
Internal Report 94-41 August 1994

Rijksuniversiteit te Leiden

Vakgroep Informatica

Local Structure Optimization

M.V. Borst

Department of Computer Science
Leiden University
P.O. Box 9512
2300 RA Leiden
The Netherlands GAiN

S
E

IS

in Evolutionary Generated

Neural Network Architectures

MASTER’S THESIS





Local Structure Optimization

M.V. Borst

in Evolutionary Generated

Neural Network Architectures





i

Preface

This thesis is the result of research done at the department of Computer Science
at Leiden University in the Netherlands. It is an extension of the work done by
Egbert Boers and Herman Kuiper [Boers92].

The research incorporated several parts. First, extensive reading was done to get
familiar with the areas of genetic algorithms, neural networks and algorithms
that change the structure of neural networks. Second the developed software by
Egbert Boers and Herman Kuiper was modified so that it could use the CMU
data benchmark (developed at the Carnegie Mellon University at Pittsburgh,
USA) and a few tests with the Cascade Correlation Learning Architecture algo-
rithm of Scott Fahlman and Christian Lebiere [Fahlman90] were done. Than
some criteria to detect if a module in a modular neural network lacks computa-
tional power were developed together with four methods to install the newly
added complexity. All this was implemented an tested on various problems and
the results are presented in this thesis

I would like to thank Egbert Boers for his patience, understanding and help with
the construction of both the ideas behind the programs as the programs them-
selves. Also I would like to thank Ida Sprinkhuizen-Kuyper for her trust, enthu-
siasm and guidance throughout the project. Furthermore a lot of credit is due to
Roberto Lambooy who has helped me, with certain paragraphs and my rotten
English. Finally I would like to thank Scott Fahlman for maintaining the CMU
Benchmark Collection.

Leiden, September 1994

Marko Borst



ii



iii

Abstract

This thesis is an extension of the work done by Boers and Kuiper [Boers92]. In
their master thesis they proposed a method to produce goodmodular artificial
neural network structures. It was argued thatmodular artificial neural networks
have a better performance than non-modular networks. Based on the natural pro-
cess that resulted in our brain, they introduced agenetic algorithm to imitate
evolution and usedL-systems to model the kind ofrecipes nature uses in biolog-
ical growth.

In this research the objective was to find a local optimization method formodu-
lar neural network structures. Such a method should change the structure of the
network. Since adding an additional unit to an already existing module was
shown to be the most ‘local’ way of changing the structure of a network a couple
of criteria was developed to decide if and which module of the network needs an
additional unit. Besides that, four, on constructive algorithms inspired, methods
to install the new unit in the module were tested. The results of the methods on
various test problems indicate that if a additional unit is added on bases of its
amount of incoming weight changes, this generally results in better network
structures. The method of installing a new unit in a modular neural network
based on the method of installing a new unit in Cascade Correlation (aconstruc-
tive neural network algorithm developed by Lebiere and Fahlman [Fahlman88])
seems best.

When a local optimization method is added to an genetic algorithm it may speed
up the genetic search process with a considerable margin [Hinton87], this is
called theBaldwin effect [Baldwin1896]. Preliminary results with the combina-
tion of the local neural network structure optimization method and the algorithm
of Boers and Kuiper to generate neural network structures seem to agree with
this effect, but a lot more simulations have to be done before on this respect a
definite conclusion can be drawn.



iv



v

Contents

Preface i

Abstract iii

Contents v

1 Introduction 1

1.1 Research Goals 1

1.2 Neural Networks 2

1.3 Algorithms that modify the structure 2

1.4 Genetic Algorithms 3

1.5 L-systems 3

1.6 Learning and Evolution 3

2 Neural Networks 5

2.1 The Neuron 5

2.2 The Human brain 6

2.3 The Artificial Neuron 7

2.4 Artificial Neural Networks 8

2.4.1 The Training Set 8

2.4.2 Backpropagation Networks 8

2.4.3 Problems With Backpropagation 10

2.4.4 Modular Backpropagation 11

2.4.5 Activation functions 13



vi

3 Algorithms that modify the structure 15
3.1 Constructive versus destructive algorithms 15

3.2 The Cascade-Correlation Learning Architecture 16

3.3 Growing Cell Structures. 19

3.3.1 Growing Cell Structures and Unsupervised Learning 19
3.3.2 Growing Cell Structures and Supervised Learning 22

4 Evolution and Learning 25
4.1 L-systems 25

4.1.1 A simple L-system 25
4.1.2 Bracketed L-systems 26
4.1.3 Context Sensitive L-systems 26
4.1.4 Implementation 28

4.2 Genetic Algorithms 28

4.2.1 Introduction 28

4.3 Can Learning guide evolution? 29

5 Local structure optimization 33
5.1 Criteria to detect computational deficiencies 33

5.1.1 Motivation 34
5.1.2 Constraints on the criteria 34
5.1.3 Criteria to add a unit to a module 36

5.2 Installing a new unit 37

5.3 Network Dynamics 39

6 Implementation 41
6.1 Enviroment 41

6.2 The data files 41

6.2.1 The CMU Neural Network Learning Benchmark Data File Format 42
6.2.2 The matrix file format 43

6.3 Parameters 44

6.3.1 Parameters of the test program (backmain) 44
6.3.2 Parameters of the main program (genalg_w) 45

6.4 Back-propagation 46

7 Experiments 49
7.1 Some tests with XOR related problems 49

7.1.1 The 2XOR test 50
7.1.2 The XOR3 XOR2 test 52
7.1.3 The 4XOR test 53

7.2 TC problem 54

7.3 ‘Where’ and ‘What’ categorization 55

7.4  Mapping problem 57



vii

8 Conclusions and recommendations 59
8.1 Conclusions 59

8.2 Further research 60

References 61



viii



1

1 Introduction

1.1 Research Goals

One of the biggest problems in the use of neural networks nowadays is the prob-
lem of finding an appropriate structure for a given task. An ideal structure is a
structure that independently of the starting weights of the net, always learns the
task, i.e. makes almost no error on the training set and generalizes well. Boers
and Kuiper [Boers92] produced an algorithm to find a ‘good’modular neural
network structure to solve a given task. It used a genetic algorithm to produce a
grammar (based on L-systems) that itself was used to produce modular net-
works. In this research I tried to find some local structure optimization methods
for modular neural networks. Such a method can, when used in combination
with a genetic modular neural network generator like the one of Boers and
Kuiper, speed up the search for ‘good’ structures.

After a short explanation of Neural Networks and their problems (chapter 2) the
advantages ofmodular back-propagation will be explained. Then some algo-
rithms that modify the structure of Neural Networks will be discussed (chapter
3). Besides a short overview of the various methods, two inspiring methods will
be explained: The Cascade Correlation Learning Architecture of Fahlman and
Lebiere and The Growing Cell Structures algorithm of Fritzke [Fritzke93].
Chapter 4 starts with a short explanation ofGenetic Algorithms and of L-sys-
tems. Further it describes how learning can guide evolution, commonly known
as theBaldwin effect [Hinton87]. In the next chapter a few restrictions on local
structure optimization methods will be described. For one, true local optimiza-
tion method, i.e. adding an extra unit to an already existing module, a few possi-
ble criteria will be discussed. These criteria are used to decide if a module needs
an extra unit. Further a few ways to initialize the newly created weights will be
shown. Chapter 6 describes a few implementation issues, so that it will (hope-
fully) be easier to use the program. In chapter 7 the results of the various criteria
and installing methods on a few tests will be shown, together with the results of
some larger problems. In chapter 8 some conclusions will be presented along



Introduction Chapter 1

2

with ideas for further research. In the rest of this chapter all the main ideas
behind this research are presented briefly.

1.2 Neural Networks

A computer is just a machine, it can be used to simplify or perform certain tasks.
But what kind of tasks? Well obviously all tasks that need complex arithmetic
operations and tasks that require large amounts of data storage. Over the past
decades researchers have tried to develop computer programs that where capable
of performing complex tasks. Some tasks are so complex that the program has to
be very sophisticated, i.e. it has to be an ‘intelligent’ program.

The methods used to achieve artificial intelligence in the early days of comput-
ers, like rule based systems, never achieved the results expected and so far it has
not been possible to construct a set of rules that is capable of intelligence.
Because reverse engineering proved to be successful in many other areas,
researchers have been trying to model the human brain using computers.
Although the main components of the brain, neurons, are relatively easy to
describe, it is still impossible to make an artificial brain that imitates the human
brain in all its detailed complexity. This is because of the large numbers of neu-
rons involved and the huge amount of connections between those neurons.
Therefore large simplifications have to be made to keep the needed computing
power within realistic bounds.

An artificial neural network consists of a number of nodes which are connected
to each other. Each of the nodes receives input from other nodes and, using this
input, calculates an output which is propagated to other nodes. A number of
these nodes are designated as input nodes (and receive no input from other
nodes) and a number of them are designated as output nodes (and do not propa-
gate their output to other nodes). The input and output nodes are the means of the
network to communicate with the outside world.

There are a number of ways to train the network in order to learn a specific prob-
lem. With the method used in this research, back-propagation, supervised learn-
ing is used to train the network. With supervised learning, so-called input/output
pairs are repeatedly presented to the net. Each pair specifies an input value and
the output that the network is supposed to produce for that input. To achieve an
internal representation that results in the wanted input/output behaviour, the
input values are propagated through the nodes. Using the difference between the
resulting output and the desired output, an error is calculated for each of the out-
put nodes. Using these error values, the internal connections between the nodes
are adjusted. This process is described in detail in chapter 2.

1.3 Algorithms that modify the structure

One of the major problems with neural networks is that it is very hard to know
beforehand the size and the structure of a neural network one needs to solve a
given problem. The obvious solution is to use the computer for this task. After a
brief introduction of two different types of algorithms that try to construct a net-
work during training, two of these algorithms will be presented in chapter 3.



Section 1.4 Genetic Algorithms

3

1.4 Genetic Algorithms

Another way to find good topologies for neural networks for a given problem is
to use a genetic algorithm.Genetic Algorithms are based on Darwin’s evolution
theory [Darwin1859]. Using Darwin’s three principles: of variation, of heredity
and of selection, Genetic Algorithms implement an evolutionary process. Sam-
ples from a problem space to be optimized are put together in a population and
are subjected to so-called genetic operators: selection, crossover and mutation,
reproduction, forming successive generations. The quality, called fitness, meas-
ured in terms of the problem to be optimized will approximate the best solution
possible.

1.5 L-systems

In nature the precise form of a species is not coded in its genes. Instead the
genetic information of a species is more a kind ofrecipe [Dawkins86]. Since
researchers had already used a kind ofreversed engineering to come up with the
idea to create artificial neural networks to obtain ‘intelligent’ behaviour with a
computer program, Boers and Kuiper looked for a way to code neural networks
structures with ‘recipes’ [Boers92]. They used a complex form of anL-system.
L-systems were introduced by Lindenmayer to model the growth process of
plants [Linden68]. One can think of an L-system as a kind of grammar. The big-
gest difference with ‘standard’ grammars is that all characters in a string are
rewritten in parallel. In §4.1 a brief explanation of L-systems is presented along
with the variant Boers and Kuiper [Boers92] used. For a more thorough treat-
ment of L-systems see Prusinkiewicz and Lindenmayer [Prunsik90]. For an
explanation of the variant used by Boers and Kuiper and its transformation to
artificial neural networks see [Boers92].

1.6 Learning and Evolution

After the theory that learned behaviour by a species was coded back into its
genes (so called Lamarckian evolution) was rejected by (most of) the scientific
community in favour of the evolution theory by Darwin [Darwin1859], the
attention for the influence of learning on evolution became low. Baldwin
[Baldwin1896] suggested that learning could speed up the process of evolution
even though the learned behaviour was not coded back to the genes. Hinton and
Nowlan [Hinton87] showed that this so calledBaldwin effect could also speed up
(artificial) Genetic Algorithms. The Baldwin effect is further explained in §4.3.



Introduction Chapter 1

4



5

2 Neural Networks

Some people find it incredible what computers nowadays can do. They are
impressed by the millions of instructions per second, the giga bytes of storage
capacity and the complex task these machines perform. Maybe some of this
‘respect’ is caused by the fact that computers are good at things, where most
humans are not specifically good at: complicated computations, processing large
amounts of data, etc. So, are computers more intelligent than humans? Well that
depends, of course, on how you define and how you measure intelligent behav-
iour. If we use the method that young children use among themselves, how far
and how fast someone can count, humankind is bound to loose.

