
Molecular Computation and Splicing SystemsJ.H.M. Dassen1August 30, 1996

1Author's current address: Department of Computer Science, Lei-den University, P.O. Box 9512, 2300 RA Leiden, The Netherlands;jdassen@wi.LeidenUniv.nl.

2 AbstractThis thesis provides an overview of the related subjects of MolecularComputation and Splicing Systems.Molecular Computation is computation using (biological) macromoleculeslike DNA as information carriers. These macromolecules are manipulatedusing biological operators, such as enzymes, and operations commonly usedin bio-technology and genetic manipulation, such as �ltering operations. Ithas received much attention following Adleman's seminal article [Adl94].Splicing Systems are models in Formal Language Theory that use thesplicing operator instead of concatenation. The splicing operator is an oper-ator on two strings that is an abstraction of the e�ect of restriction enzymeson strands of double-stranded DNA combined with ligation. It was intro-duced in [Hea87].Several models are discussed, including models that are capable of uni-versal computation. Biochemical background is provided in an appendix.Extensive references are provided.

Bibliographic data@mastersthesis{Dassen96,author = {J.H.M. Dassen},title = {Molecular Computation and Splicing Systems},school = {Department of Computer Science, Leiden University},address = {P.O. Box 9512, 2300 RA Leiden, The Netherlands},month = {August},year = {1996},url = {\url{ftp://ftp.wi.LeidenUniv.nl/pub/CS/MScTheses/dassen96.ps.gz}},homeurl = {\url{http://www.wi.LeidenUniv.nl/~jdassen/}},}

To my parents, who have alwayshelped and stimulated me in �ndingmy way.

ForewordThe research that resulted in this thesis was planned to produce a criticaloverview of the theory of Splicing Systems. One of the �rst papers I studiedmentioned Adleman's work on solving in the laboratory a problem usingDNA as an information carrier. This fascinating work caused a change ofplan, broadening the subject to include Molecular Computation.The huge amount of papers dealing with Molecular Computation thatwere published (or made accessible to the research community on-line) inthe less than two years since the publication of Adleman's paper forced meto make a selection, which I hope has not distorted the overview I'd liketo provide too much and which represents the balance between theory andpractice I feel comfortable with.I thank all those who helped me during the research for and the writ-ing of this thesis: Grzegorz Rozenberg, my thesis advisor, who allowed meto change from the original plan; Hendrik Jan Hoogeboom, my secondarythesis advisor, upon whom circumstances forced much more work than iscustomary for that role; Nik�e van Vugt, who provided me with early, fastfeedback; Jurriaan Hage, Egbert Boers, Reinier Balt, , critical proofreaderswho o�ered valuable suggestions; Remko Buitenhuis, for checking the appen-dix; Len Adleman, for getting me on the DNA computing mailing list andfor providing me with archives of that list; Samuel Braunstein, for sendingme a copy of his tutorial on Quantum Computation; and �nally to everyonewho made the Internet the invaluable research tool it is today and who madethe freeware tools used in editing, typesetting and managing this document.Ray Dassen Leiden, August 1996
5

6

Contents
Foreword 5Contents 91 Introduction 111.1 A de�nition of molecular computation : : : : : : : : : : : : : 111.2 Adleman's approach : 111.3 Why yet another model? : 121.4 Advantages and promises of Molecular Computation : : : : : : 141.5 Limitations and drawbacks of Adleman's approach : : : : : : : 151.6 Other approaches to molecular computation : : : : : : : : : : 162 Classifying models of Molecular Computation 172.1 Special purpose or universal : : : : : : : : : : : : : : : : : : : 172.2 In vitro or in vivo : 182.3 The information carrier : 182.4 The operations : 192.5 Are instructions data? : 202.6 Manipulation of the information carrier itself : : : : : : : : : : 202.7 One-pot or multiple phases or tubes : : : : : : : : : : : : : : : 202.8 Error-resilience : 212.9 Communication : 212.10 Native or not : 223 Special purpose models 233.1 Adleman's approach : 233.1.1 The Directed Hamiltonian Path problem : : : : : : : : 233.1.2 The algorithm : 247

8 CONTENTS3.1.3 Implementation : 243.1.4 Classi�cation : 253.1.5 Results and problems : : : : : : : : : : : : : : : : : : : 263.2 Lipton's model : 273.2.1 Operations : 273.2.2 Solving SAT : 283.2.3 Results and problems : : : : : : : : : : : : : : : : : : : 294 Universal models 314.1 Turing machines : 324.1.1 Basic model : 324.1.2 Representation : 324.1.3 Con�gurations : 324.1.4 (Non)determinism : 334.2 Beaver's model : 334.2.1 A new operator: context-sensitive substitution : : : : : 334.2.2 Implementing the simulation : : : : : : : : : : : : : : : 344.2.3 Problems : 344.3 Rothemund's model : 354.3.1 Useful enzymes : 354.3.2 Representing instantaneous descriptions : : : : : : : : 364.3.3 Transitions : 374.3.4 Estimates : 384.3.5 Advantages : 384.3.6 Problems : 384.4 Winfree's model: simulating cellular automata : : : : : : : : : 404.4.1 Cellular automata : 404.4.2 Winfree's simulation : : : : : : : : : : : : : : : : : : : 414.4.3 Evaluation : 415 Splicing Systems 435.1 Background : 435.2 The splicing operator : 435.3 Splicing rules : 445.4 Splicing Systems : 455.5 Classes of Splicing Systems : 465.6 Variations : 465.7 Interesting results : 47

CONTENTS 95.7.1 Requirements for practicality : : : : : : : : : : : : : : 475.7.2 Candidate models for universal computation based onsplicing : 485.8 Problems : 486 Current developments in Molecular Computation 516.1 Consideration of practical problems : : : : : : : : : : : : : : : 516.1.1 Errors : 516.1.2 Attention for reaction circumstances : : : : : : : : : : 526.2 Other information carriers or chemistries : : : : : : : : : : : : 526.3 Hybrid schemes : 546.4 Communication : 546.5 A `killer application'? : 546.6 The future. . . : 55A A bit of biochemical background 57A.1 From DNA to proteins : 57A.2 Manipulating DNA : 59A.2.1 Joining DNA sequences : : : : : : : : : : : : : : : : : : 59A.2.2 PCR : 59A.2.3 Cutting DNA : 59A.3 Candidate-molecules for universal Molecular Computation : : 60References 61Index 95

10 CONTENTS

Chapter 1Introduction
1.1 A de�nition of molecular computationMolecular computation is computation using biological macro-molecules likeDNA as information carriers, that are manipulated using biological opera-tors, such as enzymes, and operations commonly used in bio-technology andgenetic manipulation, such as �ltering operations and the polymerase chainreaction.Like many recent developments in Computer Science, such as genetic al-gorithms and neural networks, Molecular Computation is inspired by nature.While these recent developments mostly use nature as a resource to inspirenew techniques for problem solving, as a basis for software, Molecular Com-putation focuses on nature as a basis for hardware.1.2 Adleman's approachThe current boom in interest in molecular computation started with Adle-man's seminal article [Adl94], in which an instance of the directed Hamil-tonian path problem| a well-known NP-complete problem| is solved usingDNA and standard biological techniques.Adleman's approach is based on a nondeterministic algorithm for the di-rected Hamiltonian path problem. The algorithm amounts to the following:generate a random path through the graph and apply a (polynomial-time)veri�cation algorithm (see [CLR90]) to it. The path is encoded as a DNA se-quence, and the veri�cation algorithm is implemented by sequentially check-11

12 CHAPTER 1. INTRODUCTIONing the properties of the sequence encoding a candidate solution path anddiscarding that path if it does not ful�ll the requirement being checked.Adleman shows how to solve instances of one speci�c combinatorial prob-lem, Hamiltonian Path, in a way that easily suggests a generalization to othercombinatorial problems. This generalization was �rst formalized by Lipton([Lip94, Lip95b, Lip95a, Lip96]), who provided clear de�nitions of data rep-resentation, initialization and operations.We will study Adleman's approach and Lipton's generalization in detailin Chapter 3.1.3 Why yet another model?There are a number of reasons why Molecular Computation is interestingfrom both a theoretical and a practical viewpoint.As a study of complex systems, Computer Science has many large and of-ten fuzzy borders with Mathematics, Physics, Biology, Chemistry, Linguisticsand other sciences. These sciences frequently use Computer Science to im-plement and study their models on computing devices. Some of these modelshave led to `architectures', models of computation, either in hardware or astheoretical constructs, like neural networks, classi�er systems, Post produc-tion systems, string rewriting systems, Turing machines, cellular automata,spreadsheets etcetera.From the viewpoint of computability, one su�ciently strong model, sayTuring machines, is enough. For every algorithmic device of all other knownand unknown architectures, there exists a Turing machine that performs thesame computation as that device. This unprovable, but generally acceptedstatement is known as the Church-Turing hypothesis.Indeed, all computations of every device in all of the models can be sim-ulated by a single, so called universal Turing machine. The importance ofconstructing a universal machine (either physically or as a mathematical con-struct) is that the universal machine is programmable: it in itself is enough toperform all computations, meaning that from the viewpoint of computationalstrength, no other hardware needs to be built. In all of the su�ciently strong| i.e. Turing machine equivalent | models, there exist universal devices.There are quite a few reasons why it is important to study more than onesingle model and to study weaker models too, though.

1.3. WHY YET ANOTHER MODEL? 13Alternative viewpoints. One model can be a lot more natural for ex-pressing a problem than another. This has been noted many times. Inlinguistics it is known as the Whorf/Sapir hypothesis ([Who40, Sap58]) ex-pressed colloquially as `Language shapes thought'. [Bea94] formulates it thus:`If all you have is a hammer, everything looks like a nail'. For instance, wenormally view a computer as `a universal Turing machine with limited tape'.This model provides us with a structure suitable for programming purposes,which the formally equivalent model under the limited tape assumption of�nite state machines lacks.Formality and ease of use. Di�erent models often represent di�erentchoices in the trade-o� between formality and ease of use. Although Pascalis much easier for practical programming purposes than Turing machines, itssemantics are less formally de�ned, and attempts to develop or use formalsemantics for it are daunting tasks.Ease of implementation. Also, for a speci�c kind of hardware, one modelis easier to implement than another. Writing a compiler for an Algol-like lan-guage on current electronic computers is more straight-forward than writinga compiler or interpreter for a functional language. On the other hand, dueto their lack of side-e�ects, purely functional languages can easier exploitparallel architectures than can imperative ones.Applicability of theories from other sciences. Using a di�erent modelone can sometimes use theories from other sciences to perform analysis onpractical aspects. For instance, statistical mechanics have successfully beenused in analysing the behaviour of neural networks.Di�erences in what problems are tractable. Furthermore, althoughmost of the models can simulate each other using a simulation of polyno-mial time-complexity, there are indications (e.g. [Sho94]) that some im-plementable models (especially quantum computation) may be more thanpolynomially faster than others, thus possibly enlarging the range of prob-lems that can be considered tractable.By providing di�erent viewpoints, having multiple models improves ourinsight in computability and the essence of algorithms and complexity.

14 CHAPTER 1. INTRODUCTIONHierarchies: strength versus analysability. The di�erent models canbe weakened in di�erent ways, thus inducing hierarchies (actually partiallyordered families of classes of algorithms) that describe di�erent positions inthe trade-o� between computational power (or expressibility) and suitabilityfor analysis (or decidability or e�ectiveness of decision problems): more canbe proved for less powerful models and the decision algorithms for the weakermodel are often less complex than for the stronger model.The classical example of such hierarchies is the Chomsky hierarchy (see[HU79, Ch. 9]) consisting of the regular languages, the context-free lan-guages, the context-sensitive languages and the recursively enumerable lan-guages. All of these languages are in practical use: regular languages de-scribe the patterns that the Unix grep(1) command can recognize; context-free languages are used in describing the syntax of programming languages;context-sensitive languages have applications in natural language processingand linguistics; and recursively enumerable languages describe the limits ofwhat programs can compute.1.4 Advantages and promises of Molecular Com-putationMolecular Computation (also known as `DNA computation') is a fairlyrecent model, with many promises, both practical and theoretical.Molecular Computation is based on nature's way of generating complex-ity: the interaction between DNA, the carrier of genetic information, andenzymes (operators on DNA). It has potential for easily allowing massiveparallelism on an unseen-before scale, providing new insights for biology,pharmacy, and medicine. It has already resulted in a new branch of for-mal language theory, using splicing operators that are modeled after enzymeoperations, instead of concatenation.Energy-e�cient. Nature is highly e�cient in its energy use: only a smallpercentage of energy produced is in a useless form. Cells routinely achieve thesame reaction speeds at lower temperatures | thus wasting less energy onheat | as our chemical technology, because the enzymes they have evolvedare such good and selective catalysts. In electronic computing too, much

1.5. LIMITATIONS AND DRAWBACKS OF ADLEMAN'SAPPROACH 15energy is wasted as heat1 and subsequently on cooling. Using nature's tool-box can make molecular computers much more energy-e�cient than previoustypes of computers.Molecular Computation will push biology and biochemistry for more
ex-ible operations and more reliable techniques that may prove useful in thosedisciplines and in medicine. Its focus on computation, on information stor-age, retrieval and manipulation may also inspire new insights into the earlyphases of the evolution of life on earth.Massive parallelism: a nondeterministic computer. A sequentialcomputer is an approximation of a deterministic Turing machine, where theunbounded tape is approximated by a large, but �nite memory. In the sameway, a parallel computer is an approximation of a nondeterministic Turingmachine where the unbounded number of parallel computational searches isapproximated by a large, but �nite number of parallel searches. Adleman'sapproach has attracted a lot of attention, because the number of parallelsearches it permits is larger than that of previous parallel computers by sev-eral orders of magnitude. From the viewpoint of computational power, it isnothing new (`yet another non-deterministic Turing machine'), but from apractical perspective it is very interesting, since it may rede�ne the limits offeasible computation.Density of information storage. The potential density of informationstorage is very high: 66{67 atoms per base pair (including the sugar-phosphatebackbone and supporting ions); each base pair can encode for four symbols(two bits).1.5 Limitations and drawbacks of Adleman'sapproachThere are a number of drawbacks and limitations to Adleman's approach,some of which have been resolved.Adleman's approach is designed to solve combinatorial problems only. Noattempt is made to achieve universal computation.1Some modern CPUs can be used to bake eggs on when their cooler is removed.

16 CHAPTER 1. INTRODUCTIONFurthermore, the operations involved are very slow and highly error pronecompared to those in digital electronic computers, and the model's scalabilityto large problem instances is doubtful.Also, it requires an external operator to perform the various �lteringsteps; it cannot be `switched on and run by itself'.We will review these and other problems in more depth in Chapters 3and 6.Research since has focused on removing or alleviating these limitations.There are now several universal models; some approaches do not require anoperator; and less error prone operations, as well as probabilistic approachesto increase reliability are being studied.1.6 Other approaches to molecular computa-tionMore general models have been proposed, such as Lipton's model for solvingNP-complete problems. We will focus on this model in Section 3.2. Otherresearchers have focused on achieving universal molecular computation, bymoving away from the use of DNA as a static `write-once' representation ofa potential solution to a dynamic use of DNA as a more general informationcarrier, manipulated using enzymes.The striking similarity of DNA to Turing machine tape has been exploitedto simulate Turing machines, including universal ones. Of these, we willdiscuss Beaver's (Section 4.2) and Rothemund's (Section 4.3).A di�erent approach was taken by Winfree, who studied non-linear DNAsequences generated by self-assembly in [Win95b, WYS96]. These allow treesto be represented directly, and seem to be capable of universal computationby themselves (without manipulation by enzymes): one-dimensional cellu-lar automata can be simulated by two-dimensional DNA `clusters'. Thisapproach is brie
y discussed in Section 4.4.

Chapter 2Classifying models of MolecularComputationMolecular Computation is a quite new discipline, and still has a way to gobefore becoming a mature technology. It has been compared in [Smi95] to thevacuum tubes phase in the development of electronic computers. Be�ttingthis stage, the number of radically di�erent models is large, and it is di�cultto tell yet which models are viable and which will be culled by implementationproblems or economic feasibility.This state of a�airs makes it hard to give a precise de�nition that includesall of the models. It is more illuminating to focus on and clarify the di�erencesbetween the various models.We will therefore list the important di�erences. Please note that most ofthe distinctions made here are formulated as dichotomies, although practicewill show many shades of gray between black and white. Also, the distinctionsare not to be taken as orthogonal: many of them are interrelated, oftenstrongly.2.1 Special purpose or universalSome models are designed to handle only a limited class of problems, mostlythose that are intractable using electronic computers, such as problems in-volving large combinatorial searches. Examples of these models are Adle-man's and Lipton's approach of combinatorial searches encountered when17

18 CHAPTER 2. CLASSIFYING MODELS OF MOLECULARCOMPUTATIONattacking NP-complete problems ([Adl94, Lip94, Lip95a]) and problems incryptography ([Bea94, BDL95, ARRW96, BDL96]).Other models focus on achieving universal Molecular Computation. Auniversal model is important, because in a universal model there exist univer-sal members: members that can be programmed to perform any computabletask. Most of these models are proof-of-concepts rather than practical pro-posals, although most researchers express optimism about achieving practicaluniversal Molecular Computation. These models include Beaver's and Rothe-mund's simulations of Turing machines | either generic ones or a universalone speci�cally | which we will study in Chapter 4 and Kurtz' RNA editingand rewriting based one ([KMRS96]).2.2 In vitro or in vivoMost current models are in vitro. In vitro models are conceptually less com-plex than in vivo ones1, but in vivo models may have several advantages.Cells have evolved high reaction speeds and e�cient ways of separating re-actions by selective transportation of reaction products and disposal of by-products. Even if in vivo Molecular Computation may be infeasible, livingsystems are an important source for tricks and techniques. For instance, theuse of multiple tubes can be seen as an imitation of the cell's compartments.2.3 The information carrierThe various models of Molecular Computation employ di�erent informationcarriers.Most schemes use DNA, but DNA has many forms in which it is suit-able. Single-stranded and double-stranded DNA are common, but moreexotic forms are used too, such as circular DNA (modelled theoreticallyin [YKF95]), partially double-stranded DNA ([RWB+96]), non-linear DNA([WYS96]). However, double-stranded DNA appears to be the preferredform under most reaction circumstances, and the assembly of `unusual' DNAstructures is still more a topic of research than a technology ([SWL+96]).1In vivo models are those models in which the computation is carried out in the bio-chemistry of a living organism, such as a genetically modi�ed Escherichia Coli bacterium.

