Forward Modelling of Resistivity Logs
using Neural Networks

P. Demmenie

August 31, 1995

Abstract

In the oil industry, one uses the difference in electrical conductivity between
hydrocarbons (oil and gas) and water to determine the hydrocarbon satu-
ration of rocks. To this end, a measuring device is lowered in a well bore to
record a so-called resistivity log. Due to environmental effects this resistiv-
ity log differs from the resistivity of the formation, the true resistivity. To
invert the measured log to the true resistivity one uses an iterative forward
modelling process, involving the numerical solution of differential equations.
Although the current modelling algorithms have significantly improved in
speed comparing to a few years ago, they are still not fast enough for inver-
sion on a well site. Therefore, we have investigated the feasibility of using
neural networks to perform the forward modelling process. Once trained,
neural networks are very fast in producing output to certain input.

The one-way mapping between the earth models (true resistivity model and
environmental conditions) and the tool response can be learned by a “stan-
dard” fully connected net. However, problems arise from the high number
of inputs that is needed to represent the earth model (= 450) and the high
number of connections between the input layer and the hidden layer of the
net (= 6750). The generalization performance of these nets is not sufficient
for the purpose of resistivity log inversion.

We have studied two preprocessing methods to reduce the number of inputs:
principal component analysis and the wavelet transform. This preprocessing
of the input is quite successful. We have also studied methods to reduce the
number of connections in the net by using locally connected nets instead
of fully connected nets. We have found an architecture which proves to be
quite efficient for this mapping: a convolutional-regression net. This type
of net is based on the locally connected nets and shared weights. Due to
these shared weights the hidden layer performs a convolution of the input
layer. The convolution kernel, the set of shared weights, is learned by the
net itself. The weight sharing reduces the number of connections in the net
and these constraints improve the generalization ability of the net.

This convolutional-regression net is approximately 100 times faster than the
forward model that is used at KSEPL nowadays. The performance of the net
is measured in the average relative error between the network outut and the
forward model output. The neural net can be used as a fast forward model,
when the average relative error lies below 5 %. The convolutional-regression
net achieves an accuracy of approximately 8 % on a resistivity log coming
from a “real” oil well. Further improvements in accuracy can be achieved
by using a more representative training set. Even with less accuracy the
neural net could be used as initial start for the forward modelling process.

Preface

This report is the master thesis of Pamela Demmenie for graduating from
the Rijks Universiteit Leiden (RUL) at the department of Computer Science.
It describes a project that was performed at the Koninklijke Shell Exploratie
en Produktie Laboratorium (KSEPL) in Rijswijk from December 1994 until
August 1995. The project was supervised by Dr. Guozhong An (KSEPL)
and Dr. Ida Sprinkhuizen-Kuyper (RUL).

The report is divided into six chapters. The first chapter provides a back-
ground on forward modelling and a short introduction in neural networks.
The second chapter describes all the methods we have used in the experi-
ments. These methods involve input reductions and architecture constraints.
Chapter 3 and 4 describe the actual experiments for data without and with
invasion. In chapter 5 we present the results of the trained neural networks
on realistic logging data and in chapter 6 we summarize the conclusions of
this project.

All neural net simulations were run on Sparc 10 and Sparc 20 (Unix) sta-
tions and should eventually be run on an IBM R600 workstation (the ap-
proximation times were measured on this type of workstation). We used
the Xerion simulator, versions 3.1 and 4.0. We have also experimented
with other simulators: Stuttgart Neural Network Simulator (SNNS) and
Aspirin/MIGRAINES. The advantages and disadvantages of these network
simulators are outlined in appendix A.

A cknowledgements

First of all I would like to thank my supervisors Guozhong An and Ida
Sprinkhuizen-Kuyper for their support and ideas during this project. Of
course the project would not have been completed without the help of Niels
van Dijk and Leon Hoffman, who have provided the data that we have been
working with and helped me in my understanding of the forward modelling
process. I also like to thank the students from KSEPL and from the uni-
versity for their support and company during the nine months I have been
working on the project. And last but not least everlasting gratitude go to
Pim Bussink for word 2 on page 42.

ii

Contents

Abstract

Preface

1 Forward Modelling of Resistivity Logs

2

1.1

1.2

1.3

14

Resistivity Logging
1.1.1 Loggingtools
1.1.2 Environmental effects
Inversion by Forward Modelling
1.2.1 Inversion
1.2.2 Forward Modelling
Neural Networks
1.3.1 Network architecture
1.3.2 The Learning Method
1.3.3 The trainingset
1.3.4 Generalization
1.3.5 Local minima
Forward Modelling using a Neural Network

Input representation and architecture design

21

2.2

2.3

24

Input representation
2.1.1 Discretized sliding window
2.1.2 Attributes
2.1.3 Input and output scaling
Preprocessing
2.2.1 Principal Component Analysis
2.2.2 Wavelet transform
Architecture constraints
2.3.1 Fully connected nets
2.3.2 Locally connected nets
2.3.3 Symmetry constraints
2.3.4 Convolutional network
2.3.5 Time Delayed network
2.3.6 Convolutional-regression network
Error function oL

Forward modelling without mud invasion

3.1
3.2
3.3
3.4

Experimenting with different scaling methods . . .
Experimenting with the network architecture . . .

Experimenting with the size of the sliding window

Summary and resultso L.

15
15
16
18
19
20
20
22
27
27
28
28
32
33
34
35

4 Forward modelling with mud invasion

4.1 Scaling of the parameters
4.2 Experimenting with different input representations
4.3 Experimenting with input reduction methods
4.3.1 Using different sampling methods
4.3.2 Reducing the input by projection to principal compo-
nents. L e e e
4.3.3 Reducing the inputs by removing wavelet coeflicients .
4.4 Creating a more representative training set
4.5 Intermediate results input representations
4.6 Experimenting with architecture constraints
4.6.1 Experimenting with fully connected nets
4.6.2 Experimenting with locally connected nets.
4.6.3 Using symmetry constraints
4.6.4 Experimenting with convolutional regression nets . . .
4.7 Intermediate results architecture design
4.8 Summary and resultso o000

The neural network as fast forward model

5.1 Application to earth models without invasion
5.2 Application to earth models with invasion
5.3 Application to realistic earth model

Conclusions
6.1 Neural network as fast forward model?
6.2 Methods

6.2.1 Input representation
6.2.2 Inputreduction
6.2.3 Architecture design
6.3 Application of the convolutional-regression net

A Neural network simulators

42
43
44
46
46

47
50
53
55
57
57
57
57
59
65
65

68
68
73
73

List of Tables

S O W N =

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

The tool response.o
Parameters for earth models without invasion.
Average relative error for earth models without invasion (1).
Performance on earth models without invasion (1).
Parameters for earth models with invasion.
Comparing discretized sliding window against attributes rep-
resentation.
Comparing uniform sampling methods with different sam-
pling periods. o
Comparing uniform and non- uniform sampling methods.
Comparing uniform sampled input without and with projec-
tion to principal components.
Comparing non-uniform sampled input without and with pro-
jection to principal components.
Comparing input representations with different number of
wavelet coefficients (1)..
Comparing input representations with different number of
wavelet coefficients (2)..
Comparing training set of target logs and training set of
coarser sampled target Iogs.
Comparing training set of target logs and training set of dif-
ficult parts of target logs.
Comparing different fully connected nets.
Comparing different locally connected nets.
Comparing fully connected nets without and with symmetry
constraints.o o
Comparing locally connected nets without and with symme-
try constraints. oo o
Comparing “wavelet” net without and with symmetry con-
Straints.o
Results for convolutional- regression nets (1).
Results for convolutional- regression nets (2).
Average relative error and performance for earth models with
invasion (Shallow-log).
Average relative error and performance for earth models with
and without invasion (Shallow-log).
Average relative error and performance for earth models with
and without invasion (Deep-log).

45
45

48

60

List of Figures

1

© 00 3 O ot

11

12

13
14
15
16

17

18

19

20

21

22

23

24

Laboratory resistivity measuring apparatus with unguarded
planar electrodes. oo 1
Modification of the laboratory apparatus using cylindrical
electrodes instead of planar electrodes and the Dual-Laterolog. 2
Input to the Deep Laterolog (left) and the Shallow Laterolog
(right). The Deep Laterolog gets information from a larger
part of the formation. 3
Environmental effects: (A) ideal situation, (B) dipping for-
mation, (C) caved bore holes, (D) deviated bore holes and
(E) horizontal bore holes. 4
The inversion process and forward modelling of resistivity logs. 6

Transfer impedances. v v i v 6
A diagram of neuron j.. 8
Local minima in the error surface. 12
A formation and its model. 13

Part of a model with input signal Rt and output signals Deep-
log (LLd) and Shallow-log (LLs). The input signals Rxo and
dxo are omitted. oo 14
Example of sliding window input representation. A sliding
window of size w is placed around the point of interest along
the input models. 15
When the sliding window is smaller than the largest bed in the
model, the input to the net will be the same for the sketched

situation, although the target differs a lot. 17
Standard normal distribution. 19
Most of the variation of the data lies in the direction of ¢;. . 21

Haar wavelet from box function Wy, ,.(z) = ¢(2z) —¢(2z —1). 23
The input signal is written as a weighted combination of rect-
angular block functions. The coefficients c; are used as inputs

to theneuralnet. 25
Boundaries outside the center of the window are not described

accurately. Lo 26
Fully connected (left) and locally connected (right) neural nets. 28
Receptive fields which overlap 3. 29
A discretized input signal and its mirror image. 29
Symmetry constraints on fully connected net. 30

Symmetry constraints on locally connected net. The recep-
tive fields are constrained symmetrically (receptive field f is

constrained to field F — f + 1 for F fields). 30
Symmetry constraints on wavelet nets. The coefficients are
constrained per detail level. 31

Convolutional network. 32

25
26
27
28
29
30
31
32

33

34

35

36

37

38

39

40

41

42

43

44

45
46

47

48
49

Time delayed neural network.
Convolutional-regression network.
The network and relative error for fixed proportions d/a.
Model that causes difficulties in approximating the Deep-log.
Response of the neural net to the difficult model shown above.
Small difference in input with attributes input representation.
Non-uniform sampling in sliding window.
Loss of information per variable for Test 6. Original input
consists of 3 x 128 inputs, coming from a uniform sampled
sliding window. Lo
Loss of information per variable for Test 7. Original input
consists of 3 x 64 inputs, coming from a non-uniform sampled
sliding window.
Not all transitions are detected by wavelet coeflicients.
Intermediate results of training three different neural nets on
6models. e
Convolutional-regression net. The feature maps in the first
hidden layer are connected to all the variables in the input
layer.o
Convolutional-regression net. The first hidden layer consists
of three sets of feature maps. Fach set consists of three maps
and is connected to one of the variables in the input layer.
True resistivity profile of model A at depth 615 feet.
Activation of first hidden layer per feature map for Test 21.
These activations are for model A at depth 615 feet. This
layer consists of 6 feature maps of 27 nodes each.
Intermediate results (2) of training different neural nets on 6
models.
Worst case neural net approximation of Deep-log. Average
relative error is 14.2 %. o
Best case neural net approximation of Deep-log. Average
relative error is 2.6 %.o
Worst case neural net approximation of Shallow-log. Average
relative error is 8.5 %.
Best case neural net approximation of Shallow-log. Average
relative erroris 1.2 %.o
Examples of earth models used for the net Invasion.
Worst case neural net approximation of Shallow-log. Average
relative error is 7.5 %. oo
Best case neural net approximation of Shallow-log. Average
relative error is 4.5 %.o
A (realistic) earthmodel.
Neural net approximation of Deep-log. Average relative error
S 7.6 %. . e

48

49

52

56

59

50

Neural net approximation of Shallow-log. Average relative
error is 8.3 e

1 Forward Modelling of Resistivity Logs

1.1 Resistivity Logging

A formation consists of several layers (beds) of rock, which contain pores.
The rock pores can be filled with water or hydrocarbons (oil and gas). Rock
and hydrocarbons do not conduct electric currents, whereas the formation
water does. One reason for measuring the resistivity is to determine the
hydrocarbon saturation within the rocks. The hydrocarbon saturation is an
indication for the presence of oil. A simplified expression of this quantitative
aspect is exemplified by Archie’s equation

F R,
Sp =72 1
7 R (1)

Here R, is the resistivity of the water in the rock pores, F' is the formation
factor generally assumed to be derivable from a knowledge of the rock re-
sistivity, S, is the water saturation (percentage of pore space occupied by
water), R; is the measured rock resistivity and » is an empirically deter-
mined saturation exponent. Hydrocarbon saturation Sy is equal to 1 — S,
(Moran 1985).

1.1.1 Logging tools

Most of the physics behind the resistivity logging techniques can be found
in (Moran 1985). In this section we will discuss the basic ideas behind these
techniques.

-‘

electrode A

distance dr in meter

Figure 1: Laboratory resistivity measuring apparatus with unguarded planar
electrodes.

A sheet of material whose resistivity is to be determined is placed between
and in contact with electrodes A and B, both of area S as is shown in

2 1. FORWARD MODELLING OF RESISTIVITY LOGS

Figure 1. A voltage V is applied to the electrodes, resulting in a current
I. If I is distributed uniformly over the area S and is zero outside, an
application of Ohm’s law for material thickness dr (m) and resistivity p
(Qm) yields

I
AV = gpdr (2)

The resistivity p is found by measuring the voltage drop between the elec-
trodes. In practice, the current I will not be uniformly distributed over the
discs, but will tend to be maximum at the edges and minimum in the centre.
To improve on this scheme, one splits the disc so that one has a small central
disc of area Sy carrying a current Iy surrounded by the remainder of the
discs held at the same potential V' as Sy. This will result in nearly constant
current density over Sy. The measured current Iy will be “focused”. The
resistivity is now given more accurately than before by

_Sav

Cdr I (3)

p

2
electrode A |
/\ - I
_ | 1
Vs -7 T ~ 0
N
\ Al g I
0
/a0) |
D Doi /f_\\\ 1
A2 N |0 |1
7
\ 1
B 1
L7 T 2
. v | electrodeB
! \ SHALLOW DEEP

Figure 2: Modification of the laboratory apparatus using cylindrical elec-
trodes instead of planar electrodes and the Dual-Laterolog.

This idea is the basic ingredient of the Laterolog. The real Laterolog uses
cylindrical electrodes instead of planar electrodes as indicated in Figure 2
(left). The Dual Laterolog consists of a Shallow (Pseudo) Laterolog and
a Deep Laterolog. The Deep Laterolog has its current return electrode B
remotely at the surface, which results in currents as shown in Figure 3. The

1.1 Resistivity Logging 3

Deep Laterolog reads far into the formation. The Shallow Laterolog has
its current return electrode placed above and below the electrode A, which
makes the currents bend back to the tool as shown in Figure 3. This Lat-
erolog reads the formation close to the tool, which makes it more sensitive
to the invaded zone (see Section 1.1.2).

Both measurements are made simultaneously by using different frequencies;
a relatively high frequency for the Shallow-Laterolog and a very low fre-
quency for the Deep Laterolog.

/
part of the
formation that part of the

formation that

\

J 12 ;een by the
\

-/

| > is seen by the

tool

AW

tool tool

formation formation

Figure 3: Input to the Deep Laterolog (left) and the Shallow Laterolog
(right). The Deep Laterolog gets information from a larger part of the
formation.

1.1.2 Environmental effects

Several anomalies, like invasion, dipping beds, washed-out bore holes and
very resistive formations, are encountered when measuring the resistivity
of the formation. These anomalies have an effect on the tool response,
which are difficult to model. Situations in which these enviromental effects
occur are shown in Figure 4 and more detailed descriptions can be found
in (Gianzero 1977), (Asquith 1982), (Chemali, Gianzero & Strickland 1983)
and (Chemali, Gianzero & Su 1988).