It is surprising, however, that behaviour that we do not see as particular difficult
or ‘intelligent’ cause a lot of trouble to ‘computers’, i.e. to programmers who
want to write traditional algorithms to solve such tasks. For example, people can
see in an instant of there is an empty chair in a room, a traditional computer pro-
gram, that gets input from a camera would take a lot of time to complete such a
task.

Well if ‘traditional’ methods do not work, why not try a concept that has worked
in many areas of research: the concept ofreversed engineering. That concept can
roughly be described as: look for something that works, try to understand it and
then try to (re)build and use it. Since humans are normally considered as ‘intelli-
gent’, it may be a good idea to try to understand how humans can perform ‘intel-
ligent’ behaviour, i.e. it may be fruitful to look how a human brain works and
how and if its processing principles are usable in a computer program.

2.1 The Neuron

The human brain consists of a large number of interconnectedneurons. Each of
these neurons shows rather complex bio-electrical and bio-chemical behaviour.
Since these neurons are the main ‘actors’ in our brain, research with the goal to



Neural Networks Chapter 2

6

construct a computer program that imitates the brain concentrated on the work-
ing of neurons to createartificial neural networks.

A neuron can be separated in three functional parts:axon, cell bodyand den-
drites(see figure 1). The dendrites receive information (neurotransmitters) from
other neurons and transmit those signals by electro-chemical means to the cell
body. The body collects all these electrically charged substances (signals) and if

the total potential of the substances in the cell exceeds a certainthreshold, then
the axon is activated, i.e. the neuronfires. This means that the axon transmits its
activation to the dendrites of other neurons, i.e. it releases neurotransmitters. The
communication from one neuron to another takes place at thesynaptic junction,
or synapse. The synapse is a small gap between the axon of one neuron and a
dendrite of the next.

2.2 The Human brain

The brain consists of about 1011 neurons. If each neuron would be connected to
every other neuron then our heads would have a diameter of 10 kilometres,
because of the huge amount of wiring [Heemsk91]. Instead the brain is divided
in several regions, most of which consists of several regions again. The smallest
neuron structures consists of about 100 neurons and are calledmini-columns.
Besides this subdivision, one can also (try to) divide the brain according tofunc-
tional areas (e.g. the visual area). Usually there are relatively few connections
between areas with different functions. This strong modularity is partly sug-
gested by patient studies, see for instance Gazzaniga [Gazzaniga89].

Despite this strong modularization the brain still has some 1015 connections.
Even if one would know exactly how a brain works, this number alone makes a
computer program that simulates a brain practically impossible at present time.

figure 1The neuron.



Section 2.3 The Artificial Neuron

7

2.3 The Artificial Neuron

So it is (still) impossible to build an artificial brain that imitates the natural brain
in all its detail. Some (very) large simplifications are necessary to be able to con-
struct artificial neural networks that are capable of ‘learning’ some interesting
‘functions’.

Where the neurons in the brain get charged chemicals in their cell bodies, artifi-
cial neurons get real numbers. Not only the activation of a neuronn determines
how much neurotransmitters the dendrite of another neuronm gets, but also the
‘strength’ of the synapse ofn to m. To model this, the real number an artificial
neuronj gets from an another artificial neuroni is the product ,  is the
activation of the input neuron , and  is called theweight of the connection
between neuroni andj. In nature a neuron will either stimulate (i.e. giveexcita-
tory signals) or destimulate (giveinhibitory signals) another neuron to fire and
although the amount of stimulation may change in time, it keeps stimulating or
destimulating the other neuron. In most artificial neural networks this ‘restric-
tion’ is not applied, i.e. the ‘sign’ of a connection between to neurons may
change during time. In this research these changes are permitted. It is the prop-
erty of neurons that allow them to change the ‘strength’ of a connection with
another neuron that is seen as the way the our brainlearns.

The most obvious function neurons perform, is collecting their ‘real-valued’
inputs and determining their activation from that. If this activation exceeds a cer-
tain threshold, then the neuron will fire. In artificial neural networks (ANN) the
stimulation is simply the (weighted) sum of all the inputs. In most cases a bias is
added, which shifts the activation relative to the origin, to model the threshold.
So the stimulation of an artificial neuron is:

The weights in artificial neurons are a metaphor for the amount of neurotransmit-
ters transmitted by the synapses. The connections in artificial neural networks
can be either negative or positive, as changed during the learning process. It
should be noted that, in ANNs, the stimulation is not the same as the activation
of the neuron:

Sometimes it is implemented as a function of the stimulation and the previous
activation.

Althoughf is determined for a large part by the type of ANN being used (see also
§2.4.5), the basic functioning of neurons is globally the same, since all ANNs are
in one way or another based on the original brain.

wi j xi xi

i wi j

stim wixi θ+
i 1=

n

∑=

act f stim( )=



Neural Networks Chapter 2

8

2.4 Artificial Neural Networks

In artificial neural networks we take the next step: the connection of a number of
neurons into a network. One of the main problems to be tackled in artificial neu-
ral networks is that we are modelling things we do not fully understand. So we
don’t really know whether the neural network we create is even remotely similar
to its original. What we do know is that one of the larger advantages of ANNs is
that we do not have to present to a network how we came to a certain solution:
we simply present the network with a lot of problems and their solutions, and the
ANN finds the regularities in the associations of input/output pairs itself.

2.4.1 The Training Set

Since it is normally impossible to present a network with all possible inputs, we
only present it with part of it, the training set. This set has to be chosen in such a
way that the network also gives correct output for an input that was not in the
training set. If the network also responds well to inputs that were not in the train-
ing set, it is said togeneralize well. Often an ANN is trained with one set of pat-
terns (the training set) and tested with another (the test set). If the training set
was not a good representation of all possible inputs, the network probably will
not perform too well on inputs that are not in the training set. Generalization is
quite similar to interpolation in mathematics.

2.4.2 Backpropagation Networks

Probably the best known artificial neural network learning paradigm is back-
propagation. It was first formalized by Werbos [Werbos74] and later by Parker
[Parker85] and by Rumelhart and McClelland [Rumelhart86]. It it used to train a
multi-layer feed forward network with supervised learning. Normally a back-
propagation Network (BPN) has an input and an output layer, and a certain
amount of hidden layers. The input and output layers are mandatory, the number
of hidden layers is free, but often a single layer is chosen. Nodes in a certain
layer only get input from other lower layers, which means that the input layer
does not get any input from within the net, and only give output to nodes in
higher layers, which means that nodes in the output layer do not give output to
other nodes. This constitutes the feed forward principle: input only comes from
lower layers and output only goes to higher layers. There is no recurrence in a
feed forward network, although there are some adaptations of the BPN paradigm
that allow a limited amount of recurrence. An example of a BPN with one hid-
den layer is shown in figure 2. The subsequent layers are fully connected.

Output Layer

Hidden Layer

Input Layer

Output layer

Input layer

Hidden layer

figure 2A typical backpropagation network



Section 2.4.2 Backpropagation Networks

9

During supervised learning the network is repeatedly presented input output
pairs (I, O) by a supervisor, where O is the desired output of input I. The input
output pairs specify the activation patterns of the input and output layers of the
network respectively. The network has to find an internal representation that
associates the input with the desired output. To achieve this, backpropagation
uses a two-phase propagate-adapt cycle.

In the first phase the network is presented with the input and the activation of
each of the nodes is propagated through the net to the first hidden layer (or the
output layer, if no hidden layers are present), where each node sums its input and
decides whether it should fire to the modules in the next layer. This process
repeats itself until the activations have reached the output layer.

In the second phase the output of the network is compared to the desired output
and the error is calculated for each of the nodes in the output layer with this for-
mula:

whereoi is the output the network gave on nodei, andyi is the desired output for
nodei. These error values are transmitted to the last of the hidden layers (hence
the name backpropagation) where for each node its total contribution to the error
is calculated:

wherewij is the weight of the connection from hidden nodei to output nodej.
The calculations for possible other hidden layers are done in a similar way.
Based on these contributions to the errors, the connection weights areadapted:

with . All weights in the network are adapted
this way, starting with the weights closest to the output layer and then working
down.

This makes the overall error orSum sQuared Error (SQE):

(for this input/output pair) smaller. with the overall objective being to reach its
minimum.

When we take ann+1-space, withn the number of weights in the network, we
can plot the total error of the net for all input as a function of all the weights.
This space is called the error surface. Since we want the network to perform as
well as possible, we want to find the minimum in this error space. The function
drawn in this space can be seen as a surface across which we let a marble roll
during learning with backpropagation: it always follows the steepest gradient, or

δo i, oi 1 oi–( ) yi oi–( )=

δh i, hi 1 hi–( ) δo j, wi j

j 1=

r

∑=

wi j t 1+( )∆ αδo j, hi β wi j t( )∆+=

wi j t 1+( )∆ wi j t 1+( ) wi j t( )–=

E
1
2
--- yi oi–( ) 2

i 1=

r

∑=



Neural Networks Chapter 2

10

the direction that goes down as fast as possible. However, it is possible that the
error surface not only has the wanted global minimum, but also some local
minima. The fact that a certain point on the error surface is a minimum, means
that the surface goes up on all surrounding sides. This means that when the mar-
ble hits a minimum, it will stay there. This is of course rather unfortunate when
the found minimum is not a global, but a local minimum: the network gets stuck
in the local minimum.

2.4.3 Problems With Backpropagation

As mentioned in the previous paragraph, one of the problems of backpropaga-
tion is that it can get stuck in a local minimum. This is not too bad if the local
minimum turns out to be close to the global minimum, but there is no guarantee
that is the case. This problem can be partially solved by using a momentum term.
The momentum term uses the speed the marble already has, so when it hits the
minimum it will not immediately remain there, it will first go up again. This
works because the edges around a local minimum are lower than those around a
global minimum most of the time. So if the momentum term is chosen right, it
can push the marble out of the ditch created by the local minimum, but it will
remain in the ditch created by the global minimum. This momentum term also
enhances learning, since it uses the steepness of the slope the ‘marble’ is on,
instead of simply using steps of fixed size when moving thought the error space.

Another problem associated with backpropagation is that the place at which one
starts on the error surface (which is determined by the initial weight settings,
which are often random) determines whether or not a good or the best solution is
found. When a solution is found that performs well on the training set, the net-
work might still perform badly on the overall set of input, if the training set was
not representative. One danger in backpropagation is for the network to getover-
trained. This is the case when the performance of the network on the training set
still increases but the performance of the net on the test set decreases. This
means that the net did not look at similarities over the input, but simply learned
all associations by heart. If presented with output not in the training set, the net-
work will likely respond with other output than the desired. This problem only
occurs when the network is still further trained, even though it already gives cor-
rect output. The network has learned to detect global features at first, but is
trained longer and reaches such a specialization in the given training set, that it
loses its ability to generalize: there is no need for generalization, it already
knows every input/output pairing. This will have resulted in perfect scores on the
training set. Overtraining can only happen if the network is large relative to the
training set. In this case training is better stopped before full conversion on the
training set is reached. Other ways to prevent overtraining is using a smaller net-
work or adding noise to the input. Both methods will result in poorer perform-
ance on the training set, but will lead to better overall results.

Unfortunately backpropagation does not do well on extrapolation. If it is trained
in a certain area, it does not perform well in other areas, even if these are close to
the trained area. This stresses the importance of choosing a proper training set.
Backpropagation can be used, however, to make predictions when historic data
is available.



