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1 IntroductionThe purpose of this project has been to see if there is a future in looking for an evaluationfunction for an Alpha-Beta algorithm for the game go using genetic programming.The reason I wanted to look at go is because the current go playing programs aren'treally very good as compared to current chess playing programs for instance and alsobecause I like the game.I have been primarily looking at the 7�7 variant of go so as to be able to compare myresults with other e�orts in this direction, especially those of C.D. Rosin and R.K. Belewwhose studies on co-evolution in genetic algorithms[1] included the game go. Anotherreason I used such a small board is because it makes the runs of the genetic programfaster.The largest part of this research has been to �nd the optimal parameters for �ndingan evaluation function of the type I called �lters (see section refeval).2 Go and genetic programmingThere are at least two ways to use genetic programming (GP) in go or in any other two-player game. If you have an evaluation function you can use a GP to �nd the best searchstrategy. Or if you have a search strategy you can use a GP to �nd an evaluation function.I chose the latter, mainly because I don't have an evaluation function for go. Thereare however many search strategies and getting one to test the evaluation functions onisn't so hard.On the other hand, because there are so many moves to choose from in go (361 on a19� 19 board at the start of the game), most \simple" search strategies aren't that good.They are just too slow. So looking for a new search strategy would be a good idea forlater research.3 Description of the go board evaluation functionI will describe the type of function (S-expression) I will be looking at: it has as anargument a board con�guration (i.e. a board with some black and white stones on it);the return value will be the evaluation of the board con�guration. The higher the returnvalue, the better it is for black.The way this return value is calculated is by creating, from the given board, a newboard which will represent, in a way, the expected con�guration after the game has ended| that is the con�guration in which the program expects the game to end given thepresent con�guration. Thus by counting the territories on this board we will know thereturn value: \return value" = \black territory" - \white territory"Finally I will explain how the new board con�guration is calculated: I have a function,f which will be the major component of the evaluation function; it has 25 arguments, orrather one 5� 5 matrix. This is explained below. The return value of the function is the4



value 1 of one point on the board. The new board is calculated from the old-one withthe function trans which uses the function f to �nd the new value for each coordinateon the board. For each point (x; y) on the original board b I calculate f(g) where g is a5 � 5 matrix containing the values of 25 points in a square around (x; y) on b. On thenew board, b0, I set point (x; y) to f(g). In more mathematical terms:I make use of the following types and functions:� V is a set of values. This is the set f< EMPTY >;< EDGE >;< BLACKl >;<WHITEl >g. Here l is the number of liberties of a stone; if that number exceeds 15then l = 15.� LB, UB 2 N, LB < UB. LB and UB are a lower bound and an upper bound forthe coordinates of a go board.� C = [LB, UB]2. C is the set of coordinates on a go board.� board = V C . This is the type for a board con�guration.� trans : board! board. The function trans converts a board con�guration to a newboard con�guration.� g : board� C ! V 5 � V 5. This function is only used to provide the next function,f , with the right data.� f : V 5�V 5 ! V . This function is used for each point on the board to give it a newvalue.The functions are de�ned like this:trans(b) = b0; so that8(x; y) 2 C : (b0(x; y) = f(g(b; (x; y))))andg(b; (x; y)) = 0BBBBB@ b(x� 2; y � 2) b(x� 1; y � 2) b(x; y � 2) b(x+ 1; y � 2) b(x+ 2; y � 2)b(x� 2; y � 1) b(x� 1; y � 1) b(x; y � 1) b(x+ 1; y � 1) b(x+ 2; y � 1)b(x� 2; y) b(x� 1; y) b(x; y) b(x+ 1; y) b(x+ 2; y)b(x� 2; y + 1) b(x� 1; y + 1) b(x; y + 1) b(x+ 1; y + 1) b(x+ 2; y + 1)b(x� 2; y + 2) b(x� 1; y + 2) b(x; y + 2) b(x+ 1; y + 2) b(x+ 2; y + 2)
1CCCCCAWe get the �nal board bfinal like this: bfinal = transn(b). This bfinal is used to evaluatethe board con�guration b. Together with an alpha-beta algorithm the function bfinal canbe viewed as a go program. Here n is a constant. This constant can either be set by handor be determined by the GP. bfinal is the evaluation function but, e�ectively, the functionf is the S-expression I will be optimizing.I got the idea for the function f from the bitmap-editor Paint Shop Pro 2 in whichyou can create one bitmap from another by applying a so-called �lter. Such �lters can beused for things like blur-e�ects or highlighting the edges of a drawing. I think this type1This is not just one of the values black stone, white stone, empty, it can also be edge, meaning theedge of the board, and the liberties of a stone are also encoded (to a maximum of 15 liberties).2Paint Shop Pro version SHAREWARE 3:12 � 32 is copyrighted c1990-1995 to JASC, Inc. .5



of function might do well as an evaluation function because what you are doing when youare playing go is looking at the board and estimating the number of points you are likelyto get by, in your mind, �nishing the teritories. This is what this type of function does.The only problem is that most of these functions �nish the territory incorrectly.To �nd out to whom a certain coordinate belongs you need to look at the entire board.An example of why this is necessary is the shicho or ladder (see Appendix A). That iswhy I wanted the board to be �ltered more than once; in other words, this is the reasonfor n in bfinal.4 Fitness4.1 Criteria for �tnessThere are a couple of ways of looking at the �tness of a go program.You could say a program is good if it makes \good shape" | that is, if it makesshapes that are considered e�cient or strong. This is the way a go player might look ata program.The de�nition of shape is a bit vague. It is a combination of stones that can occur atdi�erent places on a board.You could also say that a program is good if it can beat a certain predeterminedopponent; or, to extend this idea, if it �nishes a game against that opponent with acertain minimum score. (The program loses with at most, say, twenty points or wins withat least �ve points.)The ideal �tness would be a combination of both \good shape" and winning. In anycase, \good shape" on its own is probably not enough for a good program. Winning wouldbe a good criterium, but it is not that obvious that perfect play implies good shape. It isprobable though.4.2 Fitness and training the GPFitness is not only used to determine if the S-expression that rolls out of the GP is anygood, but also to steer the GP in the direction of the optimal S-expression { to train theGP, so to say. In fact this is the main purpose of the �tness. In any case, the same waysof looking at �tness apply.In the GP I have tried a number of ways of assigning �tness.4.2.1 The tournament methodThe �rst and easiest way of assigning �tness I tried, worked like this: In each generationthe pool of S-expressions played a simple tournament. In the �rst round individual 1played individual 2, 3 played 4, 5 played 6, and so on. In the second round the winner ofthe �rst game played the winner of the second game and so on. The losers were out ofthe tournament. I repeated this until I had only one individual left.Each time an S-expression won a game it got a point. This way the one with the mostpoints was the one who had won all its games and was most probably the best individual.The number of points an S-expression got I used as a measure for its �tness.6