Wells are drilled with rotary bits. Special drilling mud is used as circulating
fluid. The mud removes cuttings from the well bore, lubricates and cools the
drill bit and helps maintaining an excess of bore hole pressure over formation
pressure, which prevents blow-outs.

4 1. FORWARD MODELLING OF RESISTIVITY LOGS

This pressure difference forces some of the drilling fluid to invade porous
and permeable formation. In this process of invasion solid particles (clay
minerals from the drilling mud) are trapped on the side of the bore hole and
form a so-called mudcake. The part of the formation which is invaded by
mud filtrate is called the invaded zone.

tool

current flow

Figure 4: Environmental effects: (A) ideal situation, (B) dipping formation,
(C) caved bore holes, (D) deviated bore holes and (E) horizontal bore holes.

The size of the bore hole and the mudcake resistivity influence the measured
resistivity. The smoothing of anomalies on the log by the bore hole is quite
effective in moderately saline to very saline mud, and less effective in fresh
mud. The size of the bore hole and the resistivity of the drilling fluid are
taken fixed in our study.

In dipping formations the Dual Laterolog-curves vary slowly across bed
boundaries. The apparent bed thickness is increased in predictable pro-
portions and the error due to shoulder bed effect (the influence of the beds
adjacent to the current bed) is different from the non-dipping case.

In caved bore holes (wash-out) the Shallow Laterolog is sensitive to the effect
of the increased hole diameter. Anomalous readings of the Deep Laterolog
occur only at abrupt changes in hole diameter.

Very resistive formations and formations with high resistivity contrasts be-
tween beds also affect the tool readings. Formations like limestone and
dolomite can have resistivities over 2000 Qm, while most formations have a
resistivity between 1 and 70 Qm.

The tool response is essentially immune to a small eccentering of the tool.
Only the Shallow Laterolog exhibits some sensitivity to eccentering in large
bore holes.

1.2 Inversion by Forward Modelling

The overall effect of an elliptical bore hole is that it produces characteris-
tic responses which lie between those obtained in two circular holes with
diameters equal to the major and minor axes of the elliptical hole.

The shoulder bed correction required for the Deep Laterolog is much less
important in conductive mud than it is in non-conductive mud. The Shal-
low Laterolog has much less shoulder bed effect than the Deep Laterolog,
especially for bed thicknesses above ten feet.

Deviated bore holes and horizontal bore holes also give different tool read-
ings. Compare the current flow in the ideal case (Figure 4) and these types
of bore holes.

1.2 Inversion by Forward Modelling
1.2.1 Inversion

The found resistivity logs, Shallow- and Deep-log, have to be inverted to
the true resistivity of the formation. This is done by an iterative forward
modelling process, which is sketched in Figure 5. The actual field logs are
first corrected with chartbook corrections (tornado charts for example; for
bore hole size, invasion, etc.) Then an initial guess for the formation model is
made. This trial model includes a description of the bore hole and formation
geometry and “parameter values” — numbers assigned to variables such as
bore hole diameter and bedding dip, thickness and resistivity (Anderson &
Barber 1990). Then the tool physics is used to compute an expected log,
which is compared with the actual field log. If the match is not good enough,
the initial trial model is altered and the calculation repeated. This process
is iterated until the two logs match satisfactorily.

The process consists of two steps: the function approximation from the
guessed formation model to the expected Deep- and Shallow-log (so-called
Forward Modelling) and a matching procedure. The latter procedure implies
a minimalization of a matching error between the two logs. This can be
done by hand or using sophisticated algorithms like the least-squares and
maximum entropy methods (Anderson & Barber 1990).

6 1. FORWARD MODELLING OF RESISTIVITY LOGS

Formation model Expected log
Forward
Modelling
Adapt Matching
initial guess
of formation procedure
model

Actual measured field log

Figure 5: The inversion process and forward modelling of resistivity logs.

1.2.2 Forward Modelling

The forward modelling part of the inversion is the most time-consuming part
of the process. To compute the Laterolog response for a given electrode array

ELECTRODE TRANSFER
CONFIGURATION IMPEDANCES

Figure 6: Transfer impedances.

and distribution of resistivities, it is sufficient to determine the associated
transfer impedances. The transfer impedance Z;; is equal to ‘I/—f, where V; is
the voltage measured at part j of the electrode configuration and I; is the
current emitted by part ¢. A specific electrode configuration and its transfer

1.3 Neural Networks

impedances are shown in Figure 6. For the computation of the response
in simplified models (concentric cylindrical boundaries or plane boundaries)
one can use analytical approaches, but with extended electrodes for example,
the problem can only be handled by numerical methods. In the case of
dipping layers, the problem is of such complexity that no results have as yet
been published (Moran 1985). The determination of the transfer impedances
Z;; involves the solution of Laplace’s equation in two space variables under
certain boundary conditions.

There are a number of methods that can be used to solve these boundary
value problems, we mention the Finite Element Method, the Boundary ele-
ment or finite-difference technique and a Hybrid Method (Gianzero, Lin &
Su 1985).

The Finite Element Method is a numerical method based on an energy prin-
ciple (Chemali et al. 1983). It can be shown that Laplace’s equation is a
direct consequence of minimizing the total energy of the system.

The Hybrid Method is a separation of variables approach where the radial
(horizontal) dependence is treated numerically and the axial (vertical) de-
pendence analytically. It combines the mode concept in wave-guide theory
with the Finite Element Method. This method, employed by Gianzero, has
been able to simulate a 100 foot log with 25 beds in less than twelve min-
utes on an IBM 3081, which is approximately 8 times faster than the Finite
Element Method (Gianzero et al. 1985).

1.3 Neural Networks

In this section we will only describe the basic ingredients of neural networks.
A good introduction can be found in (Haykin 1994).

A Neural Network consists of a number of layers that consist of nodes (neu-
rons). A neuron receives input from the neurons it is connected to and can
in its turn serve as input to other neurons. A connection between node ¢ of
a certain layer and a node j of another layer is characterized by a weight
wj;. The total input u; for node j is

uj =Y wjiw; (4)
=1

where x; is the activation of an input node 7 and the summation runs over
all » nodes that node j receives input from.

8 1. FORWARD MODELLING OF RESISTIVITY LOGS

X

L @:
x, O—=
activation function

output
input T (p() ?
signals]
summing
function
treshold
Xy O—=
synaptic
weights

Figure 7: A diagram of neuron j.

Now this node uses an activation function to determine its own activation
and output

y; = d(uj —0;) (5)

Here ¢ is a certain activation function, which is usually a sigmoid function
for the hidden nodes and a linear function for the output node in regres-
sion problems, and 6, is a certain threshold for node j. Figure 7 shows a
visualization of this process.

This procedure of determining the input and the output of a node is done for
all nodes, except the input nodes. The input nodes receive their activation
directly from outside (from a file for example). In this case the input is some
kind of representation of the formation model.

The time that is needed to determine the output of the neural net for a
certain input can be expressed in the number of connections (weights) of the
net. The operations done by the net are weight multiplications, summations
and calculating the activation.

Determining the output of the net will not take much time. However, the
process of making the net learn the problem, training, takes considerably
more time. When using neural networks, the following aspects are important
for the training time and the generalization ability. A net is said to generalize
well if it produces (nearly) correct output for input that was not used during
its training.

e The architecture of the net. Large nets (high number of weights) learn
slowly and usually do not generalize well. This is due to the fact that
the neural net “remembers” its training examples if it has too much
freedom (too many weights).

1.3 Neural Networks

e The training method. Several training methods for supervised learn-
ing exist, for example back-propagation, conjugate gradient, steepest
descent, momentum descent. For some of these methods the tuning of
certain parameters is very important and difficult. Supervised learn-
ing means that the net produces some output (the actual response)
and corrects its behaviour according to the correct output (desired re-
sponse). For multilayer feedforward networks (networks that have con-
nections directed from the input to the output), the most widely used
algorithm is the back-propagation algorithm. There are two phases
in the BP-learning. In the first phase, the forward phase, the in-
put signals propagate through the network layer by layer, eventually
producing some response at the output of the network. The actual
response so produced is compared to the desired response. The error
signals generated by this comparison are then propagated backwards
through the net in the second, the backward phase. More information
on training methods can be found in (Haykin 1994).

e The training set. The training set should be representative for the
problem, otherwise the net is not able to learn the problem or to gener-
alize well. With conjugate gradient each training example is evaluated
during training (batch training), so a large training set causes a long
training time. More on the creation of the training set can be found
in Section 1.3.3.

1.3.1 Network architecture

The network architecture is a description of the layers, the number of nodes
per layer and the connections between the layers; it describes what the net
looks like. For example a fully connected neural net is a net in which the
nodes of one layer receive input from all nodes in the previous layer. This
is the most common architecture, but it leads to a large number of weights.
Another method is a locally connected network, which is described later
when we turn to receptive fields and convolutional networks.

The architecture determines the number of weights and has certain impli-
cations for the learning and generalization ability of the net.

1.3.2 The Learning Method

A net uses a learning method to minimalize the error in the net. The training
set consists of P patterns (z,,d,). Here, x, is the input pattern p and d,
is the desired output for this input pattern. For a certain input z, the
network calculates an output a,. The error is given by the quadratic sum

10 1. FORWARD MODELLING OF RESISTIVITY LOGS

of the difference of this output and the desired output d,:

P

E = Z(dp —ap)? (6)

p=1

Here, P is the number of examples. The idea behind the learning methods
is that the weights are adapted during training so that E is minimalized.
This is done by a down hill technique, gradient descent. The weights are
adapted in the direction with the steepest descent

Weight learning-rate local input signal
correction | = parameter |-| gradient |-| of neuron j | (7)
Awj; n to neuron ¢

The weight correction depends on a learning parameter 7, the local gradient
and the input signal of neuron ¢ to neuron j. If £ no longer decreases the
training stops.

We have used the conjugate gradient (CG) method, which is an adaptation
of the normal gradient descent method. It avoids the zigzag path followed
by the gradient descent method, by incorporating an intricate relationship
between the direction and the gradient vectors. The CG method is the most
convenient algorithm, because it needs no tuning parameters and it is faster
than normal back-propagation if the size of the training set is not too large.
We have used the Xerion (version 3.1 and 4.0) simulator to train the networks
(for more details on neural network simulators see Appendix A).

1.3.3 The training set

The input has to be presented to the net, so the physical model must be
transformed into a set of numbers that function as activations of the input
layer. How this is done, is discussed in the next chapter. Now we will focus
on the scaling.

The input to the net must be scaled so the values lie more or less in the
range [—1,1]. As we have seen the net calculates a weighted input. If two
inputs have a very high ratio (for example i; = 1 and i, = 1000) the weights
also have a large variation. So if the inputs do not lie in a small range,
the weights will in general be far apart as well. This will slow down the
training, because a larger weight space has to be searched for an optimum
set of weights. Another point of view is that large input values will have
more influence on the activation of the nodes they are connected to. In this
way we have already build some prior knowledge into the net. To avoid this,
we scale all the inputs to a small range. When certain inputs are important,
the net can learn that itself. More on this subject of scaling can be found
in Section 2.1.3.

1.3 Neural Networks

A training set should be sufficiently large. Although there is no general
prescription of how large a training set should be, there are some “rules”,
like the following from Baum and Hassler (Haykin 1994). A network will
almost certainly provide generalization (see next section), provided that the
following two conditions are met:

1. The fraction of errors made on the training set is less that 5.

2. The number of examples, P used in training is

P>

32w In (32M) (8)

€ €

Here, W is the total number of weights and M is the total number
of hidden nodes. This formula provides a distribution-free, worst-
case estimation for the size of the training set for a single-layer neural
network that is sufficient for a good generalization.

A training set should also be representative. This means that the examples
in the training set are randomly generated and distributed over the whole
input space.

1.3.4 Generalization

Although a neural net can learn any input-output mapping, its applicability
is determined by its ability to predict outputs to inputs it has not seen
during training, which is called generalization. Generalization is influenced
by three factors:

e the size and representativeness of the training set,
e the architecture of the network,
e the physical complexity of the problem at hand.

With too few examples the net just memorizes the training set and exhibits
poor generalization. If the number of examples is more than the number
of weights, the net will generalize better. Widrow’s rule of thumb (Haykin
1994) comes from equation 8 and states that in practice we need a training
set size of approximately 10 times the number of weights when the error on
the training set is 10 %.

In our project, we will compare different architectures on one specific train-
ing set. The architecture that gives the best results, in terms of training
error, generalization (testing) error and complexity (number of weights), will
be trained on a larger training set.

11

12 1. FORWARD MODELLING OF RESISTIVITY LOGS

global minimum
local minimum
/ @ local minimum

local minimum

Error surface

™

global minimum

@ weight initialization
weight vector @® minimum

Figure 8: Local minima in the error surface.

1.3.5 Local minima

In Figure 8 (left) the error surface, belonging to specific weight vectors,
is shown. The learning algorithm that we use is basically a hill-descending
technique, which may cause the algorithm to get trapped in a local minimum
in the error surface, although we are interested in the global minimum. The
algorithm gets trapped, because it cannot find a direction which makes the
error smaller than the previous one. But somewhere else in the weight space
there exists another set of synaptic weights for which the cost function is
smaller than the local minimum in which the network is stuck. One method
to avoid local minima is retraining the neural net with different weight ini-
tializations. This process is shown in Figure 8 (right); with different weight
initialization the net will converge to different minima.

1.4 Forward Modelling using a Neural Network

The goal of this project is to obtain a good approximation of the Deep-
and the Shallow-log. The formation is described by a number of beds. For
each bed a number of radial zones are given and for each radial zone the
resistivity (Qm) and its size (inch) is given. The first radial zone is the bore
hole with its radius and the resistivity of the drilling fluid, the next radial
zone describes the invasion (if there is any) and the last radial zone describes
the true resistivity. All this can be described with a model like shown in
Figure 9 (the corresponding formation is shown on the right side).

The tool response consists of two continuous logs (the Shallow-log and the
Deep-log) like shown in Figure 10 and Table 1. The model shown in Figure
9 contains 80 beds. The first bed has 3 radial zones and it starts at minus
infinity (this is the same for all models, indicating an infinite shoulder bed).
The first radial zone of this bed (the bore hole) has a radius of 4.25 inch
and the mud resistivity is 0.05 Qm. The second zone has a radius (dzo) of
45 inch and a resistivity (Rzo) of 1.90 Qm. And finally the third zone has
a resistivity (Rt) of 27 Qm. The last radial zone has a radius of infinity

1.4 Forward Modelling using a Neural Network

borehole radius 1e+09

4.25inch
numeR ot e (resistivity drilling fluid
0.05Qm) | - Rt= 270m
dxo = 45inch

3 -1e+09 one bed

0.05 4.25 /

1.90 45.00

27.00 | 1le+09 start depth of

bed
number of . 3 0.00 4 oo
radial | borehole = m
<
zones 0.05 4.25 radius
i dxo = 19inch
/4 0.90 | 19.00 ~S—v00 ivasion
I’eS|SFIV-ItV 1200 | 16109y radius
of drilling
fluid radius of
virgin formation
invasion true R0 = 0,900 M
resistivity resistivity | |

Figure 9: A formation and its model.

(otherwise there would be another radial zone).

The neural net can be used as a fast forward model when the average relative
error between the forward model output d and the neural network output a
lies below 5 %.

Table 1: The tool response.

depth LLd LLs
0.0 | .110610E+02 | .330318E4-01
0.2 | .108760E+02 | .325301E+-01
0.4 | .106962E+02 | .320733E+-01
0.6 | .105092E+02 | .316235E4-01

The earth models in this project are created by assigning random numbers
within a certain range for the parameters Rt, Rxo and dzo. The bore hole
radius and resistivity of the drilling fluid are fixed to 4.25 inch and 0.05 Qm
respectively. The tool responses to these models are calculated with the
forward model that is used at KSEPL.

