#f(e

1

) � f(#e

1

) � f(c). This proves that f(c) is

downward-closed, and hence that f(c) 2 C

G

2

.

Now suppose that f satis�es the conditions (1') and (2') above. In order to prove

condition (1) in the de�nition of GPES-morphism, let e

1

2 E

1

be such that f(e

1

) is

de�ned and suppose e

2

2 E

2

is such that e

2

2#f(e

1

), that is e

2

�

2

f(e

1

). Then by

Lemma 6.3.2(1), #e

1

2 C

G

1

and hence also f(#e

1

) 2 C

G

2

by condition (1'). This

implies that f(#e

1

) is downward-closed, and hence that e

2

2 f(#e

1

).

In order to prove condition (2) in the de�nition of GPES-morphism, suppose X 2

Con

1

. Then by Lemma 6.3.2(2) there exists c 2 C

G

1

such that X 2 P

F

(c). By

condition (1') we then have that f(c) 2 C

G

2

. Because f(X) 2 P

F

(f(c)) this implies

that f(X) 2 Con

2

.

Finally, condition (3) in the de�nition of GPES-morphism follows immediately

from Lemma 6.3.2(2) and condition (2'). 2

Using its �nite con�gurations, we now demonstrate that each G-prime event struc-

ture can be viewed as an UL-event structure. This is done by interpreting again the

diamonds in the con�guration structure of a G-prime event structure as concurrency

expressed through the enabling relation.

LetG = (E;Con;�) be a G-prime event structure. Then de�ne gu(G) = (E;FC

G

;`

) where `� FC

G

� P

F

(E) is given by:

c ` u, c \ u = ; and 8v � u: c [v 2 FC

G

:

Lemma 6.3.4

Let G = (E;Con;�) be a G-prime event structure. Then gu(G) = (E;FC

G

;`) is

an L-event structure.

Proof.

In order to prove that gu(G) satis�es (E0), let ; 6= c 2 FC

G

. Let e 2 c be a

maximal event in c in the sense that for all e

0

2 c, e � e

0

implies that e = e

0

. Then

c � e 2 FC

G

and hence c � e ` e. This proves that gu(G) satis�es (E0). From the

de�nition of gu(G) it easily follows that gu(G) satis�es (E1) and (E2). 2

Our next aim is to prove that for each G-prime event structure G, the L-event

structure gu(G) has the unique occurrence property. The �rst step is to show that

two step �ring sequences of gu(G) that lead to the same con�guration have the same

past (under �

gu(G)

).

Lemma 6.3.5

Let G = (E;Con;�) be a G-prime event structure with gu(G) = (E;FC

G

;`) and

let �

1

; �

2

2 SFS

gu(G)

be such that alph(�

1

) = alph(�

2

). Then past(�

1

) = past(�

2

).

Proof.

The proof is by induction on k = j�

1

j. If k = 0 then �

1

= �

2

= ; and the

claim clearly holds. Now assume that k > 0. Then there exist �

0

1

; �

0

2

2 SFS and

; 6= u

1

; u

2

2 P

F

(E) such that �

1

= �

0

1

u

1

, �

2

= �

0

2

u

2

, cf (�

0

1

) ` u

1

, and cf (�

0

2

) ` u

2

. Let

e

1

2 u

1

and e

2

2 u

2

. Since gu(G) satis�es (E2), �

0

1

(u

1

� e

1

)e

1

; �

0

2

(u

2

� e

2

)e

2

2 SFS .

6.3. UL-EVENT STRUCTURES AND G-PRIME EVENT STRUCTURES 155

Moreover, because �

gu(G)

satis�es (C1), past(�

1

) = past(�

0

1

(u

1

� e

1

)e

1

) and past(�

2

) =

past(�

0

2

(u

2

� e

2

)e

2

).

If e

1

= e

2

then alph(�

0

1

(u

1

� e

1

)) = alph(�

0

2

(u

2

� e

2

)) and hence by the induction

hypothesis past(�

0

1

(u

1

� e

1

)) = past(�

0

2

(u

2

� e

2

)). This implies, because �

gu(G)

satis�es

(C2), that �

0

1

(u

1

� e

1

)e

1

�

gu(G)

�

0

2

(u

2

� e

2

)e

2

. Thus past(�

1

) = past(�

0

1

(u

1

� e

1

)e

1

) =

past(�

0

1

(u

1

� e

1

))[h�

0

1

(u

1

� e

1

)e

1

i = past(�

0

2

(u

2

� e

2

))[h�

0

2

(u

2

� e

2

)e

2

i = past(�

0

2

(u

2

�

e

2

)e

2

) = past(�

2

).

Now assume that e

1

6= e

2

. Then it is easy to see that alph(�

1

) � fe

1

; e

2

g 2 FC

G

.

By Lemma 6.3.4 and Lemma 5.2.5(2), there exists � 2 SFS such that alph(�) =

alph(�

1

) � fe

1

; e

2

g. Since �e

1

2 SFS and alph(�e

1

) = alph(�

0

2

(u

2

� e

2

)), we have by

the induction hypothesis that past(�e

1

) = past(�

0

2

(u

2

� e

2

)). Similarly, past(�e

2

) =

past(�

0

1

(u

1

� e

1

)). Hence, because �

gu(G)

satis�es (C2), �e

1

e

2

�

gu(G)

�

0

2

(u

2

� e

2

)e

2

and

�e

2

e

1

�

gu(G)

�

0

1

(u

1

� e

1

)e

1

. Since alph(�) ` fe

1

; e

2

g we also have that �e

1

�

gu(G)

�e

2

e

1

and �e

2

�

gu(G)

�e

1

e

2

. Summarizing these results we can conclude that past(�

1

) =

past(�

0

1

(u

1

� e

1

)e

1

) = past(�

0

1

(u

1

� e

1

)) [h�

0

1

(u

1

� e

1

)e

1

i = past(�e

2

) [h�e

2

e

1

i =

past(�)[h�e

2

i[h�e

2

e

1

i = past(�)[h�e

1

e

2

i[h�e

1

i = past(�e

1

)[h�e

1

e

2

i = past(�

0

2

(u

2

�

e

2

)) [h�

0

2

(u

2

� e

2

)e

2

i = past(�

0

2

(u

2

� e

2

)e

2

) = past(�

2

). 2

Lemma 6.3.6

Let G = (E;Con;�) be a G-prime event structure. Then gu(G) = (E;FC

G

;`) is

an UL-event structure.

Proof.

By Lemma 6.3.4, gu(G) is an L-event structure. We must show that gu(G) has the

unique occurrence property as stated in De�nition 5.3.7.

Let e 2 E. Then #e� e; #e 2 FC

G

by Lemma 6.3.2(1) and hence #e� e ` e. By

Lemma 6.3.4 and Lemma 5.2.5(2), there exists � 2 SFS such that alph(�) =#e� e.

Then �e 2 PI and hence condition (U1) is satis�ed. In order to prove that condition

(U2) is satis�ed, we �rst show that �e �

gu(G)

�

0

e for all �

0

e 2 PI . Then by the

transitivity of �

gu(G)

we have that also �

0

e �

gu(G)

�

00

e for all �

0

e; �

00

e 2 PI .

So let �

0

e 2 PI . Then alph(�

0

e) 2 FC

G

and hence alph(�) � alph(�

0

). We prove

that �e �

gu(G)

�

0

e by induction on j�

0

j. If alph(�

0

) = alph(�) then past(�) = past(�

0

)

by Lemma 6.3.5. Hence, because �

gu(G)

satis�es (C2), �e �

gu(G)

�

0

e. Now assume that

j�

0

j > j�j. Then there exists e

0

2 alph(�

0

)�alph(�) such that e

0

is a maximal element in

alph(�

0

) under <. Such an e

0

must exist because alph(�

0

) is a �nite set and < is a partial

ordering relation. Then alph(�

0

)�e

0

2 FC

G

and (alph(�

0

)�e

0

)[e 2 FC

G

. Let �

00

2 SFS

be such that alph(�

00

) = alph(�

0

) � e

0

. Then �

00

e 2 PI . Since j�

00

j < j�

0

j, �

00

e �

gu(G)

�e

by the induction hypothesis. Now alph(�

00

e

0

) = alph(�

0

) and hence by Lemma 6.3.5,

past(�

00

e

0

) = past(�

0

). Then because �

gu(G)

satis�es (C2), �

00

e

0

e �

gu(G)

�

0

e. Since

alph(�

00

) ` fe; e

0

g and �

gu(G)

satis�es (C1), we also have that �

00

e

0

e �

gu(G)

�

00

e. We can

now conclude that �e �

gu(G)

�

00

e �

gu(G)

�

00

e

0

e �

gu(G)

�

0

e. This proves condition (U2).

2

As to be expected, not every UL-event structure can be obtained from a G-prime

event structure by applying gu. For instance, the UL-event structure ES

3

in Ex-

ample 5.2.2 cannot be the UL-event structure associated with any G-prime event

structure.

156 CHAPTER 6. A CLASSIFICATION OF EVENT STRUCTURES

In order to extend gu to a functor, de�ne gu(f) = f for each GPES-morphism f .

Lemma 6.3.7

Let f be a GPES-morphism from G

1

= (E

1

;Con

1

;�

1

) to G

2

=

(E

2

;Con

2

;�

2

). Then gu(f) is an LES-morphism from gu(G

1

) = (E

1

;FC

G

1

;`

1

) to

gu(G

2

) = (E

2

;FC

G

2

;`

2

).

Proof.

Suppose that c `

1

u. Then c \ u = ; and c [u 2 FC

G

1

. So by condition (2')

in Lemma 6.3.3, f(c) \ f(u) = ;. We also have that c [v 2 FC

G

1

for all v � u.

Thus by condition (1') in Lemma 6.3.3, f(c [v) = f(c) [f(v) 2 FC

G

2

for all v � u.

