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AbstractIn the oil industry, one uses the di�erence in electrical conductivity betweenhydrocarbons (oil and gas) and water to determine the hydrocarbon satu-ration of rocks. To this end, a measuring device is lowered in a well bore torecord a so-called resistivity log. Due to environmental e�ects this resistiv-ity log di�ers from the resistivity of the formation, the true resistivity. Toinvert the measured log to the true resistivity one uses an iterative forwardmodelling process, involving the numerical solution of di�erential equations.Although the current modelling algorithms have signi�cantly improved inspeed comparing to a few years ago, they are still not fast enough for inver-sion on a well site. Therefore, we have investigated the feasibility of usingneural networks to perform the forward modelling process. Once trained,neural networks are very fast in producing output to certain input.The one-way mapping between the earth models (true resistivity model andenvironmental conditions) and the tool response can be learned by a \stan-dard" fully connected net. However, problems arise from the high numberof inputs that is needed to represent the earth model (� 450) and the highnumber of connections between the input layer and the hidden layer of thenet (� 6750). The generalization performance of these nets is not su�cientfor the purpose of resistivity log inversion.We have studied two preprocessing methods to reduce the number of inputs:principal component analysis and the wavelet transform. This preprocessingof the input is quite successful. We have also studied methods to reduce thenumber of connections in the net by using locally connected nets insteadof fully connected nets. We have found an architecture which proves to bequite e�cient for this mapping: a convolutional-regression net. This typeof net is based on the locally connected nets and shared weights. Due tothese shared weights the hidden layer performs a convolution of the inputlayer. The convolution kernel, the set of shared weights, is learned by thenet itself. The weight sharing reduces the number of connections in the netand these constraints improve the generalization ability of the net.This convolutional-regression net is approximately 100 times faster than theforward model that is used at KSEPL nowadays. The performance of the netis measured in the average relative error between the network outut and theforward model output. The neural net can be used as a fast forward model,when the average relative error lies below 5 %. The convolutional-regressionnet achieves an accuracy of approximately 8 % on a resistivity log comingfrom a \real" oil well. Further improvements in accuracy can be achievedby using a more representative training set. Even with less accuracy theneural net could be used as initial start for the forward modelling process.
i



PrefaceThis report is the master thesis of Pamela Demmenie for graduating fromthe Rijks Universiteit Leiden (RUL) at the department of Computer Science.It describes a project that was performed at the Koninklijke Shell Exploratieen Produktie Laboratorium (KSEPL) in Rijswijk from December 1994 untilAugust 1995. The project was supervised by Dr. Guozhong An (KSEPL)and Dr. Ida Sprinkhuizen-Kuyper (RUL).The report is divided into six chapters. The �rst chapter provides a back-ground on forward modelling and a short introduction in neural networks.The second chapter describes all the methods we have used in the experi-ments. These methods involve input reductions and architecture constraints.Chapter 3 and 4 describe the actual experiments for data without and withinvasion. In chapter 5 we present the results of the trained neural networkson realistic logging data and in chapter 6 we summarize the conclusions ofthis project.All neural net simulations were run on Sparc 10 and Sparc 20 (Unix) sta-tions and should eventually be run on an IBM R600 workstation (the ap-proximation times were measured on this type of workstation). We usedthe Xerion simulator, versions 3.1 and 4.0. We have also experimentedwith other simulators: Stuttgart Neural Network Simulator (SNNS) andAspirin/MIGRAINES. The advantages and disadvantages of these networksimulators are outlined in appendix A.AcknowledgementsFirst of all I would like to thank my supervisors Guozhong An and IdaSprinkhuizen-Kuyper for their support and ideas during this project. Ofcourse the project would not have been completed without the help of Nielsvan Dijk and Leon Ho�man, who have provided the data that we have beenworking with and helped me in my understanding of the forward modellingprocess. I also like to thank the students from KSEPL and from the uni-versity for their support and company during the nine months I have beenworking on the project. And last but not least everlasting gratitude go toPim Bussink for word 2 on page 42.
ii



ContentsAbstract iPreface ii1 Forward Modelling of Resistivity Logs 11.1 Resistivity Logging : : : : : : : : : : : : : : : : : : : : : : : : 11.1.1 Logging tools : : : : : : : : : : : : : : : : : : : : : : : 11.1.2 Environmental e�ects : : : : : : : : : : : : : : : : : : 31.2 Inversion by Forward Modelling : : : : : : : : : : : : : : : : : 51.2.1 Inversion : : : : : : : : : : : : : : : : : : : : : : : : : 51.2.2 Forward Modelling : : : : : : : : : : : : : : : : : : : : 61.3 Neural Networks : : : : : : : : : : : : : : : : : : : : : : : : : 71.3.1 Network architecture : : : : : : : : : : : : : : : : : : : 91.3.2 The Learning Method : : : : : : : : : : : : : : : : : : 91.3.3 The training set : : : : : : : : : : : : : : : : : : : : : 101.3.4 Generalization : : : : : : : : : : : : : : : : : : : : : : 111.3.5 Local minima : : : : : : : : : : : : : : : : : : : : : : : 121.4 Forward Modelling using a Neural Network : : : : : : : : : : 122 Input representation and architecture design 152.1 Input representation : : : : : : : : : : : : : : : : : : : : : : : 152.1.1 Discretized sliding window : : : : : : : : : : : : : : : : 162.1.2 Attributes : : : : : : : : : : : : : : : : : : : : : : : : : 182.1.3 Input and output scaling : : : : : : : : : : : : : : : : 192.2 Preprocessing : : : : : : : : : : : : : : : : : : : : : : : : : : : 202.2.1 Principal Component Analysis : : : : : : : : : : : : : 202.2.2 Wavelet transform : : : : : : : : : : : : : : : : : : : : 222.3 Architecture constraints : : : : : : : : : : : : : : : : : : : : : 272.3.1 Fully connected nets : : : : : : : : : : : : : : : : : : : 272.3.2 Locally connected nets : : : : : : : : : : : : : : : : : : 282.3.3 Symmetry constraints : : : : : : : : : : : : : : : : : : 282.3.4 Convolutional network : : : : : : : : : : : : : : : : : : 322.3.5 Time Delayed network : : : : : : : : : : : : : : : : : : 332.3.6 Convolutional-regression network : : : : : : : : : : : : 342.4 Error function : : : : : : : : : : : : : : : : : : : : : : : : : : : 353 Forward modelling without mud invasion 373.1 Experimenting with di�erent scaling methods : : : : : : : : : 383.2 Experimenting with the network architecture : : : : : : : : : 383.3 Experimenting with the size of the sliding window : : : : : : 393.4 Summary and results : : : : : : : : : : : : : : : : : : : : : : : 39



4 Forward modelling with mud invasion 424.1 Scaling of the parameters : : : : : : : : : : : : : : : : : : : : 434.2 Experimenting with di�erent input representations : : : : : : 444.3 Experimenting with input reduction methods : : : : : : : : : 464.3.1 Using di�erent sampling methods : : : : : : : : : : : : 464.3.2 Reducing the input by projection to principal compo-nents : : : : : : : : : : : : : : : : : : : : : : : : : : : : 474.3.3 Reducing the inputs by removing wavelet coe�cients : 504.4 Creating a more representative training set : : : : : : : : : : 534.5 Intermediate results input representations : : : : : : : : : : : 554.6 Experimenting with architecture constraints : : : : : : : : : : 574.6.1 Experimenting with fully connected nets : : : : : : : : 574.6.2 Experimenting with locally connected nets : : : : : : : 574.6.3 Using symmetry constraints : : : : : : : : : : : : : : : 574.6.4 Experimenting with convolutional regression nets : : : 594.7 Intermediate results architecture design : : : : : : : : : : : : 654.8 Summary and results : : : : : : : : : : : : : : : : : : : : : : : 655 The neural network as fast forward model 685.1 Application to earth models without invasion : : : : : : : : : 685.2 Application to earth models with invasion : : : : : : : : : : : 735.3 Application to realistic earth model : : : : : : : : : : : : : : : 736 Conclusions 816.1 Neural network as fast forward model? : : : : : : : : : : : : : 816.2 Methods : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 836.2.1 Input representation : : : : : : : : : : : : : : : : : : : 836.2.2 Input reduction : : : : : : : : : : : : : : : : : : : : : : 846.2.3 Architecture design : : : : : : : : : : : : : : : : : : : : 856.3 Application of the convolutional-regression net : : : : : : : : 85A Neural network simulators I



List of Tables1 The tool response. : : : : : : : : : : : : : : : : : : : : : : : : 132 Parameters for earth models without invasion. : : : : : : : : 373 Average relative error for earth models without invasion (1). 394 Performance on earth models without invasion (1). : : : : : : 405 Parameters for earth models with invasion. : : : : : : : : : : 426 Comparing discretized sliding window against attributes rep-resentation. : : : : : : : : : : : : : : : : : : : : : : : : : : : : 457 Comparing uniform sampling methods with di�erent sam-pling periods. : : : : : : : : : : : : : : : : : : : : : : : : : : : 458 Comparing uniform and non- uniform sampling methods. : : 459 Comparing uniform sampled input without and with projec-tion to principal components. : : : : : : : : : : : : : : : : : : 4810 Comparing non-uniform sampled input without and with pro-jection to principal components. : : : : : : : : : : : : : : : : 4911 Comparing input representations with di�erent number ofwavelet coe�cients (1). : : : : : : : : : : : : : : : : : : : : : : 5112 Comparing input representations with di�erent number ofwavelet coe�cients (2). : : : : : : : : : : : : : : : : : : : : : : 5113 Comparing training set of target logs and training set ofcoarser sampled target logs. : : : : : : : : : : : : : : : : : : : 5414 Comparing training set of target logs and training set of dif-�cult parts of target logs. : : : : : : : : : : : : : : : : : : : : 5415 Comparing di�erent fully connected nets. : : : : : : : : : : : 5816 Comparing di�erent locally connected nets. : : : : : : : : : : 5817 Comparing fully connected nets without and with symmetryconstraints. : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5818 Comparing locally connected nets without and with symme-try constraints. : : : : : : : : : : : : : : : : : : : : : : : : : : 6019 Comparing \wavelet" net without and with symmetry con-straints. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6020 Results for convolutional- regression nets (1). : : : : : : : : : 6321 Results for convolutional- regression nets (2). : : : : : : : : : 6322 Average relative error and performance for earth models withinvasion (Shallow-log). : : : : : : : : : : : : : : : : : : : : : : 6523 Average relative error and performance for earth models withand without invasion (Shallow-log). : : : : : : : : : : : : : : : 6624 Average relative error and performance for earth models withand without invasion (Deep-log). : : : : : : : : : : : : : : : : 67



List of Figures1 Laboratory resistivity measuring apparatus with unguardedplanar electrodes. : : : : : : : : : : : : : : : : : : : : : : : : : 12 Modi�cation of the laboratory apparatus using cylindricalelectrodes instead of planar electrodes and the Dual-Laterolog. 23 Input to the Deep Laterolog (left) and the Shallow Laterolog(right). The Deep Laterolog gets information from a largerpart of the formation. : : : : : : : : : : : : : : : : : : : : : : 34 Environmental e�ects: (A) ideal situation, (B) dipping for-mation, (C) caved bore holes, (D) deviated bore holes and(E) horizontal bore holes. : : : : : : : : : : : : : : : : : : : : 45 The inversion process and forward modelling of resistivity logs. 66 Transfer impedances. : : : : : : : : : : : : : : : : : : : : : : : 67 A diagram of neuron j. : : : : : : : : : : : : : : : : : : : : : : 88 Local minima in the error surface. : : : : : : : : : : : : : : : 129 A formation and its model. : : : : : : : : : : : : : : : : : : : 1310 Part of a model with input signal Rt and output signals Deep-log (LLd) and Shallow-log (LLs). The input signals Rxo anddxo are omitted. : : : : : : : : : : : : : : : : : : : : : : : : : 1411 Example of sliding window input representation. A slidingwindow of size w is placed around the point of interest alongthe input models. : : : : : : : : : : : : : : : : : : : : : : : : : 1512 When the sliding window is smaller than the largest bed in themodel, the input to the net will be the same for the sketchedsituation, although the target di�ers a lot. : : : : : : : : : : : 1713 Standard normal distribution. : : : : : : : : : : : : : : : : : : 1914 Most of the variation of the data lies in the direction of �1. : 2115 Haar wavelet from box functionWHaar(x) = �(2x)��(2x�1). 2316 The input signal is written as a weighted combination of rect-angular block functions. The coe�cients ci are used as inputsto the neural net. : : : : : : : : : : : : : : : : : : : : : : : : : 2517 Boundaries outside the center of the window are not describedaccurately. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2618 Fully connected (left) and locally connected (right) neural nets. 2819 Receptive �elds which overlap 13 . : : : : : : : : : : : : : : : : 2920 A discretized input signal and its mirror image. : : : : : : : : 2921 Symmetry constraints on fully connected net. : : : : : : : : : 3022 Symmetry constraints on locally connected net. The recep-tive �elds are constrained symmetrically (receptive �eld f isconstrained to �eld F � f + 1 for F �elds). : : : : : : : : : : 3023 Symmetry constraints on wavelet nets. The coe�cients areconstrained per detail level. : : : : : : : : : : : : : : : : : : 3124 Convolutional network. : : : : : : : : : : : : : : : : : : : : : : 32