2.4. THE OPERATIONS 19Some researchers have speculated on the use of arti�cial DNA-like poly-mers such as PNA, either as a more stable information carrier2 or for inter-mediate use in operations ([RWB+96]).RNA is also suitable as an information carrier. In nature, RNA is moreoften manipulated and rewritten than DNA. DNA's function is mostly thatof a rather passive, nearly read-only, long-lived instruction tape, while RNAis more of a short-lived scratch memory used in protein synthesis. RNA isthe main inspiration for the abstract CNA model in [KMRS96].
2.4 The operationsCurrent models employ a wide range of operations on information carri-ers from areas like physical chemistry and biotechnology, such as �ltering,magnetic bead extraction and gel electrophoresis, and biochemistry biology,including enzymatic reactions such as PCR.The choice of operations in a model depends on several factors. One isthe function of the information carrier in the model, which we will discussshortly. Another is | of course | the information carrier itself.The scalability of models is in
uenced by the dimensionality involvedin the operations: some operations are volume-based (e.g. the addition ofenzymes), while others | especially magnetic bead extraction and gel elec-trophoresis | use less than three dimensions, and may therefore scale lesswell.A factor that is currently receiving much attention, is the reliability ofoperations. There are many examples of unreliable behaviour. Filteringoperations may not �lter out all undesired molecules, and not pass all desiredones. Ligation also happens between strands that are not fully Watson-Crick-complementary. PCR | often used to extract (partial) solutions | mayboost undesired molecules too, and can produce distorted copies; also, somereaction circumstances favourable for PCR can result in reactions betweenthe molecules to be copied ([KCL96]).2Though no enzymes for manipulating PNA exist. ([Smi95])

20 CHAPTER 2. CLASSIFYING MODELS OF MOLECULARCOMPUTATION2.5 Are instructions data?A universal computer is programmable: it can execute every algorithms givenan encoded description of it | a program | as part of its input. In the de-velopment of electronic computers the realization that instructions are notfundamentally di�erent from data, and thus can be treated as data them-selves, was crucial3: instead of rewiring the hardware to perform a di�erentfunction, one could simply load a new program tape.In Molecular Computation only a few models, such as Rothemund's Tur-ing machine simulation which we will study in Chapter 4, treat instructionsas data. In most models, instructions are either interwoven in the hardwareor part of the operator (e.g. an external robot that mixes tubes).2.6 Manipulation of the information carrieritselfIn Adleman's and similar models, the information carrier is not rewrittenafter an initialization phase. It merely encodes a candidate solution in anexhaustive search.In other models, the information carriers may be rewritten like the tape ina Turing machine or RAM in an electronic computer. This allows the modelto overcome the limitations of the exhaustive search approach. An obviousexample is in Turing machine simulations, where the DNA that simulates thetape is rewritten. But the complexes formed in simulating the developmentof cellular automata ([Win95b, WYS96]) fall into this category too.2.7 One-pot or multiple phases or tubesAn important problem in Molecular Computation is that of control of op-erations. While it is desirable in terms of speed to achieve a high degreeof parallelism between the operations in performing molecular programs, ac-tually performing operations in parallel can be expected to result in manyundesirable interactions between the operators and operands of the variousoperations.3It is one of the achievements of John von Neumann, who created the basic architectureof electronic computers that is still used today.

2.8. ERROR-RESILIENCE 21One way to prevent this is simply to perform operations sequentially, andclean up between them4. A big disadvantage is that, because one has to beon the safe side of the duration of the reactions involved in the operations,the worst case times of the reactions add up. In the parallel case, the worstcase is that of a pipeline of operations, which may be signi�cantly shorterthan the worst cases of the individual operations added up.A di�erent approach is to perform the di�erent steps in di�erent tubesor vats, separated by �lters, membranes or purifying operations to controlthe transport of molecules between them. [RWB+96] presents a discussionmodel of a `parallel robotic workstation for molecular computation' that usesmembranes.An approach which is designed for parallelism and for which no externaloperator is necessary after an initialization phase is termed `one-pot'. Thereare currently no `one-pot' schemes based on well-understood chemistry. Theclosest yet are Winfree's cellular automata [Win95b, WYS96].2.8 Error-resilienceModels di�er widely in their attention for errors. Some simply assume perfectoperations, while others are designed to be resilient to errors. The approachesto error-resilience include re�nery based on biased random walks ([RWB+96])and repeating operations based on probabilistic analysis ([KKW95]), trans-forming algorithms to use error prone operations less frequently ([KKW95,AGH96]), selective ampli�cation of `good' strands ([BDLS96]), double encod-ings ([BDLS96]) and stricter designed, less dense encodings ([Mir96, DMG+96,Bau96b]).2.9 CommunicationCurrently, models have no communication between information carriers, andcommunication to an external operator is often limited to an end result read-out (the operator manipulates `blindly').Researchers are however very interested in developing models that exploitvarious forms of communication ([Ame96b]). For instance, branched parallel4Fast cleanup can be achieved by �xing the information carrying molecules on solidsupport, and cleaning up by washing. Examples are [Rot96, LGC+96].

22 CHAPTER 2. CLASSIFYING MODELS OF MOLECULARCOMPUTATIONsearch could potentially be done much deeper when `dead end' strands couldbe reused for exploration of promising paths.2.10 Native or notCurrent universal models of Molecular Computation are all based on sim-ulating or implementing previously known abstract universal models. Asyet, there is no model that is `native' to Molecular Computation, one that�ts seamlessly into the potential o�ered by Molecular Computation, whileavoiding its disadvantages.For current electronic computers, the register machine is a `native' model.`native' models are conceptually easier to implement, because they �t betterthan `alien' ones, that have to be translated before becoming useful.

Chapter 3Special purpose models
3.1 Adleman's approachIn [Adl94] Adleman used techniques from molecular biology to solve a 7-nodeinstance of the Directed Hamiltonian Path problem (DHPP).3.1.1 The Directed Hamiltonian Path problemA Directed Hamiltonian Path in a graph is a directed path through thatgraph that starts in a designated node, ends in another designated node, andpasses all other nodes exactly once. The DHPP is known to NP-complete1.It is therefore highly likely that no algorithm for this problem exists thathas less than exponential time-complexity. Furthermore, since many NP-complete problems are of practical interest and algorithms for solving oneNP-complete problem can be transformed { adding only polynomial factors{ into algorithms for another, e�cient methods for solving even one of themare very desirable.In one formulation, the problems in NP are those problems for which apolynomial time veri�cation algorithm exists. In most of the interesting ones,the number of candidate solutions is exponential (or worse) in the problem1For an overview of the theory of NP-completeness, the reader is referred to [GJ79].[CLR90] provides an overview of the �eld of algorithm analysis, including time-complexityand NP-completeness. 23

24 CHAPTER 3. SPECIAL PURPOSE MODELSsize. A brute force solution is to generate all possible candidate solutions,and apply the veri�cation algorithm to each of them. This is the approachtaken by Adleman: the whole brute force search is performed in parallel.3.1.2 The algorithmThe input to an algorithm for DHPP is a graph. There are two possible typesof output: a simple `Yes' or `No' answer to the question `does this graph havea Hamiltonian Path'2 or such a path, if one exists.Adleman's method is an implementation of the following algorithm:1. Generate `all' paths through the graph.2. Discard paths that do not start in the designated start node or that donot end in the designated end node.3. Discard all paths that do not consist of n nodes (n being the numberof nodes in the graph).4. Retain only paths in which each node appears at least once.5. If any paths remain, a solution is found. If not, there is no solution.3.1.3 ImplementationThe key to the implementation is the representation of the edges in the graph.This representation is based on that of the nodes. Each node i is encoded asa 20 base pairs long sequence of DNA3, designated Oi. The encoding Oi!j ofan edge i! j consists of the 10-base tail of Oi followed by the 10-base headof Oj. We use a bar to indicate the Watson-Crick-complement of a sequence,e.g. O3. When ligating with Oi or Oj, this encoding ensures 10-base stickyends: the strand encoding the edge i! j and the strands encoding the nodesi and j are connected in a brick-like manner.2This is the so called decision problem version; the theory of NP-completeness is for-mulated for decision problems only.3[Adl94] states `a random 20-mmer sequence of DNA'. This makes the algorithm moreprobabilistic than necessary. With some e�ort, sequences can be chosen, without resortingto a probabilistic method, that have the desired qualities and the additional bene�t oflowering the chances of erroneous extraction and self-stickiness. ([Bau96b])

3.1. ADLEMAN'S APPROACH 25In step 1, `all' paths through the graph are generated. From step 3, onecan see that it is su�cient to generate all paths of length n; the mechanismused here will produce other paths, that are �ltered out in step 3. Generat-ing all these candidates requires super-exponential time on a deterministiccomputer4, but can be done e�ciently using parallel chemical reactions. Forall nodes i except the designated start and end node and all edges i ! j,Oi!j is ligated with Oi and Oj. This results in chaining O�!i to Oi!j toO�!i!j!�.Step 2 is done by PCR ampli�cation using Ostart and Oend as primers,resulting in ampli�cation of those molecules that encode paths with the de-sired start and end node.The separation on length for step 3 is done using gel extraction. In gelextraction, the molecules are run through a gel. The speed with which amolecule runs through the gel depends on its weight. The molecules are thussorted in bands of molecules with the same weight. The molecules in the 20nband (corresponding to paths with length n) are excised from the gel to beused in the next step.Step 4 is done as follows. The product of step 3 is puri�ed �rst, andsingle-stranded DNA is generated from it. Next, repeated extraction | oncefor each node i | is done using a magnetic beads system: Oi conjugated tomagnetic beads is added, allowed to anneal to strands containing Oi. Theseare extracted, and retained for the next iteration.Step 5, the readout, is done by �rst PCR amplifying the remaining so-lution, and detecting the presence of DNA using gel electrophoresis. Thisanswers DHPP as a decision problem. If a solution path is desired, one ofthe strands detected can be sequenced.3.1.4 Classi�cationAdleman's approach is a special purpose in vitro model, using DNA (bothsingle-stranded and double-stranded) as an information carrier; selection isdone using PCR, gel electrophoresis, and magnetic bead extraction. The in-formation carrier is not rewritten after the initialization phase and is processedin multiple physically separated phases. Several sources of errors are identi-�ed, but the implementation was not designed to be very error-resilient.4Taking into account the start and end node, and the fact that each node has to appearprecisely once, the number of candidate solutions is still (n� 2)!.

26 CHAPTER 3. SPECIAL PURPOSE MODELS3.1.5 Results and problemsImplementation problems. Adleman did �nd a solution for his chosen 7-node instance of the Directed Hamiltonian Path problem, with approximately7 days of lab work. He identi�es several sources of errors that have to beinvestigated when upscaling his approach:� The ligation used in step 1 to produce the paths through the graph mayalso occur between incompatible edge oligonucleotides. The resultingmolecules look somewhat like paths, but do not encode for actual paths.It is therefore advisable to check if the outcome of the computationindeed encodes an actually occurring Hamiltonian path.� The separation in step 4 is not perfect: `good' molecules may not beextracted, while some `bad' ones are.� PCR has since been shown to be a severe source of errors unless careis taken ([KCL96]), because the single stranded templates to be copiedcan anneal to each other.Advantages. On the positive side, Adleman notes that the encoding usedhas several advantages. It is unlikely that long common subsequences be-tween codings for di�erent vertices would exist, which could result in more`unintended` binding during step 1. Also, unusual features like hairpin loopsare unlikely to appear. Furthermore, the length of the oligonucleotides usedis such that they are stable at room temperature.Limitations of the abstract model. While the problems just discussedare mostly associated with the implementation, there are limitations to theabstract model too. The main limitation is that it cannot break the ex-ponential barrier: exponentially complex algorithms remain infeasible evenfor fairly small problem instances. [Har95b] shows that solving a 200 nodeinstance of DHPP would require an amount of DNA weighing more thanthe Earth. [MD96] uses a similar argument | using an estimation of theamount of matter in the universe | to show that the increase in the size ofgenerally solvable problems for which only exponential algorithms are knownachievable via Adleman-like models is limited to approximately 102.55Even stronger: `Over the chemically measurable picomolar to molar concentrationrange the greatest practical increase in problem size is limited to � 101'. However, this ar-

3.2. LIPTON'S MODEL 27Also, the output of the initialization step falls in a limited class of lan-guages. When the self-assembly is linear | as it is in Adleman's approach| this class is that of regular languages ([WYS96]).3.2 Lipton's modelAdleman's approach to the Directed Hamiltonian Path problem was ground-breaking, primarily because it was shown to actually work in the laboratory(although for a small test-case). An important problem in generalizing theapproach of [Adl94] is that algorithm and implementation are strongly inter-woven: [Adl94] does not make a clear distinction between the abstract modelof data structures with their associated operations and the concrete methodsof implementing them.Applying the principle of separation of concern, Lipton made this distinc-tion in [Lip94, Lip95b, Lip95a]. He provided an abstract model of Adleman'sapproach by clearly identifying the operations used, thus allowing computerscientists to study the power of this model without going into implementationdetails and conversely allowing biologists to look for mechanisms to imple-ment the various operations without having to fully understand the way theyare used in implementing algorithms.Lipton illustrates the the usefulness of his abstract model by generalisingAdleman's approach to other NP-complete problems, especially the satis�a-bility problem (SAT).3.2.1 OperationsLipton's model introduces the notion of test tube | [Lip94]: `from the pointof view of a computer scientist, it is just a �nite multiset of strings fromfA;C;G; Tg' | and includes the following operations:Initialize Create a test tube containing large numbers of copies of someshort single strands.Anneal The operation of creating double stranded DNA from complemen-tary single strands.gument is much weaker, since biological operations such as PCR can be used to selectivelyamplify chemically immeasurable amounts of DNA up to detectable amounts.

28 CHAPTER 3. SPECIAL PURPOSE MODELSExtract Extracting those DNA sequences that contain a certain consecutivepattern.Detect Determine if a test tube contains any DNA strands at all.Amplify Replicate all the DNA strands in a test tube.Note that all of these operations are present in Adleman's approach:initialize and anneal in step 1, extract in step 4, amplify between steps 3and 4, and detect in step 5.3.2.2 Solving SATSAT. SAT (satis�ability) is the NP-complete problem of �nding an assign-ment of values to the variables in a boolean formula that that satis�es thatformula, i.e. makes it evaluate to true. E.g. the solutions for (a_ b)^ (�a_ b)are (a; b) = (true; true) and (a; b) = (false; true); for a ^ �a there is no solu-tion. Variables like a, and their complements like �a are known as satis�abilityproblem!literals inliterals.CNF: a normal form for SAT. A normal form for boolean formulasis conjunctive normal form (CNF), in which each formula is built up as aconjuction (AND) of clauses, each of which is the disjunction (OR) of one ormore literals. An example formula in CNF is (x _ y _ z) ^ (x _ �y _ z) ^ (�x _�y _ �z) ^ (x _ �y _ �z).Using CNF as a normal form makes it easier to express algorithms forSAT, since formulas in CNF have an easier structure than general booleanformulas. This advantage is especially important to Lipton's algorithm, sincethe structure of a formula determines the operations to be performed.Encoding candidate solutions. Candidate solutions for an n-variableinstance of SAT can be encoded as n-bit numbers (bit i is one, means xi istrue). These n-bit numbers can be encoded as paths through a simple graph.Such a graph has nodes a1; x1; x10; a2; x2; x20; : : : ; an+1 and edges from ak toxk and xk 0 and from xk to ak+1 and from xk 0 to ak+1. In such a graph allpaths from a1 to an+1 encode an n-bit binary number: if a path contains theak to xk edge it encodes for a number with bit k as one; if it contains theak to xk 0 edge, bit k is zero. The graphs are encoded into DNA followingAdleman's encoding.

3.2. LIPTON'S MODEL 29The algorithm. The key idea in Lipton's algorithm is that the formuladetermines which operations to perform and in what order.ORs are done using multiple tubes, and ANDs are done by repeatedextraction in a kind of `function application': start with all strands, andloop over the clauses, keeping only those strands corresponding to variableassignments that evaluate to true for the current clause. After this iteration,the remaining strands are those that correspond to satisfying assignmentsfor the whole conjunction.Lipton's algorithm for solving instances of SAT for CNF formulas C1 ^C2 ^ : : : ^ Cm over n variables is as follows:� Initialize and anneal : create a tube t0 with DNA strands that encodeall n-bit binary numbers.� A tube tk contains exactly the solutions for C1 ^ C2 ^ : : : ^ Ck.� Tube tk+1 is created from tk by a series of extracts, one for each variablein Ck+1. tk+1 is initially empty. For each extract, the strands extractedfrom tk are added to tk+1, while the remainder of tk is used in thefollowing extract or discarded when there is no following extract. Theextract for a variable v extracts all strands encoding numbers with thebit for v set to 1 if v appears as a literal in Ck. If �v appears in Ck, thestrands with the v bit set to 0 are extracted. Thus tk+1 will contain onlythe strands that were in tk (i.e. encoded solutions for C1^C2^ : : :^Ck)and that additionally satisfy Ck+1.� Create tm+1 and detect. A solution to the instance exists if and only ifthere are any strands left.3.2.3 Results and problemsLipton shows how to solve SAT directly instead of via reduction to HPP andsuggests that his method is directly applicable to all problems in NP. Thisdoes away with the polynomial factors introduced by reductions, which is asigni�cant advantage.Furthermore, [Lip94] suggests using a molecular computational device asa special purpose co-processor or oracle for performing exponential searches:an electronic/molecular hybrid computer.