Section 2.4.4 Modular Backpropagation

11

A last problem is the occurrence of interference. This occurs when a network is
supposed to learn similar tasks at the same time. Apart from the fact that smaller
networks are unable to learn to many associations —they simply are full after a
certain amount of learned associations— there is also the danger of input pat-
terns being so hard to separate, that the network can’t find a way to do it. When
we look at the problem we can take it’s input and divide that into categories. If
we plot this, we would get a problem space. The network has to fill this space
with figures of such a form that all inputs from the same category are included in
the same figure. This means that the network has to encode in some way these
forms. The more complex these forms (or the more precise they have to be) the
harder it is for the network to learn it. This means that inputs that are close
together, little room for a separating line, and figures with strange forms (the
more concave, the worse) are hard to learn. An example of such interference
between more classifications is the recognition of both position and shape of an
input pattern [Rueckl89]. Rueckl et al. conducted a number of simulations in
which they trained a three layer backpropagation network with 25 input nodes,
18 hidden nodes and 18 output nodes to simultaneously process form and place
of the input pattern. They used nine, 3x3 binary input patterns at 9 different posi-
tions on a 5x5 input grid, resulting in 81 different combinations of shape and
position. The network had to encode both form and place of a presented stimulus
in the output layer. It appeared that the network learned faster and made less mis-
takes when the tasks were processed in separated parts of the network, while the
total amount of nodes stayed the same. Of importance was the number of hidden
nodes allocated to both sub-networks. When both networks had 9 hidden nodes
the combined performance was even worse than that of the single network with
18 hidden nodes. Optimal performance was obtained when 4 hidden nodes were
dedicated to the place of the pattern and 14 to the apparently more complex task
of the shape of the pattern. It should be emphasized that Rueckl et al. tried to
explain why form and place are processed separately in the brain. The actual
experiment they did, showed that processing the two tasks in one unsplit hidden
layer caused interference. What they failed to describe, however, is that remov-
ing the hidden layer altogether, connecting input and output directly, leads to an
even better network than the optimum they found using 20 hidden nodes in sepa-
rate sub-networks as shown by Boers and Kuiper [Boers92]. The problems men-
tioned, however, do not occur solely with backpropagation, a lot of other
network paradigms suffer from it. This brought on the search formodularity,
which we already find in the brain.

2.4.4 Modular Backpropagation

Until now we have discussed only simple networks, where every layer is fully
connected to the next. However, this is not due to a limitation in the backpropa-
gation’s learning rules. More complicated networks are created by, for instance,
adding hidden layers. This doesn’t really add to the computational power of the
network — in fact, it has been proven that all continuous functions that can be
represented by a network with more than one hidden layer can also be repre-
sented by a network with one hidden layer — although we would need an infinite
number of nodes in the hidden layer for the error to approach 0, but more hidden
layers do enhance the speed with which the network learns, especially for highly
nonlinear inputs, inputs that are hard to differentiate.



Neural Networks Chapter 2

12

When more hidden layers are used, all layers are still fully connected to the next.
This means that all modularity in the net has to be propagated to the nodes
through the connections. Another way is to not simply create full connectivity
between layers, but leave specific connections out. So by adding hidden layers
without full connectivity, we can greatly enhance the amount of modularity in
the network, without raising the number of weights to astronomical numbers.
See for instance the network in figure 3 which can be separated in two parts.

Since there are no connections between the two parts of the network presented in
figure 3, the number of weights is reduced by 10 compared to a fully connected
network with the same number of nodes in each of the layers. Apart from a speed
up of the learning time caused by less connections, there might also be a speed
up due to the greater modularity of the network.

To further enhance this idea of modularity, we define amodule to be a group of
mutually unconnected nodes with as well the same set of input as of output
nodes. This means that a fully connected network has the same number of mod-
ules as it has layers. The network from figure 3 has 6 modules. Every node in a
backpropagation network belongs to exactly one of these modules. In figure 4
the network of figure 3 is remodelled to this standard and looks a lot simpler than
its original counterpart.

To test whether this modularization worked, Boers and Kuipers [Boers92] imple-
mented a backpropagation network for the XOR-problem (see also §7.1) with a
different topology than the network used my Rumelhart and McClelland
[Rumelhart86]. The two networks are shown in figure 5. Rumelhart and McClel-
land’s network (figure 5a) got stuck in a local minimum a couple of times during
their experiments. Boers and Kuiper found that their network (figure 5b) not
only always learned to solve the problem, but it also learned faster than Rumel-

A
B

figure 3An example network made
of two separated sub-networks

3

2 2

3 2

4

figure 4A modular network



Section 2.4.5 Activation functions

13

hart and McClelland’s network did. On plotting the number of training steps
required by the net as a function of the two learning parameters Boers and
Kuiper found a much more regular dependence for their network than they found
for Rumelhart and McClelland’s network. Apart from that, they found that for
the best combination for the learning parameters the Rumelhart and McClelland
network needed 1650 training cycles, while the Boers and Kuiper network
needed only 30 cycles. McClelland and Rumelhart also found a net with a differ-
ent architecture, which did work with all experiments, although it still tended to
be slow in learning.

The intuitive idea behind imposing modularity on a network is modelling the
weight-space in such a way that all local minima disappear and making the error
surface a lot smoother. This largely enhances learning.

A major problem modularity poses us with, is that of finding a suitable topology
for a given problem (in determining whether a network is good, we also need to
know what problem it is supposed to solve, since different problems have differ-
ent suitable topologies). This was already a problem with classic networks, but
with the extra complexity of the network connections, this problem gets even
more difficult to solve, especially by hand. To solve this, one could for example
try to modify the structure during training (see chapter 3) or one could (and that
is morebiological plausible, i.e. that resembles more the way that nature ‘tack-
les’ this problem) try to create a ‘good’ topology via genetically produced blue
prints.

2.4.5 Activation functions

The activation function is the function that calculates the activation of an artifi-
cial neuron (unit). The most commonly used function is thesigmoid function.
The (most) general form of a sigmoid function is:

wherestimp denotes the weighted stimulation the unit gets from its input units
(the units that are connectedto the unit) when the network is presented with
input patternp, actmax denotes the maximum andactmin denotes the minimum
activation of an unit. Usuallyactmax is 1 andactmin is 0. This function is the
function I used for the experiments (see chapter 7). Another widely used variant
of this function uses0.5 for actmax and-0.5 for actmin.

figure 5Two networks that are capable of solving the XOR-problem

1

2

2 2

2

1

a) b)

f stimp( )
actmax actmin–

1 e
stimp–

+
------------------------------------- actmin+=



Neural Networks Chapter 2

14

Sometimes alinear activation is used. Then the activation of a unit for an input
patternp is defined by: . If this function is used, it is mostly
only used for the output units.

Thegaussian activation function keeps appearing in neural network applications
and is defined by:

A very special activation function is thehyperbolic tangent function defined by

The experiments presented in this research where obtained with thesigmoid
function, but the backpropagation library that was written by Boers and Kuiper
[Boers92] was modified in such a way that experiments can just as easy be done
with any of these other functions or with a mixture of these functions (it is possi-
ble to specify the type the units in a module should have; all the units in a mod-
ule are of the same type).

f stimp( ) stimp=

f stimp( ) e
0.5 stimp( ) 2

–
=

f stimp( ) e
stimp e

s– t imp–

e
stimp e

s– t imp+
---------------------------------=



15

3 Algorithms that
modify the structure

As stated in the previous chapter, one of the major problems with Feed Forward
Neural Networks (FFNN) is the problem of finding a ‘good’ topology for a given
problem. This is a difficult and delicate task. If the structure is too large, it will
be able to learn the problem by heart and, as a consequence, hardly be able to
generalize. If, on the other hand, it is too small, it won’t learn the problem at all.

Over the past few years neural scientists have grown weary of their ‘educated’
guesses of the structure of the network and devised algorithms that try to find a
‘good’ topology. This chapter focuses on algorithms that change the structure of
the networkduring training. In Chapter 5 a different approach that uses a
Genetic Algorithm will be presented. In this chapter, after a brief discussion of
two types of algorithms that modify the structure, two inspiring methods will be
explained: The Cascade Correlation Learning Architecture, created by Fahlman
and Lebiere [Fahlman88] and The Growing Cell Structures method, developed
by Fritzke[Fritzke93].

3.1 Constructive versus destructive algorithms

Based on the hypothesis that the smallest net that is able to learn the training data
will produce good results on data it is not trained with (i.e. will have a good gen-
eralization property), researchers came up with a number of algorithms. The
algorithms that modify the structure during training, are usually classified in two
types:destructive algorithms andconstructive algorithms.

A destructivemethod begins with a net that is too large, and then reduces it. It
removes nodes or weights from large, trained networks in order to improve their
generalization performance ([Cun90], [Mozer89]). It continues to do so until,i.e.
in most cases, the pruned net is no longer able to classify the training data cor-
rectly (usually the pruned net is shortly retrained). Then the previous net is taken
to be the optimal, given the starting network. Destructive algorithms produce
networks that generalize reasonable well [Omlin93], leaves us with the problem



Algorithms that modify the structure Chapter 3

16

that one should construct a starting network that is too large. Furthermore since
the initial network will be large, a lot of training time will be necessary to train
the initial network and retrain the intermediate (still too large) networks. There-
fore these algorithms are relatively slow.

A special class of destructive methods is formed by methods that use a modified
training scheme. The object is to find a net as simple as possible that learns the
problem. So these methods try to minimize a function that depends on the error
and on a complexity (called a penalty) term ([Hanson89], [Nguyen93]). This
penalty term is usually a function over the weights so that the smallest weights
will be forced to zero.

Constructive algorithms don’t have the problem of determining the initial struc-
ture, they just start with the simplest structure possible. Besides the usual weight
update rules, a constructive method should also define a criterion when (and
where and how) to change the current topology of the net and how to assign ini-
tial values to the new weights. Typically, new resources (nodes, weights) are
added to the structure so that it keeps previously acquired knowledge (c.q.
weights). The process of training, adding and retraining stops when some crite-
rion is met; e.g. the error is beneath an acceptable level.

Constructive and destructive methods for adapting the networks during training
are complementary. Constructive methods can be used to find a network that
responds well and destructive method can be used to improve the performance of
an already trained network. So these methods could easily be glued together.
First one can use a constructive algorithm to find a good topology, then one can
use a destructive algorithm to optimize (if necessary) the topology. Two of the
most interesting constructive algorithms are The Cascade-Correlation Learning
Architecture [Fahlman90] and Growing Cell Structures [Fritzke91]. A brief
explanation of these algortihms will be presented in the remainder of this chap-
ter.

3.2 The Cascade-Correlation Learning Architecture

This constructive method for supervised learning was introduced by Fahlman
and Lebiere in 1990 [Fahlman90]. It starts with only an input and an output layer
which are fully connected. There is also a bias input, permanently set to +1.

If after a number of training cycles (with quickprop [Fahlman88]) no significant
error reduction has occurred, then the network is tested on the test set to deter-
mine the error. If the error is below a predefined upper limit, the algorithm stops,
if it isn’t, there must be some residual error that should be reduced. So an hidden
layer of one unit is added to the net. This new unit receives trainable input con-
nections from the input layer and from all pre-existing hidden layers. These
weights are trained in a special way (see below) and after that this layer will be
fully connected to the output layer. Then these input weights are frozen and all
the output weights are trained once again. This process is repeated until the error
is acceptably small.

The training method for the new hidden layers input weights consists of a
number of passes over the training set, adjusting the new unit’s input weights



Section 3.2 The Cascade-Correlation Learning Architecture

17

after each pass. The goal of this adjustment is to maximizeS, the sum over all
output units o of the magnitude of the correlation1 betweenV, the new unit’s acti-
vation value, andEo, the residual output error observed at output unito. S is
defined as

whereo is the number of the output unit at which the error is measured andp
indicates the training pattern. The quantities  and  are the values of and

 averaged over all training patterns.

To maximizeS, the partial derivative ofS with respect to each of the new unit’s
incoming weights,wi, is computed. So

 is the sign of the correlation between the new units activation value and the
error of output ,  is the derivative for pattern . Now a gradient ascent is
performed to maximize  with quickprop (only the input weights of the new unit
will be trained).

WhenS stops improving, the new layer (of one unit) is fully connected to the
output layer and it’s inputs weights are frozen for the rest of the training. Now
the training of all the weights connected with the output layer starts again.
Because the activation value of the hidden unit is correlated to the remaining
error at the output units, that error can be reduced during the next training cycle

1.  S is actually a covariance, not a true correlation (some of the necessary normalizations are omit-
ted). In their early versions Fahlman and Lebiere used true correlation, but this version of S
worked better in most cases.

S Vp V–( ) Ep o, Eo–( )
p

∑
o

∑=

Eo V Eo

V

wi∂
∂S σo Ep o, Eo–( ) fp′I i p,

p o,
∑=

σo

o fp′ p
S

Output Units

Outputs

Hidden unit 1

Hidden Unit 2

+1

Inputs

figure 6The Cascade architecture after two hidden units have been added for a problem
involving three input and two output units. The +1 denotes the bias. The vertical lines sum
all incoming activation. Boxed connection are frozen (after installation), X connections are
trained repeatedly [Fahlman91]



Algorithms that modify the structure Chapter 3

18

since for input patterns that cause high errors in the outputs, the hidden unit will
produce a high value.

