Molecular Computation and Splicing Systems

J.H.M. Dassen!

August 30, 1996

'Author’s current address: Department of Computer Science, Lei-
den University, P.O. Box 9512, 2300 RA Leiden, The Netherlands;
jdassen@wi.LeidenUniv.nl.

Abstract

This thesis provides an overview of the related subjects of Molecular
Computation and Splicing Systems.

Molecular Computation is computation using (biological) macromolecules
like DNA as information carriers. These macromolecules are manipulated
using biological operators, such as enzymes, and operations commonly used
in bio-technology and genetic manipulation, such as filtering operations. It
has received much attention following Adleman’s seminal article [Adl94].

Splicing Systems are models in Formal Language Theory that use the
splicing operator instead of concatenation. The splicing operator is an oper-
ator on two strings that is an abstraction of the effect of restriction enzymes
on strands of double-stranded DNA combined with ligation. It was intro-
duced in [Hea87].

Several models are discussed, including models that are capable of uni-
versal computation. Biochemical background is provided in an appendix.
Extensive references are provided.

Bibliographic data

Omastersthesis{Dassen96,
author = {J.H.M. Dassen},
title = {Molecular Computation and Splicing Systems},
school = {Department of Computer Science, Leiden University},
address = {P.0. Box 9512, 2300 RA Leiden, The Netherlands},
month = {August},
year = {1996},
url = {\url{ftp://ftp.wi.LeidenUniv.nl/pub/CS/MScTheses/dassen96.ps.gz}},
homeurl = {\url{http://www.wi.LeidenUniv.nl/~jdassen/}},

To my parents, who have always
helped and stimulated me in finding
my way.

Foreword

The research that resulted in this thesis was planned to produce a critical
overview of the theory of Splicing Systems. One of the first papers I studied
mentioned Adleman’s work on solving in the laboratory a problem using
DNA as an information carrier. This fascinating work caused a change of
plan, broadening the subject to include Molecular Computation.

The huge amount of papers dealing with Molecular Computation that
were published (or made accessible to the research community on-line) in
the less than two years since the publication of Adleman’s paper forced me
to make a selection, which I hope has not distorted the overview I'd like
to provide too much and which represents the balance between theory and
practice I feel comfortable with.

I thank all those who helped me during the research for and the writ-
ing of this thesis: Grzegorz Rozenberg, my thesis advisor, who allowed me
to change from the original plan; Hendrik Jan Hoogeboom, my secondary
thesis advisor, upon whom circumstances forced much more work than is
customary for that role; Nike van Vugt, who provided me with early, fast
feedback; Jurriaan Hage, Egbert Boers, Reinier Balt, , critical proofreaders
who offered valuable suggestions; Remko Buitenhuis, for checking the appen-
dix; Len Adleman, for getting me on the DNA computing mailing list and
for providing me with archives of that list; Samuel Braunstein, for sending
me a copy of his tutorial on Quantum Computation; and finally to everyone
who made the Internet the invaluable research tool it is today and who made
the freeware tools used in editing, typesetting and managing this document.

Ray Dassen Leiden, August 1996

Contents

Foreword
Contents

1 Introduction
1.1 A definition of molecular computation
1.2 Adleman’s approach L.
1.3 Why yet another model?
1.4 Advantages and promises of Molecular Computation.
1.5 Limitations and drawbacks of Adleman’s approach
1.6 Other approaches to molecular computation

2 Classifying models of Molecular Computation
2.1 Special purpose or universal
22 Invitroorinvivo
2.3 The information carrier
2.4 Theoperations
2.5 Are instructions data?
2.6 Manipulation of the information carrier itself
2.7 One-pot or multiple phases or tubes
2.8 Error-resilience
2.9 Communication
2.10 Nativeornot

3 Special purpose models
3.1 Adleman’s approach L.
3.1.1 The Directed Hamiltonian Path problem
3.1.2 The algorithm

CONTENTS

3.1.3 Implementation 24
3.1.4 Classification 25
3.1.5 Results and problems 26
3.2 Lipton’smodel oo 27
3.2.1 Operations. e 27
3.2.2 Solving SAT 28
3.2.3 Results and problems 29
Universal models 31
4.1 Turing machines. L oL 32
4.1.1 Basicmodel oo 32
4.1.2 Representation 32
4.1.3 Configurations. 32
4.1.4 (Non)determinism 33
4.2 Beaver’'smodel0 L. 33
4.2.1 A new operator: context-sensitive substitution 33
4.2.2 Implementing the simulation 34
4.2.3 Problems 34
4.3 Rothemund’s model 35
4.3.1 Useful enzymes 35
4.3.2 Representing instantaneous descriptions 36
4.3.3 Transitions 37
4.3.4 Estimates 38
4.3.5 Advantages 38
4.3.6 Problems 38
4.4 Winfree’s model: simulating cellular automata 40
4.4.1 Cellular automata 40
4.4.2 Winfree’s simulation 41
4.4.3 Evaluation., 41
Splicing Systems 43
5.1 Background L 43
5.2 The splicing operator, 43
5.3 Splicingrules Lo 44
5.4 Splicing Systems L Lo oo 45
5.5 Classes of Splicing Systems 46
5.6 Variations 46
5.7 Interesting results 47

CONTENTS 9
5.7.1 Requirements for practicality 47

5.7.2 Candidate models for universal computation based on
splicing 48
5.8 Problems. 48
6 Current developments in Molecular Computation 51
6.1 Consideration of practical problems 51
6.1.1 Errors ol
6.1.2 Attention for reaction circumstances 52
6.2 Other information carriers or chemistries 52
6.3 Hybrid schemes oo 54
6.4 Communication 54
6.5 A ‘killer application’? 54
6.6 The future... 595
A A bit of biochemical background 57
A.1 From DNA to proteins 57
A.2 Manipulating DNA oo 59
A.2.1 Joining DNA sequences 59
A22 PCR 59
A23 Cutting DNA L 59
A.3 Candidate-molecules for universal Molecular Computation 60
References 61
Index 95

10

CONTENTS

Chapter 1

Introduction

1.1 A definition of molecular computation

Molecular computation is computation using biological macro-molecules like
DNA as information carriers, that are manipulated using biological opera-
tors, such as enzymes, and operations commonly used in bio-technology and
genetic manipulation, such as filtering operations and the polymerase chain
reaction.

Like many recent developments in Computer Science, such as genetic al-
gorithms and neural networks, Molecular Computation is inspired by nature.
While these recent developments mostly use nature as a resource to inspire
new techniques for problem solving, as a basis for software, Molecular Com-
putation focuses on nature as a basis for hardware.

1.2 Adleman’s approach

The current boom in interest in molecular computation started with Adle-
man’s seminal article [Adl94], in which an instance of the directed Hamil-
tonian path problem — a well-known NP-complete problem — is solved using
DNA and standard biological techniques.

Adleman’s approach is based on a nondeterministic algorithm for the di-
rected Hamiltonian path problem. The algorithm amounts to the following:
generate a random path through the graph and apply a (polynomial-time)
verification algorithm (see [CLR90]) to it. The path is encoded as a DNA se-
quence, and the verification algorithm is implemented by sequentially check-

11

12 CHAPTER 1. INTRODUCTION

ing the properties of the sequence encoding a candidate solution path and
discarding that path if it does not fulfill the requirement being checked.

Adleman shows how to solve instances of one specific combinatorial prob-
lem, Hamiltonian Path, in a way that easily suggests a generalization to other
combinatorial problems. This generalization was first formalized by Lipton
([Lip94, Lip95b, Lip95a, Lip96]), who provided clear definitions of data rep-
resentation, initialization and operations.

We will study Adleman’s approach and Lipton’s generalization in detail
in Chapter 3.

1.3 Why yet another model?

There are a number of reasons why Molecular Computation is interesting
from both a theoretical and a practical viewpoint.

As a study of complex systems, Computer Science has many large and of-
ten fuzzy borders with Mathematics, Physics, Biology, Chemistry, Linguistics
and other sciences. These sciences frequently use Computer Science to im-
plement and study their models on computing devices. Some of these models
have led to ‘architectures’, models of computation, either in hardware or as
theoretical constructs, like neural networks, classifier systems, Post produc-
tion systems, string rewriting systems, Turing machines, cellular automata,
spreadsheets etcetera.

From the viewpoint of computability, one sufficiently strong model, say
Turing machines, is enough. For every algorithmic device of all other known
and unknown architectures, there exists a Turing machine that performs the
same computation as that device. This unprovable, but generally accepted
statement is known as the Church-Turing hypothesis.

Indeed, all computations of every device in all of the models can be sim-
ulated by a single, so called universal Turing machine. The importance of
constructing a universal machine (either physically or as a mathematical con-
struct) is that the universal machine is programmable: it in itself is enough to
perform all computations, meaning that from the viewpoint of computational
strength, no other hardware needs to be built. In all of the sufficiently strong
— i.e. Turing machine equivalent — models, there exist universal devices.

There are quite a few reasons why it is important to study more than one
single model and to study weaker models too, though.

1.3. WHY YET ANOTHER MODEL? 13

Alternative viewpoints. One model can be a lot more natural for ex-
pressing a problem than another. This has been noted many times. In
linguistics it is known as the Whorf/Sapir hypothesis ([Who40, Sap58]) ex-
pressed colloquially as ‘Language shapes thought’. [Bea94] formulates it thus:
‘If all you have is a hammer, everything looks like a nail’. For instance, we
normally view a computer as ‘a universal Turing machine with limited tape’.
This model provides us with a structure suitable for programming purposes,
which the formally equivalent model under the limited tape assumption of
finite state machines lacks.

Formality and ease of use. Different models often represent different
choices in the trade-off between formality and ease of use. Although Pascal
is much easier for practical programming purposes than Turing machines, its
semantics are less formally defined, and attempts to develop or use formal
semantics for it are daunting tasks.

Ease of implementation. Also, for a specific kind of hardware, one model
is easier to implement than another. Writing a compiler for an Algol-like lan-
guage on current electronic computers is more straight-forward than writing
a compiler or interpreter for a functional language. On the other hand, due
to their lack of side-effects, purely functional languages can easier exploit
parallel architectures than can imperative ones.

Applicability of theories from other sciences. Using a different model
one can sometimes use theories from other sciences to perform analysis on
practical aspects. For instance, statistical mechanics have successfully been
used in analysing the behaviour of neural networks.

Differences in what problems are tractable. Furthermore, although
most of the models can simulate each other using a simulation of polyno-
mial time-complexity, there are indications (e.g. [Sho94]) that some im-
plementable models (especially quantum computation) may be more than
polynomially faster than others, thus possibly enlarging the range of prob-
lems that can be considered tractable.

By providing different viewpoints, having multiple models improves our
insight in computability and the essence of algorithms and complexity.

14 CHAPTER 1. INTRODUCTION

Hierarchies: strength versus analysability. The different models can
be weakened in different ways, thus inducing hierarchies (actually partially
ordered families of classes of algorithms) that describe different positions in
the trade-off between computational power (or expressibility) and suitability
for analysis (or decidability or effectiveness of decision problems): more can
be proved for less powerful models and the decision algorithms for the weaker
model are often less complex than for the stronger model.

The classical example of such hierarchies is the Chomsky hierarchy (see
[HU79, Ch. 9]) consisting of the regular languages, the context-free lan-
guages, the context-sensitive languages and the recursively enumerable lan-
guages. All of these languages are in practical use: regular languages de-
scribe the patterns that the Unix grep(1) command can recognize; context-
free languages are used in describing the syntax of programming languages;
context-sensitive languages have applications in natural language processing
and linguistics; and recursively enumerable languages describe the limits of
what programs can compute.

1.4 Advantages and promises of Molecular Com-
putation

Molecular Computation (also known as ‘DNA computation’) is a fairly
recent model, with many promises, both practical and theoretical.

Molecular Computation is based on nature’s way of generating complex-
ity: the interaction between DNA, the carrier of genetic information, and
enzymes (operators on DNA). It has potential for easily allowing massive
parallelism on an unseen-before scale, providing new insights for biology,
pharmacy, and medicine. It has already resulted in a new branch of for-
mal language theory, using splicing operators that are modeled after enzyme
operations, instead of concatenation.

Energy-efficient. Nature is highly efficient in its energy use: only a small
percentage of energy produced is in a useless form. Cells routinely achieve the
same reaction speeds at lower temperatures — thus wasting less energy on
heat — as our chemical technology, because the enzymes they have evolved
are such good and selective catalysts. In electronic computing too, much

1.5. LIMITATIONS AND DRAWBACKS OF ADLEMAN’S
APPROACH 15

energy is wasted as heat! and subsequently on cooling. Using nature’s tool-
box can make molecular computers much more energy-efficient than previous
types of computers.

Molecular Computation will push biology and biochemistry for more flex-
ible operations and more reliable techniques that may prove useful in those
disciplines and in medicine. Its focus on computation, on information stor-
age, retrieval and manipulation may also inspire new insights into the early
phases of the evolution of life on earth.

Massive parallelism: a nondeterministic computer. A sequential
computer is an approximation of a deterministic Turing machine, where the
unbounded tape is approximated by a large, but finite memory. In the same
way, a parallel computer is an approximation of a nondeterministic Turing
machine where the unbounded number of parallel computational searches is
approximated by a large, but finite number of parallel searches. Adleman’s
approach has attracted a lot of attention, because the number of parallel
searches it permits is larger than that of previous parallel computers by sev-
eral orders of magnitude. From the viewpoint of computational power, it is
nothing new (‘yet another non-deterministic Turing machine’), but from a
practical perspective it is very interesting, since it may redefine the limits of
feasible computation.

Density of information storage. The potential density of information
storage is very high: 66-67 atoms per base pair (including the sugar-phosphate
backbone and supporting ions); each base pair can encode for four symbols
(two bits).

1.5 Limitations and drawbacks of Adleman’s
approach

There are a number of drawbacks and limitations to Adleman’s approach,
some of which have been resolved.

Adleman’s approach is designed to solve combinatorial problems only. No
attempt is made to achieve universal computation.

1Some modern CPUs can be used to bake eggs on when their cooler is removed.

16 CHAPTER 1. INTRODUCTION

Furthermore, the operations involved are very slow and highly error prone
compared to those in digital electronic computers, and the model’s scalability
to large problem instances is doubtful.

Also, it requires an external operator to perform the various filtering
steps; it cannot be ‘switched on and run by itself’.

We will review these and other problems in more depth in Chapters 3
and 6.

Research since has focused on removing or alleviating these limitations.
There are now several universal models; some approaches do not require an
operator; and less error prone operations, as well as probabilistic approaches
to increase reliability are being studied.

1.6 Other approaches to molecular computa-
tion

More general models have been proposed, such as Lipton’s model for solving
NP-complete problems. We will focus on this model in Section 3.2. Other
researchers have focused on achieving universal molecular computation, by
moving away from the use of DNA as a static ‘write-once’ representation of
a potential solution to a dynamic use of DNA as a more general information
carrier, manipulated using enzymes.

The striking similarity of DNA to Turing machine tape has been exploited
to simulate Turing machines, including universal ones. Of these, we will
discuss Beaver’s (Section 4.2) and Rothemund’s (Section 4.3).

A different approach was taken by Winfree, who studied non-linear DNA
sequences generated by self-assembly in [Win95b, WYS96]. These allow trees
to be represented directly, and seem to be capable of universal computation
by themselves (without manipulation by enzymes): one-dimensional cellu-
lar automata can be simulated by two-dimensional DNA ‘clusters’. This
approach is briefly discussed in Section 4.4.

Chapter 2

Classitfying models of Molecular
Computation

Molecular Computation is a quite new discipline, and still has a way to go
before becoming a mature technology. It has been compared in [Smi95] to the
vacuum tubes phase in the development of electronic computers. Befitting
this stage, the number of radically different models is large, and it is difficult
to tell yet which models are viable and which will be culled by implementation
problems or economic feasibility.

This state of affairs makes it hard to give a precise definition that includes
all of the models. It is more illuminating to focus on and clarify the differences
between the various models.

We will therefore list the important differences. Please note that most of
the distinctions made here are formulated as dichotomies, although practice
will show many shades of gray between black and white. Also, the distinctions
are not to be taken as orthogonal: many of them are interrelated, often
strongly.

2.1 Special purpose or universal

Some models are designed to handle only a limited class of problems, mostly
those that are intractable using electronic computers, such as problems in-
volving large combinatorial searches. Examples of these models are Adle-
man’s and Lipton’s approach of combinatorial searches encountered when

17

CHAPTER 2. CLASSIFYING MODELS OF MOLECULAR
18 COMPUTATION

attacking NP-complete problems ([Ad194, Lip94, Lip95a]) and problems in
cryptography ([Bea94, BDL95, ARRW96, BDL96]).

Other models focus on achieving universal Molecular Computation. A
universal model is important, because in a universal model there exist univer-
sal members: members that can be programmed to perform any computable
task. Most of these models are proof-of-concepts rather than practical pro-
posals, although most researchers express optimism about achieving practical
universal Molecular Computation. These models include Beaver’s and Rothe-
mund’s simulations of Turing machines — either generic ones or a universal
one specifically — which we will study in Chapter 4 and Kurtz’ RNA editing
and rewriting based one ([KMRS96)).

2.2 In vitro or in vivo

Most current models are in vitro. In vitro models are conceptually less com-
plex than in vivo ones!, but in vivo models may have several advantages.
Cells have evolved high reaction speeds and efficient ways of separating re-
actions by selective transportation of reaction products and disposal of by-
products. Even if in vivo Molecular Computation may be infeasible, living
systems are an important source for tricks and techniques. For instance, the
use of multiple tubes can be seen as an imitation of the cell’s compartments.

2.3 The information carrier

The various models of Molecular Computation employ different information
carriers.

Most schemes use DNA, but DNA has many forms in which it is suit-
able. Single-stranded and double-stranded DNA are common, but more
exotic forms are used too, such as circular DNA (modelled theoretically
in [YKF95]), partially double-stranded DNA ([RWB7*96]), non-linear DNA
([WYS96]). However, double-stranded DNA appears to be the preferred
form under most reaction circumstances, and the assembly of ‘unusual’ DNA
structures is still more a topic of research than a technology ([SWL196]).

I In vivo models are those models in which the computation is carried out in the bio-
chemistry of a living organism, such as a genetically modified Escherichia Coli bacterium.