25 Time delayed neural network. : : : : : : : : : : : : : : : : : : 3326 Convolutional-regression network. : : : : : : : : : : : : : : : : 3427 The network and relative error for �xed proportions d=a. : : 3528 Model that causes di�culties in approximating the Deep-log. 4129 Response of the neural net to the di�cult model shown above. 4130 Small di�erence in input with attributes input representation. 4431 Non-uniform sampling in sliding window. : : : : : : : : : : : 4732 Loss of information per variable for Test 6. Original inputconsists of 3 � 128 inputs, coming from a uniform sampledsliding window. : : : : : : : : : : : : : : : : : : : : : : : : : : 4833 Loss of information per variable for Test 7. Original inputconsists of 3�64 inputs, coming from a non-uniform sampledsliding window. : : : : : : : : : : : : : : : : : : : : : : : : : : 4934 Not all transitions are detected by wavelet coe�cients. : : : 5235 Intermediate results of training three di�erent neural nets on6 models. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5636 Convolutional-regression net. The feature maps in the �rsthidden layer are connected to all the variables in the inputlayer. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5937 Convolutional-regression net. The �rst hidden layer consistsof three sets of feature maps. Each set consists of three mapsand is connected to one of the variables in the input layer. : 6138 True resistivity pro�le of model A at depth 615 feet. : : : : : 6439 Activation of �rst hidden layer per feature map for Test 21.These activations are for model A at depth 615 feet. Thislayer consists of 6 feature maps of 27 nodes each. : : : : : : : 6440 Intermediate results (2) of training di�erent neural nets on 6models. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6641 Worst case neural net approximation of Deep-log. Averagerelative error is 14.2 %. : : : : : : : : : : : : : : : : : : : : : 6942 Best case neural net approximation of Deep-log. Averagerelative error is 2.6 %. : : : : : : : : : : : : : : : : : : : : : : 7043 Worst case neural net approximation of Shallow-log. Averagerelative error is 8.5 %. : : : : : : : : : : : : : : : : : : : : : : 7144 Best case neural net approximation of Shallow-log. Averagerelative error is 1.2 %. : : : : : : : : : : : : : : : : : : : : : : 7245 Examples of earth models used for the net Invasion. : : : : : 7546 Worst case neural net approximation of Shallow-log. Averagerelative error is 7.5 %. : : : : : : : : : : : : : : : : : : : : : : 7647 Best case neural net approximation of Shallow-log. Averagerelative error is 4.5 %. : : : : : : : : : : : : : : : : : : : : : : 7748 A (realistic) earth model. : : : : : : : : : : : : : : : : : : : : 7849 Neural net approximation of Deep-log. Average relative erroris 7.6 %. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 79



50 Neural net approximation of Shallow-log. Average relativeerror is 8.3 %. : : : : : : : : : : : : : : : : : : : : : : : : : : : 80



11 Forward Modelling of Resistivity Logs1.1 Resistivity LoggingA formation consists of several layers (beds) of rock, which contain pores.The rock pores can be �lled with water or hydrocarbons (oil and gas). Rockand hydrocarbons do not conduct electric currents, whereas the formationwater does. One reason for measuring the resistivity is to determine thehydrocarbon saturation within the rocks. The hydrocarbon saturation is anindication for the presence of oil. A simpli�ed expression of this quantitativeaspect is exempli�ed by Archie's equationSw = Fn RwRt (1)Here Rw is the resistivity of the water in the rock pores, F is the formationfactor generally assumed to be derivable from a knowledge of the rock re-sistivity, Sw is the water saturation (percentage of pore space occupied bywater), Rt is the measured rock resistivity and n is an empirically deter-mined saturation exponent. Hydrocarbon saturation Sh is equal to 1 � Sw(Moran 1985).1.1.1 Logging toolsMost of the physics behind the resistivity logging techniques can be foundin (Moran 1985). In this section we will discuss the basic ideas behind thesetechniques.
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Figure 1: Laboratory resistivity measuring apparatus with unguarded planarelectrodes.A sheet of material whose resistivity is to be determined is placed betweenand in contact with electrodes A and B, both of area S as is shown in



2 1. FORWARD MODELLING OF RESISTIVITY LOGSFigure 1. A voltage V is applied to the electrodes, resulting in a currentI. If I is distributed uniformly over the area S and is zero outside, anapplication of Ohm's law for material thickness dr (m) and resistivity �(
m) yields �V = IS � dr (2)The resistivity � is found by measuring the voltage drop between the elec-trodes. In practice, the current I will not be uniformly distributed over thediscs, but will tend to be maximum at the edges and minimum in the centre.To improve on this scheme, one splits the disc so that one has a small centraldisc of area S0 carrying a current I0 surrounded by the remainder of thediscs held at the same potential V as S0. This will result in nearly constantcurrent density over S0. The measured current I0 will be \focused". Theresistivity is now given more accurately than before by� = S0dr �VI0 (3)
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SHALLOW   DEEPFigure 2: Modi�cation of the laboratory apparatus using cylindrical elec-trodes instead of planar electrodes and the Dual-Laterolog.This idea is the basic ingredient of the Laterolog. The real Laterolog usescylindrical electrodes instead of planar electrodes as indicated in Figure 2(left). The Dual Laterolog consists of a Shallow (Pseudo) Laterolog anda Deep Laterolog. The Deep Laterolog has its current return electrode Bremotely at the surface, which results in currents as shown in Figure 3. The



1.1 Resistivity Logging 3Deep Laterolog reads far into the formation. The Shallow Laterolog hasits current return electrode placed above and below the electrode A, whichmakes the currents bend back to the tool as shown in Figure 3. This Lat-erolog reads the formation close to the tool, which makes it more sensitiveto the invaded zone (see Section 1.1.2).Both measurements are made simultaneously by using di�erent frequencies;a relatively high frequency for the Shallow-Laterolog and a very low fre-quency for the Deep Laterolog.
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Figure 3: Input to the Deep Laterolog (left) and the Shallow Laterolog(right). The Deep Laterolog gets information from a larger part of theformation.1.1.2 Environmental e�ectsSeveral anomalies, like invasion, dipping beds, washed-out bore holes andvery resistive formations, are encountered when measuring the resistivityof the formation. These anomalies have an e�ect on the tool response,which are di�cult to model. Situations in which these enviromental e�ectsoccur are shown in Figure 4 and more detailed descriptions can be foundin (Gianzero 1977), (Asquith 1982), (Chemali, Gianzero & Strickland 1983)and (Chemali, Gianzero & Su 1988).Wells are drilled with rotary bits. Special drilling mud is used as circulating
uid. The mud removes cuttings from the well bore, lubricates and cools thedrill bit and helps maintaining an excess of bore hole pressure over formationpressure, which prevents blow-outs.



4 1. FORWARD MODELLING OF RESISTIVITY LOGSThis pressure di�erence forces some of the drilling 
uid to invade porousand permeable formation. In this process of invasion solid particles (clayminerals from the drilling mud) are trapped on the side of the bore hole andform a so-called mudcake. The part of the formation which is invaded bymud �ltrate is called the invaded zone.
A B

C D E

tool

current flow

Figure 4: Environmental e�ects: (A) ideal situation, (B) dipping formation,(C) caved bore holes, (D) deviated bore holes and (E) horizontal bore holes.The size of the bore hole and the mudcake resistivity in
uence the measuredresistivity. The smoothing of anomalies on the log by the bore hole is quitee�ective in moderately saline to very saline mud, and less e�ective in freshmud. The size of the bore hole and the resistivity of the drilling 
uid aretaken �xed in our study.In dipping formations the Dual Laterolog-curves vary slowly across bedboundaries. The apparent bed thickness is increased in predictable pro-portions and the error due to shoulder bed e�ect (the in
uence of the bedsadjacent to the current bed) is di�erent from the non-dipping case.In caved bore holes (wash-out) the Shallow Laterolog is sensitive to the e�ectof the increased hole diameter. Anomalous readings of the Deep Laterologoccur only at abrupt changes in hole diameter.Very resistive formations and formations with high resistivity contrasts be-tween beds also a�ect the tool readings. Formations like limestone anddolomite can have resistivities over 2000 
m, while most formations have aresistivity between 1 and 70 
m.The tool response is essentially immune to a small eccentering of the tool.Only the Shallow Laterolog exhibits some sensitivity to eccentering in largebore holes.



1.2 Inversion by Forward Modelling 5The overall e�ect of an elliptical bore hole is that it produces characteris-tic responses which lie between those obtained in two circular holes withdiameters equal to the major and minor axes of the elliptical hole.The shoulder bed correction required for the Deep Laterolog is much lessimportant in conductive mud than it is in non-conductive mud. The Shal-low Laterolog has much less shoulder bed e�ect than the Deep Laterolog,especially for bed thicknesses above ten feet.Deviated bore holes and horizontal bore holes also give di�erent tool read-ings. Compare the current 
ow in the ideal case (Figure 4) and these typesof bore holes.1.2 Inversion by Forward Modelling1.2.1 InversionThe found resistivity logs, Shallow- and Deep-log, have to be inverted tothe true resistivity of the formation. This is done by an iterative forwardmodelling process, which is sketched in Figure 5. The actual �eld logs are�rst corrected with chartbook corrections (tornado charts for example; forbore hole size, invasion, etc.) Then an initial guess for the formationmodel ismade. This trial model includes a description of the bore hole and formationgeometry and \parameter values" | numbers assigned to variables such asbore hole diameter and bedding dip, thickness and resistivity (Anderson &Barber 1990). Then the tool physics is used to compute an expected log,which is compared with the actual �eld log. If the match is not good enough,the initial trial model is altered and the calculation repeated. This processis iterated until the two logs match satisfactorily.The process consists of two steps: the function approximation from theguessed formation model to the expected Deep- and Shallow-log (so-calledForward Modelling) and a matching procedure. The latter procedure impliesa minimalization of a matching error between the two logs. This can bedone by hand or using sophisticated algorithms like the least-squares andmaximum entropy methods (Anderson & Barber 1990).



6 1. FORWARD MODELLING OF RESISTIVITY LOGS
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Figure 5: The inversion process and forward modelling of resistivity logs.1.2.2 Forward ModellingThe forward modelling part of the inversion is the most time-consuming partof the process. To compute the Laterolog response for a given electrode array
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Figure 6: Transfer impedances.and distribution of resistivities, it is su�cient to determine the associatedtransfer impedances. The transfer impedance Zij is equal to VjIi , where Vj isthe voltage measured at part j of the electrode con�guration and Ii is thecurrent emitted by part i. A speci�c electrode con�guration and its transfer



1.3 Neural Networks 7impedances are shown in Figure 6. For the computation of the responsein simpli�ed models (concentric cylindrical boundaries or plane boundaries)one can use analytical approaches, but with extended electrodes for example,the problem can only be handled by numerical methods. In the case ofdipping layers, the problem is of such complexity that no results have as yetbeen published (Moran 1985). The determination of the transfer impedancesZij involves the solution of Laplace's equation in two space variables undercertain boundary conditions.There are a number of methods that can be used to solve these boundaryvalue problems, we mention the Finite Element Method, the Boundary ele-ment or �nite-di�erence technique and a Hybrid Method (Gianzero, Lin &Su 1985).The Finite Element Method is a numerical method based on an energy prin-ciple (Chemali et al. 1983). It can be shown that Laplace's equation is adirect consequence of minimizing the total energy of the system.The Hybrid Method is a separation of variables approach where the radial(horizontal) dependence is treated numerically and the axial (vertical) de-pendence analytically. It combines the mode concept in wave-guide theorywith the Finite Element Method. This method, employed by Gianzero, hasbeen able to simulate a 100 foot log with 25 beds in less than twelve min-utes on an IBM 3081, which is approximately 8 times faster than the FiniteElement Method (Gianzero et al. 1985).1.3 Neural NetworksIn this section we will only describe the basic ingredients of neural networks.A good introduction can be found in (Haykin 1994).A Neural Network consists of a number of layers that consist of nodes (neu-rons). A neuron receives input from the neurons it is connected to and canin its turn serve as input to other neurons. A connection between node i ofa certain layer and a node j of another layer is characterized by a weightwji. The total input uj for node j isuj = nXi=1wjixi (4)where xi is the activation of an input node i and the summation runs overall n nodes that node j receives input from.



8 1. FORWARD MODELLING OF RESISTIVITY LOGS
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1.3 Neural Networks 9� The training method. Several training methods for supervised learn-ing exist, for example back-propagation, conjugate gradient, steepestdescent, momentum descent. For some of these methods the tuning ofcertain parameters is very important and di�cult. Supervised learn-ing means that the net produces some output (the actual response)and corrects its behaviour according to the correct output (desired re-sponse). For multilayer feedforward networks (networks that have con-nections directed from the input to the output), the most widely usedalgorithm is the back-propagation algorithm. There are two phasesin the BP-learning. In the �rst phase, the forward phase, the in-put signals propagate through the network layer by layer, eventuallyproducing some response at the output of the network. The actualresponse so produced is compared to the desired response. The errorsignals generated by this comparison are then propagated backwardsthrough the net in the second, the backward phase. More informationon training methods can be found in (Haykin 1994).� The training set. The training set should be representative for theproblem, otherwise the net is not able to learn the problem or to gener-alize well. With conjugate gradient each training example is evaluatedduring training (batch training), so a large training set causes a longtraining time. More on the creation of the training set can be foundin Section 1.3.3.1.3.1 Network architectureThe network architecture is a description of the layers, the number of nodesper layer and the connections between the layers; it describes what the netlooks like. For example a fully connected neural net is a net in which thenodes of one layer receive input from all nodes in the previous layer. Thisis the most common architecture, but it leads to a large number of weights.Another method is a locally connected network, which is described laterwhen we turn to receptive �elds and convolutional networks.The architecture determines the number of weights and has certain impli-cations for the learning and generalization ability of the net.1.3.2 The Learning MethodA net uses a learning method to minimalize the error in the net. The trainingset consists of P patterns (xp; dp). Here, xp is the input pattern p and dpis the desired output for this input pattern. For a certain input xp thenetwork calculates an output ap. The error is given by the quadratic sum



10 1. FORWARD MODELLING OF RESISTIVITY LOGSof the di�erence of this output and the desired output dp:E = PXp=1(dp � ap)2 (6)Here, P is the number of examples. The idea behind the learning methodsis that the weights are adapted during training so that E is minimalized.This is done by a down hill technique, gradient descent. The weights areadapted in the direction with the steepest descent0B@ Weightcorrection�wji 1CA = 0B@ learning-rateparameter� 1CA�0B@ localgradient 1CA�0B@ input signalof neuron jto neuron i 1CA (7)The weight correction depends on a learning parameter �, the local gradientand the input signal of neuron i to neuron j. If E no longer decreases thetraining stops.We have used the conjugate gradient (CG) method, which is an adaptationof the normal gradient descent method. It avoids the zigzag path followedby the gradient descent method, by incorporating an intricate relationshipbetween the direction and the gradient vectors. The CG method is the mostconvenient algorithm, because it needs no tuning parameters and it is fasterthan normal back-propagation if the size of the training set is not too large.We have used the Xerion (version 3.1 and 4.0) simulator to train the networks(for more details on neural network simulators see Appendix A).1.3.3 The training setThe input has to be presented to the net, so the physical model must betransformed into a set of numbers that function as activations of the inputlayer. How this is done, is discussed in the next chapter. Now we will focuson the scaling.The input to the net must be scaled so the values lie more or less in therange [�1; 1]. As we have seen the net calculates a weighted input. If twoinputs have a very high ratio (for example i1 = 1 and i2 = 1000) the weightsalso have a large variation. So if the inputs do not lie in a small range,the weights will in general be far apart as well. This will slow down thetraining, because a larger weight space has to be searched for an optimumset of weights. Another point of view is that large input values will havemore in
uence on the activation of the nodes they are connected to. In thisway we have already build some prior knowledge into the net. To avoid this,we scale all the inputs to a small range. When certain inputs are important,the net can learn that itself. More on this subject of scaling can be foundin Section 2.1.3.