To improve the usefulness of a new unit, a pool of candidate units are trained in
parallel, each starting with a different set of random weights. The candidate unit
that has the highest correlation scoreS is chosen as new unit to be added to the
network.

One of the most remarkable features of this constructive method is that at any
time, only one set of weights is trained (all incoming weights to the output layer
or all incoming weights of the new hidden unit). So no error signals are propa-
gated backwards through the network connections. This gives an opportunity to
greatly speed up the algorithm. Since the incoming weights of already installed
hidden unit never change, the activation values of this unit for all training pat-
terns can be cached (if the target machine has enough memory). This can result
in tremendous speed up, especially for large networks.

Although this method works rather well, it may lead to a network of great depth
(many connected (small) hidden layers). To see this suppose there is a problemP
that can be divided into two disjunct problemsP1 andP2. If we use a Cascade-
Correlation Learning Network (CCLN) to solve this, it will take at least two hid-
den layers, if both problems can not be linearly separated. Each hidden layer can
only correlate well with one of the problems. A simple example of such a prob-
lem is the one presented in TABLE 1. The first output is the result of input1 XOR
input2 and the second output of input2 XOR input3 (see also §7.1). This particu-
lar problem can be solved with only one hidden layer of two units. If we have a

problemP that consist ofn such problems, then a CCLN will construct a net-
work with at leastn hidden layers, where one hidden layer withn hidden units
would have been sufficient, if the inputs are directly connected to their corre-
sponding outputs (see also §7.1.3). In both cases there aren hidden units but the
CCLN has at leastn-1 more connections, because it producesn hidden layers of
one unit instead of one hidden layer ofn units.

TABLE 1. A simple problem consisting of two disjunct problems

input1 input2 input3 output1 output2

0 0 0 0 0

0 0 1 0 1

0 1 0 1 1

0 1 1 1 0

1 0 0 1 0

1 0 1 1 1

1 1 0 0 1

1 1 1 0 0

Table 1.Output1 is the XOR function of input1 and input2, output
is the XOR funtion of input2 and input3.



Section 3.3 Growing Cell Structures.

19

A small modification on Cascade-Correlation (CC) presented by Simon, Corpo-
raal and Kerchkhoffs [Simon92] reduces the depth of resulting networks signifi-
cantly. Instead of a hidden layer of only one unit, they add (if necessary) one
hidden layer with as many units as there are in the output layer. Instead of trying
to maximize the correlation between a unit and all the output units, their version
tries to maximize the correlation between the unit and its corresponding output
unit. Once the incoming weights for the new hidden units are trained and frozen,
these units have to be connected to the output layer. They tried two methods:
only connect the hidden unit to its corresponding output unit, or connect the hid-
den unit to all the output units. Both these methods produce networks with a
smaller number of hidden layers and seem to generalize better then plain CC.

3.3 Growing Cell Structures.

Growing Cell Structures is a method inspired by Kohonen’s features maps
[Kohonen82]. This method is not a pure constructive method because it includes
the occasional removal of units. But it starts with small cell structures and uses a
controlled growth process. It is as an unsupervised learning algorithm
[Fritzke91] but recently a modified version of the method was capable of super-
vised learning [Fritzke93]. Both these versions are worth to be looked into.

3.3.1 Growing Cell Structures and Unsupervised Learning

Before the network model is described, it seems appropriate to define exactly the
kind of problems the network is supposed to solve. Suppose that every input is a
real value. If the problem hasn input signals then the input spaceV is equal to

. The input signals ‘obey’ an unknown probability distribution .
The objective is to generate a mapping fromV onto a discretek-dimensional top-
ological structureA. This mapping should have the following properties:

• It should betopology-preserving. That means that similar input vectors
are mapped on topologically close (could be the same) cells ofA and
that topologically close elements inA should have similar signals being
mapped onto them.

• It should bedistribution-preserving. That means that every cell ofA
should have the same probability of being the target of the mapping for a
random input vector according to the probability functionP.

If the dimensionality ofA is smaller than that ofV and it is still possible to pre-
serve the similarity relations, then the complexity of the data is reduced without
loss of information.

The initial topology of the networkA is ak-dimensional simplex. For  this
initial structure is a line segment, for  a triangle, for  a tetrahedron.
For  the simplex is called a hypertetrahedron. Thecells (or units) are the

 vertices of the simplex. The edges denote topological neighbourhood rela-
tions. Every cellc has ann-dimensional vector attached. This vector may be seen
as the position ofc in the input space.

V ℜn
= P ξ( )

k 1=
k 2= k 3=

k 3>
k 1+



Algorithms that modify the structure Chapter 3

20

When presented with an input vector the method determines the cell that is topo-
logically the closest to it (the euclidic distance is used). This cell, called the best-
matching unit, is moved a fraction in the direction of the input vector propor-
tional to the difference. The ‘neighbours’ of this best-matching unit are also
moved a, usually smaller, fraction. This is called an adaptation step.

Every cell has a region in the input space with the property that every element of
that region will be mapped onto that specific cell. This is known as theVoronoi
region. To simplify the computations it is assumed that the input space is an arbi-
trarily large but finite subregion of . So every Voronoi region is finite. Even
with this simplification it is very hard to compute the size of a Voronoi region for
n greater than two. So if the size of a Voronoi region is to be computed (why is
described below), it is estimated by the size of ann-dimensional hypercube with
a side length equal to the mean distance between the cell and its neighbours.

The neighbours are being moved to keep (or to fulfil) the topology-preserving
property. How can the distribution-property be fulfilled? This property is ful-
filled if every cell has the same probability of being the best matching unit for a
randomly chosen input vector. Additional to moving the units around the algo-
rithm uses another (much more important) method of obtaining this property:
adding units to the structure.

To determine where to add (or to delete) a cell, every cell has a matching score
sometimes called a signal counter. In the simplest variant this indicates how
often a cell has been the best-matching unit. Since the cells are slightly moving
around, more recent signals should be weighted stronger than previous ones.
This is achieved by decreasing all (real valued) counter variables by a certain
percentage after each adaptation step. After a fixed number of adaptation steps
the cell with the highest matching scoreq is determined. Then the neighbourf of
q is determined whose associated input vector is the most distant to the associ-
ated input vector ofq. Now a new cellr is created. It gets an associated input
vector that lies half way between the input vectors ofq andf. This new cell is
connected in such a way that the structure remains a structure consisting only of
k-dimensional simplexes, i.e. it is connected to all the cells that are neighbours of
bothq andf, q andf are no longer ‘neighbours’ (see figure 8). If this cellr would
have been present from the beginning of the process, some of the input vectors
that mapped onto one of its neighbours would have been mapped onto it. So the

figure 7One adaptation step for a two-dimensional cell structure. Only the best-matching unit and
its direct neighbors are adapted. The columns represent the signal counter values. The signal
counter of the best matching unit is incremented [Fritzke93].

a) Initial situation b) Occurrence of an input signal c) After the adaptation step

ℜn



Section 3.3.1 Growing Cell Structures and Unsupervised Learning

21

matching score for all its neighbours are lowered and the matching score for this
new unit equals the sum of the losses of its neighbours. For each neighbour  the
new matching score  equals

(EQ 1)

where  denotes the size of then-dimensional volume of the Voronoi region
. Notice that insertion near a cellc decreases both the value of the signal coun-

ter and the size of its Voronoi field. The reduction of the Voronoi field makes it
less probable thatc will be best matching unit for future input signals.

Summarizing, the principal algorithm of Growing Cell Structures looks like this:

1. Start with ak-dimensional simplex, with the vertices at random positions
in the input space

2. Perform a constant number of adaptation steps

3. Insert a new cell and distribute the counter variables.

4. If the desired net isn’t reached go to 2.

5. Stop.

The probability function  could be the union of a few disjunct regions in
the . If that is the case then the algorithm will create cells with (almost) no
chance of being the best matching unit (the cells that ‘lie’ between the disjunct
regions). So a better structure could be produced if these cells were removed. To
ensure that the structure remains a structure consisting ofk-dimensional sim-
plexes, all the simplexes this cell participated in are removed. This could lead to
a removal of another cell.

An obvious problem for this method is the size ofk. It should be equal to the
number of components of the input vectors that are stochastically independent,
but usually that is part of the problem. One doesn’t know the complexity of the
problem, one just wants it solved! Consider the extreme case that the input space
is a subspace of  but only two of the hundred components matter (i.e. are
stochastically independent). Suppose that you gavek a value of  because you
didn’t know the internal dependencies. If now for one of the cells the mean edge

c
τc

τc

Fc
new( )

Fc
old( )--------------------τc=

Fc

Fc

figure 8An insertion for a two dimensional cell structure. The cellq has received the most input
signals so far (situation a. The columns represent the signal counter variables). A new cellr has
been inserted and thus the Voronoi regions change (the grey lines denote the border of the
Voronoi regions). The signal counter variables are redistributed according to the changes of the
Voronoi regions [Fritzke93].

a) Situation before an insertion b) After insertion of new cellr

P ξ( )
ℜn

ℜ100

100



Algorithms that modify the structure Chapter 3

22

length shrinks by ten percent (because a cell is added to the structure), the size of
its corresponding Voronoi region (and thus the counter) will be less than 0.03
promile of its previous size. Since it only depends on two components this does
not reflect the change of the ‘receptive field’ of the cell very well. This may lead
to the effect that most insertions occur in one region of the structure. This is due
to the fact that a newly inserted cell gets nearly all the signals of its neighbours
because the change of their Voronoi fields is overestimated.

3.3.2 Growing Cell Structures and Supervised Learning

The growing cell structure method can produce a lot of information of the input
space, but what if one has a problem that consists of producing the right output
vector given an input vector when only for a couple of input vectors the desired
output vector is known? Such a problem is usually ‘tackled’ using a supervised
learning technic (see also chapter 2). Assume for the rest of this section that the
data of the problem consists of a number of pairs  where  is
the input and  is the desired output of the -th pair.

The modification of the growing cell structure method so that it can solve prob-
lems that involve supervised learning, has a lot in common with the Radial Basis
Function network (RBF) [Moody88], but it eliminates some drawbacks of that
approach.

Like RBF, the method presented by Fritzke [Fritzke93] uses a layer of units with
Gaussian activation functions and an output layer ofm outputs units with linear
activation functions (figure 9). Each Gaussian unitc has an associated vector

 indicating the position of the Gaussian unit in the input vector space and
a standard deviation . The layer with Gaussian units is fully connected to the
output layer.

The Gaussian units (see §2.4.5) correspond to the cells from the unsupervised
method, so for a given unit  there is a set  that contains all its ‘neighbours’.
When presented with an input vector , the method computes the activa-
tion  of every unit according to

ξi ℜn ζi ℜm∈,∈ 
  ξi

ζi i

wc ℜn∈
σc

figure 9  A Supervised Growing Cell Structures network. The bold horizontal arrows between the
Gaussian units mean that there are topological neighborhood relations among the Gaussians (in
contrast to conventional RBF). They are used to interpolate the position of newly created Gaus-
sians from existing ones as well as to define the radius of the Gaussian.

c Nc

ξ ℜn∈
Dc

Dc ξ( ) e
ξ wc– σc⁄( ) 2

–
=



Section 3.3.2 Growing Cell Structures and Supervised Learning

23

The best matching unit (bmu, the unit that has the highest activation) will be
moved a fraction in the input space in the direction of , and it neighbours an
even smaller fraction.

The activation of an output unit  is computed by  were  is the acti-
vation of the Gaussian unit  and  denotes the weight of the connection
between unit  and output  and the summation is taken over all Gaussian units

. The weights  are updated according to the delta rule1 since there is only
one layer of weights.

The counting variable (the variable that is used to determine where to add a new
unit) of the best matching unit is raised by the overall squared error between the
actual output  and the desired output

If the current problem is a classification problem, a different updating method is
used. The counting variable of the bmu is raised by one only if  is classified
incorrectly.

Networks built with this classification error as insertion criterion tend to be still
very small when they start classifying all training examples correctly. This is due
to the fact that new cells are only inserted in those regions of the input vector
space where still misclassifications occur. On the other hand, learning does prac-
tically halt when no misclassifications occur anymore, even if the “raw” mean
square error is still rather large. This can lead to poor generalization for unknown
patterns. So it seems advisable to use a weighted combination of classification
and mean square error.