14 1. FORWARD MODELLING OF RESISTIVITY LOGS

—~~
-
©
o o
O
|| Lr)_/
Ty}
| 5
-
o
©
oo
oo ©
oz
© O
8= =
5 O
o
L] ©
Q
O
o
L 1<
3
)
o
L 1
S
s
f—
o
-
g o
L)
& o o
5 o
—

Figure 10: Part of a model with input signal Rt and output signals Deep-log
(LLd) and Shallow-log (LLs). The input signals Rxo and dzo are omitted.

2 Input representation and architecture design

As described in Section 1.3, the training time mainly depends on the size of
the net and the size of the training set. To decrease the training time and
increase the generalization capability, we like to keep the net as small as
possible. This can be achieved by choosing a compact input representation
and by decreasing the number of free variables (weights) in the net. The
input representation has to be compact and appropriate to the problem.
To facilitate the learning process, we employ two methods. Firstly we pre-
process the input and secondly we force certain constraints on the network
architecture. The purpose of the first method is to create an intermedi-
ate representation of the input which simplifies the problem for the neural
network while making only a small computational overhead. The second
method contributes to facilitating learning only if the resulting structure
reflects the designer’s a priori knowledge of the problem. Otherwise the
network is a priori biased towards wrong solutions.

2.1 Input representation

We are looking for a compact and appropriate input representation. Given
an earth model, described by nx (247 x 2) 4+ 1 values (for n beds of r radial

point of interest

W (window is centered around this point)
Tool response

i
' I
| I
' I
| I
I
3 :
I
. ! Trueresistivity Rt
|
, I
! I
!
\
|
I
I
I
I

| j Invasion resistivity Rxo
I E—

—

|
|
|
i Invasion diameter dxo
|
!
|

sliding window of sizew

Figure 11: Example of sliding window input representation. A sliding win-
dow of size w is placed around the point of interest along the input models.

15

16 2. INPUT REPRESENTATION AND ARCHITECTURE DESIGN

zones), the net should be able to produce the tool response at any depth.
The tool response at a specific depth is used as the target of the neural net
(the target is also called the desired output). For one formation we have a
tool response of m feet, sampled every ¢ feet. This produces ' + 1 targets
per log. But what do we use as input to produce this target? We assume
that a part of the formation, centered around a certain depth, is responsible
for the tool response at that depth. This part of the formation is called a
sliding window. The sliding window approach is shown in Figure 11.

The sliding window is described in two ways: by discretizing the formation
model in the sliding window and by describing the beds that lie in the
window.

The first method is quite straight forward. It samples the part of the for-
mation that lies in the window, without using knowledge about the input
or relations between inputs.

The second method looks more like the original model description and uses
the fact that the formation is described by beds. In the model each bed is
described by a number of values, which could be seen as attributes of that
bed. In the attributes approach we describe the beds that lie in a window,
centered around the point of interest by a number of features.

2.1.1 Discretized sliding window

When there is invasion, see Section 1.1.2, the formation model contains three
variables Rt, Rxo and dxo. When there is no invasion the formation model
contains only the variable Rt. We use a sliding window of fixed size w, which
is placed along the input logs around the point of interest. The models are
sampled within this window with a sampling period s, resulting in * + 1
inputs when there is no invasion and 3 times this number when there is
invasion.

The following aspects should be taken into account in determining the size
of the sliding window:

e The size of the tool. The currents flowing from the tool penetrate
the formation. The currents of the Shallow Laterolog penetrate the
formation and return to the top and bottom of the tool. The part of
the formation that the tool receives information from, is at least as
large as the tool itself. The tool is approximately 30 ft, which gives
an indication that the window size should also be at least 30 ft.

e The type of target log (Deep or Shallow). As shown in Figure 3, the
Deep Laterolog receives information from a larger part of the forma-
tion. The currents of the Shallow Laterolog return to the tool itself
and do not penetrate the formation much. This indicates that the
window size for the Deep-log should be larger than for the Shallow-log

2.1 Input representation

e The size of the beds. What happens if the window is smaller than
the largest bed in the formation is shown in Figure 12. The sliding
window is located more than once in the same bed, producing the
same input, but possibly not the same target. Now the neural net
has to learn f(z) = y1 and f(z) = ya2, making the the problem non-
deterministic. Conflicting examples make it very difficult for the net
to learn the problem, because it adapts its weights to reproduce two
different targets for one input.

Q meter

60

45

30

input model Rt

: second window (first
ffffffff \ window shifted by some samples)
input to net looks like
30303030...30303030

I
I
I
I
I
1
I
15 !
I
I
I
I
I
I
I

first window, input to net looks like
30303030...30303030

Figure 12: When the sliding window is smaller than the largest bed in the
model, the input to the net will be the same for the sketched situation,
although the target differs a lot.

We expect the net that is trained on the Shallow-log will perform better,
because it needs a smaller window than the Deep-log. The sampling period
of the target log determines the number of examples we obtain per log. In
real applications one takes two logging points per feet, but for efficiency
reasons, we have taken five logging points per feet. The sampling period in
the sliding window is important for the resolution of the bed boundaries.
When we use a sampling period of s feet, we can describe a bed boundary
with s feet resolution. When we want to have at least the same accuracy
as the target log, we should use the same sampling period for the sliding
window as for the target log. In this case that would mean using a sampling
period of 0.2 feet.

This input representation is not very compact. When we use a sliding win-
dow of 25.4 feet and a sampling period of 0.2 feet, we have 384 inputs (128
per variable and 3 variables when there is invasion).

17

18 2. INPUT REPRESENTATION AND ARCHITECTURE DESIGN

2.1.2 Attributes

The input model describes a number of bed boundaries, each described by
a number of radial zones. The neural net requires the number of inputs to
be fixed for each sample. We use a fixed size window and describe the beds
that occur within this window. If the window contains less than the fixed
number of beds, we add “default” beds. These beds function as infinite
shoulder beds. The order in which the beds are presented to the neural net
is important. The location in the input of the bed that has most influence on
the target signal for example (probably the bed in the center of the window)
should be fixed (in our case it is presented first). Then the beds adjacent to
this bed are presented and the beds adjacent to those beds and so on.
Each bed is described by a number of attributes (also called features). The
contrast between two beds is defined as v;/vs and the difference as v1 — vo
for values v; and vo. The attributes we use are:

1. the true resistivity of the bed (Rt);
2. the invasion resistivity of the bed (Rzo);
3. the invasion radius of the bed (dzo);

4. theinverse distance to the logging point (points close to the bed bound-
ary are considered to be more important than points that lie further
away);

5. the contrast between the true resistivity of this bed and the bed that
lies below this bed;

6. the contrast between the invasion resistivity of this bed and the bed
that lies below this bed;

7. the contrast between the invasion radius of this bed and the bed that
lies below this bed;

8. the difference between the true resistivity of this bed and the bed that
lies below this bed;

9. the difference between the invasion resistivity of this bed and the bed
that lies below this bed;

10. the difference between the invasion radius of this bed and the bed that
lies below this bed.

The default beds have no contrast (1) and no difference (0) with their adja-
cent beds. The inverse distance to the logging point is 0 for the default beds
(the beds continue to infinity). If we describe n beds in the chosen window,
this results in 10n inputs.

2.1 Input representation

This approach is more compact than the discretized sliding window ap-
proach, but it is difficult to choose appropriate features that will facilitate
the learning process. We assume the contrasts and differences are important
and describe the problem well. If this is not the case, the learning will not
be facilitated. It could even make it difficult for the neural net to learn the
problem, when these features are not describing the problem well.

2.1.3 Input and output scaling

As discussed in the first chapter, the input should be approximately scaled to
the domain [—1,+1]. For the true resistivity and the tool response we use a
combination of logarithmic and normalization scaling and for the other vari-
ables a normalization scaling. The true resistivity (and the tool response)
can range between 1 and 2000 Qm. To reduce this range, we use a loga-
rithmic scaling. The range of the other variables, the invasion resistivity
and the invasion radius, are much smaller and therefore we do not use the
logarithmic scaling on these variables. The scalings take the following form

miog = In(z) (9)
z—p
Tnorm = axX o (10)

where, z is the original input or output value, u the mean and ¢ the standard
deviation of the variable z. The factor « is applied to make the scaled range
even smaller (in the experiments a = 2).

A normalized Gaussian distribution is shown in Figure 13. From this figure
we find that for o = 1, 68.27 % of the values (of this specific distribution)
lie between -1 and +1. When we use a = 2 we find that 95.45 % of the
values lie between -1 and +1.

68.27 %

95.45 %

99.73 %

Figure 13: Standard normal distribution.

In the attribute description approach only a normalized scaling method is
applied.

19

20 2. INPUT REPRESENTATION AND ARCHITECTURE DESIGN

This combined scaling method of the tool response has an attractive conse-
quence for the minimalization of the network error. For more details on the
minimalization of the network error see Section 2.4.

2.2 Preprocessing

In this section we will describe the preprocessing methods we have used in
the project. The purpose of preprocessing is to find an intermediate input
representation that facilitates the learning process. Another advantage of
preprocessing is that we can reduce the number of inputs. The preprocessing
was only applied to the input that was created by the discretized sliding
window approach.

We can view the input in two ways. Firstly as three N-dimensional vectors
Rt, Rxo and dxzo and secondly as three functions of the depth z, Rit(x),
Rzo(x) and dzo(z). The latter is actually also a vector, because the func-
tions are equally sampled within an interval [1, N]. In the first case we
project the input to an M-dimensional subspace spanned by the principle
components of the input. In the other case we use a set of orthogonal basis
functions, the Haar wavelets, to project the input.

The disadvantage of input reduction is the loss of information. Hopefully,
the information that is lost has a negligible influence on the learning and
generalization of the net.

2.2.1 Principal Component Analysis

The following description of the principal component analysis is taken from
(Hertz, Krogh & Palmer 1991) .

A common method from statistics for analyzing data is principal component
analysis (PCA), also known as the Karhunen-Loéve transform in commu-
nication theory. The aim is to find a set of M orthogonal basisvectors
(eigenvectors) that account for as much as possible of the data’s variance.
Projecting the data from their original N-dimensional space onto the M-
dimensional subspace spanned by these vectors performs a dimensionality
reduction that retains most of the intrinsic information in the data.

The first principal component is taken to be along the direction with the
maximum variance. The second principal component is constrained to lie
in the subspace perpendicular to the first. Within that subspace it is taken
along the direction with the maximum variance. Then the third principal
component is taken in the maximum variance direction in the subspace
perpendicular to the first two, and so on. An example is shown in Figure 14.
In general it can be shown that the kth principal component direction is
along an eigenvector direction belonging to the kth largest eigenvalue of the

2.2 Preprocessing

el

€1

® e2

€3

Figure 14: Most of the variation of the data lies in the direction of €.

covariance matrix. This matrix is calculated for P patterns by

¥ — 7)) (22 — %5
Covariance(i, j) = (7 P)(=) (11)

Here, % is input i of pattern p, z% is input j of pattern p and Z; and

7; are the means of input ¢ and input j respectively. Then the matrix is
diagonalized and the eigenvalues are calculated.
The original input vector # (Rt, Rzo or dxo) is written as

®=2zx1€1 + 2265+ ...+ ZNEN (12)

where e, ..., ey are the original basisvectors as shown in Figure 14. We
can also write the input vector in another orthogonal set of basisvectors, the
eigenvectors €1, ...,en

x= (€1 -x)e; + (e-w)ea + ... + (epr - x)epr + ... + (en - ®)en (13)

To reduce the size of the vectors from N to M, we project this vector to

!

z =(e1-2)er +(e2-x)ea + ... + (epr - @)ey (14)

Instead of using N values x1, z2, ..., x5 from the original input vector we use
M values €1 - ®, € - @, ..., €7 - ® of the projected input vector as inputs for
the neural net.

21

22 2. INPUT REPRESENTATION AND ARCHITECTURE DESIGN

To calculate the percentage of information that is lost by this projection, we
first have to write ' in the e; basisvectors:

' =aie; +ases + ... +ayen (15)

The values a; are calculated by

N
a; = Z Tn
n=1

M
ErmnEmi (16)
1

m=

The information that is lost by this projection can be calculated (for P
patterns in the input file) by

P
1 ||e'f — xP||
Loss of information = — E e — =1

(17)

2.2.2 Wavelet transform

We can write any function f(z) as a weighted combination of other orthog-
onal basisfunctions f;(x)

f(z) = Zcifi(fﬂ) (18)

Instead of using the values of f(x) (as inputs), which may be infinite when
f(z) is a continuous function, we use the coeflicients ¢;. We choose functions
fi(z) with properties, that make it easier to manipulate with those functions
than with the original function f(z).

A commonly known method is the Fourier transform, where the orthogonal
basisfunctions are sin(ax) and cos(az). These basisfunctions allow you to
describe the function on different frequency levels.

Our input signals Rt(z), Rzo(z) and dzo(z) have a very special shape: they
are all rectangular “functions”. The Fourier transform is not appropriate
in this case, because we would need an infinite number of coefficients and
basisfunctions to correctly model the discrete transitions. There is however
another interesting set of orthogonal basisfunctions, called wavelets. We are
especially interested in the simplest wavelets, the so-called Haar wavelets.
These wavelets are blockfunctions as shown in Figure 16. What is so inter-
esting about wavelets is that the input can be described on different detail
levels. All coefficients, except the first, describe a specific property over a
part of the window (varying in size and location). The property they de-
scribe is the difference between the average value over the first and second
half of their part of the window. The first coefficient describes the average
over the whole window.

2.2 Preprocessing

We will first give a short introduction on wavelets and how the coefficients
are calculated (taken from (Strang 1989)) and then we will explain why the
wavelets are so useful in our project.

A wayvelet is defined by

W(z) =D (—1)*ci-g(2z — k) (19)

k

Here, k is taken symmetrically around zero. The scaling function ¢ is defined
by

¢(z) =D cnd(22 — k) (20)
under conditions

/ sdz = 1 (21)
=2 (22)

The Haar wavelet is the simplest wavelet. For this wavelet we choose cg =1
and ¢; = 1. The scaling function ¢ for these coeflicients is a blockfunction

defined by
1 0<z<1
¢(z) = { 0 otherwise (23)

The wavelet as shown in Figure 15, is described by

WHaar(2) = ¢(27) — ¢(2z — 1) (24)

We start with a vector (fi, fo, ..., fa'), which are N = 27 equally sampled

Figure 15: Haar wavelet from box function Wy, ,.(z) = ¢(22) — ¢(2z — 1).

values of a function f(x) on a unit interval. This vector will be approxi-
mated by the sum of different weighted block functions. In Figure 16 the
first 8 block functions, belonging to the levels 0, 1 and 2, are given. The
projected input vector is described by the coeflicients that correspond to the

23

24 2. INPUT REPRESENTATION AND ARCHITECTURE DESIGN

weighing of these block functions.

How are these coefficients calculated? On a vector « of 27 values we perform
two operations L : R¥ — R? " and H : R¥ — R?™". The first operation,
L(x), calculates the mean and the second, H(x), calculates the difference.

1+ 2 1 — T2
3+ T3 —

L(z) = k x s H(z) =k x o (25)
IN_1 T+ TN IN-1 — ZIN

1
2

we could also use k = % 2 in both the decomposition and reconstruction,
which has the advantage of normalizing the wavelets at every scale (this is
done in the experiments described later).

Here, usually £ = 5 in decomposition and & = 1 in reconstruction, but

The vectors produced by L(x) and H(«) are both half the size of the original
vector. The coefficients found by H(x) are the coefficients on the finest detail
level, level j — 1. To find the coeflicients at the next detail level, we perform
the operations L(x) and H(x) recursively on the vector produced by L(x)
at the previous level. This continues until we reach level 0.
The projected input consists of the coefficients per detail level found by
H(x) and the coeflicient at level 0 found by L(x). So, if we name L; the
average operator at level ¢ and H; the difference operator at level i, the new
input vector is constructed by (Lo, Ho, H1, ..., Hj_1).
On level 7 there are 2° coefficients produced by H;, the difference operator.
On level 0 we have an extra coefficient coming from Lg. The total number
of inputs is

N=1+2421 4. 277t =2 (26)

which is equal to the size of the original input vector.