Consequently, f(c) `

2

f(u). 2

The following result now follows immediately from Lemma 6.3.6 and Lemma 6.3.7.

Theorem 6.3.8

gu is a functor from GPES to ULES . 2

Next we de�ne a functor from ULES to GPES. This is done by �rst associating

with each L-event structure a structure ug(ES). In ug(ES) a set of events is consistent

i� the events occur together in some con�guration. An event causally depends on

another event i� its occurrence implies that this other event has already occurred.

So let ES = (E;C;`) be an L-event event structure. Then de�ne ug(ES) =

(E;Con;�) where

� � � E � E is given by e

1

� e

2

, 8c 2 C: (e

2

2 c) e

1

2 c)

� Con � P

F

(E) is given by Con = fX 2 P

F

(E) j 9c 2 C:X � cg.

If in ES all events occur in a con�guration, then we can prove that ug(ES) is a

G-prime event structure.

Lemma 6.3.9

Let ES = (E;C;`) be an L-event structure which satis�es condition (U1) in the

de�nition of the unique occurrence property. Then ug(ES) = (E;Con;�) is a G-prime

event structure.

Proof.

Clearly, � is reexive and transitive. In order to prove that � is anti-symmetric,

suppose e

1

; e

2

2 E are such that e

1

� e

2

and e

2

� e

1

. Then, for all c 2 C, e

1

2 c i�

e

2

2 c. By (U1) there exists c 2 C such that e

1

2 c. By Lemma 5.2.3 there is a c

0

such

that e

1

6= e

2

implies e

1

2 c

0

i� e

2

62 c

0

. Hence e

1

= e

2

. This proves that � is a partial

order.

In order to prove that ug(ES) satis�es (G0) and(G1), let e 2 E. Then by (U1),

there exists c 2 C such that e 2 c. Hence feg 2 Con. Moreover, #e � c and hence

#e is �nite. This proves that ug(ES) satis�es conditions (G0) and (G1). Conditions

(G2) and (G3) follow easily from the de�nition of ug(ES). 2

6.3. UL-EVENT STRUCTURES AND G-PRIME EVENT STRUCTURES 157

As usual ug is to be extended to a functor by de�ning ug(f) = f for each LES-

morphism f . In proving that ug(f) is a GPES-morphism, condition (U2) in the

de�nition of the unique occurrence property is essential. This is illustrated in the

following example.

Example 6.3.10

Let ES

12

and ES

13

be the L-event structures depicted in Figure 6.7. Note that

ES

12

is not an UL-event structure.

{ a }

{ a,c }

{ b }

{ b,c }

o

{ d }

{ d,e }

o

ES

12

ES

13

Figure 6.7: L-event structures ES

12

and ES

13

De�ne f by f(a) = f(b) = d and f(c) = e. Then f is an LES-morphism from ES

12

to ES

13

. Since fcg 2 C

ug(ES

12

)

while f(fcg) = feg 62 C

ug(ES

13

)

, Lemma 6.3.3 implies

that ug(f) is not a GPES-morphism from ug(ES

12

) to ug(ES

13

). 2

Hence arbitrary LES-morphisms are not preserved under ug. LES-morphisms be-

tween L-event structures with the unique occurrence property are however preserved

under ug .

Lemma 6.3.11

Let f be an LES-morphism from ES

1

= (E

1

; C

1

;`

1

) to ES

2

= (E

2

; C

2

;`

2

) where

ES

1

and ES

2

are UL-event structures. Then ug(f) is a GPES-morphism from ug(ES

1

) =

(E

1

;Con

1

;�

1

) to ug(ES

2

) = (E

2

;Con

2

;�

2

).

Proof.

In order to prove condition (1) in the de�nition of GPES-morphism, let e 2 E

1

be

such that f(e) is de�ned and suppose e

0

2#f(e). We prove that e

0

2 f(#e). If e

0

= f(e)

then we are done, so assume that e

0

6= f(e). Let � 2 SFS

ES

1

be such that �e 2 PI

ES

1

.

By condition (U1) in the de�nition of the unique occurrence property such � exists.

Then alph(�e) 2 C

1

. Hence, because f is an LES-morphism, f(alph(�e)) 2 C

2

. Since

f(e) 2 f(alph(�e)) this implies, because e

0

�

2

f(e) and e

0

6= f(e), that e

0

2 f(alph(�)).

Let e

00

2 alph(�) be such that f(e

00

) = e

0

. If e

00

�

1

e, then e

0

= f(e

00

) 2 f(#e).

158 CHAPTER 6. A CLASSIFICATION OF EVENT STRUCTURES

In order to prove that e

00

�

1

e, de�ne R � PI

ES

1

� PI

ES

1

by: �

1

e

1

R�

2

e

2

i�

(e

1

= e

2

6= e or (e

1

= e

2

= e and (e

00

2 alph(�

1

) , e

00

2 alph(�

2

)))). Assume

that R is an equivalence relation which is SFS

ES

1

-consistent. Then �

ES

1

� R because

�

ES

1

is the least equivalence relation which is SFS

ES

1

-consistent. Since �e 2 PI

ES

1

,

e

00

2 alph(�), and ES

1

has the unique occurrence property it then follows that for all

�

1

e 2 PI

ES

1

, e

00

2 alph(�

1

). Hence e

00

2 c for all c 2 C

1

such that e 2 c. Thus e

00

�

1

e.

Consequently, what remains to be proved is that R is an equivalence relation which

satis�es (C1) and (C2).

Clearly, R is an equivalence relation. In order to prove that R satis�es (C1),

suppose �

1

u 2 SFS

ES

1

and e

1

2 u. If e

1

6= e then it is clear that �

1

e

1

R�

1

(u� e

1

)e

1

,

so assume that e

1

= e. If e

00

62 u then it is clear that �

1

e

1

R�

1

(u � e

1

)e

1

. We now

show that e

00

2 u leads to a contradiction. To see this, suppose that e

00

2 u. Since

alph(�

1

e

1

) 2 C

1

and f is an LES-morphism, we must have that f(alph(�

1

e

1

)) =

alph(f(�

1

)) [f(e) 2 C

2

. Combining this with e

0

�

2

f(e) and e

0

6= f(e) yields that

e

0

2 alph(f(�

1

)). On the other hand, we also have that alph(�

1

) `

1

e

00

and hence by

the de�nition of LES-morphism f(alph(�

1

)) `

2

f(e

00

). This leads to a contradition

with f(e

00

) = e

0

2 alph(f(�

1

)) = f(alph(�

1

)). We can now conclude that e

00

2 u is not

possible. This proves that R satis�es (C1).

Now in order to prove that R satis�es (C2), let �

1

e

1

; �

2

e

1

2 PI

ES

1

be such that

past

R

(�

1

) = past

R

(�

2

). If e

1

6= e then we immediately have that �

1

e

1

R�

2

e

1

. If e

1

= e,

then �

1

e

1

R�

2

e

1

because past

R

(�

1

) = past

R

(�

2

) implies that also alph(�

1

) = alph(�

2

).

This proves that R satis�es (C2).

Thus R is an equivalence relation satisfying (C1) and (C2) which completes the

proof that ug(f) satis�es condition (1) in the de�nition of GPES-morphism.

In order to prove condition (2) in the de�nition of GPES-morphism, let X 2 Con

1

.

Then X � c for some c 2 C

1

. Since f is an LES-morphism, this implies that f(X) �

f(c) 2 C

2

. Hence f(X) 2 Con

2

.

Finally, condition (3) in the de�nition of GPES-morphism follows immediately

from Lemma 5.2.7. 2

The following result is an immediate consequence of Lemma 6.3.9 and Lemma 6.3.11.

Theorem 6.3.12

ug is a functor from ULES to GPES. 2

Now we prove that ug and gu form an adjunction.

Theorem 6.3.13

ug : ULES ! GPES and gu : GPES ! ULES form a reection with ug the left

adjoint and the identity arrows id

G

as co-unit.

Proof.

Let G = (E;Con;�) be a G-prime event structure with gu(G) = (E;FC

G

;`) and

ug(gu(G)) = (E;Con

0

;�

0

). First we prove that G = ug(gu(G)).

IfX 2 Con, then it is easy to see that #X 2 FC

G

, and henceX 2 Con

0

. Conversely,

X 2 Con

0

implies that there exists c 2 FC

G

such that X � c, and hence X 2 Con.

This proves that Con = Con

0

.

6.3. UL-EVENT STRUCTURES AND G-PRIME EVENT STRUCTURES 159

If e

1

; e

2

2 E are such that e

1

� e

2

, then e

1

2 c for all c 2 FC

G

such that e

2

2 c, and

hence also e

1

�

0

e

2

. Conversely, if e

1

�

0

e

2

then we use the observation that #e

2

2 FC

G

by Lemma 6.3.2(1) to conclude that e

1

2#e

2

. This proves that G = ug(gu(G)), and

hence that id

G

is a GPES-isomorphism from ug(gu(G)) to G.

Now let ES = (E

00

; C;`

00

) be an UL-event structure and let g be a GPES-morphism

from ug(ES) = (E

00

;Con

00

;�

00

) to G. Then we must prove that there exists a unique

LES-morphism f from ES to gu(G) such that the following diagram commutes.

! f g

ES

()

(

)

()

(()

ES

f

Ggu

idG

gu GG

ug

ug

ug)

Since ug is the identity on arrows, it is su�cient to prove that g is an LES-morphism

from ES to gu(G). Suppose c `

00

u. Then c \ u = ; and c [v 2 C � FC

ug(ES)

, for

all v � u, by (E2). Since g is a GPES-morphism from ug(ES) to G we now have

by Lemma 6.3.3 that g(c) [g(v) 2 FC

G

for all v � u and g(c) \ g(u) = ;. Hence

g(c) ` g(u). 2

The conditions (FC), (BC), and (D) have been shown in Section 6.2 to characterize

within the category LES a full subcategory equivalent to SWES , the category of stable

W-event structures. If we restrict this subcategory further to the full subcategory of

UL-event structures satisfying (FC), (BC), and (D), we obtain a category equivalent

to GPES.