2.4. THE OPERATIONS 19

Some researchers have speculated on the use of artificial DNA-like poly-
mers such as PNA, either as a more stable information carrier? or for inter-
mediate use in operations ([RWB™96]).

RNA is also suitable as an information carrier. In nature, RNA is more
often manipulated and rewritten than DNA. DNA’s function is mostly that
of a rather passive, nearly read-only, long-lived instruction tape, while RNA
is more of a short-lived scratch memory used in protein synthesis. RNA is
the main inspiration for the abstract CNA model in [KMRS96].

2.4 The operations

Current models employ a wide range of operations on information carri-
ers from areas like physical chemistry and biotechnology, such as filtering,
magnetic bead extraction and gel electrophoresis, and biochemistry biology,
including enzymatic reactions such as PCR.

The choice of operations in a model depends on several factors. One is
the function of the information carrier in the model, which we will discuss
shortly. Another is — of course — the information carrier itself.

The scalability of models is influenced by the dimensionality involved
in the operations: some operations are volume-based (e.g. the addition of
enzymes), while others — especially magnetic bead extraction and gel elec-
trophoresis — use less than three dimensions, and may therefore scale less
well.

A factor that is currently receiving much attention, is the reliability of
operations. There are many examples of unreliable behaviour. Filtering
operations may not filter out all undesired molecules, and not pass all desired
ones. Ligation also happens between strands that are not fully Watson-Crick-
complementary. PCR — often used to extract (partial) solutions — may
boost undesired molecules too, and can produce distorted copies; also, some
reaction circumstances favourable for PCR can result in reactions between
the molecules to be copied ([KCL96]).

2Though no enzymes for manipulating PNA exist. ([Smi95])

CHAPTER 2. CLASSIFYING MODELS OF MOLECULAR
20 COMPUTATION

2.5 Are instructions data?

A universal computer is programmable: it can execute every algorithms given
an encoded description of it — a program — as part of its input. In the de-
velopment of electronic computers the realization that instructions are not
fundamentally different from data, and thus can be treated as data them-
selves, was crucial®: instead of rewiring the hardware to perform a different
function, one could simply load a new program tape.

In Molecular Computation only a few models, such as Rothemund’s Tur-
ing machine simulation which we will study in Chapter 4, treat instructions
as data. In most models, instructions are either interwoven in the hardware
or part of the operator (e.g. an external robot that mixes tubes).

2.6 Manipulation of the information carrier
itself

In Adleman’s and similar models, the information carrier is not rewritten
after an initialization phase. It merely encodes a candidate solution in an
exhaustive search.

In other models, the information carriers may be rewritten like the tape in
a Turing machine or RAM in an electronic computer. This allows the model
to overcome the limitations of the exhaustive search approach. An obvious
example is in Turing machine simulations, where the DNA that simulates the
tape is rewritten. But the complexes formed in simulating the development
of cellular automata ([Win95b, WYS96]) fall into this category too.

2.7 One-pot or multiple phases or tubes

An important problem in Molecular Computation is that of control of op-
erations. While it is desirable in terms of speed to achieve a high degree
of parallelism between the operations in performing molecular programs, ac-
tually performing operations in parallel can be expected to result in many
undesirable interactions between the operators and operands of the various
operations.

3Tt is one of the achievements of John von Neumann, who created the basic architecture
of electronic computers that is still used today.

2.8. ERROR-RESILIENCE 21

One way to prevent this is simply to perform operations sequentially, and
clean up between them*. A big disadvantage is that, because one has to be
on the safe side of the duration of the reactions involved in the operations,
the worst case times of the reactions add up. In the parallel case, the worst
case is that of a pipeline of operations, which may be significantly shorter
than the worst cases of the individual operations added up.

A different approach is to perform the different steps in different tubes
or vats, separated by filters, membranes or purifying operations to control
the transport of molecules between them. [RWB*96] presents a discussion
model of a ‘parallel robotic workstation for molecular computation’ that uses
membranes.

An approach which is designed for parallelism and for which no external
operator is necessary after an initialization phase is termed ‘one-pot’. There
are currently no ‘one-pot’ schemes based on well-understood chemistry. The
closest yet are Winfree’s cellular automata [Win95b, WYS96].

2.8 Error-resilience

Models differ widely in their attention for errors. Some simply assume perfect

operations, while others are designed to be resilient to errors. The approaches

to error-resilience include refinery based on biased random walks ([RWB*96])

and repeating operations based on probabilistic analysis ([KKW95]), trans-

forming algorithms to use error prone operations less frequently ([KKWO95,

AGH96)), selective amplification of ‘good’ strands ([BDLS96]), double encod-

ings ([BDLS96]) and stricter designed, less dense encodings ([Mir96, DMG*96,
Bau96b]).

2.9 Communication

Currently, models have no communication between information carriers, and
communication to an external operator is often limited to an end result read-
out (the operator manipulates ‘blindly’).

Researchers are however very interested in developing models that exploit
various forms of communication ([Ame96b]). For instance, branched parallel

4Fast cleanup can be achieved by fixing the information carrying molecules on solid
support, and cleaning up by washing. Examples are [Rot96, LGCT96].

CHAPTER 2. CLASSIFYING MODELS OF MOLECULAR
22 COMPUTATION

search could potentially be done much deeper when ‘dead end’ strands could
be reused for exploration of promising paths.

2.10 Native or not

Current universal models of Molecular Computation are all based on sim-
ulating or implementing previously known abstract universal models. As
yet, there is no model that is ‘native’ to Molecular Computation, one that
fits seamlessly into the potential offered by Molecular Computation, while
avoiding its disadvantages.

For current electronic computers, the register machine is a ‘native’ model.
‘native’ models are conceptually easier to implement, because they fit better
than ‘alien’ ones, that have to be translated before becoming useful.

Chapter 3

Special purpose models

3.1 Adleman’s approach

In [Ad194] Adleman used techniques from molecular biology to solve a 7-node
instance of the Directed Hamiltonian Path problem (DHPP).

3.1.1 The Directed Hamiltonian Path problem

A Directed Hamiltonian Path in a graph is a directed path through that
graph that starts in a designated node, ends in another designated node, and
passes all other nodes exactly once. The DHPP is known to NP-complete’.
It is therefore highly likely that no algorithm for this problem exists that
has less than exponential time-complexity. Furthermore, since many NP-
complete problems are of practical interest and algorithms for solving one
NP-complete problem can be transformed — adding only polynomial factors
— into algorithms for another, efficient methods for solving even one of them
are very desirable.

In one formulation, the problems in NP are those problems for which a
polynomial time verification algorithm exists. In most of the interesting ones,
the number of candidate solutions is exponential (or worse) in the problem

!For an overview of the theory of NP-completeness, the reader is referred to [GJ79].
[CLRI0] provides an overview of the field of algorithm analysis, including time-complexity
and NP-completeness.

23

24 CHAPTER 3. SPECIAL PURPOSE MODELS

size. A brute force solution is to generate all possible candidate solutions,
and apply the verification algorithm to each of them. This is the approach
taken by Adleman: the whole brute force search is performed in parallel.

3.1.2 The algorithm

The input to an algorithm for DHPP is a graph. There are two possible types
of output: a simple ‘Yes’ or ‘No’ answer to the question ‘does this graph have
a Hamiltonian Path’® or such a path, if one exists.

Adleman’s method is an implementation of the following algorithm:

1. Generate ‘all’ paths through the graph.

2. Discard paths that do not start in the designated start node or that do
not end in the designated end node.

3. Discard all paths that do not consist of n nodes (n being the number
of nodes in the graph).

4. Retain only paths in which each node appears at least once.

5. If any paths remain, a solution is found. If not, there is no solution.

3.1.3 Implementation

The key to the implementation is the representation of the edges in the graph.
This representation is based on that of the nodes. Each node i is encoded as
a 20 base pairs long sequence of DNA?, designated O;. The encoding O;_,; of
an edge 1 — j consists of the 10-base tail of O; followed by the 10-base head
of O;. We use a bar to indicate the Watson-Crick-complement of a sequence,
e.g. O3. When ligating with O; or O}, this encoding ensures 10-base sticky
ends: the strand encoding the edge : — j and the strands encoding the nodes
1 and j are connected in a brick-like manner.

2This is the so called decision problem version; the theory of NP-completeness is for-
mulated for decision problems only.

3[Adl194] states ‘a random 20-mmer sequence of DNA’. This makes the algorithm more
probabilistic than necessary. With some effort, sequences can be chosen, without resorting
to a probabilistic method, that have the desired qualities and the additional benefit of
lowering the chances of erroneous extraction and self-stickiness. ([Bau96b])

3.1. ADLEMAN’S APPROACH 25

In step 1, ‘all’ paths through the graph are generated. From step 3, one
can see that it is sufficient to generate all paths of length n; the mechanism
used here will produce other paths, that are filtered out in step 3. Generat-
ing all these candidates requires super-exponential time on a deterministic
computer?, but can be done efficiently using parallel chemical reactions. For
all nodes 7 except the designated start and end node and all edges 1 — 7,
O,_; is ligated with O; and O;. This results in chaining O,_,; to O, ; to
O*—)z’—)j—n«-

Step 2 is done by PCR amplification using Oggapt and O,y q as primers,
resulting in amplification of those molecules that encode paths with the de-
sired start and end node.

The separation on length for step 3 is done using gel extraction. In gel
extraction, the molecules are run through a gel. The speed with which a
molecule runs through the gel depends on its weight. The molecules are thus
sorted in bands of molecules with the same weight. The molecules in the 20n
band (corresponding to paths with length n) are excised from the gel to be
used in the next step.

Step 4 is done as follows. The product of step 3 is purified first, and
single-stranded DNA is generated from it. Next, repeated extraction — once
for each node i — is done using a magnetic beads system: O; conjugated to
magnetic beads is added, allowed to anneal to strands containing O;. These
are extracted, and retained for the next iteration.

Step 5, the readout, is done by first PCR amplifying the remaining so-
lution, and detecting the presence of DNA using gel electrophoresis. This
answers DHPP as a decision problem. If a solution path is desired, one of
the strands detected can be sequenced.

3.1.4 Classification

Adleman’s approach is a special purpose in vitro model, using DNA (both
single-stranded and double-stranded) as an information carrier; selection is
done using PCR, gel electrophoresis, and magnetic bead extraction. The in-
formation carrier is not rewritten after the initialization phase and is processed
in multiple physically separated phases. Several sources of errors are identi-
fied, but the implementation was not designed to be very error-resilient.

4Taking into account the start and end node, and the fact that each node has to appear
precisely once, the number of candidate solutions is still (n — 2)!.

26 CHAPTER 3. SPECIAL PURPOSE MODELS

3.1.5 Results and problems

Implementation problems. Adleman did find a solution for his chosen 7-
node instance of the Directed Hamiltonian Path problem, with approximately
7 days of lab work. He identifies several sources of errors that have to be
investigated when upscaling his approach:

e The ligation used in step 1 to produce the paths through the graph may
also occur between incompatible edge oligonucleotides. The resulting
molecules look somewhat like paths, but do not encode for actual paths.
It is therefore advisable to check if the outcome of the computation
indeed encodes an actually occurring Hamiltonian path.

e The separation in step 4 is not perfect: ‘good’ molecules may not be
extracted, while some ‘bad’ ones are.

e PCR has since been shown to be a severe source of errors unless care
is taken ([KCL96]), because the single stranded templates to be copied
can anneal to each other.

Advantages. On the positive side, Adleman notes that the encoding used
has several advantages. It is unlikely that long common subsequences be-
tween codings for different vertices would exist, which could result in more
‘unintended‘ binding during step 1. Also, unusual features like hairpin loops
are unlikely to appear. Furthermore, the length of the oligonucleotides used
is such that they are stable at room temperature.

Limitations of the abstract model. While the problems just discussed
are mostly associated with the implementation, there are limitations to the
abstract model too. The main limitation is that it cannot break the ex-
ponential barrier: exponentially complex algorithms remain infeasible even
for fairly small problem instances. [Har95b] shows that solving a 200 node
instance of DHPP would require an amount of DNA weighing more than
the Earth. [MD96] uses a similar argument — using an estimation of the
amount of matter in the universe — to show that the increase in the size of
generally solvable problems for which only exponential algorithms are known
achievable via Adleman-like models is limited to approximately 102.°

5Even stronger: ‘Over the chemically measurable picomolar to molar concentration
range the greatest practical increase in problem size is limited to ~ 10'’. However, this ar-

3.2. LIPTON’S MODEL 27

Also, the output of the initialization step falls in a limited class of lan-
guages. When the self-assembly is linear — as it is in Adleman’s approach
— this class is that of regular languages ([WYS96]).

3.2 Lipton’s model

Adleman’s approach to the Directed Hamiltonian Path problem was ground-
breaking, primarily because it was shown to actually work in the laboratory
(although for a small test-case). An important problem in generalizing the
approach of [Ad194] is that algorithm and implementation are strongly inter-
woven: [Adl94] does not make a clear distinction between the abstract model
of data structures with their associated operations and the concrete methods
of implementing them.

Applying the principle of separation of concern, Lipton made this distinc-
tion in [Lip94, Lip95b, Lip95a]. He provided an abstract model of Adleman’s
approach by clearly identifying the operations used, thus allowing computer
scientists to study the power of this model without going into implementation
details and conversely allowing biologists to look for mechanisms to imple-
ment the various operations without having to fully understand the way they
are used in implementing algorithms.

Lipton illustrates the the usefulness of his abstract model by generalising
Adleman’s approach to other NP-complete problems, especially the satisfia-
bility problem (SAT).

3.2.1 Operations

Lipton’s model introduces the notion of test tube — [Lip94]: ‘from the point
of view of a computer scientist, it is just a finite multiset of strings from
{A,C,G, T} — and includes the following operations:

Initialize Create a test tube containing large numbers of copies of some
short single strands.

Anneal The operation of creating double stranded DNA from complemen-
tary single strands.

gument is much weaker, since biological operations such as PCR can be used to selectively
amplify chemically immeasurable amounts of DNA up to detectable amounts.

28 CHAPTER 3. SPECIAL PURPOSE MODELS

Extract Extracting those DNA sequences that contain a certain consecutive
pattern.

Detect Determine if a test tube contains any DNA strands at all.
Amplify Replicate all the DNA strands in a test tube.

Note that all of these operations are present in Adleman’s approach:
initialize and anneal in step 1, extract in step 4, amplify between steps 3
and 4, and detect in step 5.

3.2.2 Solving SAT

SAT. SAT (satisfiability) is the NP-complete problem of finding an assign-
ment of values to the variables in a boolean formula that that satisfies that
formula, i.e. makes it evaluate to true. E.g. the solutions for (aV b) A (a V b)
are (a,b) = (true, true) and (a,b) = (false, true); for a A a there is no solu-
tion. Variables like a, and their complements like a are known as satisfiability
problem!literals inliterals.

CNF: a normal form for SAT. A normal form for boolean formulas
is conjunctive normal form (CNF), in which each formula is built up as a
conjuction (AND) of clauses, each of which is the disjunction (OR) of one or
more literals. An example formula in CNF is (zVyVz)A(x VgV z)A(TV
gyVZ)A(xVyVZ).

Using CNF as a normal form makes it easier to express algorithms for
SAT, since formulas in CNF have an easier structure than general boolean
formulas. This advantage is especially important to Lipton’s algorithm, since
the structure of a formula determines the operations to be performed.

Encoding candidate solutions. Candidate solutions for an n-variable
instance of SAT can be encoded as n-bit numbers (bit i is one, means z; is
true). These n-bit numbers can be encoded as paths through a simple graph.
Such a graph has nodes ay, 1,21, a2, 22, 3', ..., apy1 and edges from ay to
xp and ;" and from z; to agyq and from x;” to agyq. In such a graph all
paths from a; to a,,; encode an n-bit binary number: if a path contains the
ay to xj edge it encodes for a number with bit k£ as one; if it contains the
ar to xp’ edge, bit k is zero. The graphs are encoded into DNA following
Adleman’s encoding.

3.2. LIPTON’S MODEL 29

The algorithm. The key idea in Lipton’s algorithm is that the formula
determines which operations to perform and in what order.

ORs are done using multiple tubes, and ANDs are done by repeated
extraction in a kind of ‘function application’: start with all strands, and
loop over the clauses, keeping only those strands corresponding to variable
assignments that evaluate to true for the current clause. After this iteration,
the remaining strands are those that correspond to satisfying assignments
for the whole conjunction.

Lipton’s algorithm for solving instances of SAT for CNF formulas C} A
CyN...NC,, over n variables is as follows:

e Initialize and anneal: create a tube ty; with DNA strands that encode
all n-bit binary numbers.

e A tube t; contains exactly the solutions for C1y A Cy A ... A Cy.

e Tube t;, is created from ¢, by a series of extracts, one for each variable
in Cy1. tyy is initially empty. For each eztract, the strands extracted
from t; are added to ?;,,, while the remainder of #; is used in the
following extract or discarded when there is no following eztract. The
extract for a variable v extracts all strands encoding numbers with the
bit for v set to 1 if v appears as a literal in C}. If ¥ appears in CY, the
strands with the v bit set to 0 are extracted. Thus #;,, will contain only
the strands that were in ¢4, (i.e. encoded solutions for Cy ACy A ... ACY)
and that additionally satisfy Cj,q.

e Create t,,,1 and detect. A solution to the instance exists if and only if
there are any strands left.

3.2.3 Results and problems

Lipton shows how to solve SAT directly instead of via reduction to HPP and
suggests that his method is directly applicable to all problems in NP. This
does away with the polynomial factors introduced by reductions, which is a
significant advantage.

Furthermore, [Lip94] suggests using a molecular computational device as
a special purpose co-processor or oracle for performing exponential searches:
an electronic/molecular hybrid computer.

30 CHAPTER 3. SPECIAL PURPOSE MODELS

The most important contribution is probably the precise identification
and terminology of the operations in Adleman’s approach. ‘Adleman-style
computing’ could be termed ‘Lipton-like models’ with equal validity.

The operations still need to be perfect, except for extract: if extract does
not always result in extracting all strands, this can be compensated for by
starting with more strands in the initial tube.