30 CHAPTER 3. SPECIAL PURPOSE MODELSThe most important contribution is probably the precise identi�cationand terminology of the operations in Adleman's approach. `Adleman-stylecomputing' could be termed `Lipton-like models' with equal validity.The operations still need to be perfect, except for extract : if extract doesnot always result in extracting all strands, this can be compensated for bystarting with more strands in the initial tube.Lipton's model was further formalized into `DNA-Pascal' and subjectedto computational complexity analysis by Roo� and Wagner ([RW95]); Amos,Gibbons and Hodgson ([AGH96]) provide a similar model with a less error-prone implementation of the extract operation; and Karp, Kenyon andWaarts([KKW95]) look at error-resilience through probabilistic methods and pro-vide a transformation from Lipton's model that assumes error-free opera-tions to theirs. Boneh, Dunworth, Lipton and Sgall ([BDLS96]) discuss twotechniques for error-resistance that can be applied directly to Lipton's algo-rithm: PCR-ampli�cation after each step to increase the survival probabilityof `good' strands and a double encoding to increase the probability of correctextracts.

Chapter 4Universal models
Adleman and Lipton showed that Molecular Computation is quite power-ful: it can potentially solve instances of NP-complete problems of hithertoinfeasible size.However, they did not answer the question of universality: does a model inMolecular Computation exist that is capable of simulating all computations,i.e. can we create a molecular computer in the sense in which `computer'is used nowadays: a programmable device? Of course, physical devices arenecessarily �nite and thus not truly universal, but some of them, such aselectronic computers, are very good approximations that are su�cient for alarge number of practical problems.The answer turned out to be `Most likely: Yes'. It was found via twoways.One was from the theory of splicing systems, a branch of Formal Languagetheory whose models are abstractions of the combination of DNA annealingand ligation combined with restriction enzymes. We will study this theoryin Chapter 5.The other was from several more or less practical proposals that simulateclasses of Turing machines using Molecular Computation. Of these, we willdiscuss two in some detail: Beaver's ([Bea95b, Bea95d, Bea95c, Bea96]) andRothemund's ([Rot96]). Also we will brie
y discuss a di�erent approach byWinfree ([Win95b, WYS96]). 31

32 CHAPTER 4. UNIVERSAL MODELS4.1 Turing machinesFor extensive treatment of the Turing machine model, the reader is referredto [HU79]. In this section, we will shortly review a few aspects of the Turingmachine model, that are relevant to both Beaver's and Rothemund's simu-lation.4.1.1 Basic modelInformally, a Turing machine consists of a �nite control that stores a tran-sition table and has a current state, a tape of potentially unlimited lengthdivided into cells that are capable of storing one symbol from a �nite al-phabet, and a read/write head that can move (in one-cell steps) along thattape.4.1.2 RepresentationInstead of dividing the Turing machine model into `hardware' (�nite controland read/write head) and `magnetic media' (tape) | a division natural whenstudying electronic computers | in both simulations, the model is dividedinto constant and variable components. The constant component is the tran-sition table; all other parts | head position, state of the �nite control andcontents of the tape | are variable.4.1.3 Con�gurationsBoth models encode the con�gurations (or instantaneous descriptions) ofTuring machines in DNA and perform computations by simulating the step-relation between con�gurations.A con�guration of a Turing machine describes the status of a Turingmachine computation at a speci�c point in that computation. It describesthe contents of the tape, the position of the read/write-head and the stateof the �nite control.Since at any point during the computation, the non-blank part of thetape is �nite, a con�guration can be represented by a string of �nite length,say �1q�2 (where �1; �2 are strings of tape symbols, and q is the state of the�nite control; q also functions to indicate the position of the read/write-head:

4.2. BEAVER'S MODEL 33the �rst symbol of �2 (under the conventions of [HU79], q cannot be confusedwith a tape symbol)).Using a suitable encoding of such a con�guration, performing one stepof the computation amounts to a function application to the con�gurationthat only depends on a small part of that con�guration (a local change),namely the part comprising the position of the head, the current symbol andthe state of the �nite control. This key feature is exploited in both models,though through very di�erent implementations.4.1.4 (Non)determinismAs we have seen clearly in Adleman's approach, in Molecular Computing itpays to use non-deterministic algorithms. Using non-determinism simpli�esthe conceptualization of algorithms that can exploit parallel architectures.Similarly, it would be useful to exploit this on the level of the architectureitself.There are methods to implement a non-deterministic Turing machine on adeterministic one: either explicitly simulate the `forking' of copies wheneverthe non-deterministic Turing machine has a choice, or start with a largenumber of deterministic Turing machines with additional random bits on theinput tape, that are then used in determining which choice to follow.4.2 Beaver's modelBeaver simulates deterministic Turing machines by implementing the steprelation on instantaneous descriptions via local changes.The local change can abstractly be modeled as the replacement of a sub-string �X� by �Y � in a string L�X�R, in which �, �, X, Y are sequencesof limited length and where neither � nor � occur elsewhere in the string.4.2.1 A new operator: context-sensitive substitutionBeaver proposes a speci�c form of site-directed mutagenesis | a small mod-i�cation in a strand whose location is determined by a speci�c base sequence| to implement this substitution. Double strands containing �X� are con-verted to single strands. Strands of �� �Y �� are added, whose �� and �� parts

34 CHAPTER 4. UNIVERSAL MODELSanneal to their complements � and �. The result, except the X and �Ysequences that cannot bind, is then made double-stranded via PCR.This results in double strands that are properly aligned except for thepart between � and � where substitution is to take place. These strandsare denatured into single strands again; primers that anneal to �L�� �Y �� �R {i.e. starts of L and ends of R { are added, and PCR is performed. Now wehave two types of strands: double-strands that encode for L�Y �R that areto be kept, and single strands L�X�R, which need to be removed. Theseundesired single strands are destroyed by cutting with S1 nuclease. Now thesubstitution is complete.4.2.2 Implementing the simulationThe simulation is performed as follows. An initial tube containing a popula-tion of strands is generated (by sequence generation, Adleman-like `genera-tion of diversity' to incorporate random bits for implementing non-determinism,if desired, and PCR).Next, a sequence of separate, substitute and mix back together is per-formed. After each such step, detection of strands corresponding to con�gu-rations in the halt state is performed.The contents of the tube are separated according to the local sequencethat determines (not necessarily totally) the transition. If non-determinismis to be simulated, the tubes can be duplicated using PCR, or can be furtherseparated on the random bits. On each of the tubes, the appropriate substi-tution (as determined by the transition table), is performed. Next, the stepis completed by mixing together all the tubes, and performing detecting forhalted tapes.4.2.3 ProblemsThere are several problems with Beaver's implementation of the substitutionoperator, noted in [Bea95c] and [Smi95].Unintended complexes can form when the �� sequence of an �� �Y �� sequenceanneals to a di�erent strand than its �� sibling. This may be preventedby temporary attachment of the strands on which substitution is to takeplace to solid support. Another solution suggested is to use circular strands,causing unintended complexes to have improper length, and �ltering themout using gel electrophoresis. For useful Turing machines, the length of a

4.3. ROTHEMUND'S MODEL 35tape is unpredictable, and this trick cannot be used (unless one is willing togive up on potential unlimited tape length, and a priori choose a maximumlength).PCR is involved twice in every substitution, although it is slow, expensiveand error-prone ([Smi95, KCL96]).The digestion of single stranded DNA is done with S1 nuclease, which canwork on double stranded DNA too, and which requires reaction circumstancesthat can destroy information stored in DNA.4.3 Rothemund's modelWhereas Beaver's Turing machine simulation is rather sketchy, Rothemund'spaper is quite detailed. Rothemund not only addresses technical aspectslike representing con�gurations in DNA, candidate-enzymes for use in imple-menting the transition steps and the various problems associated with them,sources of error and error resilience, estimates of size, speed and energy use;he also provides backgrounds to Turing machines and Molecular Computa-tion and motivation of the importance of simulating Turing machines.Like Beaver's construction, the simulation is performed by implementingthe single steps from one con�guration (or instantaneous description) to an-other. Unlike Beaver, Rothemund uses a number of enzymes to implementthe step relation.Instead of developing a simulation of a universal Turing machine directly,Rothemund uses a small non-universal Turing machine (a solution to theBusy Beaver problem for three states) as a running example and then suggestshow to scale the construction up to a universal Turing machine.4.3.1 Useful enzymesA number of enzymes known as restriction endonucleases or restriction en-zymes are used by bacteria to destroy double-stranded foreign DNA. Theforeign DNA is recognized by speci�c words | with a typical length of 6 to8 bases | forming a recognition site (or restriction site). The bacteria's ownDNA containing these words is protected by a chemical modi�cation.The recognized DNA is cut in two, producing double-stranded sequenceswith sticky ends.

36 CHAPTER 4. UNIVERSAL MODELSWhile most restriction enzymes | the class II restriction enzymes |recognize sequences that display a speci�c kind of symmetry (so called palin-dromic sequences) and cut at their recognition site, there exists a group ofthem | the class IIS restriction enzymes | that recognize nonpalindromicsequences and that cut at a distance from their recognition site.These class IIS restriction enzymes can be used to implement a numberof operations that have their use in simulating Turing machine con�gurationtransitions: insertion, deletion and replacement of a DNA fragment (with ori-entation control), deletion and replacement without regenerating a restrictionsite and even the movement of a sequence through a strand of DNA (termedprogress).While similar operations are possible using class II restriction enzymes,there is a problem of control: most of them can have undesired side e�ectsand are not speci�c enough.Rothemund chose to use class IIS restriction enzymes, and the encodingfor the instantaneous description and of the transition table is based for alarge part on the property of class IIS restriction enzymes that the cuttingsite | the actual site where strands are cut | is determined by, but notequal to the restriction site.4.3.2 Representing instantaneous descriptionsRemember that an instantaneous description of a Turing machine encodesthe three variable components of the machine:1. The contents of the tape2. The position of the head3. The state of the �nite controlThe contents of the tape. The contents of the tape form a string overthe alphabet of the Turing machine. The individual symbols of the alphabetare each assigned an oligonucleotide sequence. Additionally, all symbols getthe same short extra left and right sequences, that are equal for all symbols,and serve as markers for the begin and end of a symbol. The strings areencoded as the concatenation of the encodings of their constituent symbols.

4.3. ROTHEMUND'S MODEL 37The position of the head. The head is placed `inside' of the tape. Be-cause the head moves through the tape, there is a potential ambiguity: doesthe head point to the symbol to the right or to the left of it? While this couldbe resolved by adopting simple convention (e.g. the head always points tothe symbol to the left), for implementation reasons, another resolution of theambiguity is adopted: the head is made to consist of two distinct parts, oneof which is the recognition site of a restriction enzyme; its splicing site is thecurrent symbol. Thus, there are always two encodings for an instantaneousdescription, one for when the head has just performed a move to the left,and one for when the last move was to the right.The state of the �nite control. Lastly, the state of the �nite controlis encoded in the space between the recognition site of the part of the headpointing to the current symbol and that current symbol.4.3.3 TransitionsRepresenting the transition table. The transition table is encoded intoa number of oligonucleotides, which Rothemund appropriately terms transi-tion oligonucleotides. They exist in four types: one for each combination oflast move of the head (left or right) and next move.The most important parts of the transition oligonucleotides are a stickyend (speci�c for each transition), a head sequence and a sequence for the newsymbol.Implementing the transitions. A transition is done in six steps thatperform two processes: in the �rst, the head in a tape is replaced with thecorrect transition oligonucleotide; in the second, the previously read symbolis deleted.Halting. A simple way of extracting results is to apply PCR ampli�cation(with the halt sequence as a primer) after each step. When detected, thesequences containing the halt sequence can be sequenced, and the answerread out. A safer way is to bind to the halt sequence a group that can beused with bead extraction.

38 CHAPTER 4. UNIVERSAL MODELS4.3.4 EstimatesRothemund gives estimates of several aspects of the implementation of Min-sky's smallest known universal Turing machine using his model.Size. Representing the tremendous amount of one mole of bits (6 � 1023bits) in appropriate solution concentrations requires only about 260m3 water.The individual tapes could encode some 80 kilobyte memory at maximum.Speed. Transitions take about 4.5 hours (assuming reactions on solid sup-port and enzymes at the recommended concentrations).Energy. Transitions require some 44 KCal/mole DNA tapes.4.3.5 AdvantagesRothemund's scheme is speci�ed mostly in great detail.It works entirely with double-stranded DNA, which is more stable thansingle-stranded DNA.Reasonable estimates are given that it scales up to at least the scale of thesmallest known universal Turing machine. This scale-up is in the size of thetransition table (from the `Busy Beaver' Turing machine that is Rothemund'srunning example).4.3.6 ProblemsThere are some problems to Rothemund's scheme, some theoretical and somepractical.It does not describe how to generate the initial tapes. For the `BusyBeaver' running example, the initial tape is blank; it is presumably rela-tively easy to sequence the strand encoding for instantaneous description ofthe Turing machine at the start of its computation, and then make su�cientcopies of it (e.g. via PCR) to compensate for the practical problems dis-cussed below. However, a universal Turing machine requires an initial tapewith the encoding of the Turing machine to be simulated and its input; theinitial strand can be much longer than that for the Busy Beaver case, and istherefore more di�cult to generate.

4.3. ROTHEMUND'S MODEL 39The Busy Beaver example is a deterministic one. One can therefore in-deed simply `mix the twelve transition oligonucleotides [...] with the DNATuring tapes'. Rothemund does not explain if his scheme is suitable for (orcan be modi�ed to suit) non-deterministic Turing machines: simply addingall transition nucleotides could result in interference in the reactions involv-ing transition nucleotides that represent the di�erent choices possible at thecurrent time-step, while sequentially adding them (either in a strict order,or in random order) results in taking the same choice for all machines withthe same status instead of having part of the machines take one choice, andthe other machines take the other choices. It appears likely, though, thatBeaver's suggestion to add random bits to the initial tape can be applied toRothemund's model too; the `fork using PCR' approach may work too, butis an additional source of errors.The scheme requires unfortunately many di�erent kinds of restriction en-zymes, some of which may have poor performance or imperfect speci�city ofrestriction. Failed restrictions can result in defective tapes. By incorporatingsuitable labels, these defective tapes can be removed directly after the stepin which they have been generated, thus preventing their interference withsubsequent steps. Incorrect restrictions can occur, but do so only very infre-quently, when the restriction is performed under the recommended reactioncircumstances.The number of di�erent kinds of restriction enzymes increases with thetransition table size. Thus, Turing machines with large transition tables can-not be implemented with this scheme directly; one has to resort to simulationvia a small universal Turing machine. The scheme can be used to implementthe smallest known universal Turing machine, but simulations by this Turingmachine are very ine�cient. This is not a true problem, since Rothemund'sgoal was a proof of concept: universal computation is possible with MolecularComputation.Also, the ligations involved may fail or even ligate mismatching pairs ofsticky ends and ligation may occur between two tapes, instead of betweenparts of one tape. Suitable enzymes exist that can remove precisely theproducts of such undesired reactions.Lastly, attachment of the DNA strands to solid support can be used tosimplify the removal of reagents after the step in which they were neededis �nished, and the tapes are kept separately, preventing them from ligatingtogether.

40 CHAPTER 4. UNIVERSAL MODELS4.4 Winfree's model: simulating cellular au-tomataWinfree has developed a model that is capable of universal computationbased on a very di�erent model capable of universal computation: cellularautomata.4.4.1 Cellular automataCellular automata ([CAF]) consist of a collection of cells (e.g. a two dimen-sional array), each containing a symbol from a �nite alphabet, and a set oftransition rules that are applied in parallel to all cells at �xed time intervals.The transition of a cell's content from one `time tick' to another is determinedby its current content and the contents of a �nite number of `neighbours' toit (e.g. for a two dimensional matrix, the cells directly left, right, above andbelow it).A well-known example of a cellular automaton is Conway's game of life([BCG82]). Cellular automata have a variety of applications, including thesimulation of certain chemical reactions, and image processing. Also, theycan be considered abstract models of spreadsheets.There exist even one-dimensional cellular automata that are universal:for each Turing machine (including a universal one), one can construct acellular automaton whose initial array contents correspond to the initial tapecontents of the Turing machine, and whose transition rules simulate both thetransition table, the cell replacement and the head movement of the Turingmachine. A universal cellular automata thus has a �xed set of transitionrules, and is programmed by providing the initial array contents.There are a number of variations on the basic theme of cellular automata.One of these that is relevant to us is that of blocked cellular automata,a one-dimensional variation on partitioning cellular automata, which Win-free introduces. In this model, the transition rule is formulated for pairsof cells. There are two possible partitions, ways of dividing the cells intopairs of neighbours, in the array of a one-dimensional cellular automaton(: : : cncn+1cn+2cn+3cn+4 : : : can be paired like : : : (cncn+1)(cn+2cn+3)(cn+4 : : :or like : : : cn)(cn+1cn+2)(cn+3cn+4) : : :). During successive time steps the twopossible partitions of cells in pairs are strictly alternated in the applicationof the transition rule.

4.4. WINFREE'S MODEL: SIMULATING CELLULARAUTOMATA 41Blocked cellular automata can be proven to be universal in a constructionanalogous to that for normal one-dimensional cellular automata. Winfreedevelops blocked cellular automata, since they can be simulated easily withthe construction technique he is proposing.4.4.2 Winfree's simulationWinfree simulates a universal blocked cellular automaton by designing smallunits of DNA in such a way that they self-assemble into two-dimensionalcomplexes according to the rules of the automaton in a hybridization reaction.In these complexes, a slice in one direction corresponds to the state of thewhole automaton at a certain point in time, while a slice in the perpendiculardirection shows the contents of one cell during the whole development of theautomaton.4.4.3 EvaluationIt is still unclear how practical Winfree's approach is. It depends on an un-usual DNA structure, whose behaviour in practice has not been fully tested.[SWL+96] discusses the large gap between theory and practice of construct-ing unusual DNA structures, including the tendency of DNA to form double-stranded helices, di�culty in control and the importance of studying the ac-tual three-dimensional structure instead of relying on two-dimensional mod-els. The problem in achieving substantial yield of desired results is less acutehere, since the building blocks are simple enough to produce in su�cientquantities, and the complex structure forms as a result of the self-assemblyof the building blocks.Despite the dubious practicality, it has several features that may be in-spirational to future research.It is conceptually much simpler than Beaver's and Rothemund's models,using only one basic reaction (hybridization), in a straight-forward simula-tion, requiring no external processing (it is `one-pot'). This illustrates thenecessity of studying the many di�erent models of computation for their suit-ability for implementation using molecular computational hardware, and ofthe search for a model of computation natural to molecular computation.Also, it shows that the asynchronous nature of parallelism in biochemicalreactions does not necessarily preclude approaches based on synchronousparallelism.