We will now present an example for a vector of length 23, = = (1, 3,2,2,5,3,8,0).
In the first step on level j = 2, we get for k = %

L(x) = and H(x)= (27)

[l NV
> = O

We continue on level j =1 with L(x) = @' as input vector

L(z') = (.) and H(z') = (:) (28)

2.2 Preprocessing

Figure 16: The input signal is written as a weighted combination of rectan-
gular block functions. The coeflicients c; are used as inputs to the neural
net.

And finally on level j = 0 we find for L(z') = ="

L(")=(3) and H(")=(-1) (29)
The vector of wavelet coefficients, f'(z) is (L(z"), H(2"), H(z'), H(x))
1 3
3 -1
2 0
f@=| 5 | ad F@=| (30)
3 0
8 1
0 4

25

26 2. INPUT REPRESENTATION AND ARCHITECTURE DESIGN

What is so interesting about the wavelet coeflicients, is that they describe a
very local area of the input. We expect that the information in the center of
the window is more important than the information on the edges. We know
exactly which coefficients are corresponding to the edges and which to the
center of the window and we can remove (some of) the coefficients that are
corresponding to the edges, when we are not interested in this information.
Coefficient ¢4 from Figure 16, for example, describes the transitions in the
first 1 of the window (size w) with steps of size w/8. If we remove this
coeflicient, the transitions in the first quarter of the window can only be
described by steps of w/4 of coefficient co. In this case we loose resolution
on the first quarter of the window.

If we have an input coming from a sliding window of w = 25.4 feet, sampled
every 0.2 feet, we have 128 input values and 7 detail levels 0 to 6. On the
finer detail levels (5 and 6) we remove a number of coefficients on the edges
of the window. We loose resolution at the edges, but we retain the same
accuracy as the original input in the center. In the center the transitions
are described by steps of 0.2 feet and on the edges by steps of 0.8 feet (this
is detail level 4).

In Figure 17 is shown what happens when a number of coefficients on the
edges is removed. The transitions in the center are described very accurately,
but on the edges we use larger steps than in the original input (a transition
is then approximated by steps instead of one transition).

center of diding window

___ approximation
—— true bed boundaries

Figure 17: Boundaries outside the center of the window are not described
accurately.

2.3 Architecture constraints

The coeflicients are removed from the edges of the window, so all the de-
tailed information in the center is preserved. If, for example, we remove 20
coeflicients on each side on level 6 and 10 coefficients on each side on level
5, we removed 7.8 feet on level 6 and also 7.8 feet at level 5. This means
that at these parts of the window we have a resolution of 0.8 feet and in the
center 9.8 feet we have a resolution of 0.2 feet.

How much information is lost by this operation depends on the location
of the bed boundaries and the sharpness of the transitions. A resistivity
contrast is approximated by small steps instead of one transition. A hard
measure for the loss of information is difficult to give. Whether the approx-
imation affects the generalization performance in a negative way will show
during training and testing.

2.3 Architecture constraints

The second method to reduce the complexity of the net, as we had already
mentioned in the beginning of this section, is forcing certain constraints
on the architecture. The advantage of this method is that no information
is lost, like in the preprocessing methods. We can also reflect our prior
knowledge about the input in the design of the net. This facilitates the
learning process and hopefully will improve the generalization of the net.
By using locally connected neurons (receptive fields), the net contains much
less weights than the fully connected nets. We can even further reduce
the number of weights, by forcing some of the weights to be equal. This
is further investigated in Section 2.3.4. In this section we will discuss the
advantages and disadvantages of various fully and locally connected network
architectures.

2.3.1 Fully connected nets

A common network architecture is a fully connected net as shown on the
left side of Figure 18 (in this figure only the connections to the first hidden
node are drawn). All nodes of one layer are connected to all nodes of the
previous layer. The number of nodes of the hidden layer is very important.
This number should not be too small, otherwise the net is not able to learn
the problem. But it should also not be too large, otherwise the net has too
much freedom and it will not generalize. More hidden layers can be added
to improve on the training and generalization results. Usually one hidden
layer is enough to learn a problem, but sometimes an extra layer helps to
combine the features found by the first layer. It provides a more global view
of the input.

27

28 2. INPUT REPRESENTATION AND ARCHITECTURE DESIGN

s s

\ Rt
\ Rxo

dxo

Figure 18: Fully connected (left) and locally connected (right) neural nets.

2.3.2 Locally connected nets

The input has a strong local structure, so it simplifies the problem by using
so-called receptive fields. It may be easier for the neural net if a neuron
only sees a part of the input and not all the inputs as in the fully connected
nets. The neuron specialized on its part of the input and can be used as a
local feature detector. We add an extra hidden layer in order to combine
the local features properly. The part of the input a neuron is connected
to, is called a receptive field. Usually all receptive fields have the same size
and are only shifted in space (or time) with a fixed step (fixed overlap).
The weight kernel of the first receptive field that is connected to the first
neuron is shown in Figure 19. We can constrain the weight kernels for the
various receptive fields to be the same, this is called weight sharing and it is
used in the convolutional networks. The advantage of weight sharing is the
decrease in the number of weights and freedom (and therefore complexity of
the neural net). The decrease of freedom might improve the generalization
ability of the net, but if the freedom is reduced too much, the net overall
performance may decrease. The motivation for weight sharing is that we
expect that a particular meaningful feature can occur at different times (or
locations) in the input. An example of a locally connected net is shown in
Figure 18 (right).

2.3.3 Symmetry constraints

In our models we have no dipping layers and no deviated bore holes. In
this case the tool readings are assumed to be symmetric. This means that
a signal and its mirror image, as shown in Figure 20, give the same tool
response. This should also hold for the neural net. The response of the
neural net (in a hidden node at the first hidden layer) to a signal @ is f(z, w),
for a certain weight vector w. The mirror image of @ = (21, z2,...,zy) is

2.3 Architecture constraints

\ weight kernel for

first receptive field

m ¢ first receptive field
first field shifted down 2/3
first field shifted right 2/3

Figure 19: Receptive fields which overlap %

z' = (zn, ..., @2, 21). The response of the neural net to this input is f(', w).

x1 x2 x3 ... Xxn Xxn x3 x2 x1

Figure 20: A discretized input signal and its mirror image.

We will now investigate what the implications are for the architectures of
the nets when we force f(z,w) = f(a',w), given

fj(m,w) = Zmlwﬂ (31)

Here, j stands for hidden node j. Since the following equations should hold
for any hidden node j in the first hidden layer, the index j is omitted.

For the fully connected nets the following equation should hold

Ve e RV f(®,w) = ziw; + z2ws+ ... + TN_1WN—_1 + TNWUN
= f(e',w) (32)

= zyw1t+TN-1W2 + ... + TowWN-_1 + T1WN

29

30 2. INPUT REPRESENTATION AND ARCHITECTURE DESIGN

This is only true when w; = wnyy1—;. This constraint can be build into
the net by forcing the weights coming from input node ¢ to be equal to the
weights coming from input node N +1—:. These constraints are shown in

===

Figure 21: Symmetry constraints on fully connected net.

=]

Figure 22: Symmetry constraints on locally connected net. The receptive
fields are constrained symmetrically (receptive field f is constrained to field
F — f+1 for F fields).

Figure 21. The same constraints can be used for the locally connected net
as shown in Figure 22. In the locally connected nets the receptive fields are
symmetrically constrained. This means that receptive field f is constrained
to receptive field F' — f 4+ 1, where F' indicates the total number of receptive
fields. The fields are also internally constrained symmetrically as shown in
Figure 22.

For the nets that are trained on wavelet coefficients, we can also find some
constraints. The wavelet vector of an input ® = (21, 22, ...,2n) (N =27) on

2.3 Architecture constraints

[
OB & co o
s pE=aan=——]

Figure 23: Symmetry constraints on wavelet nets. The coefficients are con-
strained per detail level.

a certain level is constructed by

1+ 22 I — T2
T3+ x4 T3 — T4
L(xz) =k x i H(z) =k x) (33)
IN—1 T+ TN IN-1 — TN

The coefficients on this level come from H(x). The coefficients for the mirror
image of & are calculated by

IN +ITN-1 IN —ZIN-1
L(z') = k x 1 H(z') = k x 1 (34)
T4+ T3 T4 — T3
T2+ T Ty — I

The coeflicients on higher levels are calculated recursively on the vector
constructed by L(x). On every level we find that L(2') is the mirror image
of L(x). The response of the net to H(x) and the response of the net to
H(z') should be the same on every detail level and for every possible input
signal &. For the 27 wavelet coefficients on level j > 0 the following equation
should hold for any wavelet vector y = H(®) and y' = H(=')

Vy e RV . fly,w) = y1Wet1 + YoWhto + oo + Yo We 1495
= f(y,w) (35)
= “Y1Wgt+1 — Y2WE+2 — -+« — Y21 Wr41427

Here, £ indicates how many weights are used for the previous levels, which
is N = 27, On level 0 we find w; = wy; and wy = —ws = 0. The first
weight corresponds to the coefficient that describes the average over the
whole window and the second weight corresponds to the coefficient that

32 2. INPUT REPRESENTATION AND ARCHITECTURE DESIGN

describes the difference between the average over the first half of the window
and the average over the second half of the window. The tool readings should
be symmetric so for the tool it does not matter whether this difference is
positive or negative.

On level j we find wyjy; = —wyiq_; for i = 0,1,...,2971. The resulting
network is shown in Figure 23.

2.3.4 Convolutional network

A neuron that is locally connected extracts local features. Sometimes we
are not concerned about the location of these features, but only about the
features themselves (for example in character recognition).

convolution subsampling convolution subsampling convolution

! ! lm | !

input output

feature map, all neurons
in this map share their
weights

Figure 24: Convolutional network.

The set of weights, w, belonging to a receptive field, makes it possible for a
neuron in the first hidden layer to detect a specific feature at the location of
the receptive field. We can use the same set of weights for all the receptive
fields. This enables the first hidden layer to detect that specific feature, that
was first only detected by the first hidden neuron, anywhere in the total
input. The neurons in the first hidden layer that use this set of weights to
detect a specific feature, are called a feature map.

The hidden layer is now able to detect one feature. We can add more feature
maps to make it possible to detect more features. Each feature map consists
of a number of neurons that make use of the same set of weights (weight
sharing). This set of weights, as shown in Figure 19, is used as a convolution
kernel. The convolution, performed by one feature map, is defined by the

sum
k+n—114+m—1

Y; = Z Z Wik Tk (36)
1

k

2.3 Architecture constraints

where z; is the input pixel at location (k,!) and wjz is the weight between
this input pixel and neuron j. The indices k and [indicate the left upper
corner of the receptive field and n x m indicate the size of the receptive field.
The convolution layers are alternated by so-called subsampling layers. These
subsampling layers are like the convolution layers: they also make use of re-
ceptive fields and shared weights. The overlap of the receptive fields is
maximal (replacement of one pixel) at the convolution layers and not at
all at the subsampling layers. (When the receptive fields do not overlap
maximal this is usually called subsampling). In the subsampling layer the
spatial resolution of the feature maps, generated by the convolution layers,
is reduced. Due to this reduction in resolution, this layer provides some
degree of translational and rotational invariance.

This type of network is called a convolutional network and is shown in
Figure 24.

2.3.5 Time Delayed network

Convolutional networks are used in two-dimensional problems, like character
recognition. The one-dimensional version is called a time delayed network.
The principles are more or less the same. A time delayed network is used in
applications like speech recognition (Waibel, Hanazawa, Hinton, Shikano &
Lang 1989).

The idea is that the response at a certain point of time (or depth) depends
on previous inputs with a certain delay (hence the name time delayed). In
this type of net there are no subsampling layers, only convolution layers.
This is because we do not want the translational and rotational invariance,
that is provided by the subsampling layers. The loss of time resolution
by the first layer is partially compensated by an increase in the number of
features in the next convolution layer. This is called bi-pyramidal scaling
(Guyon 1991). The architecture for a typical time delayed network is shown
in Figure 25.

number of
feature
maps
(copies)

feature map
(shared weights within map)

features
(or variables)

featuresintime

-

receptive field

Figure 25: Time delayed neural network.

33

34 2. INPUT REPRESENTATION AND ARCHITECTURE DESIGN

2.3.6 Convolutional-regression network

The design of the convolutional-regression network is based upon both the
convolutional networks and the time delayed networks. The idea behind this

copies
number of

feature
maps

/ \ / \ feature map

/ \ / \ (shared weights within map)

featuresin time

features
(or variables)

receptive field

Figure 26: Convolutional-regression network.

type of network is that the network output depends on a number of inputs
around the point of interest. So it depends on inputs above and below the
logging point. For this net we use the input representation produced by the
(uniform) discretized sliding window approach.

The feature maps in the first hidden layer can be connected to all or only
some of the features (variables) in the input layer. This is like the origi-
nal convolutional networks, but in contrast with the time-delayed networks.
In the latter the feature maps are always connected to all the features of
the previous layer. All other layers of the convolutional-regression network
are fully connected. So this net only contains one convolution layer (and
this is different from both the convolutional and time-delayed architectures).
We only use one convolution layer, because we want to retain the spatial
information of the input. The architecture is shown in Figure 26. In this ex-
ample the feature maps are connected to only a number of the input features.

The receptive fields in the first layer do not overlap maximal. So actually
this is not a convolution, but subsampling. The advantage of subsampling
over convolution is that the number of hidden nodes (and the number of
weights) that is needed is small (the number of hidden nodes is equal to the
number of receptive fields). A disadvantage is the loss of spatial resolution.

2.4 Error function

A feature map from the first hidden layer detects a feature in the input. The
second hidden layer determines the importance of the location of that fea-
ture. So the spatial information is preserved in the second (fully connected)
hidden layer.

2.4 Error function

A neural network can minimalize any error function. The most common
error function used is the sum square error, which is, for P patterns of the

training set
P

2
ENet = Z(dp —ap) (37)
p=1
Here, d, is the desired output of pattern p and a, is the actual output of
pattern p.

Error
10

T T T T T

Rel ative error —
Net work error ----

5 6 7 8 9 10

ald

Figure 27: The network and relative error for fixed proportions d/a.

In this project the performance of the neural net is measured in the relative
error between the desired and the actual output, averaged over P patterns

1 & (d,—a,)’
ERel = PZ(”dp p) (38)

p=1

The neural net error for one specific pattern p can be written as

ENet(p) =d;i< - d—) (39)

35

36 2. INPUT REPRESENTATION AND ARCHITECTURE DESIGN

This means that for the same proportion a/d, a pattern p produces a higher
error when the desired output is large. The net emphasizes the learning of
patterns with a high desired output. This is not what we want, because a
small desired output is more likely to have a high relative error than a high
target value. Thus we preferred the error ER.) as given in eq. 38, which
overcomes this disadvantage.

Before presenting the patterns to the net, we have scaled the input and the
output. The desired and actual outputs are scaled by

In(t) — p

t = (40)

The consequence of this scaling is that the network is minimalizing the
following error

PNet, = L mlelor) (1)

B~ ||M~u

> (M
i (42)

which is almost the same as minimalizing the relative error, especially when
the proportion d/a is almost equal to 1. Actually the net is minimalizing
the proportion d/a. For fixed proportions d/a the network error Eye¢ and
relative error Ep, are drawn in Figure 27.

An overestimation (a = d + k) and an underestimation (¢ = d — k) must
give the same error signal, as shown by the relative error in Figure 27. The
neural net, with the error function as mentioned in eq. 41, favoursa = d—k
over a = d + k, because the former produces a lower error signal.

It does, however, emphasize the learning of small target values over larger
target values, which is also the case for the relative error.