Whenever a new cell  is inserted, it gets two vectors assigned to it: one position
vector  which denotes the place of the new unit in the input vec-
tor space and one output vector . The output vector is not ini-
tialized with random values but it is obtained through a redistribution similar to
that used for the counting variable of the new unit. The output vectors of its
neighbours are lessened an amount equal to the estimated change in their Voro-
noi fields and the output vector of the new vector equals the sum of their losses
(compare with the formula on page 21).

In doing this redistribution the new cell is given output weights such, that it will
activate the output units in a way similar to its “mean” neighbour. Since the
neighbouring Gaussians overlap considerably, the overall output behaviour of
the network is not changed very much. In future adaptation steps, the new unit
can develop different weights and contribute so to the error reduction in this area
of the input space.

1.  In such a case, quickprop can also be used. Because it works faster than the delta rule, Fahlman
and Lebiere used Quickprop in a similar case (§3.2).

ξ

oj wciDc∑ Dc

c wci

c i
c wci

o o1 … om, ,= ζ ζ1 … ζm, ,=

ξ

r
pr p1 …pn,( )=

wr wr1 … wrm, ,( )=



Algorithms that modify the structure Chapter 3

24



25

4 Evolution and Learning

Apart from trying to find algorithms that modify the structure of a neural net-
work during training, researchers are also trying to construct a good neural net-
work for a given problem withGenetic Algorithms (GAs). Instead of producing a
network structure directly with a GA, Boers and Kuiper used a system that pro-
duced a set of production rules based on L-systems. In this chapter L-systems
and GA will be described briefly. The last part of this chapter consists of a
description of theBaldwin-effect.

4.1 L-systems

L-systems were introduced in 1968 by Lindenmayer [Linden68] in an attempt to
model the biological growth of plants. An L-system is a string rewriting mecha-
nism and, in that sense, a kind ofgrammar.It is as opposed to traditional gram-
mars aparallel string rewriting mechanism.

4.1.1 A simple L-system

A grammar consists of a starting string and a set ofproduction rules. A produc-
tion rule consists of aleft side, a ‘transition symbol’and aright side. The left
side denotes the ‘state’ a (sub)string should be in, so the production rule can be
applied, the right side denotes the state the (or part of the) substring is in after
applying the production rule. The transition symbol is a separator between the
two sides.

The starting string, also known as theaxiom, is rewritten by applying the produc-
tion rules. Each production rule describes how a certain character or string of
characters should be rewritten into other characters. A production rule must first
match before it can be applied; the left side of the rule has to be the same as the
part of the string on which the rule is applied. Then a part of the string is
replaced (orrewritten) by the right side of the rule. Whereas in other grammars



Evolution and Learning Chapter 4

26

production rules are applied sequentially, in an L-system all characters in a string
are rewritten in parallel to form a new string.

This parallel rewriting property of L-systems makes it possible to form a simple
set of rules that are able to generate strings that, given the right interpretation are
approximations of certain types of fractals. Take for example the Koch-graph
[Koch05]. If one uses a LOGO-style turtle to interpret the strings generated
[Szilard79] by the following L-systems, one would get intermediate stages of the
Koch Graph (see figure 10):

The traditional interpretation of the symbols used is: , draw a line, and +/–,
turn the direction of the turtle to the right/left (given a fixed angle).

4.1.2 Bracketed L-systems

A disadvantage of the turtle symbols from the previous paragraph, is that they
can only make so calledsingle line drawings, and since a lot of plants do have
branches, it is not good enough to model the growing of plants. To give the turtle
the freedom of movement to create branching, two new symbols are added: [
remember the current position and direction of the turtle (push) and ] restore the
last stored position and direction (pop). With these two symbols, far more realis-
tic drawings of plants can be made that follow strings produced by an L-system,
as can be seen in figure 11a.

4.1.3 Context Sensitive L-systems

Another way of making more complex, more natural drawings of plants, is pos-
sible by introducingcontext. Context can be seen as a model of the exchange of
information between neighbouring cells in a plant. It can be left, right or both for
a certain string. An L-system with one sided context is denoted as a 1L-system
and one with context on both sides as a 2L-system. A production rule is of the
following form:

F

F F F+ + F F––→
Axiom
Production rule

a) b)

c) d)

figure 10The first steps of the Koch fractal. a) shows the axiom, b) the generator (production
rule) c) after applying the production rule 2 times. d) after 5 times.

F



Section 4.1.3 Context Sensitive L-systems

27

WhereP (the predecessor) models the left side in the earlier production rule
without context, andS (the successor) the right side.L andR are the left-context
and right-context respectively.

If in a ruleP has context on both sides, it can only be replaced byS if it has its
left context directly on the left in the string and its right context directly on the
right. If two production rules qualify for application, the one with context is cho-
sen. If we take the following production rules:

the stringABC would be rewritten toXYZ, after which neither of the rules
applies. If we were to take these production rules:

the stringABC would be rewritten toXYC. TheC is not rewritten because the left
context is notY at the moment of writing (remember, rewriting goes in parallel,
soC’s left context still isB). However, if we were to rewrite XYC we would find
one rule that applies: sinceC’s left context now has been changed toY, the third
rule does apply. This results inXYC being rewritten toXYZ.

Determining what the context, is a little more tricky with bracketed 2L-systems.
Since the left and right context is not always direct left or right from the string or
character that is to be replaced, but can be distanced by a bracketed pattern
(these bracketed patterns would represent branches if we were to plot the string
as a tree [Prunsik89]). If, for instance, we had a production rule with the follow-
ing left side:

figure 11Two plants generated by L-systems. a) This figure is obtained with a
‘bracketed’ L-system. b) This figure is obtained with a stochastic set of rules.
For information on the set of rules that produced these artificial plants see
[Boers92].

a) b)

L P R S→><

A X→
B Y→
C Z→

A X→
B Y→

Y C< Z→

BC S G H[ ] M><



Evolution and Learning Chapter 4

28

It could be applied on theS in:

skippingDE on the left side andI[JK]L  on the right side in the process, since
these represent (parts of) branches that are of no importance to the rule to be
applied.

4.1.4 Implementation

Prusinkiewicz and Hanan [Prunsik89] present a small L-system program for the
Macintosh (in C). To experiment with L-systems Boers and Kuiper ported this to
PCs [Boers92]. Besides fixing some “irregularities” the program was rewritten
in order to accept less rigid input files. Two features were added: probabilistic
production rules and production rule ranges (both from [Prunsik89]).

With probabilistic rules more than one production rule for the sameL, P andR
can be given, each with a certain probability. When rewriting a string, one of the
rules is elected at random, proportional to its probability. This results in more
natural looking plants, without them losing their characteristic appearance. The
figure 11b shows a plant that was created with a set of probabilistic rules.

Production rule ranges introduce a temporal aspect to the L-system and tell
which rules should be looked at during a certain rewriting step. This can be used
for example, to generate twigs first and then the leaves and flowers at the end of
those twigs.

4.2 Genetic Algorithms

4.2.1 Introduction

The Genetic Algorithm (GA) is a search strategy that operates on a population of
chromosomes (also called individuals). Each chromosome contains an instance
of the parameters of the problem to be solved, in some coded form. The goal of a
GA is to generate a population such that the average of the fitness of the chromo-
somes of this population is an increasing functions, i.e. the population gets ‘bet-
ter’ than the old population. To give the GA a meaning of ‘better’ or ‘worse’
every chromosome has a fitness value. A high fitness indicates a ‘good’ chromo-
some. The fitness value is calculated by a fitness function.

Two main operators of the GA are mutation and crossover. Mutation changes an
arbitrary bit in the chromosome to introduce new instances of the problem.
Crossover takes two chromosomes and exchanges some arbitrary parts, so prop-
erties of chromosomes are mixed. To generate a new population the GA selects
chromosomes (the ones with higher fitness have a larger probability to be cho-
sen), performs some operations on the chromosomes and copies these to the new
population. To decide which chance a chromosome has in the selecting process,
one can take the fitness value of the chromosome and divide it by the total fitness
of the population. Another method is rank based selection: let the chromosomes
be in descending (with respect to the fitness value) order. Suppose the first chro-

ABC DE[ ] SG HI JK[ ] L[ ] MNO[ ]



Section 4.3 Can Learning guide evolution?

29

mosome (and since the chromosomes are sorted, it is the best chromosome) has a
chancec. Now the second chromosome gets chancec-s, the thirdc-2*s and so
on. (see [Whitley89]). For more information about GA see for example
[Goldberg89].

4.3 Can Learning guide evolution?

Many organisms learn to usefully adapt themselves during their lifetime. These
adaptations are often the result of an exploratory search, which tries out many
possibilities in order to discover good solutions. It seems very wasteful of the
evolutionary machinery not to make use of the exploration performed by the
phenotype (the organisms) to facilitate the evolutionary search for good geno-
types.

Some biologist have argued that nature does not waste these improvements but
transfers information about the acquired characteristics back to the genotype.
This is called the Lamarckian hypothesis. Nowadays most biologist don’t think
that evolution actually works that way, but that doesn’t imply that learning can
not guide evolution.

Suppose that the learned adaptations, improve the organisms chance of survival.
Then the chance of producing offspring and hence of reproduction are also
improved. The idea that learned behaviour could influence evolution was first
proposed by Baldwin [Baldwin1896]. If specific learned behaviours become
absolutely critical to the survival of individuals then there is selective advantage
for genetically determined traits that either generally enhances learning, or
which predisposes the learning of specific behaviours. At the very least, Bald-
win’s hypothesis indicates that learning will guide the direction of evolution. In
its most extreme interpretation, theBaldwin effect suggests that selective pres-
sure could make it possible for acquired, learned behaviour to become geneti-
cally predisposed or even genetically determined via Darwinian evolution.

Recently this effect got some new attention and not only from biologists. Hinton
and Nolan showed how the performance of a genetic algorithm can be improved
when it uses the Baldwin effect [Hinton87]. They used an extreme and simple
example. Suppose that the problem is to find the minimum of a function that has
a constant value for all vectors of the input space except for the goal vector. This
is sometimes called a “needle-in-a-haystack” or “impuls function” problem. It is
important to recognize the difficulty of this problem. Not only is there only one
correct solution, but the result of every other input vector gives no information
on where the correct answer may be.

An example of such a function is  wherea is a n
dimensional vector  and for every , .
The GA usedn genes1, each controlling its own component ofa. The values for

1.  The actual problem was to construct a neural network of  connections, an individual was con-
sidered successful if and only if it has all connections correctly specified. This similar problem is
used to simplify further reasoning

F a( ) 1 a– 1 a2 … an×××=
a1 a2 … an, , ,( ) i 1 … n, ,{ }∈ ai 0 1,{ }∈

n



Evolution and Learning Chapter 4

30

a gene could be 1 (if its corresponding component should be a 1), 0 (if its corre-
sponding component should be a 0) and ? meaning that this component ofa
should be learned. The ‘learning’ method used was that each individual (pheno-
type) got a fixed numberG of completely random guesses for the settings of their
? values. They were also given the ability to recognize that they have found the
correct setting.

The fitness associated with each individual is higher when the actual number of
guesses needed to find the correct setting is lower. So when an input vector is not
the correct one, it still may give some information on where the correct answer
may be. Because of this ‘learning’ strategy there is a basin of attraction around
this ‘needle’ that the GA can use to move the population towards that needle.

An interesting point is that although theoretically eventually all ? should be
replaced by 1’s, this did not happen within 500 generations. Belew showed in
analysis of this model [Belew89] that there is little selective pressure to replace
?’s in a string of almost all ?’s and that the same is true for replacing the last few
?’s. So the function of the number of ?’s in a population is a S-shaped curve.

In this extreme case not only the problem was quite hard but also the learning
method used was not very sophisticated. Consider an unknown function F which
one tries to minimize using a genetic algorithm [figure 12]. If each individual
can move in the direction it ‘thinks’ the minimum lies, then the attractor basins
are larger then if one did not use local optimization (e.g. learning).

Looking at figure 12 you can see both an advantage and a disadvantage of adding
learning to a GA. The advantage is that ‘obstacles’ in the search space become
easier to take and the attractor basins are larger. But as an additional effect learn-
ing may cause the search space near an optimum to flatten out, so that there is
not much information on the exact location of the optimum. When the GA pro-
duces individuals that always learn the optimal adaptation then there is not so
much need to find it by itself.