Lipton’s model was further formalized into ‘DNA-Pascal’ and subjected
to computational complexity analysis by Roofs and Wagner ([RW95]); Amos,
Gibbons and Hodgson ([AGH96]) provide a similar model with a less error-
prone implementation of the extract operation; and Karp, Kenyon and Waarts
([KKW95]) look at error-resilience through probabilistic methods and pro-
vide a transformation from Lipton’s model that assumes error-free opera-
tions to theirs. Boneh, Dunworth, Lipton and Sgall ([BDLS96]) discuss two
techniques for error-resistance that can be applied directly to Lipton’s algo-
rithm: PCR-amplification after each step to increase the survival probability
of ‘good’ strands and a double encoding to increase the probability of correct
extracts.

Chapter 4

Universal models

Adleman and Lipton showed that Molecular Computation is quite power-
ful: it can potentially solve instances of NP-complete problems of hitherto
infeasible size.

However, they did not answer the question of universality: does a model in
Molecular Computation exist that is capable of simulating all computations,
i.e. can we create a molecular computer in the sense in which ‘computer’
is used nowadays: a programmable device? Of course, physical devices are
necessarily finite and thus not truly universal, but some of them, such as
electronic computers, are very good approximations that are sufficient for a
large number of practical problems.

The answer turned out to be ‘Most likely: Yes’. It was found via two
ways.

One was from the theory of splicing systems, a branch of Formal Language
theory whose models are abstractions of the combination of DNA annealing
and ligation combined with restriction enzymes. We will study this theory
in Chapter 5.

The other was from several more or less practical proposals that simulate
classes of Turing machines using Molecular Computation. Of these, we will
discuss two in some detail: Beaver’s ([Bea95b, Bea95d, Bea95c, Bea96]) and
Rothemund’s ([Rot96]). Also we will briefly discuss a different approach by
Winfree ([Win95b, WYS96]).

31

32 CHAPTER 4. UNIVERSAL MODELS

4.1 Turing machines

For extensive treatment of the Turing machine model, the reader is referred
to [HU79]. In this section, we will shortly review a few aspects of the Turing
machine model, that are relevant to both Beaver’s and Rothemund’s simu-
lation.

4.1.1 Basic model

Informally, a Turing machine consists of a finite control that stores a tran-
sition table and has a current state, a tape of potentially unlimited length
divided into cells that are capable of storing one symbol from a finite al-
phabet, and a read/write head that can move (in one-cell steps) along that
tape.

4.1.2 Representation

Instead of dividing the Turing machine model into ‘hardware’ (finite control
and read/write head) and ‘magnetic media’ (tape) — a division natural when
studying electronic computers — in both simulations, the model is divided
into constant and variable components. The constant component is the tran-
sition table; all other parts — head position, state of the finite control and
contents of the tape — are variable.

4.1.3 Configurations

Both models encode the configurations (or instantaneous descriptions) of
Turing machines in DNA and perform computations by simulating the step-
relation between configurations.

A configuration of a Turing machine describes the status of a Turing
machine computation at a specific point in that computation. It describes
the contents of the tape, the position of the read/write-head and the state
of the finite control.

Since at any point during the computation, the non-blank part of the
tape is finite, a configuration can be represented by a string of finite length,
say ajqas (where aq, g are strings of tape symbols, and ¢ is the state of the
finite control; ¢ also functions to indicate the position of the read /write-head:

4.2. BEAVER’S MODEL 33

the first symbol of ay (under the conventions of [HU79], ¢ cannot be confused
with a tape symbol)).

Using a suitable encoding of such a configuration, performing one step
of the computation amounts to a function application to the configuration
that only depends on a small part of that configuration (a local change),
namely the part comprising the position of the head, the current symbol and
the state of the finite control. This key feature is exploited in both models,
though through very different implementations.

4.1.4 (Non)determinism

As we have seen clearly in Adleman’s approach, in Molecular Computing it
pays to use non-deterministic algorithms. Using non-determinism simplifies
the conceptualization of algorithms that can exploit parallel architectures.
Similarly, it would be useful to exploit this on the level of the architecture
itself.

There are methods to implement a non-deterministic Turing machine on a
deterministic one: either explicitly simulate the ‘forking’ of copies whenever
the non-deterministic Turing machine has a choice, or start with a large
number of deterministic Turing machines with additional random bits on the
input tape, that are then used in determining which choice to follow.

4.2 Beaver’s model

Beaver simulates deterministic Turing machines by implementing the step
relation on instantaneous descriptions via local changes.

The local change can abstractly be modeled as the replacement of a sub-
string a X3 by aY 3 in a string LaX R, in which a, , X, Y are sequences
of limited length and where neither a nor # occur elsewhere in the string.

4.2.1 A new operator: context-sensitive substitution

Beaver proposes a specific form of site-directed mutagenesis — a small mod-
ification in a strand whose location is determined by a specific base sequence
— to implement this substitution. Double strands containing a X 3 are con-
verted to single strands. Strands of aY 3 are added, whose & and 3 parts

34 CHAPTER 4. UNIVERSAL MODELS

anneal to their complements o and #. The result, except the X and Y
sequences that cannot bind, is then made double-stranded via PCR.

This results in double strands that are properly aligned except for the
part between o and [where substitution is to take place. These strands
are denatured into single strands again; primers that anneal to LaY SR —
i.e. starts of L and ends of R — are added, and PCR is performed. Now we
have two types of strands: double-strands that encode for LaY SR that are
to be kept, and single strands LaX R, which need to be removed. These
undesired single strands are destroyed by cutting with S1 nuclease. Now the
substitution is complete.

4.2.2 Implementing the simulation

The simulation is performed as follows. An initial tube containing a popula-
tion of strands is generated (by sequence generation, Adleman-like ‘genera-
tion of diversity’ to incorporate random bits for implementing non-determinism,
if desired, and PCR).

Next, a sequence of separate, substitute and mix back together is per-
formed. After each such step, detection of strands corresponding to configu-
rations in the halt state is performed.

The contents of the tube are separated according to the local sequence
that determines (not necessarily totally) the transition. If non-determinism
is to be simulated, the tubes can be duplicated using PCR, or can be further
separated on the random bits. On each of the tubes, the appropriate substi-
tution (as determined by the transition table), is performed. Next, the step
is completed by mixing together all the tubes, and performing detecting for
halted tapes.

4.2.3 Problems

There are several problems with Beaver’s implementation of the substitution
operator, noted in [Bea95c| and [Smi95].

Unintended complexes can form when the & sequence of an @Y 3 sequence
anneals to a different strand than its 3 sibling. This may be prevented
by temporary attachment of the strands on which substitution is to take
place to solid support. Another solution suggested is to use circular strands,
causing unintended complexes to have improper length, and filtering them
out using gel electrophoresis. For useful Turing machines, the length of a

4.3. ROTHEMUND’S MODEL 35

tape is unpredictable, and this trick cannot be used (unless one is willing to
give up on potential unlimited tape length, and a priori choose a maximum
length).

PCR is involved twice in every substitution, although it is slow, expensive
and error-prone ([Smi95, KCL96]).

The digestion of single stranded DNA is done with S1 nuclease, which can
work on double stranded DNA too, and which requires reaction circumstances
that can destroy information stored in DNA.

4.3 Rothemund’s model

Whereas Beaver’s Turing machine simulation is rather sketchy, Rothemund’s
paper is quite detailed. Rothemund not only addresses technical aspects
like representing configurations in DNA, candidate-enzymes for use in imple-
menting the transition steps and the various problems associated with them,
sources of error and error resilience, estimates of size, speed and energy use;
he also provides backgrounds to Turing machines and Molecular Computa-
tion and motivation of the importance of simulating Turing machines.

Like Beaver’s construction, the simulation is performed by implementing
the single steps from one configuration (or instantaneous description) to an-
other. Unlike Beaver, Rothemund uses a number of enzymes to implement
the step relation.

Instead of developing a simulation of a universal Turing machine directly,
Rothemund uses a small non-universal Turing machine (a solution to the
Busy Beaver problem for three states) as a running example and then suggests
how to scale the construction up to a universal Turing machine.

4.3.1 Useful enzymes

A number of enzymes known as restriction endonucleases or restriction en-
zymes are used by bacteria to destroy double-stranded foreign DNA. The
foreign DNA is recognized by specific words — with a typical length of 6 to
8 bases — forming a recognition site (or restriction site). The bacteria’s own
DNA containing these words is protected by a chemical modification.

The recognized DNA is cut in two, producing double-stranded sequences
with sticky ends.

36 CHAPTER 4. UNIVERSAL MODELS

While most restriction enzymes — the class II restriction enzymes —
recognize sequences that display a specific kind of symmetry (so called palin-
dromic sequences) and cut at their recognition site, there exists a group of
them — the class IIS restriction enzymes — that recognize nonpalindromic
sequences and that cut at a distance from their recognition site.

These class IIS restriction enzymes can be used to implement a number
of operations that have their use in simulating Turing machine configuration
transitions: insertion, deletion and replacement of a DNA fragment (with ori-
entation control), deletion and replacement without regenerating a restriction
site and even the movement of a sequence through a strand of DNA (termed
progress).

While similar operations are possible using class II restriction enzymes,
there is a problem of control: most of them can have undesired side effects
and are not specific enough.

Rothemund chose to use class IIS restriction enzymes, and the encoding
for the instantaneous description and of the transition table is based for a
large part on the property of class IIS restriction enzymes that the cutting
site — the actual site where strands are cut — is determined by, but not
equal to the restriction site.

4.3.2 Representing instantaneous descriptions

Remember that an instantaneous description of a Turing machine encodes
the three variable components of the machine:

1. The contents of the tape
2. The position of the head

3. The state of the finite control

The contents of the tape. The contents of the tape form a string over
the alphabet of the Turing machine. The individual symbols of the alphabet
are each assigned an oligonucleotide sequence. Additionally, all symbols get
the same short extra left and right sequences, that are equal for all symbols,
and serve as markers for the begin and end of a symbol. The strings are
encoded as the concatenation of the encodings of their constituent symbols.

4.3. ROTHEMUND’S MODEL 37

The position of the head. The head is placed ‘inside’ of the tape. Be-
cause the head moves through the tape, there is a potential ambiguity: does
the head point to the symbol to the right or to the left of it? While this could
be resolved by adopting simple convention (e.g. the head always points to
the symbol to the left), for implementation reasons, another resolution of the
ambiguity is adopted: the head is made to consist of two distinct parts, one
of which is the recognition site of a restriction enzyme; its splicing site is the
current symbol. Thus, there are always two encodings for an instantaneous
description, one for when the head has just performed a move to the left,
and one for when the last move was to the right.

The state of the finite control. Lastly, the state of the finite control
is encoded in the space between the recognition site of the part of the head
pointing to the current symbol and that current symbol.

4.3.3 Transitions

Representing the transition table. The transition table is encoded into
a number of oligonucleotides, which Rothemund appropriately terms transi-
tion oligonucleotides. They exist in four types: one for each combination of
last move of the head (left or right) and next move.

The most important parts of the transition oligonucleotides are a sticky
end (specific for each transition), a head sequence and a sequence for the new
symbol.

Implementing the transitions. A transition is done in six steps that
perform two processes: in the first, the head in a tape is replaced with the
correct transition oligonucleotide; in the second, the previously read symbol
is deleted.

Halting. A simple way of extracting results is to apply PCR amplification
(with the halt sequence as a primer) after each step. When detected, the
sequences containing the halt sequence can be sequenced, and the answer
read out. A safer way is to bind to the halt sequence a group that can be
used with bead extraction.

38 CHAPTER 4. UNIVERSAL MODELS

4.3.4 Estimates

Rothemund gives estimates of several aspects of the implementation of Min-
sky’s smallest known universal Turing machine using his model.

Size. Representing the tremendous amount of one mole of bits (6 x 10%
bits) in appropriate solution concentrations requires only about 260 m? water.
The individual tapes could encode some 80 kilobyte memory at maximum.

Speed. Transitions take about 4.5 hours (assuming reactions on solid sup-
port and enzymes at the recommended concentrations).

Energy. Transitions require some 44 KCal/mole DNA tapes.

4.3.5 Advantages

Rothemund’s scheme is specified mostly in great detail.

It works entirely with double-stranded DNA, which is more stable than
single-stranded DNA.

Reasonable estimates are given that it scales up to at least the scale of the
smallest known universal Turing machine. This scale-up is in the size of the
transition table (from the ‘Busy Beaver’ Turing machine that is Rothemund’s
running example).

4.3.6 Problems

There are some problems to Rothemund’s scheme, some theoretical and some
practical.

It does not describe how to generate the initial tapes. For the ‘Busy
Beaver’ running example, the initial tape is blank; it is presumably rela-
tively easy to sequence the strand encoding for instantaneous description of
the Turing machine at the start of its computation, and then make sufficient
copies of it (e.g. via PCR) to compensate for the practical problems dis-
cussed below. However, a universal Turing machine requires an initial tape
with the encoding of the Turing machine to be simulated and its input; the
initial strand can be much longer than that for the Busy Beaver case, and is
therefore more difficult to generate.

4.3. ROTHEMUND’S MODEL 39

The Busy Beaver example is a deterministic one. One can therefore in-
deed simply ‘mix the twelve transition oligonucleotides [...] with the DNA
Turing tapes’. Rothemund does not explain if his scheme is suitable for (or
can be modified to suit) non-deterministic Turing machines: simply adding
all transition nucleotides could result in interference in the reactions involv-
ing transition nucleotides that represent the different choices possible at the
current time-step, while sequentially adding them (either in a strict order,
or in random order) results in taking the same choice for all machines with
the same status instead of having part of the machines take one choice, and
the other machines take the other choices. It appears likely, though, that
Beaver’s suggestion to add random bits to the initial tape can be applied to
Rothemund’s model too; the ‘fork using PCR’ approach may work too, but
is an additional source of errors.

The scheme requires unfortunately many different kinds of restriction en-
zymes, some of which may have poor performance or imperfect specificity of
restriction. Failed restrictions can result in defective tapes. By incorporating
suitable labels, these defective tapes can be removed directly after the step
in which they have been generated, thus preventing their interference with
subsequent steps. Incorrect restrictions can occur, but do so only very infre-
quently, when the restriction is performed under the recommended reaction
circumstances.

The number of different kinds of restriction enzymes increases with the
transition table size. Thus, Turing machines with large transition tables can-
not be implemented with this scheme directly; one has to resort to simulation
via a small universal Turing machine. The scheme can be used to implement
the smallest known universal Turing machine, but simulations by this Turing
machine are very inefficient. This is not a true problem, since Rothemund’s
goal was a proof of concept: universal computation is possible with Molecular
Computation.

Also, the ligations involved may fail or even ligate mismatching pairs of
sticky ends and ligation may occur between two tapes, instead of between
parts of one tape. Suitable enzymes exist that can remove precisely the
products of such undesired reactions.

Lastly, attachment of the DNA strands to solid support can be used to
simplify the removal of reagents after the step in which they were needed
is finished, and the tapes are kept separately, preventing them from ligating
together.

40 CHAPTER 4. UNIVERSAL MODELS

4.4 Winfree’s model: simulating cellular au-
tomata

Winfree has developed a model that is capable of universal computation
based on a very different model capable of universal computation: cellular
automata.

4.4.1 Cellular automata

Cellular automata ([CAF]) consist of a collection of cells (e.g. a two dimen-
sional array), each containing a symbol from a finite alphabet, and a set of
transition rules that are applied in parallel to all cells at fixed time intervals.
The transition of a cell’s content from one ‘time tick’ to another is determined
by its current content and the contents of a finite number of ‘neighbours’ to
it (e.g. for a two dimensional matrix, the cells directly left, right, above and
below it).

A well-known example of a cellular automaton is Conway’s game of life
([BCGS82]). Cellular automata have a variety of applications, including the
simulation of certain chemical reactions, and image processing. Also, they
can be considered abstract models of spreadsheets.

There exist even one-dimensional cellular automata that are universal:
for each Turing machine (including a universal one), one can construct a
cellular automaton whose initial array contents correspond to the initial tape
contents of the Turing machine, and whose transition rules simulate both the
transition table, the cell replacement and the head movement of the Turing
machine. A universal cellular automata thus has a fixed set of transition
rules, and is programmed by providing the initial array contents.

There are a number of variations on the basic theme of cellular automata.
One of these that is relevant to us is that of blocked cellular automata,
a one-dimensional variation on partitioning cellular automata, which Win-
free introduces. In this model, the transition rule is formulated for pairs
of cells. There are two possible partitions, ways of dividing the cells into
pairs of neighbours, in the array of a one-dimensional cellular automaton
(... CnCni1Cni2Cni3Cnrg ... can be paired like ... (¢ cni1)(CnioCnis)(Cnya ...
or like ... ¢y)(Cnr16ni2)(CnisCnya) - ..). During successive time steps the two
possible partitions of cells in pairs are strictly alternated in the application
of the transition rule.

4.4. WINFREE’S MODEL: SIMULATING CELLULAR
AUTOMATA 41

Blocked cellular automata can be proven to be universal in a construction
analogous to that for normal one-dimensional cellular automata. Winfree
develops blocked cellular automata, since they can be simulated easily with
the construction technique he is proposing.

4.4.2 Winfree’s simulation

Winfree simulates a universal blocked cellular automaton by designing small
units of DNA in such a way that they self-assemble into two-dimensional
complexes according to the rules of the automaton in a hybridization reaction.
In these complexes, a slice in one direction corresponds to the state of the
whole automaton at a certain point in time, while a slice in the perpendicular
direction shows the contents of one cell during the whole development of the
automaton.

4.4.3 FEvaluation

It is still unclear how practical Winfree’s approach is. It depends on an un-
usual DNA structure, whose behaviour in practice has not been fully tested.
[SWLT96] discusses the large gap between theory and practice of construct-
ing unusual DNA structures, including the tendency of DNA to form double-
stranded helices, difficulty in control and the importance of studying the ac-
tual three-dimensional structure instead of relying on two-dimensional mod-
els. The problem in achieving substantial yield of desired results is less acute
here, since the building blocks are simple enough to produce in sufficient
quantities, and the complex structure forms as a result of the self-assembly
of the building blocks.

Despite the dubious practicality, it has several features that may be in-
spirational to future research.

It is conceptually much simpler than Beaver’s and Rothemund’s models,
using only one basic reaction (hybridization), in a straight-forward simula-
tion, requiring no external processing (it is ‘one-pot’). This illustrates the
necessity of studying the many different models of computation for their suit-
ability for implementation using molecular computational hardware, and of
the search for a model of computation natural to molecular computation.