1.3 Neural Networks 11A training set should be su�ciently large. Although there is no generalprescription of how large a training set should be, there are some \rules",like the following from Baum and Hassler (Haykin 1994). A network willalmost certainly provide generalization (see next section), provided that thefollowing two conditions are met:1. The fraction of errors made on the training set is less that �2 .2. The number of examples, P used in training isP � 32W� ln�32M� � (8)Here, W is the total number of weights and M is the total numberof hidden nodes. This formula provides a distribution-free, worst-case estimation for the size of the training set for a single-layer neuralnetwork that is su�cient for a good generalization.A training set should also be representative. This means that the examplesin the training set are randomly generated and distributed over the wholeinput space.1.3.4 GeneralizationAlthough a neural net can learn any input-output mapping, its applicabilityis determined by its ability to predict outputs to inputs it has not seenduring training, which is called generalization. Generalization is in
uencedby three factors:� the size and representativeness of the training set,� the architecture of the network,� the physical complexity of the problem at hand.With too few examples the net just memorizes the training set and exhibitspoor generalization. If the number of examples is more than the numberof weights, the net will generalize better. Widrow's rule of thumb (Haykin1994) comes from equation 8 and states that in practice we need a trainingset size of approximately 10 times the number of weights when the error onthe training set is 10 %.In our project, we will compare di�erent architectures on one speci�c train-ing set. The architecture that gives the best results, in terms of trainingerror, generalization (testing) error and complexity (number of weights), willbe trained on a larger training set.
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minimumFigure 8: Local minima in the error surface.1.3.5 Local minimaIn Figure 8 (left) the error surface, belonging to speci�c weight vectors,is shown. The learning algorithm that we use is basically a hill-descendingtechnique, which may cause the algorithm to get trapped in a local minimumin the error surface, although we are interested in the global minimum. Thealgorithm gets trapped, because it cannot �nd a direction which makes theerror smaller than the previous one. But somewhere else in the weight spacethere exists another set of synaptic weights for which the cost function issmaller than the local minimum in which the network is stuck. One methodto avoid local minima is retraining the neural net with di�erent weight ini-tializations. This process is shown in Figure 8 (right); with di�erent weightinitialization the net will converge to di�erent minima.1.4 Forward Modelling using a Neural NetworkThe goal of this project is to obtain a good approximation of the Deep-and the Shallow-log. The formation is described by a number of beds. Foreach bed a number of radial zones are given and for each radial zone theresistivity (
m) and its size (inch) is given. The �rst radial zone is the borehole with its radius and the resistivity of the drilling 
uid, the next radialzone describes the invasion (if there is any) and the last radial zone describesthe true resistivity. All this can be described with a model like shown inFigure 9 (the corresponding formation is shown on the right side).The tool response consists of two continuous logs (the Shallow-log and theDeep-log) like shown in Figure 10 and Table 1. The model shown in Figure9 contains 80 beds. The �rst bed has 3 radial zones and it starts at minusin�nity (this is the same for all models, indicating an in�nite shoulder bed).The �rst radial zone of this bed (the bore hole) has a radius of 4.25 inchand the mud resistivity is 0.05 
m. The second zone has a radius (dxo) of45 inch and a resistivity (Rxo) of 1.90 
m. And �nally the third zone hasa resistivity (Rt) of 27 
m. The last radial zone has a radius of in�nity
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Figure 9: A formation and its model.(otherwise there would be another radial zone).The neural net can be used as a fast forward model when the average relativeerror between the forward model output d and the neural network output alies below 5 %. Table 1: The tool response.depth LLd LLs0.0 .110610E+02 .330318E+010.2 .108760E+02 .325301E+010.4 .106962E+02 .320733E+010.6 .105092E+02 .316235E+01... ... ...The earth models in this project are created by assigning random numberswithin a certain range for the parameters Rt, Rxo and dxo. The bore holeradius and resistivity of the drilling 
uid are �xed to 4.25 inch and 0.05 
mrespectively. The tool responses to these models are calculated with theforward model that is used at KSEPL.
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Figure 10: Part of a model with input signal Rt and output signals Deep-log(LLd) and Shallow-log (LLs). The input signals Rxo and dxo are omitted.



152 Input representation and architecture designAs described in Section 1.3, the training time mainly depends on the size ofthe net and the size of the training set. To decrease the training time andincrease the generalization capability, we like to keep the net as small aspossible. This can be achieved by choosing a compact input representationand by decreasing the number of free variables (weights) in the net. Theinput representation has to be compact and appropriate to the problem.To facilitate the learning process, we employ two methods. Firstly we pre-process the input and secondly we force certain constraints on the networkarchitecture. The purpose of the �rst method is to create an intermedi-ate representation of the input which simpli�es the problem for the neuralnetwork while making only a small computational overhead. The secondmethod contributes to facilitating learning only if the resulting structurere
ects the designer's a priori knowledge of the problem. Otherwise thenetwork is a priori biased towards wrong solutions.2.1 Input representationWe are looking for a compact and appropriate input representation. Givenan earth model, described by n�(2+r�2) + 1 values (for n beds of r radial
True resistivity Rt

Invasion resistivity Rxo

Invasion diameter dxo

Tool response 

point of interest

(window is centered around this point)

sliding window of size wFigure 11: Example of sliding window input representation. A sliding win-dow of size w is placed around the point of interest along the input models.



16 2. INPUT REPRESENTATION AND ARCHITECTURE DESIGNzones), the net should be able to produce the tool response at any depth.The tool response at a speci�c depth is used as the target of the neural net(the target is also called the desired output). For one formation we have atool response of m feet, sampled every t feet. This produces mt + 1 targetsper log. But what do we use as input to produce this target? We assumethat a part of the formation, centered around a certain depth, is responsiblefor the tool response at that depth. This part of the formation is called asliding window. The sliding window approach is shown in Figure 11.The sliding window is described in two ways: by discretizing the formationmodel in the sliding window and by describing the beds that lie in thewindow.The �rst method is quite straight forward. It samples the part of the for-mation that lies in the window, without using knowledge about the inputor relations between inputs.The second method looks more like the original model description and usesthe fact that the formation is described by beds. In the model each bed isdescribed by a number of values, which could be seen as attributes of thatbed. In the attributes approach we describe the beds that lie in a window,centered around the point of interest by a number of features.2.1.1 Discretized sliding windowWhen there is invasion, see Section 1.1.2, the formation model contains threevariables Rt, Rxo and dxo. When there is no invasion the formation modelcontains only the variable Rt. We use a sliding window of �xed size w, whichis placed along the input logs around the point of interest. The models aresampled within this window with a sampling period s, resulting in ws + 1inputs when there is no invasion and 3 times this number when there isinvasion.The following aspects should be taken into account in determining the sizeof the sliding window:� The size of the tool. The currents 
owing from the tool penetratethe formation. The currents of the Shallow Laterolog penetrate theformation and return to the top and bottom of the tool. The part ofthe formation that the tool receives information from, is at least aslarge as the tool itself. The tool is approximately 30 ft, which givesan indication that the window size should also be at least 30 ft.� The type of target log (Deep or Shallow). As shown in Figure 3, theDeep Laterolog receives information from a larger part of the forma-tion. The currents of the Shallow Laterolog return to the tool itselfand do not penetrate the formation much. This indicates that thewindow size for the Deep-log should be larger than for the Shallow-log



2.1 Input representation 17� The size of the beds. What happens if the window is smaller thanthe largest bed in the formation is shown in Figure 12. The slidingwindow is located more than once in the same bed, producing thesame input, but possibly not the same target. Now the neural nethas to learn f(x) = y1 and f(x) = y2, making the the problem non-deterministic. Con
icting examples make it very di�cult for the netto learn the problem, because it adapts its weights to reproduce twodi�erent targets for one input.
second window (first
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Figure 12: When the sliding window is smaller than the largest bed in themodel, the input to the net will be the same for the sketched situation,although the target di�ers a lot.We expect the net that is trained on the Shallow-log will perform better,because it needs a smaller window than the Deep-log. The sampling periodof the target log determines the number of examples we obtain per log. Inreal applications one takes two logging points per feet, but for e�ciencyreasons, we have taken �ve logging points per feet. The sampling period inthe sliding window is important for the resolution of the bed boundaries.When we use a sampling period of s feet, we can describe a bed boundarywith s feet resolution. When we want to have at least the same accuracyas the target log, we should use the same sampling period for the slidingwindow as for the target log. In this case that would mean using a samplingperiod of 0.2 feet.This input representation is not very compact. When we use a sliding win-dow of 25.4 feet and a sampling period of 0.2 feet, we have 384 inputs (128per variable and 3 variables when there is invasion).



18 2. INPUT REPRESENTATION AND ARCHITECTURE DESIGN2.1.2 AttributesThe input model describes a number of bed boundaries, each described bya number of radial zones. The neural net requires the number of inputs tobe �xed for each sample. We use a �xed size window and describe the bedsthat occur within this window. If the window contains less than the �xednumber of beds, we add \default" beds. These beds function as in�niteshoulder beds. The order in which the beds are presented to the neural netis important. The location in the input of the bed that has most in
uence onthe target signal for example (probably the bed in the center of the window)should be �xed (in our case it is presented �rst). Then the beds adjacent tothis bed are presented and the beds adjacent to those beds and so on.Each bed is described by a number of attributes (also called features). Thecontrast between two beds is de�ned as v1=v2 and the di�erence as v1 � v2for values v1 and v2. The attributes we use are:1. the true resistivity of the bed (Rt);2. the invasion resistivity of the bed (Rxo);3. the invasion radius of the bed (dxo);4. the inverse distance to the logging point (points close to the bed bound-ary are considered to be more important than points that lie furtheraway);5. the contrast between the true resistivity of this bed and the bed thatlies below this bed;6. the contrast between the invasion resistivity of this bed and the bedthat lies below this bed;7. the contrast between the invasion radius of this bed and the bed thatlies below this bed;8. the di�erence between the true resistivity of this bed and the bed thatlies below this bed;9. the di�erence between the invasion resistivity of this bed and the bedthat lies below this bed;10. the di�erence between the invasion radius of this bed and the bed thatlies below this bed.The default beds have no contrast (1) and no di�erence (0) with their adja-cent beds. The inverse distance to the logging point is 0 for the default beds(the beds continue to in�nity). If we describe n beds in the chosen window,this results in 10n inputs.



2.1 Input representation 19This approach is more compact than the discretized sliding window ap-proach, but it is di�cult to choose appropriate features that will facilitatethe learning process. We assume the contrasts and di�erences are importantand describe the problem well. If this is not the case, the learning will notbe facilitated. It could even make it di�cult for the neural net to learn theproblem, when these features are not describing the problem well.2.1.3 Input and output scalingAs discussed in the �rst chapter, the input should be approximately scaled tothe domain [�1;+1]. For the true resistivity and the tool response we use acombination of logarithmic and normalization scaling and for the other vari-ables a normalization scaling. The true resistivity (and the tool response)can range between 1 and 2000 
m. To reduce this range, we use a loga-rithmic scaling. The range of the other variables, the invasion resistivityand the invasion radius, are much smaller and therefore we do not use thelogarithmic scaling on these variables. The scalings take the following formx0log = ln(x) (9)x0norm = x� ��� � (10)where, x is the original input or output value, � the mean and � the standarddeviation of the variable x. The factor � is applied to make the scaled rangeeven smaller (in the experiments � = 2).A normalized Gaussian distribution is shown in Figure 13. From this �gurewe �nd that for � = 1, 68.27 % of the values (of this speci�c distribution)lie between -1 and +1. When we use � = 2 we �nd that 95.45 % of thevalues lie between -1 and +1.
68.27 %

99.73 %

95.45 %

-3 -2 -1 21 3

Figure 13: Standard normal distribution.In the attribute description approach only a normalized scaling method isapplied.



20 2. INPUT REPRESENTATION AND ARCHITECTURE DESIGNThis combined scaling method of the tool response has an attractive conse-quence for the minimalization of the network error. For more details on theminimalization of the network error see Section 2.4.2.2 PreprocessingIn this section we will describe the preprocessing methods we have used inthe project. The purpose of preprocessing is to �nd an intermediate inputrepresentation that facilitates the learning process. Another advantage ofpreprocessing is that we can reduce the number of inputs. The preprocessingwas only applied to the input that was created by the discretized slidingwindow approach.We can view the input in two ways. Firstly as three N -dimensional vectorsRt, Rxo and dxo and secondly as three functions of the depth x, Rt(x),Rxo(x) and dxo(x). The latter is actually also a vector, because the func-tions are equally sampled within an interval [1; N ]. In the �rst case weproject the input to an M -dimensional subspace spanned by the principlecomponents of the input. In the other case we use a set of orthogonal basisfunctions, the Haar wavelets, to project the input.The disadvantage of input reduction is the loss of information. Hopefully,the information that is lost has a negligible in
uence on the learning andgeneralization of the net.2.2.1 Principal Component AnalysisThe following description of the principal component analysis is taken from(Hertz, Krogh & Palmer 1991) .A common method from statistics for analyzing data is principal componentanalysis (PCA), also known as the Karhunen-Lo�eve transform in commu-nication theory. The aim is to �nd a set of M orthogonal basisvectors(eigenvectors) that account for as much as possible of the data's variance.Projecting the data from their original N -dimensional space onto the M -dimensional subspace spanned by these vectors performs a dimensionalityreduction that retains most of the intrinsic information in the data.The �rst principal component is taken to be along the direction with themaximum variance. The second principal component is constrained to liein the subspace perpendicular to the �rst. Within that subspace it is takenalong the direction with the maximum variance. Then the third principalcomponent is taken in the maximum variance direction in the subspaceperpendicular to the �rst two, and so on. An example is shown in Figure 14.In general it can be shown that the kth principal component direction isalong an eigenvector direction belonging to the kth largest eigenvalue of the
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Figure 14: Most of the variation of the data lies in the direction of �1.covariance matrix. This matrix is calculated for P patterns byCovariance(i; j) = Pp(xpi � xi)(xpj � xj)P (11)Here, xpi is input i of pattern p, xpj is input j of pattern p and xi andxj are the means of input i and input j respectively. Then the matrix isdiagonalized and the eigenvalues are calculated.The original input vector x (Rt;Rxo or dxo) is written asx = x1e1 + x2e2 + ::: + xNeN (12)where e1, ..., eN are the original basisvectors as shown in Figure 14. Wecan also write the input vector in another orthogonal set of basisvectors, theeigenvectors �1; :::; �Nx = (�1 � x)�1 + (�2 � x)�2 + ::: + (�M � x)�M + ::: + (�N � x)�N (13)To reduce the size of the vectors from N to M , we project this vector tox0 = (�1 � x)�1 + (�2 � x)�2 + ::: + (�M � x)�M (14)Instead of using N values x1; x2; :::; xN from the original input vector we useM values �1 � x; �2 � x; :::; �M � x of the projected input vector as inputs forthe neural net.



