Go and Genetic Programming
Playing Go with Filter Functions

S.F. da Silva
November 21, 1996

Contents

1 Introduction 4
2 Go and genetic programming 4
3 Description of the go board evaluation function 4
4 Fitness 6
4.1 Criteria for fitness L 6
4.2 Fitness and training the GP Lo oo 6
4.2.1 The tournament method 6

4.2.2 The Wally method 7

4.2.3 The best-so-far method 0oL 7

4.2.4 Another Wally method — Wally-min 7

4.2.5 The Test-set method 8

5 The Genetic Program 8
5.1 The function set 8
5.2 The terminal set 10
5.3 The fitness functions 10
5.3.1 An absolute fitness function L. 10

5.3.2 A relative fitness function oL 11

5.4 Explanation of the control parameters 11
5.5 Unchanging parameters 12

6 The experiments 13
6.1 Finding the best fitness function00 13
6.2 The Wally method 15
6.2.1 Crossover and mutation, fifty-fifty 15

6.2.2 Mutationonly oL 16

6.2.3 (141) . . o 17

6.2.4 One crossover + one mutation 19

6.3 Another improvement on the fitness function: Wally-min 20
6.4 The Wally-min methodo 22
6.4.1 Two subpopulations, 22

6.4.2 Crossover and mutation, fifty-fifty 24

6.4.3 Mutationonly oL 25

6.4.4 One crossover + one mutation 26

6.5 (4N . o 27
6.5.1 (14X . . o 27

6.5.2 (24 X) . . 29

6.5.3 (24 AN+K) .o 30

6.6 Continuing with best-so-far 00000 32

Conclusion

7.1 Approach
7.2 Theresults e
7.3 About theresults
7.4 Wally-min vs. Best-so-far00
7.5 About the evaluation function itself L.

Future research

Go terminology

A.1 Liberties e e
A2 Atarl . ..o e
A3 Live groups
A4 Ponnuki
A.5 Shicho e
A6 Komi. . . .o e e

SGF-files

Section references to the results

33
33
33
34
35
36

36

37
37
37
37
38
38
38

38

40

1 Introduction

The purpose of this project has been to see if there is a future in looking for an evaluation
function for an Alpha-Beta algorithm for the game go using genetic programming.

The reason I wanted to look at go is because the current go playing programs aren’t
really very good as compared to current chess playing programs for instance and also
because I like the game.

I have been primarily looking at the 7 x 7 variant of go so as to be able to compare my
results with other efforts in this direction, especially those of C.D. Rosin and R.K. Belew
whose studies on co-evolution in genetic algorithms[1] included the game go. Another
reason I used such a small board is because it makes the runs of the genetic program
faster.

The largest part of this research has been to find the optimal parameters for finding
an evaluation function of the type I called filters (see section refeval).

2 Go and genetic programming

There are at least two ways to use genetic programming (GP) in go or in any other two-
player game. If you have an evaluation function you can use a GP to find the best search
strategy. Or if you have a search strategy you can use a GP to find an evaluation function.

I chose the latter, mainly because I don’t have an evaluation function for go. There
are however many search strategies and getting one to test the evaluation functions on
isn’t so hard.

On the other hand, because there are so many moves to choose from in go (361 on a
19 x 19 board at the start of the game), most “simple” search strategies aren’t that good.
They are just too slow. So looking for a new search strategy would be a good idea for
later research.

3 Description of the go board evaluation function

I will describe the type of function (S-expression) I will be looking at: it has as an
argument a board configuration (i.e. a board with some black and white stones on it);
the return value will be the evaluation of the board configuration. The higher the return
value, the better it is for black.

The way this return value is calculated is by creating, from the given board, a new
board which will represent, in a way, the expected configuration after the game has ended
— that is the configuration in which the program expects the game to end given the
present configuration. Thus by counting the territories on this board we will know the
return value:

“return value” = “black territory” - “white territory”

Finally I will explain how the new board configuration is calculated: I have a function,
f which will be the major component of the evaluation function; it has 25 arguments, or
rather one 5 x 5 matrix. This is explained below. The return value of the function is the

value ! of one point on the board. The new board is calculated from the old-one with
the function trans which uses the function f to find the new value for each coordinate
on the board. For each point (z,y) on the original board b I calculate f(g) where g is a
5 X 5 matrix containing the values of 25 points in a square around (x,y) on b. On the
new board, O, I set point (x,y) to f(g). In more mathematical terms:

I make use of the following types and functions:

e V' is a set of values. This is the set {< EMPTY > < EDGE >, < BLACK, >, <
WHITE, >}. Here [is the number of liberties of a stone; if that number exceeds 15
then [= 15.

e LB, UB € N, LB < UB. LB and UB are a lower bound and an upper bound for
the coordinates of a go board.

e C'=[LB, UBP. C is the set of coordinates on a go board.
e board = V°. This is the type for a board configuration.

e trans: board — board. The function trans converts a board configuration to a new
board configuration.

e g :board x C — V?® x V5. This function is only used to provide the next function,
f, with the right data.

e f:V®xV® — V. This function is used for each point on the board to give it a new
value.

The functions are defined like this:

trans(b) =1, so that

V(z,y) € C: (V(x,y) = f(g(D, (z,¥))))

and

bz —2,y—2) blx—1,y—2) blz,y—2) blz+1,y—2) blz+2,y—2)
bz —2,y—1) blz—1,y—1) blz,y—1) blz+1,y—1) blz+2,y—1)
g9(b, (z,y)) = b(z —2,y) b(z —1,y) b(z,y) b(z +1,y) b(z +2,y)
blx —2,y+1) bz —1,y+1) blz,y+1) blz+1Ly+1) blz+2,y+1)
blx —2,y+2) blx—1,y+2) blz,y+2) blz+1Ly+2) blz+2,y+2)

We get the final board by like this: bpine = trans™(b). This brine is used to evaluate
the board configuration b. Together with an alpha-beta algorithm the function bs;nq can
be viewed as a go program. Here n is a constant. This constant can either be set by hand
or be determined by the GP. bg;p, is the evaluation function but, effectively, the function
f is the S-expression I will be optimizing.

I got the idea for the function f from the bitmap-editor Paint Shop Pro 2 in which
you can create one bitmap from another by applying a so-called filter. Such filters can be
used for things like blur-effects or highlighting the edges of a drawing. I think this type

1 This is not just one of the values black stone, white stone, empty, it can also be edge, meaning the
edge of the board, and the liberties of a stone are also encoded (to a maximum of 15 liberties).
2Paint Shop Pro version SHAREWARE 3.12 - 32 is copyrighted ©1990-1995 to JASC, Inc. .

5

of function might do well as an evaluation function because what you are doing when you
are playing go is looking at the board and estimating the number of points you are likely
to get by, in your mind, finishing the teritories. This is what this type of function does.
The only problem is that most of these functions finish the territory incorrectly.

To find out to whom a certain coordinate belongs you need to look at the entire board.
An example of why this is necessary is the shicho or ladder (see Appendix A). That is
why I wanted the board to be filtered more than once; in other words, this is the reason
for n in bfipg-

4 Fitness

4.1 Criteria for fitness

There are a couple of ways of looking at the fitness of a go program.