This method isn't very fair, because S-expressions losing in the �rst round might havewon against other S-expressions, but they don't get a chance to prove themselves. Iused this method anyway because it is fast. It takes about as many games as there areindividuals in the pool.4.2.2 The Wally methodAnother training method I used was letting each individual in the pool play the programWally[7]. The score against Wally was used as the �tness.The advantage of this method is that, in the beginning, the pressure from the �tnessis strong. For an individual to get a �tness value of more than the the minimum it wouldhave to be able to make a living group at the very least.The disadvantage is that the S-expressions can really only become as strong as Wally.After that there is no more pressure from the �tness. This was not the case with tourna-ment evaluation.It's like riding a bike in the �rst gear: you can gain speed relatively fast but after awhile the pedals rotate too fast to speedup any more.Another disadvantage is that the only information about go-strategies the S-expressionsget is the information Wally gives them; another program, which might be just as weak,but which plays by a di�erent strategy, might beat an S-expression that normally beatsWally.4.2.3 The best-so-far methodThis method combines the ideas of tournament evaluation and the Wally method. Theindividuals have a so called champion to beat but when he is beaten another, better-one,takes his place.The way it works is, all S-expressions play the champion { the best individual so far{ and their score constitutes their �tness. If there is a better individual, it will have abetter �tness so it will be the champion for the next generation. This way the �tnesspressure won't drop until a good S-expression has been found. This method doesn't havethe advantage of having a strong champion to begin with though, so it might take a longtime before a good S-expression is found.4.2.4 Another Wally method { Wally-minThrough the course of the experiments I thought of another way to assign �tness to theS-expressions. It is an extension of the Wally method. In stead of playing just one game Ilet the individual play Wally a �xed number of times. The worst score for the individualis taken as the �tness.This way the �tness is more reliable: in a big population there is always a chance thatWally \screws up" a game and when that occurs the individual that happens to be theopponent at that time gets an undeserved high �tness. By playing more games the chanceof a wrong �tness is lower.On the down side is the fact that it takes longer to evaluate the S-expressions.Actually, this didn't work very well so, instead of just the worst score, I took a weightedsum of the worst score, the average score and the (squared) standard deviation of the7



scores: �tness = w1 � worst score+ w2 � average score+ w3 � standard deviation4.2.5 The Test-set methodThis method I never used. Somewhere on WWW I found a collection of test-sets [4].These were SGF-�les 3 with special notations for good and bad moves.I wanted to used these �les for calculating the �tness by having each S-expression startwith the con�gurations described in these �les; then the S-expression would make a moveand according to if the move was marked good or bad it would get points or lose them.This would have been a \good shape" kind of �tness, the emphasis being on the moves,not on winning.I expected this way of assigning �tness to be faster than playing entire games becausethe S-expressions would only have to make a few moves for each �tness evaluation. Un-fortunately all test �les were on 19� 19 boards and the functions turned out to be muchtoo slow on a board of this size. So, in the end, I didn't even try this method.5 The Genetic ProgramThe GP consists of a function set, a selection and reproduction part (the kernel) and anevaluation part (the �tness function). I used lil-gp[9] for the kernel and my own �tnessfunction made partly from wally.c[7].5.1 The function setThe function set that I used to construct the S-expressions is:f if black ponnuki,f if white ponnuki,f if eq,f if weaker,f near edge,f is type,f add,f sub,f invert,I will explain each function.f if black ponnukiThis function has two arguments. If the 5 � 5 matrix has a black ponnuki at thecenter, the �rst argument is returned, otherwise the return value is the secondargument.The following diagram shows what a (black) ponnuki looks like. It consists of thefour black stones and the point at a should be empty. All other points can containany value.3See Appendix B. 8
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�������Black Ponnuki.In the function, the black stones can also be an edge for it to recognize the shapeas a ponnuki. So the following diagram is also a ponnuki.a���������A ponnuki at the edge, in the corner.f if white ponnukiThis function is the same as f if black ponnuki except, it looks for a white ponnuki.f if eqThis function takes four arguments. It compares the �rst two and if they are thesame the third argument is returned, otherwise the fourth is returned.f if weakerThis function takes four arguments. If the number of liberties of the �rst argumentis less than the number of liberties of the second, the return value is the thirdargument, otherwise it is the fourth.f near edgeThis function again takes two arguments; the �rst as a return value for if one of thepoints of the 5� 5 matrix contains the value edge, the second for if none do.f is typeThis function is like a switch-statement in C or a CASE-statement in Pascal: itlooks at the �rst argument; if it is edge, the second argument is returned, if it isempty, the third, if it is a black stone, the fourth and �nally, if it is a white stonethe return value is the �fth argument.f addThis function adds up its two arguments. If the sum exceeds the maximum numberof liberties or if one of the arguments is edge, the sum is edge.f subThis function subtracts its �rst argument from its second. If the maximum numberof liberties is exceeded or if one of the arguments is edge, the return value is edge.f invertThis function \inverts" its one argument: a black stone becomes a white stone anda white stone becomes a black stone, both with the same number of liberties. Allother values stay the same. 9



5.2 The terminal setOf course with a function set you need a terminal set too. The terminal set is rathershort:f erc gen,f erc genThis is the terminal symbol for the function set. The function generates two typesof constants: values and stones.Values can be a black stone with l liberties, <BLACK(l)>, a white stone with lliberties, <WHITE(l)>, an empty space, <EMPTY> or the edge of the board,<EDGE>. Stones are pointers to values in the 5� 5 matrix, stone[x][y].5.3 The �tness functionsAs described in section 4.2 I have used two fundamentally di�erent ways of assigning�tness. One produces absolute �tness values whereas the other only yields relative �tnessvalues. I will give a short description of each.5.3.1 An absolute �tness functionThe �tness functions that produce absolute �tness values are the Wally method of sec-tion 4.2.2 and the Wally-min method of section 4.2.4. On whichever S-expression you usethem, they always assign the same �tness to the same S-expression (on average, becauseWally is not deterministic).With the Wally method the �tness was calculated like this:�tness = result(game)withresult(game) = 8><>: out-of-time score; if the game wasnot ended in time.board-size2 +Wally's score� S-expression's score; otherwiseThe �tness of Wally-min was calculated as follows:�tness = w1 �max(r1; : : : ; rn)+ w2 � �+ w3 � �2with n the numer of games played.ri = result(gamei); 8i 2 f1; : : : ; ng (This is the same result() as above)� = Pni=1 rin�2 = Pni=1(��ri)2n 10