22 2. INPUT REPRESENTATION AND ARCHITECTURE DESIGNTo calculate the percentage of information that is lost by this projection, we�rst have to write x0 in the ei basisvectors:x0 = a1e1 + a2e2 + ::: + aNeN (15)The values ai are calculated byai = NXn=1xn MXm=1 �mn�mi (16)The information that is lost by this projection can be calculated (for Ppatterns in the input �le) byLoss of information = 1P PXp=1 jjx0p � xpjjjjxpjj (17)2.2.2 Wavelet transformWe can write any function f(x) as a weighted combination of other orthog-onal basisfunctions fi(x) f(x) =Xi cifi(x) (18)Instead of using the values of f(x) (as inputs), which may be in�nite whenf(x) is a continuous function, we use the coe�cients ci. We choose functionsfi(x) with properties, that make it easier to manipulate with those functionsthan with the original function f(x).A commonly known method is the Fourier transform, where the orthogonalbasisfunctions are sin(ax) and cos(ax). These basisfunctions allow you todescribe the function on di�erent frequency levels.Our input signals Rt(x), Rxo(x) and dxo(x) have a very special shape: theyare all rectangular \functions". The Fourier transform is not appropriatein this case, because we would need an in�nite number of coe�cients andbasisfunctions to correctly model the discrete transitions. There is howeveranother interesting set of orthogonal basisfunctions, called wavelets. We areespecially interested in the simplest wavelets, the so-called Haar wavelets.These wavelets are blockfunctions as shown in Figure 16. What is so inter-esting about wavelets is that the input can be described on di�erent detaillevels. All coe�cients, except the �rst, describe a speci�c property over apart of the window (varying in size and location). The property they de-scribe is the di�erence between the average value over the �rst and secondhalf of their part of the window. The �rst coe�cient describes the averageover the whole window.



2.2 Preprocessing 23We will �rst give a short introduction on wavelets and how the coe�cientsare calculated (taken from (Strang 1989)) and then we will explain why thewavelets are so useful in our project.A wavelet is de�ned byW (x) =Xk (�1)kc1�k�(2x� k) (19)Here, k is taken symmetrically around zero. The scaling function � is de�nedby �(x) =X ck�(2x� k) (20)under conditions Z �dx = 1 (21)Xk ck = 2 (22)The Haar wavelet is the simplest wavelet. For this wavelet we choose c0 = 1and c1 = 1. The scaling function � for these coe�cients is a blockfunctionde�ned by �(x) = ( 1 0 � x � 10 otherwise (23)The wavelet as shown in Figure 15, is described byWHaar(x) = �(2x)� �(2x� 1) (24)We start with a vector (f1; f2; :::; fN ), which are N = 2j equally sampled
0 1

Figure 15: Haar wavelet from box function WHaar(x) = �(2x)� �(2x� 1).values of a function f(x) on a unit interval. This vector will be approxi-mated by the sum of di�erent weighted block functions. In Figure 16 the�rst 8 block functions, belonging to the levels 0, 1 and 2, are given. Theprojected input vector is described by the coe�cients that correspond to the



24 2. INPUT REPRESENTATION AND ARCHITECTURE DESIGNweighing of these block functions.How are these coe�cients calculated? On a vector x of 2j values we performtwo operations L : R2j ! R2j�1 and H : R2j ! R2j�1. The �rst operation,L(x), calculates the mean and the second, H(x), calculates the di�erence.L(x) = k �0BBBB@ x1 + x2x3 + x4...xN�1 + xN 1CCCCA H(x) = k �0BBBB@ x1 � x2x3 � x4...xN�1 � xN 1CCCCA (25)Here, usually k = 12 in decomposition and k = 1 in reconstruction, butwe could also use k = 12p2 in both the decomposition and reconstruction,which has the advantage of normalizing the wavelets at every scale (this isdone in the experiments described later).The vectors produced by L(x) andH(x) are both half the size of the originalvector. The coe�cients found byH(x) are the coe�cients on the �nest detaillevel, level j� 1. To �nd the coe�cients at the next detail level, we performthe operations L(x) and H(x) recursively on the vector produced by L(x)at the previous level. This continues until we reach level 0.The projected input consists of the coe�cients per detail level found byH(x) and the coe�cient at level 0 found by L(x). So, if we name Li theaverage operator at level i and Hi the di�erence operator at level i, the newinput vector is constructed by (L0; H0; H1; :::; Hj�1).On level i there are 2i coe�cients produced by Hi, the di�erence operator.On level 0 we have an extra coe�cient coming from L0. The total numberof inputs is N = 1 + 20 + 21 + ::: + 2j�1 = 2j (26)which is equal to the size of the original input vector.We will now present an example for a vector of length 23, x = (1; 3; 2; 2; 5; 3; 8; 0).In the �rst step on level j = 2, we get for k = 12L(x) = 0BBB@ 2244 1CCCA and H(x) = 0BBB@ �1014 1CCCA (27)We continue on level j = 1 with L(x) = x0 as input vectorL(x0) =  24 ! and H(x0) =  00 ! (28)
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26 2. INPUT REPRESENTATION AND ARCHITECTURE DESIGNWhat is so interesting about the wavelet coe�cients, is that they describe avery local area of the input. We expect that the information in the center ofthe window is more important than the information on the edges. We knowexactly which coe�cients are corresponding to the edges and which to thecenter of the window and we can remove (some of) the coe�cients that arecorresponding to the edges, when we are not interested in this information.Coe�cient c4 from Figure 16, for example, describes the transitions in the�rst 14 of the window (size w) with steps of size w=8. If we remove thiscoe�cient, the transitions in the �rst quarter of the window can only bedescribed by steps of w=4 of coe�cient c2. In this case we loose resolutionon the �rst quarter of the window.If we have an input coming from a sliding window of w = 25.4 feet, sampledevery 0.2 feet, we have 128 input values and 7 detail levels 0 to 6. On the�ner detail levels (5 and 6) we remove a number of coe�cients on the edgesof the window. We loose resolution at the edges, but we retain the sameaccuracy as the original input in the center. In the center the transitionsare described by steps of 0.2 feet and on the edges by steps of 0.8 feet (thisis detail level 4).In Figure 17 is shown what happens when a number of coe�cients on theedges is removed. The transitions in the center are described very accurately,but on the edges we use larger steps than in the original input (a transitionis then approximated by steps instead of one transition).

approximation
true bed boundaries

center of sliding window

Figure 17: Boundaries outside the center of the window are not describedaccurately.



2.3 Architecture constraints 27The coe�cients are removed from the edges of the window, so all the de-tailed information in the center is preserved. If, for example, we remove 20coe�cients on each side on level 6 and 10 coe�cients on each side on level5, we removed 7.8 feet on level 6 and also 7.8 feet at level 5. This meansthat at these parts of the window we have a resolution of 0.8 feet and in thecenter 9.8 feet we have a resolution of 0.2 feet.How much information is lost by this operation depends on the locationof the bed boundaries and the sharpness of the transitions. A resistivitycontrast is approximated by small steps instead of one transition. A hardmeasure for the loss of information is di�cult to give. Whether the approx-imation a�ects the generalization performance in a negative way will showduring training and testing.2.3 Architecture constraintsThe second method to reduce the complexity of the net, as we had alreadymentioned in the beginning of this section, is forcing certain constraintson the architecture. The advantage of this method is that no informationis lost, like in the preprocessing methods. We can also re
ect our priorknowledge about the input in the design of the net. This facilitates thelearning process and hopefully will improve the generalization of the net.By using locally connected neurons (receptive �elds), the net contains muchless weights than the fully connected nets. We can even further reducethe number of weights, by forcing some of the weights to be equal. Thisis further investigated in Section 2.3.4. In this section we will discuss theadvantages and disadvantages of various fully and locally connected networkarchitectures.2.3.1 Fully connected netsA common network architecture is a fully connected net as shown on theleft side of Figure 18 (in this �gure only the connections to the �rst hiddennode are drawn). All nodes of one layer are connected to all nodes of theprevious layer. The number of nodes of the hidden layer is very important.This number should not be too small, otherwise the net is not able to learnthe problem. But it should also not be too large, otherwise the net has toomuch freedom and it will not generalize. More hidden layers can be addedto improve on the training and generalization results. Usually one hiddenlayer is enough to learn a problem, but sometimes an extra layer helps tocombine the features found by the �rst layer. It provides a more global viewof the input.



28 2. INPUT REPRESENTATION AND ARCHITECTURE DESIGN

Rxo
Rt

dxo
Rxo

Rt

dxoFigure 18: Fully connected (left) and locally connected (right) neural nets.2.3.2 Locally connected netsThe input has a strong local structure, so it simpli�es the problem by usingso-called receptive �elds. It may be easier for the neural net if a neurononly sees a part of the input and not all the inputs as in the fully connectednets. The neuron specialized on its part of the input and can be used as alocal feature detector. We add an extra hidden layer in order to combinethe local features properly. The part of the input a neuron is connectedto, is called a receptive �eld. Usually all receptive �elds have the same sizeand are only shifted in space (or time) with a �xed step (�xed overlap).The weight kernel of the �rst receptive �eld that is connected to the �rstneuron is shown in Figure 19. We can constrain the weight kernels for thevarious receptive �elds to be the same, this is called weight sharing and it isused in the convolutional networks. The advantage of weight sharing is thedecrease in the number of weights and freedom (and therefore complexity ofthe neural net). The decrease of freedom might improve the generalizationability of the net, but if the freedom is reduced too much, the net overallperformance may decrease. The motivation for weight sharing is that weexpect that a particular meaningful feature can occur at di�erent times (orlocations) in the input. An example of a locally connected net is shown inFigure 18 (right).2.3.3 Symmetry constraintsIn our models we have no dipping layers and no deviated bore holes. Inthis case the tool readings are assumed to be symmetric. This means thata signal and its mirror image, as shown in Figure 20, give the same toolresponse. This should also hold for the neural net. The response of theneural net (in a hidden node at the �rst hidden layer) to a signal x is f(x;w),for a certain weight vector w. The mirror image of x = (x1; x2; :::; xN ) is
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Figure 19: Receptive �elds which overlap 13 .x0 = (xN ; :::; x2; x1). The response of the neural net to this input is f(x0;w).
x1  x2  x3     . . . xn xn x3  x2  x1. . .Figure 20: A discretized input signal and its mirror image.We will now investigate what the implications are for the architectures ofthe nets when we force f(x;w) � f(x0;w), givenfj(x;w) =Xi xiwji (31)Here, j stands for hidden node j. Since the following equations should holdfor any hidden node j in the �rst hidden layer, the index j is omitted.For the fully connected nets the following equation should hold8x 2 <N : f(x;w) = x1w1 + x2w2 + ::: + xN�1wN�1 + xNwN� f(x0;w) (32)= xNw1 + xN�1w2 + ::: + x2wN�1 + x1wN



30 2. INPUT REPRESENTATION AND ARCHITECTURE DESIGNThis is only true when wi = wN+1�i. This constraint can be build intothe net by forcing the weights coming from input node i to be equal to theweights coming from input node N +1� i. These constraints are shown in

Figure 21: Symmetry constraints on fully connected net.

Figure 22: Symmetry constraints on locally connected net. The receptive�elds are constrained symmetrically (receptive �eld f is constrained to �eldF � f + 1 for F �elds).Figure 21. The same constraints can be used for the locally connected netas shown in Figure 22. In the locally connected nets the receptive �elds aresymmetrically constrained. This means that receptive �eld f is constrainedto receptive �eld F � f +1, where F indicates the total number of receptive�elds. The �elds are also internally constrained symmetrically as shown inFigure 22.For the nets that are trained on wavelet coe�cients, we can also �nd someconstraints. The wavelet vector of an input x = (x1; x2; :::; xN ) (N = 2j) on
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level 3level 2level 0 level 1Figure 23: Symmetry constraints on wavelet nets. The coe�cients are con-strained per detail level.a certain level is constructed byL(x) = k �0BBBB@ x1 + x2x3 + x4...xN�1 + xN 1CCCCA H(x) = k �0BBBB@ x1 � x2x3 � x4...xN�1 � xN 1CCCCA (33)The coe�cients on this level come fromH(x). The coe�cients for the mirrorimage of x are calculated byL(x0) = k �0BBBB@ xN + xN�1...x4 + x3x2 + x1 1CCCCA H(x0) = k �0BBBB@ xN � xN�1...x4 � x3x2 � x1 1CCCCA (34)The coe�cients on higher levels are calculated recursively on the vectorconstructed by L(x). On every level we �nd that L(x0) is the mirror imageof L(x). The response of the net to H(x) and the response of the net toH(x0) should be the same on every detail level and for every possible inputsignal x. For the 2j wavelet coe�cients on level j > 0 the following equationshould hold for any wavelet vector y = H(x) and y0 = H(x0)8y 2 <N : f(y;w) = y1wk+1 + y2wk+2 + ::: + y2jwk+1+2j� f(y0;w) (35)= �y1wk+1 � y2wk+2 � ::: � y2jwk+1+2jHere, k indicates how many weights are used for the previous levels, whichis N = 2j. On level 0 we �nd w1 = w1 and w2 = �w2 = 0. The �rstweight corresponds to the coe�cient that describes the average over thewhole window and the second weight corresponds to the coe�cient that