You could say a program is good if it makes “good shape” — that is, if it makes
shapes that are considered efficient or strong. This is the way a go player might look at
a program.

The definition of shape is a bit vague. It is a combination of stones that can occur at
different places on a board.

You could also say that a program is good if it can beat a certain predetermined
opponent; or, to extend this idea, if it finishes a game against that opponent with a
certain minimum score. (The program loses with at most, say, twenty points or wins with
at least five points.)

The ideal fitness would be a combination of both “good shape” and winning. In any
case, “good shape” on its own is probably not enough for a good program. Winning would
be a good criterium, but it is not that obvious that perfect play implies good shape. It is
probable though.

4.2 Fitness and training the GP

Fitness is not only used to determine if the S-expression that rolls out of the GP is any
good, but also to steer the GP in the direction of the optimal S-expression — to train the
GP, so to say. In fact this is the main purpose of the fitness. In any case, the same ways
of looking at fitness apply.

In the GP T have tried a number of ways of assigning fitness.

4.2.1 The tournament method

The first and easiest way of assigning fitness I tried, worked like this: In each generation
the pool of S-expressions played a simple tournament. In the first round individual 1
played individual 2, 3 played 4, 5 played 6, and so on. In the second round the winner of
the first game played the winner of the second game and so on. The losers were out of
the tournament. I repeated this until I had only one individual left.

Each time an S-expression won a game it got a point. This way the one with the most
points was the one who had won all its games and was most probably the best individual.
The number of points an S-expression got I used as a measure for its fitness.

This method isn’t very fair, because S-expressions losing in the first round might have
won against other S-expressions, but they don’t get a chance to prove themselves. I
used this method anyway because it is fast. It takes about as many games as there are
individuals in the pool.

4.2.2 The Wally method

Another training method I used was letting each individual in the pool play the program
Wally[7]. The score against Wally was used as the fitness.

The advantage of this method is that, in the beginning, the pressure from the fitness
is strong. For an individual to get a fitness value of more than the the minimum it would
have to be able to make a living group at the very least.

The disadvantage is that the S-expressions can really only become as strong as Wally.
After that there is no more pressure from the fitness. This was not the case with tourna-
ment evaluation.

It’s like riding a bike in the first gear: you can gain speed relatively fast but after a
while the pedals rotate too fast to speedup any more.

Another disadvantage is that the only information about go-strategies the S-expressions
get is the information Wally gives them; another program, which might be just as weak,
but which plays by a different strategy, might beat an S-expression that normally beats
Wally.

4.2.3 The best-so-far method

This method combines the ideas of tournament evaluation and the Wally method. The
individuals have a so called champion to beat but when he is beaten another, better-one,
takes his place.

The way it works is, all S-expressions play the champion — the best individual so far
— and their score constitutes their fitness. If there is a better individual, it will have a
better fitness so it will be the champion for the next generation. This way the fitness
pressure won’t drop until a good S-expression has been found. This method doesn’t have
the advantage of having a strong champion to begin with though, so it might take a long
time before a good S-expression is found.

4.2.4 Another Wally method — Wally-min

Through the course of the experiments I thought of another way to assign fitness to the
S-expressions. It is an extension of the Wally method. In stead of playing just one game I
let the individual play Wally a fixed number of times. The worst score for the individual
is taken as the fitness.

This way the fitness is more reliable: in a big population there is always a chance that
Wally “screws up” a game and when that occurs the individual that happens to be the
opponent at that time gets an undeserved high fitness. By playing more games the chance
of a wrong fitness is lower.

On the down side is the fact that it takes longer to evaluate the S-expressions.

Actually, this didn’t work very well so, instead of just the worst score, I took a weighted
sum of the worst score, the average score and the (squared) standard deviation of the

scores:

fitness = wq * worst_score 4+ wq * average_score + ws * standard_deviation

4.2.5 The Test-set method

This method I never used. Somewhere on WWW T found a collection of test-sets [4].
These were SGF-files * with special notations for good and bad moves.

I wanted to used these files for calculating the fitness by having each S-expression start
with the configurations described in these files; then the S-expression would make a move
and according to if the move was marked good or bad it would get points or lose them.

This would have been a “good shape” kind of fitness, the emphasis being on the moves,
not on winning.

I expected this way of assigning fitness to be faster than playing entire games because
the S-expressions would only have to make a few moves for each fitness evaluation. Un-
fortunately all test files were on 19 x 19 boards and the functions turned out to be much
too slow on a board of this size. So, in the end, I didn’t even try this method.

5 The Genetic Program

The GP consists of a function set, a selection and reproduction part (the kernel) and an
evaluation part (the fitness function). I used lil-gp[9] for the kernel and my own fitness
function made partly from wally.c[7].

5.1 The function set

The function set that I used to construct the S-expressions is:

foif-black_ponnuki,
foif-white_ponnuksi,
J-if-eq,

foif-weaker,
fonear_edge,
J-is_type,

fradd,

f-sub,

foinvert,

I will explain each function.

foif-black_ponnuki
This function has two arguments. If the 5 x 5 matrix has a black ponnuki at the
center, the first argument is returned, otherwise the return value is the second
argument.

The following diagram shows what a (black) ponnuki looks like. It consists of the
four black stones and the point at a should be empty. All other points can contain
any value.

3See Appendix B.

®
1o 0]

®

Black Ponnuki.

In the function, the black stones can also be an edge for it to recognize the shape
as a ponnuki. So the following diagram is also a ponnuki.

2 @
®

A ponnuki at the edge, in the corner.

foif-white_ponnuki
This function is the same as f_if_black_ponnuki except, it looks for a white ponnuki.

J-if-eq
This function takes four arguments. It compares the first two and if they are the
same the third argument is returned, otherwise the fourth is returned.

foif-weaker
This function takes four arguments. If the number of liberties of the first argument
is less than the number of liberties of the second, the return value is the third
argument, otherwise it is the fourth.

fonear_edge
This function again takes two arguments; the first as a return value for if one of the
points of the 5 x 5 matrix contains the value edge, the second for if none do.

fois_type
This function is like a switch-statement in C or a CASFE-statement in Pascal: it
looks at the first argument; if it is edge, the second argument is returned, if it is
empty, the third, if it is a black stone, the fourth and finally, if it is a white stone
the return value is the fifth argument.

fradd
This function adds up its two arguments. If the sum exceeds the maximum number
of liberties or if one of the arguments is edge, the sum is edge.

fsub
This function subtracts its first argument from its second. If the maximum number
of liberties is exceeded or if one of the arguments is edge, the return value is edge.

frinvert
This function “inverts” its one argument: a black stone becomes a white stone and
a white stone becomes a black stone, both with the same number of liberties. All
other values stay the same.

5.2 The terminal set

Of course with a function set you need a terminal set too. The terminal set is rather
short:

ferc_gen,

foerc_gen
This is the terminal symbol for the function set. The function generates two types
of constants: wvalues and stones.

Values can be a black stone with [liberties, <BLACK(l)>, a white stone with [
liberties, < WHITE(l)>, an empty space, <EMPTY> or the edge of the board,
<EDGE>. Stones are pointers to values in the 5 x 5 matrix, stone[z][y].