42 CHAPTER 4. UNIVERSAL MODELSIt may even be possible to use a similar self-assembling system to simulateTuring machines, although such a system would probably require many more,likely complex, building blocks, and would not use the parallelism that isnatural to cellular automata.

Chapter 5Splicing Systems
5.1 BackgroundWhile practical Molecular Computation started with Adleman's paper [Adl94],Formal Language theory already studied splicing systems, abstract modelsfor the languages generated by strands of DNA under the application of re-striction enzymes and subsequent annealing and ligation. These models wereintroduced by Head ([Hea87]).A strong motivation of the study of DNA recombination using FormalLanguage theory is the complexity of several problems associated with DNArecombination such as shortest common superstring (encountered when de-termining the base sequence of a strand of DNA from the sequences of shortsubstrands). This complexity is surprising given how simple the operatorsin DNA recombination appear to be. Studying these `simple' operations ca-pable of generating di�cult problems may bene�t complexity theory. As[Bea95d] put it: `If DNA-related problems are di�cult to solve, then DNA-based primitives may enable solutions to di�cult problems'.5.2 The splicing operatorThe notation used here mostly follows [RS96, HU79]. For a detailed deriva-tion of the concept of a splicing operator from DNA recombination, the readeris referred to [RS96]. 43

44 CHAPTER 5. SPLICING SYSTEMSFormal Language theory studies sets of strings (termed languages) over a�nite alphabet V of symbols (like f0; 1g and fA;C; T;Gg). Strings (or words)are formed by applying the concatenation operation (notation `�', but oftenimplicit) to strings. The symbols from the alphabet are basic strings. E.g.TAG 2 V � (for V = fA;C; T;Gg; V � is the language of strings over V) sinceTAG = T � (AG) = (TA) �G = (T �A) �G (concatenation is associative) andT;A;G; are strings over V .Splicing is the operation of concatenating a pre�x of one string and asu�x of another string. E.g. applying splicing to strings `snack' and `tofu'may generate `snafu'.5.3 Splicing rulesThis application of splicing, without rules to restrict its use, is, like simi-larly unrestricted concatenation, too general to be interesting (starting withonly the symbols from the alphabet being considered, repeated splicing cangenerate all words over that alphabet), and is not very realistic (restrictionenzymes are very speci�c about the recognition and splicing site).Just as the use of concatenation is regulated by allowing it only on stringsful�lling requirements expressed in grammatical rules, the use of splicing isregulated by splicing rules.A splicing rule is consists of four �nite strings u1; u2; u3; u4 that are usedas patterns. u1; u2 (u3; u4) determine the possible sites of the splicing in the�rst (second) string. u1; u4 are kept in the splicing result, while u2; u3 arenot, assuming we only look at splicing with one result.While it may be convenient to think of a splicing rule as consisting of fourseparate strings, for formal treatment it is easier to encode a splicing rule asa single string (so we can talk about the class of languages a set of splicingrules is in).Formally, a splicing rule (over an alphabet V) is a string of the formr = u1#u2$u3#u4where # and $ are two special marker symbols not in V , and ui 2 V �(1 �i � 4).For such a rule r, applying it to two strings x; y results in a string z

5.4. SPLICING SYSTEMS 45(x; y; z 2 V �) as follows:(x; y) `r z if and only if x = x1u1u2x2; y = y1u3u4y2 andz = x1u1u4y2; for some x1; x2; y1; y2 2 V �:5.4 Splicing SystemsWe can now proceed to the de�nition of an H scheme1. An H scheme isa pair� = (V;R) where V is an alphabetR � V �#V �$V �#V � is a set of splicing rulesAn H system � = (V;R) is used as a unary operator on languages. Ap-plying � once to a language L � V � yields�(L) = fz 2 V � j (x; y) `r z; for some x; y 2 L; r 2 RgThis can be used to study a single application of an H scheme. It can beextended to iterated application �� as follows:�0(L) = L;�i+1(L) = �i(L) [�(�i(L)); i � 0;��(L) = Si�0 �i(L)An H system, though normally viewed as an operator, can be likenedto productions in the grammars of classical Formal Language theory. Thissimilarity to grammars can be strengthened.Classical grammars are `complete' devices for generating languages. Theyspecify an alphabet, a starting point, rules for combining generated stringsinto new ones, and terminal symbols out of which the output strings mayconsist. Associated with them is one interpretation: the language generatedby the grammar.Following this analogy closely, the concept of extended H system wasintroduced. An extended H system is a quadruple
 = (V; T; A;R) V is an alphabet;T � V is the terminal alphabet ;A � V � is the set of axioms;R � V �#V �$V �#V � the set of splicing rules1Following the precedent of L (Lindenmayer) systems, H schemes are named after theirinventor, Thomas Head.

46 CHAPTER 5. SPLICING SYSTEMSFor such an extended H system
 = (V; T; A;R), an underlying H system� = (V;R) is de�ned.The language generated by
 is de�ned using � as follows:L(
) = ��(A) \ T �5.5 Classes of Splicing SystemsWith traditional grammars, there is one `knob' that can be turned inexploring their computational/generative power: the form of the productions.Within extended H systems, there are two `knobs': the classes of lan-guages from which A, the set of axioms, and R, the set of splicing rules, aretaken. E.g. [HPP96] shows that when both A and R are �nite, extended Hsystems can produce regular languages; and that when A is kept �nite, butR regular, the recursively enumerable languages can be produced (in otherwords: the full power of Turing machines).5.6 VariationsWhile extended H systems are perhaps the most appealing model for a FormalLanguage theorist, because of their analogy to traditional grammars, thereare several variants that are being studied.Some of the more obvious are splicing systems in which an H system isapplied only once, and splicing systems in which all symbols are terminal.Splicing systems on multisets of strings, �rst studied in [DG89], are ofpractical interest, since they can accurately model the fact that strands areconsumed in a splicing operation, as are splicing systems on circular strings,studied in e.g. [YKF95], which can model the behaviour of circular strands.Both of these variations can achieve universal computation for A and R fromsimple families in the Chomsky hierarchy.Other variations restrict the applicability of splicing rules by allowinglength-increasing results only, or on pre�xes only etc., e.g. [KPS96].Many variations have been proven to be capable of universal computation(e.g. [CVKP96, CVFKP96, DG89, FKP, P�au95, P�au96b, P�au96a, PRS96,YKF95]).

5.7. INTERESTING RESULTS 47Lastly, there are generalisations of splicing to graphs and other non-string-like structures.5.7 Interesting resultsWhile splicing systems are interesting in themselves as abstract models inFormal Language theory, we are interested in them mostly for their originalpurpose: to model the languages of double strands of DNA generated underthe in
uence of restriction enzymes and ligases. More precisely, are theresplicing systems that can generate the recursively enumerable languages (i.e.are capable of universal computation), for which a realistic implementationis possible?5.7.1 Requirements for practicalityThere are a number of aspects in which splicing systems abstract away frompractical biochemical limitations that become important again, when consid-ering practical implementation.First, in a practical model, the amount of initial strands and the numberof di�erent restriction enzymes is �nite, so both the initial set and the set ofaxioms in a corresponding model will have to be �nite.Secondly, in practice, DNA strands are consumed in splicing: when strandsw and z are generated from strands x and y, x and y are no longer available.This requirement is quite strict; we will not demand this in full: in mostcases, the model still works when we assume a large, but �nite, supply of allstrands involved.Thirdly, the length of a recognition site of a restriction enzyme is lim-ited to 6{8 bases: restriction enzymes cannot recognize arbitrarily long se-quences. This length forms the inspiration for the radius measure consideredin [HPP96].Lastly, some restrictions on the use of the splicing operator, like thelength-increasing or most-increasing modes considered in [KPS96], are di�-cult to implement. We will not consider models based on such restrictions.

48 CHAPTER 5. SPLICING SYSTEMS5.7.2 Candidate models for universal computation basedon splicingWhen we take into account the requirements just formulated, there are a fewsplicing system models that are practical, and capable of universal compu-tation.One is splicing systems based on multisets, as introduced in [DG89]. In-cidentally, this is the �rst type of splicing system proven to be universal.Another is that of splicing systems for circular strings, as studied in[YKF95].Lastly, [HPP96] proves the existence of a universal (for a given alphabet)multiset splicing system with �nite axioms and radius 2.5.8 ProblemsSplicing Systems at �rst sight appear to be an attractive model for de-veloping practical Molecular Computation. However, there are as yet severalsevere problems that hinder their applicability in this way.Only one type of chemistry. Splicing Systems were explicitly developedas models for DNA recombination. There are several other chemistries onwhich practical Molecular Computation might be based, like RNA editing, orthe `weird' DNA complexes used by Winfree. Focusing on Splicing Systemsas the theoretical model for Molecular Computation would be voluntarilyblinding oneself to the other possibilities, for some of which theoretical modelsto study their computational power may still have to be developed.Unrealistic splicing. We have seen several barriers to directly implement-ing splicing systems. For example, restriction enzymes are capable of recog-nizing only rather short (6{8 base pairs) sequences, while splicing rules canrecognize �nite, but arbitrarily long, subwords.Any potentially practical splicing system will have to use only a fewrestriction enzymes, since they are quite expensive, and function optimallyunder diverse reaction circumstances.

5.8. PROBLEMS 49Finiteness. Practical systems will be �nite. Incorporating this �nitenessdirectly into splicing systems (by using multisets, a �nite number of axiomsand a �nite number of splicing rules) easily results in models that are notcapable of universal computation. Also, considering restrictions to enforce�niteness directly can be too restrictive, as a comparison with electroniccomputers illustrates.Electronic computers are of course �nite too, but we mostly consider themto be universal, but memorywisely challenged. The �niteness a�ects only one`knob' of the Turing machine model: the tape size.In splicing systems, the number of `knobs' that can be tuned to produce a�nite system is larger, and the `knobs' are less well understood than memory.The theory of Splicing Systems will have to be enhanced to gain insightinto approximations that may produce practical models. For instance, ifwe have a universal splicing system with a small number of splicing rules,but which requires a regular set of axioms, an approximation would be touse a large but �nite subset from these axioms, and see how much practicalcomputing power is lost.

50 CHAPTER 5. SPLICING SYSTEMS

Chapter 6Current developments inMolecular Computation
In this conclusive chapter, current developments in Molecular Computa-tion are discussed, mainly on the basis of the papers presented at this andlast year's DIMACS workshop on DNA Based Computers ([AMS96, BL96a])and attendance reports of these meetings ([Smi95, Ame96b]).6.1 Consideration of practical problems6.1.1 ErrorsNo molecular computing scheme has yet been tested on a problem of morethan toy size. In most schemes there are a number of sources of errors,e.g. the instability of single-stranded DNA in solution, hairpins and otherundesired structures may form, ligation may occur between edges that arenot fully Watson-Crick-complementary, templates may interact during PCR.In scaling up to useful problem sizes, these errors need to be dealt with.There are several approaches to reduce errors or their e�ect on computa-tions being studied.Careful choice of encoding of information. A carefully chosen encod-ing can prevent the formation of undesired structures, such as hairpin loops,and can increase the di�erence (Hamming distance) between the coding of51

52 CHAPTER 6. CURRENT DEVELOPMENTS INMOLECULAR COMPUTATIONdi�erent elements, reducing the e�ect of binding between sequences thatare not fully Watson-Crick-complementary. Examples of this approach are[Bau96b, DMG+96, Mir96].Other implementations of operations. For some operations, less error-prone implementations have been proposed. For instance, [AGH96] doesnot implement extract by magnetic bead extraction, but by destroying theundesired sequences (add complementary sequences to them, so that dsDNAis formed, then cut that with restriction enzyme).Probabilistic/statistic approaches. When an operation is unreliable,its reliability can be increased by repeating it. For instance, if an extractoperation is to be performed to separate strands which encode for a 1 ina certain position from those that encode for a 0 in that position, one cancreate a series of tubes in which each tube is labelled with the di�erence inthe number of times the strands it contains have been classi�ed as 0 from thenumber of times they were classi�ed as 1. In this way, the strands perform abiased random walk between the tubes. This approach is taken in [KKW95]and in [RWB+96], where it is termed a re�nery model.One can take advantage of these probabilistic e�ects in the encodingtoo. As [BDL96] shows, making the encoding redundant by simply encodingeverything twice increases the reliability of extract implemented by magneticbeads extraction.6.1.2 Attention for reaction circumstancesSome of the reactions used in implementing operations function optimallyunder reaction circumstances (temperature, pH etc.) that cause degradationof DNA. A balance needs to be struck between the necessity of performingthese reactions fast and the acceptable degree of degradation of DNA.6.2 Other information carriers or chemistriesAlthough linear single- or double-stranded DNA in solution is a suitableinformation carrier for molecular computation (it is well understood, fairlystable, and there is a large toolbox of operations to manipulate it), it is notthe only suitable candidate.

6.2. OTHER INFORMATION CARRIERS OR CHEMISTRIES53Solid support / surface based approach. DNA need not be free insolution to be manipulated. It can also be attached to solid support on asurface. Solid support has some advantages: the strand loss that can oc-cur in transport between tubes or vats can be eliminated, and by-productsand enzymes can be washed out easily, leaving less possibilities for interfer-ence between subsequent steps. Solid support is considered in e.g. [Rot96,LGC+96, CCC+96].Speedups. With a carefully designed chemistry, multiple di�erent opera-tions could be performed simultaneously (when they don't interfere with oneanother). For instance, the approach to addition of [GB96] is designed toallow for only one possible `pipeline' in which strands undergo operations.Similar e�ects, akin to pipelining in electronic architectures, could beachieved by employing selective membranes between vats, as in [RWB+96]:it is no longer necessary to wait until an operation has been performed onall strands; as soon as a strand has undergone an operation, it can migrateto the vat in which the next operation is performed.Non-linear DNA. As we have already seen in Section 4.4, non-linear DNAcan be used to perform computations by suitable binding between `buildingblocks'. It is however di�cult to produce non-linear DNA in su�cient quan-tities and with su�cient control; these di�culties are discussed in [SWL+96].RNA. RNA shares much of the qualities of DNA, and may even be usedas an enzyme to implement operations on itself. The biochemistry of RNAediting has possibilities for molecular computation, which are considered in[SS95, KMRS].Arti�cial polymers. There are also arti�cial DNA-like polymers (e.g.PNA and DNG that use a di�erent backbone material) that are more stableand have more speci�c binding than DNA. There are as yet no enzymes tomanipulate them, so it is unlikely that they will replace DNA, but they maybe useful in implementing operations (see [RWB+96] for examples).

54 CHAPTER 6. CURRENT DEVELOPMENTS INMOLECULAR COMPUTATION6.3 Hybrid schemesFollowing [Lip94], there is interest in hybrid molecular/electronic computingschemes, i.e. schemes in which a molecular computing component functionsas a `subroutine' to perform massively parallel operations.Trivial examples are the proposals in which an electronic computer orrobot is used to automate the steps in a molecular computing scheme, likethe `parallel robotic workstation for molecular computation' of [RWB+96].6.4 CommunicationAlthough molecular computers can achieve massive parallelism easily, in cur-rent schemes (except to a certain degree [Bea95d]), there are no real provi-sions for communication comparable to those in parallel electronic computers,such as semaphores and guarded expressions.Communication can conceivably be used to `recycle' strands that repre-sent `dead ends' in a search tree, or to implement the cycles in the evolu-tionary approach suggested in [Ste95] in one pool instead of in a series ofpools.Developing viable communication schemes is a challenge for several rea-sons. There is no addressing mechanism innate to strands in a solution1, ithas to be designed. Furthermore, communication will have to be asynchro-nous, since the chemical reactions are asynchronous, and will have to allowfor a variable transport time for signals (signals encoded as molecules willhave to
oat in solution until they hit their destination).6.5 A `killer application'?It is as yet unclear if their is a `killer application' for molecular computation| a single application or area of applications in which molecular computersare clearly superior to electronic ones, that is of such practical importancethat it in itself is enough to stimulate and �nance the further developmentof molecular computers.1For surface-based molecular computing, there may be ones, but those are visible tothe operator, not to the molecules performing the communication themselves.

6.6. THE FUTURE. . . 55While �nding or developing a killer application would of course be of greatimportance to the �eld, it is debatable whether or not it is bene�cial to the�eld to actively search for a killer application, and what the consequences ofnot �nding one would be.There have been computing architectures with what appeared to be killerapplications, that still became dead ends in the evolution of computing, whileother architectures had no killer application, but still survived, not becauseof technical superiority, but e.g. for economical reasons.6.6 The future. . .Practical molecular computation? As we have seen, Molecular Compu-tation has great potential. Evaluating its practical potential is very di�cult,because current implementations are for toy-size problems, not for real lifeones. Although a number of problems associated with the scale-up which hasto be realized for molecular computers to become practical tools, have beenstudied and approaches to overcoming them have been suggested, there maystill be di�cult problems ahead: in theory, there is no di�erence betweentheory and practice, but in practice. . .The development of the �eld of Molecular Computation can be likenedto Adleman's approach: a �rst phase `generation of diversity', followed by aphase in which candidates that are shown to be unviable, are culled, hopefullyresulting in a small number of practical models.Currently, some models are being re�ned, while still some new ones areintroduced using very di�erent paradigms or implementations. As a con-sequence, one must be careful in interpreting results like [Har95b, Har95a,MD96], since they apply to one or more, but not necessarily all, models inMolecular Computation.Theory. Regardless of whether or not molecular computing will be a viabletechnology, the study of Molecular Computation has provided us with a newway of viewing biological and chemical processes which may prove valuablein medicine and in understanding (the evolution of) life.Also, it provides a stimulus to the study of Splicing Systems, which maydeepen our understanding of the structure of language classes.