It is very important to choose an appropriate error criterion. In this project
we want to minimalize the relative error. When we had used another scal-
ing method (not logarithmic), the network error function should have been
adapted for better performance. With this scaling however the sum square
error function suffices.

3 Forward modelling without mud invasion

Forward modelling in the presence of mud invasion is very complex. The
measured resistivity is heavily affected by the invasion resistivity (Rzo), al-
though this depends on the invasion radius (dzo). Before investigating this
complex situation, we first look at the case without mud invasion. Here
we only have one variable (Rt). The bore hole radius and drilling fluid re-
sistivity are fixed to 4.25 inch and 0.05 Qm, respectively. With only one
variable the input space of earth models is not too large, which allows us to
first experiment with the input representation and the network architecture.
When we have found the most appropriate representation and architecture,
we can use this in the case with invasion.

We have taken small bed sizes that range between 1 and 5 feet. Kach
earth model consists of a small log of 50 feet long and 15 beds, with a total
of 47 models (2350 feet) for training and 33 models (1650 feet) for testing.
The true resistivity ranges between 1 and 70 Qm. These parameters are
summarized in Table 2.

For the experimentation with the input representation and network architec-
ture we have used a small training set of 4 earth models and an equally sized
test set of 4 models. For these small tests no absolute errors are included,
since they are only used for comparison. The performance is measured in
the average relative error of the training set and the test set. A net performs
well when both errors are small and comparable.

Table 2: Parameters for earth models without invasion.

Fixed parameters
Bore hole radius 4.25 inch
Drilling fluid resistivity 0.05 Om
Variables
Bed size 1,2,3,40r5 feet
True resistivity 1,2,3,..,70 Qm
Data
Training set 47 models
Test set 33 models
Per model 50 feet

15 beds

251 examples

37

38 3. FORWARD MODELLING WITHOUT MUD INVASION

3.1 Experimenting with different scaling methods

The input and output are approximately scaled to the range [—1,+1] (see
Section 2.1.3). This is done by normalization of the input and output

2= (43)

where u is the mean and ¢ is the standard deviation of the variable z on the
training set. This type of scaling can also be done in combination with a
logarithmic scaling. In that case the mean and standard deviation of In(z)
is used. The mean and standard deviations for the input and output are
given in the following table

I o
Rt 29.00 | 16.67
logarithmic scaled Rt 3.30 | 0.80
LLd or LLs 30.00 | 16.67
logarithmic scaled LLd or LLs | 3.00 | 0.83

We tested a fully connected net of 25 inputs (sliding window of 5 feet)
and one hidden layer of 5 nodes on 1004 examples (4 models) and found
that the logarithmic scaling in combination with the normalization gave the
best results. The worst results are found when no logarithmic scaling was
applied, so the normalization on itself is not sufficient. When no logarithmic
scaling was applied, the neural net is minimizing the absolute error between
the desired and actual output. We measure the performance in the relative
error and a minimalization of the absolute error does not necessary mean a
minimalization of the relative error. The logaritmic scaling overcomes this
problem. Due to this scaling the proportion is minimalized (see Section 2.4),
which is almost the same as minimalizing the relative error.

We will use this combined scaling method in the other tests.

3.2 Experimenting with the network architecture

Now we started experimenting with the network architecture. The following
experiments are done for a window size of 5 feet. The tests are done for both
the Deep- and the Shallow-log with 4 training models (1004 examples).

e Variation of number of hidden nodes (5, 10, 15, 20, 25). We found
that increasing the number of nodes up to 15 improve the results, but
that nets with 15 nodes and more gave similar results.

e Variation of number of hidden layers (1 or 2). Two layers of both 15
nodes or one hidden layer of 15 nodes gave comparable results.

3.3 Experimenting with the size of the sliding window

e Adding connections of the input layer directly to the output layer (25
extra connections). Again the results for these extra connections and
the normal fully connected net were comparable.

When the results are comparable we choose for the net with the fewest
number of weights. These nets most likely have the best generalization and
the smallest training time. The best architecture found by these experiments
is a normal fully connected net, with one hidden layer of 15 nodes.

3.3 Experimenting with the size of the sliding window

The scaling method and the network architecture are fixed, only the window
size is varied in the following tests. We tried window sizes of 5, 10, 15 and
30 feet. The smallest window size we can try is 5 feet (see Section 2.1.1).
Again the nets are trained on 4 models (1004 examples), on both the Deep-
and the Shallow-log. In both cases, a window size of 15 feet gives the best
results. Although the results are slightly better for a window size of 30 feet,
this does not outweigh the longer training time due to this high number of
weights (2281 versus 1156).

The Shallow-log approximation is better than the Deep-log for the same
window size. We already expected this, because the Deep Laterolog “sees”
a larger part of the formation and therefore needs a larger window size. This
was already shown in Figure 3 in Section 1.1.1.

3.4 Summary and results

The architecture we found by the previous tests is a fully connected neural
net with one hidden layer of 15 nodes and a window size of 15 feet (75 in-
puts). This net is trained on 47 models with a total length of 2350 feet and
tested on 33 models with a total length of 1650 feet.

Table 3: Average relative error for earth models without invasion (1).

Shallow-log | Training set | 1.7 %
Test set 22 %

Deep-log Training set | 5.1 %
Test set 6.0 %

39

40 3. FORWARD MODELLING WITHOUT MUD INVASION

As shown in Table 3, the average relative error is below 5 % for the ap-
proximation of the Shallow-log. The generalization ability of the net, that
is trained on the Shallow-log, is quite good (the test error and the training
error are comparable).

However, the average relative error may not be an appropriate error crite-
rion, since it is possible that a few points with a high relative error have a
relatively large contribution to the average relative error. Therefore, we also
calculate the percentage of the output that has a relative error below 5 %
(called “correct”) as shown in Table 4. From this table we find that only

Table 4: Performance on earth models without invasion (1).

Shallow-log | Training set | 98 % correct
Test set 96 % correct
Deep-log Training set | 62 % correct
Test set 61 % correct

4 % of the approximation of the Shallow-log has a relative error above 5 %.
And this is very close to the error on the training set. Therefore, we can say
the learning and generalization ability of the net are quite good.

The approximation of the Deep-log, however, causes more problems. This
is shown in Figure 28. The Deep-log differs substantially from the true re-
sistivity profile, in contrast to the Shallow-log. This is caused by the effect
of the shoulder beds, which is less profound in the case of the Shallow-log
(see Section 1.1.2).

The output the neural net gives for this model is shown in Figure 29. In
this figure one sees that the output given by the net looks more like the re-
sistivity profile (like the Shallow-log) and therefore has quite a large relative
error with its target value (the Deep-log). An improvement could be made
by using more models similar to this one in the training set.

We conclude that our input representation (sliding window and scaling) is
appropriate for the problem. A fully connected neural net with one hidden
layer is sufficient to learn the input-output mapping and to provide good
generalization over data it has not seen before. In the following chapter we
will abandon the fully connected nets and look for more complex architec-
tures to improve on the results and to handle invasion.

3.4 Summary and results

41

Chm net er
80 T T T T T T T T T
True resistivity —
Deep-10g —
70 L Shal | ow-10g —

25 30 35 40 45 50
depth

Figure 28: Model that causes difficulties in approximating the Deep-log.

Chm net er
80 T T T T T T T T T
True resistivity —
Neural Net —
70 L Deep-log — |

25 30 35 40 45 50
depth

Figure 29: Response of the neural net to the difficult model shown above.

42 4. FORWARD MODELLING WITH MUD INVASION

4 Forward modelling with mud invasion

Now we have found that it is possible to learn the mapping between the
earth models and the tool response, we are going to look at a more difficult
(and interesting) problem. In the new earth models the layers of the forma-
tion are invaded by the drilling fluid. This means we also have to take Rzo,
the invasion resistivity, and dzo, the invasion radius, in account. Again the
bore hole radius and the resistivity of the drilling fluid are fixed. The input
space of earth models, constructed from randomly chosen combinations of
the three variables Rt, Rzxo and dzo, is much larger than in the previous
case, when there was only one variable (Rt). We expect the network needs
more examples to learn the problem.

We first perform a number of tests on a small training set in order to get

an idea about how well the chosen input representation and architecture
perform on an (also small) test set.

Table 5: Parameters for earth models with invasion.

Fixed parameters

Bore hole radius 4.25 inch
Drilling fluid resistivity 0.05 OQm
Variables
Bed size 1,2,3,..,20 feet
True resistivity 2,3,4,..,70 Om
Invasion resistivity 0.5,0.7, ..., 2.5 Qm
Invasion radius 8,9, ..,50 inch
Data
Training set A, B,C,D,E, F(MN,O,P,Q RandS) models
Validation set G,Hand I models
Test set J, Kand L. models
Per model + 1000 feet

80 beds

4+ 5000 examples

We use bed sizes between 1 and 20 feet, which is more realistic than in the
previous tests, where we used beds between 1 and 5 feet. Each earth model
is approximately 1000 feet long and consists of 80 beds. There is a total of
19 models for training, testing and validation as shown in Table 5. During
training one calculates the error on a set of examples that is not used during
training, the so-called validation set. When the error on this set starts to
increase, the training is stopped. In the small tests we have not used a

4.1 Scaling of the parameters

validation set. The training was stopped, when the network converged to a
minimum. This means the nets are overtrained: the error on the training set
is minimal, but the error on the test set is not. In these experiments we only
use the Shallow-log. We have found in the previous tests, without invasion,
that the mapping between the earth models and the Shallow-log was easier
to learn than the mapping between the earth models and the Deep-log. If a
net finds it difficult to learn the Shallow-log, we expect it would have even
more difficulty in learning the Deep-log.

In the next sections some of the results are given in duplicate in order to
get a better comparison between the various tests. We have used one model
(A) of 4601 sample points as training set and one model (F) of 4876 sample
points as test (generalization) set.

4.1 Scaling of the parameters

The true resistivity Rt and the Shallow- and Deep-log (LLs and LLd) are
scaled as in the previous tests. The scaling methods we have used here are
summarized in the following table

Variable | Domain Scaling Mean | Deviation
Rt 2,3,..,71 Qm | log + norm 3.30 1.67
Rxo 0.5,0.7, ..., 2.3 Qm | norm 1.30 0.59
dxo 89, .., 50 inch | norm 29.00 25.00
LLd log 4+ norm 1.40 1.67
LLs log + norm 1.40 1.67

In the following sections we use tables to describe the performed tests. The
following table entries are used to describe a test:

e connections: The type of connections. This is fully or locally con-
nected (fully connected by default).

e architecture: A description of the net per layer seperated by a “.”.
For each layer the number of nodes is given. This number can be
split into the number of values per variable or feature map. A layer of
3 x 128 for example means we have 128 values per variable. A layer of

6 x 27 means we have 6 feature maps of 27 nodes each.
e Number of weights: The number of weights in the net is given.

e window size: The used size of the sliding window is given in feet
(default value is 25.4 feet).

e Sampling period: The used sampling period is given in feet (default
value is 0.2 feet).

43

44 4. FORWARD MODELLING WITH MUD INVASION

Sampling: The type of sampling. This can be uniform (default value),
non-uniform or none.

e Number of epochs: The number of epochs that was needed to train
the net.

Training error: The average relative error on model A.

Generalization error: The average relative error on model F.

4.2 Experimenting with different input representations

In this more complex situation we have to look at three variables per sam-
pling point. This results in a high number of inputs for the neural net.
Because of the results in the experiments without invasion, we first looked
at the input representation coming from a uniform sampled sliding window
in Test 1. A window size of 25.4 feet and a sampling period of 0.2 feet gives
us 3 x 128 inputs, which is quite high. But we also looked at an input de-
scription by attributes in Test 2 as described in Section 2.1.2. The results
are given in Table 6.

Since the sliding window representation is giving better results than the
attributes description, we will now look for methods to reduce the complexity
of the net. This can be done by reducing the number of inputs or by reducing
the number of weights.

The generalization performance of the attributes input representation is very
bad. The net is heavily overtrained, since the error on the test set was only
41.8 % after 183 epochs (training error at that time was 11.4 %).

first sampling point,
inverse distance is 10

0.2 fest second sampling point,
: / inverse distanceis5

P Contrasts with adjacent bed
Input at first sampling point Rt Rxo dxo Rt/Rt2 Rxo/Rx02 dxo/dxo2 Rt-Rt2 Rx0-Rx02 dxo-dxo2 10
Input at second sampling point Rt Rxo dxo Rt/Rt2 Rxo/Rx02 dxo/dxo2 Rt-Rt2 Rxo-Rx02 dxo-dxo2 5

True resistivity, invasion resistivity and /

invasion radius

Differences with adjacent bed

Figure 30: Small difference in input with attributes input representation.

4.2 Experimenting with different input representations

Table 6: Comparing discretized sliding window against attributes represen-
tation.

Representation Test 1 Test 2
architecture 3 x 128.10.1 100.15.15.1
number of weights | 3861 1771
window size 25.4 feet 30 feet
sampling period 0.2 feet
sampling Uniform
input description Discretized sliding | Attributes
window (10 beds)
number of epochs 3060 3484
training error 31 % 4.2 %
generalization error | 70.0 % > 100 %

Table 7: Comparing uniform sampling methods with different sampling pe-
riods.

Sampling 1 Test 1 Test 4
architecture 3 x128.10.1 | 3 x 100.10.1
number of weights | 3861 3021
window size 25.4 feet 29.7 feet
sampling period 0.2 feet 0.3 feet
number of epochs 3060 3634
training error 31 % 2.9 %
generalization error | 70.0 % 67.3 %

Table 8: Comparing uniform and non- uniform sampling methods.

Sampling 2 Test 3 Test 5
architecture 3 x128.10.10.1 | 3 x 64.15.15.1
number of weights | 3971 3151
window size 25.4 feet 29.4 feet
sampling period 0.2 feet

sampling Uniform Non-uniform
number of epochs 6429 4404
training error 1.1 % 1.0 %
generalization error | 65.2 % 46.4 %

46 4. FORWARD MODELLING WITH MUD INVASION

A possible cause of the bad performance on the attributes is that the net is
fed with a number of almost similar examples. Only the inverse distance for
each bed differs in those cases, as shown in Figure 30. The inverse distance
becomes the most important value in the input. This can also be seen from
the weights. Most weights are quite small, ranging from -0.5 to 0.5, but the
weights belonging to the connections from the inverse distance- inputs to
the hidden layer are large (£ 1.5).

It is important to choose appropriate attributes, but finding these attributes
is very difficult. The network is actually pushed in some kind of direction
by using attributes. This can make the learning easier, but it can just as
easy make the learning more difficult.

4.3 Experimenting with input reduction methods

The number of inputs coming from a uniform sampled sliding window is
very high. For example, a window of 29.8 feet and a sampling period of
0.2 feet produces 3 x 150 inputs. We would like to use a hidden layer of 15
nodes and maybe even two hidden layers of 15 nodes. The former gives us
6781 weights and the latter 7021 weights. To train such a large net we need
approximately 70000 examples (Widrow’s Rule of Thumb to take about 10
times the number of free variables). Each example consists of 451 values
(3 x 150 inputs and one target), so we would need to store approximately
31570000 values to train this net. This large set will slow down the training
and causes storage and memory problems.

It is for this reason that we looked at several ways to reduce the number of
inputs for a fixed windowsize. The disadvantage of input reduction is the
fact that we loose information.

4.3.1 Using different sampling methods

The number of inputs depends on the used window size and the used sam-
pling period. We could use a smaller sliding window than 25.4 feet, but this
is not an attractive option, because we suspect the tool readings are affected
by a window of at least the size of the tool (see Section 2.1.1).

Another option is to use a coarser sampling period, for example 0.3 feet
(Test 4) instead of 0.2 feet. In a sliding window of 29.7 feet this results in
3 x 100 inputs, instead of the 3 x 150 inputs with a 0.2 feet sampling period
in a sliding window of 29.8 feet.