5.3.2 A relative �tness functionFor a relative �tness function I used the methods described in section 4.2.1 and 4.2.3.These functions do not produce values that make the S-expressions comparable withthe rest of the world, as the Wally method does, but they do have the property thatthe �tness pressure doesn't drop before one of the best S-expressions is found. Theywill keep on assigning better �tness values as long as the S-expressions get better, evenafter the S-expressions win against Wally with a maximum score. The Wally methoddoesn't distinguish between two S-expressions beating Wally with the maximum score,nor, for that matter, between two S-expressions losing from Wally with the maximumscore against. (Maybe I should point out here that Wally is a computer go program andthe Wally method is a way of assigning �tness values to S-expressions by letting themplay Wally.)5.4 Explanation of the control parametersMost parameters are described thoroughly in Koza's book Genetic Programming[3] andare standard so I won't go into these here, however some less conventional parametersmay need some explaining.In the �rst runs I used two subpopulations in stead of just one big population and everyten generations I exchanged a certain number of individuals between the populations:every tenth generation the �ve worst individuals from population two were replaced bythe �ve best from population one and the �ve worst from population one with the �vebest from population two.I used one selection method provided by lil-gp[9] but not mentioned in [3] and anotherI made myself by changing that selection method of lil-gp:� method \best" which takes the best individual of that generation the �rst time oneis selected for reproduction or crossover or mutation; the second time it takes thesecond best, etc.� method \nth" which takes the n-th best individual of that generation every timean individual is selected for reproduction etc. . This selection method has oneparameter, namely the number for n.There are some application-speci�c parameters which don't have much to do withgenetic programming. They apply to the go-playing part of the GP.� The search depth; this is the number of plies the Alpha-Beta algorithm looks ahead.� The board size; this is usually one of the sizes 9, 13 and 19, but it can be anythingfrom 2 to 19. In this research I have used mainly size 7.� The maximum number of moves, in case two players don't know when to stop. Ifthis number is reached the game is ended and the out-of-time score is returned.� The number of sweeps; this is the number of times the function eval is repeated theway it is explained at the end of section 3.� The out-of-time score; this is the value that is taken as the score (for black) whenthe game isn't ended within the maximum number of moves.11



5.5 Unchanging parametersThe following tables list the parameters I never changed. There are some other parame-ters that never changed but I found it better to leave them in the separate tables of eachexperiment.Parameters that stayed the same for all (sub)populations.Parameter ValueGenerative method for initial random population ramped half-and-halfMaximum size for S-expressions created during therun Dc = 256 nodesMaximum tree depth for initial random S-expressions Di = 4Probability of permutation pp = 0%Frequency of editing fed = 0Probability of encapsulation pen = 0%Condition for decimation NILApplication speci�c parameters.Parameter ValueSearch depth 1plyBoard size 7Maximum number of moves per game 147plyNumber of sweeps 2
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6 The experimentsI have run the GP with all ways of assigning �tness described in section 5.3. I ran eachexperiment �ve times with the same parameters but with di�erent random-seeds. (Iwould have liked to do more runs for each experiment, but time didn't allow that). AfterI found which �tness function worked best I ran some more experiments and varied theparameters to �nd optimal values.6.1 Finding the best �tness functionThe �rst runs I used to �nd the �tness function that worked best. I took a set of arbitrarycontrol parameters and varied the �tness function for each experiment.Fitness functions.Run Fitness function and parametersBSF best-so-far methodOut-of-time score 0TRN tournament methodOut-of-time score 0WAL Wally methodOut-of-time score 0The major numerical parameters.Parameter ValueNumber of subpopulations S = 2Population size for each subpopulation i (i 2 f1; 2g) Mi = 50Maximum number of generations to be run G = 100The minor numerical parameters for subpopulation 1.Parameter ValueProbability of crossover pc = 80%Probability of reproduction pr = 5%Probability of choosing internal points for crossover pip = 90%Probability of mutation pm = 15%Probability of choosing internal points for mutation pip = 50%The minor numerical parameters for subpopulation 2.Parameter ValueProbability of crossover pc = 0%Probability of reproduction pr = 5%Probability of mutation pm = 95%Probability of choosing internal points for mutation pip = 20%
13



The qualitative variables for subpopulation 1.Parameter ValueSelection method for reproduction \best"Selection method for crossover �tness pro-portionate (roulette wheelselection)Selection method for mutation �tness pro-portionate (roulette wheelselection)Type of �tness used for selection Adjusted �tnessThe qualitative variables for subpopulation 2.Parameter ValueSelection method for reproduction \best"Selection method for mutation �tness pro-portionate (roulette wheelselection)The results.Fitness function Average �tnessBest-so-far 98.00Tournament 97.52Wally 93.94The best �tness function turned out to be the Wally method. To my disappointmentthe other two didn't do at all well. They didn't even get o� the mark (except for one runwith the tournament method but that was probably just a uke).
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6.2 The Wally methodGoing on with just the Wally method I tried some di�erent population dynamics. Thetwo subpopulations was just a wild try. I went on with the more usual one population.Later (see section 6.4.1) the two subpopulations turned out to be not so bad.6.2.1 Crossover and mutation, �fty-�ftyBecause in the previous experiments I noticed that the populations got very uniform soon,I tried my next experiment with a higher chance for mutation. I also changed the selectionmethods for crossover and mutation from roulette wheel to tournament selection becauseI was told this was better.The major numerical parameters.Parameter ValuePopulation size M = 100Maximum number of generations to be run G = 100The minor numerical parameters.Parameter ValueProbability of reproduction pr = 4%Probability of crossover pc = 48%Probability of choosing internal points for crossover pip = 90%Probability of mutation pm = 48%Probability of choosing internal points for mutation pip = NIL (uniform selec-tion over all points)The qualitative variables.Parameter ValueSelection method for reproduction \best"Selection method for crossover tournament, size 2Selection method for mutation tournament, size 2Type of �tness used for selection Adjusted �tnessFitness function parameters.Parameter ValueName Wally methodOut-of-time score 0The resultsExperiment Fitness value2 pops 93.941 pop 86.82The results were on average about seven points of territory better than the experimentwith two subpopulations using the Wally method, so that was a big improvement.15