5.3 The fitness functions

As described in section 4.2 T have used two fundamentally different ways of assigning
fitness. One produces absolute fitness values whereas the other only yields relative fitness
values. I will give a short description of each.

5.3.1 An absolute fitness function

The fitness functions that produce absolute fitness values are the Wally method of sec-
tion 4.2.2 and the Wally-min method of section 4.2.4. On whichever S-expression you use
them, they always assign the same fitness to the same S-expression (on average, because
Wally is not deterministic).

With the Wally method the fitness was calculated like this:

fitness = result(game)
with

out-of-time score, if the game was
result(game) = not ended in time.
board-size®* + Wally’s score — S-expression’s score, otherwise

The fitness of Wally-min was calculated as follows:

fitness wy *xmax(ry,...,r,)

+ wg * M
+ wyx o2
with

n the numer of games played.

r; = result(game;),Vi € {1,...,n} (This is the same result() as above)

n

. T
J— i=1""
H= n

n 2
0_2 _ Zi:l;ﬂirl)

10

5.3.2 A relative fitness function

For a relative fitness function I used the methods described in section 4.2.1 and 4.2.3.
These functions do not produce values that make the S-expressions comparable with
the rest of the world, as the Wally method does, but they do have the property that
the fitness pressure doesn’t drop before one of the best S-expressions is found. They
will keep on assigning better fitness values as long as the S-expressions get better, even
after the S-expressions win against Wally with a maximum score. The Wally method
doesn’t distinguish between two S-expressions beating Wally with the maximum score,
nor, for that matter, between two S-expressions losing from Wally with the maximum
score against. (Maybe I should point out here that Wally is a computer go program and
the Wally method is a way of assigning fitness values to S-expressions by letting them
play Wally.)

5.4 Explanation of the control parameters

Most parameters are described thoroughly in Koza’s book Genetic Programming|[3] and
are standard so I won’t go into these here, however some less conventional parameters
may need some explaining.

In the first runs I used two subpopulations in stead of just one big population and every
ten generations I exchanged a certain number of individuals between the populations:
every tenth generation the five worst individuals from population two were replaced by
the five best from population one and the five worst from population one with the five
best from population two.

I used one selection method provided by lil-gp[9] but not mentioned in [3] and another
I made myself by changing that selection method of lil-gp:

e method “best” which takes the best individual of that generation the first time one
is selected for reproduction or crossover or mutation; the second time it takes the
second best, etc.

e method “nth” which takes the n-th best individual of that generation every time
an individual is selected for reproduction etc. . This selection method has one
parameter, namely the number for n.

There are some application-specific parameters which don’t have much to do with
genetic programming. They apply to the go-playing part of the GP.

e The search depth; this is the number of plies the Alpha-Beta algorithm looks ahead.

e The board size; this is usually one of the sizes 9, 13 and 19, but it can be anything
from 2 to 19. In this research I have used mainly size 7.

e The maximum number of moves, in case two players don’t know when to stop. If
this number is reached the game is ended and the out-of-time score is returned.

e The number of sweeps; this is the number of times the function ewval is repeated the
way it is explained at the end of section 3.

e The out-of-time score; this is the value that is taken as the score (for black) when
the game isn’t ended within the maximum number of moves.

11

5.5 Unchanging parameters

The following tables list the parameters I never changed. There are some other parame-
ters that never changed but I found it better to leave them in the separate tables of each
experiment.

Parameters that stayed the same for all (sub)populations.
Parameter Value

Generative method for initial random population ramped half-and-half
Maximum size for S-expressions created during the | D. = 256 nodes

run
Maximum tree depth for initial random S-expressions | D; = 4

Probability of permutation Py = 0%
Frequency of editing fea=0
Probability of encapsulation Pen = 0%
Condition for decimation NIL

Application specific parameters.

Parameter Value
Search depth 1ply
Board size 7
Maximum number of moves per game | 147ply
Number of sweeps 2

12

6 The experiments

I have run the GP with all ways of assigning fitness described in section 5.3. I ran each
experiment five times with the same parameters but with different random-seeds. (I
would have liked to do more runs for each experiment, but time didn’t allow that). After
I found which fitness function worked best I ran some more experiments and varied the
parameters to find optimal values.

6.1 Finding the best fitness function

The first runs I used to find the fitness function that worked best. I took a set of arbitrary
control parameters and varied the fitness function for each experiment.

Fitness functions.

Run | Fitness function and parameters
BSFE | best-so-far method

Out-of-time score | 0

TRN | tournament method

Out-of-time score | 0

WAL | Wally method

Out-of-time score | 0

The major numerical parameters.

Parameter Value
Number of subpopulations S=2
Population size for each subpopulation i (i € {1,2}) | M; =50
Maximum number of generations to be run G =100

The minor numerical parameters for subpopulation 1.

Parameter Value
Probability of crossover e = 80%
Probability of reproduction pr = 5%
Probability of choosing internal points for crossover | p;, = 90%
Probability of mutation Pm = 15%
Probability of choosing internal points for mutation | p;, = 50%

The minor numerical parameters for subpopulation 2.

Parameter Value
Probability of crossover e = 0%
Probability of reproduction pr = 5%
Probability of mutation Pm = 95%
Probability of choosing internal points for mutation | p;, = 20%

13

The qualitative variables for subpopulation 1.

Parameter Value

Selection method for reproduction “best”

Selection method for crossover fitness pro-
portionate (roulette wheel
selection)

Selection method for mutation fitness pro-
portionate (roulette wheel
selection)

Type of fitness used for selection Adjusted fitness

The qualitative variables for subpopulation 2.

Parameter Value

Selection method for reproduction “best”

Selection method for mutation fitness pro-
portionate (roulette wheel
selection)

The results.

Fitness function | Average fitness
Best-so-far 98.00
Tournament 97.52
Wally 93.94

The best fitness function turned out to be the Wally method. To my disappointment
the other two didn’t do at all well. They didn’t even get off the mark (except for one run
with the tournament method but that was probably just a fluke).

14

6.2 The Wally method

Going on with just the Wally method I tried some different population dynamics. The
two subpopulations was just a wild try. I went on with the more usual one population.

Later (see section 6.4.1) the two subpopulations turned out to be not so bad.

6.2.1 Crossover and mutation, fifty-fifty

Because in the previous experiments I noticed that the populations got very uniform soon,
I tried my next experiment with a higher chance for mutation. I also changed the selection
methods for crossover and mutation from roulette wheel to tournament selection because

I was told this was better.

The major numerical parameters.

Parameter Value
Population size M =100
Maximum number of generations to be run G =100
The minor numerical parameters.

Parameter Value
Probability of reproduction pr = 4%
Probability of crossover pe = 48%
Probability of choosing internal points for crossover | p;,, = 90%
Probability of mutation Pm = 48%

Probability of choosing internal points for mutation

pip = NIL (uniform selec-
tion over all points)

The qualitative variables.

Parameter

Value

Selection method for reproduction
Selection method for crossover
Selection method for mutation
Type of fitness used for selection

“best”
tournament, size 2
tournament, size 2
Adjusted fitness

Fitness function parameters.

Parameter Value
Name Wally method
Out-of-time score 0

The results

Experiment | Fitness value
2 pops 93.94
1 pop 86.82

The results were on average about seven points of territory better than the experiment

with two subpopulations using the Wally method, so that was a big improvement.