Another approach is to use a non-uniform sampling method. This approach
is based on the fact that the physical tool receives most of its information
from the center and less from the sides. We have chosen an heuristic non-
uniform sampling method in Test 5 as shown in Figure 31, which results in
only 3 X 64 inputs per window (instead of 3 x 150). In Test 3 we use the
same net as in Test 1, but with two hidden layers. The results for these

4.3 Experimenting with input reduction methods

window of 29.4 feet

. 7.2 feet uniform sampled every 0.8 feet

. 6.0 feet uniform sampled every 0.4 feet

D 3.0 feet uniform sampled every 0.2 feet

Figure 31: Non-uniform sampling in sliding window.

tests are shown in Table 7 and Table 8.

When a uniform sampling method is used, it it possible to use a coarser sam-
pling period (0.3 feet instead of 0.2 feet), because the training and testing
results are similar. The bed boundaries are described less accurately when
a coarser sampling period is used. But from these tests we find that it does
not influence the performance in a negative way.

With the non-uniform sampling method we only loose accuracy at the edges,
because the center of the window is sampled with the same sampling period
as in the original input. The net that is trained on this input representation
performs better than the net that was trained on the original input.

Both methods, coarser and non-uniform sampling, are appropriate as meth-
ods to reduce the inputs.

4.3.2 Reducing the input by projection to principal components

We use the principal component analysis as described in Section 2.2.1. The
eigenvectors are calculated for an input file consisting of six models. The
models are not alike internally, so it is better to use a set of models. Other-
wise the eigenvectors will be appropriate for one model, but not for another.
We found that it does not matter whether you use six models or more, so
we have chosen for the models A, M, N, P, Q and R (these models are very
dissimilar).

Both vectors (original N-dimensional and projected M-dimensional) are
rescaled with the inverse normalization scaling of equation 9, before the
LOI is calculated. Due to this scaling, the loss of information for M = 0 is
not 100 %. The scaled vector consists of only zero’s, but the rescaled vector
is everywhere equal to the mean of the input values. This rescaling is not
absolutely necessary, but we wanted to calculate the loss of information on
the original input.

In Test 7 the original input vector consists of 3 x 64 inputs, constructed by

47

48 4. FORWARD MODELLING WITH MUD INVASION

Loss of information

in percent
50 T T T T T T T T T T T T T T T
LA on true resistivity Rt
45 LA on invasion resistivity Rxo ----]

LA on invasion radius dxo -----
40 |
30 L
20 |
15

10

72 80 88 96 104 112 120 128

Nunber of principal cononents used (M

Figure 32: Loss of information per variable for Test 6. Original input consists
of 3 x 128 inputs, coming from a uniform sampled sliding window.

Table 9: Comparing uniform sampled input without and with projection to
principal components.

PCA 1 Test 3 Test 6
architecture 3 x128.10.10.1 | 3 x 32.10.10.1
number of weights | 3971 1091

PCA No Yes

LOI 7.4 % on Rt
LOI 4.7 % on Rxo
LOI 4.4 % on dxo

number of epochs 6429 5193
training error 1.1 % 1.7%
generalization error | 65.2 % 52.3 %

4.3 Experimenting with input reduction methods 49
Loss of information

in percent
50 T T T T T T T
LA on true resistivity Rt —
LA on invasion resistivity Rxo -——- |

45] LA on invasion radius dxo --—---
35 “‘:‘1
30 “
25
20

15

10

64

Nunber of principal conpnents used (M

Figure 33: Loss of information per variable for Test 7. Original input consists
of 3 x 64 inputs, coming from a non-uniform sampled sliding window.

Table 10: Comparing non-uniform sampled input without and with projec-
tion to principal components.

PCA 2 Test 5 Test 7
architecture 3 x 64.15.15.1 | 3 x 32.15.15.1
number of weights | 3151 1711
window size 29.4 feet 29.4 feet
sampling period

sampling Non-Uniform | Non-Uniform
PCA No Yes

LOI 7.2 % on Rt
LOI 4.2 % on Rxo
LOI 3.9 % on dxo
number of epochs 4404 3896

training error 1.0 % 1.4 %

generalization error | 46.4 % 45.6 %

50 4. FORWARD MODELLING WITH MUD INVASION

a non-uniform sampled sliding window as in Test 5. The LOI for various
values of M is shown in Figure 33.

The LOI, for both tests, is calculated for P = 1520 patterns coming from
models J, O and S.

In the following tables, Table 9 and Table 10, the LOI is given per variable
for the training and test set.

In both tests we find that the training and generalization error for the tests
with and without PCA are comparable. This means the principal component
analysis is a good method to reduce the number of inputs. In the first test
we achieve an input reduction of 75 % and in the second test 50 %. The
weights are reduced with 73 % and 46 % respectively.

4.3.3 Reducing the inputs by removing wavelet coeflicients

In the following tests we use wavelet coeflicients as inputs instead of the
original inputs. We do not know how much coeflicients can be removed on
the finer detail levels so that not too much information is lost. Therefore,
we run several tests with different reductions. In the first test, Test 8, no
coeflicients are removed at all and in the last test, Test 11, we remove all
the coeflicients on the finest detail level and some on higher detail levels.
The results are given in Table 11 and Table 12.

The first interesting aspect is that the net learns better when coefficients are
removed. During training the weight correction for a hidden node is calcu-
lated as indicated by equation 7. It depends on the learning parameter, the
local gradient and most important on the input signal of node j. So when
input node j is 0, there is no weight correction. This is probably the cause
of the bad performance of the net in Test 8.

The wavelet coeflicients are 0 when there is no bed transition at that spot,
because the difference between the first half and the second half of (a part
of) the window is 0. Most of the coefficients on higher detail levels are zero,
because there are only a few bed boundaries in the window. Sometimes a
bed boundary is not even detected as shown in Figure 34.

On the finest detail level this problem is quite severe, because these coefli-
cients only see a very small part of the input and this small part is not likely
to contain a bed boundary. Whenever the bed boundary is not detected or
when there is no bed boundary at all, the coefficients are zero and the weight
from this coefficient to the hidden node is not updated. In other words, the
hidden node does not “learn” from this coefficient.

4.3 Experimenting with input reduction methods

Table 11: Comparing input representations with different number of wavelet
coeflicients (1).

Haar 1 Test 8 Test 9
architecture 3 x 128.10.1 | 3 x 68.15.1
number of weights 3861 3091
coeflicient reduction | none 2 x 20 on level 6
2 x 10 on level 5
number of epochs 2125 4303
training error 4.1 % 0.8 %
generalization error | 63.5 % 51.5 %

Table 12: Comparing input representations with different number of wavelet
coefficients (2).

Haar 2 Test 10 Test 11
architecture 3 x 48.10.1 3 x 34.15.1
number of weights 2191 1561

coefficient reduction

2 %X 25 on level 6

2 x 32 on level 6

2 x 12 on level 5

2 x 12 on level 5

2 x 3 on level 4

2 x 3 on level 4

number of epochs 4479 3848
training error 1.0 % 0.9 %
generalization error | 50.3 % 56.4 %

52 4. FORWARD MODELLING WITH MUD INVASION

b Part of input signal that lies
in sliding window, wavelet
a —_— coefficients on this level
are (0,(b-a)/2,0,0)
b
Input signal after sliding window
a — | ismoved 0.2 feet to theright;
wavelet coefficients on this level
are (0,0,0,0)

discretized input values

@] @] @] (@) wavelet coefficients

Figure 34: Not all transitions are detected by wavelet coeflicients.

There are approximately 2 bed boundaries per pattern. Not all boundaries
are detected by the coefficients on the finest detail level, but when it is not
detected by coefficient ¢; it will be detected by coefficient ¢;_; after moving
the sliding window. So on average 50 % of the boundaries is detected on
the finest detail level. The training set consists of 4601 patterns, so this
means the weight coming from coeflicient ¢; to hidden node h; is updated
approximately 72 times (4601 patterns, 2 boundaries per pattern from which
50 % is detected and 64 coefficients). A usual training takes about 2000 to
3000 updates per weight.

In Test 9, 10 and 11 we remove a number of the coeflicients on the finest
detail level and also from higher levels and we see that the performance of
these nets is much better than the performance of the net in Test 8.

When we compare the results to the net trained in Test 1, we see that the
nets have better training and generalization errors, although the number of
inputs is reduced from 3x 128 to 3 x 68, 3x 48 and 3x 34. An input reduction
of 73 % is possible, without reducing the net performance. One explanation
for the better generalization performance, is that the nets contain much
less weights. The number of training examples in proportion to the number
of weights is higher in these tests than in Test 1. But it could also be
possible that the net finds this input representation facilitates the training
and generalization more than the original discretized sliding window. The
improvement in generalization is better than for the principal component
analysis of Test 6 and 7.

4.4 Creating a more representative training set

4.4 Creating a more representative training set

Our training set is not very representative, because the examples of adjacent
logging points look very similar. This is caused by the fact that we use a
dense sampling period for the target log. We use this dense sampling period
because we want as much examples per log as possible (the data set is lim-
ited). There are two methods we employ to increase the representativeness
of the training set: firstly by using a coarser sampling period for the target
log and secondly by using “difficult” (non-similar) examples.

When we use a sampling period of 3 feet, one model of 1000 feet only pro-
duces about 300 examples. This is what we did in Test 12. To create a
training set of the same size as our original training set we use 15 models
with this sampling period. This training set is more representative, because
it contains more different examples. We expect this will make it more dif-
ficult for the net to learn the problem. The network has to find a more
general solution to fit all the examples. This improves the generalization of
the network.

After training the net, we have looked at the approximation of the net to an
arbitrary log. We found that the highest relative errors occur around areas
of low resistivity and areas with high resistivity contrasts. The training set
would be more representative when it contained more examples like this.
Actually this is some kind of weighing of the examples. By offering more
“difficult” examples, these examples will get more attention in the minimal-
ization process. In Test 13 we use a training set of 4600 examples, coming
from difficult parts of log A, P and S and 1436 coarser sampled examples of
the other parts of log A (with a total of 6036 examples as training set). The
results for these tests are given in Table 13 and Table 14.

As we can see from these tests, both methods improve the generalization
performance of the net. The training, however, becomes more complicated.
It is very important to create a training set that contains a large number of
different examples that look like examples that are found in reality.

53

54 4. FORWARD MODELLING WITH MUD INVASION

Table 13: Comparing training set of target logs and training set of coarser
sampled target logs.

Training set 1 Test 1 Test 12
architecture 3 x128.10.1 | 3 x 128.10.1
number of weights | 3861 3861

training set model A mixture of 15 models
number of epochs 3060 3023

training error 31 % 5.6 %
generalization error | 70.0 % 26.9 %

Table 14: Comparing training set of target logs and training set of difficult
parts of target logs.

Training set 2 Test 1 Test 13

architecture 3 x128.10.1 | 3 x 128.10.1

number of weights | 3861 3861

training set model A difficult examples of
models A, P and S

number of epochs 3060 1042

training error 31 % 9.8 %

generalization error | 70.0 % 30.3 %

4.5 Intermediate results input representations

4.5 Intermediate results input representations

We select some of the nets from the previous tests to train them on a large
training set. The training set for the Shallow-log is constructed from the
models A, B, C, D, E and F. The target logs are sampled every 0.2 feet, so
the training set contains 28331 examples. We use the models G, H and I as
validation set (14153 examples) and the models J, K, L, M, N, O, P, Q, R
and S as test set (47485 examples).

In Figure 35 the results for three nets are shown. The first six models are
the models the net is trained on, the other models are used for validation
and testing. The first net, Non-uniform, is a net with a non-uniform sam-
pled input and PCA reduction from 3 x 64 inputs to 35 inputs for Rt and
20 inputs for both Rzo and dxo. The second net, Haar from Test 9, is a
net with Haar coefficients as inputs. The inputs are reduced by removing
some of the coeflicients from 3 x 128 inputs to 3 x 68 inputs. And the third
net, Uniform from Test 4, is a uniform sampled input with a window of
29.7 feet and a sampling period of 0.3 feet, resulting in 3 x 100 inputs.

In Figure 35 the percentage of the log that has a relative error below 5 % is
shown.

As can be seen in Figure 35, the non-uniform sampled input gives the best
results on the training set, but they all perform equally over the validation
and testing set.

The methods to reduce the number of inputs work very well. The networks
are able to learn the problem even when a large number of the inputs is
removed. The generalization performance, however, is not sufficient and we
have also lost information. In the next sections we will investigate certain
architectural constraints in order to improve on the generalization perfor-
mance.

55

56 4. FORWARD MODELLING WITH MUD INVASION

percentage of |og
that is correct

100 : ;

90 F S S L
wf A S
70
65

60

55

50

45 ' '
training val i dation testing

Figure 35: Intermediate results of training three different neural nets on 6
models.

4.6 Experimenting with architecture constraints

4.6 Experimenting with architecture constraints

In the previous tests we only used fully connected nets. Now we will look
at locally connected nets and other connection constraints. An attractive
method to reduce the number of weights is by forcing certain weights to
be equal. Of course we have to be very careful when we use this type of
constraint, because it could also make the learning more difficult and de-
crease the generalization performance. This occurs when the weight sharing
is forcing the net to find a solution that does not fit the problem. It will
only help the training and generalization when the weight sharing is a logical
consequence of the problem.

4.6.1 Experimenting with fully connected nets

As we have seen, the fully connected nets can be trained quite well when a
sufficient number of (different) examples is given. We train different fully
connected nets with uniform sampled inputs and one or two hidden layers
in Test 1 and Test 3. The results of these tests are given in Table 15.
We find that two hidden layers improve the training results, but it is not
feasible to train a net with that many weights on a large training set.

4.6.2 Experimenting with locally connected nets

The advantage of locally connected nets over fully connected nets is that they
need much less weights and the neurons in the hidden layer can specialize on
their part of the input. The size and overlap of the receptive fields are things
to be determined. We have tried two locally connected nets in Test 15 and
Test 16. The results are given in Table 16.

The results are better when we use small receptive fields and a sufficient
number of hidden nodes on the second hidden layer. When we compare the
net from Test 16 to the fully connected net from Test 3, we have obtained
a weight reduction of 63 %. Although the training error is slightly worse,
the generalization, which is more important, is a lot better. We find that
locally connected nets are more attractive (in this problem) than the fully
connected nets.

4.6.3 Using symmetry constraints

In the following tests we have build the symmetry constraints, as described
in Section 2.3.3, in the fully connected net (Test 17 and Table 17), the lo-
cally connected net (Test 18 and Table 18) and the wavelet nets (Test 19
and Table 19).

57

58 4. FORWARD MODELLING WITH MUD INVASION

Table 15: Comparing different fully connected nets.

Fully connected Test 1 Test 3
architecture 3 x128.10.1 | 3 x 128.10.10.1
number of weights | 3861 3971

number of epochs 3060 6429

training error 3.1 % 1.1 %
generalization error | 70.0 % 65.2 %

Table 16: Comparing different locally connected nets.

Locally connected Test 15 Test 16
connections Locally connected | Locally connected
architecture 3 x128.12.5.1 3 x 128.19.15.1
number of weights 1523 1475

receptive field size 7.8 feet 3.8 feet
receptive field overlap | 80 % 70 %

number of epochs 2679 5267

training error 7.5 % 21 %
generalization error 61.7 % 48.9 %

Table 17: Comparing fully connected nets without and with symmetry con-
straints.

Symmetry 1 Test 1 Test 17
architecture 3 x128.10.1 | 3 x 128.10.1
number of weights 3861 1941
symmetry constraints | No Yes
number of epochs 3060 655
training error 31 % 6.6 %
generalization error 70.0 % 37.7 %

4.6 Experimenting with architecture constraints

In all tests the number of weights is reduced approximately 50 %. This makes
the training more difficult for the net, but it improves the generalization
performance. This idea of symmetry constraints is worked out further in
the convolutional-regression nets.