6.2.2 Mutation onlyTaking things one step further I tried an experiment with mutation as the only operator.No more crossover and also no more reproduction, so this experiment, unlike all the pre-vious experiments, was non-elitist.The major numerical parameters.Parameter ValuePopulation size M = 100Maximum number of generations to be run G = 100The minor numerical parameters.Parameter ValueProbability of reproduction pr = 0%Probability of crossover pc = 0%Probability of mutation pm = 100%Probability of choosing internal points for mutation pip = NIL (uniform selec-tion over all points)The qualitative variables.Parameter ValueSelection method for mutation tournament, size 2Type of �tness used for selection Adjusted �tnessFitness function parameters.Parameter ValueName Wally methodOut-of-time score 0The resultsExperiment Fitness valueCrossover + mutation 86.82Only mutation 85.20This experiment did one or two points better than the previous-one. Not such a bigimprovement.
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6.2.3 (1 + 1)Hearing J.vd Hauw's good results with (1 + 1)[2] I decided to try that on go.(1 + 1) is the method used in Evolutionary Strategies4 in which you have one parentfrom which you create one child with mutation. You then take the best of those two asthe parent for the new generation.A generalization of this method is (� + �) in which you have � parents and create �children and select the best � individuals from the parents and the children for the newgeneration.Because lilgp v1.0 had no option for (1+1) I simulated it by taking a population of size2 and each generation created one individual by reproduction (the parent) and another-one by mutation (the child). I used selection method \best" for the parent and roulettewheel selection for the child. This way most of the time the parent would be selectedfor mutation (as should be in (1+1)) | I hadn't thought of the selection method \nth" yet.The major numerical parameters.Parameter ValuePopulation size M = 2Maximum number of generations to be run G = 10000Fitness function parameters.Parameter ValueName Wally methodOut-of-time score 0 later 49The minor numerical parameters.Parameter ValueFrequency of reproduction pr = 50%Frequency of mutation pm = 50%Probability of choosing internal points for mutation pip = NIL (uniform selec-tion over all points)The qualitative variables.Parameter ValueSelection method for reproduction \best"Selection method for mutation �tness pro-portionate (roulette wheelselection)Type of �tness used for selection Adjusted �tnessThe resultsExperiment Fitness valueMutation only 85.20(1 + 1) with out-of-time score 0 87.30(1 + 1) with out-of-time score 49 84.064For more information on Evolutionary Strategies see [8].17



Looking at some of the games in this experiment I noticed that those that ended ina tie were somewhat strange: the individual had found a aw in Wally so that the samesequence was repeated in�nitely. Tough this is an interesting result it is not what I waslooking for so I ran a similar run with the out-of-time score set to 49 which meant thatsuch a \tie" would now count as a (maximum) loss for the S-expression. Actually sucha situation means that the game isn't over | and never will be over | so you can't saywho has played best (both players have played lousy), but I didn't want it to be countedas a good result, and a tie didn't work, so I just set it to maximum loss.Because the results of (1 + 1) with out-of-time score 49 were better than those witha population of 100 and because in those runs I hadn't seen any out-of-time games, Iconcluded, wrongly perhaps, that (1 + 1) was the best option so far and I went on withthat.
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6.2.4 One crossover + one mutationI also tried a variation on (1 + 1); I took a population of size 2 and created the newgenerations by taking the two individuals and creating one child by crossover and takingone individual by roulette wheel selection and creating a child by mutation.The major numerical parameters.Parameter ValuePopulation size M = 2Maximum number of generations to be run G = 10000The minor numerical parameters.Parameter ValueFrequency of crossover pc = 50%Probability of choosing internal points for crossover pip = 90%Frequency of mutation pm = 50%Probability of choosing internal points for mutation pip = NIL (uniform selec-tion over all points)The qualitative variables.Parameter ValueSelection method for crossover \best"Selection method for mutation �tness pro-portionate (roulette wheelselection)Type of �tness used for selection Adjusted �tnessFitness function parameters.Parameter ValueName Wally methodOut-of-time score 49The resultsExperiment Fitness value(1 + 1) with out-of-time score 49 84.061 cross + 1 mut 87.75This didn't work very well, probably because there was no elitism. To give you anidea of how it worked, �gure 1 shows the best �tness value of each generation. This�gure shows the average �tness of �ve runs (the lower the value the better the �tness).In the individual runs the �tness went a bit lower, but it is clear that there is no gradualimprovement of the �tness.
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fitnessFigure 1: �tnesses of the best individuals of \one crossover + one mutation"6.3 Another improvement on the �tness function: Wally-minWhen I looked at each run to see how many games the best individual of each run wouldwin the results weren't that good. Of a hundred games the individuals would usually winfour or �ve by a relatively large di�erence, but the rest of the games they didn't even geta point. I used Wally-min on the next runs to get more consistent individuals. The otherparameters were those of (1 + 1) of section 6.2.3.First I used only the worst score of �ve games as the �tness. To get the �tness up abit faster I tried 98 times the worst score plus once the average score. I used 98 times theworst score because the average could take a value between 0 and 98. This way I couldextract the average and the worst score from the �tness value.Fitness function parameters.Parameter ValueName Wally-min methodOut-of-time score 49Number of games for one �tness evaluation 5Weight for minimum score 1, later 98Weight for average score 0, later 1Weight for �2 of scores 0
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The major numerical parameters.Parameter ValuePopulation size M = 2Maximum number of generations to be run G = 10000The minor numerical parameters.Parameter ValueFrequency of reproduction pr = 50%Frequency of mutation pm = 50%Probability of choosing internal points for mutation pip = NIL (uniform selec-tion over all points)The qualitative variables.Parameter ValueSelection method for reproduction \best"Selection method for mutation �tness pro-portionate (roulette wheelselection)Type of �tness used for selection Adjusted �tnessThe resultsExperiment Fitness value(1 + 1) with Wally method 84.06(1 + 1) with Wally-min using worst score 73.37(1 + 1) with Wally-min using worst + avg 70.86Wally-min worked well, but the �rst increase in �tness using only the worst scorewasn't until the 4000th generation. Using a combination of worst score and average scoreworked better.
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6.4 The Wally-min methodI ran the experiments done with the Wally method again but now with Wally-min. So,all the experiments in this section 6.4 have the following �tness function parameters.Fitness function parameters.Parameter ValueName Wally-min methodOut-of-time score 49Number of games for one �tness evaluation 5Weight for minimum score 98Weight for average score 1Weight for �2 of scores 0The following experiments will all be compared with their Wally method counterparts.All of them are compared with the Wally method with out-of-time score 0, except "onecrossover + one mutation" (section 6.4.4); this-one is compared with the Wally methodwith out-of-time score 49, because I didn't do the experiment with out-of-time score 0.6.4.1 Two subpopulationsThe major numerical parameters.Parameter ValueNumber of subpopulations S = 2Population size for each subpopulation i (i 2 f1; 2g) Mi = 50Maximum number of generations to be run G = 100The minor numerical parameters for subpopulation 1.Parameter ValueProbability of crossover pc = 80%Probability of reproduction pr = 5%Probability of choosing internal points for crossover pip = 90%Probability of mutation pm = 15%Probability of choosing internal points for mutation pip = 50%The minor numerical parameters for subpopulation 2.Parameter ValueProbability of crossover pc = 0%Probability of reproduction pr = 5%Probability of mutation pm = 95%Probability of choosing internal points for mutation pip = 20%
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The qualitative variables for subpopulation 1.Parameter ValueSelection method for reproduction \best"Selection method for crossover �tness pro-portionate (roulette wheelselection)Selection method for mutation �tness pro-portionate (roulette wheelselection)Type of �tness used for selection Adjusted �tnessThe qualitative variables for subpopulation 2.Parameter ValueSelection method for reproduction \best"Selection method for mutation �tness pro-portionate (roulette wheelselection)The resultsExperiment Fitness value2 pops with Wally 93.942 pops with Wally-min 64.16I was surprised by the results of this experiment. They were not at all what I hadexpected. The results were about 6 points better than the best of the other runs I haddone so far.
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6.4.2 Crossover and mutation, �fty-�ftyThe major numerical parametersParameter ValuePopulation size M = 100Maximum number of generations to be run G = 100The minor numerical parameters.Parameter ValueProbability of reproduction pr = 4%Probability of crossover pc = 48%Probability of choosing internal points for crossover pip = 90%Probability of mutation pm = 48%Probability of choosing internal points for mutation pip = NIL (uniform selec-tion over all points)The qualitative variables.Parameter ValueSelection method for reproduction \best"Selection method for crossover tournament, size 2Selection method for mutation tournament, size 2Type of �tness used for selection Adjusted �tnessThe resultsExperiment Fitness valuecrossover and mutation 50-50 with Wally 86.82crossover and mutation 50-50 with Wally-min 70.92This experiment produced about the same results as (1 + 1), just as it did with theWally method as a �tness function. For reference:Results of (1 + 1)Experiment Fitness value(1 + 1) with Wally 87.30(1 + 1) with Wally-min 70.86
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6.4.3 Mutation onlyThe major numerical parameters.Parameter ValuePopulation size M = 100Maximum number of generations to be run G = 100The minor numerical parameters.Parameter ValueProbability of reproduction pr = 0%Probability of crossover pc = 0%Probability of mutation pm = 100%Probability of choosing internal points for mutation pip = NIL (uniform selec-tion over all points)The qualitative variables.Parameter ValueSelection method for mutation tournament, size 2Type of �tness used for selection Adjusted �tnessThe resultsExperiment Fitness valueMutation only with Wally 85.20Mutation only with Wally-min 74.20The results were better than with the Wally method as a �tness function, but therewasn't as much an improvement as there was with the previous experiments.
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6.4.4 One crossover + one mutationThe major numerical parameters.Parameter ValuePopulation size M = 2Maximum number of generations to be run G = 10000The minor numerical parameters.Parameter ValueFrequency of crossover pc = 50%Probability of choosing internal points for crossover pip = 90%Frequency of mutation pm = 50%Probability of choosing internal points for mutation pip = NIL (uniform selec-tion over all points)The qualitative variables.Parameter ValueSelection method for crossover \best"Selection method for mutation �tness pro-portionate (roulette wheelselection)Type of �tness used for selection Adjusted �tnessThe resultsExperiment Fitness value1 crossover + 1 mutation with Wally 87.751 crossover + 1 mutation with Wally-min 61.46Just as in section 6.4.1 the improvement here was great and unexpected.
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6.5 (�+ �)From this point on I have been mainly occupied with optimizing the parameters for thegeneralization of (1 + 1), namely (� + �). Because of the time each run takes I haven'tgot very far with this.6.5.1 (1 + �)The next experiments are all (1 + �) with the same parameters as the last (1 + 1), thatis, with 98 times the worst score plus the average score. For completeness I have alsoincluded (1 + 1).The purpose of these experiments was to �nd the optimal value of � for � = 1.The varying parameters. (1 + 1) (1 + 5) (1 + 10) (1 + 15)Population size M = 2 M = 6 M = 11 M = 16Maximum nr. of generations G = 10000 G = 2000 G = 1000 G = 667Frequency of reproduction pr = 50% pr = 17% pr = 9% pr = 6%Frequency of mutation pm = 50% pm = 83% pm = 91% pm = 94%The minor numerical parameters.Parameter ValueProbability of choosing internal points for mutation pip = NIL (uniform selec-tion over all points)The qualitative variables.Parameter ValueSelection method for reproduction \nth", n = 1Selection method for mutation \nth", n = 1Type of �tness used for selection Adjusted �tnessFitness function parameters.Parameter ValueName Wally-min methodOut-of-time score 49Number of games for one �tness evaluation 5Weight for minimum score 98Weight for average score 1Weight for �2 of scores 0The resultsExperiment Fitness value(1 + 1) 70.86(1 + 5) 84.55(1 + 10) 72.96(1 + 15) 86.13 27