So learning can guide evolution but if it is to be effective in a computational
environment, the speed up gained should be greater then the loss caused by the
time the algorithm spends on learning. So to take advantage of this effect one
must find a relatively simple learning scheme or a brilliant complex scheme that
simplifies the search space dramatically. If you use for example a GA to find the
best way to draw a graph, the learning scheme could contain a way to locally
change the position of an edge.

Gruau and Whitley tried some different ways to help their genetic algorithm
through learning [Gruau93]. They used a GA to find both the Boolean weights

F(X)

X

figure 12How learning can modify the search space.

Fitness, without learning

Fitness, after n steps down hill

Fitness, after descent to a local optimum



Section 4.3 Can Learning guide evolution?

31

and the architecture for neural networks that learn Boolean functions. Instead of
coding the topology directly, they used a grammar tree to encode the network
(cellular encoding[Gruau92]). The four ‘modes of learning’ they tested were:

• using a basic GA without learning

• using simple learning that makes some weights change sign (they used
Boolean weights) only if the network is small

• using a more complex form of learning that changes weights on small
networks, then “reuses” these weight in the development of larger nets1

(developmental learning)

• using a form of Lamarckian evolution; learned behavior is coded back
onto the chromosome of an individual

The results of their experiments showed that the GA converged much faster if it
used learning then when it did not. Lamarckian and developmental learning
where faster than the simple learning scheme. They suggested that, because they
used a different training scheme, developmental learning is a bit like Baldwinian
learning, so it can not be stated that Lamarckian learning is much faster then
Baldwinian. They conclude that: “it is unclear, of course, whether our results
pertaining to theBaldwin effect generalize to other domains, but this possibility
is well worth exploration”.

1.  It is important to note that they used an unusual training scheme. One of the objectives was to
find a grammar that could solve the parity problem [Gruau93] for the  n-input case. Starting with
n=2 the algorithm tries to find a solution, if it does the network building machinery is allowed an
additionalrecursivestep to parse the grammar and now the resulting network should try to solve
the problem for n=3.



Evolution and Learning Chapter 4

32



33

5 Local structure
optimization

The genetic algorithm (GA) as developed by Boers and Kuiper [Boers92] tries to
find a good neural network topology for a given problem. A produced network is
trained a predefined number of cycles and then the total sum squared error of the
net on the test set is used to determine the fitness (the smaller the error, the
higher the fitness). If the GA produces a topology that results in a high error it
only gets that type of information back. It does not get any information onwhy
the proposed topology was such a bad one, orwhere in the structure, it has to add
(or delete) some complexity (hidden units or weights). In this chapter some crite-
ria will be developed to detect during training, where and if there are computa-
tional deficiencies in a modular neural network. Furthermore the different ways
to add complexity are discussed and some methods to initialize the newly added
complexity.

5.1 Criteria to detect computational deficiencies

Comparingconstructive with destructivealgorithms that modify the structure of
a network (§ 3.1) you will notice, besides the differences in approach, a remark-
able fact: where destructive algorithms put a lot of trouble in determining where
to remove some complexity of the net (units and or weights), constructive algo-
rithms just add complexity on a predefined place in a predefined way. Take for
example Cascade Correlation (§3.2) [Fahlman90]: it will (not surprisingly)
always produce a cascaded architecture, no matter what the complexity of the
problem. Only the size of the ‘cascade’ is problem dependent. The algorithm as
proposed by Marchand, Golea and Rujan only adds nodes to the hidden module
of a network with one hidden module [Marchand90]. The Upstart Algorithm of
Frean [Frean90] produces network structures that look like binary trees and the
Tiling Algorithm of Mezard and Nadal [Mézard89] produces multi-layered net-
works where each new hidden layer has half the number of units of the previous
one. Although it is not a fair comparison1, Fritzke’s method [Fritzke93] seems to



Local structure optimization Chapter 5

34

be the exception of this ‘rule’ (§3.3.2) i.e. that algorithm does not add nodes on a
predefined place.

So where will we look to find criteria that detect computational deficiencies?
First we will see why it is so interesting to have such criteria and then, after a
discussion of the type of information that can be used for such criteria, a few
possible criteria will be presented (§5.1.3).

5.1.1 Motivation

It is nice and easy to state that most constructive algorithms just add units in a
predefined way on a predefined place, but why is it so interesting to know where
to add complexity and is that possible? Well if a (modular) network can deter-
mine exactly where there are computational deficiencies and if it knew which
kind of complexity (hidden unit or a connection) could diminish the problem
then a modular constructive algorithm could be developed. Such an algorithm
would combine the speed of a constructive algorithm with the advantages of a
modular network.

To develop such a criterion is maybe one of the most challenging and difficult
tasks concerning artificial neural networks, because it requires a high amount of
knowledge of how these networks actually work and how they divide a problem
in a few separate feature detectors.

But what if we had a criterion that was not so perfect that a constructive modular
algorithm could be based on it, but still gave some indication on where to add
complexity? Such a criterion could be used to exploit theBaldwin effect (§4.3) to
guide a GA that produced modular networks.

5.1.2 Constraints on the criteria

There are a lot of possible ways to detect computational deficiencies. Even if we
are going to settle for a less perfect criterion, it may be worthwhile to constrain
‘the search space’ of possible criteria. A few constraints such a criterion has to
fulfill are:

• It should be reasonable simple to compute whether the criterion is met.

This is, of course, a very practical limitation and not a theoretical one. If the use
of a criterion makes the process of adding complexity to the network too costly
in relation to the changes it causes in the search space of possible topologies, it
can not be used effectively to speed up the GA that tries to find good topologies.

• It should only use local information.

1.  His approach is not directly comparable with ‘normal’ constructive methods for feedforward
nets. For example, his Growing Cell Structure method for supervised learning does not use an
input layer.



Section 5.1.2 Constraints on the criteria

35

This may seem very arbitrary and in a way it is, but it can be a great advantage if
you are trying to use the criterion on a parallel computer. If you look at it in a
modular sense then it becomes a bit clearer. A module is supposed to detect
some (high level) feature(s) of the problem. It tries to compute this feature based
on the information that the modules that are connected to it provide. If it can not
compute the feature it has been trying to compute, it should be possible to deter-
mine that based on information that can be gathered by the module itself.

This brings along the somewhat related problem of what kind of complexity
should be added. Until now, nothing was said about what kind of complexity
should be added to solve the computational deficiency of a network. Ways of
adding complexity to a modular network are:

• adding a module to the network

• adding a connection between two modules that are not connected yet

• adding a unit to an already existing module

Adding a module to the network is quite complex. One has to determine which
modules should give information to this new module and which modules should
get information from this module (and the size of the new module). In modular
perspective, adding a module is adding a (higher order) feature detector, so the
algorithm should decide if and how a new feature has to be computed. This is
hardly a local or simple task.

To add a connection between two modules is not a local task. To see this look at
figure 13. Imagine that the problem to be learned is much easier to learn if mod-
ule C and F where connected. F is not a (distant) relative of C, so F cannot be
considered as a module to connect module C to solely on information that is
known to C (eq. information of the structure is necessary). If you want to use this
method on a feedforward network you have to ensure that this does not introduce
a cycle in the net.

input

output

A B

E F

C D

input

output

A B

E F

C D

input

output

A B

E F

C D

a) b) c)

figure 13 Adding a connection between two modules. Figurea shows a basic modular feedfor-
ward network. If we connect module C (C the starting module) with module B, D, F or the out-
put module this property is maintained (figure b). If however a new connetion is made between
modules F and B in such a way that F is an input module for B the network is no longer a feed-
forward network (figure c).



Local structure optimization Chapter 5

36

Creating an additional unit in an already existing module, because the module
has some computational deficiency, is a local task. Every module may decide for
itself that it has such a deficiency. No global dependencies have to be checked; a
feedforward network where one of its modules gets an additional unit, is still a
feedforward network. This method of adding complexity to the network to solve
computational deficiencies seems to fulfill the constraints better than the others.

The next paragraph will give some criteria to decide whether a module needs an
additional unit.

5.1.3 Criteria to add a unit to a module

So the existing constructive methods cannot help much in finding criteria to
detect locations of computational deficiencies in existing modular networks
(because they add nodes or hidden layers on a predefined place, see the first
alinea of §5.1). What about destructive algorithms? Some of these methods try to
force small weights to zero (for example [Nguyen93]). If a hidden unit does not
receive any input signals or does not give any output signals it is removed com-
pletely. Omlin and Giles [Omlin93] presented a pruning algorithm that prunes
the hidden units with the smallest input vector. Well if small incoming weights
indicate that a unit of a module is not that important, maybe large incoming
weights to a module do indicate that the module can not cope with all the work,
that means: the module is too small. This gives as a possible criterion:

• To decide whether a module is too small one can look at the size of the
module’s input vector, if that is large, the module is assumed to be too
small and a unit is added to it. I will refer to this as thein-weight-crite-
rion.

This is, of course, a very simple criterion. An algorithm based on this criterion is
bound to be of little complexity and since a module uses the weights of its
incoming connection to determine its activation vector, it is locally compute-
able. But it is a rough criterion, it does not use any information on the error pro-
duced by that module. A network with a module that has a large input vector,
may be perfect for one problem and a disaster for another problem.

This leads to a more general type of criterion. If a network has not (yet) learned a
specific problem it produces errors in the output units. These errors are then
propagated back through the net. Back-propagation tries to reduce the errors
caused by a moduleM1 in moduleM2, by changing the weights betweenM1 and
M2 (§2.4.2). If the output weights of a module change all the time, then it appar-
ently it does not what it should do and it may be an indication that the module is
too small. Thus:

• To decide whether a module is too small one can look at the amount of
weight change on the outgoing connections of the module, theout-
moment-criterion1.

1.  It is called the moment criterion because the moment calculated in back-propagation with
momentum equals these weights changes.



Section 5.2 Installing a new unit

37

A module tries to detect some feature of the problem and when it has a lot of
error, one could argue that it did not (yet) succeed to detect some useful feature
of the problem. It may well be that the feature or features it tries to learn require
more hidden units to produce a useful classification. So as a criterion also the
amount of weight change of the incoming weights may be used:

• To decide whether a module is too small one can look at the amount of
weight change on the incoming connection of the module, thein-
moment-criterion.

The in- and out-moment criteria, use the absolute amount of weight change,
independently of the current size of the weight. One could argue that a connec-
tion whose weights change all the time between0.5 and2.5 indicate more trou-
ble than a connection whose weights change between11 and13. With this in
mind it is easy to think of two criteria

• To decide whether a module is too small one can look at the relative
amount of weight change on either the incoming or the outgoing connec-
tions of the module. This will be called thein-relative and theout-rela-
tivecriterion, respectively.

There are a lot of differences between ‘real’ neurons and their artificial counter-
parts. One of the more prominent ones is the fact that in nature a synapse (con-
nection) is either inhibitory or excitatory and although the strength of the
inhibition or the excitation may vary, it will never change from an inhibitory to
an excitatory synapse or vice versa. When back-propagation is used as learning
method, it is possible that a connection between two units changes its sign. If this
happens then the ‘relation’ between those units is changed. If, during training,
the signs of the connections from moduleM1 to M2 change a lot, then it seems
reasonable to assume that eitherM2 needs more hidden units to classify ‘its’ fea-
ture(s) orM1 needs more hidden units to compute the difficult functionM2
requires. Generalizing to more modules this leads to two criteria

• To decide whether a moduleM is too small one can look at the number
of times the sign of the connections betweenM and its output modules
(theout-sign-criterion) or its input modules (thein-sign-criterion)
changes.