15

6.2.2 Mutation only

Taking things one step further I tried an experiment with mutation as the only operator.
No more crossover and also no more reproduction, so this experiment, unlike all the pre-
vious experiments, was non-elitist.

The major numerical parameters.

Parameter Value
Population size M =100
Maximum number of generations to be run G =100

The minor numerical parameters.

Parameter Value
Probability of reproduction pr = 0%
Probability of crossover pe = 0%
Probability of mutation Pm = 100%

Probability of choosing internal points for mutation | p;, = NIL (uniform selec-
tion over all points)

The qualitative variables.

Parameter Value
Selection method for mutation tournament, size 2
Type of fitness used for selection Adjusted fitness

Fitness function parameters.

Parameter Value
Name Wally method
Out-of-time score 0

The results

Experiment Fitness value
Crossover 4+ mutation 86.82
Only mutation 85.20

This experiment did one or two points better than the previous-one. Not such a big
improvement.

16

6.2.3 (1+1)

Hearing J.vd Hauw’s good results with (1 + 1)[2] I decided to try that on go.

(1 + 1) is the method used in Evolutionary Strategies! in which you have one parent
from which you create one child with mutation. You then take the best of those two as
the parent for the new generation.

A generalization of this method is (y + A) in which you have p parents and create A
children and select the best p individuals from the parents and the children for the new
generation.

Because lilgp v1.0 had no option for (14 1) I simulated it by taking a population of size
2 and each generation created one individual by reproduction (the parent) and another-
one by mutation (the child). I used selection method “best” for the parent and roulette
wheel selection for the child. This way most of the time the parent would be selected
for mutation (as should be in (141)) — I hadn’t thought of the selection method “nth” yet.

The major numerical parameters.

Parameter Value
Population size M =2
Maximum number of generations to be run G = 10000

Fitness function parameters.

Parameter Value
Name Wally method
Out-of-time score 0 later 49

The minor numerical parameters.

Parameter Value
Frequency of reproduction pr = 50%
Frequency of mutation Pm = 50%

Probability of choosing internal points for mutation | p;, = NIL (uniform selec-
tion over all points)

The qualitative variables.

Parameter Value

Selection method for reproduction “best”

Selection method for mutation fitness pro-
portionate (roulette wheel
selection)

Type of fitness used for selection Adjusted fitness

The results

Experiment Fitness value
Mutation only 85.20
(14 1) with out-of-time score 0 87.30
(14 1) with out-of-time score 49 84.06

4For more information on Evolutionary Strategies see [8].

17

Looking at some of the games in this experiment I noticed that those that ended in
a tie were somewhat strange: the individual had found a flaw in Wally so that the same
sequence was repeated infinitely. Tough this is an interesting result it is not what I was
looking for so I ran a similar run with the out-of-time score set to 49 which meant that
such a “tie” would now count as a (maximum) loss for the S-expression. Actually such
a situation means that the game isn’t over — and never will be over — so you can’t say
who has played best (both players have played lousy), but I didn’t want it to be counted
as a good result, and a tie didn’t work, so I just set it to maximum loss.

Because the results of (1 + 1) with out-of-time score 49 were better than those with
a population of 100 and because in those runs I hadn’t seen any out-of-time games, I
concluded, wrongly perhaps, that (1 + 1) was the best option so far and T went on with
that.

18

6.2.4 One crossover + one mutation

I also tried a variation on (1 + 1); I took a population of size 2 and created the new
generations by taking the two individuals and creating one child by crossover and taking
one individual by roulette wheel selection and creating a child by mutation.

The major numerical parameters.

Parameter Value
Population size M =2
Maximum number of generations to be run G = 10000
The minor numerical parameters.

Parameter Value
Frequency of crossover Pe = 50%
Probability of choosing internal points for crossover | p;, = 90%
Frequency of mutation Pm = 50%

Probability of choosing internal points for mutation

pip = NIL (uniform selec-
tion over all points)

The qualitative variables.

Parameter Value

Selection method for crossover “best”

Selection method for mutation fitness pro-
portionate (roulette wheel
selection)

Type of fitness used for selection

Adjusted fitness

Fitness function parameters.

Parameter Value
Name Wally method
Out-of-time score 49

The results

Experiment

(14 1) with out-of-time score 49
1 cross 4+ 1 mut

Fitness value
84.06
87.75

This didn’t work very well, probably because there was no elitism. To give you an
idea of how it worked, figure 1 shows the best fitness value of each generation.
figure shows the average fitness of five runs (the lower the value the better the fitness).
In the individual runs the fitness went a bit lower, but it is clear that there is no gradual

improvement of the fitness.

19

This

60 -

50 -

30 -

20 +~ —

10 .
fitness ¢

0 | | | |
0 2000 4000 6000 8000 10000

Figure 1: fitnesses of the best individuals of “one crossover + one mutation”

6.3 Another improvement on the fitness function: Wally-min

When I looked at each run to see how many games the best individual of each run would
win the results weren’t that good. Of a hundred games the individuals would usually win
four or five by a relatively large difference, but the rest of the games they didn’t even get
a point. I used Wally-min on the next runs to get more consistent individuals. The other
parameters were those of (14 1) of section 6.2.3.

First T used only the worst score of five games as the fitness. To get the fitness up a
bit faster I tried 98 times the worst score plus once the average score. I used 98 times the
worst score because the average could take a value between 0 and 98. This way I could
extract the average and the worst score from the fitness value.

Fitness function parameters.

Parameter Value

Name Wally-min method
Out-of-time score 49

Number of games for one fitness evaluation 5

Weight for minimum score 1, later 98

Weight for average score 0, later 1

Weight for o2 of scores 0

20

The major numerical parameters.

Parameter Value

Population size M =2

Maximum number of generations to be run G = 10000

The minor numerical parameters.

Parameter Value

Frequency of reproduction pr = 50%

Frequency of mutation Pm = 50%

Probability of choosing internal points for mutation | p;, = NIL (uniform selec-
tion over all points)

The qualitative variables.

Parameter Value

Selection method for reproduction “best”

Selection method for mutation fitness pro-
portionate (roulette wheel
selection)

Type of fitness used for selection Adjusted fitness

The results

Experiment Fitness value
(14 1) with Wally method 84.06
(14 1) with Wally-min using worst score 73.37
(1 + 1) with Wally-min using worst + avg 70.86

Wally-min worked well, but the first increase in fitness using only the worst score
wasn’t until the 4000"* generation. Using a combination of worst score and average score
worked better.

21

6.4 The Wally-min method

I ran the experiments done with the Wally method again but now with Wally-min. So,
all the experiments in this section 6.4 have the following fitness function parameters.

Fitness function parameters.

Parameter Value

Name Wally-min method
Out-of-time score 49

Number of games for one fitness evaluation 5

Weight for minimum score 98

Weight for average score 1

Weight for o2 of scores 0

The following experiments will all be compared with their Wally method counterparts.
All of them are compared with the Wally method with out-of-time score 0, except ”one
crossover + one mutation” (section 6.4.4); this-one is compared with the Wally method
with out-of-time score 49, because I didn’t do the experiment with out-of-time score 0.