Of the values for � that I have tried, � = 1 got the best results. And � = 10 didalmost as good. However � = 5 and � = 15 got worse results by an average of about 10points. That is, on average they got about 10 points less in a game against Wally than(1 + 1) and (1 + 10). This leads me to conclude that I haven't done enough tests yet totell which value for � is best or even if there is a best value.
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6.5.2 (2 + �)I also tried four experiments with two parents in stead of one (� = 2). I wanted these runsto be comparable with the runs of (1 + �), and the best way to make them comparablewas, I thought, to take for each (1 + �) a population (2 + 2�).The purpose of these experiments was similar to those of (1 + �): to see which valueof � worked best for � = 2. The second goal was to see if � = 1 was better or � = 2.The varying parameters. (2 + 2) (2 + 10) (2 + 20) (2 + 30)Population size M = 4 M = 12 M = 22 M = 32Maximum nr. of generations G = 5000 G = 1000 G = 500 G = 333Frequency of reproduction pr = 50% pr = 17% pr = 9% pr = 6%Frequency of mutation pm = 50% pm = 83% pm = 91% pm = 94%The minor numerical parameters.Parameter ValueProbability of choosing internal points for mutation pip = NIL (uniform selec-tion over all points)The qualitative variables.Parameter ValueSelection method for reproduction \nth", n = 1 for �rst indi-vidual, n = 2 for secondSelection method for mutation \nth", n = 1 for �rst half,n = 2 for second halfType of �tness used for selection Adjusted �tnessFitness function parameters.Parameter ValueName Wally-min methodOut-of-time score 49Number of games for one �tness evaluation 5Weight for minimum score 98Weight for average score 1Weight for �2 of scores 0The resultsExperiment Fitness value(2 + 2) 79.93(2 + 10) 75.51(2 + 20) 80.68(2 + 30) 80.48The best value for � of the four I have tried was � = 10. This corresponds with � = 5in the (1 + �) runs which was the second worst there.The over all results of (2 + �2) were worse than those of (1 + �1).29