32 2. INPUT REPRESENTATION AND ARCHITECTURE DESIGNdescribes the di�erence between the average over the �rst half of the windowand the average over the second half of the window. The tool readings shouldbe symmetric so for the tool it does not matter whether this di�erence ispositive or negative.On level j we �nd w2j+i = �w2j+1�i for i = 0; 1; :::; 2j�1. The resultingnetwork is shown in Figure 23.2.3.4 Convolutional networkA neuron that is locally connected extracts local features. Sometimes weare not concerned about the location of these features, but only about thefeatures themselves (for example in character recognition).
feature map, all neurons

in this map share their

weights

subsamplingconvolution convolution subsampling convolution

outputinput

Figure 24: Convolutional network.The set of weights, w, belonging to a receptive �eld, makes it possible for aneuron in the �rst hidden layer to detect a speci�c feature at the location ofthe receptive �eld. We can use the same set of weights for all the receptive�elds. This enables the �rst hidden layer to detect that speci�c feature, thatwas �rst only detected by the �rst hidden neuron, anywhere in the totalinput. The neurons in the �rst hidden layer that use this set of weights todetect a speci�c feature, are called a feature map.The hidden layer is now able to detect one feature. We can add more featuremaps to make it possible to detect more features. Each feature map consistsof a number of neurons that make use of the same set of weights (weightsharing). This set of weights, as shown in Figure 19, is used as a convolutionkernel. The convolution, performed by one feature map, is de�ned by thesum yj = k+n�1Xk l+m�1Xl wjklxkl (36)



2.3 Architecture constraints 33where xkl is the input pixel at location (k; l) and wjkl is the weight betweenthis input pixel and neuron j. The indices k and l indicate the left uppercorner of the receptive �eld and n�m indicate the size of the receptive �eld.The convolution layers are alternated by so-called subsampling layers. Thesesubsampling layers are like the convolution layers: they also make use of re-ceptive �elds and shared weights. The overlap of the receptive �elds ismaximal (replacement of one pixel) at the convolution layers and not atall at the subsampling layers. (When the receptive �elds do not overlapmaximal this is usually called subsampling). In the subsampling layer thespatial resolution of the feature maps, generated by the convolution layers,is reduced. Due to this reduction in resolution, this layer provides somedegree of translational and rotational invariance.This type of network is called a convolutional network and is shown inFigure 24.2.3.5 Time Delayed networkConvolutional networks are used in two-dimensional problems, like characterrecognition. The one-dimensional version is called a time delayed network.The principles are more or less the same. A time delayed network is used inapplications like speech recognition (Waibel, Hanazawa, Hinton, Shikano &Lang 1989).The idea is that the response at a certain point of time (or depth) dependson previous inputs with a certain delay (hence the name time delayed). Inthis type of net there are no subsampling layers, only convolution layers.This is because we do not want the translational and rotational invariance,that is provided by the subsampling layers. The loss of time resolutionby the �rst layer is partially compensated by an increase in the number offeatures in the next convolution layer. This is called bi-pyramidal scaling(Guyon 1991). The architecture for a typical time delayed network is shownin Figure 25.
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Figure 25: Time delayed neural network.



34 2. INPUT REPRESENTATION AND ARCHITECTURE DESIGN2.3.6 Convolutional-regression networkThe design of the convolutional-regression network is based upon both theconvolutional networks and the time delayed networks. The idea behind this
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Figure 26: Convolutional-regression network.type of network is that the network output depends on a number of inputsaround the point of interest. So it depends on inputs above and below thelogging point. For this net we use the input representation produced by the(uniform) discretized sliding window approach.The feature maps in the �rst hidden layer can be connected to all or onlysome of the features (variables) in the input layer. This is like the origi-nal convolutional networks, but in contrast with the time-delayed networks.In the latter the feature maps are always connected to all the features ofthe previous layer. All other layers of the convolutional-regression networkare fully connected. So this net only contains one convolution layer (andthis is di�erent from both the convolutional and time-delayed architectures).We only use one convolution layer, because we want to retain the spatialinformation of the input. The architecture is shown in Figure 26. In this ex-ample the feature maps are connected to only a number of the input features.The receptive �elds in the �rst layer do not overlap maximal. So actuallythis is not a convolution, but subsampling. The advantage of subsamplingover convolution is that the number of hidden nodes (and the number ofweights) that is needed is small (the number of hidden nodes is equal to thenumber of receptive �elds). A disadvantage is the loss of spatial resolution.



2.4 Error function 35A feature map from the �rst hidden layer detects a feature in the input. Thesecond hidden layer determines the importance of the location of that fea-ture. So the spatial information is preserved in the second (fully connected)hidden layer.2.4 Error functionA neural network can minimalize any error function. The most commonerror function used is the sum square error, which is, for P patterns of thetraining set ENet = PXp=1(dp � ap)2 (37)Here, dp is the desired output of pattern p and ap is the actual output ofpattern p.
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Figure 27: The network and relative error for �xed proportions d=a.In this project the performance of the neural net is measured in the relativeerror between the desired and the actual output, averaged over P patternsERel =vuuut 1P PXp=1 dp � apdp !2 (38)The neural net error for one speci�c pattern p can be written asENet(p) = d2p 1� apdp!2 (39)



36 2. INPUT REPRESENTATION AND ARCHITECTURE DESIGNThis means that for the same proportion a=d, a pattern p produces a highererror when the desired output is large. The net emphasizes the learning ofpatterns with a high desired output. This is not what we want, because asmall desired output is more likely to have a high relative error than a hightarget value. Thus we preferred the error ERel as given in eq. 38, whichovercomes this disadvantage.Before presenting the patterns to the net, we have scaled the input and theoutput. The desired and actual outputs are scaled byt0 = ln(t)� �� (40)The consequence of this scaling is that the network is minimalizing thefollowing error ENet = PXp=1� ln(dp)� �� � ln(a)� �� �2 (41)= 1�2 PXp ln2 dpap (42)which is almost the same as minimalizing the relative error, especially whenthe proportion d=a is almost equal to 1. Actually the net is minimalizingthe proportion d=a. For �xed proportions d=a the network error ENet andrelative error ERel are drawn in Figure 27.An overestimation (a = d + k) and an underestimation (a = d � k) mustgive the same error signal, as shown by the relative error in Figure 27. Theneural net, with the error function as mentioned in eq. 41, favours a = d�kover a = d+ k, because the former produces a lower error signal.It does, however, emphasize the learning of small target values over largertarget values, which is also the case for the relative error.It is very important to choose an appropriate error criterion. In this projectwe want to minimalize the relative error. When we had used another scal-ing method (not logarithmic), the network error function should have beenadapted for better performance. With this scaling however the sum squareerror function su�ces.



373 Forward modelling without mud invasionForward modelling in the presence of mud invasion is very complex. Themeasured resistivity is heavily a�ected by the invasion resistivity (Rxo), al-though this depends on the invasion radius (dxo). Before investigating thiscomplex situation, we �rst look at the case without mud invasion. Herewe only have one variable (Rt). The bore hole radius and drilling 
uid re-sistivity are �xed to 4.25 inch and 0.05 
m, respectively. With only onevariable the input space of earth models is not too large, which allows us to�rst experiment with the input representation and the network architecture.When we have found the most appropriate representation and architecture,we can use this in the case with invasion.We have taken small bed sizes that range between 1 and 5 feet. Eachearth model consists of a small log of 50 feet long and 15 beds, with a totalof 47 models (2350 feet) for training and 33 models (1650 feet) for testing.The true resistivity ranges between 1 and 70 
m. These parameters aresummarized in Table 2.For the experimentation with the input representation and network architec-ture we have used a small training set of 4 earth models and an equally sizedtest set of 4 models. For these small tests no absolute errors are included,since they are only used for comparison. The performance is measured inthe average relative error of the training set and the test set. A net performswell when both errors are small and comparable.Table 2: Parameters for earth models without invasion.Fixed parametersBore hole radius 4.25 inchDrilling 
uid resistivity 0.05 
mVariablesBed size 1, 2, 3, 4 or 5 feetTrue resistivity 1, 2, 3, ..., 70 
mDataTraining set 47 modelsTest set 33 modelsPer model 50 feet15 beds251 examples



38 3. FORWARD MODELLING WITHOUT MUD INVASION3.1 Experimenting with di�erent scaling methodsThe input and output are approximately scaled to the range [�1;+1] (seeSection 2.1.3). This is done by normalization of the input and outputz0 = z � �� (43)where � is the mean and � is the standard deviation of the variable z on thetraining set. This type of scaling can also be done in combination with alogarithmic scaling. In that case the mean and standard deviation of ln(z)is used. The mean and standard deviations for the input and output aregiven in the following table � �Rt 29.00 16.67logarithmic scaled Rt 3.30 0.80LLd or LLs 30.00 16.67logarithmic scaled LLd or LLs 3.00 0.83We tested a fully connected net of 25 inputs (sliding window of 5 feet)and one hidden layer of 5 nodes on 1004 examples (4 models) and foundthat the logarithmic scaling in combination with the normalization gave thebest results. The worst results are found when no logarithmic scaling wasapplied, so the normalization on itself is not su�cient. When no logarithmicscaling was applied, the neural net is minimizing the absolute error betweenthe desired and actual output. We measure the performance in the relativeerror and a minimalization of the absolute error does not necessary mean aminimalization of the relative error. The logaritmic scaling overcomes thisproblem. Due to this scaling the proportion is minimalized (see Section 2.4),which is almost the same as minimalizing the relative error.We will use this combined scaling method in the other tests.3.2 Experimenting with the network architectureNow we started experimenting with the network architecture. The followingexperiments are done for a window size of 5 feet. The tests are done for boththe Deep- and the Shallow-log with 4 training models (1004 examples).� Variation of number of hidden nodes (5, 10, 15, 20, 25). We foundthat increasing the number of nodes up to 15 improve the results, butthat nets with 15 nodes and more gave similar results.� Variation of number of hidden layers (1 or 2). Two layers of both 15nodes or one hidden layer of 15 nodes gave comparable results.



3.3 Experimenting with the size of the sliding window 39� Adding connections of the input layer directly to the output layer (25extra connections). Again the results for these extra connections andthe normal fully connected net were comparable.When the results are comparable we choose for the net with the fewestnumber of weights. These nets most likely have the best generalization andthe smallest training time. The best architecture found by these experimentsis a normal fully connected net, with one hidden layer of 15 nodes.3.3 Experimenting with the size of the sliding windowThe scaling method and the network architecture are �xed, only the windowsize is varied in the following tests. We tried window sizes of 5, 10, 15 and30 feet. The smallest window size we can try is 5 feet (see Section 2.1.1).Again the nets are trained on 4 models (1004 examples), on both the Deep-and the Shallow-log. In both cases, a window size of 15 feet gives the bestresults. Although the results are slightly better for a window size of 30 feet,this does not outweigh the longer training time due to this high number ofweights (2281 versus 1156).The Shallow-log approximation is better than the Deep-log for the samewindow size. We already expected this, because the Deep Laterolog \sees"a larger part of the formation and therefore needs a larger window size. Thiswas already shown in Figure 3 in Section 1.1.1.3.4 Summary and resultsThe architecture we found by the previous tests is a fully connected neuralnet with one hidden layer of 15 nodes and a window size of 15 feet (75 in-puts). This net is trained on 47 models with a total length of 2350 feet andtested on 33 models with a total length of 1650 feet.Table 3: Average relative error for earth models without invasion (1).Shallow-log Training set 1.7 %Test set 2.2 %Deep-log Training set 5.1 %Test set 6.0 %



40 3. FORWARD MODELLING WITHOUT MUD INVASIONAs shown in Table 3, the average relative error is below 5 % for the ap-proximation of the Shallow-log. The generalization ability of the net, thatis trained on the Shallow-log, is quite good (the test error and the trainingerror are comparable).However, the average relative error may not be an appropriate error crite-rion, since it is possible that a few points with a high relative error have arelatively large contribution to the average relative error. Therefore, we alsocalculate the percentage of the output that has a relative error below 5 %(called \correct") as shown in Table 4. From this table we �nd that onlyTable 4: Performance on earth models without invasion (1).Shallow-log Training set 98 % correctTest set 96 % correctDeep-log Training set 62 % correctTest set 61 % correct4 % of the approximation of the Shallow-log has a relative error above 5 %.And this is very close to the error on the training set. Therefore, we can saythe learning and generalization ability of the net are quite good.The approximation of the Deep-log, however, causes more problems. Thisis shown in Figure 28. The Deep-log di�ers substantially from the true re-sistivity pro�le, in contrast to the Shallow-log. This is caused by the e�ectof the shoulder beds, which is less profound in the case of the Shallow-log(see Section 1.1.2).The output the neural net gives for this model is shown in Figure 29. Inthis �gure one sees that the output given by the net looks more like the re-sistivity pro�le (like the Shallow-log) and therefore has quite a large relativeerror with its target value (the Deep-log). An improvement could be madeby using more models similar to this one in the training set.We conclude that our input representation (sliding window and scaling) isappropriate for the problem. A fully connected neural net with one hiddenlayer is su�cient to learn the input-output mapping and to provide goodgeneralization over data it has not seen before. In the following chapter wewill abandon the fully connected nets and look for more complex architec-tures to improve on the results and to handle invasion.
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Figure 28: Model that causes di�culties in approximating the Deep-log.
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42 4. FORWARD MODELLING WITH MUD INVASION4 Forward modelling with mud invasionNow we have found that it is possible to learn the mapping between theearth models and the tool response, we are going to look at a more di�cult(and interesting) problem. In the new earth models the layers of the forma-tion are invaded by the drilling 
uid. This means we also have to take Rxo,the invasion resistivity, and dxo, the invasion radius, in account. Again thebore hole radius and the resistivity of the drilling 
uid are �xed. The inputspace of earth models, constructed from randomly chosen combinations ofthe three variables Rt, Rxo and dxo, is much larger than in the previouscase, when there was only one variable (Rt). We expect the network needsmore examples to learn the problem.We �rst perform a number of tests on a small training set in order to getan idea about how well the chosen input representation and architectureperform on an (also small) test set.Table 5: Parameters for earth models with invasion.Fixed parametersBore hole radius 4.25 inchDrilling 
uid resistivity 0.05 
mVariablesBed size 1, 2, 3, ..., 20 feetTrue resistivity 2, 3, 4, ..., 71 
mInvasion resistivity 0.5, 0.7, ..., 2.5 
mInvasion radius 8, 9, ...., 50 inchDataTraining set A, B, C, D, E, F (M, N, O, P, Q, R and S) modelsValidation set G, H and I modelsTest set J, K and L modelsPer model � 1000 feet80 beds� 5000 examplesWe use bed sizes between 1 and 20 feet, which is more realistic than in theprevious tests, where we used beds between 1 and 5 feet. Each earth modelis approximately 1000 feet long and consists of 80 beds. There is a total of19 models for training, testing and validation as shown in Table 5. Duringtraining one calculates the error on a set of examples that is not used duringtraining, the so-called validation set. When the error on this set starts toincrease, the training is stopped. In the small tests we have not used a



4.1 Scaling of the parameters 43validation set. The training was stopped, when the network converged to aminimum. This means the nets are overtrained: the error on the training setis minimal, but the error on the test set is not. In these experiments we onlyuse the Shallow-log. We have found in the previous tests, without invasion,that the mapping between the earth models and the Shallow-log was easierto learn than the mapping between the earth models and the Deep-log. If anet �nds it di�cult to learn the Shallow-log, we expect it would have evenmore di�culty in learning the Deep-log.In the next sections some of the results are given in duplicate in order toget a better comparison between the various tests. We have used one model(A) of 4601 sample points as training set and one model (F) of 4876 samplepoints as test (generalization) set.4.1 Scaling of the parametersThe true resistivity Rt and the Shallow- and Deep-log (LLs and LLd) arescaled as in the previous tests. The scaling methods we have used here aresummarized in the following tableVariable Domain Scaling Mean DeviationRt 2, 3, ..., 71 
m log + norm 3.30 1.67Rxo 0.5, 0.7, ..., 2.3 
m norm 1.30 0.59dxo 8, 9, ..., 50 inch norm 29.00 25.00LLd log + norm 1.40 1.67LLs log + norm 1.40 1.67In the following sections we use tables to describe the performed tests. Thefollowing table entries are used to describe a test:� connections: The type of connections. This is fully or locally con-nected (fully connected by default).� architecture: A description of the net per layer seperated by a \.".For each layer the number of nodes is given. This number can besplit into the number of values per variable or feature map. A layer of3� 128 for example means we have 128 values per variable. A layer of6� 27 means we have 6 feature maps of 27 nodes each.� Number of weights: The number of weights in the net is given.� window size: The used size of the sliding window is given in feet(default value is 25.4 feet).� Sampling period: The used sampling period is given in feet (defaultvalue is 0.2 feet).