In order to prove this, we �rst need the following lemma.

Lemma 6.3.14

Let ES = (E;C;`) be an UL-event structure which satis�es (BC) with ug(ES) =

(E;Con;�) and let e 2 E. Then #e 2 C.

Proof.

De�ne R � PI

ES

� PI

ES

by: �

1

e

1

R�

2

e

2

i� (e

1

= e

2

6= e or (e

1

= e

2

= e and

9c 2 C: (c � alph(�

1

) \ alph(�

2

) and c [e 2 C))). We �rst prove that R is an

equivalence relation satisfying (C1) and (C2).

Clearly,R is reexive and symmetric. In order to prove that R is transitive, suppose

that �

1

e

1

R�

2

e

2

R�

3

e

3

. The only non-trivial case is that e

1

= e

2

= e

3

= e. Then there

exists c

1

2 C such that c

1

� alph(�

1

)\alph(�

2

) and c

1

[e 2 C and there exists c

2

2 C

such that c

2

� alph(�

2

) \ alph(�

3

) and c

2

[e 2 C. Then c

1

" c

2

and (c

1

[e) " (c

2

[e)

160 CHAPTER 6. A CLASSIFICATION OF EVENT STRUCTURES

and hence by (BC), c

1

\ c

2

2 C and (c

1

[e) \ (c

2

[e) = (c

1

\ c

2

) [e 2 C. Because

(c

1

\ c

2

) � alph(�

1

)\ alph(�

3

) this proves that �

1

e

1

R�

3

e

3

. We can now conclude that

R is transitive, and hence that R is an equivalence relation.

In order to prove that R satis�es (C1), let � 2 SFS

ES

and u 2 P

F

(E) be such that

�u 2 SFS

ES

and let e

0

2 u. If e

0

6= e then it is clear that �e

0

R�(u � e

0

)e

0

, so assume

that e

0

= e. Then alph(�) 2 C is such that alph(�) � alph(�) \ alph(�(u � e

0

)) and

alph(�) [e 2 C. Hence �e

0

R�(u� e

0

)e

0

. This proves that R satis�es (C1).

In order to prove thatR satis�es (C2), let �

1

e

0

; �

2

e

0

2 PI

ES

be such that past

R

(�

1

) =

past

R

(�

2

). If e

0

6= e then it is clear that �

1

e

0

R�

2

e

0

. If e = e

0

, then past

R

(�

1

) =

past

R

(�

2

) implies that also alph(�

1

) = alph(�

2

). Hence alph(�

1

) 2 C is such that

alph(�

1

) � alph(�

1

) \ alph(�

2

) and alph(�

1

) [e 2 C. This proves that �

1

e

0

R�

2

e

0

and

hence that R satis�es (C2).

Because �

ES

is the least equivalence relation satisfying (C1) and (C2), we must

have that �

ES

� R. Now let c 2 C be such that e 2 c and c is minimal in the sense

that 8c

0

2 C: ((e 2 c

0

and c

0

� c)) c = c

0

). Note that c exists by condition (U1)

in the de�nition of the unique occurrence property. Then by the minimality of c and

(E0) we have that c � e ` e. We also have that #e � c by the de�nition of �. Now

assume to the contrary that #e 6= c. Then there exists e

0

2 c such that e

0

6� e. Hence

there exists c

0

2 C such that e 2 c

0

and e

0

62 c

0

. We may assume that c

0

is minimal in

the sense that 8c

00

2 C: ((e 2 c

00

and e

0

62 c

00

and c

00

� c

0

)) c

00

= c

0

). Then c

0

� e ` e

by the minimality of c

0

and (E0). Now let �; �

0

2 SFS

ES

be such that alph(�) = c� e

and alph(�

0

) = c

0

� e. Hence �e; �

0

e 2 PI

ES

. By condition (U2) in the de�nition of the

unique occurrence property, �e �

ES

�

0

e, and hence �eR �

0

e because �

ES

� R. This

implies that there exists c

00

2 C such that c

00

� alph(�)\alph(�

0

) and c

00

[e 2 C. Then

c

00

[e � c and e 2 c

00

[e, but c

00

[e 6= c because e

0

2 c� (c

00

[e), a contradiction with

the minimality of c. We can now conclude that #e = c 2 C. 2

Lemma 6.3.15

Let ES be an UL-event structure which satis�es (FC), (BC), and (D). Then ES =

gu(ug(ES)).

Proof.

Let ES = (E;C;`), ug(ES) = (E;Con;�), and gu(ug(ES)) = (E;FC

ug(ES)

;`

0

).

First we prove that FC

ug(ES)

= C.

Clearly, C � FC

ug(ES)

. In order to prove that FC

ug(ES)

� C, let c 2 FC

ug(ES)

.

Then c 2 Con, and hence there exists c

0

2 C such that c � c

0

. By Lemma 6.3.14,

#e 2 C for all e 2 c. Because c =

S

f#e j e 2 cg, we then have that c 2 C by repeatedly

applying (FC). This proves that FC

ug(ES)

� C, and hence that C = FC

ug(ES)

.

In order to prove that `=`

0

, �rst assume that c ` u. Then c \ u = ; and c [v 2

C = FC

ug(ES)

for all v � u. Hence c `

0

u by the de�nition of `

0

. Now assume that

c `

0

u. Then c \ u = ; and c [v 2 FC

ug(ES)

= C for all v � u. Hence c ` u by

condition (D). 2

From the de�nition of gu it easily follows that for every G-prime event structure

G, gu(G) satis�es (FC), (BC), and (D). Hence we have the following result from

Lemma 6.3.15 and Theorem 6.3.13.

6.4. UL-EVENT STRUCTURES AND PRIME EVENT STRUCTURES 161

Theorem 6.3.16

GPES is equivalent to the full subcategory of ULES the objects of which satisfy

(FC), (D), and (BC). 2

6.4 UL-Event Structures and Prime Event Struc-

tures

As the last point in our comparison of the various categories of event structures we

want to prove that there exists also a reection between the category of prime event

structures and the category of UL-event structures. In view of Theorem 6.3.13 it

is su�cient to show that there is a reection between the category of prime event

structures and the category of G-prime event structures.

First we de�ne the category of prime event structures.

De�nition 6.4.1

PES is the category which has prime event structures as its objects and PES-

morphisms as its arrows.

A PES-morphism f : (E

1

;�

1

;#

1

) ! (E

2

;�

2

;#

2

) is a partial function f : E

1

! E

2

such that

(1) 8e 2 E

1

: (f(e) is de�ned)#f(e) � f(#e))

(2) 8e

1

; e

2

2 E

1

: ((f(e

1

) and f(e

2

) are de�ned and f(e

1

)#

2

f(e

2

))) e

1

#

1

e

2

)

(3) 8e

1

; e

2

2 E

1

: ((f(e

1

) and f(e

2

) are de�ned and f(e

1

) = f(e

2

))) (e

1

= e

2

or -

e

1

#

1

e

2

)).

The identity morphism associated with an object is the identity function on its events;

composition of PES-morphisms is composition of partial functions. 2

In what follows it is sometimes convenient to use the following characterizations of

the conict relation of a prime event structure.

Lemma 6.4.2

Let P be a prime event structure. Then the following statements are equivalent:

(1) :(e

1

#e

2

)

(2) #e

1

[#e

2

2 FC

P

(3) 9c 2 FC

P

: fe

1

; e

2

g � c. 2

Proof.

(1)) (2): If :(e

1

#e

2

) then #e

1

[#e

2

is �nite and downward-closed because #e

1

and #e

2

are �nite (by (P2)) and downward-closed. Moreover, #e

1

[#e

2

is #-free by

(P1), because both #e

1

and #e

2

are #-free by (P2).

The implications (2)) (3) and (3)) (1) are obvious. 2

162 CHAPTER 6. A CLASSIFICATION OF EVENT STRUCTURES

Similar to the situation for GPES-morphisms, also for PES-morphisms an alterna-

tive characterization in terms of the (�nite) con�gurations can be given (see also [98]).

This characterization is used as a de�nition for PES-morphisms in, e.g., [94, 98]. The

proof is similar to the proof of Lemma 6.3.3.

Lemma 6.4.3

Let P

1

= (E

1

;�

1

;#

1

) and P

2

= (E

2

;�

2

;#

2

) be prime event structures and let

f : E

1

! E

2

be a partial function. Then f is a PES-morphism i�

(1') 8c 2 C

P

1

: f(c) 2 C

P

2

(2') 8c 2 C

P

1

:8e

1

; e

2

2 c: ((f(e

1

) and f(e

2

) are de�ned and f(e

1

) = f(e

2

))) e

1

=

e

2

). 2

Proof.

Suppose that f is a PES-morphism. In order to prove (1'), let c 2 C

P

1

. By

condition (2) in the de�nition of PES-morphism, f(c) is #

2

-free because c is #

1

-free.

Now let e

2

2 E

2

be such that e

2

�

2

e

3

for some e

3

2 f(c). Then e

3

= f(e

1

) for

some e

1

2 c. Hence condition (1) in the de�nition of PES-morphisms implies that

e

2

2 f(#e

1

). Since c is downward-closed, we have #e

1

� c and so e

2

2 f(c). This

proves that f(c) is downward-closed, and hence f(c) 2 C

P

2

. Because each c 2 C

P

1

is

#

1

-free, condition (2') follows immediately from condition (3).

Now suppose that f satis�es the conditions (1') and (2') above. In order to prove

condition (1) in the de�nition of PES-morphism, let e

1

2 E

1

be such that f(e

1

) is

de�ned and suppose e

2

2#f(e

1

), that is e

2

�

2

f(e

1

). Since #e

1

2 C

P

1

, (1') implies

f(#e

1

) 2 C

P

2

. Hence f(#e

1

) is downward-closed and e

2

2 f(#e

1

). This proves condition

(1).