6.5.3 (2 + �+ �)I tried crossover on (2+�). I called this (2+�+�), or in general, (�+�+�), with � thenumber of parents, � the number of children by mutation, and � the number of childrenby crossover.This notation leaves the questions of which parents to take for crossover, but in myexperiments with (2 + �+ �) I always took parent one as the �rst parent and parent twoas the second.Again I wanted these experiments to be comparable with (1 + �) or actually with(2 + �), so I took the population sizes to be (almost) the same in both experiments: for(2 + �) I took (2 + (�� 2) + 2). However, I didn't think using only crossover made anysense. That is why I haven't done (2 + 0 + 2). In stead I did (2 + 2 + 1): one child bycrossover and one for each parent by mutation.The varying parameters. (2 + 2 + 1) (2 + 8 + 2) (2 + 18 + 2) (2 + 28 + 2)Population size M = 5 M = 12 M = 22 M = 32Maximum nr. of generations G = 3333 G = 1000 G = 500 G = 333Frequency of reproduction pr = 40% pr = 16% pr = 9% pr = 6%Frequency of crossover pc = 40% pc = 16% pc = 9% pc = 6%Frequency of mutation pm = 20% pm = 68% pm = 82% pm = 88%The minor numerical parameters.Parameter ValueProbability of choosing internal points for crossover pip = 90%Probability of choosing internal points for mutation pip = NIL (uniform selec-tion over all points)The qualitative variables.Parameter ValueSelection method for reproduction \nth", n = 1 for �rst indi-vidual, n = 2 for secondSelection method for crossover \nth", n = 1 for �rst indi-vidual, n = 2 for secondSelection method for mutation \nth", n = 1 for �rst half,n = 2 for second halfType of �tness used for selection Adjusted �tnessFitness function parameters.Parameter ValueName Wally-min methodOut-of-time score 49Number of games for one �tness evaluation 5Weight for minimum score 98Weight for average score 1Weight for �2 of scores 030



The resultsExperiment Fitness value(2 + 2 + 1) 70.01(2 + 8 + 2) 76.92(2 + 18 + 2) 74.73(2 + 28 + 2) 82.29The results of (2 + �+ 2) were similar to those of (1 + �); just as (1 + 1), (2 + 2 + 1)worked best and (2+ 18+ 2) after that. In three of the four experiments (2+ �2 +2) didslightly better than the corresponding (1 + �1). Only (2 + 18 + 2) scored below (1 + 10).Since (2 + �2 + 2) did better than (1 + �1), the over all results of (2 + �2 + 2) werebetter than those of (2 + �02). It seems crossover does help.
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6.6 Continuing with best-so-farI wanted to see how best-so-far did with an initial population of already fairly good indi-viduals. I took the best runs I had so far | this was (2+2+1) | and let them continuefor another 10000 evaluations with best-so-far as a �tness function. In this case that was3333 generations.The major numerical parameters.Parameter ValuePopulation size M = 5Maximum number of generations to be run G = 3333The minor numerical parameters.Parameter ValueFrequency of reproduction pr = 40%Frequency of crossover pc = 40%Probability of choosing internal points for crossover pip = 90%Frequency of mutation pm = 20%Probability of choosing internal points for mutation pip = NIL (uniform selec-tion over all points)The qualitative variables.Parameter ValueInitial population last population of (2+2+1)Selection method for reproduction \nth", n = 1 for �rst indi-vidual, n = 2 for secondSelection method for crossover \nth", n = 1 for �rst indi-vidual, n = 2 for secondSelection method for mutation \nth", n = 1 for �rst half,n = 2 for second halfType of �tness used for selection Adjusted �tnessFitness function parameters.Parameter ValueName Best-so-farOut-of-time score 49The resultsExperiment Fitness value(2 + 2 + 1) with Wally-min 70.01(2 + 2 + 1) continued with best-so-far 95.72The results were very bad. The individuals had got worse.
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7 Conclusion7.1 ApproachIn my research I have tried to �nd the best parameters for arriving fast at a good evaluationfunction for an alpha-beta algorithm applied to go. As you can see by studying the resultsI have done this by �rst optimizing the �tness function and then trying to �nd the bestvalue for the other parameters.Halfway through optimizing the population parameters I found that some things wentwrong with the �tness function I was using. The individuals seemed to get stuck at tiegames { the �tness got better until a tie was reached, then it froze. This was because Icounted a game that ran out of time as a tie.I also found that a good �tness didn't imply a good result against Wally all the time;usually it meant that in about ten games of a hundred an S-expression with a good �tnessgot a good result, the other times the result was a maximum loss.After tuning the �tness function by setting the out-of-time score to 49 and having theindividuals play �ve games in stead of just one, I continued optimizing the populationparameters.Finally I �lled up some gaps and retried the best-so-far �tness function.7.2 The resultsThe following table contains the average of the results of 100 games against Wally forbest individual of each experiment, averaged over �ve runs and the standard deviation ofthose �ve runs. The �rst number in a cell is the average �tness, the second is the standarddeviation. The results here are all of �tness values returned by the Wally method. A valuegreater than 49 corresponds with a loss; a value below 49 is a win.If a cell contains an X it means that I haven't done that experiment because I thoughtit wouldn't give a good result. For instance, I have only done two experiments with �tnessfunction best-so-far because it was clear to me this function would always be worse thanthe Wally method. For a table of section references to the results see appendix C.\Goodness" of the best individuals.2 pops 1 pop only mut 1 cross + 1 mutBest-so-far 98.00, 0.00 X X XTournament 97.52, 0.97 X X XWally, oot 0 93.94, 5.65 86.82, 4.19 85.20, 6.78 XWally, oot 49 X X X 87.75, 6.92Wallymin, worst X X X XWallymin, worst + avg 64.16, 8.61 70.92, 10.77 74.20, 9.47 61.46, 5.77
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\Goodness" of the best individuals.(1 + 1) (1 + 5) (1 + 10) (1 + 15)Best-so-far X X X XTournament X X X XWally, oot 0 87.30, 6.64 X X XWally, oot 49 84.06, 7.60 X X XWallymin, worst 73.37, 16.35 X X XWallymin, worst + avg 70.86, 13.47 84.55, 3.89 72.96, 12.58 86.13, 4.17\Goodness" of the best individuals.(2 + 2) (2 + 10) (2 + 20) (2 + 30)Wallymin, worst + avg 79.93, 7.74 75.51, 7.37 80.68, 10.50 80.48, 8.36\Goodness" of the best individuals.(2 + 2 + 1) (2 + 8 + 2) (2 + 18 + 2) (2 + 28 + 2)Wallymin, worst + avg 70.01, 12.10 76.92, 14.58 74.73, 14.53 82.29, 12.25\Goodness" of the best individuals.(2 + 2 + 1) continuedBest-so-far 95.72, 2.14As you can see there are no wins. But these values are all averages. I had one run,with the parameters of section 6.5.1, (1 + 10), in which the best individual won all itsgames by one point (a �tness value of 48).7.3 About the resultsThe best results were with one crossover and one mutation (that is a population of size2!) using Wally-min (section 6.4.4) and the initial two subpopulations (of size 50 each)with Wally-min (section 6.4.1). The parameters of these two experiments have nothingto do with each-other so it is hard to say why these two gave the best results.Two experiments that worked well too were (1 + 1) and (2 + 2 + 1) of sections 6.5.1and 6.5.3. (2 + 2 + 1) was the better of these two. In fact in three of the four cases(2 + �2 + �2) worked better than the corresponding (1 + �1).It was hard to compare the individual results of (1 + �1) and (2 + �2 + 2) with thoseof the corresponding (2 + �02), but on the whole (2 + �02) did worse.All this seems to imply that crossover is important. I will try to give an explanationfor these results.I think (1+�) isn't that good because it touches only a small part of the search space(see �gure 2a). After each generation a few possible solutions (S-expressions) of the searchspace, near the parent, are examined; the best of these solutions is taken as the parentfor the next generation.(2+�) should have worked better because more ground is covered. In stead of walkingalong one path, you are searching near two paths. However, it is likely that one parentwill produce two children that are better than the children of the other parent, and thenyou are just searching along one path again, albeit on two sides of it. (See �gure 2b;the oval indicates the point where you jump from two paths to one.) This is probably34