56 CHAPTER 6. CURRENT DEVELOPMENTS INMOLECULAR COMPUTATIONA warning. Currently, in Molecular Computation there is much more the-ory than experiment.`Beware of the Turing Tar-pit in which everything is possible but nothingof interest is easy.' | fortune(6)

Appendix AA bit of biochemicalbackgroundMany papers on molecular computation assume some knowledge about bio-chemistry, especially about DNA and RNA; we try to provide the basics ofthis background here by inspecting the roles they ful�ll in nature. Part ofthe material in this section is based on [Res].A.1 From DNA to proteinsA cell's genetic information is stored in strands of DNA (deoxyribonucleicacid). DNA is a polymer | a large molecule consisting of repeated smallerunits (monomers) | with a linear structure. DNA consists of four di�erentmonomers known as nucleotides. All of these consist of a nitrogenous base(adenine (A), guanine (G), cytosine (C) or thymine (T)), a phosphate mole-cule and a sugar molecule. The phosphate and sugar molecules link togetherin a linear structure, thus forming DNA's backbone. The backbone has twodistinct ends, known as 3' and 5' respectively, giving it a direction. This isalso known as polarity. DNA can thus abstractly be viewed as a string overa four-letter alphabet, such as TATAAGAGCAT.The genetic information in a cell must be passed through to a daughter-cell. The structure of DNA in a cell makes this replication easy. DNA ina cell is normally double-stranded (dsDNA): it forms a double helix of twointertwined strands that are bound together by hydrogen bounds. These57

58 APPENDIX A. A BIT OF BIOCHEMICAL BACKGROUNDhydrogen bonds occur with very strong preference between A and T andbetween C and G: the bases in these pairs are said to be Watson-Crick-complementary. The two strands are thus each other's complement: thebase sequence of one is enough to determine the base sequence of the other.Conceptually DNA replication is achieved by splitting it into its two strandsof single-stranded DNA (ssDNA)and building their complementary strandonto them.Thus, strands TATAAGAGCAT and ATATTCTCGTA are Watson-Crick-complementary,and when they form Watson-Crick bounds, the resulting double strand isTATAAGAGCATATATTCTCGTA.The genetic information that DNA encodes is the structure of proteins.Proteins are linear polymers that have a complex spatial structure, causedby sulphur bonds and by the hydrophilic and hydrophobic nature of theconstituent amino acids. This structure is the reason for proteins' functionas enzymes: biological chemicals that act as highly selective catalysts for thereactions that form a cell's metabolism. The monomers of proteins are aminoacids. There are some twenty amino acids in nature; they are encoded bycodons: three consecutive base-pairs.1When a protein is constructed using the blueprint in a sequence of DNA,that sequence is said to be expressed. The expression of DNA is a complexprocess, involving various forms of RNA (ribonucleic acid), a chemical similarto DNA. RNA has a slightly di�erent sugar in its backbone, making it more
exible, and uses uracil (U) instead of T; like T, U binds to A.An enzyme transcribes (i.e. copies) the DNA sequence into a sequence ofmessenger-RNA (mRNA).The mRNA sequence is read by ribosomes, parts of the cell that consist ofribosomal RNA (rRNA) and proteins. Based on the mRNA's instructions, aribosome assembles the protein from amino-acids delivered to it by transfer-RNA. tRNA are small sequences of RNA that form an L-shaped spatialstructure. A tRNA contains a site that binds to its speci�c amino-acid.1A codon can encode 43 = 64 possibilities. A few of these are start and stop instructionsfor the protein production process; the rest encode amino acids. The code is redundantand appears to have evolved in such a way as to reduce the e�ect of noise (read errors,mutations etc.) as much as possible ([Hof79]).

A.2. MANIPULATING DNA 59A.2 Manipulating DNAThere are several ways of manipulating DNA commonly used in MolecularComputation schemes.A.2.1 Joining DNA sequencesdsDNA sequences can be joined when they begin or end in short overhangingcomplementary ssDNA sequences. These sequences are known as sticky endsor cohesive ends. The forming of hydrogen bonds between such sequences isknown as annealing or hybridization. The resulting sequence has cuts in itsbackbone. These may be sealed using DNA ligase.For example, TATAAGAATATTCTCGTA can anneal to GCATTAGATC to form TATAAGAGCATTAGATATTCTCGTAATC.A.2.2 PCRThe (DNA) polymerase chain reaction (PCR) is a reaction in which double-stranded sequences of DNA | templates | are replicated using an enzymefrom the class of DNA polymerases. PCR requires primers: short sequencesfrom the start and the end of the sequences to be replicated.Because the copies of templates can function as templates themselves,repeated PCR can be used to exponentially multiply the template.PCR is often used to selectively amplify certain DNA sequences prior toa detection phase. It has to be used with care, since interactions between thetemplates themselves may result in `weird' DNA, e.g. containing folds, thatis di�cult to distinguish from regular DNA using electrophoresis, currentlythe best DNA analysis procedure ([KCL96]).A.2.3 Cutting DNACertain classes of enzymes, most notably endonucleases, are capable of cut-ting DNA at or near a recognition sites, a speci�c base sequence, producingmost of the time strands with sticky ends. These enzymes are very usefulfor rewriting DNA, and in fact their function, combined with annealing andligation, forms the inspiration for the splicing operator in Formal Languagetheory.

60 APPENDIX A. A BIT OF BIOCHEMICAL BACKGROUNDAn example, from [Rot96], is Fok I which cuts: : : #GGATGNNNNNNNNNNNNNNNCCTACNNNNNNNNNNNNNNN" : : : �! : : : GGATGNNNNNNNNNCCTACNNNNNNNNNNNNN + NNNNNNNN : : :N is a wildcard for A,C,G,T. Note that the site of the actual cut is not equalto, but still determined by, the recognition site.A.3 Candidate-molecules for universal Mole-cular ComputationFor Adleman-style Molecular Computation molecules only have to repre-sent candidate solutions. They are only information carriers, and are notrewritten. Techniques for reading them out and �ltering them based on theinformation they encode are needed. DNA, RNA and possibly proteins arecandidates for use in Adleman-style Molecular Computation.Molecules that are not rewritten are not enough for universal computa-tion. Universal computation essentially has two aspects: representation ofstate and iterated controlled state transformations. Transformation of stateforms the main di�culty in Molecular Computation: the output of a partialcomputation must be reusable as input for further computation.We have no tools to rewrite proteins, so they are un�t for universal Mole-cular Computation.Studies of RNA have proven that it can function as an enzyme, and thusmay be able to rewrite itself.2 However, RNA might be too reactive, makingcontrol of state transformation very di�cult.Evolution has proven DNA to be a very good information carrier3. But,as far as we have seen, DNA is static in that role: it is expressed one-way.For rewriting DNA we can turn to mechanisms used by bacteria and viruses.2This is essential to the RNA world hypothesis (e.g. [dD95]) in evolutionary microbi-ology: the hypothesis that there was a phase in the evolution of life in which RNA byitself performed all the functions of DNA, RNA and proteins/enzymes: carrying geneticinformation, expressing it, rewriting it and selectively catalyzing biochemical reactions.3But not too good | mutation is important for evolution.

A.3. CANDIDATE-MOLECULES FOR UNIVERSALMOLECULAR COMPUTATION 61Bacteria employ enzymes that can be used for selectively rewriting DNA,especially restriction enzymes.

62 APPENDIX A. A BIT OF BIOCHEMICAL BACKGROUND

Bibliography[Adl94] Leonard M. Adleman. Molecular computation of solutionsto combinatorial problems. Science, 266:1021{1024, Novem-ber 11, 1994, http://www.hks.net/~cactus/doc/science/molecule_comp.html.Abstract: The tools of molecular biology were used to solve an in-stance of the directed Hamiltonian path problem. A small graph wasencoded in molecules of DNA, and the "operations" of the compu-tation were performed with standard protocols and enzymes. Thisexperiment demonstrates the feasibility of carrying out computationsat the molecular level.[Adl96] Leonard M. Adleman. On constructing a molecular computer.In Baum and Lipton [BL96a], ftp://usc.edu/pub/csinfo/papers/adleman/molecular_computer.ps. Based on Manu-script, Computer Science Department, University of SouthernCalifornia, January 11, 1995.Abstract: It has recently been suggested that under some circum-stances computers based on molecular interactions may be a viablealternative to computers based on electronics. Here, some practicalaspects of constructing a molecular computer are considered.[AGH96] Martyn Amos, Alan Gibbons, and David Hodgson. Error-resistant implementation of DNA computations. In AMS96[AMS96], http://www.csc.liv.ac.uk/~martyn/princeton.ps. Previously: Research Report CS-RR-298, Department ofComputer Science, University of Warwick, Coventry CV4 7AL,England, January 1996.Description: This paper introduces a new model of computationthat employs the tools of molecular biology whose implementation63

64 BIBLIOGRAPHYis far more error-resistant than extant proposals. We describe anabstraction of the model which lends itself to natural algorithmicdescription, particularly for problems in the complexity class NP.In addition we describe a number of linear-time algorithms withinour model, particularly for NP-complete problems. We describe anin vitro realisation of the model and conclude with a discussion offuture work.A [Lip95a]-like model designed for error-resistance. \The main advan-tage of our model is that it doesn't repeatedly use the notoriously error-prone separation by DNA hybridization method to extract strands con-taining a certain subsequence." Instead, strands complementary to theundesired sequences are added, causing them to form dsDNA that canbe cut with restriction enzymes with nearly 100e�ectiveness.[Ame96a] John-Thones Amenyo. Mesoscopic computer engineering: Au-tomating DNA-based molecular computing via traditional prac-tices of parallel computer architecture design. In AMS96[AMS96], ftp://ftp.ans.net/pub/misc/DNAComparch.ps.Abstract: How does one go about automating the steps of DNAcomputing, or what amounts to the same thing, the practical engi-neering of hands-free, general-purpose DNA computers? The intentof this paper is to indicate how familiar computer design principlesfor electronic computers can be exploited to build practical comput-ers at the mesoscopic scales of macromolecules and bio-polymers.DNA computing is the most realistic harbinger of such molecularcomputers. Pragmatically, it is expected that DNA computer ar-chitectures will be used routinely and not just for solving theoret-ically hard computational problems. The ideas discussed here areakin to the design of a practical programming language for a virtualcomputer. The paper shows that all proposed DNA computing algo-rithms can be run on parallel computer architectures con�gured fromtrellis/lattice banks, �lter banks and switching banks. Thus, DNAcomputation can be re-interpreted as data
ow (or signal
ow) net-works and subject to conventional treatment.[Ame96b] John-Thones Amenyo. Workshop report: Personal impressionsabout the 2nd Annual Workshop on DNA Computing, June 21,1996, ftp://ftp.ans.net/pub/misc/jta/DNAComp2rept.txt.

BIBLIOGRAPHY 65[AMS96] American Mathematical Society. Proceedings of the Second An-nual Meeting on DNA Based Computers, held at Princeton Uni-versity, June 10-12, 1996., DIMACS: Series in Discrete Math-ematics and Theoretical Computer Science., ISSN 1052-1798,1996. To appear.Contains [ARRW96], [Ame96a], [AGH96], [BB96], [BL96b], [BDLS96],[DMG+96], [GB96], [JK96], [KCL96], [KMRS96], [LSW+96],[LGC+96], [Mir96], [Oli96], [P�au96a], [RWB+96], [SWL+96], [WW96],[WYS96]. Program committee: Eric Baum, Dan Boneh, Peter Kaplan,Richard Lipton, John Reif and Nadrian Seeman.[ARRW96] Leonard M. Adleman, Paul W. K. Rothemund, Sam Roweis,and Erik Winfree. On applying molecular computation to thedata encryption standard. In AMS96 [AMS96], ftp://hope.caltech.edu/pub/pwkr/DIMACS/des.ps.Abstract: Recently, Boneh, Dunworth, and Lipton described thepotential use of molecular computation in attacking the UnitedStates Data Encryption Standard (DES). Here, we provide a descrip-tion of such an attack using the sticker model of molecular compu-tation. Our analysis suggests that such an attack might be mountedon a table-top machine, using approximately a gram of DNA andmight succeed even in the presence of a large number of errors.[Bau95] Eric B. Baum. Building an associative memory vastly largerthan the brain. Science, 268:583{585, April 28, 1995.Abstract The techniques of [Adl94] and [Lip94] may be usable to con-struct an associative (= content-addressable) memory with a capacitythat exceeds that of the human brain. Given a part of the content, thispart can be used in extracting those molecules that match it. The \cue"can be used e.g. with magnetic bead extraction.[Bau96a] Eric B. Baum. Building an associative memory vastly largerthan the brain. In Baum and Lipton [BL96a].The techniques of [Adl94] and [Lip94] may be usable to constructan associative (= content-addressable) memory with a capacity thatexceeds that of the human brain. Given a part of the content, thispart can be used in extracting those molecules that match it. The\cue" can be used e.g. with magnetic bead extraction.

66 BIBLIOGRAPHY[Bau96b] Eric B. Baum. DNA sequences useful for computation, http://www.neci.nj.nec.com/homepages/eric/seq.ps. June 1996.Abstract: Recent proposals for DNA based computing [Adl94],[Lip95a], [Bau95] encode Boolean vector component values with se-quences of DNA. It has previously been assumed that su�cientlength random subsequences could be used to encode componentvalues. However use of such subsequences will inadvertently resultin long complementary subsequences. Complementary subsequencesof su�cient length would stick to each other and cause mistakes ordelays in computation. We suggest some constraints on DNA sub-sequences to be used in encodings, and describe maximal sets ofsubsequences satisfying these constraints.[Adl94, Lip94] work with codes based on random subsequences of DNAas codewords. In strings in these codes, there may be long complemen-tary subsequences that can result in undesired annealing. Furthermore,the codewords might even self-anneal. In this paper, the problem of�nding a code that does not su�er from these problems is formalizedand solved. A similar code is termed unequivocable in [Bea95d].[BB96] Eric B. Baum and Dan Boneh. Running dynamic program-ming algorithms on a DNA computer. In AMS96 [AMS96],http://www.neci.nj.nec.com/homepages/eric/dpr.ps.Abstract: In this paper we show that DNA computers are espe-cially useful for running algorithms which are based on dynamicprogramming. This class of algorithms takes advantage of the largememory capacity of a DNA computer. We present algorithms forsolving certain instances of the knapsack problem using a dynamicprogramming approach. Unlike other algorithms [Adl94], [Lip95a]for DNA computers, which are brute force, dynamic programmingis the same algorithm one would use to solve (smaller) problems ona conventional computer.[BCG82] Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy.Winning Ways for your mathematical plays, volume 2: gamesin particular. Academic Press (Harcourt Brace Jovanovich),third printing 1985 with corrections edition, 1982.[BDL95] Dan Boneh, Christopher Dunworth, and Richard J. Lipton.Breaking DES using a molecular computer. Technical Report

BIBLIOGRAPHY 67CS-TR-489-95, Princeton University, May 1995, ftp://ftp.cs.princeton.edu/pub/people/dabo/bioDES.ps.Z. To ap-pear in IEEE COMPUTER;Description: Recently Adleman has shown that a small travelingsalesman problem can be solved by molecular operations. In thispaper we show how the same principles can be applied to break-ing the Data Encryption Standard (DES). Our method is based onan encoding technique presented by Lipton. We describe in detaila library of operations which are useful when working with a mole-cular computer. We estimate that given one arbitrary (plain-text,cipher-text) pair, one can recover the DES key in about 4 monthsof work. Furthermore, if one is given cipher-text, but the plain textis only known to be one of several candidates then it is still possibleto recover the key in about 4 months of work. Finally, under chosencipher-text attack it is possible to recover the DES key in one dayusing some preprocessing.[BDL96] Dan Boneh, Christopher Dunworth, and Richard J. Lipton.Breaking DES using a molecular computer. In Baum and Lip-ton [BL96a].See [BDL95][BDLS96] Dan Boneh, Christopher Dunworth, Richard J. Lipton, andJi�r�� Sgall. Making DNA computers error resistant. In AMS96[AMS96].Abstract: We describe methods for making volume decreasing al-gorithms more resistant to certain types of errors. Such error recov-ery techniques are crucial if DNA computers ever become practical.Our �rst approach relies on applying PCR at various stages of thecomputation. We analyze its performance and show that it increasesthe survival-probability of various strands to acceptable proportions.Our second approach relies on changing the method by which infor-mation is encoded on DNA strands. This encoding is likely to reducefalse negative errors during the bead separation procedure.Introduces two methods to deal with common sources of errors:

68 BIBLIOGRAPHY� PCR after each selection step is shown to increase good strands'survival probability (for volume-decreasing salgorithms uch asAdleman's or Lipton's).� Double encoding improves the probability that correct strands areextracted.Note that [KCL96, Smi95] suggest PCR may be a major source of errorsitself![BDS96] Dan Boneh, Christopher Dunworth, and Ji�r�� Sgall. Onthe computational power of DNA. Discrete Applied Math-ematics, 71(1-3):79{94, 1996. Also Technical Report, TR-499-95, Princeton University, october 1995. ftp://ftp.cs.princeton.edu/pub/people/dabo/biocircuit.ps.Z, ftp://ftp.cs.princeton.edu/reports/1995/499.ps.Z.AbstractWe show how DNA-based computers can be used to solvethe satis�ability problem for boolean circuits. Furthermore, we showhow DNA computers can solve optimization problems directly witproblems. Our methods also enable random sampling of satisfyingassignments.[Bea94] Donald Beaver. Factoring: The DNA solution. In JosefPieprzyk and Reihanah Safavi-Naini, editors, Advances inCryptology - Asiacrypt '94 Proceedings 4th InternationalConference on the Theory and Applications of Cryptology.,number 917 in Lecture Notes in Computer Science, pages419{423, Wollongong, Australia, November{December 1994.Springer Verlag, Berlin, Heidelberg, New York., ISBN 3-540-59339-X, http://www.transarc.com/afs/transarc.com/public/beaver/html/research/al%ternative/molecute/publications/b94asia.ps. Extended abstract. The fullversion is [Bea95a].Summary How to factor and compute NP functions using DNA,using a novel procedure for site-directed mutagenesis.Abstract We consider molecular models for computing and derivea DNA-based mechanism for solving intractable problems throughmassive parallelism. In principle, such methods might reduce thee�ort needed to solve otherwise di�cult tasks, such as factoring