Also, it shows that the asynchronous nature of parallelism in biochemical
reactions does not necessarily preclude approaches based on synchronous
parallelism.

42 CHAPTER 4. UNIVERSAL MODELS

It may even be possible to use a similar self-assembling system to simulate
Turing machines, although such a system would probably require many more,
likely complex, building blocks, and would not use the parallelism that is
natural to cellular automata.

Chapter 5

Splicing Systems

5.1 Background

While practical Molecular Computation started with Adleman’s paper [Ad194],
Formal Language theory already studied splicing systems, abstract models
for the languages generated by strands of DNA under the application of re-
striction enzymes and subsequent annealing and ligation. These models were
introduced by Head ([Hea87]).

A strong motivation of the study of DNA recombination using Formal
Language theory is the complexity of several problems associated with DNA
recombination such as shortest common superstring (encountered when de-
termining the base sequence of a strand of DNA from the sequences of short
substrands). This complexity is surprising given how simple the operators
in DNA recombination appear to be. Studying these ‘simple’ operations ca-
pable of generating difficult problems may benefit complexity theory. As
[Bea95d] put it: ‘If DNA-related problems are difficult to solve, then DNA-
based primitives may enable solutions to difficult problems’.

5.2 The splicing operator

The notation used here mostly follows [RS96, HU79]. For a detailed deriva-
tion of the concept of a splicing operator from DNA recombination, the reader
is referred to [RS96).

43

44 CHAPTER 5. SPLICING SYSTEMS

Formal Language theory studies sets of strings (termed languages) over a
finite alphabet V of symbols (like {0,1} and {A, C, T, G}). Strings (or words)
are formed by applying the concatenation operation (notation ‘-’ but often
implicit) to strings. The symbols from the alphabet are basic strings. E.g.
TAG € V* (for V ={A,C,T,G}; V* is the language of strings over V') since
TAG =T (AG)=(TA)-G = (T+A)-G (concatenation is associative) and
T, A, G, are strings over V.

Splicing is the operation of concatenating a prefix of one string and a
suffix of another string. E.g. applying splicing to strings ‘snack’ and ‘tofu’
may generate ‘snafu’.

5.3 Splicing rules

This application of splicing, without rules to restrict its use, is, like simi-
larly unrestricted concatenation, too general to be interesting (starting with
only the symbols from the alphabet being considered, repeated splicing can
generate all words over that alphabet), and is not very realistic (restriction
enzymes are very specific about the recognition and splicing site).

Just as the use of concatenation is regulated by allowing it only on strings
fulfilling requirements expressed in grammatical rules, the use of splicing is
regulated by splicing rules.

A splicing rule is consists of four finite strings uq, us, us, u4 that are used
as patterns. uq, us (us,us) determine the possible sites of the splicing in the
first (second) string. w,u4 are kept in the splicing result, while wus, u3 are
not, assuming we only look at splicing with one result.

While it may be convenient to think of a splicing rule as consisting of four
separate strings, for formal treatment it is easier to encode a splicing rule as
a single string (so we can talk about the class of languages a set of splicing
rules is in).

Formally, a splicing rule (over an alphabet V') is a string of the form

r = uy HusSusHuy

where # and $ are two special marker symbols not in V, and u; € V*(1 <
i <4).
For such a rule r, applying it to two strings x,y results in a string z

5.4. SPLICING SYSTEMS 45

(z,y,z € V*) as follows:

(x,y) F, z if and only if = = xjujuszy, y = yrususys and
Z = T1uq U4y, for some xy, xo,y1,y2 € V*.

5.4 Splicing Systems

We can now proceed to the definition of an H scheme'. An H scheme is
a pair
o= (V,R) where V isan alphabet
R C V*#V*$V*#V* is a set of splicing rules

An H system o = (V, R) is used as a unary operator on languages. Ap-
plying o once to a language L C V* yields

o(L)y={z€ V" |(z,y) 2z, for some x,y € L,r € R}

This can be used to study a single application of an H scheme. It can be
extended to iterated application o* as follows:
o’(L) =L,
o L) =o' (L)Ua(oi(L)),i >0,
0*(L) = Ui»o0'(L)

An H system, though normally viewed as an operator, can be likened
to productions in the grammars of classical Formal Language theory. This
similarity to grammars can be strengthened.

Classical grammars are ‘complete’ devices for generating languages. They
specify an alphabet, a starting point, rules for combining generated strings
into new ones, and terminal symbols out of which the output strings may
consist. Associated with them is one interpretation: the language generated
by the grammar.

Following this analogy closely, the concept of extended H system was
introduced. An extended H system is a quadruple

v=(V,T,A,R) V is an alphabet,
T C V is the terminal alphabet,
A C V*is the set of axioms,
R C V*#V*§V*#V* the set of splicing rules

!Following the precedent of L (Lindenmayer) systems, H schemes are named after their
inventor, Thomas Head.

46 CHAPTER 5. SPLICING SYSTEMS

For such an extended H system v = (V,T, A, R), an underlying H system
o = (V, R) is defined.
The language generated by ~v is defined using o as follows:

L(y) = 0" (A) N T*
5.5 Classes of Splicing Systems

With traditional grammars, there is one ‘knob’ that can be turned in
exploring their computational /generative power: the form of the productions.

Within extended H systems, there are two ‘knobs’: the classes of lan-
guages from which A, the set of axioms, and R, the set of splicing rules, are
taken. E.g. [HPP96] shows that when both A and R are finite, extended H
systems can produce regular languages; and that when A is kept finite, but
R regular, the recursively enumerable languages can be produced (in other
words: the full power of Turing machines).

5.6 Variations

While extended H systems are perhaps the most appealing model for a Formal
Language theorist, because of their analogy to traditional grammars, there
are several variants that are being studied.

Some of the more obvious are splicing systems in which an H system is
applied only once, and splicing systems in which all symbols are terminal.

Splicing systems on multisets of strings, first studied in [DG89], are of
practical interest, since they can accurately model the fact that strands are
consumed in a splicing operation, as are splicing systems on circular strings,
studied in e.g. [YKF95], which can model the behaviour of circular strands.
Both of these variations can achieve universal computation for A and R from
simple families in the Chomsky hierarchy.

Other variations restrict the applicability of splicing rules by allowing
length-increasing results only, or on prefixes only etc., e.g. [KPS96].

Many variations have been proven to be capable of universal computation
(e.g. [CVKP96, CVFKP96, DG89, FKP, Pau95, Pau96b, Pau96a, PRS96,
YKF95)).

5.7. INTERESTING RESULTS 47

Lastly, there are generalisations of splicing to graphs and other non-string-
like structures.

5.7 Interesting results

While splicing systems are interesting in themselves as abstract models in
Formal Language theory, we are interested in them mostly for their original
purpose: to model the languages of double strands of DNA generated under
the influence of restriction enzymes and ligases. More precisely, are there
splicing systems that can generate the recursively enumerable languages (i.e.
are capable of universal computation), for which a realistic implementation
is possible?

5.7.1 Requirements for practicality

There are a number of aspects in which splicing systems abstract away from
practical biochemical limitations that become important again, when consid-
ering practical implementation.

First, in a practical model, the amount of initial strands and the number
of different restriction enzymes is finite, so both the initial set and the set of
axioms in a corresponding model will have to be finite.

Secondly, in practice, DNA strands are consumed in splicing: when strands
w and z are generated from strands x and y, x and y are no longer available.
This requirement is quite strict; we will not demand this in full: in most
cases, the model still works when we assume a large, but finite, supply of all
strands involved.

Thirdly, the length of a recognition site of a restriction enzyme is lim-
ited to 6-8 bases: restriction enzymes cannot recognize arbitrarily long se-
quences. This length forms the inspiration for the radius measure considered
in [HPP96].

Lastly, some restrictions on the use of the splicing operator, like the
length-increasing or most-increasing modes considered in [KPS96], are diffi-
cult to implement. We will not consider models based on such restrictions.

48 CHAPTER 5. SPLICING SYSTEMS

5.7.2 Candidate models for universal computation based
on splicing

When we take into account the requirements just formulated, there are a few
splicing system models that are practical, and capable of universal compu-
tation.

One is splicing systems based on multisets, as introduced in [DG89]. In-
cidentally, this is the first type of splicing system proven to be universal.

Another is that of splicing systems for circular strings, as studied in
[YKF95].

Lastly, [HPP96] proves the existence of a universal (for a given alphabet)
multiset splicing system with finite axioms and radius 2.

5.8 Problems

Splicing Systems at first sight appear to be an attractive model for de-
veloping practical Molecular Computation. However, there are as yet several
severe problems that hinder their applicability in this way.

Only one type of chemistry. Splicing Systems were explicitly developed
as models for DNA recombination. There are several other chemistries on
which practical Molecular Computation might be based, like RNA editing, or
the ‘weird” DNA complexes used by Winfree. Focusing on Splicing Systems
as the theoretical model for Molecular Computation would be voluntarily
blinding oneself to the other possibilities, for some of which theoretical models
to study their computational power may still have to be developed.

Unrealistic splicing. We have seen several barriers to directly implement-
ing splicing systems. For example, restriction enzymes are capable of recog-
nizing only rather short (6-8 base pairs) sequences, while splicing rules can
recognize finite, but arbitrarily long, subwords.

Any potentially practical splicing system will have to use only a few
restriction enzymes, since they are quite expensive, and function optimally
under diverse reaction circumstances.

5.8. PROBLEMS 49

Finiteness. Practical systems will be finite. Incorporating this finiteness
directly into splicing systems (by using multisets, a finite number of axioms
and a finite number of splicing rules) easily results in models that are not
capable of universal computation. Also, considering restrictions to enforce
finiteness directly can be too restrictive, as a comparison with electronic
computers illustrates.

Electronic computers are of course finite too, but we mostly consider them
to be universal, but memorywisely challenged. The finiteness affects only one
‘knob’ of the Turing machine model: the tape size.

In splicing systems, the number of ‘knobs’ that can be tuned to produce a
finite system is larger, and the ‘knobs’ are less well understood than memory.

The theory of Splicing Systems will have to be enhanced to gain insight
into approximations that may produce practical models. For instance, if
we have a universal splicing system with a small number of splicing rules,
but which requires a regular set of axioms, an approximation would be to
use a large but finite subset from these axioms, and see how much practical
computing power is lost.

50

CHAPTER 5. SPLICING SYSTEMS

Chapter 6

Current developments in
Molecular Computation

In this conclusive chapter, current developments in Molecular Computa-
tion are discussed, mainly on the basis of the papers presented at this and
last year’s DIMACS workshop on DNA Based Computers ([AMS96, BL96a])
and attendance reports of these meetings ([Smi95, Ame96b]).

6.1 Consideration of practical problems

6.1.1 Errors

No molecular computing scheme has yet been tested on a problem of more
than toy size. In most schemes there are a number of sources of errors,
e.g. the instability of single-stranded DNA in solution, hairpins and other
undesired structures may form, ligation may occur between edges that are
not fully Watson-Crick-complementary, templates may interact during PCR.
In scaling up to useful problem sizes, these errors need to be dealt with.

There are several approaches to reduce errors or their effect on computa-
tions being studied.

Careful choice of encoding of information. A carefully chosen encod-
ing can prevent the formation of undesired structures, such as hairpin loops,
and can increase the difference (Hamming distance) between the coding of

ol

CHAPTER 6. CURRENT DEVELOPMENTS IN
52 MOLECULAR COMPUTATION

different elements, reducing the effect of binding between sequences that

are not fully Watson-Crick-complementary. Examples of this approach are
[Bau96b, DMG*96, Mir96].

Other implementations of operations. For some operations, less error-
prone implementations have been proposed. For instance, [AGH96] does
not implement eztract by magnetic bead extraction, but by destroying the
undesired sequences (add complementary sequences to them, so that dsDNA
is formed, then cut that with restriction enzyme).

Probabilistic/statistic approaches. When an operation is unreliable,
its reliability can be increased by repeating it. For instance, if an extract
operation is to be performed to separate strands which encode for a 1 in
a certain position from those that encode for a 0 in that position, one can
create a series of tubes in which each tube is labelled with the difference in
the number of times the strands it contains have been classified as 0 from the
number of times they were classified as 1. In this way, the strands perform a
biased random walk between the tubes. This approach is taken in [KKW95]
and in [RWB™96], where it is termed a refinery model.

One can take advantage of these probabilistic effects in the encoding
too. As [BDL96| shows, making the encoding redundant by simply encoding
everything twice increases the reliability of extract implemented by magnetic
beads extraction.

6.1.2 Attention for reaction circumstances

Some of the reactions used in implementing operations function optimally
under reaction circumstances (temperature, pH etc.) that cause degradation
of DNA. A balance needs to be struck between the necessity of performing
these reactions fast and the acceptable degree of degradation of DNA.

6.2 Other information carriers or chemistries

Although linear single- or double-stranded DNA in solution is a suitable
information carrier for molecular computation (it is well understood, fairly
stable, and there is a large toolbox of operations to manipulate it), it is not
the only suitable candidate.

6.2. OTHER INFORMATION CARRIERS OR CHEMISTRIES

Solid support / surface based approach. DNA need not be free in
solution to be manipulated. It can also be attached to solid support on a
surface. Solid support has some advantages: the strand loss that can oc-
cur in transport between tubes or vats can be eliminated, and by-products
and enzymes can be washed out easily, leaving less possibilities for interfer-
ence between subsequent steps. Solid support is considered in e.g. [Rot96,
LGC*96, CCCT96].

Speedups. With a carefully designed chemistry, multiple different opera-
tions could be performed simultaneously (when they don’t interfere with one
another). For instance, the approach to addition of [GB96] is designed to
allow for only one possible ‘pipeline’ in which strands undergo operations.

Similar effects, akin to pipelining in electronic architectures, could be
achieved by employing selective membranes between vats, as in [RWB*96]:
it is no longer necessary to wait until an operation has been performed on
all strands; as soon as a strand has undergone an operation, it can migrate
to the vat in which the next operation is performed.

Non-linear DNA. As we have already seen in Section 4.4, non-linear DNA
can be used to perform computations by suitable binding between ‘building
blocks’. Tt is however difficult to produce non-linear DNA in sufficient quan-
tities and with sufficient control; these difficulties are discussed in [SWL196].

RINA. RNA shares much of the qualities of DNA, and may even be used
as an enzyme to implement operations on itself. The biochemistry of RNA

editing has possibilities for molecular computation, which are considered in
[SS95, KMRS].

Artificial polymers. There are also artificial DNA-like polymers (e.g.
PNA and DNG that use a different backbone material) that are more stable
and have more specific binding than DNA. There are as yet no enzymes to
manipulate them, so it is unlikely that they will replace DNA, but they may
be useful in implementing operations (see [RWB™96] for examples).

CHAPTER 6. CURRENT DEVELOPMENTS IN
54 MOLECULAR COMPUTATION

6.3 Hybrid schemes

Following [Lip94], there is interest in hybrid molecular/electronic computing
schemes, i.e. schemes in which a molecular computing component functions
as a ‘subroutine’ to perform massively parallel operations.

Trivial examples are the proposals in which an electronic computer or
robot is used to automate the steps in a molecular computing scheme, like
the ‘parallel robotic workstation for molecular computation’ of [RWB*96].

6.4 Communication

Although molecular computers can achieve massive parallelism easily, in cur-
rent schemes (except to a certain degree [Bea95d]), there are no real provi-
sions for communication comparable to those in parallel electronic computers,
such as semaphores and guarded expressions.

Communication can conceivably be used to ‘recycle’ strands that repre-
sent ‘dead ends’ in a search tree, or to implement the cycles in the evolu-
tionary approach suggested in [Ste95] in one pool instead of in a series of
pools.

Developing viable communication schemes is a challenge for several rea-
sons. There is no addressing mechanism innate to strands in a solution!, it
has to be designed. Furthermore, communication will have to be asynchro-
nous, since the chemical reactions are asynchronous, and will have to allow
for a variable transport time for signals (signals encoded as molecules will
have to float in solution until they hit their destination).

6.5 A ‘killer application’?

It is as yet unclear if their is a ‘killer application’ for molecular computation
— a single application or area of applications in which molecular computers
are clearly superior to electronic ones, that is of such practical importance
that it in itself is enough to stimulate and finance the further development
of molecular computers.

'For surface-based molecular computing, there may be ones, but those are visible to
the operator, not to the molecules performing the communication themselves.

6.6. THE FUTURE... 55

While finding or developing a killer application would of course be of great
importance to the field, it is debatable whether or not it is beneficial to the
field to actively search for a killer application, and what the consequences of
not finding one would be.

There have been computing architectures with what appeared to be killer
applications, that still became dead ends in the evolution of computing, while
other architectures had no killer application, but still survived, not because
of technical superiority, but e.g. for economical reasons.

6.6 The future...

Practical molecular computation? As we have seen, Molecular Compu-
tation has great potential. Evaluating its practical potential is very difficult,
because current implementations are for toy-size problems, not for real life
ones. Although a number of problems associated with the scale-up which has
to be realized for molecular computers to become practical tools, have been
studied and approaches to overcoming them have been suggested, there may
still be difficult problems ahead: in theory, there is no difference between
theory and practice, but in practice. ..

The development of the field of Molecular Computation can be likened
to Adleman’s approach: a first phase ‘generation of diversity’, followed by a
phase in which candidates that are shown to be unviable, are culled, hopefully
resulting in a small number of practical models.

Currently, some models are being refined, while still some new ones are
introduced using very different paradigms or implementations. As a con-
sequence, one must be careful in interpreting results like [Har95b, Har95a,
MD96], since they apply to one or more, but not necessarily all, models in
Molecular Computation.

Theory. Regardless of whether or not molecular computing will be a viable
technology, the study of Molecular Computation has provided us with a new
way of viewing biological and chemical processes which may prove valuable
in medicine and in understanding (the evolution of) life.

Also, it provides a stimulus to the study of Splicing Systems, which may
deepen our understanding of the structure of language classes.

CHAPTER 6. CURRENT DEVELOPMENTS IN
56 MOLECULAR COMPUTATION

A warning. Currently, in Molecular Computation there is much more the-
ory than experiment.

‘Beware of the Turing Tar-pit in which everything is possible but nothing
of interest is easy.” — fortune (6)

Appendix A

A bit of biochemical
background

Many papers on molecular computation assume some knowledge about bio-
chemistry, especially about DNA and RNA; we try to provide the basics of
this background here by inspecting the roles they fulfill in nature. Part of
the material in this section is based on [Res].