6.4.1 Two subpopulations

The major numerical parameters.

Parameter Value
Number of subpopulations S=2
Population size for each subpopulation i (i € {1,2}) | M; =50
Maximum number of generations to be run G =100

The minor numerical parameters for subpopulation 1.

Parameter Value
Probability of crossover pe = 80%
Probability of reproduction pr = 5%
Probability of choosing internal points for crossover | p;, = 90%
Probability of mutation Pm = 15%

Probability of choosing internal points for mutation | p;, = 50%

The minor numerical parameters for subpopulation 2.

Parameter Value
Probability of crossover pe = 0%
Probability of reproduction pr = 5%
Probability of mutation P = 95%
Probability of choosing internal points for mutation | p;, = 20%

22

The qualitative variables for subpopulation 1.

Parameter Value

Selection method for reproduction “best”

Selection method for crossover fitness pro-
portionate (roulette wheel
selection)

Selection method for mutation fitness pro-
portionate (roulette wheel
selection)

Type of fitness used for selection Adjusted fitness

The qualitative variables for subpopulation 2.

Parameter Value

Selection method for reproduction “best”

Selection method for mutation fitness pro-
portionate (roulette wheel
selection)

The results

Experiment Fitness value
2 pops with Wally 93.94
2 pops with Wally-min 64.16

I was surprised by the results of this experiment. They were not at all what I had
expected. The results were about 6 points better than the best of the other runs I had
done so far.

23

6.4.2 Crossover and mutation, fifty-fifty

The major numerical parameters

Parameter Value
Population size M =100
Maximum number of generations to be run G =100

The minor numerical parameters.

Parameter Value
Probability of reproduction pr = 4%
Probability of crossover pe = 48%
Probability of choosing internal points for crossover | p;,, = 90%
Probability of mutation Pm = 48%

Probability of choosing internal points for mutation | p;, = NIL (uniform selec-
tion over all points)

The qualitative variables.

Parameter Value

Selection method for reproduction “best”

Selection method for crossover tournament, size 2
Selection method for mutation tournament, size 2
Type of fitness used for selection Adjusted fitness

The results

Experiment Fitness value
crossover and mutation 50-50 with Wally 86.82
crossover and mutation 50-50 with Wally-min 70.92

This experiment produced about the same results as (1 + 1), just as it did with the
Wally method as a fitness function. For reference:
Results of (1+1)
Experiment Fitness value
(14 1) with Wally 87.30
(14 1) with Wally-min 70.86

24

6.4.3 Mutation only

The major numerical parameters.

Parameter Value
Population size M =100
Maximum number of generations to be run G =100
The minor numerical parameters.

Parameter Value
Probability of reproduction pr = 0%
Probability of crossover pe = 0%
Probability of mutation Pm = 100%

Probability of choosing internal points for mutation

pip = NIL (uniform selec-
tion over all points)

The qualitative variables.

Parameter

Value

Selection method for mutation
Type of fitness used for selection

tournament, size 2
Adjusted fitness

The results

Experiment

Mutation only with Wally
Mutation only with Wally-min

Fitness value
85.20
74.20

The results were better than with the Wally method as a fitness function, but there

wasn’t as much an improvement as there was with the previous experiments.

25

6.4.4 One crossover 4+ one mutation

The major numerical parameters.

Parameter Value
Population size M =2
Maximum number of generations to be run G = 10000
The minor numerical parameters.

Parameter Value
Frequency of crossover pe = 50%
Probability of choosing internal points for crossover | p;, = 90%
Frequency of mutation Pm = 50%

Probability of choosing internal points for mutation

pip = NIL (uniform selec-
tion over all points)

The qualitative variables.

Parameter Value

Selection method for crossover “best”

Selection method for mutation fitness pro-
portionate (roulette wheel
selection)

Type of fitness used for selection

Adjusted fitness

The results

Experiment

Fitness value

87.75
61.46

1 crossover + 1 mutation with Wally
1 crossover + 1 mutation with Wally-min

Just as in section 6.4.1 the improvement here was great and unexpected.

26

6.5 (u+A)

From this point on I have been mainly occupied with optimizing the parameters for the
generalization of (1 + 1), namely (u + A). Because of the time each run takes I haven’t

got, very far with this.

6.5.1 (1+))

The next experiments are all (1 + \) with the same parameters as the last (1 + 1), that
is, with 98 times the worst score plus the average score. For completeness I have also

included (1 + 1).

The purpose of these experiments was to find the optimal value of A for = 1.

The varying parameters.

(1+1) (1+5) (1+10) (1+15)
Population size M =2 M =6 M =11 M =16
Maximum nr. of generations | G = 10000 | G = 2000 | G = 1000 | G =667
Frequency of reproduction pr=50% |p.=17% | p, =9% | p, =6%
Frequency of mutation Pm = 50% | pm = 83% | pm = 91% | pp = 94%
The minor numerical parameters.
Parameter Value

Probability of choosing internal points for mutation

pip = NIL (uniform selec-
tion over all points)

The qualitative variables.

Parameter Value
Selection method for reproduction “nth”, n=1
Selection method for mutation “nth”, n=1

Type of fitness used for selection

Adjusted fitness

Fitness function parameters.

Parameter Value

Name Wally-min method
Out-of-time score 49

Number of games for one fitness evaluation 5

Weight for minimum score 98

Weight for average score 1

Weight for o2 of scores 0

The results

Experiment | Fitness value
(1+1) 70.86
(1+5) 84.55
(1+10) 72.96
(1+15) 86.13

27

Of the values for A\ that I have tried, A = 1 got the best results. And A = 10 did
almost as good. However A = 5 and A = 15 got worse results by an average of about 10
points. That is, on average they got about 10 points less in a game against Wally than
(14 1) and (1 4 10). This leads me to conclude that I haven’t done enough tests yet to
tell which value for A is best or even if there is a best value.

28

6.5.2 (24))

I also tried four experiments with two parents in stead of one (= 2). T wanted these runs
to be comparable with the runs of (1 +), and the best way to make them comparable
was, I thought, to take for each (1 + \) a population (2 + 2X).
The purpose of these experiments was similar to those of (1 + A): to see which value
of A worked best for ;4 = 2. The second goal was to see if ;4 = 1 was better or u = 2.
The varying parameters.

(2+2) (2 +10) (2 + 20) (2 + 30)
Population size M=4 M =12 M =22 M = 32
Maximum nr. of generations | G = 5000 | G =1000 | G =500 |G =333
Frequency of reproduction pr=50% |p.=17% | p, =9% | p, = 6%
Frequency of mutation Pm = 50% | pm = 83% | P = 91% | P = 94%

The minor numerical parameters.
Parameter Value

Probability of choosing internal points for mutation | p;, = NIL (uniform selec-
tion over all points)

The qualitative variables.
Parameter Value

Selection method for reproduction “nth”, n = 1 for first indi-
vidual, n = 2 for second
“nth”, n = 1 for first half,
n = 2 for second half

Selection method for mutation

Type of fitness used for selection

Adjusted fitness

Fitness function parameters.