BIBLIOGRAPHY 69large numbers. We investigate the application of such techniques tocryptography.[Bea95a] Donald Beaver. Computing with DNA. Journal of Computa-tional Biology, 2(1):1{8, Spring 1995, http://www.transarc.com/afs/transarc.com/public/beaver/html/research/al%ternative/molecute/publications/bc.ps. Full version of[Bea94].Summary How to factor and compute NP functions using DNA,using a novel procedure for site-directed mutagenesis.Abstract We consider molecular models for computing and derivea DNA-based mechanism for solving intractable problems throughmassive parallelism. In principle, such methods might reduce thee�ort needed to solve otherwise di�cult tasks, such as factoringlarge numbers, a computationally-intensive task whose intractabilityforms the basis for much of modern cryptography.[Bea95b] Donald Beaver. Molecular computing. Technical Re-port TR95-001, Penn State University, January 311995, http://www.transarc.com/afs/transarc.com/public/beaver/html/research/al%ternative/molecute/publications/TR95-001.ps.Summary How to build and operate a Turing machine consistingof a single DNA molecule. How to compute NP and PSPACEfunctions using massively parallelized molecular computations.(Re�nements, such as a more e�cient encoding, or simpli�edexperimental techniques, are not included.)Abstract We design a molecular Turing machine and determinethe complexity of the problems solvable by molecular computers.In [Adl94], a combinatorial molecular experiment to solve theNP-complete problem of Hamiltonian Path was proposed andimplemented. Using our design, we show that such molecularcomputers can in fact compute PSPACE, under the generousassumptions implicit in [Adl94]. Under stronger and somewhat morepractical restrictions, which [Adl94] fails to satisfy, we show thatmolecular computers are limited to solving problems in P.[Bea95c] Donald Beaver. A universal molecular computer,1995, http://www.transarc.com/afs/transarc.com/

70 BIBLIOGRAPHYpublic/beaver/html/research/al%ternative/molecute/publications/dimacs95.ps. Condensed abstract (of [Bea95b])for DIMACS Workshop of April 4, 1995.Summary How to build and operate a Turing machine consistingof a single DNA molecule. How to compute NP and PSPACEfunctions using massively parallelized molecular computations.(Re�nements, such as a more e�cient encoding, or simpli�edexperimental techniques, are not included.)Abstract We design a molecular Turing machine and determinethe complexity of the problems solvable by molecular computers. In-terest in \nanocomputation" has been sparked by Adleman's recentexperiment demonstrating the possibility that molecular computersmight solve intractable problems, such as Hamiltonian Path, usinglarge-scale parallelism achievable only through molecular-scaleminiaturization. We propose a method for site-directed mutagenesis(namely, a molecular \editing" reaction) and use it to build auniversal computer, stepping beyond Adleman's special-purpose,one-time problem solver. Using the generous assumptions onparallelism implicit in Adleman's methods, we show that molecularcomputers can in fact compute PSPACE. Under stronger and morerealistic restrictions, we show that molecular computers | bothours and Adleman's | are limited to solving problems in BPP.[Bea95d] Donald Beaver. Universality and complexity of molecular com-putation, http://www.transarc.com/afs/transarc.com/public/beaver/html/research/al%ternative/molecute/publications/psp95.ps. Extended abstract. Submittedto Twenty-eighth Annual ACM Symposium on Theory ofComputing 1996 (STOC)., 1995.Abstract Adleman recently designed and executed an experimentto solve instances of the Hamiltonian Path problem using DNAmolecules ([Adl94]). Two questions naturally arise, both of whichwe answer in this paper: First, is universal computation possible?Second, does NP characterize the limit of such computation? Wedesign a (nondeterministic) Turing machine based on interactionsof small DNA molecules, supporting general-purpose computationrather than just special-purpose oracle queries. Our constructionsupports massively parallel, synchronized operations of heteroge-

BIBLIOGRAPHY 71neous, communicating, nondeterministic Turing machines, usingfairly conventional techniques from molecular biology. In the looselyrestricted model implicit in Adleman's solution to HamiltonianPath, we show that molecular computation is capable not merelyof NP but of PSPACE. More generally, our results show how toutilize the parallelism of molecular computation to conduct anyS(n)-space-bounded computation in O(S(n)) laboratory steps usingmolecules of size O(S(n)).[Bea96] Donald Beaver. A universal molecular computer. In Baum andLipton [BL96a]. See [Bea95c].Description: This volume presents the proceedings of a conferenceheld at Princeton University on April 4, 1995 as part of the DIMACSSpecial Year on Mathematical Support for Molecular Biology. Thesubject of the conference was the new area of DNA based computing.DNA based computing is the study of using DNA strands as indi-vidual computers. The concept was initiated by Leonard Adleman'spaper in Science in November 1994. Contains [Adl96], [Bau96a],[Bea96], [BDL96], [Lip96], [Rot96], [SS96], [Win95a], [Win95b].[BL96a] Eric B. Baum and Richard J. Lipton, editors. DNA Based Com-puters, volume 27 of DIMACS: Series in Discrete Mathematicsand Theoretical Computer Science. ISSN 1052-1798. AmericanMathematical Society, 1996, ISBN 0-8218-0518-5. Also knownunder the working title DNA Computing.Description: This volume presents the proceedings of a conferenceheld at Princeton University on April 4, 1995 as part of the DIMACSSpecial Year on Mathematical Support for Molecular Biology. Thesubject of the conference was the new area of DNA based computing.DNA based computing is the study of using DNA strands as indi-vidual computers. The concept was initiated by Leonard Adleman'spaper in Science in November 1994. Contains [Adl96], [Bau96a],[Bea96], [BDL96], [Lip96], [Rot96], [SS96], [Win95a], [Win95b].[BL96b] Dan Boneh and Richard Lipton. Making DNA com-puters error resistant. In AMS96 [AMS96], ftp://ftp.cs.princeton.edu/pub/people/dabo/bioerror.ps.Z, ftp://ftp.cs.princeton.edu/reports/1995/491.ps.Z. Previ-ously: Princeton University TR-491-95, May 1995

72 BIBLIOGRAPHYDescription: Recently Lipton showed that the formula satisfactionproblem can be solved using a DNA based computer. The algorithmignored the e�ects of errors that occur during biological experiments.In this paper we show that Lipton's algorithm can be made resistantto errors. In addition, we present a new circuit satisfaction algorithmwhich can be made error resistant using the same techniques.[CAF] Frequently Asked Questions about Cellular Au-tomata: Contributions from the CA communityedited by Howard Gutowitz. http://alife.santafe.edu/alife/topics/cas/ca-faq/ca-faq.html, ftp://alife.santafe.edu/pub/topics/cas/postscript/,ftp://alife.santafe.edu/pub/topics/cas/txt/.[CCC+96] Weiping Cai, Anne E. Condon, Robert M. Corn, Elton Glaser,Zhengdong Fei, Tony Frutos, Zhen Guo, Max G. Lagally,Qinghua Liu, Lloyd M. Smith, and Andrew Thiel. The power ofsurface-based dna computation, July 1 1996, ftp://corninfo.chem.wisc.edu/Papers/powerDNA.ps. Preprint.Abstract A new model of DNA computation that is based on sur-face chemistry is studied. Such computations involve the manipula-tion of DNA strands that are immobilized on a surface, rather thanin solution as in the work of Adleman. Surface-based chemistry hasbeen a critical technology in many recent advances in biochemistryand o�ers several advantages over solution-based chemistry, includ-ing simpli�ed handling of samples and elimination of loss of strands,which reduce error in the computation. The main contribution ofthis paper is in showing that surface-based DNA chemistry e�cientlysupports general circuit computation on many inputs in parallel. Todo this, an abstract model of computation that allows parallel ma-nipulation of binary inputs is described. It is then shown that thismodel can be implemented using fairly standard chemistry, in whichinputs are encoded as DNA strands and the strands are repeatedlymodi�ed in parallel on a surface using the chemical processes ofhybridization, exonuclease degradation, polymerase extension or lig-ation. Thirdly, it is shown that the model supports e�cient circuitsimulation in the following sense: exactly those inputs that satisfy acircuit can be isolated, and the number of parallel operations needed

BIBLIOGRAPHY 73to do this is proportional to the size of the circuit. Finally, resultsare presented on the power of the model when another resource ofDNA computation is limited, namely strand length.Presents an abstract model of the surfaced-based approach to DNAcomputation presented in [LGC+96] and describes its power and limita-tions.[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.Introduction to Algorithms. The MIT Electrical Engineering andComputer Science Series. The MIT Press, 1990.[CVFKP96] Erzs�ebet Csuhaj-Varj�u, R. Freund, Lila Kari, and GheorgheP�aun. DNA computation based on splicing: universality re-sults. In Lawrence Hunter and Teri Klein, editors, Biocom-puting: Proceedings of the 1996 Paci�c Symposium. World Sci-enti�c Publishing Co., Singapore, January 1996, ISBN 981-02-2578-4, http://www.cgl.ucsf.edu/psb/psb96/proceedings/cshhaj-varju.ps. Also: Technical report 185-2/FR-2/95, TUWien, Institute for Computer Languages, Wien, Austria, 1995,http://www.csd.uwo.ca/~lila/four.ps.Abstract The paper extends some of the most recently obtained re-sults on the computational universality of extended H systems (withregular sets of rules respectively with �nite sets of rules used withsimple additional mechanisms) and shows the possibility to obtainuniversal systems based on these extended H systems, i.e. the theo-retical possibility to design programmable universal DNA computersbased on the splicing operation. The additional mechanisms consid-ered here are: multisets (counting the numbers of copies of eachavailable string), checking the presence/absence of certain symbolsin the spliced strings, and organizing the work of the system in a dis-tributed way (like in a parallel communicating grammar system). Inthe case of multisets we also consider the way of simulating a Turingmachine (computing a partial recursive function) by an equivalentH system (computing the same function), in the other cases we con-sider the interpretation of algorithms as language generating devices,hence the aim is to reach the power of Chomsky type-0 grammars,the standard model for representing algorithms equivalent with Tur-ing machines taken as language generators.

74 BIBLIOGRAPHY[CVKP96] Erzs�ebet Csuhaj-Varj�u, Lila Kari, and Gheorghe P�aun. Testtube distributed systems based on splicing. Computers andAI, 15(2{3):211{232, 1996, http://www.csd.uwo.ca/~lila/dnapcgs.ps.Abstract We de�ne a symbol processing mechanism with the com-ponents (test tubes) working as splicing schemes in the sense ofT. Head and communicating by redistributing the contents of tubes(in a similar way to the separate operation of Lipton-Adleman).(These systems are similar to the distributed generative mechanismscalled Parallel Communicating Grammar Systems.) Systems with �-nite initial contents of tubes and �nite sets of splicing rules associatedto each component are computationally complete, they characterizethe family of recursively enumerable languages. The existence of uni-versal test tube distributed systems is obtained on this basis, hencethe theoretical proof of the possibility to design universal program-mable computers with the structure of such a system.[Das] J.H.M. Dassen. A bibliography of molecular computa-tion and splicing systems. HTML: http://www.wi.LeidenUniv.nl/~jdassen/dna.html, BibTeX source:http://www.wi.LeidenUniv.nl/~jdassen/dna.bib. Thisbibliography is hooked into http://liinwww.ira.uka.de/bibliography/index.html, The Collection of ComputerScience Bibliographies.Description A hyperbibliography on the subject of MolecularComputation and the related theoretical model of Splicing Sys-tems. Molecular Computation is computation using (biological)macromolecules like DNA as information carriers, that are manip-ulated using biological operators, such as enzymes, and operationscommonly used in bio-technology and genetic manipulation, suchas �ltering operations and the polymerase chain reaction. It hasreceived much attention following Adleman's seminal article [Adl94].Splicing Systems are models in Formal Language Theory that usethe splicing operator instead of concatenation. The splicing operatoris an operator on two strings that is an abstraction of the e�ect ofrestriction enzymes on strands of double-stranded DNA combinedwith ligation. It was introduced in [Hea87].

BIBLIOGRAPHY 75[dD95] Christian de Duve. The beginnings of life on Earth. Amer-ican Scientist, 83(5), September-October 1995, http://www.sigmaxi.org/amsci/articles/95articles/CdeDuve.html.A discussion of the RNA world and a possible pre-RNA world.[DG89] K.L. Denningho� and R.W. Gatterdam. On the undecidabilityof splicing systems. International Journal of Computer Mathe-matics, 27:133{145, 1989.Abstract: The notion of splicing system has been used to abstractthe process of DNA digestion by restriction enzymes and subsequentreligation. A splicing system language is the formal language of allDNA strings producible by such a process. The membership prob-lem is to devise an algorithm (if possible) to answer the questionof whether or not a given DNA string belongs to a splicing sys-tem language given by initial strings and enzymes. In this paper theconcept of a sequential splicing system is introduced. A sequentialsplicing system di�ers from a splicing system in that the latter allowsarbitrarily many copes of any string in the initial set whereas the se-quential splicing system may restrict the initial number of copies ofsome strings. The main result is that there exist sequential splicingsystems with recursively unsolvable membership problem. The tech-nique of the proof is to embed Turing machine computations in thelanguages.Introduces multisets into splicing systems, and shows such splicing sys-tems to be universal.[DMG+96] R. Deaton, R.C. Murphy, M. Garzon, D.R. Franceschetti, andS.E. Stevens, Jr. Good encodings for DNA-based solutions tocombinatorial problems. In AMS96 [AMS96], http://www.ee.memphis.edu/~rdeaton/pubs/dna_codes.ps.Abstract: Adleman has solved the Hamiltonian path problem byencoding the vertices and edges of the graph in oligonucleotides ofDNA, hybridizing the oligonucleotides to produce potential answers,and extracting any DNA which corresponds to the Hamiltonian path.Depending on the conditions under which the DNA reactions occur,two oligonucleotides can hybridize without exact matching betweentheir base pairs. This possibility was veri�ed by experiment. ForDNA-based solutions to combinatorial problems to become a viable

76 BIBLIOGRAPHYand practical technology, the possibility of false positives must beeliminated. The primary mechanism for the production of false pos-itives is hybridization stringency that depends on the reaction con-ditions, of which the most important is temperature. Evidence isprovided that encoding the vertices and edges of the graph in DNAoligonucleotides that are a minimum distance apart results in re-liable encodings that virtually eliminate the risk of false positives.A genetic algorithm was shown to be useful to search the space ofpossible codewords. The Hamming bound is shown to be an upperbound on the number of reliable encodings. Laboratory results con-�rmed that the choice of good encodings is very dependent on thereaction conditions.[FKP] Rudolf Freund, Lila Kari, and Gheorghe P�aun. DNA computa-tion based on splicing: The existence of universal computers.Journal of the ACM, http://www.csd.uwo.ca/~lila/jacm.ps. To appear. Also Technical Report 185-2/FR-2/95, TUWien,1995.Abstract Splicing systems are generative mechanism based on thesplicing operation introduced by Tom Head as a model of DNA re-combination. We prove that the generative power of �nite extendedsplicing systems equals that of Turing machines, provided we con-sider multisets or provided a control mechanism is added. We alsoshow that there exist universal splicing systems with the propertiesabove, i.e. there exists a universal splicing system with �xed compo-nents which can simulate the behaviour of any given splicing system,when an encoding of the particular splicing system is added to itsset of axioms. In this way the possibility of designing programmableDNA computers based on the splicing operations is proved.[GB96] Frank Guarnieri and Carter Bancroft. Use of a horizontal chainreaction for DNA-based addition. In AMS96 [AMS96].[Gif94] David K. Gi�ord. On the path to computation with DNA. Sci-ence, 266:993{994, November 11, 1994, http://www.hks.net/~cactus/doc/science/molecule_comp_perspect.html.An essay on molecular computation in the `perspective' section of Sci-ence, in the same issue as [Adl94]. It discusses the promises of molecularcomputation

BIBLIOGRAPHY 77� \DNA ligation can e�ectively search a large space of potentialsolutions", and similar techniques may be developed for moleculedesign (e.g. for proteins).� unheard of information representation density� extremely energy-e�cientand the problems� not practical enough yet\There may be other computational processes lurking behind seeminglysimple biological processes".[GJ79] Michael R. Garey and David S. Johnson. Computers and In-tractability: A Guide to the Theory of NP-Completeness. W.H.Freeman and Company, San Francisco, 1979.[Har95a] Juris Hartmanis. On the computing paradigm and computa-tional complexity. In Ji�r�� Wiederman and Petr H�ajek, editors,Mathematical Foundations of Computer Science 1995. 20th In-ternational Symposium, MFCS '95. Proceedings., volume 969 ofLecture Notes in Computer Science, pages 82{92, Prague, CzechRepublic, August-September 1995. Springer Verlag, Berlin, Hei-delberg, New York., ISBN 3-540-60246-1.Abstract: Computational complexity theory is the study of thequantitative laws that govern computing. Since the computing par-adigm is universal and pervasive, the quantitative laws of computa-tional complexity apply to all information processing from numericalcomputations and simulation to logical reasoning and formal theo-rem proving, as well as processes of rational reasoning. In this view,the search for what is and is not feasibly computable takes on aneven deeper signi�cance than just a central problem in theoreticalcomputer science. The search for the limits of what is feasibly com-putable is the search for the limits of scienti�c theories and, possibly,rational reasoning.An overview of the state of computational complexity theory. Reiteratesthe argument of [Har95b] that Molecular Computation cannot break theexponential barrier.