In order to prove condition (2) in the de�nition of PES-morphism, suppose f(e

1

)

and f(e

2

) are de�ned and f(e

1

)#

2

f(e

2

). Assume to the contrary that :(e

1

#

1

e

2

).

Then by Lemma 6.4.2 there exists c 2 C

1

such that fe

1

; e

2

g � c. By condition (1') we

also have that f(c) 2 C

2

. Because ff(e

1

); f(e

2

)g � f(c), applying Lemma 6.4.2 leads

to :(f(e

1

)#

2

f(e

2

)), a contradiction. This proves that e

1

#

1

e

2

.

Finally, in order to prove condition (3) in the de�nition of PES-morphism, suppose

e

1

; e

2

2 E

1

are such that f(e

1

) and f(e

2

) are de�ned, e

1

6= e

2

, and f(e

1

) = f(e

2

). Then

by condition (2') there exists no c 2 C

P

1

such that fe

1

; e

2

g � c and hence Lemma 6.4.2

yields e

1

#

1

e

2

. 2

Prime event structures can be viewed as G-prime event structures in which consis-

tency of sets of events follows from the absence of pairwise conicts.

For a prime event structure P = (E;�;#), de�ne pg(P) = (E;Con;�) where

Con = fX 2 P

F

(E) j X is #-freeg:

Lemma 6.4.4

Let P = (E;�;#) be a prime event structure. Then pg(P) = (E;Con;�) is a

G-prime event structure with C

P

= C

pg(P)

.

6.4. UL-EVENT STRUCTURES AND PRIME EVENT STRUCTURES 163

Proof.

Condition (G0) follows from the irreexivity of #. Condition (G1) follows imme-

diately from (P2) and condition (G2) follows immediately from the de�nition of Con.

In order to prove (G3), let X 2 Con and suppose e

0

� e 2 X. Then :(e

0

#e

00

) for all

e

00

2 X by (P1) because X is #-free. Moreover, X [fe

0

g is �nite because X is �nite,

and hence X [fe

0

g 2 Con.

It is easy to see that C

P

= C

pg(P)

. 2

In order to extend the map pg to a functor, we de�ne again pg(f) = f for each

PES-morphism f .

Lemma 6.4.5

Let f be a PES-morphism from P

1

= (E

1

;�

1

;#

1

) to P

2

= (E

2

;�

2

;#

2

). Then

pg(f) is a GPES-morphism from pg(P

1

) = (E

1

;Con

1

;�

1

) to pg(P

2

) = (E

2

;Con

2

;�

2

).

Proof.

Condition (1) in the de�nition of GPES-morphism is satis�ed, because it is the

same as condition (1) in the de�nition of PES-morphism. In order to prove condition

(2), letX 2 Con

1

. ThenX is #

1

-free and hence f(X) is #

2

-free by condition (2) in the

de�nition of PES-morphism. Moreover, f(X) is �nite because X is �nite. Hence we

can conclude that f(X) 2 Con

2

. Finally, in order to prove condition (3), letX 2 Con

1

and e

1

; e

2

2 X be such that f(e

1

) and f(e

2

) are de�ned and e

1

6= e

2

. Then :(e

1

#

1

e

2

)

because X is #

1

-free. Condition (3) in the de�nition of PES-morphism now leads to

f(e

1

) 6= f(e

2

). 2

The following result follows immediately from Lemma 6.4.4 and Lemma 6.4.5.

Theorem 6.4.6

pg is a functor from PES to GPES. 2

Conversely, a map from G-prime event structures to prime event structures is

de�ned by interpreting absence of consistency of events as conict.

For a G-prime event structure G = (E;Con;�), de�ne gp(G) = (E;�;#) where

� E � E is given by

e

1

#e

2

, fe

1

; e

2

g 62 Con:

Lemma 6.4.7

Let G = (E;Con;�) be a G-prime event structure. Then gp(G) = (E;�;#) is a

prime event structure with FC

gp(G)

= fX 2 P

F

(E) j X is downward-closed and

8e

1

; e

2

2 X: fe

1

; e

2

g 2 Cong.

Proof.

First note that � is a partial order and # is symmetric. By (G0), # is also

irreexive. In order to prove that gp(G) satis�es (P1), let e

0

; e

1

; e

2

2 E be such that

e

0

#e

1

� e

2

. Then fe

0

; e

1

g 62 Con, and hence by (G2) fe

0

; e

1

; e

2

g 62 Con. This implies

by (G3) that fe

0

; e

2

g 62 Con. Hence e

0

#e

2

. This proves condition (P1). Condition

(P2) in the de�nition of a prime event structure follows immediately from condition

(G1).

From the de�nition of gp(G) it is clear that FC

gp(G)

= fX 2 P

F

(E) j X is

downward-closed and 8e

1

; e

2

2 X: fe

1

; e

2

g 2 Cong. 2

164 CHAPTER 6. A CLASSIFICATION OF EVENT STRUCTURES

{ a,c } { b,c }

{ a,b,c }

{ b }
{ c }

o

{ a }

{ a,b }

Figure 6.8: The prime event structure gp(G)

A G-prime event structure G may have a strictly smaller set of con�gurations than

the prime event structure gp(G). This is for instance the case for the G-prime event

structure G depicted in Figure 6.6 for which gp(G) is depicted in Figure 6.8.

De�ne gp(f) = f for each GPES-morphism f .

Lemma 6.4.8

Let f be a GPES-morphism from G

1

to G

2

. Then gp(f) is a PES-morphism from

gp(G

1

) to gp(G

2

).

Proof.

Immediate from the de�nitions of PES-morphism and GPES-morphism. 2

Lemma 6.4.7 and Lemma 6.4.8 together imply the following.

Theorem 6.4.9

gp is a functor from GPES to PES. 2

Next we prove that gp and pg form an adjunction.

Theorem 6.4.10

gp : GPES ! PES and pg : PES ! GPES form a reection with gp the left

adjoint and the identity arrows id

P

as co-unit.

Proof.

First note that for each prime event structure P , gp(pg(P)) = P , and hence id

P

is

a PES-isomorphism from gp(pg(P)) to P .

Let G = (E;Con;�) be a G-prime event structure, let P = (E

0

;�

0

;#

0

) be a

prime event structure, and let g be a PES-morphism from gp(G) = (E;�;#) to

P . Then we must prove that there exists a unique GPES-morphism f from G to

pg(P) = (E

0

;Con

0

;�

0

) such that the following diagram commutes.

6.4. UL-EVENT STRUCTURES AND PRIME EVENT STRUCTURES 165

! f g

P()

()

()

(()

idP

P

f

Ppg

G

gp

G

pg

)

gp

gp

By the de�nition of gp on arrows, it is su�cient to prove that g is a GPES-morphism

from G to pg(P). Because g satis�es condition (1) in the de�nition of PES-morphism,

g also satis�es condition (1) in the de�nition of GPES-morphism. In order to prove

that g satis�es condition (2) in the de�nition of GPES-morphism, suppose X 2 Con.

Then X is #-free, and hence g(X) is #

0

-free by condition (2) in the de�nition of PES-

morphism. This implies that g(X) 2 Con

0

. Finally, in order to prove condition (3) in

the de�nition of GPES-morphism, let X 2 Con and let e

1

; e

2

2 X be such that g(e

1

)

and g(e

2

) are de�ned and e

1

6= e

2

. Then :(e

1

#e

2

). Hence g(e

1

) 6= g(e

2

) by condition

(3) in the de�nition of PES-morphism. This proves that g is a GPES-morphism from

G to pg(P). 2

In Section 5.6 a map pu from prime event structures to L-event structures has been

de�ned. It is easy to see that this map is the same as the composition gu � pg . Thus

by Lemma 6.4.4 and Lemma 6.3.6 the map pu associates an UL-event structure with

each prime event structure.

Now de�ne pu on morphisms by pu(f) = gu � pg(f) for each PES-morphism f .

Furthermore, denote gp � ug by up. Then the following theorem follows immediately

from Theorem 6.3.13 and Theorem 6.4.10.

Theorem 6.4.11

up : ULES ! PES and pu : PES ! ULES form a reection with up the left

adjoint and the identity arrows id

P

as co-unit. 2

Also in this case a full subcategory of ULES can be identi�ed for which the re-

ection in Theorem 6.4.11 cuts down to an equivalence. We �rst identify the full

subcategory of GPES for which the reection in Theorem 6.4.10 cuts down to an

equivalence.

To this aim we de�ne for G-prime event structures (E;Con;�) the following axiom

expressing that consistency of sets can be recovered from pairwise consistency.

(PG) 8X 2 P

F

(E): ((8e; e

0

2 X: fe; e

0

g 2 Con)) X 2 Con). 2

Lemma 6.4.12

PES is equivalent to the full subcategory of GPES the objects of which satisfy

(PG).

166 CHAPTER 6. A CLASSIFICATION OF EVENT STRUCTURES

Proof.

From the de�nition of pg it is clear that pg(P) satis�es (PG) for every prime event

structure P . By Theorem 6.4.10 it is then su�cient to prove that pg(gp(G)) = G for

every G-prime event structure G satisfying (PG).

Let G = (E;Con;�) be a G-prime event structure which satis�es (PG) with

gp(G) = (E;�;#) and pg(gp(G)) = (E;Con

0

;�). If X 2 Con, then X is #-free

by (G2), and hence X 2 Con

0

. Now suppose that X 2 Con

0

. Then for all e; e

0

2 X,

:(e#e

0

), and hence fe; e

0

g 2 Con. This implies that also X 2 Con by (PG). This

proves that Con = Con

0

and hence that pg(gp(G)) = G. 2

Now we can characterize the full subcategory of ULES for which the reection

between ULES and PES from Theorem 6.4.11 cuts down to an equivalence. In this

case the axiom (FC) used in Section 6.3 in the context of G-prime event structures

is not strong enough. In the context of prime event structures it must be expressed

that the union of arbitrary �nite pairwise compatible sets of con�gurations is also a

con�guration. Thus we now de�ne for UL-event structures (E;C;`) the following

axiom (FC') which strengthens (FC).