44 4. FORWARD MODELLING WITH MUD INVASION� Sampling: The type of sampling. This can be uniform (default value),non-uniform or none.� Number of epochs: The number of epochs that was needed to trainthe net.� Training error: The average relative error on model A.� Generalization error: The average relative error on model F.4.2 Experimenting with di�erent input representationsIn this more complex situation we have to look at three variables per sam-pling point. This results in a high number of inputs for the neural net.Because of the results in the experiments without invasion, we �rst lookedat the input representation coming from a uniform sampled sliding windowin Test 1. A window size of 25.4 feet and a sampling period of 0.2 feet givesus 3 � 128 inputs, which is quite high. But we also looked at an input de-scription by attributes in Test 2 as described in Section 2.1.2. The resultsare given in Table 6.Since the sliding window representation is giving better results than theattributes description, we will now look for methods to reduce the complexityof the net. This can be done by reducing the number of inputs or by reducingthe number of weights.The generalization performance of the attributes input representation is verybad. The net is heavily overtrained, since the error on the test set was only41.8 % after 183 epochs (training error at that time was 11.4 %).
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Figure 30: Small di�erence in input with attributes input representation.
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Table 6: Comparing discretized sliding window against attributes represen-tation. Representation Test 1 Test 2architecture 3� 128.10.1 100.15.15.1number of weights 3861 1771window size 25.4 feet 30 feetsampling period 0.2 feetsampling Uniforminput description Discretized sliding Attributeswindow (10 beds)number of epochs 3060 3484training error 3.1 % 4.2 %generalization error 70.0 % > 100 %Table 7: Comparing uniform sampling methods with di�erent sampling pe-riods. Sampling 1 Test 1 Test 4architecture 3� 128.10.1 3� 100.10.1number of weights 3861 3021window size 25.4 feet 29.7 feetsampling period 0.2 feet 0.3 feetnumber of epochs 3060 3634training error 3.1 % 2.9 %generalization error 70.0 % 67.3 %Table 8: Comparing uniform and non- uniform sampling methods.Sampling 2 Test 3 Test 5architecture 3� 128.10.10.1 3� 64.15.15.1number of weights 3971 3151window size 25.4 feet 29.4 feetsampling period 0.2 feetsampling Uniform Non-uniformnumber of epochs 6429 4404training error 1.1 % 1.0 %generalization error 65.2 % 46.4 %



46 4. FORWARD MODELLING WITH MUD INVASIONA possible cause of the bad performance on the attributes is that the net isfed with a number of almost similar examples. Only the inverse distance foreach bed di�ers in those cases, as shown in Figure 30. The inverse distancebecomes the most important value in the input. This can also be seen fromthe weights. Most weights are quite small, ranging from -0.5 to 0.5, but theweights belonging to the connections from the inverse distance- inputs tothe hidden layer are large (� 1.5).It is important to choose appropriate attributes, but �nding these attributesis very di�cult. The network is actually pushed in some kind of directionby using attributes. This can make the learning easier, but it can just aseasy make the learning more di�cult.4.3 Experimenting with input reduction methodsThe number of inputs coming from a uniform sampled sliding window isvery high. For example, a window of 29.8 feet and a sampling period of0.2 feet produces 3� 150 inputs. We would like to use a hidden layer of 15nodes and maybe even two hidden layers of 15 nodes. The former gives us6781 weights and the latter 7021 weights. To train such a large net we needapproximately 70000 examples (Widrow's Rule of Thumb to take about 10times the number of free variables). Each example consists of 451 values(3 � 150 inputs and one target), so we would need to store approximately31570000 values to train this net. This large set will slow down the trainingand causes storage and memory problems.It is for this reason that we looked at several ways to reduce the number ofinputs for a �xed windowsize. The disadvantage of input reduction is thefact that we loose information.4.3.1 Using di�erent sampling methodsThe number of inputs depends on the used window size and the used sam-pling period. We could use a smaller sliding window than 25.4 feet, but thisis not an attractive option, because we suspect the tool readings are a�ectedby a window of at least the size of the tool (see Section 2.1.1).Another option is to use a coarser sampling period, for example 0.3 feet(Test 4) instead of 0.2 feet. In a sliding window of 29.7 feet this results in3� 100 inputs, instead of the 3� 150 inputs with a 0.2 feet sampling periodin a sliding window of 29.8 feet.Another approach is to use a non-uniform sampling method. This approachis based on the fact that the physical tool receives most of its informationfrom the center and less from the sides. We have chosen an heuristic non-uniform sampling method in Test 5 as shown in Figure 31, which results inonly 3 � 64 inputs per window (instead of 3 � 150). In Test 3 we use thesame net as in Test 1, but with two hidden layers. The results for these
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window of 29.4 feet

6.0 feet uniform sampled every 0.4 feet

3.0 feet uniform sampled every 0.2 feet

7.2 feet uniform sampled every 0.8 feetFigure 31: Non-uniform sampling in sliding window.tests are shown in Table 7 and Table 8.When a uniform sampling method is used, it it possible to use a coarser sam-pling period (0.3 feet instead of 0.2 feet), because the training and testingresults are similar. The bed boundaries are described less accurately whena coarser sampling period is used. But from these tests we �nd that it doesnot in
uence the performance in a negative way.With the non-uniform sampling method we only loose accuracy at the edges,because the center of the window is sampled with the same sampling periodas in the original input. The net that is trained on this input representationperforms better than the net that was trained on the original input.Both methods, coarser and non-uniform sampling, are appropriate as meth-ods to reduce the inputs.4.3.2 Reducing the input by projection to principal componentsWe use the principal component analysis as described in Section 2.2.1. Theeigenvectors are calculated for an input �le consisting of six models. Themodels are not alike internally, so it is better to use a set of models. Other-wise the eigenvectors will be appropriate for one model, but not for another.We found that it does not matter whether you use six models or more, sowe have chosen for the models A, M, N, P, Q and R (these models are verydissimilar).Both vectors (original N -dimensional and projected M -dimensional) arerescaled with the inverse normalization scaling of equation 9, before theLOI is calculated. Due to this scaling, the loss of information for M = 0 isnot 100 %. The scaled vector consists of only zero's, but the rescaled vectoris everywhere equal to the mean of the input values. This rescaling is notabsolutely necessary, but we wanted to calculate the loss of information onthe original input.In Test 7 the original input vector consists of 3� 64 inputs, constructed by
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Figure 32: Loss of information per variable for Test 6. Original input consistsof 3� 128 inputs, coming from a uniform sampled sliding window.
Table 9: Comparing uniform sampled input without and with projection toprincipal components.PCA 1 Test 3 Test 6architecture 3� 128.10.10.1 3� 32.10.10.1number of weights 3971 1091PCA No YesLOI 7.4 % on RtLOI 4.7 % on RxoLOI 4.4 % on dxonumber of epochs 6429 5193training error 1.1 % 1.7 %generalization error 65.2 % 52.3 %
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Figure 33: Loss of information per variable for Test 7. Original input consistsof 3� 64 inputs, coming from a non-uniform sampled sliding window.
Table 10: Comparing non-uniform sampled input without and with projec-tion to principal components.PCA 2 Test 5 Test 7architecture 3� 64.15.15.1 3� 32.15.15.1number of weights 3151 1711window size 29.4 feet 29.4 feetsampling periodsampling Non-Uniform Non-UniformPCA No YesLOI 7.2 % on RtLOI 4.2 % on RxoLOI 3.9 % on dxonumber of epochs 4404 3896training error 1.0 % 1.4 %generalization error 46.4 % 45.6 %



50 4. FORWARD MODELLING WITH MUD INVASIONa non-uniform sampled sliding window as in Test 5. The LOI for variousvalues of M is shown in Figure 33.The LOI, for both tests, is calculated for P = 1520 patterns coming frommodels J, O and S.In the following tables, Table 9 and Table 10, the LOI is given per variablefor the training and test set.In both tests we �nd that the training and generalization error for the testswith and without PCA are comparable. This means the principal componentanalysis is a good method to reduce the number of inputs. In the �rst testwe achieve an input reduction of 75 % and in the second test 50 %. Theweights are reduced with 73 % and 46 % respectively.4.3.3 Reducing the inputs by removing wavelet coe�cientsIn the following tests we use wavelet coe�cients as inputs instead of theoriginal inputs. We do not know how much coe�cients can be removed onthe �ner detail levels so that not too much information is lost. Therefore,we run several tests with di�erent reductions. In the �rst test, Test 8, nocoe�cients are removed at all and in the last test, Test 11, we remove allthe coe�cients on the �nest detail level and some on higher detail levels.The results are given in Table 11 and Table 12.The �rst interesting aspect is that the net learns better when coe�cients areremoved. During training the weight correction for a hidden node is calcu-lated as indicated by equation 7. It depends on the learning parameter, thelocal gradient and most important on the input signal of node j. So wheninput node j is 0, there is no weight correction. This is probably the causeof the bad performance of the net in Test 8.The wavelet coe�cients are 0 when there is no bed transition at that spot,because the di�erence between the �rst half and the second half of (a partof) the window is 0. Most of the coe�cients on higher detail levels are zero,because there are only a few bed boundaries in the window. Sometimes abed boundary is not even detected as shown in Figure 34.On the �nest detail level this problem is quite severe, because these coe�-cients only see a very small part of the input and this small part is not likelyto contain a bed boundary. Whenever the bed boundary is not detected orwhen there is no bed boundary at all, the coe�cients are zero and the weightfrom this coe�cient to the hidden node is not updated. In other words, thehidden node does not \learn" from this coe�cient.



4.3 Experimenting with input reduction methods 51
Table 11: Comparing input representations with di�erent number of waveletcoe�cients (1).Haar 1 Test 8 Test 9architecture 3� 128.10.1 3� 68.15.1number of weights 3861 3091coe�cient reduction none 2� 20 on level 62� 10 on level 5number of epochs 2125 4303training error 4.1 % 0.8 %generalization error 63.5 % 51.5 %
Table 12: Comparing input representations with di�erent number of waveletcoe�cients (2).Haar 2 Test 10 Test 11architecture 3� 48.10.1 3� 34.15.1number of weights 2191 1561coe�cient reduction 2� 25 on level 6 2� 32 on level 62� 12 on level 5 2� 12 on level 52� 3 on level 4 2� 3 on level 4number of epochs 4479 3848training error 1.0 % 0.9 %generalization error 50.3 % 56.4 %
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Figure 34: Not all transitions are detected by wavelet coe�cients.There are approximately 2 bed boundaries per pattern. Not all boundariesare detected by the coe�cients on the �nest detail level, but when it is notdetected by coe�cient ci it will be detected by coe�cient ci�1 after movingthe sliding window. So on average 50 % of the boundaries is detected onthe �nest detail level. The training set consists of 4601 patterns, so thismeans the weight coming from coe�cient ci to hidden node hj is updatedapproximately 72 times (4601 patterns, 2 boundaries per pattern from which50 % is detected and 64 coe�cients). A usual training takes about 2000 to3000 updates per weight.In Test 9, 10 and 11 we remove a number of the coe�cients on the �nestdetail level and also from higher levels and we see that the performance ofthese nets is much better than the performance of the net in Test 8.When we compare the results to the net trained in Test 1, we see that thenets have better training and generalization errors, although the number ofinputs is reduced from 3�128 to 3�68, 3�48 and 3�34. An input reductionof 73 % is possible, without reducing the net performance. One explanationfor the better generalization performance, is that the nets contain muchless weights. The number of training examples in proportion to the numberof weights is higher in these tests than in Test 1. But it could also bepossible that the net �nds this input representation facilitates the trainingand generalization more than the original discretized sliding window. Theimprovement in generalization is better than for the principal componentanalysis of Test 6 and 7.



