Master’s Thesis

Adaptive Genetic Algorithms
with
Multiple Subpopulations
and
Multiple Parents

B.A. Thijssen
March 12, 1997

CONTENTS 2

Contents
1 Introduction 3
2 A genetic algorithm 3
2.1 Crossovers with multiple children 5)
2.1.1 N-Point Crossover 5
2.1.2 Diagonal Crossover 5t
2.2 Crossovers with only one child 6
2.2.1 N-Point Crossover. 6
2.2.2 Diagonal Crossover 6
3 Our adaptive genetic algorithm 7
3.1 Multiple subpopulations 7
3.2 Migration between the subpopulations 8
3.2.1 Mechanism 8
3.2.2 Mechanism IT 11
3.3 Redivision of the subpopulations 13
3.4 Multiple parents Lo 14
3.5 The parameters Lo 14
4 The test problems 15
4.1 Onemaxo e 15
4.2 Twin Peaks 15
4.3 Plateau 16
4.4 Plateau-d 16
4.5 Trap 16
4.6 Trap-d 17
4.7 Royal Road 17
4.8 An overview of the maximum fitness-values of the test problems 19
5 Experimental results 19
5.1 Setup A: Subpopulations with different generational gap . . . 20
5.2 Subpopulations with equal generational gap 26
5.2.1 Setup B: Crossovers with only one child 26
5.2.2 Setup C: Crossovers with multiple children 33
6 Conclusions and future research 40
A List of terminology 42

References 43

1 Introduction 3

1 Introduction

In this master’s thesis research on genetic algorithms with multiple subpop-
ulations will be handled. In this project each subpopulation has its own
crossover operation. Also multiple parents participated in the crossovers.
The idea is that the genetic algorithm will adaptively select the subpopula-
tion with the best crossover for the problem it is solving, by increasing its
size. This adjusting of the sizes of the subpopulations is done with migration.
The research has three goals:

e to examine if multi-parent crossover is better than the standard two
parent crossover

e to examine if our adaptive genetic algorithm® performs better than a
genetic algorithm with a fixed crossover operator

e to examine if our adaptive genetic algorithm is able to detect good
CTOSSovers

The genetic algorithm used in this project is the steady-state variant, in
which the population size will be the same after each iteration. Although
the sizes of the different subpopulations can vary, the sum of the sizes of the
subpopulations will remain the same.

2 A genetic algorithm

A genetic algorithm is an algorithm that searches for a solution of a problem,
using crossover, mutation and selection. The algorithm has a population of
individuals (called chromosomes) which are bitstrings of some fixed length.
If a bitstring has length [it will be numbered in the rest of this project from
0 to (I — 1). Each individual is a possible solution and has a fitness-value
assigned to it. This fitness-value is to be minimized or maximized. In this
project the fitness is to be maximized. The fitness-value tells us how close
the individual is to a solution. The higher the fitness of an individual, the
closer it is to a solution. The genetic algorithm has many variants, but the
general form of the genetic algorithm is given in Figure 1. Now an explana-
tion of the algorithm will be given. The variable t represents the number of
the generation. In initpopulation P(t) a population is initialized, where
P(t) is the population at generation t. This is done by randomly taking a
number of bitstrings. This number of bitstrings is the size of the population
and is a parameter of the genetic algorithm. Also the length of the bitstring

!The genetic algorithm selects the crossover operation it will use at run-time.

2 A genetic algorithm 4

PSEUDO CODE FOR GA

begin GA
t =0
initpopulation P(t)
evaluate P(t)
while not done do
t =t +1
P’ := selectparents P(t)
recombine P’
mutate P’
evaluate P’
P(t) := survive P(t), P’
od
end

Figure 1: A Genetic Algorithm

is a parameter of the genetic algorithm. In evaluate P(t) the individuals
in the population are assigned fitness-values. while not done do ... od
checks if a solution has been found, and if not executes the body (here the
dots) after which the test is done again until a solution is found. But if it
takes too long to find a solution it is possible that the genetic algorithm will
give up. The tests if a solution has been found or if it takes too long are
implemented in the function done. In the body of the while a number of
things will be done: t will be increased, because the algorithm will produce
a next generation. Then parents are selected in selectparents P(t) and
they will be stored in a temporary population P’. The selection mechanism
used in this project is tournament selection, since that is the most used selec-
tion. The parents will recombine with crossover or will do nothing at all in
recombine P’. This depends on a parameter of the genetic algorithm usually
named p. which is the chance that crossover will occur. Then in mutate P’
the (un)altered population P’ is mutated with a chance p,, which is also a
parameter of the genetic algorithm. p,, is the chance that a bit will swap
value. All the bits in all the individuals of population P’ will be swapped
with that chance p,,. After the crossover and mutation, the population is
evaluated again. Now the individuals will be selected to go to the new gen-
eration in survive P(t), P’. The selection mechanism used for survival in
this project, is the survival of the fittest mechanism.

2.1 Crossovers with multiple children 5

There are of course many variants possible which still are of this struc-
ture. One thing which can vary is the crossover operation which will be
used for the recombination. The crossovers used in this project were N-Point
Crossover and Diagonal Crossover. N-Point Crossover uses two parents, and
produces two children. And Diagonal Crossover uses N parents, and pro-
duces N children. In this project we also used a variant of N-Point Crossover
and of Diagonal Crossover which produces only one child. These variants
of the crossovers (with only one child) were used to make a fair comparison
between the N-Point Crossover and the Diagonal Crossover.

2.1 Crossovers with multiple children
2.1.1 N-Point Crossover

The N-Point Crossover [DS92] uses two parents and creates two children just
as the ‘normal’ 1-Point Crossover would do. In fact N-Point Crossover is a
generalization from 1-Point Crossover. N-Point Crossover selects N crossover
points. After that the children are build in the following manner: the first
child gets the odd segments from the first parent, and the even segments from
the second parent. For the second child the complement holds: it gets the
even segments from the first parent, and the odd segments from the second
parent. An example for N = 2 is given in Figure 2.

2.1.2 Diagonal Crossover

The Diagonal Crossover [ERR94] uses N parents and selects (N —1) crossover
points in the bitstring. After that IV children are created from combining the
segments from the parents. This is done in a diagonal manner. All segments
from the parents will be in the same place in the children as they are in the
parents. The i-th child has the first segment of the i-th parent, the second
segment of the (i+ 1)-th parent, and so on. Each next segment will be taken
from each next parent wrapping around at the last parent. This is done for
i=1toi= N. An example for N = 3 is given in Figure 3.