A.1 From DNA to proteins

A cell’s genetic information is stored in strands of DNA (deoxyribonucleic
acid). DNA is a polymer — a large molecule consisting of repeated smaller
units (monomers) — with a linear structure. DNA consists of four different
monomers known as nucleotides. All of these consist of a nitrogenous base
(adenine (A), guanine (G), cytosine (C) or thymine (T)), a phosphate mole-
cule and a sugar molecule. The phosphate and sugar molecules link together
in a linear structure, thus forming DNA’s backbone. The backbone has two
distinct ends, known as 3’ and 5’ respectively, giving it a direction. This is
also known as polarity. DNA can thus abstractly be viewed as a string over
a four-letter alphabet, such as TATAAGAGCAT.

The genetic information in a cell must be passed through to a daughter-
cell. The structure of DNA in a cell makes this replication easy. DNA in
a cell is normally double-stranded (dsDNA): it forms a double helix of two
intertwined strands that are bound together by hydrogen bounds. These

o7

58 APPENDIX A. A BIT OF BIOCHEMICAL BACKGROUND

hydrogen bonds occur with very strong preference between A and T and
between C and G: the bases in these pairs are said to be Watson-Crick-
complementary. The two strands are thus each other’s complement: the
base sequence of one is enough to determine the base sequence of the other.
Conceptually DNA replication is achieved by splitting it into its two strands
of single-stranded DNA (ssDNA)and building their complementary strand
onto them.

Thus, strands TATAAGAGCAT and ATATTCTCGTA are Watson-Crick-complementary,

and when they form Watson-Crick bounds, the resulting double strand is
TATAAGAGCAT

ATATTCTCGTA.

The genetic information that DNA encodes is the structure of proteins.
Proteins are linear polymers that have a complex spatial structure, caused
by sulphur bonds and by the hydrophilic and hydrophobic nature of the
constituent amino acids. This structure is the reason for proteins’ function
as enzymes: biological chemicals that act as highly selective catalysts for the
reactions that form a cell’s metabolism. The monomers of proteins are amino
acids. There are some twenty amino acids in nature; they are encoded by
codons: three consecutive base-pairs.!

When a protein is constructed using the blueprint in a sequence of DNA,
that sequence is said to be ezpressed. The expression of DNA is a complex
process, involving various forms of RNA (ribonucleic acid), a chemical similar
to DNA. RNA has a slightly different sugar in its backbone, making it more
flexible, and uses uracil (U) instead of T; like T, U binds to A.

An enzyme transcribes (i.e. copies) the DNA sequence into a sequence of
messenger-RNA (mRNA).

The mRNA sequence is read by ribosomes, parts of the cell that consist of
ribosomal RNA (rRNA) and proteins. Based on the mRNA'’s instructions, a
ribosome assembles the protein from amino-acids delivered to it by transfer-
RNA. tRNA are small sequences of RNA that form an L-shaped spatial
structure. A tRNA contains a site that binds to its specific amino-acid.

LA codon can encode 4% = 64 possibilities. A few of these are start and stop instructions
for the protein production process; the rest encode amino acids. The code is redundant
and appears to have evolved in such a way as to reduce the effect of noise (read errors,
mutations etc.) as much as possible ([Hof79]).

A.2. MANIPULATING DNA 59

A.2 Manipulating DNA

There are several ways of manipulating DNA commonly used in Molecular
Computation schemes.

A.2.1 Joining DNA sequences

dsDNA sequences can be joined when they begin or end in short overhanging
complementary ssDNA sequences. These sequences are known as sticky ends
or cohesive ends. The forming of hydrogen bonds between such sequences is
known as annealing or hybridization. The resulting sequence has cuts in its

backbone. These may be sealed using DNA ligase.
TATAAGA GCATTAG TATAAGAGCATTAG

For example, ATATTCTCGTA can anneal to ATC to form ATATTCTCGTAATC.

A.2.2 PCR

The (DNA) polymerase chain reaction (PCR) is a reaction in which double-
stranded sequences of DNA — templates — are replicated using an enzyme
from the class of DNA polymerases. PCR requires primers: short sequences
from the start and the end of the sequences to be replicated.

Because the copies of templates can function as templates themselves,
repeated PCR can be used to exponentially multiply the template.

PCR is often used to selectively amplify certain DNA sequences prior to
a detection phase. It has to be used with care, since interactions between the
templates themselves may result in ‘weird’ DNA, e.g. containing folds, that
is difficult to distinguish from regular DNA using electrophoresis, currently
the best DNA analysis procedure ([KCL96]).

A.2.3 Cutting DNA

Certain classes of enzymes, most notably endonucleases, are capable of cut-
ting DNA at or near a recognition sites, a specific base sequence, producing
most of the time strands with sticky ends. These enzymes are very useful
for rewriting DNA, and in fact their function, combined with annealing and
ligation, forms the inspiration for the splicing operator in Formal Language
theory.

60 APPENDIX A. A BIT OF BIOCHEMICAL BACKGROUND

An example, from [Rot96]|, is FokI which cuts

l
GGATGNNNNNNNNNNNNNNN GGATGNNNNNNNNN NNNNNN
" CCTACNNNNNNNNNNNNNNN =~ ~° """ CCTACNNNNNNNNNNNNN NN

T

N is a wildcard for A,C,G,T. Note that the site of the actual cut is not equal
to, but still determined by, the recognition site.

A.3 Candidate-molecules for universal Mole-
cular Computation

For Adleman-style Molecular Computation molecules only have to repre-
sent, candidate solutions. They are only information carriers, and are not
rewritten. Techniques for reading them out and filtering them based on the
information they encode are needed. DNA, RNA and possibly proteins are
candidates for use in Adleman-style Molecular Computation.

Molecules that are not rewritten are not enough for universal computa-
tion. Universal computation essentially has two aspects: representation of
state and iterated controlled state transformations. Transformation of state
forms the main difficulty in Molecular Computation: the output of a partial
computation must be reusable as input for further computation.

We have no tools to rewrite proteins, so they are unfit for universal Mole-
cular Computation.

Studies of RNA have proven that it can function as an enzyme, and thus
may be able to rewrite itself.? However, RNA might be too reactive, making
control of state transformation very difficult.

Evolution has proven DNA to be a very good information carrier®. But,
as far as we have seen, DNA is static in that role: it is expressed one-way.
For rewriting DNA we can turn to mechanisms used by bacteria and viruses.

2This is essential to the RNA world hypothesis (e.g. [dD95]) in evolutionary microbi-
ology: the hypothesis that there was a phase in the evolution of life in which RNA by
itself performed all the functions of DNA, RNA and proteins/enzymes: carrying genetic
information, expressing it, rewriting it and selectively catalyzing biochemical reactions.
3But not too good — mutation is important for evolution.

A.3. CANDIDATE-MOLECULES FOR UNIVERSAL
MOLECULAR COMPUTATION 61

Bacteria employ enzymes that can be used for selectively rewriting DNA,
especially restriction enzymes.

62 APPENDIX A. A BIT OF BIOCHEMICAL BACKGROUND

Bibliography

[Ad194]

[Ad196]

[AGHO6]

Leonard M. Adleman. Molecular computation of solutions
to combinatorial problems. Science, 266:1021-1024, Novem-
ber 11, 1994, http://www.hks.net/“cactus/doc/science/
molecule_comp.html.

Abstract: The tools of molecular biology were used to solve an in-
stance of the directed Hamiltonian path problem. A small graph was
encoded in molecules of DNA, and the ”operations” of the compu-
tation were performed with standard protocols and enzymes. This
experiment demonstrates the feasibility of carrying out computations
at the molecular level.

Leonard M. Adleman. On constructing a molecular computer.
In Baum and Lipton [BL96al, ftp://usc.edu/pub/csinfo/
papers/adleman/molecular_computer.ps. Based on Manu-
script, Computer Science Department, University of Southern
California, January 11, 1995.

Abstract: It has recently been suggested that under some circum-
stances computers based on molecular interactions may be a viable
alternative to computers based on electronics. Here, some practical
aspects of constructing a molecular computer are considered.

Martyn Amos, Alan Gibbons, and David Hodgson. FError-
resistant implementation of DNA computations. In AMS96
[AMS96], http://www.csc.liv.ac.uk/"martyn/princeton.
ps. Previously: Research Report CS-RR-298, Department of
Computer Science, University of Warwick, Coventry CV4 7TAL,
England, January 1996.

Description: This paper introduces a new model of computation
that employs the tools of molecular biology whose implementation

63

64

BIBLIOGRAPHY

[Ame96a]

[Ame96b]

is far more error-resistant than extant proposals. We describe an
abstraction of the model which lends itself to natural algorithmic
description, particularly for problems in the complexity class NP.
In addition we describe a number of linear-time algorithms within
our model, particularly for NP-complete problems. We describe an
in vitro realisation of the model and conclude with a discussion of
future work.

A [Lip95al-like model designed for error-resistance. “The main advan-
tage of our model is that it doesn’t repeatedly use the notoriously error-
prone separation by DNA hybridization method to extract strands con-
taining a certain subsequence.” Instead, strands complementary to the
undesired sequences are added, causing them to form dsDNA that can
be cut with restriction enzymes with nearly 100effectiveness.

John-Thones Amenyo. Mesoscopic computer engineering: Au-
tomating DNA-based molecular computing via traditional prac-
tices of parallel computer architecture design. In AMS96
[AMS96], ftp://ftp.ans.net/pub/misc/DNAComparch.ps.
Abstract: How does one go about automating the steps of DNA
computing, or what amounts to the same thing, the practical engi-
neering of hands-free, general-purpose DNA computers? The intent
of this paper is to indicate how familiar computer design principles
for electronic computers can be exploited to build practical comput-
ers at the mesoscopic scales of macromolecules and bio-polymers.
DNA computing is the most realistic harbinger of such molecular
computers. Pragmatically, it is expected that DNA computer ar-
chitectures will be used routinely and not just for solving theoret-
ically hard computational problems. The ideas discussed here are
akin to the design of a practical programming language for a virtual
computer. The paper shows that all proposed DNA computing algo-
rithms can be run on parallel computer architectures configured from
trellis/lattice banks, filter banks and switching banks. Thus, DNA
computation can be re-interpreted as dataflow (or signal flow) net-
works and subject to conventional treatment.

John-Thones Amenyo. Workshop report: Personal impressions
about the 2nd Annual Workshop on DNA Computing, June 21,
1996, ftp://ftp.ans.net/pub/misc/jta/DNAComp2rept.txt.

BIBLIOGRAPHY 65

[AMS96]

[ARRW96]

[Baugs]

[Bau96a]

American Mathematical Society. Proceedings of the Second An-
nual Meeting on DNA Based Computers, held at Princeton Uni-
versity, June 10-12, 1996., DIMACS: Series in Discrete Math-
ematics and Theoretical Computer Science., ISSN 1052-1798,
1996. To appear.

Contains [ARRW96], [Ame96a], [AGH96], [BB96], [BL96b], [BDLS96],
[DMG*96], [GB96], [JK96], [KCL96], [KMRS96], [LSW+96],
[LGCT96], [Mir96], [O1i96], [P§u96a], [RWBT96], [SWLT96], [WWO6],
[WYS96]. Program committee: Eric Baum, Dan Boneh, Peter Kaplan,
Richard Lipton, John Reif and Nadrian Seeman.

Leonard M. Adleman, Paul W. K. Rothemund, Sam Roweis,
and Erik Winfree. On applying molecular computation to the
data encryption standard. In AMS96 [AMS96], ftp://hope.
caltech.edu/pub/pwkr/DIMACS/des.ps.

Abstract: Recently, Boneh, Dunworth, and Lipton described the
potential use of molecular computation in attacking the United
States Data Encryption Standard (DES). Here, we provide a descrip-
tion of such an attack using the sticker model of molecular compu-
tation. Our analysis suggests that such an attack might be mounted
on a table-top machine, using approximately a gram of DNA and
might succeed even in the presence of a large number of errors.

Eric B. Baum. Building an associative memory vastly larger
than the brain. Science, 268:583-585, April 28, 1995.

Abstract The techniques of [AdI94] and [Lip94] may be usable to con-
struct an associative (= content-addressable) memory with a capacity
that exceeds that of the human brain. Given a part of the content, this
part can be used in extracting those molecules that match it. The “cue”
can be used e.g. with magnetic bead extraction.

Eric B. Baum. Building an associative memory vastly larger
than the brain. In Baum and Lipton [BL96a].

The techniques of [Adl94] and [Lip94] may be usable to construct
an associative (= content-addressable) memory with a capacity that
exceeds that of the human brain. Given a part of the content, this
part can be used in extracting those molecules that match it. The
“cue” can be used e.g. with magnetic bead extraction.

66

BIBLIOGRAPHY

[Bau96b]

[BBYG]

[BCGS2]

[BDLY5]

Eric B. Baum. DNA sequences useful for computation, http://
www.neci.nj.nec.com/homepages/eric/seq.ps. June 1996.
Abstract: Recent proposals for DNA based computing [Adl94],
[Lip95a], [Bau95] encode Boolean vector component values with se-
quences of DNA. Tt has previously been assumed that sufficient
length random subsequences could be used to encode component
values. However use of such subsequences will inadvertently result
in long complementary subsequences. Complementary subsequences
of sufficient length would stick to each other and cause mistakes or
delays in computation. We suggest some constraints on DNA sub-
sequences to be used in encodings, and describe maximal sets of
subsequences satisfying these constraints.

[AdI194, Lip94] work with codes based on random subsequences of DNA
as codewords. In strings in these codes, there may be long complemen-
tary subsequences that can result in undesired annealing. Furthermore,
the codewords might even self-anneal. In this paper, the problem of
finding a code that does not suffer from these problems is formalized
and solved. A similar code is termed unequivocable in [Bea95d].

Eric B. Baum and Dan Boneh. Running dynamic program-
ming algorithms on a DNA computer. In AMS96 [AMS96],
http://www.neci.nj.nec.com/homepages/eric/dpr.ps.
Abstract: In this paper we show that DNA computers are espe-
cially useful for running algorithms which are based on dynamic
programming. This class of algorithms takes advantage of the large
memory capacity of a DNA computer. We present algorithms for
solving certain instances of the knapsack problem using a dynamic
programming approach. Unlike other algorithms [Adl94], [Lip95a]
for DNA computers, which are brute force, dynamic programming
is the same algorithm one would use to solve (smaller) problems on
a conventional computer.

Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy.
Winning Ways for your mathematical plays, volume 2: games
in particular. Academic Press (Harcourt Brace Jovanovich),
third printing 1985 with corrections edition, 1982.

Dan Boneh, Christopher Dunworth, and Richard J. Lipton.
Breaking DES using a molecular computer. Technical Report

BIBLIOGRAPHY 67

[BDLY6]

[BDLS96]

CS-TR~489-95, Princeton University, May 1995, ftp://ftp.
cs.princeton.edu/pub/people/dabo/bioDES.ps.Z. To ap-
pear in IEEE COMPUTER;

Description: Recently Adleman has shown that a small traveling
salesman problem can be solved by molecular operations. In this
paper we show how the same principles can be applied to break-
ing the Data Encryption Standard (DES). Our method is based on
an encoding technique presented by Lipton. We describe in detail
a library of operations which are useful when working with a mole-
cular computer. We estimate that given one arbitrary (plain-text,
cipher-text) pair, one can recover the DES key in about 4 months
of work. Furthermore, if one is given cipher-text, but the plain text
is only known to be one of several candidates then it is still possible
to recover the key in about 4 months of work. Finally, under chosen
cipher-text attack it is possible to recover the DES key in one day
using some preprocessing.

Dan Boneh, Christopher Dunworth, and Richard J. Lipton.
Breaking DES using a molecular computer. In Baum and Lip-
ton [BL96a).

See [BDL95]

Dan Boneh, Christopher Dunworth, Richard J. Lipton, and
Jiri Sgall. Making DNA computers error resistant. In AMS96
[AMS96].

Abstract: We describe methods for making volume decreasing al-
gorithms more resistant to certain types of errors. Such error recov-
ery techniques are crucial if DNA computers ever become practical.
Our first approach relies on applying PCR at various stages of the
computation. We analyze its performance and show that it increases
the survival-probability of various strands to acceptable proportions.
Our second approach relies on changing the method by which infor-
mation is encoded on DNA strands. This encoding is likely to reduce
false negative errors during the bead separation procedure.
Introduces two methods to deal with common sources of errors:

68

BIBLIOGRAPHY

[BDS96]

[Bea9dd|

e PCR after each selection step is shown to increase good strands’
survival probability (for volume-decreasing salgorithms uch as
Adleman’s or Lipton’s).

e Double encoding improves the probability that correct strands are
extracted.

Note that [KCL96, Smi95] suggest PCR may be a major source of errors
itself!

Dan Boneh, Christopher Dunworth, and Jiri Sgall. On
the computational power of DNA. Discrete Applied Math-
ematics, T1(1-3):79-94, 1996. Also Technical Report, TR-
499-95, Princeton University, october 1995. ftp://ftp.cs.
princeton.edu/pub/people/dabo/biocircuit.ps.Z, ftp://
ftp.cs.princeton.edu/reports/1995/499.ps.Z.

Abstract We show how DNA-based computers can be used to solve
the satisfiability problem for boolean circuits. Furthermore, we show
how DNA computers can solve optimization problems directly wit
problems. Our methods also enable random sampling of satisfying
assignments.

Donald Beaver. Factoring: The DNA solution. In Josef
Pieprzyk and Reihanah Safavi-Naini, editors, Advances in
Cryptology - Asiacrypt °94 Proceedings 4th International
Conference on the Theory and Applications of Cryptology.,
number 917 in Lecture Notes in Computer Science, pages
419-423, Wollongong, Australia, November—December 1994.
Springer Verlag, Berlin, Heidelberg, New York., ISBN 3-540-
59339-X, http://www.transarc.com/afs/transarc.com/
public/beaver/html/research/alliternative/molecute/
publications/b94asia.ps. Extended abstract. The full
version is [Bea95al.

Summary How to factor and compute NP functions using DNA,
using a novel procedure for site-directed mutagenesis.