why (2 + �) did worse; almost the same space was covered, but with the use of moreindividuals.The way (2 + �+ �) should work, is that you are not just searching along two paths,but also in-between. There is still a big chance that one parent will produce the two bestindividuals of a generation, which means that, in the next generation, your search is lessbroad again. Figure 2c shows this. The oval shows the point where the search narrows.The small circles mark the crossover-children. This does not explain why (2+�2+2) didbetter than (1 + �).

a b cFigure 2: search pathsActually the pictures in �gure 2 are not entirely correct: a parent of one generationcan also be chosen as a parent for the next generation, which would make the chance thatthe search path is narrowed too soon even higher.What I think would do best is a (2 + 2 + 1) search in which each parent for crossovermust be chosen from the children of di�erent parents, or from the crossover-child. I willsay more about this in section 8.I think the reason the S-expression got worse when I used best-so-far on a pre-generatedpopulation (section 6.6) is that they had been trained to beat Wally which always playedblack, so they always played white, and with best-so-far the best individual had to takeWally's place as the \champion", playing black. Because they hadn't been trained forplaying black the champions weren't good at it, so they were easily beaten by a weakerS-expression.7.4 Wally-min vs. Best-so-farThe �tness function that worked best was Wally-min. It was to be expected that a �tnessfunction that was similar to the function that expressed the \goodness" of the resultingS-expressions would work better than a �tness function, like best-so-far, that had noknowledge at all about the valuation criterium.I think, however, that best-so-far or a similar �tness function produces go-functionsthat play better against many opponents than the individuals trained with Wally-like�tness functions.Using Wally to �nd opponents that can beat Wally works, but if you do this theopponents get over-trained; they can only beat Wally and not other opponents of thesame strength. 35



I have found that using Wally as an opponent works remarkably well for �nding faultsin Wally itself. An example of this is the tied games I got when using an out-of-timescore of 0, as I mentioned in section 6.2.3. I imagine that if you use another hand-madego-program as a �tness function you could use genetic programming to �nd faults in thatprogram.7.5 About the evaluation function itselfThe speed of the evaluation function was a bit disappointing to me. Of course I knew itwould be slow, but not a slow as it turned out to be. In combination with the alpha-betaalgorithm with a search depth of one ply it took the program almost a minute, on a boardof size 19� 19, to make one move. For genetic programing this is just too slow.As for the power of the function, the results show that it is possible to �nd a functionthat plays go better than random; I even found one that was better than Wally or, atleast, it could beat Wally. This of course is not a big accomplishment but it does showthat the function can get better, maybe with a more sophisticated �tness function.8 Future researchThere are a few things I have come across that I thought deserve a look into, but whichdidn't �t in this project.� While writing section 7 I realized that the population dynamics of (� + �) and(� + � + �) I had been using might not have been that good. As I mentionedthere, those dynamics could make the search too narrow too soon. For example in(2 + 2 + 1), where each generation the new parents are simply the two best of the�ve individuals (two parents and three children), there is a big chance that thosetwo best individuals are (too) closely related.Continuing the example of (2 + 2 + 1), I think it would be better to choose theparents as follows: lets say parent a creates child a1 and parent b creates child b1.Using crossover parents a and b could create child c. Now the new parents a0 and b0should be chosen from the sets respectively fa; a1; cg and fb; b1; cg, making sure c isnot chosen twice. This example can easily be generalized to (�+ �+ �).I think it would be interesting to compare the performance of the method I havedescribed here and the normal (�+ �) or (�+ �+ �).� Something that bothered me was that I couldn't really use the Alpha-Beta algo-rithm. Because of the enormous number of board con�gurations that have to begenerated for each move I could only search to a depth of one ply. On a 7� 7 boardthe number of con�gurations that have to be searched increases by a factor of 72with each ply.To solve this problem you can design a search strategy better adapted to go. WhenI am playing go and I want to �gure out which move I should make, I don't tryevery possible move in my mind, only the ones I \feel" could be good moves for meor for my opponent. It could be interesting to design a search strategy that doessomething like this. 36