(FC') 8D 2 P

F

(C): ((8c; c

0

2 D:c " c

0

))

S

c2D

c 2 C).

Theorem 6.4.13

PES is equivalent to the full subcategory of ULES the objects of which satisfy

(FC'), (BC), and (D).

Proof.

By Lemma 6.4.12 and Theorem 6.3.16 respectively, it is su�cient to prove that

ug(ES) satis�es (PG) for every UL-event structure ES satisfying (FC'), (BC), and

(D), and that gu(G) satis�es (FC') for every G-prime event structure G satisfying

(PG).

Let ES = (E;C;`) be an UL-event structure satisfying (FC'), (BC), and (D) with

ug(ES) = (E;Con;�) and let X 2 P

F

(E) be such that for all e; e

0

2 X, fe; e

0

g 2 Con.

It must be proved that X 2 Con. For all e; e

0

2 X there exists c 2 C such that

fe; e

0

g � c, and hence by the de�nition of � also #e[#e

0

� c. By Lemma 6.3.14,

#e 2 c for all e 2 X. Now consider D = f#e j e 2 Xg. Then by (FC')

S

c2D

c 2 C.

Because X �

S

c2D

c, this implies that X 2 Con. This proves that ug(ES) satis�es

(PG).

Now let G = (E;Con;�) be a G-prime event structure satisfying (PG) with

gu(G) = (E;FC

G

;`) and suppose that D 2 P

F

(FC

G

) is such that for all c; c

0

2 D,

c " c

0

. Then for all e; e

0

2

S

c2D

c, fe; e

0

g 2 Con, and hence

S

c2D

c 2 Con by (PG).

Moreover,

S

c2D

c 2 FC

G

because each c 2 D is downward-closed. This proves that

gu(G) satis�es (FC'). 2

6.5 Concluding Remarks

In this chapter we have investigated the relationship between the categories of L-event

structures and UL-event structures introduced in the previous chapter and several

6.5. CONCLUDING REMARKS 167

existing categories of event structures. In the following diagram our results are de-

picted. Recall that the co-reection between ULES and LES has been proved in

Corollary 5.7.11.

ULES

WES

GPES PES

SWESLES

Thus L-event structures can be viewed as a generalization of (stable) W-event

structures and UL-event structures can be viewed as a generalization of (G-)prime

event structures. One way in which L-event structures generalize W-event structures

is that the con�guration structure may have more structure than given by set inclusion.

Another way to generalize W-event structures is to put more structure in the notion

of a con�guration itself. This approach has been taken in [79] where con�gurations

are posets of events.

Another interesting class of event structures not considered here is the class of

ow event structures [14]. Flow event structures generalize prime event structures by

relaxing the condition imposed upon the causality and conict relation. In particular,

condition (P1) in the de�nition of a prime event structure is dropped, the causal

dependency relation need no longer be transitive, and the conict relation does not

have to be irreexive. One of the motivations for working with ow event structures is

that they seem to be more suitable for giving an event structure semantics for process

calculi such as CCS. In [13] a map from the class FES of ow event structures to the

class of stable W-event structures is de�ned. This map is injective and so FES can be

viewed as a proper subclass of the class of stable W-event structures. The following

diagram summarizes the relationship between the various classes of event structures

(where we use the name of the category to denote the class of its objects). In this

diagram an arrow between two classes denotes the fact that the given map from the

�rst class to the second class is injective. Hence following the arrows we obtain more

general classes of event structures. Note that from Corollary 6.2.8 and Theorem 6.3.16

it follows that in the framework of L-event structures the intersection of the classes

ULES and SWES yields the class GPES.

168 CHAPTER 6. A CLASSIFICATION OF EVENT STRUCTURES

ULES
WES

GPES

PES

SWES

LES

FES

The classes of (G-)prime event structures and (stable) W-event structures also

have an elegant characterization in terms of domains [85, 16]. The domain theoretic

characterization of prime event structures has been given in [66]. Flow event structures

yield the same class of domains [13]. Winskel has shown [96] that stable W-event

structures yield the same class of domains as G-prime event structures. Finally, the

domains corresponding to W-event structures have been characterized in [21], see also

[96]. For L-event structures and UL-event structures however, it is not yet clear how

one should go about obtaining a domain-theoretic characterization.

Chapter 7

Discussion

In this thesis we have investigated the behaviour of Petri nets at several levels of

abstraction. In particular, we have investigated the transition system semantics from

[63], a trace semantics, and an event structure semantics for Petri nets. These three

types of semantics are increasingly more abstract. The semantic models used for

representing the behaviour of Petri nets are generalizations of the models of transition

systems, trace languages, and event structures, which have been used for giving a

semantics for elementary net systems and 1-safe Petri nets. Also the semantic maps

which have been de�ned are conservative extensions of the classical ones.

Each of these semantic maps abstracts from the distribution of a global state over

local states. For the transition system semantics this is the only abstraction which

is made. An important question is what are the corresponding models for the other

two types of semantics that do not abstract from the distribution over local states.

For the trace semantics this leads to the equivalence classes of occurrence sequences

or processes from [9]. An interesting open problem is to �nd the counterpart in this

sense of the event structure semantics for Petri nets in terms of local event structures

introduced in this thesis. A solution to this problem would give some kind of unfolding

of Petri nets generalizing the classical unfolding of 1-safe Petri nets. In contrast to

the unfoldings considered in [61] and [24] such an unfolding would not be based on a

colouring of tokens.

The following diagram gives an overview of the various models.

linear time branching time

distributed state Petri nets equivalence classes ?

of processes

global state multiset local trace local event

transition systems languages structures

Whereas the universality of the transition system semantics and the trace semantics

can be expressed through co-reections with the category of Petri nets, a similar result

does not hold for the event structure semantics in terms of local event structures. The

problem is that due to auto-concurrency, the category of Petri nets is too rich in

terms of objects and arrows. We have shown that by cutting down on the objects,

169

170 CHAPTER 7. DISCUSSION

i.e. considering co-safe Petri nets, a co-reection is obtained with the category of

local event structures with the unique occurrence property. In order to get rid of the

restriction of co-safeness, a proposal is given in order to lift local event structures to

handle (�nite) multisets of events. In this way an adjunction is obtained between the

resulting category of event structures and the category of all Petri nets. The trouble

with this more general approach is however that this adjunction is not a co-reection.

To solve this problem it seems that we must somehow �nd a way of distinguishing

between multiple occurrences of the same transition due to auto-concurrency on the

one hand and to causality on the other hand. It is however not at all obvious at present

how this can be achieved.

The classes of trace languages and event structures which have been used for giving

a semantics for Petri nets have been developed with the particular class of Petri nets

in mind. However, we hope that the models will also turn out to be of independent

interest. This hope is already partly justi�ed by the results in Chapter 6 relating

local event structures to other classes of event structures. In order to investigate the

models, it would be interesting to look for universal constructions within the models.

The construction of the local event structure associated with a Petri net is essen-

tially based on its runs represented as local traces. An interesting general construction

has been used in [48] where a categorical construction is outlined, using an extension of

the Yoneda embedding, in order to construct a behavioural description of a model out

of its observations. It would be interesting to investigate what kind of objects would

result from applying this construction to the observations of Petri nets represented as,

e.g., local traces. This might then lead to an alternative branching time semantics for

Petri nets.

Bibliography

[1] Aalbersberg, IJ. J., (1988), Studies in trace theory, PhD thesis, Leiden Uni-

versity.

[2] Aalbersberg, IJ. J., and Rozenberg, G., (1988), Theory of traces, Theoretical

Computer Science 60, 1-82.

[3] Arnold, A., (1991), An extension of the notions of traces and of asynchronous

automata, RAIRO, Theoretical Informatics and Applications 4, 355-393.

[4] Banâtre, J., and Le M�etayer, D., (1993), Programming by multiset transfor-

mation, Communications of the ACM, Vol. 36, No. 1, 98-111.

[5] Barr, M., and Wells, C., (1990), Category Theory for Computing Science,

Prentice Hall.

[6] Bednarczyk, M.A., (1988), Categories of asynchronous systems, PhD thesis,

University of Sussex, report no. 1/88.

[7] Berry, G., and Boudol, G., (1992), The chemical abstract machine, Theoretical

Computer Science 96, 217-248.

[8] Bertoni, A., Brambilla,M., Mauri, G., and Sabadini, N., (1981), An application

of the theory of free partially commutative monoids: asymptotic densities of

trace languages, Lecture Notes in Computer Science 118, 205-215.

[9] Best, E., and Devillers, R., (1987), Sequential and concurrent behaviour in

Petri net theory, Theoretical Computer Science 55, 87-136.

[10] Best, E., Devillers, R., and Hall, J., (1992), The box calculus: a new causal al-

gebra with multilabel communication, Lecture Notes in Computer Science 609,

21-69.

[11] Best, E., and Fern�andez C., C., (1988), Nonsequential Processes, EATCS

Monographs on Theoretical Computer Science Vol. 13, Springer Verlag.

[12] Best, E., and Merceron, A., (1983), Discreteness, K-density and D-continuity

of occurrence nets, Lecture Notes in Computer Science 145, 73-84.

[13] Boudol, G., (1990), Flow event structures and ow nets, Lecture Notes in

Computer Science 469, 62-95.

171

172 BIBLIOGRAPHY

[14] Boudol, G., and Castellani, I., (1988), Permutation of transitions: an event

structure semantics for CCS and SCCS, Lecture Notes in Computer Sci-

ence 354, 411-427.