Abstract We consider molecular models for computing and derive
a DNA-based mechanism for solving intractable problems through
massive parallelism. In principle, such methods might reduce the
effort needed to solve otherwise difficult tasks, such as factoring

BIBLIOGRAPHY 69

[Bea9ba]

[Bead5b]

[Bea95c¢]

large numbers. We investigate the application of such techniques to
cryptography.

Donald Beaver. Computing with DNA. Journal of Computa-
tional Biology, 2(1):1-8, Spring 1995, http://www.transarc.
com/afs/transarc.com/public/beaver/html/research/alj,
ternative/molecute/publications/bc.ps. Full version of
[Bea9d4].

Summary How to factor and compute NP functions using DNA,
using a novel procedure for site-directed mutagenesis.

Abstract We consider molecular models for computing and derive
a DNA-based mechanism for solving intractable problems through
massive parallelism. In principle, such methods might reduce the
effort needed to solve otherwise difficult tasks, such as factoring
large numbers, a computationally-intensive task whose intractability
forms the basis for much of modern cryptography.

Donald Beaver. Molecular computing. Technical Re-
port TR95-001, Penn State University, January 31
1995, http://www.transarc.com/afs/transarc.com/

public/beaver/html/research/alliternative/molecute/
publications/TR95-001.ps.

Summary How to build and operate a Turing machine consisting
of a single DNA molecule. How to compute NP and PSPACE
functions using massively parallelized molecular computations.
(Refinements, such as a more efficient encoding, or simplified
experimental techniques, are not included.)

Abstract We design a molecular Turing machine and determine
the complexity of the problems solvable by molecular computers.
In [Adl94], a combinatorial molecular experiment to solve the
NP-complete problem of Hamiltonian Path was proposed and
implemented. Using our design, we show that such molecular
computers can in fact compute PSPACE, under the generous
assumptions implicit in [Ad194]. Under stronger and somewhat more
practical restrictions, which [Ad194] fails to satisfy, we show that
molecular computers are limited to solving problems in P.

Donald Beaver. A universal molecular computer,
1995, http://www.transarc.com/afs/transarc.com/

70

BIBLIOGRAPHY

[Bead5d]

public/beaver/html/research/al’ternative/molecute/
publications/dimacs95.ps. Condensed abstract (of [Bea95b)
for DIMACS Workshop of April 4, 1995.

Summary How to build and operate a Turing machine consisting
of a single DNA molecule. How to compute NP and PSPACE
functions using massively parallelized molecular computations.
(Refinements, such as a more efficient encoding, or simplified
experimental techniques, are not included.)

Abstract We design a molecular Turing machine and determine
the complexity of the problems solvable by molecular computers. In-
terest in “nanocomputation” has been sparked by Adleman’s recent
experiment demonstrating the possibility that molecular computers
might solve intractable problems, such as Hamiltonian Path, using
large-scale parallelism achievable only through molecular-scale
miniaturization. We propose a method for site-directed mutagenesis
(namely, a molecular “editing” reaction) and use it to build a
universal computer, stepping beyond Adleman’s special-purpose,
one-time problem solver. Using the generous assumptions on
parallelism implicit in Adleman’s methods, we show that molecular
computers can in fact compute PSPACE. Under stronger and more
realistic restrictions, we show that molecular computers — both
ours and Adleman’s — are limited to solving problems in BPP.

Donald Beaver. Universality and complexity of molecular com-
putation, http://www.transarc.com/afs/transarc.com/
public/beaver/html/research/alliternative/molecute/
publications/psp95.ps. Extended abstract. Submitted
to Twenty-eighth Annual ACM Symposium on Theory of
Computing 1996 (STOC)., 1995.

Abstract Adleman recently designed and executed an experiment
to solve instances of the Hamiltonian Path problem using DNA
molecules ([Adl94]). Two questions naturally arise, both of which
we answer in this paper: First, is universal computation possible?
Second, does NP characterize the limit of such computation? We
design a (nondeterministic) Turing machine based on interactions
of small DNA molecules, supporting general-purpose computation
rather than just special-purpose oracle queries. Our construction
supports massively parallel, synchronized operations of heteroge-

BIBLIOGRAPHY 71

[Bea96]

[BL96a]

[BL96b]

neous, communicating, nondeterministic Turing machines, using
fairly conventional techniques from molecular biology. In the loosely
restricted model implicit in Adleman’s solution to Hamiltonian
Path, we show that molecular computation is capable not merely
of NP but of PSPACE. More generally, our results show how to
utilize the parallelism of molecular computation to conduct any
S(n)-space-bounded computation in O(S(n)) laboratory steps using
molecules of size O(S(n)).

Donald Beaver. A universal molecular computer. In Baum and
Lipton [BL96a]. See [Bea95c].

Description: This volume presents the proceedings of a conference
held at Princeton University on April 4, 1995 as part of the DIMACS
Special Year on Mathematical Support for Molecular Biology. The
subject of the conference was the new area of DNA based computing.
DNA based computing is the study of using DNA strands as indi-
vidual computers. The concept was initiated by Leonard Adleman’s
paper in Science in November 1994. Contains [Adl196], [Bau96al],
[Bea96], [BDLI6], [Lip96], [Rot96], [SS96], [Win9ba], [Win95b].

Eric B. Baum and Richard J. Lipton, editors. DNA Based Com-
puters, volume 27 of DIMACS: Series in Discrete Mathematics
and Theoretical Computer Science. ISSN 1052-1798. American
Mathematical Society, 1996, ISBN 0-8218-0518-5. Also known
under the working title DNA Computing.

Description: This volume presents the proceedings of a conference
held at Princeton University on April 4, 1995 as part of the DIMACS
Special Year on Mathematical Support for Molecular Biology. The
subject of the conference was the new area of DNA based computing.
DNA based computing is the study of using DNA strands as indi-
vidual computers. The concept was initiated by Leonard Adleman’s
paper in Science in November 1994. Contains [Ad196], [Bau96a),
[Bea96], [BDLI6], [Lip96], [Rot96], [SS96], [Win9ba], [Win95b].

Dan Boneh and Richard Lipton. Making DNA com-
puters error resistant. In AMS96 [AMS96], ftp://ftp.
cs.princeton.edu/pub/people/dabo/bioerror.ps.Z, ftp:
//ftp.cs.princeton.edu/reports/1995/491.ps.Z. Previ-
ously: Princeton University TR-491-95, May 1995

72

BIBLIOGRAPHY

[CAF]

[CCCH96]

Description: Recently Lipton showed that the formula satisfaction
problem can be solved using a DNA based computer. The algorithm
ignored the effects of errors that occur during biological experiments.
In this paper we show that Lipton’s algorithm can be made resistant
to errors. In addition, we present a new circuit satisfaction algorithm
which can be made error resistant using the same techniques.

Frequently = Asked Questions about Cellular Au-
tomata: Contributions from the CA community
edited by Howard Gutowitz. http://alife.santafe.
edu/alife/topics/cas/ca-faq/ca-faq.html, ftp:
//alife.santafe.edu/pub/topics/cas/postscript/,
ftp://alife.santafe.edu/pub/topics/cas/txt/.

Weiping Cai, Anne E. Condon, Robert M. Corn, Elton Glaser,
Zhengdong Fei, Tony Frutos, Zhen Guo, Max G. Lagally,
Qinghua Liu, Lloyd M. Smith, and Andrew Thiel. The power of
surface-based dna computation, July 1 1996, ftp://corninfo.
chem.wisc.edu/Papers/powerDNA.ps. Preprint.

Abstract A new model of DNA computation that is based on sur-
face chemistry is studied. Such computations involve the manipula-
tion of DNA strands that are immobilized on a surface, rather than
in solution as in the work of Adleman. Surface-based chemistry has
been a critical technology in many recent advances in biochemistry
and offers several advantages over solution-based chemistry, includ-
ing simplified handling of samples and elimination of loss of strands,
which reduce error in the computation. The main contribution of
this paper is in showing that surface-based DNA chemistry efficiently
supports general circuit computation on many inputs in parallel. To
do this, an abstract model of computation that allows parallel ma-
nipulation of binary inputs is described. It is then shown that this
model can be implemented using fairly standard chemistry, in which
inputs are encoded as DNA strands and the strands are repeatedly
modified in parallel on a surface using the chemical processes of
hybridization, exonuclease degradation, polymerase extension or lig-
ation. Thirdly, it is shown that the model supports efficient circuit
simulation in the following sense: exactly those inputs that satisfy a
circuit can be isolated, and the number of parallel operations needed

BIBLIOGRAPHY 73

[CLRY0]

[CVFKPY6]

to do this is proportional to the size of the circuit. Finally, results
are presented on the power of the model when another resource of
DNA computation is limited, namely strand length.

Presents an abstract model of the surfaced-based approach to DNA
computation presented in [LGCT96] and describes its power and limita-
tions.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.
Introduction to Algorithms. The MIT Electrical Engineering and
Computer Science Series. The MIT Press, 1990.

Erzsébet Csuhaj-Varji, R. Freund, Lila Kari, and Gheorghe
Paun. DNA computation based on splicing: universality re-
sults. In Lawrence Hunter and Teri Klein, editors, Biocom-
puting: Proceedings of the 1996 Pacific Symposium. World Sci-
entific Publishing Co., Singapore, January 1996, ISBN 981-02-
2578-4, http://wuw.cgl.ucsf.edu/psb/psb96/proceedings/
cshhaj-varju.ps. Also: Technical report 185-2/FR-2/95, TU
Wien, Institute for Computer Languages, Wien, Austria, 1995,
http://www.csd.uwo.ca/"1lila/four.ps.

Abstract The paper extends some of the most recently obtained re-
sults on the computational universality of extended H systems (with
regular sets of rules respectively with finite sets of rules used with
simple additional mechanisms) and shows the possibility to obtain
universal systems based on these extended H systems, i.e. the theo-
retical possibility to design programmable universal DNA computers
based on the splicing operation. The additional mechanisms consid-
ered here are: multisets (counting the numbers of copies of each
available string), checking the presence/absence of certain symbols
in the spliced strings, and organizing the work of the system in a dis-
tributed way (like in a parallel communicating grammar system). In
the case of multisets we also consider the way of simulating a Turing
machine (computing a partial recursive function) by an equivalent
H system (computing the same function), in the other cases we con-
sider the interpretation of algorithms as language generating devices,
hence the aim is to reach the power of Chomsky type-0 grammars,
the standard model for representing algorithms equivalent with Tur-
ing machines taken as language generators.

74

BIBLIOGRAPHY

[CVKPY6]

Erzsébet Csuhaj-Varji, Lila Kari, and Gheorghe Paun. Test
tube distributed systems based on splicing. Computers and
AT 15(2-3):211-232, 1996, http://www.csd.uwo.ca/~1lila/
dnapcgs.ps.

Abstract We define a symbol processing mechanism with the com-
ponents (test tubes) working as splicing schemes in the sense of
T. Head and communicating by redistributing the contents of tubes
(in a similar way to the separate operation of Lipton-Adleman).
(These systems are similar to the distributed generative mechanisms
called Parallel Communicating Grammar Systems.) Systems with fi-
nite initial contents of tubes and finite sets of splicing rules associated
to each component are computationally complete, they characterize
the family of recursively enumerable languages. The existence of uni-
versal test tube distributed systems is obtained on this basis, hence
the theoretical proof of the possibility to design universal program-
mable computers with the structure of such a system.

J.H.M. Dassen. A bibliography of molecular computa-

tion and splicing systems. HTML: http://www.wi.
LeidenUniv.nl/~jdassen/dna.html, BibTeX source:
http://www.wi.LeidenUniv.nl/~jdassen/dna.bib. This

bibliography is hooked into http://liinwww.ira.uka.de/
bibliography/index.html, The Collection of Computer
Science Bibliographies.

Description A hyperbibliography on the subject of Molecular
Computation and the related theoretical model of Splicing Sys-
tems. Molecular Computation is computation using (biological)
macromolecules like DNA as information carriers, that are manip-
ulated using biological operators, such as enzymes, and operations
commonly used in bio-technology and genetic manipulation, such
as filtering operations and the polymerase chain reaction. It has
received much attention following Adleman’s seminal article [Ad194].
Splicing Systems are models in Formal Language Theory that use
the splicing operator instead of concatenation. The splicing operator
is an operator on two strings that is an abstraction of the effect of
restriction enzymes on strands of double-stranded DNA combined
with ligation. It was introduced in [Hea87].

BIBLIOGRAPHY 75

[dD95]

DGS9

[DMG*96]

Christian de Duve. The beginnings of life on Earth. Amer-
ican Scientist, 83(5), September-October 1995, http://www.
sigmaxi.org/amsci/articles/95articles/CdeDuve.html.

A discussion of the RNA world and a possible pre-RNA world.

K.L. Denninghoff and R.W. Gatterdam. On the undecidability
of splicing systems. International Journal of Computer Mathe-
matics, 27:133-145, 1989.

Abstract: The notion of splicing system has been used to abstract
the process of DNA digestion by restriction enzymes and subsequent
religation. A splicing system language is the formal language of all
DNA strings producible by such a process. The membership prob-
lem is to devise an algorithm (if possible) to answer the question
of whether or not a given DNA string belongs to a splicing sys-
tem language given by initial strings and enzymes. In this paper the
concept of a sequential splicing system is introduced. A sequential
splicing system differs from a splicing system in that the latter allows
arbitrarily many copes of any string in the initial set whereas the se-
quential splicing system may restrict the initial number of copies of
some strings. The main result is that there exist sequential splicing
systems with recursively unsolvable membership problem. The tech-
nique of the proof is to embed Turing machine computations in the
languages.

Introduces multisets into splicing systems, and shows such splicing sys-
tems to be universal.

R. Deaton, R.C. Murphy, M. Garzon, D.R. Franceschetti, and
S.E. Stevens, Jr. Good encodings for DNA-based solutions to
combinatorial problems. In AMS96 [AMS96], http://www.ee.
memphis.edu/~“rdeaton/pubs/dna_codes.ps.

Abstract: Adleman has solved the Hamiltonian path problem by
encoding the vertices and edges of the graph in oligonucleotides of
DNA, hybridizing the oligonucleotides to produce potential answers,
and extracting any DNA which corresponds to the Hamiltonian path.
Depending on the conditions under which the DNA reactions occur,
two oligonucleotides can hybridize without exact matching between
their base pairs. This possibility was verified by experiment. For
DNA-based solutions to combinatorial problems to become a viable

76

BIBLIOGRAPHY

[FKP]

[GBY6]

[Gifo4]

and practical technology, the possibility of false positives must be
eliminated. The primary mechanism for the production of false pos-
itives is hybridization stringency that depends on the reaction con-
ditions, of which the most important is temperature. Evidence is
provided that encoding the vertices and edges of the graph in DNA
oligonucleotides that are a minimum distance apart results in re-
liable encodings that virtually eliminate the risk of false positives.
A genetic algorithm was shown to be useful to search the space of
possible codewords. The Hamming bound is shown to be an upper
bound on the number of reliable encodings. Laboratory results con-
firmed that the choice of good encodings is very dependent on the
reaction conditions.

Rudolf Freund, Lila Kari, and Gheorghe Paun. DNA computa-
tion based on splicing: The existence of universal computers.
Journal of the ACM, http://www.csd.uwo.ca/"1lila/jacm.
ps. To appear. Also Technical Report 185-2/FR-2/95, TU Wien,
1995.

Abstract Splicing systems are generative mechanism based on the
splicing operation introduced by Tom Head as a model of DNA re-
combination. We prove that the generative power of finite extended
splicing systems equals that of Turing machines, provided we con-
sider multisets or provided a control mechanism is added. We also
show that there exist universal splicing systems with the properties
above, i.e. there exists a universal splicing system with fixed compo-
nents which can simulate the behaviour of any given splicing system,
when an encoding of the particular splicing system is added to its
set of axioms. In this way the possibility of designing programmable
DNA computers based on the splicing operations is proved.

Frank Guarnieri and Carter Bancroft. Use of a horizontal chain
reaction for DNA-based addition. In AMS96 [AMS96].

David K. Gifford. On the path to computation with DNA. Seci-
ence, 266:993-994, November 11, 1994, http://www.hks.net/
“cactus/doc/science/molecule_comp_perspect.html.

An essay on molecular computation in the ‘perspective’ section of Sci-
ence, in the same issue as [AdI94]. It discusses the promises of molecular
computation

BIBLIOGRAPHY 77

[GI79]

[Har95a]

e “DNA ligation can effectively search a large space of potential
solutions”, and similar techniques may be developed for molecule
design (e.g. for proteins).

e unheard of information representation density

e extremely energy-efficient

and the problems

e not practical enough yet

“There may be other computational processes lurking behind seemingly
simple biological processes”.

Michael R. Garey and David S. Johnson. Computers and In-
tractability: A Guide to the Theory of NP-Completeness. W.H.
Freeman and Company, San Francisco, 1979.

Juris Hartmanis. On the computing paradigm and computa-
tional complexity. In Jiri Wiederman and Petr Hajek, editors,
Mathematical Foundations of Computer Science 1995. 20th In-
ternational Symposium, MFCS ’95. Proceedings., volume 969 of
Lecture Notes in Computer Science, pages 82-92, Prague, Czech
Republic, August-September 1995. Springer Verlag, Berlin, Hei-
delberg, New York., ISBN 3-540-60246-1.

Abstract: Computational complexity theory is the study of the
quantitative laws that govern computing. Since the computing par-
adigm is universal and pervasive, the quantitative laws of computa-
tional complexity apply to all information processing from numerical
computations and simulation to logical reasoning and formal theo-
rem proving, as well as processes of rational reasoning. In this view,
the search for what is and is not feasibly computable takes on an
even deeper significance than just a central problem in theoretical
computer science. The search for the limits of what is feasibly com-
putable is the search for the limits of scientific theories and, possibly,
rational reasoning.

An overview of the state of computational complexity theory. Reiterates
the argument of [Har95b] that Molecular Computation cannot break the
exponential barrier.

78

BIBLIOGRAPHY

[Har95b]

[Hea87]

[Hof79]

Juris Hartmanis. On the weight of computations. Bulletin
of the European Association for Theoretical Computer Science,
55:136-138, February 1995.

Shows that Molecular Computation cannot break the exponential bar-
rier: exponential-complexity algorithms remain infeasible even for fairly
small problem instances. Applying the approach of [AdI94] to a 200-
node graph would require an amount of DNA weighing more than the
Earth. The main argument is reiterated in [Har95a].