4.4 Creating a more representative training set 534.4 Creating a more representative training setOur training set is not very representative, because the examples of adjacentlogging points look very similar. This is caused by the fact that we use adense sampling period for the target log. We use this dense sampling periodbecause we want as much examples per log as possible (the data set is lim-ited). There are two methods we employ to increase the representativenessof the training set: �rstly by using a coarser sampling period for the targetlog and secondly by using \di�cult" (non-similar) examples.When we use a sampling period of 3 feet, one model of 1000 feet only pro-duces about 300 examples. This is what we did in Test 12. To create atraining set of the same size as our original training set we use 15 modelswith this sampling period. This training set is more representative, becauseit contains more di�erent examples. We expect this will make it more dif-�cult for the net to learn the problem. The network has to �nd a moregeneral solution to �t all the examples. This improves the generalization ofthe network.After training the net, we have looked at the approximation of the net to anarbitrary log. We found that the highest relative errors occur around areasof low resistivity and areas with high resistivity contrasts. The training setwould be more representative when it contained more examples like this.Actually this is some kind of weighing of the examples. By o�ering more\di�cult" examples, these examples will get more attention in the minimal-ization process. In Test 13 we use a training set of 4600 examples, comingfrom di�cult parts of log A, P and S and 1436 coarser sampled examples ofthe other parts of log A (with a total of 6036 examples as training set). Theresults for these tests are given in Table 13 and Table 14.As we can see from these tests, both methods improve the generalizationperformance of the net. The training, however, becomes more complicated.It is very important to create a training set that contains a large number ofdi�erent examples that look like examples that are found in reality.
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Table 13: Comparing training set of target logs and training set of coarsersampled target logs.Training set 1 Test 1 Test 12architecture 3� 128.10.1 3� 128.10.1number of weights 3861 3861training set model A mixture of 15 modelsnumber of epochs 3060 3023training error 3.1 % 5.6 %generalization error 70.0 % 26.9 %

Table 14: Comparing training set of target logs and training set of di�cultparts of target logs.Training set 2 Test 1 Test 13architecture 3� 128.10.1 3� 128.10.1number of weights 3861 3861training set model A di�cult examples ofmodels A, P and Snumber of epochs 3060 1042training error 3.1 % 9.8 %generalization error 70.0 % 30.3 %



4.5 Intermediate results input representations 554.5 Intermediate results input representationsWe select some of the nets from the previous tests to train them on a largetraining set. The training set for the Shallow-log is constructed from themodels A, B, C, D, E and F. The target logs are sampled every 0.2 feet, sothe training set contains 28331 examples. We use the models G, H and I asvalidation set (14153 examples) and the models J, K, L, M, N, O, P, Q, Rand S as test set (47485 examples).In Figure 35 the results for three nets are shown. The �rst six models arethe models the net is trained on, the other models are used for validationand testing. The �rst net, Non-uniform, is a net with a non-uniform sam-pled input and PCA reduction from 3 � 64 inputs to 35 inputs for Rt and20 inputs for both Rxo and dxo. The second net, Haar from Test 9, is anet with Haar coe�cients as inputs. The inputs are reduced by removingsome of the coe�cients from 3� 128 inputs to 3� 68 inputs. And the thirdnet, Uniform from Test 4, is a uniform sampled input with a window of29.7 feet and a sampling period of 0.3 feet, resulting in 3� 100 inputs.In Figure 35 the percentage of the log that has a relative error below 5 % isshown.As can be seen in Figure 35, the non-uniform sampled input gives the bestresults on the training set, but they all perform equally over the validationand testing set.The methods to reduce the number of inputs work very well. The networksare able to learn the problem even when a large number of the inputs isremoved. The generalization performance, however, is not su�cient and wehave also lost information. In the next sections we will investigate certainarchitectural constraints in order to improve on the generalization perfor-mance.
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Figure 35: Intermediate results of training three di�erent neural nets on 6models.



4.6 Experimenting with architecture constraints 574.6 Experimenting with architecture constraintsIn the previous tests we only used fully connected nets. Now we will lookat locally connected nets and other connection constraints. An attractivemethod to reduce the number of weights is by forcing certain weights tobe equal. Of course we have to be very careful when we use this type ofconstraint, because it could also make the learning more di�cult and de-crease the generalization performance. This occurs when the weight sharingis forcing the net to �nd a solution that does not �t the problem. It willonly help the training and generalization when the weight sharing is a logicalconsequence of the problem.4.6.1 Experimenting with fully connected netsAs we have seen, the fully connected nets can be trained quite well when asu�cient number of (di�erent) examples is given. We train di�erent fullyconnected nets with uniform sampled inputs and one or two hidden layersin Test 1 and Test 3. The results of these tests are given in Table 15.We �nd that two hidden layers improve the training results, but it is notfeasible to train a net with that many weights on a large training set.4.6.2 Experimenting with locally connected netsThe advantage of locally connected nets over fully connected nets is that theyneed much less weights and the neurons in the hidden layer can specialize ontheir part of the input. The size and overlap of the receptive �elds are thingsto be determined. We have tried two locally connected nets in Test 15 andTest 16. The results are given in Table 16.The results are better when we use small receptive �elds and a su�cientnumber of hidden nodes on the second hidden layer. When we compare thenet from Test 16 to the fully connected net from Test 3, we have obtaineda weight reduction of 63 %. Although the training error is slightly worse,the generalization, which is more important, is a lot better. We �nd thatlocally connected nets are more attractive (in this problem) than the fullyconnected nets.4.6.3 Using symmetry constraintsIn the following tests we have build the symmetry constraints, as describedin Section 2.3.3, in the fully connected net (Test 17 and Table 17), the lo-cally connected net (Test 18 and Table 18) and the wavelet nets (Test 19and Table 19).
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Table 15: Comparing di�erent fully connected nets.Fully connected Test 1 Test 3architecture 3� 128.10.1 3� 128.10.10.1number of weights 3861 3971number of epochs 3060 6429training error 3.1 % 1.1 %generalization error 70.0 % 65.2 %
Table 16: Comparing di�erent locally connected nets.Locally connected Test 15 Test 16connections Locally connected Locally connectedarchitecture 3� 128.12.5.1 3� 128.19.15.1number of weights 1523 1475receptive �eld size 7.8 feet 3.8 feetreceptive �eld overlap 80 % 70 %number of epochs 2679 5267training error 7.5 % 2.1 %generalization error 61.7 % 48.9 %

Table 17: Comparing fully connected nets without and with symmetry con-straints. Symmetry 1 Test 1 Test 17architecture 3� 128.10.1 3� 128.10.1number of weights 3861 1941symmetry constraints No Yesnumber of epochs 3060 655training error 3.1 % 6.6 %generalization error 70.0 % 37.7 %



4.6 Experimenting with architecture constraints 59In all tests the number of weights is reduced approximately 50 %. This makesthe training more di�cult for the net, but it improves the generalizationperformance. This idea of symmetry constraints is worked out further inthe convolutional-regression nets.4.6.4 Experimenting with convolutional regression netsIn the convolutional-regression nets we constrain all receptive �elds to sharethe same weights. The size and the overlap of the �elds determine the accu-racy in spatial resolution. The second hidden layer combines the activationsfrom the �rst hidden layer and determines the location of the feature in theinput.
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Table 18: Comparing locally connected nets without and with symmetryconstraints.Symmetry 2 Test 16 Test 18connections Locally connected Locally connectedarchitecture 3� 128.19.15.1 3� 128.19.15.1number of weights 1475 905receptive �eld size 3.8 feet 3.8 feetreceptive �eld overlap 70 % 70 %symmetry constraints No Yesnumber of epochs 5267 5536training error 2.1 % 2.3 %generalization error 48.9 % 37.8 %
Table 19: Comparing \wavelet" net without and with symmetry constraints.Symmetry 3 Test 9 Test 19architecture 3� 68.15.1 3� 67.15.1number of weights 3091 1561remarks Wavelet coe�cients Wavelet coe�cientsReduction 20,10 Reduction 20,10symmetry constraints No Yesnumber of epochs 4303 3137training error 0.8 % 3.6 %generalization error 51.5 % 46.6 %
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62 4. FORWARD MODELLING WITH MUD INVASIONWe have investigated the features that are detected by the �rst hidden layer.In Figure 39 the activations of the �rst hidden layer at a certain depth areplotted. These activations come from Test 21.From these activations we can see the �rst hidden layer is actually detectingthe bed boundaries. It smooths the input signal and the activations areconstant for parts of the input signal that are constant.
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Table 20: Results for convolutional- regression nets (1).Convolutional 1 Test 20 Test 21architecture 3� 60:6� 9:5:1 3� 150:6� 27:15:1number of weights 503 2827sampling period 0.5 feet 0.2 feetreceptive �eld size 5.5 feet 3.8 feetreceptive �eld overlap 75 % 75 %�gure Figure 36 Figure 36number of epochs 3316 2865training error 3.9 % 0.6 %generalization error 34.7 % 25.5 %
Table 21: Results for convolutional- regression nets (2).Convolutional 2 Test 22 Test 23architecture 3� 100:6� 16:15:1 3� 150:9� 27:15:1number of weights 1927 3865sampling period 0.3 feet 0.2 feetreceptive �eld size 7.2 feet 3.8 feetreceptive �eld overlap 80 % 75 %�gure Figure 36 Figure 37number of epochs 4081 3689training error 1.6 % 0.5 %generalization error 26.3 % 28.6 %
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4.7 Intermediate results architecture design 654.7 Intermediate results architecture designWe train a convolutional-regression net on a larger set of models. Thetraining set, validation set and test set is equal to the one used for theprevious networks (28331, 14153 and 47485 patterns respectively). The netthat is used is shown in Figure 36. The performance in comparison with theprevious results is shown in Figure 40.As one can see, the generalization performance of the convolutional-regressionnet is much better than for the previous nets.We are going to use this type of net for the approximation of both the Deep-and the Shallow-log.4.8 Summary and resultsThe nets with the best performance (training and generalization error) arethe convolutional-regression nets. We train a net on the Shallow-log andone on the Deep-log. We use the convolutional-regression net from Test 21.This net has a sliding window of 29.8 feet, sampled every 0.2 feet (3 � 150inputs), 27 receptive �elds of 3.8 feet with 75 % overlap and 6 feature maps.We perform the following experiments:� Shallow-log (1): We train a convolutional-regression net on earthmodels with invasion (models A, B, C, D, E and F). The target logsare sampled every 0.2 feet. The results are given in Table 22.Table 22: Average relative error and performance for earth models withinvasion (Shallow-log). average percentage of set number ofrelative error predicted correct patternsTraining set 4.3 % 88 % correct 28331Validation set 5.1 % 82 % correct 14153Test set 6.2 % 77 % correct 47485� Shallow-log (2): After this training we add models without invasionand some models with invasion and restart the training. For thispurpose we use the whole training set (see Table 5) (the target logsare now sampled every 1.0 feet) and 40 models without invasion (targetlogs wer sampled every 0.4 feet). The results are shown in Table 23.All models contain either invasion or not. Therefore, the performanceis split into invasion and no invasion.
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Figure 40: Intermediate results (2) of training di�erent neural nets on 6models.Table 23: Average relative error and performance for earth models with andwithout invasion (Shallow-log). average percentage of set number ofrelative error predicted correct patternsinvasion Training set 5.3 % 76 % correct 61688Validation set 5.5 % 75 % correct 14153Test set 5.6 % 74 % correct 14128no invasion Training set 5.6 % 77 % correct 10040Test set 5.6 % 74 % correct 10040



4.8 Summary and results 67� Deep-log: We train a convolutional-regression net on both modelswith and without invasion. We use the same training set as for theShallow-log. The results are given in Table 24.Table 24: Average relative error and performance for earth models with andwithout invasion (Deep-log). average percentage of set number ofrelative error predicted correct patternsinvasion Training set 8.4 % 52 % correct 61688Validation set 8.8 % 51 % correct 14153Test set 9.0 % 50 % correct 14128no invasion Training set 7.0 % 56 % correct 10040Test set 6.9 % 58 % correct 10040The last two nets are not optimal in a sense that they are not trained fromscratch. The net that was trained on the Shallow- log was optimal for modelswith invasion. Then we added models without invasion and new models withinvasion. The net that was trained on the Deep-log used the optimal set ofweights from the �rst net that was trained on the Shallow-log (this wasdone because the Shallow-log and Deep-log look very similar in practice)and continued its training on new models with and without invasion. Betterresults can be achieved by retraining the nets (random initialization of theweights) and directly using a large training set.



68 5. THE NEURAL NETWORK AS FAST FORWARD MODEL5 The neural network as fast forward modelIn this section we present the neural networks that can be used as fast for-ward models. The accuracy is not yet su�cient, but can be improved bytraining on a more representative training set. For each net the \input do-main" is given. This is a description of the models the net is trained on.For earth models similar to these training models, the net gives an approx-imation with an accuracy that is also given in this description. When anearth model lies outside this domain, one cannot expect the net to performoptimal.For each net the best and worst test result is given. These results consistof (a part of) the earth model (only for models with invasion), the approx-imation of the log by the neural net and a cumulative error plot. In thiscumulative error plot the percentage of the log that has a relative error be-low R % (for R = 0:::25) is given. In all plots the invasion radius is given in0.1 inch and the resistivities in 
m.5.1 Application to earth models without invasionA description of this net can be found in Chapter 3. The net is fully con-nected. The input domain for the net that is trained on the Deep- and theShallow-log, here called NoInvasion, is given in the following table:net NoInvasiontool response Deep-log and Shallow-logsize sliding window 15 feetsize training set 11797 examplesrange Rt 1 ... 70 
mrange bed size 1 ... 5 feetspeed 400 pnt / secaccuracy Deep-log 2.2 %accuracy Shallow-log 6.0 %In Figures 41 and 42 the worst and best test results are shown for theDeep-log approximation of the net NoInvasion. From the cumulative errorplots for these approximations one can see that the deviation in performanceis quite large. In the worst case only 8 % of the log has a relative error below5 %, but in the best case this is 100 %.In Figures 43 and 44 the worst and best test results are shown for theShallow-log approximation of the net NoInvasion. The deviation in perfor-mance is much less than in the case of the Deep-log. In the worst case 75 %of the log has a relative error below 5 % and in the best case this is 100 %.
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Figure 41: Worst case neural net approximation of Deep-log. Average rela-tive error is 14.2 %.
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Figure 42: Best case neural net approximation of Deep-log. Average relativeerror is 2.6 %.



5.1 Application to earth models without invasion 71

1

10

100

0 5 10 15 20 25 30 35 40 45 50

True resistivity Rt
Shallow-log

Approximation by neural net

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Relative error R

Percentage of log
with relative error
below R %

Figure 43: Worst case neural net approximation of Shallow-log. Averagerelative error is 8.5 %.
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Figure 44: Best case neural net approximation of Shallow-log. Averagerelative error is 1.2 %.