4.6.4 Experimenting with convolutional regression nets

In the convolutional-regression nets we constrain all receptive fields to share
the same weights. The size and the overlap of the fields determine the accu-
racy in spatial resolution. The second hidden layer combines the activations
from the first hidden layer and determines the location of the feature in the
input.

D output node

second hidden layer
of 15 nodes
total
number of
6 feature
maps
(copies)
feature map
(shared weights within map)
Rt
Rxo
dxo
window size - -
of 29.8 feet receptive field

Figure 36: Convolutional-regression net. The feature maps in the first hid-
den layer are connected to all the variables in the input layer.

The number of feature maps determine how many features can be detected.
We should not use too few feature maps, otherwise the net has difficulty in
learning the problem and in generalization. The number of weights, however,
depend upon the number of feature maps used (for 15 hidden nodes in

59

60 4. FORWARD MODELLING WITH MUD INVASION

Table 18: Comparing locally connected nets without and with symmetry
constraints.

Symmeltry 2 Test 16 Test 18
connections Locally connected | Locally connected
architecture 3 x 128.19.15.1 3 x128.19.15.1
number of weights 1475 905

receptive field size 3.8 feet 3.8 feet
receptive field overlap | 70 % 70 %

symmetry constraints ‘ No ‘ Yes

number of epochs 5267 5536

training error 21 % 2.3 %
generalization error 48.9 % 37.8 %

Table 19: Comparing “wavelet” net without and with symmetry constraints.

Symmetry 3 Test 9 Test 19

architecture 3 x 68.15.1 3 x67.15.1

number of weights 3091 1561

remarks Wavelet coefficients | Wavelet coefficients
Reduction 20,10 Reduction 20,10

symmetry constraints | No Yes

number of epochs 4303 3137

training error 0.8 % 3.6 %

generalization error 51.5 % 46.6 %

4.6 Experimenting with architecture constraints

[]

second hidden layer
of 15 nodes

total

copies (3 feature maps)

number of
9 feature
maps
/ \ / \ feature map
(shared weights within map)

Rt
Rxo
dxo

window size - -
of 29.8 feet receptive field

Figure 37: Convolutional-regression net. The first hidden layer consists of
three sets of feature maps. Fach set consists of three maps and is connected
to one of the variables in the input layer.

the second hidden layer one feature map of k nodes increases the number of
weights by k x 15). A trade-off should be made between the size and overlap
of the fields, the number of feature maps to use and the resulting number
of weights in the net. In Test 20, 21 and 22 the hidden layer was connected
to all the variables of the input layer as shown in Figure 36. In Test 23,
on the other hand, the first hidden layer was split into three variable maps,
each containing three feature maps. Each variable map was connected to
its corresponding variable in the input layer. This is shown in Figure 37.
The results for these tests are given in Table 20 and Table 21. For all these
tets the nets are locally connected and the window size is 29.8 feet. The
convolutional-regression nets perform very well on both the training and the
test set. The generalization performance of these nets is significantly better
than for all the nets we have tried before. When we compare the results
from Test 21 with the results from Test 3 for example (Test 3 is a fully con-
nected net with two layers), we have a weight reduction of 29 % and the
generalization is approximately 2.5 times better.

61

62 4. FORWARD MODELLING WITH MUD INVASION

We have investigated the features that are detected by the first hidden layer.
In Figure 39 the activations of the first hidden layer at a certain depth are
plotted. These activations come from Test 21.

From these activations we can see the first hidden layer is actually detecting
the bed boundaries. It smooths the input signal and the activations are
constant for parts of the input signal that are constant.

4.6 Experimenting with architecture constraints

Table 20: Results for convolutional- regression nets (1).

Convolutional 1 Test 20 Test 21
architecture 3 % 60.6 x9.5.1 | 3 x150.6x 27.15.1
number of weights 503 2827

sampling period 0.5 feet 0.2 feet

receptive field size 5.5 feet 3.8 feet

receptive field overlap | 75 % 75 %

figure ‘ Figure 36 ‘ Figure 36
number of epochs 3316 2865

training error 3.9 % 0.6 %
generalization error 34.7 % 255 %

Table 21: Results for convolutional- regression nets (2).

Convolutional 2 Test 22 Test 23
architecture 3 x100.6 x 16.15.1 | 3 x 150.9 x 27.15.1
number of weights 1927 3865

sampling period 0.3 feet 0.2 feet

receptive field size 7.2 feet 3.8 feet

receptive field overlap | 80 % 75 %

figure ‘ Figure 36 ‘ Figure 37
number of epochs 4081 3689

training error 1.6 % 0.5 %
generalization error 26.3 % 28.6 %

63

64 4. FORWARD MODELLING WITH MUD INVASION

Chm net er
70 T T T T T

60 B

40 .

30 B

20 B

10 B

600 605 610 615 620 625 630
depth

Figure 38: True resistivity profile of model A at depth 615 feet.

activation

Feature map 1 —
Feature map 2 --——
;- ~Feature map
) A / Feature map 4 -
0.6 L oo N\ !/ Feature map 5 --- |
: AN / \ , ,—Feature map 6 ---

node

Figure 39: Activation of first hidden layer per feature map for Test 21.
These activations are for model A at depth 615 feet. This layer consists of
6 feature maps of 27 nodes each.

4.7 Intermediate results architecture design

4.7 Intermediate results architecture design

We train a convolutional-regression net on a larger set of models. The
training set, validation set and test set is equal to the one used for the
previous networks (28331, 14153 and 47485 patterns respectively). The net
that is used is shown in Figure 36. The performance in comparison with the
previous results is shown in Figure 40.

As one can see, the generalization performance of the convolutional-regression
net is much better than for the previous nets.

We are going to use this type of net for the approximation of both the Deep-
and the Shallow-log.

4.8 Summary and results

The nets with the best performance (training and generalization error) are
the convolutional-regression nets. We train a net on the Shallow-log and
one on the Deep-log. We use the convolutional-regression net from Test 21.
This net has a sliding window of 29.8 feet, sampled every 0.2 feet (3 x 150
inputs), 27 receptive fields of 3.8 feet with 75 % overlap and 6 feature maps.
We perform the following experiments:

e Shallow-log (1): We train a convolutional-regression net on earth
models with invasion (models A, B, C, D, E and F). The target logs
are sampled every 0.2 feet. The results are given in Table 22.

Table 22: Average relative error and performance for earth models with
invasion (Shallow-log).

average | percentage of set | number of

relative error | predicted correct patterns

Training set 4.3 % 88 % correct 28331
Validation set 51 % 82 % correct 14153
Test set 6.2 % 77 % correct 47485

e Shallow-log (2): After this training we add models without invasion
and some models with invasion and restart the training. For this
purpose we use the whole training set (see Table 5) (the target logs
are now sampled every 1.0 feet) and 40 models without invasion (target
logs wer sampled every 0.4 feet). The results are shown in Table 23.
All models contain either invasion or not. Therefore, the performance
is split into invasion and no invasion.

65

66

4. FORWARD MODELLING WITH MUD INVASION

percentage of |og
that is correct

100

90

85

80

75

70

65

60

55

50

T ——

) Uniform —
Convol utional -regression —

45

training

val i dati on

testing

Figure 40: Intermediate results (2) of training different neural nets on 6

models.

Table 23: Average relative error and performance for earth models with and

without invasion (Shallow-log).

average | percentage of set | number of

relative error | predicted correct patterns

invasion Training set 5.3 % 76 % correct 61688
Validation set 5.5 % 75 % correct 14153

Test set 5.6 % 74 % correct 14128

no invasion | Training set 5.6 % 77 % correct 10040
Test set 5.6 % 74 % correct 10040

4.8 Summary and results

67

e Deep-log: We train a convolutional-regression net on both models
with and without invasion. We use the same training set as for the
Shallow-log. The results are given in Table 24.

Table 24: Average relative error and performance for earth models with and
without invasion (Deep-log).

number of

average | percentage of set
relative error | predicted correct patterns
invasion Training set 8.4 % 52 % correct 61688
Validation set 8.8 % 51 % correct 14153
Test set 9.0 % 50 % correct 14128
no invasion | Training set 7.0 % 56 % correct 10040
Test set 6.9 % 58 % correct 10040

The last two nets are not optimal in a sense that they are not trained from
scratch. The net that was trained on the Shallow- log was optimal for models
with invasion. Then we added models without invasion and new models with
invasion. The net that was trained on the Deep-log used the optimal set of
weights from the first net that was trained on the Shallow-log (this was
done because the Shallow-log and Deep-log look very similar in practice)
and continued its training on new models with and without invasion. Better
results can be achieved by retraining the nets (random initialization of the

weights) and directly using a large training set.

68 5. THE NEURAL NETWORK AS FAST FORWARD MODEL

5 The neural network as fast forward model

In this section we present the neural networks that can be used as fast for-
ward models. The accuracy is not yet sufficient, but can be improved by
training on a more representative training set. For each net the “input do-
main” is given. This is a description of the models the net is trained on.
For earth models similar to these training models, the net gives an approx-
imation with an accuracy that is also given in this description. When an
earth model lies outside this domain, one cannot expect the net to perform
optimal.

For each net the best and worst test result is given. These results consist
of (a part of) the earth model (only for models with invasion), the approx-
imation of the log by the neural net and a cumulative error plot. In this
cumulative error plot the percentage of the log that has a relative error be-
low R % (for R = 0...25) is given. In all plots the invasion radius is given in
0.1 inch and the resistivities in m.

5.1 Application to earth models without invasion

A description of this net can be found in Chapter 3. The net is fully con-
nected. The input domain for the net that is trained on the Deep- and the
Shallow-log, here called Nolnvasion, is given in the following table:

net Nolnvasion

tool response Deep-log and Shallow-log
size sliding window 15 feet

size training set 11797 examples
range Rt 1...70 QOm

range bed size 1...5 feet

speed 400 pnt / sec
accuracy Deep-log 22 %
accuracy Shallow-log 6.0 %

In Figures 41 and 42 the worst and best test results are shown for the
Deep-log approximation of the net Nolnvasion. From the cumulative error
plots for these approximations one can see that the deviation in performance
is quite large. In the worst case only 8 % of the log has a relative error below
5 %, but in the best case this is 100 %.

In Figures 43 and 44 the worst and best test results are shown for the
Shallow-log approximation of the net Nolnvasion. The deviation in perfor-
mance is much less than in the case of the Deep-log. In the worst case 75 %
of the log has a relative error below 5 % and in the best case this is 100 %.

5.1 Application to earth models without invasion 69

True resistivity Rt —
Deep-10g — 1
Appr oxi mation by neural net —

100 .

10

0 5 10 15 20 25 30 35 40 45 50

Percentage of |og
with relative error
bel ow R %
e e A A

Q0 |t b

80 |t b

70 L

I T B I T B I T B
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

o
-
N
w
IN
ol
o
~
o
© -

Rel ative error R

Figure 41: Worst case neural net approximation of Deep-log. Average rela-
tive error is 14.2 %.

70 5. THE NEURAL NETWORK AS FAST FORWARD MODEL

Deep-10g — 1
Appr oxi mation by neural net —

100 .

10 -

0 5 10 15 20 25 30 35 40 45 50

Percentage of |og
with relative error
bel ow R %
00—T—TT 7 1T 17 T T T T 7 T T T T 7 T T T T T T T T 1

10 oo

I R R I T B I T B I T B I T B
01 2 3 4 5 6 7 8 9 1011 12 13 14 1516 17 18 19 20 21 22 23 24 25

Rel ative error R

Figure 42: Best case neural net approximation of Deep-log. Average relative
error is 2.6 %.

5.1 Application to earth models without invasion 71

T T T T T T T T T]

True resistivity Rt —
Shal | ow- 1 og — 1

Appr oxi mation by neural net —
100 E

10
1r e .
1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Percentage of |og
with relative error
bel ow R %

100

90

80

70

60

50

40

30

20

[N | [R | [R | [R | [R |
01 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Rel ative error R

Figure 43: Worst case neural net approximation of Shallow-log. Average
relative error is 8.5 %.

72 5. THE NEURAL NETWORK AS FAST FORWARD MODEL

T T T T T T T T T
Shal | ow- 1 og — 1
Appr oxi mation by neural net —
100 E
10 7
1r E
1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Percentage of |og
with relative error
bel ow R %

100

90

80

70

60

50

40

30

10 oo

I R R I T B I T B I T B I T B
01 2 3 4 5 6 7 8 9 1011 12 13 14 1516 17 18 19 20 21 22 23 24 25

Rel ative error R

Figure 44: Best case neural net approximation of Shallow-log. Average
relative error is 1.2 %.

5.2 Application to earth models with invasion

5.2 Application to earth models with invasion

A description of this net can be found in Chapter 4. This is a convolutional-
regression net. The following net only produces an approximation of the
Shallow-log. It is trained on earth models as described in the following table:

net Invasion

tool response Shallow-log

size sliding window 30 feet

size training set 28331 examples
range Ri 1..71 Om
range Rxo 0.5...25 QOm
range dzo 8 ... 50 inch
range bed size 1...20 feet
speed 90 pnt / sec
accuracy Shallow-log 6.2 %

In Figure 45 two of the test models are shown. The model at the top is
difficult for the neural net and the model at the bottom relatively easy. In
Figures 46 and 47 the worst and best test results for the Shallow-log ap-
proximation of the net Invasion are shown.

In the cumulative error plot of the first approximation is shown that 70 % of
the log is approximated with a relative error below 5 %. In the cumulative
error plot of the second approximation one can see that in the best case
83 % of the log is approximated with a relative error below 5 %.

This network is optimal for the earth models it was trained on.

5.3 Application to realistic earth model

The domain of earth models the convolutional-regression net FM is trained
on, are a combination of the previous models without and with invasion. A
remark should be made that the value Rzo was taken to be 1.1 Om when
dxo was 4.25 inch. In Figure 48 a formation model is shown that comes
from a real oil well. This model is more realistic. It does not lie in the input
domain, because it contains both parts with and without invasion. In our
training set each model only contained either invasion or not. The beds are
relatively small. The Deep-log and Shallow-log look very similar for this
model, this is also different from the models the net is trained on. All in all
this model looks quite different from the models in the training set and we
do not expect the net to be optimal for this model.

74 5. THE NEURAL NETWORK AS FAST FORWARD MODEL

A description of the earth models the net was trained on is given in the
following table:

net FM

tool response Deep-log and Shallow-log
size sliding window 30 feet

size training set 61688 examples
range Rt 1...71 Om
range Rxo 0.5...25 QOQm
range dzo 4.25,8 ... 50 inch
range bed size 1..20 feet
speed 85 pnt / sec
accuracy Shallow-log 80 %
accuracy Deep-log 9.0 %

The approximation of the Deep-log is shown in Figure 49 and the approx-
imation of the Shallow-log is shown in Figure 50. As we can see from the
cumulative error plots, the relative error between the neural net response
and the Deep-log is below 5 % for 67 % of the log. For 88 % of the log the
relative error lies below 10 %.

The Shallow-log approximation is much better. Here 77 % of the log has a
relative error below 5 %.

5.3 Application to realistic earth model

75

100

10

T T T T
True resistivity Rt —
Invasion resistivity Rxo — 1
I nvasi on radi us dxo —

200 210 220 230 240 250

260 270 280 290 300

100

ol

T T T T

True resistivity Rt —
Invasion resistivity Rxo — 1
I nvasi on radi us dxo —

200 210 220 230 240 250

260 270 280 290 300

Figure 45: Examples of earth models used for the net Invasion.

76 5. THE NEURAL NETWORK AS FAST FORWARD MODEL

Approxi mation by neural net — 1

100 .

10

200 210 220 230 240 250 260 270 280 290 300

Percentage of |og
with relative error
bel ow R %

100

90

80

70

60

50

40

30

20

10

[N | [R | [R | [R | [R |
01 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Rel ative error R

Figure 46: Worst case neural net approximation of Shallow-log. Average
relative error is 7.5 %.