Parameter Value

Name Wally-min method
Out-of-time score 49

Number of games for one fitness evaluation 5

Weight for minimum score 98

Weight for average score 1

Weight for o2 of scores 0

The results

Experiment | Fitness value
(2+2) 79.93
(2+ 10) 75.51
(2 + 20) 80.68
(2 + 30) 80.48

The best value for A of the four I have tried was A = 10. This corresponds with A =5
in the (1 + A) runs which was the second worst there.

The over all results of (2 + \2) were worse than those of (1 + A1).

29

6.5.3 (24 \+k)

I tried crossover on (24). I called this (24 A+ &), or in general, (u+ A+), with p the
number of parents, A the number of children by mutation, and x the number of children

by crossover.

This notation leaves the questions of which parents to take for crossover, but in my
experiments with (2 + A + k) I always took parent one as the first parent and parent two

as the second.

Again T wanted these experiments to be comparable with (1 +) or actually with
(24)), so I took the population sizes to be (almost) the same in both experiments: for
(24 A) I took (2 + (A —2) 4+ 2). However, I didn’t think using only crossover made any
sense. That is why I haven’t done (24 0+ 2). In stead I did (2 + 2 + 1): one child by

crossover and one for each parent by mutation.

The varying parameters.

(2424+1)|(24+8+2) | (2+18+2) | (2+28+2)
Population size M=5 M =12 M =22 M = 32
Maximum nr. of generations | G = 3333 | G =1000 | G =500 G =333
Frequency of reproduction pr=40% | p.=16% | p, =% pr = 6%
Frequency of crossover pe=40% | p. = 16% | p. = % pe = 6%
Frequency of mutation Pm=20% | pm=68% | pm =82% | pm = 88%
The minor numerical parameters.
Parameter Value
Probability of choosing internal points for crossover | p;, = 90%

Probability of choosing internal points for mutation

pip = NIL (uniform selec-
tion over all points)

The qualitative variables.

Parameter

Value

Selection method for reproduction
Selection method for crossover
Selection method for mutation

Type of fitness used for selection

“nth”, n = 1 for first indi-
vidual, n = 2 for second
“nth”, n =1 for first indi-
vidual, n = 2 for second
“nth”, n = 1 for first half,
n = 2 for second half
Adjusted fitness

Fitness function parameters.

Parameter Value

Name Wally-min method
Out-of-time score 49

Number of games for one fitness evaluation 5

Weight for minimum score 98

Weight for average score 1

Weight for o2 of scores 0

30

The results

Experiment | Fitness value
(24+2+1) 70.01
(2+8+2) 76.92
(2+ 18 + 2) 74.73
(2428 + 2) 82.29

The results of (2 + X + 2) were similar to those of (1 + \); just as (1+1), (2+2+1)
worked best and (2 + 18 + 2) after that. In three of the four experiments (2 + Ay + 2) did
slightly better than the corresponding (1 + A;). Only (2 + 18 + 2) scored below (1 + 10).

Since (2 4+ Ay + 2) did better than (1 4 A;), the over all results of (2 4+ Ay + 2) were
better than those of (2 + A}). It seems crossover does help.

31

6.6 Continuing with best-so-far

I wanted to see how best-so-far did with an initial population of already fairly good indi-
viduals. T took the best runs I had so far — this was (2+2+ 1) — and let them continue
for another 10000 evaluations with best-so-far as a fitness function. In this case that was
3333 generations.

The major numerical parameters.

Parameter Value
Population size M =15
Maximum number of generations to be run G = 3333
The minor numerical parameters.

Parameter Value
Frequency of reproduction pr = 40%
Frequency of crossover pe = 40%
Probability of choosing internal points for crossover | p;, = 90%
Frequency of mutation Pm = 20%

Probability of choosing internal points for mutation

pip = NIL (uniform selec-
tion over all points)

The qualitative variables.

Parameter

Value

Initial population
Selection method for reproduction

Selection method for crossover
Selection method for mutation

Type of fitness used for selection

last population of (2+2+1)
“nth”, n = 1 for first indi-
vidual, n = 2 for second
“nth”, n = 1 for first indi-
vidual, n = 2 for second
“nth”, n = 1 for first half,
n = 2 for second half
Adjusted fitness

Fitness function parameters.

Parameter Value
Name Best-so-far
Out-of-time score 49

The results

Experiment Fitness value

70.01
95.72

(242 + 1) with Wally-min
(24 2+ 1) continued with best-so-far

The results were very bad. The individuals had got worse.

32

7 Conclusion

7.1 Approach

In my research I have tried to find the best parameters for arriving fast at a good evaluation
function for an alpha-beta algorithm applied to go. As you can see by studying the results
I have done this by first optimizing the fitness function and then trying to find the best
value for the other parameters.

Halfway through optimizing the population parameters I found that some things went
wrong with the fitness function I was using. The individuals seemed to get stuck at tie
games — the fitness got better until a tie was reached, then it froze. This was because I
counted a game that ran out of time as a tie.

I also found that a good fitness didn’t imply a good result against Wally all the time;
usually it meant that in about ten games of a hundred an S-expression with a good fitness
got a good result, the other times the result was a maximum loss.

After tuning the fitness function by setting the out-of-time score to 49 and having the
individuals play five games in stead of just one, I continued optimizing the population
parameters.

Finally T filled up some gaps and retried the best-so-far fitness function.

7.2 The results

The following table contains the average of the results of 100 games against Wally for
best individual of each experiment, averaged over five runs and the standard deviation of
those five runs. The first number in a cell is the average fitness, the second is the standard
deviation. The results here are all of fitness values returned by the Wally method. A value
greater than 49 corresponds with a loss; a value below 49 is a win.

If a cell contains an X it means that T haven’t done that experiment because I thought
it wouldn’t give a good result. For instance, I have only done two experiments with fitness
function best-so-far because it was clear to me this function would always be worse than
the Wally method. For a table of section references to the results see appendix C.

“Goodness” of the best individuals.

2 pops 1 pop only mut | 1 cross + 1 mut
Best-so-far 98.00, 0.00 X X X
Tournament 97.52, 0.97 X X X
Wally, oot 0 93.94, 5.65 | 86.82, 4.19 | 85.20, 6.78 X
Wally, oot 49 X X X 87.75, 6.92
Wallymin, worst X X X X
Wallymin, worst + avg | 64.16, 8.61 | 70.92, 10.77 | 74.20, 9.47 61.46, 5.77

33

“Goodness” of the best individuals.

(1+1) (1+45) (1+10) (1+15)
Best-so-far X X X X
Tournament X X X X
Wally, oot 0 87.30, 6.64 X X X
Wally, oot 49 84.06, 7.60 X X X
Wallymin, worst 73.37, 16.35 X X X
Wallymin, worst + avg | 70.86, 13.47 | 84.55, 3.89 | 72.96, 12.58 | 86.13, 4.17
“Goodness” of the best individuals.

(2+2) (2+ 10) (2 + 20) (2 4 30)
Wallymin, worst + avg | 79.93, 7.74 | 75.51, 7.37 | 80.68, 10.50 | 80.48, 8.36
“Goodness” of the best individuals.