Thomas Head. Formal language theory and DNA: an analy-
sis of the generative capacity of specific recombinant behaviors.
Bulletin of Mathematical Biology, 49(6):737-759, 1987.
Abstract A new manner of relating formal language theory to the
study of informational macromolecules is initiated. A language is as-
sociated with each pair of sets where the first set consists of double-
stranded DNA molecules and the second set consists of the recom-
binational behaviors allowed by specified classes of enzymatic ac-
tivities. The assosciated language consists of strings of symbols that
represent the primary structures of the DNA molecules that may po-
tentially arise from the original set of DNA molecules under the given
enzymatic activities. Attention is focused on the potential effect of
sets of restriction enzymes and a ligase that allow DNA molecules
to be cleaved and reassociated to produce further molecules. The
associated languages are analaysed by means of a new generative
formalism called a splicing system. A significant subclass of these
languages, which we call the persistent splicing languages, is shown
to coincide with a class of regular languages which have been previ-
ously studied in other context: the strictly locally testable languages.
This study initiates the formal analysis of the generative power of
recombinational behaviors in general. The splicing system formalism
allows observations to be made concerning the generative power of
general recombination and also of sets of enzymatic activities that
include general recombination.

Douglas R. Hofstadter. Gddel, Escher, Bach: an eternal golden
braid. Basic Books, 1979, ISBN 0-394-74502-7.

An inspired book on strange loops, the nature of intelligence, Godel’s
theorem, computability and many other themes. It contains a very clear

BIBLIOGRAPHY 79

[HPP96]

[HU79]

[JK96]

description of the process of protein synthesis, the levels of description
involved and the “location” of the genetic code.

Thomas Head, Gheorghe Paun, and Dennis Pixton. Genera-
tive Mechanisms Suggested by DNA Recombination. Volume 2
of Rozenberg and Salomaa [RS96], October 1996, ISBN Vol 1:
3-540-60420-0, Vol 2: 3-540-60648-3, Vol 3: 3-540-60649-1.
Description

Volume 1: Word, Language, Grammar

This first volume of the Handbook of Formal Languages gives a com-
prehensive authoritative exposition on the core of language theory.
Grammars, codes, power series, L systems, and combinatorics on
words are all discussed in a thorough, yet self-contained manner.
This is perhaps the most informative single volume in the history of
theoretical computer science.

Volume 2: Linear Modeling: Background and Application
This second volume of the Handbook of Formal Languages contains
the most fundamental applications of language theory. Various as-
pects of linguistics and parsing, both natural and programming lan-
guages, symbolic manipulation, and pattern matching are discussed.
A special feature is the recently very active field of DNA computing.
Volume 3: Beyond Words

This third volume of the Handbook of Formal Languages discusses
language theory beyond linear or string models: trees, graphs, grids,
pictures, computer graphics. Many chapters offer an authoritative
self-contained exposition of an entire area. Special emphasis is on
interconnections with logic.

Volume 2 contains [HPP96].

John E. Hopcroft and Jeffrey D. Ullman. Introduction to Au-
tomata Theory, Languages and Computation. Addison-Wesley,
1979.

Natasa Jonoska and Stephen A. Karl. A molecular computation
of the road coloring problem. In AMS96 [AMS96].

Abstract: Two algorithms for molecular computation of the road
coloring problem are presented. We present in detail the laboratory
techniques to implement these algorithms. In both of these algo-
rithms a new operation of substring matching in the process of sep-

80

BIBLIOGRAPHY

[KCL96]

[KKWO5]

arating molecules is introduced. The laboratory techniques of the
implementation are discussed.

Peter D. Kaplan, Guillermo Cecchi, and Albert Libchaber. DNA
based molecular computation: template-template interactions
in PCR. In AMS96 [AMS96].

Abstract: Since Adleman performed a computation with molecules
of DNA [Adl94], there has been theoretical work on parallel com-
puting with DNA [Lip95a], [Rei95], [Bea95a], [BDL95] but no ex-
perimental review of the promises and complications of DNA based
computing. In this experiment, we focus on heteroduplex formation
during the polymerase chain reaction as one critical complication to
large scale DNA computing.

e Analysis of Adleman’s method on even simpler graphs.

e Shows PCR (used in ‘extract’ and ‘amplify’) to be a source of
errors due to template-template interactions (dsDNA is separated
into single strands, that are intended to bind to the primers, but
also bind to each other) resulting in “weird” DNA (e.g. with folds).

e Electrophoresis cannot distinguish normal and “weird” DNA well
enough, but no better method for analysing DNA currently exists.

e High concentrations of template or product amplify template-
template interaction problems.

Richard Karp, Claire Kenyon, and Orli Waarts. Error resilient
DNA computation. Research report 95-20, Laboratoire de 1'In-
formatique du Parallélisme, Ecole Normale Supérieure de Lyon,
46, Allée d’Italie 69364 LYON CEDEX 07 - FRANCE, Sep-
tember 1995, ftp://ftp.lip.ens-lyon.fr/pub/Rapports/
RR/RR95/RR95-20.ps.Z.

Abstract The DNA model of computation, with test tubes of
DNA molecules encoding bit sequences, is based on three primitives,
extract-a-bit, merge-two-tubes and detect-emptiness. Perfect opera-
tions can test the satisfiability of any boolean formula in linear time.
However, in reality the extract operation is faulty. We determine the
minimum number of faulty extract operations required to simulate
a single highly reliable extract operation, and derive a method for
converting any algorithm based on error-free operations to an error-

BIBLIOGRAPHY 81

[KMRS]

[KMRS96]

[KPS96]

resilient one.

Achieves a more reliable extract by repeatedly performing extract in a
series of test tubes. The DNA strands perform a biased random walk
between the tubes.

Stuart A. Kurtz, Stephen Mahaney, James Royer, and Janos
Simon. Biological computing, http://www.cs.uchicago.edu/
“stuart/Research/bc.ps. In L. Hemaspaandra and A. Sel-
man, editors, Complexity Retrospective II. To appear.
Abstract: Adleman’s [Adl94] successful solution of a seven-vertex
instance of the NP-complete Hamiltonian Path problem by recom-
binant DNA technology initiated the field of biological computing.
We propose a very different model of molecular computing based
on the biochemistry of RNA editing and RNA translation. In our
model, individual molecules become fully capable general purpose
computers.

Stuart A. Kurtz, Stephen R. Mahaney, James S. Royer, and
Janos Simon. Active transport in biological computing (prelim-
inary version). In AMS96 [AMS96], http://www.cs.uchicago.
edu/~stuart/Research/transport.ps.

Abstract: Early papers on biological computing focussed on combi-
natorial and algorithmic issues, and worked with intentionally over-
simplified chemical models. In this paper, we reintroduce complexity
to the chemical model by considering the effect problem size has on
the initial concentrations of reactants, and the effect this has in turn
on the rate of production and quantity of final reaction products.
We give a sobering preliminary analysis of Adleman’s technique for
solving Hamiltonian path. Even on the simplest problems, the an-
nealing phase of Adleman’s technique requires time Q(n?) rather
than the O(logn) complexity given by a computationally inspired
but chemically naive analysis. On more difficult problems, not only
does the rate of production of witnessing molecules drop exponen-
tially in problems size, the final yield also drops exponentially. These
issues are not objections to biological computing per se, but rather
difficulties to be overcome in its development as a viable technology.

Lila Kari, Gheorghe Paun, and Arto Salomaa. The power of re-
stricted splicing with rules from a regular language. The Journal

82

BIBLIOGRAPHY

[LGCT96]

[Lip94]

[Lip95a]

of Universal Computer Science, 2(4):224-240, April 1996, http:
//hyperg.iicm.tu-graz.ac.at/the_power_of _restricted_
splicing_with_%rules_from_a_regular_language.
Abstract We continue the investigations begun in [PRS95] (Intern.
J. Computer Math., to appear) on the relationships between
several variants of the splicing operation and usual operations
with formal languages. The splicing operations are defined with
respect to arbitrarily large sets of splicing rules, codified as simple
languages. The closure properties of families in Chomsky hierarchy
are examined in this context. Several surprising results are obtained
about the generative or computing power of the splicing operation.
Many important open problems are mentioned.

Quinghua Liu, Zhen Guo, Anne E. Condon, Robert M. Corn,
Max G. Lagally, and Lloyd M. Smith. A surface-based approach
to DNA computation. In AMS96 [AMS96].

Abstract: A new model of DNA-based computation is presented.
The main difference between this model and that of Adleman is in
manipulation of DNA strands that are first immobilized on a sur-
face. This approach greatly reduces losses of DNA molecules during
purification steps. A simple, surface-based model of computation is
described and it is shown how to implement an exhaustive search
algorithm for the SAT problem on this model. Partial experimental
progress in solving a 5-variable SAT instance is described, and pos-
sible extensions of our model that allow general computations are
discussed.

Richard J. Lipton. Speeding up computations via molecu-
lar biology, ftp://ftp.cs.princeton.edu/pub/people/rjl/
bio.ps. Unpublished manuscript Dec. 9, 1994, December 11,
1994.

Abstract We show how to extend the recent result of Adleman
([Adl194]) to use biological experiments to directly solve any NP prob-
lem. We, then, show how to use this method to speedup a large class
of important problems.

Richard J. Lipton. DNA solution of hard computational prob-
lems. Science, 268:542-545, April 28, 1995.

Abstract: DNA experiments are proposed to solve the famous

BIBLIOGRAPHY 83

[Lip95b]

[Lip96]

[LSW96]

“SAT” problem of computer science. This is a special case of a more
general method that can solve NP-complete problems. The advan-
tage of these results is the huge parallelism inherent in DNA-base
computing. It has the potential to yield vast speedups over conven-
tional electronic-based computers for such search problems.

Richard J. Lipton. Using DNA to solve NP-complete problems.
Technical report, Princeton University, 1995, http://www.cs.
princeton.edu/~dabo/bio-comp/satgen.ps. ,

Richard J. Lipton. Speeding up computations via molecular bi-
ology. In Baum and Lipton [BL96a]. Also known under the
working title DNA Computing.

Description: This volume presents the proceedings of a conference
held at Princeton University on April 4, 1995 as part of the DIMACS
Special Year on Mathematical Support for Molecular Biology. The
subject of the conference was the new area of DNA based computing.
DNA based computing is the study of using DNA strands as indi-
vidual computers. The concept was initiated by Leonard Adleman’s
paper in Science in November 1994. Contains [Ad196], [Bau96a),
[Bea96], [BDLI6], [Lip96], [Rot96], [SS96], [Win95a], [Win95b].

See [Lip94].

Thomas H. Leete, Matthew D. Schwartz, Robert M. Williams,
David H. Wood, Jerome S. Salem, and Harvey Rubin. Mas-
sively parallel DNA computation: Expansion of symbolic deter-
minants. In AMS96 [AMS96].

Abstract: A new type of algorithm is introduced for constructing
DNA molecules which encode answers to mathematical problems.
Examples include problems from the class #P-Complete, which are
widely considered to be harder than those in the problem classes pre-
viously addressed. In particular, algorithms are presented that gener-
ate expansions of symbolic determinants given their patterns of zero
entries. This is well-known to be exponentially more difficult than
evaluating determinants whose entries are merely numerical. Prior
approaches to DNA computation were impractical for large prob-
lems because they required processing vast quantities of DNA with
steps associated with large error propagation. Our new approach to
the production of the solution and reading the answer is based on

84

BIBLIOGRAPHY

[MD96]

[Mir96]

reliable and automatable PCR steps and can solve large problems
by processing up to 10'® or more distinct strands of DNA in par-
allel. The DNA algorithms described here should be applicable to
a wide variety of problems that are intractable using conventional
computers.

Dénall A. Mac Dénaill. On the scalability of molecular
computational solutions to NP problems. The Journal of
Universal Computer Science, 2(2):87-95, February 1996,
http://www.iicm.edu/jucs_2_2/on_the_scalability_of/
ps/paper.ps;internal’&sk=R0OBOT.

Abstract: A molecular computational procedure in which ma-
nipulation of DNA strands may be harnessed to solve a classical
problem in NP — the directed Hamiltonian path problem — was
recently proposed [Ad194, Gif94]. The procedure is in effect a mas-
sively parallel chemical analog computer and has a computational
capacity corresponding to approximately ~ 10> CPU years on a
typical 10 MFLOP workstation. In this paper limitations on the
potential scalability of molecular computation are considered. A
simple analysis of the time complexity function shows that the
potential of molecular systems to increase the size of generally
solvable problems in NP is fundamentally limited to ~ 10%. Over
the chemically measurable picomolar to molar concentration range
the greatest practical increase in problem size is limited to ~ 10'.
Reiterates the argument of [Har95b, Har95a] that Molecular Computa-
tion brings nothing new to the theory of computational complexity: it
cannot break the exponential barrier.

Kalim U. Mir. A restricted genetic alphabet for DNA comput-
ing. In AMS96 [AMS96].

Introduction: Since Adleman demonstrated his original ground-
breaking scheme [Ad194], a simpler approach suggested by Lipton
[Lip95a] has widened the range of problems that can be addressed
by DNA computing. A single molecular operation, DNA anneal-
ing, is required for Lipton’s scheme. This also forms the basis of
Baum’s proposal for a content-addressable DNA memory [Bau95].
In both cases an extractor or cue oligonucleotide, most likely to be
in the solid-phase, attached to beads, would anneal to a longer single-

BIBLIOGRAPHY 85

[01i96]

[P5u95]

[P&au96a]

[Pau96b]

[PRS95]

stranded target present in the graph or memory. So far, most work
on DNA computing has rightly concentrated on what is theoretically
possible. Here however, I will discuss some practical issues and offer
a means to overcome some practical obstacles.

John S. Oliver. Computation with DNA-matrix multiplication.
In AMS96 [AMS96], http://www.chem.brown.edu/brochure/
people/jso/DNA.html.

Abstract: If chemical reactions are to be used as the basis for com-
puters, efficient instruction sets will need to be developed. A chemi-
cally based computation can not at this time be expected to compete
with an electronic computer. However, the potential usefulness of a
chemical computer provides a compelling reason to investigate and
design procedures for the solution of varied problems. DNA based
methods which may be used to calculate the product of Boolean ma-
trices or matrices containing positive, real numbers are represented.
This provides a method to perform a quantitative calculation with
DNA.

Gheorghe Paun. Computationally universal distributed systems
based on the splicing operation. Submitted, 1995.

Gheorghe Paun. Five (plus two) universal DNA computing
models based on the splicing operation. In AMS96 [AMS96].
Abstract: We briefly present five types of mechanisms (and we
mention two other related devices) based on the splicing operation
(a model of the recombinant behavior of DNA sequences under the
influence of restriction enzymes and ligases). All these models char-
acterize the recursively enumerable languages, hence all are equal
in power to the Turing machines. On the basis of the constructions
in the proofs of this assertion, one can obtain universal (hence pro-
grammable) computing devices.

Gheorghe Paun. Regular extended H systems are computation-
ally universal. Journal of Automata, Languages, Combinatorics,
1(1):27-36, 1996.

Gheorghe Paun, Grzegorz Rozenberg, and Arto Salomaa. Re-
stricted use of the splicing operation. Technical Report

86

BIBLIOGRAPHY

[PRS96]

[Rei95)

[Res]

[Rot96]

TR95-16, Department of Computer Science, Leiden University,
P.O. Box 9512, 2300 RA Leiden, The Netherlands, June 1995.
Abstract Splicing is a new powerful tool, stemming originally from
molecular genetics but investigated extensively also in language the-
ory. In this paper we investigate variants of splicing inspired partly
by regulating mechanism customarily studied in language theory,
partly by imposing restrictions on the pairs to be spliced or on the
result of splicing. The Chomsky hierarchy constitutes a very suitable
test bed for the resulting families, because it is classical and well
understood. In contrast to the usual, nonrestricted splicing, we find
several cases when the families of regular or of context-free languages
are not closed under the new types of splicing. On the other hand,
our results give new characterizations for families in the Chomsky
hierarchy and for closure properties in general.

Gheorghe Paun, Grzegorz Rozenberg, and Arto Salomaa. Com-
puting by splicing. Theoretical Computer Science, 168(2):321—
336, 1996.

John H. Reif. Parallel molecular computation: Models and sim-
ulations. In Proceedings of the Seventh Annual ACM Symposium
on Parallel Algorithms and Architectures (SPAA95), Santa Bar-
bara, June 1995, pages 213-223. Association for Computing Ma-
chinery, June 1995, http://www.cs.duke.edu/ reif/paper/
mole.ps, http://www.cs.duke.edu/"reif/paper/mole.fig.

ps.

BioTech Resources. Biotech’s on-line dictionary of biotech-
nology, http://biotech.chem.indiana.edu/pages/
dictionary.html.

Paul Wilhelm Karl Rothemund. A DNA and restriction en-
zyme implementation of Turing machines. In Baum and
Lipton [BL96al, http://www.ugcs.caltech.edu/ pwkr/oett/
dimacs/dimacs.ps, http://www.ugcs.caltech.edu/ pwkr/
oett.html.

Abstract Bacteria employ restriction enzymes to cut or restrict
DNA at or near specific words in a unique way. Many restriction
enzymes cut the two strands of double-stranded DNA at different

BIBLIOGRAPHY 87

[RS96]

positions leaving overhangs of single-stranded DNA. Two pieces of
DNA may be rejoined or ligated if their terminal overhangs are com-
plementary. Using these operations fragments of DNA, or oligonu-
cleotides may be inserted and deleted from a circular piece of plas-
mid DNA. We propose an encoding for the transition table of a
Turing machine in DNA oligonucleotides and a corresponding series
of restrictions and ligations of those oligonucleotides that, when per-
formed on circular DNA encoding an instantaneous description of a
Turing machine, simulate the operation of the Turing machine en-
coded in those oligonucleotides. DNA based Turing machines have
been proposed by Charles Bennet but they invoke imaginary en-
zymes to perform the stat-symbol transitions. Our approach differs
in that every operation can be performed using commercially avail-
able restriction enzymes and ligases.

A very detailed scheme for simulation Turing machines in DNA. Pro-
vides references to papers prior to [AdI94] containing some of the ideas
of Molecular Computation.