5.2 Application to earth models with invasion 735.2 Application to earth models with invasionA description of this net can be found in Chapter 4. This is a convolutional-regression net. The following net only produces an approximation of theShallow-log. It is trained on earth models as described in the following table:net Invasiontool response Shallow-logsize sliding window 30 feetsize training set 28331 examplesrange Rt 1 ... 71 
mrange Rxo 0.5 ... 2.5 
mrange dxo 8 ... 50 inchrange bed size 1 ... 20 feetspeed 90 pnt / secaccuracy Shallow-log 6.2 %In Figure 45 two of the test models are shown. The model at the top isdi�cult for the neural net and the model at the bottom relatively easy. InFigures 46 and 47 the worst and best test results for the Shallow-log ap-proximation of the net Invasion are shown.In the cumulative error plot of the �rst approximation is shown that 70 % ofthe log is approximated with a relative error below 5 %. In the cumulativeerror plot of the second approximation one can see that in the best case83 % of the log is approximated with a relative error below 5 %.This network is optimal for the earth models it was trained on.5.3 Application to realistic earth modelThe domain of earth models the convolutional-regression net FM is trainedon, are a combination of the previous models without and with invasion. Aremark should be made that the value Rxo was taken to be 1.1 
m whendxo was 4.25 inch. In Figure 48 a formation model is shown that comesfrom a real oil well. This model is more realistic. It does not lie in the inputdomain, because it contains both parts with and without invasion. In ourtraining set each model only contained either invasion or not. The beds arerelatively small. The Deep-log and Shallow-log look very similar for thismodel, this is also di�erent from the models the net is trained on. All in allthis model looks quite di�erent from the models in the training set and wedo not expect the net to be optimal for this model.



74 5. THE NEURAL NETWORK AS FAST FORWARD MODELA description of the earth models the net was trained on is given in thefollowing table:net FMtool response Deep-log and Shallow-logsize sliding window 30 feetsize training set 61688 examplesrange Rt 1 ... 71 
mrange Rxo 0.5 ... 2.5 
mrange dxo 4.25, 8 ... 50 inchrange bed size 1 ... 20 feetspeed 85 pnt / secaccuracy Shallow-log 8.0 %accuracy Deep-log 9.0 %The approximation of the Deep-log is shown in Figure 49 and the approx-imation of the Shallow-log is shown in Figure 50. As we can see from thecumulative error plots, the relative error between the neural net responseand the Deep-log is below 5 % for 67 % of the log. For 88 % of the log therelative error lies below 10 %.The Shallow-log approximation is much better. Here 77 % of the log has arelative error below 5 %.
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Figure 45: Examples of earth models used for the net Invasion.
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Figure 46: Worst case neural net approximation of Shallow-log. Averagerelative error is 7.5 %.
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Figure 47: Best case neural net approximation of Shallow-log. Averagerelative error is 4.5 %.
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Figure 49: Neural net approximation of Deep-log. Average relative error is7.6 %.
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Figure 50: Neural net approximation of Shallow-log. Average relative erroris 8.3 %.



816 ConclusionsIn this section we present the conclusions following from the experiments wehave performed and the methods we have investigated. The conclusions aresplit into three parts1. A �nal conclusion about the goal of this project: investigating whetherit is feasible to use a neural network in the forward modelling process.2. Conclusions about the used methods. This involves the input repre-sentation, the techniques that are used to reduce the number of inputsand the architectural constraints.3. Conclusions about the use of the neural network in training and test-ing. These conclusions are useful in further investigation and in theuse of the trained network in other applications.6.1 Neural network as fast forward model?In the �rst part of the project we only used earth models without invasionand in the second part we only used earth models with invasion. For bothtypes of earth models neural nets were trained with the following results:� No invasion: We use a \standard" fully connected net with one hid-den layer containing 15 nodes, a sliding window of 15 feet and a sam-pling period of 0.2 feet (75 inputs). The network has more troublein learning the Deep-log than the Shallow-log. This is caused by theshoulder bed e�ect, which is more pronounced in the Deep-log than inthe Shallow-log. The performance is given in the following tableTarget log Data set percentage of log averagewith relative error relative errorbelow 5 %.Shallow-log Training set 98 % 1.7 %Test set 96 % 2.2 %Deep-log Training set 62 % 5.1 %Test set 61 % 6.0 %



82 6. CONCLUSIONS� Invasion: We trained one convolutional-regression net on the Shallow-log. The net uses a sliding window of 29.8 feet, sampled every 0.2 feet,27 receptive �elds of 3.8 feet with 75 % overlap and 6 feature maps.The performance is given in the following tableTarget log Data set percentage of log averagewith relative error relative errorbelow 5 %.Shallow-log Training set 88 % 4.3 %Validation set 82 % 5.1 %Test set 77 % 6.2 %� Mixed invasion and no invasion: We used the same convolutional-regression net as in the previous tests with a training set consisting ofearth models with and without invasion (but not mixed). This timewe trained the net on both the Deep- and the Shallow-log. These netsare not optimal, because �rst the net was minimalized on models withinvasion and then we added more models with and without invasion.In the following table the performance of the nets are given for themodels with and without invasionTarget log Data set percentage averageof log with relativerelative error errorbelow 5 %.Shallow-log invasion Training set 76 % 5.3 %Validation set 75 % 5.5 %Test set 74 % 5.6 %no invasion Training set 77 % 5.6 %Test set 74 % 5.6 %Deep-log invasion Training set 52 % 8.4 %Validation set 51 % 8.8 %Test set 50 % 9.0 %no invasion Training set 56 % 7.0 %Test set 58 % 6.9 %



6.2 Methods 83� Real logging data: Real earth models contain both layers with andwithout invasion. The trained convolutional-regression networks fromthe mixed invasion and no invasion part were tested on a realisticearth model. The performance of these nets on the real logging dataisTarget log percentage of log averagewith relative error relative errorbelow 5 %.Shallow-log 77 % 8.3 %Deep-log 67 % 7.6 %The network performance can be improved by using more models likethis (partly with and partly without invasion) and by choosing theinvasion radius between 4 and 25 inch instead of 8 and 50 inch.� Approximation time: The goal of the project is to create a fasterforward model. The neural network is approximately 100 times fasterthan the forward model that is presently used at KSEPL (both timesmeasured on an IBM R6000 workstation). This could still be improvedby optimization of the neural net calculations.Although the accuracy of the approximation still needs some improvement,the network is a lot faster than the forward model that is used now. Weconclude that it is feasible to use a neural network in the forward modellingprocess. Even with less accuracy the neural network could be used in the�rst iterations of the forward modelling process. In that way a fairly goodinitial guess can be made very quickly. Then one can use the more accurateforward model.6.2 MethodsIn the �rst part of the project we only used fully connected nets with varyingnumber of layers, hidden nodes and variations in the size of the slidingwindow. More interesting results are found in the second part of the project,where we used earth models with invasion.6.2.1 Input representationWe experimented with two input representation. The �rst, the discretizedsliding window approach, gave the best results (training and generalization)and has been used in further tests:� Discretized sliding window: We used a uniform sampled slidingwindow as input to the neural net. The number of inputs coming from



84 6. CONCLUSIONSthis window can be quite high, especially in the case with invasion. Thetraining result was good, but the network was not able to generalizewell.� Attributes: Again we used a �xed size sliding window, but now wedescribe the beds that occur in this window. Each bed was describedby a number of attributes. The problem, however, was not describedwell by these attributes. To �nd appropriate attributes is a di�culttask.6.2.2 Input reductionAll preprocessing methods we used were successful. We achieved a highinput reduction without loss of performance (measured in training and gen-eralization results):� Sampling method: The sliding window can be sampled uniform andnon-uniform. In the �rst case we experimented with di�erent sam-pling periods. A coarse sampling period results in less inputs and thetraining and generalization results were comparable. The bed bound-aries are described less accurately. The non-uniform sampling methodworked very well. This method is based on the tool physics. The toolreceives most of its information from the center of the window and lessfrom the edges. Non-uniform sampling results in less inputs and thegeneralization performance of the net was better than for the net thatused a uniform-sampled sliding window as input. Here we only looseaccuracy at the edges of the window.� Principal components: With the projection of the N -dimensionalinput vector to a M -dimensional vector, described by M principalcomponents, an input reduction of 75 % was achieved. The trainingresults were comparable and the network generalized better than theoriginal discretized input, although approximately 7 % of the informa-tion of the input was lost (measured in the relative distance betweenthe original and projected input).� Haar transform: The advantage of transformation of the originalinput values to the wavelet coe�cients is that a number of the coe�-cients can be removed. A reduction of 73 % of the number of inputswas achieved with good training and generalization results. By remov-ing coe�cients at the edges of the window, we loose some accuracy.The bed boundaries outside the center of the window are describedless accurately.



6.3 Application of the convolutional-regression net 856.2.3 Architecture design� Fully connected nets: In the case without invasion a fully connectednet can be used. The generalization performance and the trainingresults are comparable. When the beds contain invasion, we needthree parameters to describe the bed. This type of network does notgeneralize well. The number of connections in this net is very high,resulting in a long training time and storage and memory problems.Preprocessing methods can be used to reduce the number of inputs.� Locally connected nets: A neural that is locally connected hasmuch less weights and better generalization than the fully connectednets. The training time needed for these nets is shorter than for thefully connected nets. The size of the receptive �elds and the overlapare di�cult to determine. We choose, however, for small �elds withlarge overlap. In this way it is easier for the net to determine theprecise location of a feature that occurs in one of the �elds. This netneeds at least two hidden layers: one for detecting the local featuresand one for combining the found features.� Symmetry constraints: An input signal and its mirror image givethe same tool response and should therefore also give the same net-work response. This requirement leads to certain weight constraintsin the fully, locally and wavelet nets. The number of weights is re-duced, because certain weights are \shared" (equal). The reductionin the number of weights makes the training more di�cult, but it im-proves the generalization performance in comparison with the samenets without these constraints.� Convolutional-regression nets: In the convolutional-regression netall receptive �elds share the same weights. One group of hidden nodeswith shared weights is called a feature map. The reduction of freedomis compensated by an increase in the number of feature maps. Thisnet performs a convolution on the input with a convolution kernel, theset of shared weights, that is has learned itself. The generalizationperformance of this type of net is better than for all the other nets wehave tried.6.3 Application of the convolutional-regression netWhen the convolutional-regression net is going to be used in other applica-tions, the following aspects are important:� Size of the sliding window: The size of the sliding window dependson the application. One should have an idea of how much of the inputlog is responsible for the output.



86 6. CONCLUSIONS� Sampling period of sliding window: The sampling period of thesliding window determines how accurate the input is described. Agood indication is to use the same sampling period as for the targetlog.� Receptive �elds: The size and overlap of the receptive �elds deter-mine the accuracy of the location of the features in the input. Usesmall �elds with high overlap. The number of weights, however, de-pend on the number of receptive �elds. Choose the size of the �eldsand the overlap so that the number of weights is not too large.� Representative training set: The training set is constructed fromthe target logs. Do not take a too dense sampling of the target log,otherwise most examples look too much alike. It is better to take a(very) coarse sampling period and use a large number of di�erent logs.In this way the training set consists of a large number of very di�erentexamples. Create models that are likely to be found in reality.� Size training set: The number of training examples that are neededin order to get good generalization performance depends upon therepresentativeness of the training set. When the training set containsa high number of di�erent examples, one needs approximately 10 timesthe number of weights as examples.� Minimalization network error: The error that the network is min-imalizing can be adapted to the requirements of the approximation.With the combined logarithmic and normalization scaling the neuralnet is minimalizing the proportion d=a, where d is the desired outputand a is the actual output.The convolutional-regression net can easily be adapted for problems withmore variables than Rt, Rxo and dxo. When there are for example dippinglayers, the dip angle can be added as fourth variable (for each samplingpoint). This is only possible when there is a di�erent dip angle for each bedin the formation. The scaling of a new variable needs new investigation.The bore hole radius and resistivity of the drilling 
uid can also be addedas variables, but like the dip angle, this should only be done when there areenough di�erent values.



IA Neural network simulatorsIn this project we used the Xerion network simulator versions 3.1 and 4.0(van Camp 1993). We also tried other network simulators, Stuttgart NeuralNetwork Simulator (SNNS) (Zell 1993) and Aspirin/MIGRAINES (Leighton1992), but we found that Xerion provides more freedom in specifying archi-tecture constraints. The Xerion simulator allows you to alter the networkdesign on any level: layers, nodes and even connections. This is very usefulfor the implementation of the convolutional- regression nets, where we con-strain certain weights to be equal.The SNNS simulator is a beautiful graphical simulator and has a specialoption for time delayed neural nets (see Section 2.3.5). A layer is speci�edby its number of features (or variables) and its total delay length (number ofnodes in sliding window). Layers can be fully or locally connected. Receptive�elds are speci�ed by their size (delay length) and always have maximumoverlap (displacement of one node). All receptive �elds have shared weights.It is, however, not possible to constrain arbitrary weights to be the same.And it is also not possible to change the overlap of the receptive �elds. Wepresent the inputs as a sequence within a sliding window, but for the SNNSsimulator one should present the inputs at one speci�c logging point. Theadvantage of this is that the �le that contains the data is much smaller thanin our case. There are only 4 values per pattern (Rt, Rxo, dxo and thetool response) instead of 3 �(ws + 1) for a window size w and a samplingperiod s. The delay length speci�es how many inputs before this input a�ectthe output. One cannot specify how many inputs after this input a�ect theoutput. So there are three main points why this simulator is not suitablefor our purposes:1. It is not possible to specify arbitrary weight constraints.2. The overlap of the receptive �elds is always maximal.3. One can only specify how many inputs before (and not after) thecurrent input a�ect the output.It is not possible to specify convolutional-regression nets with this simulator.Aspirin/MIGRAINES is a compiler. It compiles your code into a work-ing neural network simulator (in C). In the source code the neural net isspeci�ed by its components. A component is described by the name of thelayer, the size of the layer (in nodes) and connection information (how thelayer is connected to other layers). Receptive �elds with shared weights arecalled Shared Tessellations and one can specify the size of the �elds and theoverlap in the x- and y-direction. It is not possible, however, to constrainspeci�c weights to be shared, which we needed in the symmetry experiments.



II A. NEURAL NETWORK SIMULATORSIt is possible to create convolutional-regression nets with this simulator.Although receptive �elds are easier de�ned by the previous simulators, wehave used the Xerion simulator. All hidden neurons in one feature mapare connected by n�m links to their corresponding receptive �eld (of sizen�m). All these connections have to be speci�ed, which can mount up to1620 connections in the convolutional-regression net. Neurons can be con-strained to have the same incoming links, which is what we did per featuremap. Then the nodes in one feature map are constrained to have the sameweights. Our Xerion topology �les contained a total of 9951 lines. Thereading of this �le and the building of the net is quite slow, but it outweighsthe lack of freedom of the other simulators.
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