I had in mind a function like my �lter function which takes the current boardcon�guration but which, in stead of giving a new board con�guration, assigns avalue to each possible move. Then the best, say, ten of these or the ones with ahigh enough value can be tried. You can use genetic programming to �nd such afunction.One problem is that you need an evaluation function to use with the search strategy.For this you could use one of my solutions, but I am not sure they would be goodenough.� Because the S-expressions get over trained by using Wally as a trainer, it could bebetter to use a number of di�erent opponents in stead; even using Wally in di�erentways { once as usual, once by giving Wally the go boards rotated by 90�, etc. {would probably be better.� My �tness functions, best-so-far and tournament evaluation, didn't work, but itwould be worth a try using co-evolution as described by Rosin and Belew[1] be-cause they used a scheme in which two strategies, one for black and one for white,are co-evolved. Another advantage of this method is the way �tness is assigned:the S-expressions get better �tnesses if they can beat many di�erent opponents oropponents that no-one else can beat.A Go terminologyA.1 LibertiesThe liberties of a string of stones are the unoccupied adjacent points of that string. In�gure 3 the points marked m are all the liberties of the black string. Point n is not aliberty of the string. ��m�n m�
mm�
�
m�m�
m��m�Figure 3: libertiesA.2 AtariA string of stones is said to be in atari when it has only one liberty left. Figure 4 showsa group of black stones in atari.A.3 Live groupsA group is alive when it has at least two free spaces that can never be �lled by theopponent. Figure 5 shows an example of a black group that is alive. Points a and b cannever be �lled by white because a move at either point would be suicide unless the otherpoint is �lled in �rst. 37
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�������Figure 6: a ponnuki.A.5 ShichoThe shicho, or ladder, is a con�guration in which a player can catch a group by a seriesof ataris. Figure 7 shows an example of a shicho. Black can capture the two white stonesby atari-ing at the left of the two stones. If there is a white stone at or near a black can'tcapture the white stones that easily. A white stone at a would be called a ladder breakeror a shicho-atari.The shicho with its shicho-atari is one of the reasons why go is so much more complexthan games like chess.A.6 KomiThe komi is the number of points given to the white player in advance to compensate forblack's having the �rst move. This is usually 5:5 points. The half point is to prevent ties.B SGF-�lesSGF stands for Smart Game File Format. It is meant to be a standard �le format toexchange machine-readable games, problems, and opening libraries. A more complete38
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�Figure 7: a shicho.description is given by Martin M�uller[5]. I will give the syntax and semantics of thesubset of SGF that I have used.I have used SGF in two ways. One to save the games played by the GP and the otherto read test con�gurations for the GP to play. I have used the SGF format because thereare many programs available that support it (for go at least), one of which is MGT[6], soI didn't have to write an application to view the games.Below is the syntax of the SGF �les in BNF form. First I will give a brief summaryof the conventions I have used:": : :" : terminal symbols.[: : :] : option; occurs at most once.f: : :g : repetition; zero or more times.j : exclusive or.Bold-font characters should be read as terminals. The symbols letter, digit and char-acter mean the obvious, except that \[" and \]" should be written as \n[" and \n]"respectively and \n" as \nn".Collection ::= fGameTreegGameTree ::= "(" Sequence fGameTreeg ")"Sequence ::= Node fNodegNode ::= ";" fPropertygProperty ::= AB f"["Move"]"g j AE f"["Move"]"g j AW f"["Move"]"gj B "["Move"]" j BM "["Triple"]" j C "["Text"]"j CR f"["Move"]"g j GM "["Number"]" j KM "["Real"]"j MA f"["Move"]"g j PB "["Text"]" j PW "["Text"]"j RG f"["Move"]"g j TE "["Move"]" j W "["Move"]"Move ::= letter letterNumber ::= [ "+" j "-" ] digit fdigitgReal ::= Number [ "." fdigitg]Text ::= fcharactergTriple ::= "1" j "2"Not all strings derivable from this grammar are valid SGF-�les. For instance, a nodecan not contain both a B attribute and an AB attribute, and each attribute can onlyappear once per node, some even only once per game tree. Furthermore between propertiesyou can put as many white-characters as you like.I will explain the semantics of the grammar with the help of an example:(;PB[Wally] PW[individual 1] GM[1] SZ[19] KM[5.5];B[pd] ; W[dp] ; B[dd];W[pp] C[a standard opening]) 39



The PB and PW �elds contain the names of the black player and the white playerrespectively. The GM �eld represents the game type; 1 means go, 2 is othello, 3 is chess.SZ is the size of the board. KM is the komi. All these �elds should be in a game treeonly once.The �elds B and W contain the moves for black and white. The �rst letter is the�rst coordinate of the board, the second is the second coordinate. Unlike on most (real,wooden) go boards the letter `j' is not left out and the second coordinate is not a numberbut a letter. C contains the comments for the node.The next example shows how good and bad moves can be marked in a game:(;SZ[13] GM[1] AB[jd] AW[dd][jj];B[dj] TE[2]CR[ek][gc]MA[aa][ma][mg]RG[ek][ma])Attributes AB and AW tell you to add black and white stones respectively to theboard at the coordinates given in the lists, no matter whether there are already stonesthere or not. An attribute AE would mean that the stones at the coordinates in thefollowing list should be removed from the board (if there are any).An attribute TE in a node with a move means that this is a good move. If the valueof the attribute is 1, it is a fairly good move; if it is 2, it is an even better move. Theattribute BM means the opposite: 1 is a bad move, 2 is an even worse move.The attributes CR, MA and RG are used here in a di�erent manner than they wereintended in the original SGF-format. CR marks good moves for whose ever turn it isin the node, so in the example it marks two good moves for black. MA marks the badmoves. RG works like the 2 in TE and BM: if a move is marked both CR and RG it isvery good and if it is marked both MA and RG it is very bad.C Section references to the resultsThese tables contains the section numbers of the results from the table in section results.\Goodness" of the best individuals.2 pops 1 pop only mut 1 cross + 1 mutBest-so-far 6.1 X X XTournament 6.1 X X XWally, oot 0 6.1 6.2.1 6.2.2 XWally, oot 49 X X X 6.2.4Wallymin, worst X X X XWallymin, worst + avg 6.4.1 6.4.2 6.4.3 6.4.4
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\Goodness" of the best individuals.(1 + 1) (1 + 5) (1 + 10) (1 + 15)Best-so-far X X X XTournament X X X XWally, oot 0 6.2.3 X X XWally, oot 49 6.2.3 X X XWallymin, worst 6.3 X X XWallymin, worst + avg 6.3, 6.5.1 6.5.1 6.5.1 6.5.1\Goodness" of the best individuals.(2 + 2) (2 + 10) (2 + 20) (2 + 30)Wallymin, worst + avg 6.5.2 6.5.2 6.5.2 6.5.2\Goodness" of the best individuals.(2 + 2 + 1) (2 + 8 + 2) (2 + 18 + 2) (2 + 28 + 2)Wallymin, worst + avg 6.5.3 6.5.3 6.5.3 6.5.3\Goodness" of the best individuals.(2 + 2 + 1) continuedBest-so-far 6.6
References[1] Christopher D. Rosin and Richard K. Belew,Methods for Competitive Co-evolution:Finding Opponents Worth Beating, in Proceedings of the Sixth InternationalConference on Genetic Algorithms. L.J. Eshelman (ed.), pp. 373-380, 1995[2] Koen van der Hauw, Evaluating and Improving Steady State Evolutionary Al-gorithms on Constraint Satisfaction Problems, Master Thesis, IR-96-21, July1996.[3] John Koza, Genetic Programming: On the Programming of Computers by Meansof Natural Selection, The MIT Press, 1992.[4] Martin M�uller, Computer Go Test Collection,http://nobi.ethz.ch/martin/special.html[5] Martin M�uller, Smart Game File Format,http://nobi.ethz.ch/martin/sgfspec.html[6] My Go Teacher,ftp://ftp.pasteur.fr/pub/Go/mgt/*[7] Bill Newman (newman@tcgould.tn.cornell.edu), wally.c,ftp://ftp.pasteur.fr/pub/Go/comp/wally.sh.Z[8] Hans-Paul Schwefel, Evolution and Optimum Seeking, John Wiley & Sons,inc.,1995[9] Doug Zongker (zongker@isl.cps.msu.edu), lil-gp 1.0,http://isl.cps.msu.edu/GA/software/lil-gp/

41