In early simulations I noticed that thesigncriterion and themoment criterion dif-
fered quite a lot on which modules needed another unit. So I tried a more messy
approach and combined both these criteria into one criterion

• To decide whether a moduleM is too small, one can look at both the
number of sign changes as to the absolute amount of weight changes of
the connection betweenM and its output modules (theout-combi-crite-
rion) or its input modules (thein-combi-criterion)

5.2 Installing a new unit

If we have decided that a unit should be added to a moduleX (figure 14), we still
have to decide how we are going to do that. This includes deciding how the new



Local structure optimization Chapter 5

38

weights are determined, how and if the old weights of the module are changed
and how and if the old weights of the network are changed. It may seem unnec-
essary to change the old weights. That it can be advantageous to change the old
weights can be seen by the following argument. Suppose a module tries to clas-
sify a certain feature but fails one unit to be able to do so. Since the feature is not
correctly determined, the whole network has modified its weights to compensate
for this ‘fault’. Now if we add a new unit to the ‘troubled’ module, it can cor-
rectly classify the feature and the network should try to ‘forget’ the adjustments
it made to compensate for the ‘fault’. It may well be that the network with the
too small module converged to a local minimum during training. If this is the
case, adding a unit to that module will not be enough to ensure that the module
will learn the feature. The net first has to ‘jump’ out of the local minimum. While
this may be too difficult for the learning algorithm, a temporary ‘shock’ may do
the trick. To help the net to ‘jump’ out of the local minimum two methods were
tried: modshock andnetshock. With the modshock-method small random num-
bers are added to the incomming weights of the module that just has been
changed (the module that lacked computational power and has obtained an addi-
tional unit). The netshock method does the same but now for the entire network:
small random numbers are added to all the incomming weights of all the mod-
ules in the network. In the implementation of the software two parameters spec-
ify the upper limits on the absolute amount a weight may change when using
those shock-methods. If that numberl is specified then all the weightswij  of
module j (so the incomming weights of a module are modified) are changed
according to:

where denotes the new value ofwij  , unitsj is the number of units in modulej
andR(x) is a function that returns a random value between-x andx. Depending
on the setting of those parameters only the weights of the module that has been
enriched or those of the whole network are changed this way.

Althoug the few tests that I did indicate that the size of these ‘shock’ parameters
should be quite large (around 2 for a network hidden layers of 10 units) to pro-
duce a real increase in the error, the best overal results were obtained when I
keeped them small (around 0.1), see also chapter 7.

x

y z

u v

figure 14An example of a modular network. Suppose we want to add a new unit to modulex.
We then have to make additional connections between all the units of the module’s input mod-
ules (u and v) and the new unit and between the new unit and all the units of the modules out-
put modules (y andz). Furthermore we have to initialize these new weights.

wi j ' wi j R
l

unitsj

------------------
 
 +=

wi j '



Section 5.3 Network Dynamics

39

The simplest method to prevent the network of staying stuck in a local minimum
is, of course, to replace all the weights with new random values. In a standard
constructive algorithm this method is not a good one. All the previously acquired
information is lost and the problem should be learned again. When used in com-
bination with a genetic algorithm (GA) this method is one of the safest (and the
slowest): if a network structure, that was acquired during the GA process, solves
the problem well, you can be reasonably sure that this structure, when it is
slightly modified, will give ‘good’ results when trained. This will be referred to
as theINIT-method (initialize).

Another obvious method is to keep the old weights and only randomly set the
new weights. This method will be referred to as theKEEP-method. This method
is more desirable when used in a direct constructive algorithm (as opposed to an
algorithm involving a GA). The information acquired during the previous learn-
ing phase will not be wasted, although it maybe necessary to ‘shock’ the network
a little so that it may jump out of a local minimum.

Instead of setting the weights of the new unit randomly, one could try to figure
out good initial weights for these connections. One could use a method like the
one used with Cascade Correlation [Fahlman90] (§3.2). This method tries, by
changing the weights of the input connections of this new unit, to maximize the
correlation between the activation of the unit and the error in its output modules,
and installs the outgoing weights according to that correlation. This will be
referred to as theCasCor-method. One could also use a method like the one
Fritzke uses to initialize the weights from theRBF-units to the output units
[Fritzke93] (§3.3.2). This method takes for the new weights of the (new) unit the
mean of its neighboring weights (the weights between the in- and output mod-
ules of this unit and its neighbors), theMean-Neighbour (or MN) -method.

5.3 Network Dynamics

A special data structure is used to be able to use the different criteria. Besides the
current weight and its movement (moment §2.4.2), the number of sign changes
and the absolute amount of weight change of a connection are being stored.
‘Absolute amount of weight change’ means that solely the size of the weight
changes are summed and not the signs of these changes. A weight that changes-
0.3 gets the same addition to its datastructure as a weight that changes+0.3.

Suppose all the connections of a certain moduleX went through a lot of change
some time ago, but settled recently into a stable state. Then it may be possible
that the moduleX meets the criterion to add a unit toX even thoughX is in a sta-
ble state. Such a module should not get an additional unit. In order to prevent
that a large amount of weight changes during the beginning of the training period
influences too strongly the decision if a module should get an additional unit, the
absolute amounts of weight- and sign-changes are multiplied by a constantm
with . The computations that are performed during a training step for a
certain weightwij  are (see also §2.4.2):

0 m 1< <



Local structure optimization Chapter 5

40

whereabs(t) is the absolute amount of weight change on timet andsgn(t) is the
structure in which the ‘number’ of sign changes are kept. Thesign(x) function
returns a 1 if ,  if   and0 if . The second part of the computa-
tion for  is aboolean expression, a expression that can either be 1 or 0
(True or False).

Now we have developed criteria to see if a module needs an additional unit, how
can we use them? To determine if a certain module needs an additional unit an
instability score is computed. This score is just the sum of all the incomming or
outgoing (depending on the criterion) connections, computed following the
method implied by the criterion, normalized for the number of incoming or out-
going connections. Now it would be nice to have a formulak that depending on
the used criterion and the topological properties of the moduleM (size of the
module, number of connections etc.) could return a valuec in such a way thatM
lacks computational power if and only if the instability scoresM > c. I tried sev-
eral formulas but they did not seem to work as desired. So the algorithm was
modified a bit so that if the network has not yet, after a number of training steps,
learned the problem, the module with the highest instability score is determined
and that module gets an additional unit. The instability scores are normalized for
the number of connections to prevent large modules from getting all the addi-
tional units.

wi j t 1+( )∆ αδo j, hi β wi j t( )∆+=

wi j t 1+( ) wi j t( ) wi j t 1+( )∆+=

abs t 1+( ) wi j t 1+( )∆ m abs t( )+=

t 1+( )sgn m t( )sgn sign wi j t 1+( )( ) sign wi j t( )( )–=( )+=

x 0> 1– x 0< x 0=
sgn t 1+( )



41

6 Implementation

During the research two different existing programs were changed and adapted.
The first one (backmain) can be used to test the different criteria and the dif-
ferent ways to install a new unit. The second one(genalg_w) can be used to
find ‘good’ network structures to solve a given problem.

This chapter describes the software. Hopefully it will offer some help if someone
wants either to use the program itself or some ideas behind it.

6.1 Enviroment

The software is written to work on Unix based machines. Large parts of the soft-
ware are written in C, but some, especially the backpropagation parts, are written
in C++. The compiler was GNU C++. The simulations were run at the depart-
ment of Computer Science of Leiden University on several SUN machines;
models ELC, LPC, IPX and CLA. The final version of the software can easily be
ported to other computers which have both C and C++ available.

6.2 The data files

People, who want to device an algorithm that solves a problem, have to decide
how they are going to present that problem to their algorithm. Many scientists
who work with neural networks, have all deviced their own strategies to present
the problem to their algorithms. This made it difficult to use the same data for
more algorithms and so to compare their results. Both the programsbackmain
andgenalg_w use theCMU Neural Network Learning Benchmark Data File
Format. A second datafile is used bybackmain to specify the initial structure
of the network.



Implementation Chapter 6

42

6.2.1 The CMU Neural Network Learning Benchmark Data File Format

The reason I dedicated a subsection to this data file format is twofold: it is the
format I used and by dedicating a piece of this thesis to it, I hope to advocate its
use. If more people use it, it will be a lot easier to compare results and to test a
new problem with different algorithms. It is developed at the Carnegie Mellon
University of Pittsburgh, USA. Besides the description file (see below) of the
data format and C code to ‘parse’ the data files, a bench mark collection is acces-
sible via anonymous FTP1. To describe the data format, the following explani-
tion is provided (available at that FTP-site):

CMU Neural Network Learning Benchmark Database Data File Format

Maintainer: neural-bench@cs.cmu.edu

This file contains a description of the standard format for data files in the
CMU learning benchmark collection. These files are a supplement to the
benchmark description files that comprise the CMU Benchmark Collec-
tion. Data files are associated to their appropriate description file with a
‘.data’ extension to the file name of the benchmark description.

SEGMENTS

Each data set is composed of two to four segments. The first segment is
always the $SETUP segment. The $SETUP segment is immediately fol-
lowed by the $TRAIN segment. There are also optional $VALIDATION
and $TEST segments.

$SETUP

The $SETUP segment describes the requirements of the network to the
program. Included in this segment is information on how the program
should read the actual data segments as well as what type of inputs and
outputs are required. All lines in the $SETUP segment should end in a ‘;’.

PROTOCOL: {IO, SEQUENCE};

The protocol parameter tells the program how to read the data sets
included in the file. In an IO mapping, each vector of input and output val-
ues is a seperate training case, independant of all others. The network’s
output depends only on the current inputs. In a SEQUENCE mapping, the
input/output vectors are presented in sequential order. The output may
depend on earlier inputs as well as the current input vector.

OFFSET: <n>;

This appears only in SEQUENCE mappings. It is the number of input vec-
tors to read before an output should be produced. For most problems, this
will be set to ‘0’.

INPUTS: <n>;

This is the number of items in an input vector. However, since some data
types, such as enumerations, may require more than one input unit to rep-
resent, the actual number of input units may be greater.

OUTPUTS: <n>;

1.  The neural-bench Benchmark collection. Accessible via anonymous FTP on ftp.cs.cmu.edu
[128.2.206.173] in directory /afs/cs/project/connect/bench. The email contact is: “neural-
bench@cs.cmu.edu”, use email if you want to donate data or you have encountered some prob-
lems. The data sets in this repository include the ‘nettalk’ data, ‘two spirals’, protein structure pre-
diction, vowel recognition, sonar signal classification, and a few others.



Section 6.2.2 The matrix file format

43

Similar to INPUTS, this specifies outputs instead of inputs. Again, due to
some data types requiring more than one unit to represent, there may be a
disparity between this number and the actual number of output nodes in
the network.

IN [n]: < CONT {Domain}, BINARY, ENUM {list} >;

Each input must have an explicit entry describing it. This entry contains
the node number (n) and a data type. Available types are: CONTinuous,
BINARY, and ENUMerated. Continuous inputs are floating point numbers
with a specified domain (where all numbers are guaranteed to fall). Binary
inputs have either a value of ‘+’ or ‘-’. An enumerated input is one of a list
specified within ‘{}’.

OUT [n]: < CONT {CoDomain}, BINARY, ENUM {list} >;

Each output must also have an explicit entry describing it. This entry con-
tains the node number (n) and a data type. A CONT output is a floating
point output which is guaranteed to fall within a specified CoDomain.
BINARY outputs should have either a positive, ‘+’, or a negative, ‘-’,
value. An ENUMerated output is one of the specified list.

NOTE - While listing node types, no fields are acceptable. In other words,
the definition ‘IN [1..13]: BINARY’ or ‘OUT [1]: ENUM {A..Z}’ would
NOT be legal.

$TRAIN, $VALIDATION, $TEST.

These segments contain the actual training, validation and testing data to
be used by the network. The validation and testing segments are optional.
Entries into one of these segments should have the form: <input 1>, <input
2>, <etc> => <output 1>, <output 2>, <etc>;

In SEQUENCE data sets, there may also be ‘<>’ delimiters. These specify
the end of a sub-sequence. Data sets on opposite sides of one of these
delimiters should not affect eachother. The sequence-end delimiters do
NOT require a semicolon, as do not segment headers. In data sets with an
offset, there should be no arrow and no outputs for the first (n) inputs. Sim-
ply end the list of inputs with a semicolon.

COMMENTS -------- While no actual comment card is specified, any text
occuring on a line after a semicolon should NOT be parsed. Therefore it is
possible to comment a data file by starting a line with a semicolon.

The use of this format is straight forward. In figure 15, a small example is given
of a problem in the CMU Data Set Format. The problem specified by it, was used
to test each addcriterion (§ 7.1.2).  In this research only problems with the IO
protocol were used. So no problems were the ouput of the current input may
depend on the previous input, were used.

6.2.2 The matrix file format

The programbackmain needs at least two parameters. Besides the name of the
datafile that contains the problem to be solved it needs the filename of a file con-
taining an adjacency matrix of the network. The file should start with the number
of units in the (initial) network and then for every unit a line with zeros or ones.

A zero on thei-th place on a row in the adjacency matrix means that there is no
connection between the unit and thei-th unit, a one means there is. The program
itself recognizes if two units are in the same module (if the i-th row is the same



Implementation Chapter 6

44

as the j-th row, i not equal toj and thei-th colum is the same as thej-th colum
then the unitsi andj are in the same module).