5.3 Application to realistic earth model 77

Approxi mation by neural net — 1

100 .

10 7

200 210 220 230 240 250 260 270 280 290 300

Percentage of |og
with relative error
bel ow R %
00077 T 1T T T T T T T T T T T T 1

ol

I R R I T B I T B I T B I T B
01 2 3 4 5 6 7 8 9 1011 12 13 14 1516 17 18 19 20 21 22 23 24 25

Rel ative error R

Figure 47: Best case neural net approximation of Shallow-log. Average
relative error is 4.5 %.

‘[opour yjres (drjsiear) yoigy amSig

100

10 |

I nvasion resistivity Rxo — 1

| nvasi on radi us dxo —

5400

5410

5420

5430

5440

5450

5460

5470 5480 5490 5500

8L

¢

THAOW d¥VMYUOA LSVA SV XHOMLAN TVHIHN HH.L

5.3 Application to realistic earth model 79

Approxi mation by neural net — 1

100 .

5400 5410 5420 5430 5440 5450 5460 5470 5480 5490 5500

Percentage of |og
with relative error
bel ow R %
B e e A

90 b

40 b

solb -
o b -

10

0 I R R I T B
01 2 3 4 5 6 7 8 9 1011 12 13 14 1516 17 18 19 20 21 22 23 24 25

Rel ative error R

Figure 49: Neural net approximation of Deep-log. Average relative error is
7.6 %.

80 5. THE NEURAL NETWORK AS FAST FORWARD MODEL

Approxi mation by neural net — 1

100 .

5400 5410 5420 5430 5440 5450 5460 5470 5480 5490 5500

Percentage of |og
with relative error
bel ow R %
000777 7T 1

[N | [R | [R | [R | [R |
01 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Rel ative error R

Figure 50: Neural net approximation of Shallow-log. Average relative error
is 8.3 %.

6 Conclusions

In this section we present the conclusions following from the experiments we
have performed and the methods we have investigated. The conclusions are
split into three parts

1. A final conclusion about the goal of this project: investigating whether

6.1

it is feasible to use a neural network in the forward modelling process.

. Conclusions about the used methods. This involves the input repre-

sentation, the techniques that are used to reduce the number of inputs
and the architectural constraints.

. Conclusions about the use of the neural network in training and test-

ing. These conclusions are useful in further investigation and in the
use of the trained network in other applications.

Neural network as fast forward model?

In the first part of the project we only used earth models without invasion
and in the second part we only used earth models with invasion. For both
types of earth models neural nets were trained with the following results:

e No invasion: We use a “standard” fully connected net with one hid-

den layer containing 15 nodes, a sliding window of 15 feet and a sam-
pling period of 0.2 feet (75 inputs). The network has more trouble
in learning the Deep-log than the Shallow-log. This is caused by the
shoulder bed effect, which is more pronounced in the Deep-log than in
the Shallow-log. The performance is given in the following table

Target log | Data set percentage of log average
with relative error | relative error

below 5 %.
Shallow-log | Training set 98 % 1.7%
Test set 96 % 22 %
Deep-log Training set 62 % 5.1 %
Test set 61 % 6.0 %

81

6. CONCLUSIONS

¢ Invasion: We trained one convolutional-regression net on the Shallow-
log. The net uses a sliding window of 29.8 feet, sampled every 0.2 feet,
27 receptive fields of 3.8 feet with 75 % overlap and 6 feature maps.
The performance is given in the following table

Target log | Data set percentage of log average
with relative error | relative error

below 5 %.
Shallow-log | Training set 88 % 4.3 %
Validation set 82 % 51 %
Test set 7% 6.2 %

¢ Mixed invasion and no invasion: We used the same convolutional-
regression net as in the previous tests with a training set consisting of
earth models with and without invasion (but not mixed). This time
we trained the net on both the Deep- and the Shallow-log. These nets
are not optimal, because first the net was minimalized on models with
invasion and then we added more models with and without invasion.
In the following table the performance of the nets are given for the
models with and without invasion

Target log Data set percentage | average
of log with | relative
relative error error
below 5 %.
Shallow-log | invasion Training set 76 % 5.3 %
Validation set 75 % 5.5 %
Test set 74 % 5.6 %
no invasion | Training set 7% 5.6 %
Test set 74 % 5.6 %
Deep-log invasion Training set 52 % 8.4 %
Validation set 51 % 8.8 %
Test set 50 % 9.0 %
no invasion | Training set 56 % 7.0 %
Test set 58 % 6.9 %

6.2 Methods

¢ Real logging data: Real earth models contain both layers with and
without invasion. The trained convolutional-regression networks from
the mized invasion and no invasion part were tested on a realistic
earth model. The performance of these nets on the real logging data
is

Target log percentage of log average
with relative error | relative error
below 5 %.
| Shallow-log | 7% | 8.3 % |
| Deep-log | 67 % | 7.6 % |

The network performance can be improved by using more models like
this (partly with and partly without invasion) and by choosing the
invasion radius between 4 and 25 inch instead of 8 and 50 inch.

e Approximation time: The goal of the project is to create a faster
forward model. The neural network is approximately 100 times faster
than the forward model that is presently used at KSEPL (both times
measured on an IBM R6000 workstation). This could still be improved
by optimization of the neural net calculations.

Although the accuracy of the approximation still needs some improvement,
the network is a lot faster than the forward model that is used now. We
conclude that it is feasible to use a neural network in the forward modelling
process. Even with less accuracy the neural network could be used in the
first iterations of the forward modelling process. In that way a fairly good
initial guess can be made very quickly. Then one can use the more accurate
forward model.

6.2 Methods

In the first part of the project we only used fully connected nets with varying
number of layers, hidden nodes and variations in the size of the sliding
window. More interesting results are found in the second part of the project,
where we used earth models with invasion.

6.2.1 Input representation

We experimented with two input representation. The first, the discretized
sliding window approach, gave the best results (training and generalization)
and has been used in further tests:

¢ Discretized sliding window: We used a uniform sampled sliding
window as input to the neural net. The number of inputs coming from

83

84 6. CONCLUSIONS

this window can be quite high, especially in the case with invasion. The
training result was good, but the network was not able to generalize
well.

e Attributes: Again we used a fixed size sliding window, but now we
describe the beds that occur in this window. Each bed was described
by a number of attributes. The problem, however, was not described
well by these attributes. To find appropriate attributes is a difficult
task.

6.2.2 Input reduction

All preprocessing methods we used were successful. We achieved a high
input reduction without loss of performance (measured in training and gen-
eralization results):

¢ Sampling method: The sliding window can be sampled uniform and
non-uniform. In the first case we experimented with different sam-
pling periods. A coarse sampling period results in less inputs and the
training and generalization results were comparable. The bed bound-
aries are described less accurately. The non-uniform sampling method
worked very well. This method is based on the tool physics. The tool
receives most of its information from the center of the window and less
from the edges. Non-uniform sampling results in less inputs and the
generalization performance of the net was better than for the net that
used a uniform-sampled sliding window as input. Here we only loose
accuracy at the edges of the window.

e Principal components: With the projection of the N-dimensional
input vector to a M-dimensional vector, described by M principal
components, an input reduction of 75 % was achieved. The training
results were comparable and the network generalized better than the
original discretized input, although approximately 7 % of the informa-
tion of the input was lost (measured in the relative distance between
the original and projected input).

e Haar transform: The advantage of transformation of the original
input values to the wavelet coefficients is that a number of the coeffi-
cients can be removed. A reduction of 73 % of the number of inputs
was achieved with good training and generalization results. By remov-
ing coeflicients at the edges of the window, we loose some accuracy.
The bed boundaries outside the center of the window are described
less accurately.

6.3 Application of the convolutional-regression net

6.2.3 Architecture design

e Fully connected nets: In the case without invasion a fully connected
net can be used. The generalization performance and the training
results are comparable. When the beds contain invasion, we need
three parameters to describe the bed. This type of network does not
generalize well. The number of connections in this net is very high,
resulting in a long training time and storage and memory problems.
Preprocessing methods can be used to reduce the number of inputs.

e Locally connected nets: A neural that is locally connected has
much less weights and better generalization than the fully connected
nets. The training time needed for these nets is shorter than for the
fully connected nets. The size of the receptive fields and the overlap
are difficult to determine. We choose, however, for small fields with
large overlap. In this way it is easier for the net to determine the
precise location of a feature that occurs in one of the fields. This net
needs at least two hidden layers: one for detecting the local features
and one for combining the found features.

¢ Symmetry constraints: An input signal and its mirror image give
the same tool response and should therefore also give the same net-
work response. This requirement leads to certain weight constraints
in the fully, locally and wavelet nets. The number of weights is re-
duced, because certain weights are “shared” (equal). The reduction
in the number of weights makes the training more difficult, but it im-
proves the generalization performance in comparison with the same
nets without these constraints.

e Convolutional-regression nets: In the convolutional-regression net
all receptive fields share the same weights. One group of hidden nodes
with shared weights is called a feature map. The reduction of freedom
is compensated by an increase in the number of feature maps. This
net performs a convolution on the input with a convolution kernel, the
set of shared weights, that is has learned itself. The generalization
performance of this type of net is better than for all the other nets we
have tried.

6.3 Application of the convolutional-regression net

When the convolutional-regression net is going to be used in other applica-
tions, the following aspects are important:

e Size of the sliding window: The size of the sliding window depends
on the application. One should have an idea of how much of the input
log is responsible for the output.

86 6. CONCLUSIONS

¢ Sampling period of sliding window: The sampling period of the
sliding window determines how accurate the input is described. A
good indication is to use the same sampling period as for the target
log.

e Receptive fields: The size and overlap of the receptive fields deter-
mine the accuracy of the location of the features in the input. Use
small fields with high overlap. The number of weights, however, de-
pend on the number of receptive fields. Choose the size of the fields
and the overlap so that the number of weights is not too large.

¢ Representative training set: The training set is constructed from
the target logs. Do not take a too dense sampling of the target log,
otherwise most examples look too much alike. It is better to take a
(very) coarse sampling period and use a large number of different logs.
In this way the training set consists of a large number of very different
examples. Create models that are likely to be found in reality.

e Size training set: The number of training examples that are needed
in order to get good generalization performance depends upon the
representativeness of the training set. When the training set contains
a high number of different examples, one needs approximately 10 times
the number of weights as examples.

e Minimalization network error: The error that the network is min-
imalizing can be adapted to the requirements of the approximation.
With the combined logarithmic and normalization scaling the neural
net is minimalizing the proportion d/a, where d is the desired output
and a is the actual output.

The convolutional-regression net can easily be adapted for problems with
more variables than Rt, Rxo and dxo. When there are for example dipping
layers, the dip angle can be added as fourth variable (for each sampling
point). This is only possible when there is a different dip angle for each bed
in the formation. The scaling of a new variable needs new investigation.
The bore hole radius and resistivity of the drilling fluid can also be added
as variables, but like the dip angle, this should only be done when there are
enough different values.

A Neural network simulators

In this project we used the Xerion network simulator versions 3.1 and 4.0
(van Camp 1993). We also tried other network simulators, Stuttgart Neural
Network Simulator (SNNS) (Zell 1993) and Aspirin/MIGRAINES (Leighton
1992), but we found that Xerion provides more freedom in specifying archi-
tecture constraints. The Xerion simulator allows you to alter the network
design on any level: layers, nodes and even connections. This is very useful
for the implementation of the convolutional- regression nets, where we con-
strain certain weights to be equal.

The SNNS simulator is a beautiful graphical simulator and has a special
option for time delayed neural nets (see Section 2.3.5). A layer is specified
by its number of features (or variables) and its total delay length (number of
nodes in sliding window). Layers can be fully or locally connected. Receptive
fields are specified by their size (delay length) and always have maximum
overlap (displacement of one node). All receptive fields have shared weights.
It is, however, not possible to constrain arbitrary weights to be the same.
And it is also not possible to change the overlap of the receptive fields. We
present the inputs as a sequence within a sliding window, but for the SNNS
simulator one should present the inputs at one specific logging point. The
advantage of this is that the file that contains the data is much smaller than
in our case. There are only 4 values per pattern (Rt, Rzo, dzo and the
tool response) instead of 3 x(% + 1) for a window size w and a sampling
period s. The delay length specifies how many inputs before this input affect
the output. One cannot specify how many inputs after this input affect the
output. So there are three main points why this simulator is not suitable
for our purposes:

1. It is not possible to specify arbitrary weight constraints.
2. The overlap of the receptive fields is always maximal.

3. One can only specify how many inputs before (and not after) the
current input affect the output.

It is not possible to specify convolutional-regression nets with this simulator.

Aspirin/MIGRAINES is a compiler. It compiles your code into a work-
ing neural network simulator (in C). In the source code the neural net is
specified by its components. A component is described by the name of the
layer, the size of the layer (in nodes) and connection information (how the
layer is connected to other layers). Receptive fields with shared weights are
called Shared Tessellations and one can specify the size of the fields and the
overlap in the z- and y-direction. It is not possible, however, to constrain
specific weights to be shared, which we needed in the symmetry experiments.

11 A. NEURAL NETWORK SIMULATORS

It is possible to create convolutional-regression nets with this simulator.

Although receptive fields are easier defined by the previous simulators, we
have used the Xerion simulator. All hidden neurons in one feature map
are connected by n x m links to their corresponding receptive field (of size
n x m). All these connections have to be specified, which can mount up to
1620 connections in the convolutional-regression net. Neurons can be con-
strained to have the same incoming links, which is what we did per feature
map. Then the nodes in one feature map are constrained to have the same
weights. Our Xerion topology files contained a total of 9951 lines. The
reading of this file and the building of the net is quite slow, but it outweighs
the lack of freedom of the other simulators.

REFERENCES 111

References

Anderson, B. & Barber, T. (1990). Modelling electromagnetic tool response,
Oilfield Review pp. 22-32. Well logging.

Asquith, G. (1982). Basic well log analysis for geologists.

Chemali, R., Gianzero, S. & Strickland, R. (1983). The shoulder bed ef-
fect on the dual laterolog and its variation with the resistivity of the
borehole fluid, SPWLA 24th annual logging symposium .

Chemali, R., Gianzero, S. & Su, S. (1988). The dual laterolog in common
complex situations, SPWLA 29th annual logging symposium .

Gianzero, S. (1977). Characteristic responses of resistivity tools in elliptical
boreholes, IEEE transactions on geoscience electronics GE-15(4): 251
256.

Gianzero, S., Lin, Y. & Su, S. (1985). A new high-speed hybrid technique
for simulation and inversion of resistivity logs.

Guyon, I. (1991). Neural networks and applications tutorial, Physics Reports
(Review section of Physics Letters) 207 (3-5): 215-259. Review Section
of Physical Letters 207.

Haykin, S. (1994). Neural Networks, A Comprehensive Foundation, Macmil-
lan College Publising Company, Inc.

Hertz, J., Krogh, A. & Palmer, R. (1991). Introduction to the theory of
neural computation, Addison-Wesley Publishing Company.

Leighton, R. R. (1992). The Aspirin/MIGRAINES Neural Network Soft-
ware, v6.0 edn.

Moran, J. (1985). Focused resistivity logs, Developments in geophysical
exploration methods 6: 225—260.

Strang, G. (1989). Wavelets and dilation equations: A brief introduction,
SIAM Review 31(4).

van Camp, D. (1993). A Users Guide for The Xerion Neural Network Sim-
ulator, ver3.1 & ver4.0 edn, University of Toronto.

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K. & Lang, K. (1989).
Phone recognition using time-delay neural networks, IEEE Transac-
tions on acoustics, speech and signal processing 37(3).

Zell, A. (1993). SNNS Stuttgart Neural Network Simulator, v3.1 edn, Insti-
tute for Parallel and Distributed High Performance Systems.