(24+2+1) | 2+8+4+2) | (24+18+2) | (2+28+2)

Wallymin, worst + avg | 70.01, 12.10 | 76.92, 14.58 | 74.73, 14.53 | 82.29, 12.25

“Goodness” of the best individuals.
(24 2+ 1) continued
95.72, 2.14

Best-so-far

As you can see there are no wins. But these values are all averages. I had one run,
with the parameters of section 6.5.1, (1 + 10), in which the best individual won all its
games by one point (a fitness value of 48).

7.3 About the results

The best results were with one crossover and one mutation (that is a population of size
2!) using Wally-min (section 6.4.4) and the initial two subpopulations (of size 50 each)
with Wally-min (section 6.4.1). The parameters of these two experiments have nothing
to do with each-other so it is hard to say why these two gave the best results.

Two experiments that worked well too were (1 + 1) and (2 + 2 + 1) of sections 6.5.1
and 6.5.3. (2 4 2 + 1) was the better of these two. In fact in three of the four cases
(2 + Ao + u2) worked better than the corresponding (1 + Ay).

It was hard to compare the individual results of (1 + A\;) and (2 + Ay + 2) with those
of the corresponding (2 + A}), but on the whole (2 + A}) did worse.

All this seems to imply that crossover is important. T will try to give an explanation
for these results.

I think (14 A) isn’t that good because it touches only a small part of the search space
(see figure 2a). After each generation a few possible solutions (S-expressions) of the search
space, near the parent, are examined; the best of these solutions is taken as the parent
for the next generation.

(24)) should have worked better because more ground is covered. In stead of walking
along one path, you are searching near two paths. However, it is likely that one parent
will produce two children that are better than the children of the other parent, and then
you are just searching along one path again, albeit on two sides of it. (See figure 2b;
the oval indicates the point where you jump from two paths to one.) This is probably

34

why (2 + A) did worse; almost the same space was covered, but with the use of more
individuals.

The way (2 4+ A + k) should work, is that you are not just searching along two paths,
but also in-between. There is still a big chance that one parent will produce the two best
individuals of a generation, which means that, in the next generation, your search is less
broad again. Figure 2c shows this. The oval shows the point where the search narrows.
The small circles mark the crossover-children. This does not explain why (2 + Ay + 2) did
better than (1 + \).

a b c

Figure 2: search paths

Actually the pictures in figure 2 are not entirely correct: a parent of one generation
can also be chosen as a parent for the next generation, which would make the chance that
the search path is narrowed too soon even higher.

What I think would do best is a (24 2 + 1) search in which each parent for crossover
must be chosen from the children of different parents, or from the crossover-child. I will
say more about this in section 8.

I think the reason the S-expression got worse when I used best-so-far on a pre-generated
population (section 6.6) is that they had been trained to beat Wally which always played
black, so they always played white, and with best-so-far the best individual had to take
Wally’s place as the “champion”, playing black. Because they hadn’t been trained for
playing black the champions weren’t good at it, so they were easily beaten by a weaker
S-expression.

7.4 Wally-min vs. Best-so-far

The fitness function that worked best was Wally-min. It was to be expected that a fitness
function that was similar to the function that expressed the “goodness” of the resulting
S-expressions would work better than a fitness function, like best-so-far, that had no
knowledge at all about the valuation criterium.

I think, however, that best-so-far or a similar fitness function produces go-functions
that play better against many opponents than the individuals trained with Wally-like
fitness functions.

Using Wally to find opponents that can beat Wally works, but if you do this the
opponents get over-trained; they can only beat Wally and not other opponents of the
same strength.

35

I have found that using Wally as an opponent works remarkably well for finding faults
in Wally itself. An example of this is the tied games I got when using an out-of-time
score of 0, as I mentioned in section 6.2.3. I imagine that if you use another hand-made
go-program as a fitness function you could use genetic programming to find faults in that
program.

7.5 About the evaluation function itself

The speed of the evaluation function was a bit disappointing to me. Of course I knew it
would be slow, but not a slow as it turned out to be. In combination with the alpha-beta
algorithm with a search depth of one ply it took the program almost a minute, on a board
of size 19 x 19, to make one move. For genetic programing this is just too slow.

As for the power of the function, the results show that it is possible to find a function
that plays go better than random; I even found one that was better than Wally or, at
least, it could beat Wally. This of course is not a big accomplishment but it does show
that the function can get better, maybe with a more sophisticated fitness function.

8 Future research

There are a few things I have come across that I thought deserve a look into, but which
didn’t fit in this project.

e While writing section 7 I realized that the population dynamics of (u + A) and
(u+ A+ k) T had been using might not have been that good. As I mentioned
there, those dynamics could make the search too narrow too soon. For example in
(2+ 2+ 1), where each generation the new parents are simply the two best of the
five individuals (two parents and three children), there is a big chance that those
two best individuals are (too) closely related.

Continuing the example of (2 + 2 4 1), I think it would be better to choose the
parents as follows: lets say parent a creates child a; and parent b creates child b;.
Using crossover parents a and b could create child ¢. Now the new parents o' and v/
should be chosen from the sets respectively {a, as,c} and {b, b, ¢}, making sure c is
not chosen twice. This example can easily be generalized to (1 + A + k).

I think it would be interesting to compare the performance of the method I have
described here and the normal (x4 A) or (u+ A + k).

e Something that bothered me was that I couldn’t really use the Alpha-Beta algo-
rithm. Because of the enormous number of board configurations that have to be
generated for each move I could only search to a depth of one ply. On a 7 x 7 board
the number of configurations that have to be searched increases by a factor of 72
with each ply.

To solve this problem you can design a search strategy better adapted to go. When
[am playing go and I want to figure out which move I should make, I don’t try
every possible move in my mind, only the ones I “feel” could be good moves for me
or for my opponent. It could be interesting to design a search strategy that does
something like this.

36

I had in mind a function like my filter function which takes the current board
configuration but which, in stead of giving a new board configuration, assigns a
value to each possible move. Then the best, say, ten of these or the ones with a
high enough value can be tried. You can use genetic programming to find such a
function.

One problem is that you need an evaluation function to use with the search strategy.
For this you could use one of my solutions, but I am not sure they would be good
enough.

e Because the S-expressions get over trained by using Wally as a trainer, it could be
better to use a number of different opponents in stead; even using Wally in different
ways — once as usual, once by giving Wally the go boards rotated by 90°, etc. —
would probably be better.

e My fitness functions, best-so-far and tournament evaluation, didn’t work, but it
would be worth a try using co-evolution as described by Rosin and Belew[1] be-
cause they used a scheme in which two strategies, one for black and one for white,
are co-evolved. Another advantage of this method is the way fitness is assigned:
the S-expressions get better fitnesses if they can beat many different opponents or
opponents that no-one else can beat.

A Go terminology

A.1 Liberties

The liberties of a string of stones are the unoccupied adjacent points of that string. In
figure 3 the points marked m are all the liberties of the black string. Point n is not a
liberty of the string.

n m‘m
m @@ m

e

Figure 3: liberties

A.2 Atari

A string of stones is said to be in atari when it has only one liberty left. Figure 4 shows
a group of black stones in atari.

A.3 Live groups

A group is alive when it has at least two free spaces that can never be filled by the
opponent. Figure 5 shows an example of a black group that is alive. Points a and b can
never be filled by white because a move at either point would be suicide unless the other
point is filled in first.