78 BIBLIOGRAPHY[Har95b] Juris Hartmanis. On the weight of computations. Bulletinof the European Association for Theoretical Computer Science,55:136{138, February 1995.Shows that Molecular Computation cannot break the exponential bar-rier: exponential-complexity algorithms remain infeasible even for fairlysmall problem instances. Applying the approach of [Adl94] to a 200-node graph would require an amount of DNA weighing more than theEarth. The main argument is reiterated in [Har95a].[Hea87] Thomas Head. Formal language theory and DNA: an analy-sis of the generative capacity of speci�c recombinant behaviors.Bulletin of Mathematical Biology, 49(6):737{759, 1987.Abstract A new manner of relating formal language theory to thestudy of informational macromolecules is initiated. A language is as-sociated with each pair of sets where the �rst set consists of double-stranded DNA molecules and the second set consists of the recom-binational behaviors allowed by speci�ed classes of enzymatic ac-tivities. The assosciated language consists of strings of symbols thatrepresent the primary structures of the DNA molecules that may po-tentially arise from the original set of DNA molecules under the givenenzymatic activities. Attention is focused on the potential e�ect ofsets of restriction enzymes and a ligase that allow DNA moleculesto be cleaved and reassociated to produce further molecules. Theassociated languages are analaysed by means of a new generativeformalism called a splicing system. A signi�cant subclass of theselanguages, which we call the persistent splicing languages, is shownto coincide with a class of regular languages which have been previ-ously studied in other context: the strictly locally testable languages.This study initiates the formal analysis of the generative power ofrecombinational behaviors in general. The splicing system formalismallows observations to be made concerning the generative power ofgeneral recombination and also of sets of enzymatic activities thatinclude general recombination.[Hof79] Douglas R. Hofstadter. G�odel, Escher, Bach: an eternal goldenbraid. Basic Books, 1979, ISBN 0-394-74502-7.An inspired book on strange loops, the nature of intelligence, G�odel'stheorem, computability and many other themes. It contains a very clear

BIBLIOGRAPHY 79description of the process of protein synthesis, the levels of descriptioninvolved and the \location" of the genetic code.[HPP96] Thomas Head, Gheorghe P�aun, and Dennis Pixton. Genera-tive Mechanisms Suggested by DNA Recombination. Volume 2of Rozenberg and Salomaa [RS96], October 1996, ISBN Vol 1:3-540-60420-0, Vol 2: 3-540-60648-3, Vol 3: 3-540-60649-1.DescriptionVolume 1: Word, Language, GrammarThis �rst volume of the Handbook of Formal Languages gives a com-prehensive authoritative exposition on the core of language theory.Grammars, codes, power series, L systems, and combinatorics onwords are all discussed in a thorough, yet self-contained manner.This is perhaps the most informative single volume in the history oftheoretical computer science.Volume 2: Linear Modeling: Background and ApplicationThis second volume of the Handbook of Formal Languages containsthe most fundamental applications of language theory. Various as-pects of linguistics and parsing, both natural and programming lan-guages, symbolic manipulation, and pattern matching are discussed.A special feature is the recently very active �eld of DNA computing.Volume 3: Beyond WordsThis third volume of the Handbook of Formal Languages discusseslanguage theory beyond linear or string models: trees, graphs, grids,pictures, computer graphics. Many chapters o�er an authoritativeself-contained exposition of an entire area. Special emphasis is oninterconnections with logic.Volume 2 contains [HPP96].[HU79] John E. Hopcroft and Je�rey D. Ullman. Introduction to Au-tomata Theory, Languages and Computation. Addison-Wesley,1979.[JK96] Nata�sa Jonoska and Stephen A. Karl. A molecular computationof the road coloring problem. In AMS96 [AMS96].Abstract: Two algorithms for molecular computation of the roadcoloring problem are presented. We present in detail the laboratorytechniques to implement these algorithms. In both of these algo-rithms a new operation of substring matching in the process of sep-

80 BIBLIOGRAPHYarating molecules is introduced. The laboratory techniques of theimplementation are discussed.[KCL96] Peter D. Kaplan, Guillermo Cecchi, and Albert Libchaber. DNAbased molecular computation: template-template interactionsin PCR. In AMS96 [AMS96].Abstract: Since Adleman performed a computation with moleculesof DNA [Adl94], there has been theoretical work on parallel com-puting with DNA [Lip95a], [Rei95], [Bea95a], [BDL95] but no ex-perimental review of the promises and complications of DNA basedcomputing. In this experiment, we focus on heteroduplex formationduring the polymerase chain reaction as one critical complication tolarge scale DNA computing.� Analysis of Adleman's method on even simpler graphs.� Shows PCR (used in `extract' and `amplify') to be a source oferrors due to template-template interactions (dsDNA is separatedinto single strands, that are intended to bind to the primers, butalso bind to each other) resulting in \weird" DNA (e.g. with folds).� Electrophoresis cannot distinguish normal and \weird" DNA wellenough, but no better method for analysing DNA currently exists.� High concentrations of template or product amplify template-template interaction problems.[KKW95] Richard Karp, Claire Kenyon, and Orli Waarts. Error resilientDNA computation. Research report 95-20, Laboratoire de l'In-formatique du Parall�elisme, Ecole Normale Sup�erieure de Lyon,46, All�ee d'Italie 69364 LYON CEDEX 07 - FRANCE, Sep-tember 1995, ftp://ftp.lip.ens-lyon.fr/pub/Rapports/RR/RR95/RR95-20.ps.Z.Abstract The DNA model of computation, with test tubes ofDNA molecules encoding bit sequences, is based on three primitives,extract-a-bit, merge-two-tubes and detect-emptiness. Perfect opera-tions can test the satis�ability of any boolean formula in linear time.However, in reality the extract operation is faulty. We determine theminimum number of faulty extract operations required to simulatea single highly reliable extract operation, and derive a method forconverting any algorithm based on error-free operations to an error-

BIBLIOGRAPHY 81resilient one.Achieves a more reliable extract by repeatedly performing extract in aseries of test tubes. The DNA strands perform a biased random walkbetween the tubes.[KMRS] Stuart A. Kurtz, Stephen Mahaney, James Royer, and JanosSimon. Biological computing, http://www.cs.uchicago.edu/~stuart/Research/bc.ps. In L. Hemaspaandra and A. Sel-man, editors, Complexity Retrospective II. To appear.Abstract: Adleman's [Adl94] successful solution of a seven-vertexinstance of the NP-complete Hamiltonian Path problem by recom-binant DNA technology initiated the �eld of biological computing.We propose a very di�erent model of molecular computing basedon the biochemistry of RNA editing and RNA translation. In ourmodel, individual molecules become fully capable general purposecomputers.[KMRS96] Stuart A. Kurtz, Stephen R. Mahaney, James S. Royer, andJanos Simon. Active transport in biological computing (prelim-inary version). In AMS96 [AMS96], http://www.cs.uchicago.edu/~stuart/Research/transport.ps.Abstract: Early papers on biological computing focussed on combi-natorial and algorithmic issues, and worked with intentionally over-simpli�ed chemical models. In this paper, we reintroduce complexityto the chemical model by considering the e�ect problem size has onthe initial concentrations of reactants, and the e�ect this has in turnon the rate of production and quantity of �nal reaction products.We give a sobering preliminary analysis of Adleman's technique forsolving Hamiltonian path. Even on the simplest problems, the an-nealing phase of Adleman's technique requires time
(n2) ratherthan the O(log n) complexity given by a computationally inspiredbut chemically naive analysis. On more di�cult problems, not onlydoes the rate of production of witnessing molecules drop exponen-tially in problems size, the �nal yield also drops exponentially. Theseissues are not objections to biological computing per se, but ratherdi�culties to be overcome in its development as a viable technology.[KPS96] Lila Kari, Gheorghe P�aun, and Arto Salomaa. The power of re-stricted splicing with rules from a regular language. The Journal

82 BIBLIOGRAPHYof Universal Computer Science, 2(4):224{240, April 1996, http://hyperg.iicm.tu-graz.ac.at/the_power_of_restricted_splicing_with_%rules_from_a_regular_language.Abstract We continue the investigations begun in [PRS95] (Intern.J. Computer Math., to appear) on the relationships betweenseveral variants of the splicing operation and usual operationswith formal languages. The splicing operations are de�ned withrespect to arbitrarily large sets of splicing rules, codi�ed as simplelanguages. The closure properties of families in Chomsky hierarchyare examined in this context. Several surprising results are obtainedabout the generative or computing power of the splicing operation.Many important open problems are mentioned.[LGC+96] Quinghua Liu, Zhen Guo, Anne E. Condon, Robert M. Corn,Max G. Lagally, and Lloyd M. Smith. A surface-based approachto DNA computation. In AMS96 [AMS96].Abstract: A new model of DNA-based computation is presented.The main di�erence between this model and that of Adleman is inmanipulation of DNA strands that are �rst immobilized on a sur-face. This approach greatly reduces losses of DNA molecules duringpuri�cation steps. A simple, surface-based model of computation isdescribed and it is shown how to implement an exhaustive searchalgorithm for the SAT problem on this model. Partial experimentalprogress in solving a 5-variable SAT instance is described, and pos-sible extensions of our model that allow general computations arediscussed.[Lip94] Richard J. Lipton. Speeding up computations via molecu-lar biology, ftp://ftp.cs.princeton.edu/pub/people/rjl/bio.ps. Unpublished manuscript Dec. 9, 1994,, December 11,1994.Abstract We show how to extend the recent result of Adleman([Adl94]) to use biological experiments to directly solve any NP prob-lem. We, then, show how to use this method to speedup a large classof important problems.[Lip95a] Richard J. Lipton. DNA solution of hard computational prob-lems. Science, 268:542{545, April 28, 1995.Abstract: DNA experiments are proposed to solve the famous

BIBLIOGRAPHY 83\SAT" problem of computer science. This is a special case of a moregeneral method that can solve NP-complete problems. The advan-tage of these results is the huge parallelism inherent in DNA-basecomputing. It has the potential to yield vast speedups over conven-tional electronic-based computers for such search problems.[Lip95b] Richard J. Lipton. Using DNA to solve NP-complete problems.Technical report, Princeton University, 1995, http://www.cs.princeton.edu/~dabo/bio-comp/satgen.ps. , .[Lip96] Richard J. Lipton. Speeding up computations via molecular bi-ology. In Baum and Lipton [BL96a]. Also known under theworking title DNA Computing.Description: This volume presents the proceedings of a conferenceheld at Princeton University on April 4, 1995 as part of the DIMACSSpecial Year on Mathematical Support for Molecular Biology. Thesubject of the conference was the new area of DNA based computing.DNA based computing is the study of using DNA strands as indi-vidual computers. The concept was initiated by Leonard Adleman'spaper in Science in November 1994. Contains [Adl96], [Bau96a],[Bea96], [BDL96], [Lip96], [Rot96], [SS96], [Win95a], [Win95b].See [Lip94].[LSW+96] Thomas H. Leete, Matthew D. Schwartz, Robert M. Williams,David H. Wood, Jerome S. Salem, and Harvey Rubin. Mas-sively parallel DNA computation: Expansion of symbolic deter-minants. In AMS96 [AMS96].Abstract: A new type of algorithm is introduced for constructingDNA molecules which encode answers to mathematical problems.Examples include problems from the class #P-Complete, which arewidely considered to be harder than those in the problem classes pre-viously addressed. In particular, algorithms are presented that gener-ate expansions of symbolic determinants given their patterns of zeroentries. This is well-known to be exponentially more di�cult thanevaluating determinants whose entries are merely numerical. Priorapproaches to DNA computation were impractical for large prob-lems because they required processing vast quantities of DNA withsteps associated with large error propagation. Our new approach tothe production of the solution and reading the answer is based on

84 BIBLIOGRAPHYreliable and automatable PCR steps and can solve large problemsby processing up to 1015 or more distinct strands of DNA in par-allel. The DNA algorithms described here should be applicable toa wide variety of problems that are intractable using conventionalcomputers.[MD96] D�onall A. Mac D�onaill. On the scalability of molecularcomputational solutions to NP problems. The Journal ofUniversal Computer Science, 2(2):87{95, February 1996,http://www.iicm.edu/jucs_2_2/on_the_scalability_of/ps/paper.ps;internal%&sk=ROBOT.Abstract: A molecular computational procedure in which ma-nipulation of DNA strands may be harnessed to solve a classicalproblem in NP | the directed Hamiltonian path problem | wasrecently proposed [Adl94, Gif94]. The procedure is in e�ect a mas-sively parallel chemical analog computer and has a computationalcapacity corresponding to approximately � 105 CPU years on atypical 10 MFLOP workstation. In this paper limitations on thepotential scalability of molecular computation are considered. Asimple analysis of the time complexity function shows that thepotential of molecular systems to increase the size of generallysolvable problems in NP is fundamentally limited to � 102. Overthe chemically measurable picomolar to molar concentration rangethe greatest practical increase in problem size is limited to � 101.Reiterates the argument of [Har95b, Har95a] that Molecular Computa-tion brings nothing new to the theory of computational complexity: itcannot break the exponential barrier.[Mir96] Kalim U. Mir. A restricted genetic alphabet for DNA comput-ing. In AMS96 [AMS96].Introduction: Since Adleman demonstrated his original ground-breaking scheme [Adl94], a simpler approach suggested by Lipton[Lip95a] has widened the range of problems that can be addressedby DNA computing. A single molecular operation, DNA anneal-ing, is required for Lipton's scheme. This also forms the basis ofBaum's proposal for a content-addressable DNA memory [Bau95].In both cases an extractor or cue oligonucleotide, most likely to bein the solid-phase, attached to beads, would anneal to a longer single-

BIBLIOGRAPHY 85stranded target present in the graph or memory. So far, most workon DNA computing has rightly concentrated on what is theoreticallypossible. Here however, I will discuss some practical issues and o�era means to overcome some practical obstacles.[Oli96] John S. Oliver. Computation with DNA-matrix multiplication.In AMS96 [AMS96], http://www.chem.brown.edu/brochure/people/jso/DNA.html.Abstract: If chemical reactions are to be used as the basis for com-puters, e�cient instruction sets will need to be developed. A chemi-cally based computation can not at this time be expected to competewith an electronic computer. However, the potential usefulness of achemical computer provides a compelling reason to investigate anddesign procedures for the solution of varied problems. DNA basedmethods which may be used to calculate the product of Boolean ma-trices or matrices containing positive, real numbers are represented.This provides a method to perform a quantitative calculation withDNA.[P�au95] Gheorghe P�aun. Computationally universal distributed systemsbased on the splicing operation. Submitted, 1995.[P�au96a] Gheorghe P�aun. Five (plus two) universal DNA computingmodels based on the splicing operation. In AMS96 [AMS96].Abstract: We brie
y present �ve types of mechanisms (and wemention two other related devices) based on the splicing operation(a model of the recombinant behavior of DNA sequences under thein
uence of restriction enzymes and ligases). All these models char-acterize the recursively enumerable languages, hence all are equalin power to the Turing machines. On the basis of the constructionsin the proofs of this assertion, one can obtain universal (hence pro-grammable) computing devices.[P�au96b] Gheorghe P�aun. Regular extended H systems are computation-ally universal. Journal of Automata, Languages, Combinatorics,1(1):27{36, 1996.[PRS95] Gheorghe P�aun, Grzegorz Rozenberg, and Arto Salomaa. Re-stricted use of the splicing operation. Technical Report

86 BIBLIOGRAPHYTR95-16, Department of Computer Science, Leiden University,P.O. Box 9512, 2300 RA Leiden, The Netherlands, June 1995.Abstract Splicing is a new powerful tool, stemming originally frommolecular genetics but investigated extensively also in language the-ory. In this paper we investigate variants of splicing inspired partlyby regulating mechanism customarily studied in language theory,partly by imposing restrictions on the pairs to be spliced or on theresult of splicing. The Chomsky hierarchy constitutes a very suitabletest bed for the resulting families, because it is classical and wellunderstood. In contrast to the usual, nonrestricted splicing, we �ndseveral cases when the families of regular or of context-free languagesare not closed under the new types of splicing. On the other hand,our results give new characterizations for families in the Chomskyhierarchy and for closure properties in general.[PRS96] Gheorghe P�aun, Grzegorz Rozenberg, and Arto Salomaa. Com-puting by splicing. Theoretical Computer Science, 168(2):321{336, 1996.[Rei95] John H. Reif. Parallel molecular computation: Models and sim-ulations. In Proceedings of the Seventh Annual ACM Symposiumon Parallel Algorithms and Architectures (SPAA95), Santa Bar-bara, June 1995, pages 213{223. Association for Computing Ma-chinery, June 1995, http://www.cs.duke.edu/~reif/paper/mole.ps, http://www.cs.duke.edu/~reif/paper/mole.fig.ps.[Res] BioTech Resources. Biotech's on-line dictionary of biotech-nology, http://biotech.chem.indiana.edu/pages/dictionary.html.[Rot96] Paul Wilhelm Karl Rothemund. A DNA and restriction en-zyme implementation of Turing machines. In Baum andLipton [BL96a], http://www.ugcs.caltech.edu/~pwkr/oett/dimacs/dimacs.ps, http://www.ugcs.caltech.edu/~pwkr/oett.html.Abstract Bacteria employ restriction enzymes to cut or restrictDNA at or near speci�c words in a unique way. Many restrictionenzymes cut the two strands of double-stranded DNA at di�erent