[15] Cartier, P., and Foata, D., (1981), Problemes combinatoires de commutation

et rearrangements, Lecture Notes in Mathematics 85.

[16] Davey, B.P., and Priestley, H.A., (1990), Introduction to lattices and order,

Cambridge Mathematical Textbooks, Cambridge University Press.

[17] Degano, P., De Nicola, R., and Montanari, U., (1988), A distributed opera-

tional semantics for CCS based on Condition/Event systems, Acta Informat-

ica 26, 59-91.

[18] Degano, P., Meseguer, J., and Montanari, U., (1989), Axiomatizing net com-

putations and processes, Proc. of LICS 1989, 175-185.

[19] Devillers, R., (1993), Construction of S-invariants and S-components for re�ned

Petri Boxes, Lecture Notes in Computer Science 691, 242-261.

[20] Diekert, V., and Rozenberg, G. eds., (1994), The Book on Traces, to appear.

[21] Droste, M., (1989), Event structures and domains, Theoretical Computer Sci-

ence 68, 37-47.

[22] Ehrenfeucht, A., and Rozenberg, G., (1990), Partial (Set) 2-structures; Part II:

State spaces of concurrent systems, Acta Informatica, v. 27, 343-368.

[23] Engberg, U.H., and Winskel, G., (1990), Petri nets as models of lineair logic,

Lecture Notes in Computer Science 431, 147-161.

[24] Engelfriet, J., (1991), Branching processes of Petri nets, Acta Informatica,

v. 28, 575-591.

[25] Engelfriet, J., (1993), A multiset semantics for the pi-calculus with replication,

Lecture Notes in Computer Science 715, 7-21.

[26] Esparza, J., and Nielsen, M., (1994), Decidability issues for Petri nets - a sur-

vey, Bulletin of the European Association for Theoretical Computer Science 52,

244-262.

[27] Fern�andez, C. C., and Thiagarajan, P.S., (1984), D-continuous causal nets: a

model of non-sequential processes, Theoretical Computer Science 28, 171-196.

[28] Foata, D., (1983), Rearrangements of words, in M. Lothaire, Combinatorics on

words, Addison-Wesley.

[29] Gastin, P., (1990), In�nite traces, Lecture Notes in Computer Science 469,

277-308.

BIBLIOGRAPHY 173

[30] Genrich, H.J., and Lautenbach, K., (1981), System modelling with high level

Petri nets, Theoretical Computer Science 13, 109-136.

[31] Girard, J-Y, (1987), Linear logic, Theoretical Computer Science 50, 1-102.

[32] Goltz, U., (1988), On representing CCS programs by �nite Petri nets, Lecture

Notes in Computer Science 324, 339-350.

[33] Goltz, U., and Mycroft, A., (1984), On the relationship of CCS and Petri nets,

Lecture Notes in Computer Science 172, 196-208.

[34] Goltz, U., and Reisig, W., (1983), The non-sequential behaviour of Petri nets,

Information and Control 57, 125-147.

[35] Goltz, U., and Reisig, W., (1985), CSP-programs as nets with individual to-

kens, Lecture Notes in Computer Science 188, 169-196.

[36] Hack, M., (1976), Decidability questions for Petri nets, PhD thesis, M.I.T.

[37] Holt, A.W., and Commoner F., (1970), Events and conditions, Report of the

Project MAC Conference on Concurrent Systems and Parallel Computation,

3-52.

[38] Holt, A.W., Saint, H., Shapiro, R., and Warshall, S., (1968), Final report of

the Information Systems Theory Project, Technical Report RADC-TR-68-305,

Rome Air Development Center, Gri�s Air Force Base, New York.

[39] Hoogeboom, H.J., and Rozenberg, G., (1991), Diamond properties of elemen-

tary net systems, Fundamenta Informaticae Vol. XIV No. 3, 287-300.

[40] Hoogers, P.W., Kleijn, H.C.M., and Thiagarajan, P.S., (1992), A trace seman-

tics for Petri nets, Lecture Notes in Computer Science 623, 595-604.

[41] Hoogers, P.W., Kleijn, H.C.M., and Thiagarajan, P.S., (1992), A trace seman-

tics for Petri nets, Leiden University Techn. Rep. 92-03, to appear in Informa-

tion and Computation.

[42] Hoogers, P.W., Kleijn, H.C.M., and Thiagarajan, P.S., (1993), Local event

structures and Petri nets, Lecture Notes in Computer Science 715, 462-476.

[43] Hoogers, P.W., Kleijn, H.C.M., and Thiagarajan, P.S., (1993), An event struc-

ture semantics for general Petri nets, Leiden University Techn. Rep. 93-13, to

appear in Theoretical Computer Science.

[44] Janicki, R., and Koutny, M., (1990), On some implementation of optimal sim-

ulation, DIMACS Series on Discrete Mathematics and Theoretical Computer

Science 3, 231-250.

[45] Jantzen, M., (1986), Language theory of Petri nets, Lecture Notes in Computer

science 254, 397-412.

174 BIBLIOGRAPHY

[46] Jensen, K., (1981), Coloured Petri nets and the invariant method, Theoretical

Computer Science 14, 317-336.

[47] Jensen, K., (1992), Coloured Petri nets: basic concepts, analysis methods and

practical use; volume 1: basic concepts, EATCS Monographs on Theoretical

Computer Science, Springer-Verlag.

[48] Joyal, A., Nielsen, M., and Winskel, G., Bisimulation and open maps, Proc. of

LICS 1993, 418-427.

[49] Karp, R.M., and Miller, R.E., (1969), Parallel program schemata, Journal of

Computer and System Sciences 3, 147-195.

[50] Kosaraju, S.R., (1982), Decidability of reachability in vector addition systems,

Proc. of the 14th Annual ACM Symposium on Theory of Computing, San

Francisco, California, 267-281.

[51] Lautenbach, K., (1972), Liveness in Petri nets, Internal Report GMD-ISF 72-

02.1.

[52] Lodaya, K., Ramanujam, R., and Thiagarajan, P.S., (1989), A logic for dis-

tributed transition systems, Lecture Notes in Computer Science 354, 508-522.

[53] Maclane, S., (1971), Categories for the Working Mathematician, Graduate

Texts in Mathematics, Springer-Verlag.

[54] Mayr, E.W., (1981), An algorithm for the general Petri net reachability prob-

lem, Proc. of the 13th Annual Symposium on Theory of Computing, 238-246.

[55] Mazurkiewicz, A., (1977), Concurrent program schemes and their interpreta-

tion, Aarhus University Techn. Rep. DAIMI PB-78.

[56] Mazurkiewicz, A., (1987), Trace theory, Lecture Notes in Computer Sci-

ence 255, 279-324.

[57] Mazurkiewicz, A., (1988), Basic notions of trace theory, Lecture Notes in Com-

puter Science 354, 285-363.

[58] Mazurkiewicz, A., (1989), Concurrency, modularity, and synchronization, Lec-

ture Notes in Computer Science 379, 577-598.

[59] Meseguer, J., and Montanari, U., (1990), Petri nets are monoids, Information

and Computation 88, 105-155.

[60] Meseguer, J., Montanari, U., and Sassone, V., (1992), On the semantics of

place/transition Petri nets, Pisa University Techn. Rep. TR-27/92.

[61] Meseguer, J., Montanari, U., and Sassone, V., (1992), On the semantics of

Petri nets, Lecture Notes in Computer Science 630, 286-301.

BIBLIOGRAPHY 175

[62] Milner, R., Parrow, J., and Walker, D., (1992), A calculus of mobile processes,

Information and Computation 100, 1-77.

[63] Mukund, M., (1992), Petri nets and step transition systems, International

Journal of Foundations of Computer Science Vol. 3 No. 4, 443-478.

[64] Mukund, M., (1992), Transition system models for concurrency, Aarhus Uni-

versity Techn. Rep. DAIMI PB-399.

[65] Mukund, M., and Nielsen, M., (1993), CCS, locations and asynchronous tran-

sition systems, Lecture Notes in Computer Science 652, 328-341.

[66] Nielsen, M., Plotkin, G., and Winskel, G., (1981), Petri nets, event structures

and domains, Part I, Theoretical Computer Science 13, 85-108.

[67] Nielsen, M., Rozenberg, G., and Thiagarajan, P.S., (1990), Behavioural notions

for elementary net systems, Distributed Computing 4, 45-57.

[68] Nielsen, M., Rozenberg, G., and Thiagarajan, P.S., (1992), Elementary tran-

sition systems, Theoretical Computer Science 96, 3-33.

[69] Nielsen, M., Rozenberg, G., and Thiagarajan, P.S., (1992), Elementary tran-

sition systems and re�nement, Acta Informatica 29, 555-578.

[70] Nielsen, M., Rozenberg, G., and Thiagarajan, P.S., (1993), Transition systems,

event structures and unfoldings, to appear in Information and Computation.

[71] Olderog, E.-R., (1991), Nets, terms and formulas, Cambridge University Press,

Cambridge.

[72] Peterson, J.L., (1976), Computation sequence sets, Journal of Computer and

System Sciences 13, 1-24.

[73] Peterson, J.L., (1981), Petri net theory and the modelling of systems, Prentice-

Hall, Englewood Cli�s, N.J.

[74] Petri, C.A., (1962), Kommunikation mit automaten, Schriften des Institutes

f�ur Instrumentelle Mathematik, Bonn.

[75] Petri, C.A., (1962), Fundamentals of a theory of asynchronous information

ow, Information Processing 1962, Proceedings of the 1962 IFIP Congress,

North-Holland Publishing Company Amsterdam.

[76] Petri, C.A., (1977), Non-sequential processes, GMD-ISF Report 77-05, Bonn.

[77] Pierce, B.C., (1991), Category Theory for Computer Scientists, The MIT Press.