Grzegorz Rozenberg and Arto Salomaa, editors. Handbook of
Formal Languages. Springer Verlag, Berlin, Heidelberg, New
York., October 1996, ISBN Vol 1: 3-540-60420-0, Vol 2: 3-540-
60648-3, Vol 3: 3-540-60649-1.

Description

Volume 1: Word, Language, Grammar

This first volume of the Handbook of Formal Languages gives a com-
prehensive authoritative exposition on the core of language theory.
Grammars, codes, power series, L systems, and combinatorics on
words are all discussed in a thorough, yet self-contained manner.
This is perhaps the most informative single volume in the history of
theoretical computer science.

Volume 2: Linear Modeling: Background and Application
This second volume of the Handbook of Formal Languages contains
the most fundamental applications of language theory. Various as-
pects of linguistics and parsing, both natural and programming lan-
guages, symbolic manipulation, and pattern matching are discussed.
A special feature is the recently very active field of DNA computing.
Volume 3: Beyond Words

This third volume of the Handbook of Formal Languages discusses

88

BIBLIOGRAPHY

[RW95]

[RWB+96]

language theory beyond linear or string models: trees, graphs, grids,
pictures, computer graphics. Many chapters offer an authoritative
self-contained exposition of an entire area. Special emphasis is on
interconnections with logic.
Volume 2 contains [HPP96].

Diana Roofl and Klaus W. Wagner. On the power
of DNA-computers. Technical report, University of
Wiirzburg, 1995, ftp://haegar.informatik.uni-wuerzburg.
de/pub/TRs/ro-wa95.ps.gz.

Abstract In [Adl94] Adleman used biological manipulations with
DNA strings to solve some instances of the Directed Hamiltonian
Path Problem. Lipton [Lip94] showed how to extend this idea to solve
any NP problem. We prove that exactly the problems in PMF = Af
can be solved in polynomial time using Lipton’s model. Various mod-
ifications of Lipton’s model are investigated, and it is proved that
their computational power in polynomial time can be characterized
by one of the complexity classes P, AL, AL or even PSPACE. Re-
stricting Liptons model to DNA strings of logarithmic length one
can compute exactly the promblems in L.

Sam Roweis, Erik Winfree, Richard Burgoyne, Nickolas V.
Chelyapov, Myron F. Goodman, Paul W. K. Rothemund, and
Leonard M. Adleman. A sticker based architecture for DNA
computation. In AMS96 [AMS96], ftp://hope.caltech.edu/
pub/roweis/DIMACS/stickers.ps.

Abstract: We introduce a new model of molecular computation
that we call the sticker model. Like many previous proposals it makes
use of DNA strands as the physical substrate in which information
is represented and of separation by hybridization as a central mech-
anism. However, unlike previous models, the stickers model has a
random access memory that requires no strand extension, uses no en-
zymes, and (at least in theory) its materials are reusable. The paper
describes computation under the stickers model and discusses possi-
ble means for physically implementing each operation. We go on to
propose a specific machine architecture for implementing the stickers
model as a microprocessor-controlled parallel robotic workstation.
Finally, we discuss several methods for achieving acceptable overall

BIBLIOGRAPHY 89

[Sap58|

[Sho94|

[Smi95]

error rates for a computation using basic operations that are error
prone. In the course of this development a number of previous gen-
eral concerns about molecular computation [SS95, Har95b], [Letters
to Science] are addressed. First, it is clear that general-purpose al-
gorithms can be implemented by DNA-based computers, potentially
solving a wide class of search problems. Second, we find that there are
challenging problems, for which only modest volumes of DNA should
suffice. Third, we demonstrate that the formation and breaking of co-
valent bonds is not intrinsic to DN A-base computation. This means
that costly and short-lived materials such as enzymes are not nec-
essary, nor are energetically costly processes such as PCR. Fourth,
we show that a single essential biotechnology, sequence-specific sep-
aration, suffices for constructing a general-purpose molecular com-
puter. Fifth, we illustrate that separation errors can theoretically
be reduced to tolerable levels by invoking a trade-off between time,
space, and error rates at the level of algorithm design; we also outline
several specific ways in which this can be done and present numerical
calculations of their performance. Despite these encouraging theoret-
ical advances, we emphasize that substantial engineering challenges
remain at almost all stages and that the ultimate success or failure of
DNA computing will certainly depend on whether these challenges
can be met in laboratory investigations.

E. Sapir. The Status of Linguistics as a Science. University of
California Press, Berkeley, CA, USA, 1929/1958.

Peter W. Shor. Algorithms for quantum computation: Discrete
logarithms and factoring. In Proceedings, 35th Annual Sym-
posium on Foundations of Computer Science, pages 124-134.
IEEE Computer Society Press, 1994, ftp://netlib.att.com/
netlib/att/math/shor/quantum.algorithms.ps.Z.

Warren D. Smith. An opinionated, but reasonably short,
summary of the Mini DIMACS workshop on DNA based
computers, (held at Princeton University on April 4 1995),
April 5 1995, http://www.neci.nj.nec.com/homepages/
smith/workshop.summary.ps.

90

BIBLIOGRAPHY

5595]

SS96]

[Ste95]

Warren D. Smith and Allan Schweitzer. DNA computers in vitro
and vivo. Technical report, NEC Research Institute, March 20,
1995. Manuscript of 3/20/95, presented at DIMACS Workshop
on DNA Based Computing, Princeton, 4/4/95.

Abstract We show how DNA molecules and standard lab techniques
may be used to create a nondeterministic Turing machine. This is
the first scheme that shows how to make a universal computer with
DNA. We claim that both our scheme and previous ones will work,
but they probably cannot be scales up to be of practical computa-
tional importance. In vivo, many limitations on our and previous
computers are much less severe or do not apply. Hence, lifeforms
ought, at least in principle, to be capable of large Turing universal
computations. The second part of our paper is a loose collection of bi-
ological phenomena that look computation and mathematical models
of computation that look biological. We observe that cells face some
daunting computational problems, e.g., gene regulation, assembly of
complex structures and antibody synthesis. We then make simplified
mathematical modelsof certain biochemical processes and investigate
the computational power of these models. The view of “biology as a
computer programming problem” that we espouse, can be useful for
biologists. Thus our particalar Turing machine construction bears
a remarkable resemblance to (and probably explains) recently dis-
covered “RNA editing” processes. In fact it may be that the RNA
editing machine in T. Brucei is clonable, extractible and runnable
in vitro, in which case one would have a better performing Turing
machine than with our construction. The fact that RNA editing is a
Turing machine may in turn have a lot to do with the origins of life.
We also have a possible explanation for “junk DNA”.

Warren D. Smith and Allan Schweitzer. DNA computers in vitro
and vivo. In Baum and Lipton [BL96a].
See [SS95].

Willem P.C. Stemmer. The evolution of molecular computation.
Science, 270:1510-1510, December 1, 1995.

Molecular computation in the style of [AdI94] and [Lip95a] requires
too much DNA even for rather small problem instances. Nature has
sought through such a large search space using a much smaller pool of

BIBLIOGRAPHY 91

[SWL*96]

sequences, by evolution: repeated cycles of selection from small pools.
The author suggests to use similar methods in attacking problems using
molecular computation: approximate solutions by treating a problem
with a dynamic programming approach.

Nadrian C. Seeman, Hui Wang, Bing Liu, Jing Qi, Xiaojun Li,
Xiaoping Yang, Furong Liu, Weiqiong Sun, Zhiyong Shen, Ruo-
jie Sha, Chengde Mao, Yinli Wang, Siwei Zhang, Tsu-Ju Fu,
Shouming Du, John E. Mueller, Yuwen Zhang, and Junghuei
Chen. The perils of polynucleotides: The experimental gap be-
tween the design and assembly of unusual DNA structures. In
AMS96 [AMS96].

Abstract: DNA computing relies on the successful implementa-
tion of physical chemistry techniques involving oligonucleotides of
prescribed sequence. Our laboratory has been involved in genetic re-
combination and nanofabrication. We have constructed a large num-
ber of unusual DNA molecules, including branched DNA molecules,
DNA polyhedra, DNA knots, DNA double crossover molecules, and
DNA antijunctions and mesojunctions. Our experience with these
systems has uncovered a large number of experimental pitfalls that
may confront individuals working with DNA computing. We present
our experience in this area with the hope that we can help investi-
gators to anticipate the experimental problems that may affect their
DNA computing schemes.

92

BIBLIOGRAPHY

[Who40]

[Win95a]

e DNA computing will have to use physical chemistry in order to get
substantial — detectable — yields of desired results. The molec-
ular biological techniques (e.g. PCR) are not sufficient since they
only work well when sequence properties of the desired solution
are known; this is generally not the case.

e The main problem in building unusual DNA structures is one of
control. In general, multiple outcomes are (nearly) equivalent from
the standpoint of free energy. The undesired alternatives must be
made sufficiently unfavourable in relation to the target. Since —
under certain reaction circumstances — Watson-Crick bonds are
highly favoured, one can try to choose the base sequence in such
a way that Watson-Crick pairing favours the intended design.

e Reaction circumstances are very important.

e The 3D structure of molecules is important (e.g. the twist in the
double helix), as is the flexibility of the structure.

e Some ligases used to ligate sticky ends are “hungry” and will settle
for an end that is close to its optimal one.

B.L. Whorf. Science and linguistics. Technology Review, 42(6),
1940.

Erik Winfree. Complexity of restricted and unrestricted mod-
els of molecular computation. In Baum and Lipton [BL96a],
http://dope.caltech.edu/winfree/Papers/models.ps.gz.
Description: Here I show some limits on what can be computed
using some proposed operations on DNA. These limits have since
been overcome by the inclusion of additional operations.

Abstract In [Lip94] and [Adl94] a formal model for molecular com-
puting was proposed, which makes focused use of affinity purifica-
tion. The use of PCR was suggested to expand the range of feasible
computations, resulting in a second model. In this note, we give a
precise characterization of these two models in terms of recognized
computational complexity classes, namely branching programs (BP)
and nondeterministic branching programs (NBP) respectively. This
allows us to give upper and lower bounds on the complexity of desired
computations. Examples are given of computable and uncomputable
problems, given limited time.

BIBLIOGRAPHY 93

[Win95b)

WW96]

Erik Winfree. On the computational power of DNA anneal-
ing and ligation. In Baum and Lipton [BL96a], http://dope.
caltech.edu/winfree/Papers/ligation.ps.gz.
Description: Here I show how one might create a ”one-pot”
mixture of DNA which can perform universal computation. A.k.a.
"weaving the tapestry of life”. [Note, there are strand polarity errors
in several figures. EW, 5/96]

Abstract In [Win95a] it was shown that the DNA primitives of
Separate, Merge and Amplify were not sufficiently powerful to invert
functions defined by circuits in linear time. Dan Boneh et al [BDS96]
show that the addition of a ligation primitive, Append, provides the
missing power. The question becomes, “How powerful is ligation?
Are Separate, Merge, and Amplify necessary at all?” This paper
proposes to informally explore the power of annealing and ligation
for DNA computation. We conclude, in fact, that annealing and lig-
ation alone are theoretically capable of universal computation.

Robert M. Williams and David H. Wood. Exascale computer al-
gebra problems interconnect with molecular reactions and com-
plexity theory. In AMS96 [AMS96].

Abstract: In discussing exascale (exa = 10'8) computer algebra
problems we interconnect three themes. First, DNA is an attractive
medium for computation because of its density and parallelism. Sec-
ond, computer algebra is similar to DNA laboratory reactions. Both
rearrange identical subunits. Third, determinant and/or permanent
expansions exemplify many levels of complexity. These three issues
are combined in a planned experiment using a DNA algorithm to
evaluate or approximate the permanent of a matrix of zeros and
ones, a well-known problem in the class #P-Complete. Such prob-
lems are harder than those previously addressed by DNA techniques
in the pioneering articles of Adleman and Lipton. This points the
way to DNA methods for expanding a symbolic determinant given
its zero pattern, which is of still higher complexity. We begin to
approach interesting problem sizes because we reduce scale-up dif-
ficulties by alternating intermediate steps of building and filtering.
The example algorithm suggests directions toward the general prob-
lem of expanding symbolic determinants and permanents given their
zero entries.

94

BIBLIOGRAPHY

[WYS96]

[YKF95]

Erik Winfree, Xiaoping Yang, and Nadrian C. Seeman. Uni-
versal computation via self-assembly of DNA: Some theory and
experiments. In AMS96 [AMS96], ftp://hope.caltech.edu/
pub/winfree/DIMACS/self-assem.ps. Draft.

Abstract: In this paper we examine the computational capabilities
inherit in the hybridization of DN A molecules. First we consider the-
oretical models, and show that the self-assembly of oligonucleotides
into linear duplex DNA can only generate sets of sequences equiva-
lent to regular languages. If branched DNA is used for self-assembly
of dendrimer structures, only sets equivalent to context-free lan-
guages can be achieved. In contrast, we show that the self-assembly
of double crossover molecules into two dimensional sheets or three
dimensional solids is theoretically capable of universal computation.
The proof relies on a very direct simulation of a universal class of cel-
lular automata. In the second part of this paper, we present results
from preliminary experiments which investigate the critical compu-
tational step in a two-dimensional self-assembly process.

Takashi Yokomori, Satoshi Kobayashi, and Claudio Ferretti. On
the power of circular splicing systems and DNA computability.
Technical Report Report CSIM 95-01, University of Electro-
Communications, Department of Computer Science and Infor-
mation Mathematics, Chofu, Tokyo 182, Japan, July 1995.

Abstract A new type of generative mechanisms was recently intro-
duced under the name of extended H systems, and it has been shown
that extended H systems with finite sets of axioms and finite sets of
rules exactly characterize the recursively enumerable languages, thus
having the full power of Turing machines. Also, it was shown that
there is a universal extended H system analogous to a universal Tur-
ing machine. In this paper, we propose a new type of splicing models
called circular H systems, and show that they have the same compu-
tational power as Turing machines. Proposed new models are based
on circular splicings which come from biological motivations of in-
teractions between linear and circular DNA sequences, and hence,
the models seem to have some advantages over other existing models
dealing with only linear strings. We also show that there effectively
exists a universal circular H system which can simulate any circular
H system with the same terminal alphabet, which naturally leads

BIBLIOGRAPHY 95

us to a feasible design for a DNA computer based on circular splic-
ing. Surprisingly, all these results are obtained without considering
multiplicity constraints, which is in marked contrast to the previous
results for linear H systems.

Note. The bibliography database on Molecular Computation and Splicing
Systems [Das] collected during the research for this thesis is available online.
The author is not aware of any bibliography of comparable or larger size on
these subjects and expresses his hope that contributions of its users will keep
it accurate, complete and up to date.

Index

Adleman, 11
algorithm
for Hamiltonian Path, 24
verification, 11
alphabet, 44
terminal, 45
amino acid, 58
Amos, 30
annealing, see DNA, annealing of
anti-codon, see codon, anti-
architecture, see models of compu-
tation
automata, cellular, see cellular au-
tomata

base
adenine, 57
cytosine, 57
guanine, 57
thymine, 57
uracil, 58
base pair
adenine and thymine, 58
adenine and uracil, 58
cytosine and guanine, 58
base pairing, see DNA, annealing
of
bases
palindromic sequence of, 36
Beaver, 16, 33

96

bibliography on Molecular Compu-
tation and Splicing Systems,
89

Boneh, 30

cellular automata, 40
blocked, 40
Chomsky hierarchy, 14
Church-Turing hypothesis, 12
codon, 58
cohesive ends, see sticky ends
complementary ends, see sticky ends
computation
universal, 12
computation, models of, see mod-
els of computation
computation, molecular, see Mole-
cular Computation

decision problem, 24
DHPP, see Hamiltonian path prob-
lem
directed Hamiltonian path problem,
see Hamiltonian path prob-
lem
DNA, 57
annealing of, 59
as blueprint for proteins, 57
backbone of, 57
cutting, 59
double-stranded, 57

INDEX

97

expression of, 58

hybridization of, 59

ligation of, 59

polarity of, 57

replication of, 57

single-stranded, 58

transcription of, 58

unusual structures, 18
dsDNA, see DNA, double-stranded
Dunworth, 30

enzyme, 58
cut by, 35
cutting site, 36
DNA ligase, 59
DNA polymerase, 59
endonuclease, 59
recognition site, 35, 59
restriction, 35
restriction endonuclease, 35
restriction site, 35
restriction-, 61
S1 nuclease, 34

Gibbons, 30
grammar
axiom, 45

H scheme, 45

H system
extended, 45
underlying, 46

Hamiltonian path problem
algorithm for, 24
description of, 23

Hartmanis, 26

Head, 43

hierarchy, see Chomsky hierarchy

Hodgson, 30

HPP, see Hamiltonian path prob-
lem

Kurtz, 18

language, formal, 44
Lipton, 12, 27, 30

Mac Dénaill, 26

models of computation, 12
equivalence of strongest, 12
native to an architecture, 22

Molecular Computation
bibliography database of, 89
communication in, 21
definition of, 11
error-resilience, 21
information carriers in, 18
one-pot, 21
special purpose, 17
types of operations in, 19
universal, 18

mRNA, see RNA, messenger-

NP-completeness

decision problem, 24
nucleotide, 57

relation with bases, 57

operation
progress, 36

PCR, 59
in Adleman’s approach, 25
in Beaver’s model, 34
in Rothemund’s model, 37
problems related to, 19
template in, 59
polymerase chain reaction, see PCR
primer, 59

98

INDEX

protein, 58
DNA as blueprint, 57
synthesis, 57

ribosome, 58

RNA, 58
backbone of, 58
bases in, 58
messenger-, 58
ribosomal, 58
transfer-, 58

RNA world hypothesis, 60

Roof, 30

Rothemund, 16

rRNA, see RNA, ribosomal

SAT, see satisfiability problem

satisfiability problem, 28
CNF, 28

Sgall, 30

splicing, 59

splicing rule, 44

Splicing Systems, 43
bibliography database, 89
universality of, 46

ssDNA, see DNA, single-stranded

sticky ends, 59

symbol, 44
marker, 44

template, 59

tRNA, see RNA, transfer-

Turing machine
Beaver’s simulation of, 33
components of, 32
configurations, 32
instantaneous description, 32,

35

instantaneous description of, 36

nondeterministic, 15
Rothemund’s simulation of, 35
universal, 12

Wagner, 30
Watson-Crick-complementary, 58
Winfree, 16

word, 44