37

Figure 4: black stones in atari

Figure 5: a live group.

A.4 Ponnuki

The pattern of figure 6 of the four stones and the empty space at a is a ponnuki.

®
1o 01

®

Figure 6: a ponnuki.

A.5 Shicho

The shicho, or ladder, is a configuration in which a player can catch a group by a series
of ataris. Figure 7 shows an example of a shicho. Black can capture the two white stones
by atari-ing at the left of the two stones. If there is a white stone at or near a black can’t
capture the white stones that easily. A white stone at a would be called a ladder breaker
or a shicho-atari.

The shicho with its shicho-atari is one of the reasons why go is so much more complex
than games like chess.

A.6 Komi

The komi is the number of points given to the white player in advance to compensate for
black’s having the first move. This is usually 5.5 points. The half point is to prevent ties.

B SGF-files

SGF stands for Smart Game File Format. It is meant to be a standard file format to
exchange machine-readable games, problems, and opening libraries. A more complete

38

gﬁ

Figure 7: a shicho.

description is given by Martin Miiller[5]. I will give the syntax and semantics of the
subset of SGF that I have used.

I have used SGF in two ways. One to save the games played by the GP and the other
to read test configurations for the GP to play. I have used the SGF format because there
are many programs available that support it (for go at least), one of which is MGTI[6], so
I didn’t have to write an application to view the games.

Below is the syntax of the SGF files in BNF form. First I will give a brief summary

of the conventions I have used:
7...7 ¢ terminal symbols.

[...] : option; occurs at most once.
{...} : repetition; zero or more times.
| : exclusive or.

Bold-font characters should be read as terminals. The symbols letter, digit and char-

acter mean the obvious, except that “[” and “|” should be written as “\[” and “\]”
respectively and “\” as “\\”.
Collection = {GameTree}
GameTree = 7(” Sequence {GameTree} ”)”
Sequence = Node {Node}
Node =" {Property}
Property == AB {"["Move”]”} | AE {"[’"Move”]"} | AW {”["Move”|”}
| B 7”["Move”]” | BM ”["Triple”]” | C 7" Text”]”
| CR {"["Move”’]”} | GM ?["Number”]” | KM ”["Real”]”
| MA {” [” MOVe”]”} | PB b [7’ TeXt”]” | PW » [” TeXt”]”
| RG {” [” MOVe”]”} | TE b [7’ MOVe”]” | W b [7’ MOVe”]”
Move = letter letter
Number = [747 |77] digit {digit}
Real = Number [”.” {digit}]
Text, = {character}
Triple — b 177 | ’72”

Not all strings derivable from this grammar are valid SGF-files. For instance, a node
can not contain both a B attribute and an AB attribute, and each attribute can only
appear once per node, some even only once per game tree. Furthermore between properties
you can put as many white-characters as you like.

I will explain the semantics of the grammar with the help of an example:

(:PB[Wally] PW[individual 1] GM]1] SZ[19] KM]5.5]
;B[pd] ; W[dp] ; B[dd]
:W/[pp| Cla standard opening])

39

The PB and PW fields contain the names of the black player and the white player
respectively. The GM field represents the game type; 1 means go, 2 is othello, 3 is chess.
SZ is the size of the board. KM is the komi. All these fields should be in a game tree
only once.

The fields B and W contain the moves for black and white. The first letter is the
first coordinate of the board, the second is the second coordinate. Unlike on most (real,
wooden) go boards the letter j” is not left out and the second coordinate is not a number
but a letter. C contains the comments for the node.

The next example shows how good and bad moves can be marked in a game:

(;SZ[13] GM][1] ABJjd] AW|dd][jj]
;Bldj] TE[2]

CR[ek][gc]

MA [aa][ma][mg]

RG/ek][ma])

Attributes AB and AW tell you to add black and white stones respectively to the
board at the coordinates given in the lists, no matter whether there are already stones
there or not. An attribute AE would mean that the stones at the coordinates in the
following list should be removed from the board (if there are any).

An attribute TE in a node with a move means that this is a good move. If the value
of the attribute is 1, it is a fairly good move; if it is 2, it is an even better move. The
attribute BM means the opposite: 1 is a bad move, 2 is an even worse move.

The attributes CR, MA and RG are used here in a different manner than they were
intended in the original SGF-format. CR marks good moves for whose ever turn it is
in the node, so in the example it marks two good moves for black. M A marks the bad
moves. RG works like the 2 in TE and BM: if a move is marked both CR and RG it is
very good and if it is marked both M A and RG it is very bad.

C Section references to the results
These tables contains the section numbers of the results from the table in section results.

“Goodness” of the best individuals.
2 pops | 1 pop | only mut | 1 cross + 1 mut

Best-so-far 6.1 X X X
Tournament 6.1 X X X
Wally, oot 0 6.1 6.2.1 6.2.2 X
Wally, oot 49 X X X 6.2.4
Wallymin, worst X X X X
Wallymin, worst + avg | 6.4.1 | 6.4.2 6.4.3 6.4.4

40

“Goodness” of the best individuals.

(1+1) | (1+5)](1+10) | (1+15)
Best-so-far X X X X
Tournament X X X X
Wally, oot 0 6.2.3 X X X
Wally, oot 49 6.2.3 X X X
Wallymin, worst 6.3 X X X
Wallymin, worst + avg | 6.3, 6.5.1 | 6.5.1 6.5.1 6.5.1

“Goodness” of the best individuals.
(24+2) | (2+10) | (2+20) | (2+ 30)

Wallymin, worst + avg | 6.5.2 6.5.2 6.5.2 6.5.2

“Goodness” of the best individuals.
24+2+1) | (2+8+2) | (2+184+2) | (2+28+2)
Wallymin, worst + avg 6.5.3 6.5.3 6.5.3 6.5.3

“Goodness” of the best individuals.
(24 2+ 1) continued
Best-so-far 6.6

References

[1] Christopher D. Rosin and Richard K. Belew, Methods for Competitive Co-evolution:
Finding Opponents Worth Beating, in Proceedings of the Sixth International
Conference on Genetic Algorithms. L.J. Eshelman (ed.), pp. 373-380, 1995

[2] Koen van der Hauw, Ewvaluating and Improving Steady State Evolutionary Al-
gorithms on Constraint Satisfaction Problems, Master Thesis, IR-96-21, July
1996.

[3] John Koza, Genetic Programming: On the Programming of Computers by Means
of Natural Selection, The MIT Press, 1992.

[4] Martin Miiller, Computer Go Test Collection,
http://nobi.ethz.ch /martin/special.html

[5] Martin Miiller, Smart Game File Format,
http://nobi.ethz.ch/martin/sgfspec.html

[6] My Go Teacher,ftp://ftp.pasteur.fr/pub/Go/mgt/*

[7] Bill Newman (newman@tcgould.tn.cornell.edu), wally.c,
ftp://ftp.pasteur.fr/pub/Go/comp/wally.sh.Z

[8] Hans-Paul Schwefel, Evolution and Optimum Seeking, John Wiley & Sons,inc.,
1995

[9] Doug Zongker (zongker@isl.cps.msu.edu), lil-gp 1.0,
http://isl.cps.msu.edu/GA /software/lil-gp/

41