[78] Reisig, W., (1985), Petri nets, an introduction, EATCS Monographs on Theo-

retical Computer Science Vol.4, Springer-Verlag.

176 BIBLIOGRAPHY

[79] Rensink, A., (1992), Posets for con�gurations!, Lecture Notes in Computer

Science 630, 269-285.

[80] Rozenberg, G., (1987), Behaviour of elementary net systems, Lecture Notes in

Computer Science 254, 60-94.

[81] Rozenberg, G., and Thiagarajan, P.S., (1986), Petri nets: Basic notions, struc-

ture and behaviour, Lecture Notes in Computer Science 224, 585-668.

[82] Rozenberg, G., and Verraedt, R., (1983), Subset languages of Petri nets Part I:

the relationship to string languages and normal forms, Theoretical Computer

Science 26, 301-326.

[83] Rozoy, B., (1990), On distributed languages and models for distributed com-

putation, Lecture Notes in Computer Science 469, 434-456.

[84] Rozoy, B., and Thiagarajan, P.S., (1991), Event structures and trace monoids,

Theoretical Computer Science 91, 285-313.

[85] Scott, D.S., (1982), Domains for denotational semantics, Lecture Notes in

Computer Science 140, 577-613.

[86] Shields, M.W., (1985), Concurrent machines, Computer Journal, v. 28, 449-

465.

[87] Shields, M.W., (1992), Multitraces, hypertraces and partial order semantics,

Formal Aspects of Computing Vol. 4 No. 6A, 649-672.

[88] Thiagarajan, P.S., (1987), Elementary net systems, Lecture Notes in Computer

Science 254, 26-59.

[89] Thiagarajan, P.S., (1990), Some behavioural aspects of net theory, Theoretical

Computer Science 71, 133-153.

[90] Vogler, W., (1990), Representation of a swapping class by one net, Lecture

notes in Computer Science 424, 467-486.

[91] Vogler, W., (1991), A generalization of traces, RAIRO, Theoretical Informatics

and Applications 2, 147-156.

[92] Winskel, G., (1980), Events in computation, Ph.D. Thesis, Dept. of Comp. Sc.,

University of Edinburgh.

[93] Winskel, G., (1982), Event structure semantics of CCS and related languages,

Lecture Notes in Computer Science 140, 561-567.

[94] Winskel, G., (1984), Categories of models for concurrency, Lecture Notes in

Computer Science 197, 246-267.

[95] Winskel, G., (1987), Petri nets, algebras, morphisms, and compositionality,

Information and Computation 72, 197-238.

BIBLIOGRAPHY 177

[96] Winskel, G., (1987), Event structures, Lecture Notes in Computer Science 255,

325-392.

[97] Winskel, G., (1988), An introduction to event structures, Lecture Notes in

Computer Science 354, 364-397.

[98] Winskel, G., and Nielsen, M., (1992), Models for concurrency, to appear in

S. Abramsky, D.M. Gabbay, T.S.E. Maibaum eds., Handbook of Logic in Com-

puter Science.

Index

1-safe PN-transition system, 49

category, 55

characterization, 50

1-safe Petri net, 25

asynchronous transition system, 52

category, 34

independence relation, 52

M-trace behaviour, 61

M-trace language, 61

prime event structure, 94

adjunction, 17

left adjoint, 18

right adjoint, 18

alphabet, 15

asynchronous transition system, 50

reduced, 51

auto-concurrency, 24

BC, 151

C-prime intervals, 139

C-unique occurrence property, 139

C1",C2", 132

C1',C2', 119

C1,C2, 103

case, 29, 30

reachable, 29, 31

categorical equivalence, 19

category, 17

causality, 92

co-reection, 18

co-safe Petri net, 25

category, 34

compatibility, 17

concurrency, 92

con�guration

of G-prime event structure, 152

of L-event structure, 96

of prime event structure, 93

of W-event structure, 142

conict, 92

conict-free, 93

consistency

of language (sequential), 59

of language (steps), 66

of relation (multisets), 132

consistency

of relation (steps), 103

D, 147

D1,D2, 65

D3, 65

downward-closure, 17

E0',E1',E2', 132

E0,E1,E2, 96

elementary net system, 28

contact-free, 30

event structure, 91

FC, 147

FC', 166

�ring sequence

of Petri net, 25

functor, 17

faithful, 17

full, 17

inclusion, 17

G-prime event structure, 151

category, 151

morphism, 152

G0,G1,G2,G3, 151

GPES-morphism, 152

independence relation (binary), 50

isomorphism, 17

178

INDEX 179

L-concurrency alphabet, 64

L-event structure, 96

category, 123

morphism, 100

multiset transition diagram, 98

L-independence relation, 64

L-trace, 65

L-trace equivalence relation, 65

L-trace language, 65

morphism, 66

multiset transition relation, 70

Petri net associated with, 74

region, 70

L-trace ordering relation, 65

L1',L2', 132

L1,L2, 103

LES-isomorphism, 100

LES-morphism, 100

LM-event structure, 131

category, 135

morphism, 135

LMES-morphism, 135

local, see L-

LTL-isomorphism, 66

LTL-morphism, 66

M-concurrency alphabet, 58

M-equivalence relation, 59

M-independence relation, 58

M-trace, 59

M-trace language, 59

category, 84

morphism, 60

reduced, 60

underlying language, 59

M-trace ordering relation, 59

marking, 21

reachable, 23

marking diagram, 46

ML-trace language, 81

category, 84

ML1,ML2,ML3, 81

morphism, 17

composition, 17

identity, 17

MTL-isomorphism, 60

MTL-morphism, 60

MTS-isomorphism, 39

MTS-morphism, 39

multiset, 15

empty, 15

�nite, 15

sum, 15

multiset extension of function, 16

multiset �ring sequence

of LM-event structure, 133

of Petri net, 24

multiset sequence, 15

multiset transition diagram, 38

region, 41

multiset transition system, 38

morphism, 39

Petri net associated with, 42

occurrence sequence, 24

P1,P2, 92

PES-morphism, 161

Petri net, 21

1-safe, see 1-safe Petri net

category, 34

co-safe, see co-safe Petri net

L-concurrency alphabet, 67

L-event structure, 107

L-independence relation, 67

L-trace behaviour, 68

L-trace language, 68

locally sequential, 115

morphism, 32

process, 86

S-simple, 33

universal constructions, 34

PG, 165

PL0,PL1,PL2,PL3, 71

PN-event structure, 112

characterization, 116

PN-morphism, 32

co-injective, 35

PN-trace language, 70

category, 77

characterization, 77

180 INDEX

PN-transition system, 46

1-safe, see 1-safe PN-transition sys-

tem

category, 53

characterization, 48

prime event structure, 92

category, 161

concurrency relation, 92

con�guration, 93

conict-free, 93

generalized, see G-prime event struc-

ture

morphism, 161

prime interval (multisets), 132

equivalence, 133

prime interval (sequential), 93

equivalence, 93

prime interval (steps), 103

equivalence, 104

process, 86

equivalence, 86

PT1,PT2,PT3, 46

PT2',PT3', 49

reachability relation, 98

reachable

case, 29, 31

marking, 23

reection, 18

region (elementary), 39

non-trivial, 39

region (generalized), 41

1-safe, 49

inverse, 44

non-trivial, 41

of L-event structure, 113

of L-trace language, 70

of multiset transition system, 41

S1,S2, 93

safe net system

contact-free, 31

sequence, 15

sequential transition diagram, 38

region, 39

sequential transition system, 38

stable W-event structure, 148

category, 148

step, 15

step �ring sequence

of L-event structure, 99

of Petri net, 24

step sequence, 15

past, 103

subcategory, 17

full, 17

wide, 17

submultiset, 15

U1",U2", 139

U1',U2', 133

U1,U2, 106

UL-event structure, 106

category, 123

ULM-event structure, 134

category, 135

unique occurrence property, 106

universal constructions, 34

W-event structure, 142

category, 142

morphism, 142

stable, see stable W-event structure

W1,W2, 142

W3, 148

WES-morphism, 142

Overview Categories and Functors

Categories

PN Petri nets 34

PN s 1-safe Petri nets 34

PNS co-safe Petri nets 34

PNC Petri nets with co-injective PN-morphisms 35

PT S PN-transition systems 53

PT Ss 1-safe PN-transition systems 55

PT L PN-trace languages 77

MT L reduced M-trace languages 84

MLT L ML-trace languages 84

LES L-event structures 123

ULES UL-event structures 123

LMES LM-event structures 135

ULMES ULM-event structures 135

WES W-event structures 142

SWES stable W-event structures 148

GPES G-prime event structures 151

PES prime event structures 161

Functors/Maps

nt from Petri nets to PN-transition systems 46,53

nl from Petri nets to PN-trace languages 68,77

nu from (co-safe) Petri nets to UL-event structures 107,125

nm from Petri nets to LM-event structures 134,135

sa from 1-safe Petri nets to asynchronous transition systems 52

sm from 1-safe Petri nets to M-trace languages 61

sp from 1-safe Petri nets to prime event structures 94

tn from multiset transition systems to Petri nets 42,44

ts from 1-safe PN-transition systems to 1-safe Petri nets 49,55

at from asynchronous transition systems to multiset transition systems 51

ln from PN-trace languages to Petri nets 74,77

lt from L-trace languages to multiset transition systems 77,77

lm from ML-trace languages to reduced M-trace languages 82,85

181

182 INDEX

ml from reduced M-trace languages to ML-trace languages 80,84

mt from LM-event structures to multiset transition systems 135,137

mn from LM-event structures to Petri nets 135,137

en from L-event structures to Petri nets 113,126

ew from L-event structures to W-event structures 144,146

et from L-event structures to multiset transition systems 113,126

ug from UL-event structures to G-prime event structures 156,156

up from UL-event structures to prime event structures 165

we from W-event structures to L-event structures 143,143

ws from W-event structures to stable W-event structures 149,149

gp from G-prime event structures to prime event structures 163,164

gu from G-prime event structures to UL-event structures 154,155

pu from prime event structures to UL-event structures 117,165

pg from prime event structures to G-prime event structures 162,163

Samenvatting

In dit proefschrift worden verschillende manieren bekeken om het gedrag van Petri

netten te beschrijven. Het Petri net model is voortgekomen uit een theorie voor de be-

schrijving van informatiestromen met behulp van gedistribueerde toestanden en lokale

toestandsovergangen. Deze theorie werd in 1962 door C.A. Petri ge��nitieerd. Sindsdien

hebben Petri netten sterk aan populariteit gewonnen, vooral doordat in dit model

het gedistribueerde karakter van concurrente systemen op een natuurlijke manier kan

worden gerepresenteerd. Bovendien blijken Petri netten een elegante onderliggende

algebra��sche struktuur te hebben, waardoor het mogelijk is om een categorie van Petri

netten te de�ni�eren. Een voordeel van het beschouwen van modellen als categorie�en

is dat hiermee een formeel kader voorhanden komt om de struktuur van modellen

te analyseren en om de onderlinge relaties tussen modellen te beschrijven. Zo kan

men bijvoorbeeld het verschil in abstractie tussen twee modellen formaliseren als een

co-reectie tussen de twee bijbehorende categorie�en, d.w.z. als een paar functors die

tezamen een speciaal soort adjunctie vormen.