BIBLIOGRAPHY 87positions leaving overhangs of single-stranded DNA. Two pieces ofDNA may be rejoined or ligated if their terminal overhangs are com-plementary. Using these operations fragments of DNA, or oligonu-cleotides may be inserted and deleted from a circular piece of plas-mid DNA. We propose an encoding for the transition table of aTuring machine in DNA oligonucleotides and a corresponding seriesof restrictions and ligations of those oligonucleotides that, when per-formed on circular DNA encoding an instantaneous description of aTuring machine, simulate the operation of the Turing machine en-coded in those oligonucleotides. DNA based Turing machines havebeen proposed by Charles Bennet but they invoke imaginary en-zymes to perform the stat-symbol transitions. Our approach di�ersin that every operation can be performed using commercially avail-able restriction enzymes and ligases.A very detailed scheme for simulation Turing machines in DNA. Pro-vides references to papers prior to [Adl94] containing some of the ideasof Molecular Computation.[RS96] Grzegorz Rozenberg and Arto Salomaa, editors. Handbook ofFormal Languages. Springer Verlag, Berlin, Heidelberg, NewYork., October 1996, ISBN Vol 1: 3-540-60420-0, Vol 2: 3-540-60648-3, Vol 3: 3-540-60649-1.DescriptionVolume 1: Word, Language, GrammarThis �rst volume of the Handbook of Formal Languages gives a com-prehensive authoritative exposition on the core of language theory.Grammars, codes, power series, L systems, and combinatorics onwords are all discussed in a thorough, yet self-contained manner.This is perhaps the most informative single volume in the history oftheoretical computer science.Volume 2: Linear Modeling: Background and ApplicationThis second volume of the Handbook of Formal Languages containsthe most fundamental applications of language theory. Various as-pects of linguistics and parsing, both natural and programming lan-guages, symbolic manipulation, and pattern matching are discussed.A special feature is the recently very active �eld of DNA computing.Volume 3: Beyond WordsThis third volume of the Handbook of Formal Languages discusses

88 BIBLIOGRAPHYlanguage theory beyond linear or string models: trees, graphs, grids,pictures, computer graphics. Many chapters o�er an authoritativeself-contained exposition of an entire area. Special emphasis is oninterconnections with logic.Volume 2 contains [HPP96].[RW95] Diana Roo� and Klaus W. Wagner. On the powerof DNA-computers. Technical report, University ofW�urzburg, 1995, ftp://haegar.informatik.uni-wuerzburg.de/pub/TRs/ro-wa95.ps.gz.Abstract In [Adl94] Adleman used biological manipulations withDNA strings to solve some instances of the Directed HamiltonianPath Problem. Lipton [Lip94] showed how to extend this idea to solveany NP problem. We prove that exactly the problems in PNP = �p2can be solved in polynomial time using Lipton's model. Various mod-i�cations of Lipton's model are investigated, and it is proved thattheir computational power in polynomial time can be characterizedby one of the complexity classes P , �p2, �p3 or even PSPACE. Re-stricting Liptons model to DNA strings of logarithmic length onecan compute exactly the promblems in L.[RWB+96] Sam Roweis, Erik Winfree, Richard Burgoyne, Nickolas V.Chelyapov, Myron F. Goodman, Paul W. K. Rothemund, andLeonard M. Adleman. A sticker based architecture for DNAcomputation. In AMS96 [AMS96], ftp://hope.caltech.edu/pub/roweis/DIMACS/stickers.ps.Abstract: We introduce a new model of molecular computationthat we call the sticker model. Like many previous proposals it makesuse of DNA strands as the physical substrate in which informationis represented and of separation by hybridization as a central mech-anism. However, unlike previous models, the stickers model has arandom access memory that requires no strand extension, uses no en-zymes, and (at least in theory) its materials are reusable. The paperdescribes computation under the stickers model and discusses possi-ble means for physically implementing each operation. We go on topropose a speci�c machine architecture for implementing the stickersmodel as a microprocessor-controlled parallel robotic workstation.Finally, we discuss several methods for achieving acceptable overall

BIBLIOGRAPHY 89error rates for a computation using basic operations that are errorprone. In the course of this development a number of previous gen-eral concerns about molecular computation [SS95, Har95b], [Lettersto Science] are addressed. First, it is clear that general-purpose al-gorithms can be implemented by DNA-based computers, potentiallysolving a wide class of search problems. Second, we �nd that there arechallenging problems, for which only modest volumes of DNA shouldsu�ce. Third, we demonstrate that the formation and breaking of co-valent bonds is not intrinsic to DNA-base computation. This meansthat costly and short-lived materials such as enzymes are not nec-essary, nor are energetically costly processes such as PCR. Fourth,we show that a single essential biotechnology, sequence-speci�c sep-aration, su�ces for constructing a general-purpose molecular com-puter. Fifth, we illustrate that separation errors can theoreticallybe reduced to tolerable levels by invoking a trade-o� between time,space, and error rates at the level of algorithm design; we also outlineseveral speci�c ways in which this can be done and present numericalcalculations of their performance. Despite these encouraging theoret-ical advances, we emphasize that substantial engineering challengesremain at almost all stages and that the ultimate success or failure ofDNA computing will certainly depend on whether these challengescan be met in laboratory investigations.[Sap58] E. Sapir. The Status of Linguistics as a Science. University ofCalifornia Press, Berkeley, CA, USA, 1929/1958.[Sho94] Peter W. Shor. Algorithms for quantum computation: Discretelogarithms and factoring. In Proceedings, 35th Annual Sym-posium on Foundations of Computer Science, pages 124{134.IEEE Computer Society Press, 1994, ftp://netlib.att.com/netlib/att/math/shor/quantum.algorithms.ps.Z.[Smi95] Warren D. Smith. An opinionated, but reasonably short,summary of the Mini DIMACS workshop on DNA basedcomputers, (held at Princeton University on April 4 1995),April 5 1995, http://www.neci.nj.nec.com/homepages/smith/workshop.summary.ps.

90 BIBLIOGRAPHY[SS95] Warren D. Smith and Allan Schweitzer. DNA computers in vitroand vivo. Technical report, NEC Research Institute, March 20,1995. Manuscript of 3/20/95, presented at DIMACS Workshopon DNA Based Computing, Princeton, 4/4/95.AbstractWe show how DNA molecules and standard lab techniquesmay be used to create a nondeterministic Turing machine. This isthe �rst scheme that shows how to make a universal computer withDNA. We claim that both our scheme and previous ones will work,but they probably cannot be scales up to be of practical computa-tional importance. In vivo, many limitations on our and previouscomputers are much less severe or do not apply. Hence, lifeformsought, at least in principle, to be capable of large Turing universalcomputations. The second part of our paper is a loose collection of bi-ological phenomena that look computation and mathematical modelsof computation that look biological. We observe that cells face somedaunting computational problems, e.g., gene regulation, assembly ofcomplex structures and antibody synthesis. We then make simpli�edmathematical modelsof certain biochemical processes and investigatethe computational power of these models. The view of \biology as acomputer programming problem" that we espouse, can be useful forbiologists. Thus our particalar Turing machine construction bearsa remarkable resemblance to (and probably explains) recently dis-covered \RNA editing" processes. In fact it may be that the RNAediting machine in T. Brucei is clonable, extractible and runnablein vitro, in which case one would have a better performing Turingmachine than with our construction. The fact that RNA editing is aTuring machine may in turn have a lot to do with the origins of life.We also have a possible explanation for \junk DNA".[SS96] Warren D. Smith and Allan Schweitzer. DNA computers in vitroand vivo. In Baum and Lipton [BL96a].See [SS95].[Ste95] Willem P.C. Stemmer. The evolution of molecular computation.Science, 270:1510{1510, December 1, 1995.Molecular computation in the style of [Adl94] and [Lip95a] requirestoo much DNA even for rather small problem instances. Nature hassought through such a large search space using a much smaller pool of

BIBLIOGRAPHY 91sequences, by evolution: repeated cycles of selection from small pools.The author suggests to use similar methods in attacking problems usingmolecular computation: approximate solutions by treating a problemwith a dynamic programming approach.

[SWL+96] Nadrian C. Seeman, Hui Wang, Bing Liu, Jing Qi, Xiaojun Li,Xiaoping Yang, Furong Liu, Weiqiong Sun, Zhiyong Shen, Ruo-jie Sha, Chengde Mao, Yinli Wang, Siwei Zhang, Tsu-Ju Fu,Shouming Du, John E. Mueller, Yuwen Zhang, and JunghueiChen. The perils of polynucleotides: The experimental gap be-tween the design and assembly of unusual DNA structures. InAMS96 [AMS96].Abstract: DNA computing relies on the successful implementa-tion of physical chemistry techniques involving oligonucleotides ofprescribed sequence. Our laboratory has been involved in genetic re-combination and nanofabrication. We have constructed a large num-ber of unusual DNA molecules, including branched DNA molecules,DNA polyhedra, DNA knots, DNA double crossover molecules, andDNA antijunctions and mesojunctions. Our experience with thesesystems has uncovered a large number of experimental pitfalls thatmay confront individuals working with DNA computing. We presentour experience in this area with the hope that we can help investi-gators to anticipate the experimental problems that may a�ect theirDNA computing schemes.

92 BIBLIOGRAPHY� DNA computing will have to use physical chemistry in order to getsubstantial | detectable | yields of desired results. The molec-ular biological techniques (e.g. PCR) are not su�cient since theyonly work well when sequence properties of the desired solutionare known; this is generally not the case.� The main problem in building unusual DNA structures is one ofcontrol. In general, multiple outcomes are (nearly) equivalent fromthe standpoint of free energy. The undesired alternatives must bemade su�ciently unfavourable in relation to the target. Since |under certain reaction circumstances | Watson-Crick bonds arehighly favoured, one can try to choose the base sequence in sucha way that Watson-Crick pairing favours the intended design.� Reaction circumstances are very important.� The 3D structure of molecules is important (e.g. the twist in thedouble helix), as is the
exibility of the structure.� Some ligases used to ligate sticky ends are \hungry" and will settlefor an end that is close to its optimal one.[Who40] B.L. Whorf. Science and linguistics. Technology Review, 42(6),1940.[Win95a] Erik Winfree. Complexity of restricted and unrestricted mod-els of molecular computation. In Baum and Lipton [BL96a],http://dope.caltech.edu/winfree/Papers/models.ps.gz.Description: Here I show some limits on what can be computedusing some proposed operations on DNA. These limits have sincebeen overcome by the inclusion of additional operations.Abstract In [Lip94] and [Adl94] a formal model for molecular com-puting was proposed, which makes focused use of a�nity puri�ca-tion. The use of PCR was suggested to expand the range of feasiblecomputations, resulting in a second model. In this note, we give aprecise characterization of these two models in terms of recognizedcomputational complexity classes, namely branching programs (BP)and nondeterministic branching programs (NBP) respectively. Thisallows us to give upper and lower bounds on the complexity of desiredcomputations. Examples are given of computable and uncomputableproblems, given limited time.

BIBLIOGRAPHY 93[Win95b] Erik Winfree. On the computational power of DNA anneal-ing and ligation. In Baum and Lipton [BL96a], http://dope.caltech.edu/winfree/Papers/ligation.ps.gz.Description: Here I show how one might create a "one-pot"mixture of DNA which can perform universal computation. A.k.a."weaving the tapestry of life". [Note, there are strand polarity errorsin several �gures. EW, 5/96]Abstract In [Win95a] it was shown that the DNA primitives ofSeparate, Merge and Amplify were not su�ciently powerful to invertfunctions de�ned by circuits in linear time. Dan Boneh et al [BDS96]show that the addition of a ligation primitive, Append, provides themissing power. The question becomes, \How powerful is ligation?Are Separate, Merge, and Amplify necessary at all?" This paperproposes to informally explore the power of annealing and ligationfor DNA computation. We conclude, in fact, that annealing and lig-ation alone are theoretically capable of universal computation.[WW96] Robert M. Williams and David H. Wood. Exascale computer al-gebra problems interconnect with molecular reactions and com-plexity theory. In AMS96 [AMS96].Abstract: In discussing exascale (exa = 1018) computer algebraproblems we interconnect three themes. First, DNA is an attractivemedium for computation because of its density and parallelism. Sec-ond, computer algebra is similar to DNA laboratory reactions. Bothrearrange identical subunits. Third, determinant and/or permanentexpansions exemplify many levels of complexity. These three issuesare combined in a planned experiment using a DNA algorithm toevaluate or approximate the permanent of a matrix of zeros andones, a well-known problem in the class #P-Complete. Such prob-lems are harder than those previously addressed by DNA techniquesin the pioneering articles of Adleman and Lipton. This points theway to DNA methods for expanding a symbolic determinant givenits zero pattern, which is of still higher complexity. We begin toapproach interesting problem sizes because we reduce scale-up dif-�culties by alternating intermediate steps of building and �ltering.The example algorithm suggests directions toward the general prob-lem of expanding symbolic determinants and permanents given theirzero entries.

94 BIBLIOGRAPHY[WYS96] Erik Winfree, Xiaoping Yang, and Nadrian C. Seeman. Uni-versal computation via self-assembly of DNA: Some theory andexperiments. In AMS96 [AMS96], ftp://hope.caltech.edu/pub/winfree/DIMACS/self-assem.ps. Draft.Abstract: In this paper we examine the computational capabilitiesinherit in the hybridization of DNA molecules. First we consider the-oretical models, and show that the self-assembly of oligonucleotidesinto linear duplex DNA can only generate sets of sequences equiva-lent to regular languages. If branched DNA is used for self-assemblyof dendrimer structures, only sets equivalent to context-free lan-guages can be achieved. In contrast, we show that the self-assemblyof double crossover molecules into two dimensional sheets or threedimensional solids is theoretically capable of universal computation.The proof relies on a very direct simulation of a universal class of cel-lular automata. In the second part of this paper, we present resultsfrom preliminary experiments which investigate the critical compu-tational step in a two-dimensional self-assembly process.[YKF95] Takashi Yokomori, Satoshi Kobayashi, and Claudio Ferretti. Onthe power of circular splicing systems and DNA computability.Technical Report Report CSIM 95-01, University of Electro-Communications, Department of Computer Science and Infor-mation Mathematics, Chofu, Tokyo 182, Japan, July 1995.Abstract A new type of generative mechanisms was recently intro-duced under the name of extended H systems, and it has been shownthat extended H systems with �nite sets of axioms and �nite sets ofrules exactly characterize the recursively enumerable languages, thushaving the full power of Turing machines. Also, it was shown thatthere is a universal extended H system analogous to a universal Tur-ing machine. In this paper, we propose a new type of splicing modelscalled circular H systems, and show that they have the same compu-tational power as Turing machines. Proposed new models are basedon circular splicings which come from biological motivations of in-teractions between linear and circular DNA sequences, and hence,the models seem to have some advantages over other existing modelsdealing with only linear strings. We also show that there e�ectivelyexists a universal circular H system which can simulate any circularH system with the same terminal alphabet, which naturally leads

BIBLIOGRAPHY 95us to a feasible design for a DNA computer based on circular splic-ing. Surprisingly, all these results are obtained without consideringmultiplicity constraints, which is in marked contrast to the previousresults for linear H systems.

Note. The bibliography database on Molecular Computation and SplicingSystems [Das] collected during the research for this thesis is available online.The author is not aware of any bibliography of comparable or larger size onthese subjects and expresses his hope that contributions of its users will keepit accurate, complete and up to date.

IndexAdleman, 11algorithmfor Hamiltonian Path, 24veri�cation, 11alphabet, 44terminal, 45amino acid, 58Amos, 30annealing, see DNA, annealing ofanti-codon, see codon, anti-architecture, see models of compu-tationautomata, cellular, see cellular au-tomatabaseadenine, 57cytosine, 57guanine, 57thymine, 57uracil, 58base pairadenine and thymine, 58adenine and uracil, 58cytosine and guanine, 58base pairing, see DNA, annealingofbasespalindromic sequence of, 36Beaver, 16, 33

bibliography on Molecular Compu-tation and Splicing Systems,89Boneh, 30cellular automata, 40blocked, 40Chomsky hierarchy, 14Church-Turing hypothesis, 12codon, 58cohesive ends, see sticky endscomplementary ends, see sticky endscomputationuniversal, 12computation, models of, see mod-els of computationcomputation, molecular, see Mole-cular Computationdecision problem, 24DHPP, see Hamiltonian path prob-lemdirected Hamiltonian path problem,see Hamiltonian path prob-lemDNA, 57annealing of, 59as blueprint for proteins, 57backbone of, 57cutting, 59double-stranded, 5796

INDEX 97expression of, 58hybridization of, 59ligation of, 59polarity of, 57replication of, 57single-stranded, 58transcription of, 58unusual structures, 18dsDNA, see DNA, double-strandedDunworth, 30enzyme, 58cut by, 35cutting site, 36DNA ligase, 59DNA polymerase, 59endonuclease, 59recognition site, 35, 59restriction, 35restriction endonuclease, 35restriction site, 35restriction-, 61S1 nuclease, 34Gibbons, 30grammaraxiom, 45H scheme, 45H systemextended, 45underlying, 46Hamiltonian path problemalgorithm for, 24description of, 23Hartmanis, 26Head, 43hierarchy, see Chomsky hierarchyHodgson, 30

HPP, see Hamiltonian path prob-lemKurtz, 18language, formal, 44Lipton, 12, 27, 30Mac D�onaill, 26models of computation, 12equivalence of strongest, 12native to an architecture, 22Molecular Computationbibliography database of, 89communication in, 21de�nition of, 11error-resilience, 21information carriers in, 18one-pot, 21special purpose, 17types of operations in, 19universal, 18mRNA, see RNA, messenger-NP-completenessdecision problem, 24nucleotide, 57relation with bases, 57operationprogress, 36PCR, 59in Adleman's approach, 25in Beaver's model, 34in Rothemund's model, 37problems related to, 19template in, 59polymerase chain reaction, see PCRprimer, 59

98 INDEXprotein, 58DNA as blueprint, 57synthesis, 57ribosome, 58RNA, 58backbone of, 58bases in, 58messenger-, 58ribosomal, 58transfer-, 58RNA world hypothesis, 60Roo�, 30Rothemund, 16rRNA, see RNA, ribosomalSAT, see satis�ability problemsatis�ability problem, 28CNF, 28Sgall, 30splicing, 59splicing rule, 44Splicing Systems, 43bibliography database, 89universality of, 46ssDNA, see DNA, single-strandedsticky ends, 59symbol, 44marker, 44template, 59tRNA, see RNA, transfer-Turing machineBeaver's simulation of, 33components of, 32con�gurations, 32instantaneous description, 32,35instantaneous description of, 36

nondeterministic, 15Rothemund's simulation of, 35universal, 12Wagner, 30Watson-Crick-complementary, 58Winfree, 16word, 44