Voor eenvoudige net modellen zoals elementaire net systemen en 1-safe Petri net-

ten is er een uitgebreide theorie voor het beschrijven van hun gedrag. Zo worden

transitiesystemen gebruikt om te abstraheren van het gedistribueerde karakter van de

toestanden in de netten. Verder worden Mazurkiewicz' traces gebruikt om de runs van

zo'n net te beschrijven en prime event structures om de optredens van transities, de

events, en hun onderlinge samenhang te beschrijven.

Bij algemene Petri netten echter kunnen zich situaties voordoen die niet goed uit

te drukken zijn binnen deze modellen. Het is dan ook een niet-triviaal probleem

om de semantiek van Petri netten te geven. Dit proefschrift beschrijft generalisaties

van de bovenstaande gedragsmodellen waardoor het mogelijk wordt om de bestaande

theorie uit te breiden tot het niveau van Petri netten. Een transitiesysteem semantiek

voor Petri netten, nu geformuleerd in termen van multiset transitiesystemen is al

voorgesteld door Mukund. Voor de andere twee benaderingen worden respectievelijk

de gegeneraliseerde traces en de local event structures gebruikt die met dat doel in [41]

en [43] zijn ge��ntroduceerd. In tegenstelling tot de meeste andere generalisaties van

gedragsbeschrijvingen van eenvoudige net modellen tot Petri netten in de literatuur, is

elk van de hier beschreven generalisaties strict. Zo wordt een beter inzicht verkregen

in de gecompliceerde rol van concurrency in het gedrag van Petri netten.

Het proefschrift bestaat uit acht hoofdstukken waarin de drie verschillendemanieren

om het gedrag van Petri netten te beschrijven aan de orde komen en waarin achter-

grond, samenhang en relatie met de literatuur worden besproken.

Allereerst wordt in de introduktie in Hoofdstuk 0 enige achtergrond gegeven met

183

184 INDEX

betrekking tot de geschiedenis van Petri netten en het onderzoek van hun gedrag. In

Hoofdstuk 1 worden enkele notaties ingevoerd, waarna in Hoofdstuk 2 Petri netten

formeel worden ge��ntroduceerd.

In Hoofdstuk 3 wordt het model van multiset transitiesystemen besproken, niet

alleen ter beschrijving van het gedrag van Petri netten, maar ook als kader waarbinnen

een aantal fundamentele begrippen worden gede�nieerd. Door te abstraheren van de

distributie van een toestand van een Petri net over lokale toestanden, kan het gedrag

gerepresenteerd worden door zo'n multiset transitiesysteem. Formeel wordt de relatie

tussen het model van Petri netten en het model van multiset transitiesystemenmiddels

een resultaat van Mukund uitgedrukt als een co-reectie tussen deze twee categorie�en.

In Hoofdstuk 4 wordt een semantiek voor Petri netten bekeken gebaseerd op de runs

van een Petri net. Hierbij wordt een beschrijving gegeven van de onderlinge samenhang

van de optredens van de transities tijdens een executie. Omdat de conicten tijdens

een executie al zijn opgelost, wordt bij een dergelijke semantiek ook wel gesproken van

een linear time semantiek. De traces van Mazurkiewicz worden gegeneraliseerd tot

local traces, gede�nieerd met behulp van een onafhankelijkheidsrelatie die informatie

bevat over het mogelijk concurrent optreden van multisets van acties in een bepaalde

context. De relatie tussen het model van Petri netten en het resulterende trace model

kan weer worden uitgedrukt als een co-reectie tussen de categorie�en.

Vervolgens wordt in Hoofdstuk 5 een branching time semantiek voor Petri netten

bekeken waarbij bovendien een expliciet onderscheid wordt gemaakt tussen verschil-

lende optredens van transities. Dit leidt tot een gedragsbeschrijving in termen van

local event structures. De resulterende semantiek is echter enigszins beperkt, omdat

geen rekening wordt gehouden met de mogelijkheid dat in sommige Petri netten tran-

sities concurrent met zichzelf kunnen optreden. Een gevolg hiervan is dat alleen een

co-reectie kan worden verkregen tussen een categorie van local event structures en de

subcategorie van Petri netten, waarin auto-concurrency niet kan voorkomen.

In Hoofdstuk 6 wordt door middel van adjuncties een classi�catie gegeven van

enkele soorten event structures die in de literatuur zijn verschenen. Hieruit blijkt

dat de in Hoofdstuk 5 ge��ntroduceerde local event structures ook formeel kunnen

worden gezien als generalisaties van Winskels event structures en daardoor wellicht

ook onafhankelijk van Petri netten nuttig kunnen zijn.

Tenslotte worden in de discussie in Hoofdstuk 7 de resultaten kort besproken.

Curriculum Vitae

De schrijver van dit proefschrift werd op 9 september 1966 te Amersfoort geboren. In

1984 behaalde hij het V.W.O.-diploma aan het Oranje Nassau College te Zoetermeer,

waarna hij Informatica ging studeren aan de Rijksuniversiteit te Leiden. Deze studie

werd in 1988 afgerond met een afstudeerproject op het gebied van Concurrency onder

begeleiding van dr. H.C.M. Kleijn. Na het vervullen van de militaire dienstplicht trad

de auteur op 1 december 1989 voor vier jaar in dienst van de Nederlandse Organi-

satie voor Wetenschappelijk Onderzoek (NWO). Gedurende deze vier jaar werd onder

begeleiding van prof. dr. P.S. Thiagarajan, prof. dr. G. Rozenberg en dr. H.C.M.

Kleijn aan de Rijksuniversiteit te Leiden het in dit proefschrift beschreven promotieon-

derzoek verricht als onderdeel van het project Research and Education in Concurrent

Systems (REX). Sinds 11 juli 1994 is de auteur werkzaam bij het Nationaal Lucht- en

Ruimtevaartlaboratorium te Vollenhove (Noordoostpolder).

185

186 INDEX

Contents

0 Introduction 1

0.1 Petri Nets : 2

0.2 The Behaviour of Petri Nets : 6

0.3 The Categorical Approach : 10

0.4 Historical Background : 11

0.5 Outline of the Thesis : 12

1 Preliminaries 15

1.1 Multisets, Sequences, Functions, and Partial Orders : : : : : : : : : : : 15

1.2 Category Theory : 17

2 Petri Nets 21

2.1 Petri Nets : 21

2.2 The Category PN : 32

3 Multiset Transition Systems 37

3.1 Multiset Transition Systems : 38

3.2 Regions : 39

3.3 PN-Transition Systems : 46

3.4 1-Safe PN-Transition Systems : 49

3.5 A Co-reection Between PT S and PN : : : : : : : : : : : : : : : : : : 53

4 A Trace Semantics for Petri Nets 57

4.1 Mazurkiewicz' Traces and 1-Safe Petri Nets : : : : : : : : : : : : : : : 58

4.2 Local Traces : 62

4.3 L-Traces and Petri Nets : 67

4.4 PN-Trace Languages : 69

4.5 A Co-reection Between PT L and PN : : : : : : : : : : : : : : : : : : 77

4.6 L-Trace Languages and M-trace Languages : : : : : : : : : : : : : : : : 79

4.7 Concluding Remarks : 86

5 An Event Structure Semantics for Petri Nets 91

5.1 Prime Event Structures and 1-Safe Petri Nets : : : : : : : : : : : : : : 92

5.2 Local Event Structures : 96

5.3 Equivalence of Prime Intervals : 101

5.4 L-Event Structures and Petri Nets : 107

187

188 CONTENTS

5.5 PN-Event Structures : 111

5.6 L-Event Structures and 1-Safe Petri Nets : : : : : : : : : : : : : : : : : 117

5.7 A Co-reection Between ULES and PNS : : : : : : : : : : : : : : : : 123

5.8 Local Multiset Event Structures : 131

5.9 Concluding Remarks : 138

6 A Classi�cation of Event Structures 141

6.1 L-Event Structures and W-Event Structures : : : : : : : : : : : : : : : 142

6.2 L-Event Structures and Stable W-Event Structures : : : : : : : : : : : 148

6.3 UL-Event Structures and G-Prime Event Structures : : : : : : : : : : 151

6.4 UL-Event Structures and Prime Event Structures : : : : : : : : : : : : 161

6.5 Concluding Remarks : 166

7 Discussion 169

Bibliography 171

Index 177

Overview Categories and Functors 181

Summary (in Dutch) 183

Curriculum Vitae (in Dutch) 185