The second program (genalg_w) does not need an initial network structure,
since it creates network structures. It uses this structure internally to calculate the
fitness of a proposed network.

6.3 Parameters

6.3.1 Parameters of the test program (backmain )

Besides the two (needed) command line parameters (the filenames for the file
with the initial network structure and a CMU data file) it is possible to use a few
others withbackmain. The main ones are:

• -Cmode, wheremode is the criterion to use to add a node:moment,
sign, combi, relative orweight (§5.1.3). Additional you can
specify the program to look at the input (in), the output (out) or both
type of connections (inout). So if-Cinoutweight is used as

;XOR3,XOR2 Data Set

$SETUP

PROTOCOL: IO;
OFFSET: 0;
INPUTS: 3;
OUTPUTS:2;

IN [1] : BINARY;
IN [2] : BINARY;
IN [3] : BINARY;

OUT [1]: BINARY;
OUT [2]: BINARY;

$TRAIN

 +, - , + => - , +;

 -, - , - => - , -;

 -, - , + => + , -;

 -, + , - => + , +;

 -, + , + => - , +;

 +, - , - => + , +;

 +, + , - => - , -;

 +, + , + => - , -;

!E!O!F!

figure 15A simple example of the CMU data format. The first output is positive (+) when only
one of the inputs is positive. The second output is the XOR function of the first two inputs. (The
file starts in the left column and continues in the right column)

#nodes 7
0 0 0 1 1 0 0
0 0 0 1 1 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0

a) A modular network. b) The adjacency matrix of the network of fig. a

figure 16An example of the relation between a network structure and the (adjacency) matrix file.
Figure a is the graphical representation of the network specifiec by figure b. Input units have no
incoming connections and therefore the first three columns are filled with zeros (three inputs).
Output connections have no out going weights and thus the last two rows are ‘empty’.



Section 6.3.2 Parameters of the main program (genalg_w)

45

parameter for the program, then the sizes of a modules in- and out-
putvector is used as criterion to add a unit to that module.

• -Mmode, where mode is the way to install the new unit in the network:
init, keep, cascor ormean (§5.2).

• -i# with # the number of times the network is trained before a module
is located to add a unit to.

• -m# with # the shocksize of the changed module. That is the highest
amout of weight change the weights connected to this module get, when
an new unit is added to this module, If the install modeinit is used,
then this parameter is ignored.

• -n# with # the additional shocksize for all the modules.

• -r# with # the optional seed for the program. If it is omited a random
one is used. This makes it possible to reproduce testresults.

• -t# with # the maximum number of nodes to add.

6.3.2 Parameters of the main program (genalg_w )

The program first reads a simulation file, which contains all the necessary
parameters. This file is an ASCII file containing lines starting with the # symbol,
followed by a keyword. Parameters are separated by spaces and follow the key-
word. An example simulation file, containing all the valid keywords is shown in
figure 17.

Empty lines and lines starting with ## are ignored (usable as comment lines).
The first three keywords indicate the location of the files used during the simula-
tion and the names of both a control file and the population file. #size specifies
number of members in the population. #pmut, #pcross, #sites, #pinv and #pres-
sure influence the genetic operators. #steps (maximum number of rewriting
steps) and #axiom are used by the L-system. #datafile is the data file in the CMU
benchmark format (the problem) to be solved. If #matfile is present then every
time a ‘better’ structure is found, the topology of that network will be saved in
matrix file format in the file specified. If #netfile is presented (in the example
above it is viewed as comment) not only the structure but the weights of all the
connections as well will be saved in the specified file. #nrofiter tells the program
how many training cycles it has to perform on every (usefull) network structure.
If #trainingsec is present, then the #nrofiter parameter is neglected. It indicates
how may seconds the program may train a (usefull) network structure. When this
parameter is used, smaller network structures are favoured above larger ones,
because they can do more training cycles in an equal amount of time then the
larger ones. #addcriterion, is the criterion on which the decision is based to add a
unit to an already existing module (see §5.1.3). #insertmethod is the method
used update the network when the a module gets an additional unit (see §5.2).

Multiple computers can run the same simulation simultaneously. Each program
opens the main population file and creates a small local population file contain-
ing a specified number of newly created strings. Then each program processes



Implementation Chapter 6

46

these local members and when all have been assigned a fitness, the program
locks the main population file and replaces its local members into the main pop-
ulation usingRankSelect(). It then fills its local population file with new
strings and starts processing again.

6.4 Back-propagation

Boers and Kuiper wrote their implementation of the back-propagtion algorithm
in C++ [Boers92], because “an object oriented approach lent itself admirably to
the implementation of modular networks”. For this research their implementa-
tion is enriched with several features. The most important modifications deal
with the criteria to add and the installation of additional units1 to a module.
Another one is the possibility to define for each module the activation function to
be used. In this research only a standard sigmoid function was used, where the
activation of a unit can vary between 0 and 1.

The implementation of back-propagation uses three classes: network, module
and connection. The class network uses the others to implement the algorithm.

1.  In this resarch only criteria where developed to decide which module lacked computational
power, but not how much. So, although the implememtation makes it possible to add more units, if
a module lacks computational power, only one unit is added.

##simulation file for suns
##

#population /home/mborst/SUN/bpcmu/gen/spiral/population
#control    /home/mborst/SUN/bpcmu/gen/spiral/control
#resultfile /home/mborst/SUN/bpcmu/gen/spiral/results
#path       /home/mborst/SUN/bpcmu/gen/spiral/

#size       100

#pmut       0.01
#pcross     0.5
#sites      2
#pinv 0.7
#pressure   1.4

#axiom      A
#steps      6

#datafile   /home/mborst/SUN/testsamples/two-spirals.data
#matfile    /home/mborst/SUN/bpcmu/gen/spiral/best.mat
##netfile /home/mborst/SUN/bpcmu/gen/spiral/spiral.net
#nrofiter   500
#times      5
##trainingsec 2
#modshock   0.1
#netshock   0.1
#insertmethod cascor
#addcriterion inrelative

figure 17Example of a simulation file. This one was used to find a good topology for the two-
spiral problem. For the meaning of the various parameters see the surrounding text



Section 6.4 Back-propagation

47

There are three ways to create a network. The simplest way is to make two
arrays, one specifiying the size of each module, the other specifying the connec-
tions between the modules (figure 18). Another creation method uses the size of
and a pointer to an adjacency matrix (§6.2.2), to construct a network. The last
one creates a network, from a file containing an adjacency matrix (§6.2.2) or a
previously saved network.

unsigned mod[]={3,1,1,1,1,0};
// module sizes; 0 marks end.
conSpec con[]={{0,1},{0,2},{1,3},{2,4},{0,0}}
// connections; {0,0} marks end.
class network net(3,2,mod,con);
// First parameters are input and output size

a) A modular network; b) C++ code to create the network of a)

figure 18Creating a network. The simple network of a) is created by the C++ code of b). The first
array specifies the sizes of the modules. The first module receives number 0, the second 1, etc; a
zero marks the end. The second array specifies the connections between the modules; {0,0} marks
the end of the ‘list’ of connections.



Implementation Chapter 6

48



49

7 Experiments

This chapter presents some results acquired by the developed software. Most of
these are tests. These tests were used to see if the different ways to decide if a
module needs an additional unit make some sense. Some results of the test on
xor related problems will be shown and further the TC problem, ‘where’ and
‘what’ categorization, mapping of [0.0,1.0]2 values onto four categories and the
two spiral problem.

7.1 Some tests with XOR related problems

To be able to decide if the units are being assigned to the right modules, some
knowledge of what these ‘right’ modules are is (of course) necessary. In 1969 it
was proven that a network able to solve the XOR-problem should have a hidden
layer [Minsky69]. The standard XOR function (eXclusive OR) is a boolean
function of two variables, see TABLE 2.

If there are no direct connections between the input nodes and the output node
then the hidden layer should have (at least) two nodes, otherwise the network
will not be able to learn this problem. To see this, it is sufficient to see that if the
output node only receives information from one hidden unit then the problem
should already be solved at the hidden unit and then the XOR-problem would be
solvable without hidden units and since it is not, a network that wants to solve
the XOR-problem without connections between the input nodes and the output

TABLE 2. The XOR function

input1 input2 output

0 0 0

0 1 1

1 0 1

1 1 0



Experiments Chapter 7

50

nodes, should have a hidden layer consisting of at least two units. Using this
knowledge I developed a few simple related tests for the adding of nodes to
already existing modules.

7.1.1 The 2XOR test

This is a very simple extension of the XOR-problem. Instead of one there are
two output units. The two output units should both learn the XOR-problem. Two
starting networks where tried on this problem.

This problem was merely used as a fast indicator if the developed method
worked or not. If for example the program starts with the initial network of fig-
ure 19a, it should add a node to module B, because the subnetwork of module A
has the computational power to solve the XOR-problem. It is important to note,
however, that although the subnetwork of module A has the computational
power to solve the XOR-problem, it does not always succeed (see for example
[Rumelhart86]). The subnetwork C of figure 19b always learned the XOR-prob-
lem. All the methods passed the test of figure 19b (i.e. the methods indicated that
a node should be added to module D). In the next two tables (TABLE 3 and
TABLE 4) some results obtained with the network of figure 19a (the meaning of
the data is explained below) are displayed.

The data of these tables were obtained by running the stand alone program
backmain (see chapter 6). The program started with the network of figure 19a.
The methods used to determine which module needs an additional unit (in this
case module B) should be able to do so, in not that many training steps, because
if we want to use such a method in combination with the genetic algorithm,
extensive training of each net would result in a slow convergence. That, in com-
bination with the fact that the differences between the different installing meth-
ods are greater when the number of training cycels is small, are the reason why
the network was trained 250 times before the program made its decision to
which module it should add a node. After the addition the trainingset was pre-
sented another 250 times. Each experiment was done 3 times, each with its own
randseed and the tables show the average values. Therandseeds were used to be
able to compare the results. With the randseeds the random generator was initial-
ized so that all the selection methods started with the same initial weights. As
with all the other experiments the network was trained to produce an output of
0.9 when it should be true and with 0.1 if it should be false.

2

1

1 1

2

2

1 1

1

2

1 1

22

a) b) c)

figure 19Starting networks for the 2XOR test. Figures a and b show the initial structure of the
starting nets used to test if the algorithm adds a node to the right modules. c) is the desired
structure for a. This structure is capable of solving the 2XOR problem.

A B 2C D



Section 7.1.1 The 2XOR test

51

TheSelection method is the method used to determine which module should get
an additional unit (see §5.1.3). TheInstalling methodis the method used to
install the newly created module in the network (see §5.2). Thesize of Aand the
size of B denote the (average) size of modules A and B of figure 19a. So a size of
2.33 means that in two of the experiments the module had two units and 3 units
in only one experiment. TheSQE means the Sum sQuared Error (see §2.4.2).
The #cor. round means the number of correctly learned test cases (and training
cases with these experiments),round means that output values above 0.5 were
treated as 0.9 and output values lower than 0.5 were treated as 0.1. The first table
(TABLE 3) shows the results when the selection methods are used with the
INcoming weights of a module and the second table (TABLE 4) shows the
results when the selection methods use theOUTgoing weights of a module to
determine if its computational power is insufficient.

Except for thein-sign and thein-weight selection method, thein selection meth-
ods seem to work fine. TheCasCor method seems to be the best way to install a
new unit (it produces the Least Error) for this problem. Next is theMean-
method, closely followed by theKeep-method. It may come as no surprise that

TABLE 3. Results of the various methods on the 2XOR problems (IN)

Selection
method

Installing
 method

size
of A

size of
B SQE

#cor.
round

COMBI CASCOR 2.00 2.00 0.31 4.00

COMBI INIT 2.00 2.00 1.12 4.00

COMBI KEEP 2.00 2.00 0.34 4.00

COMBI MEAN 2.00 2.00 0.33 4.00

MOMENT CASCOR 2.00 2.00 0.31 4.00

MOMENT INIT 2.00 2.00 1.12 4.00

MOMENT KEEP 2.00 2.00 0.34 4.00

MOMENT MEAN 2.00 2.00 0.33 4.00

RELATIVE CASCOR 2.00 2.00 0.31 4.00

RELATIVE INIT 2.00 2.00 1.12 4.00

RELATIVE KEEP 2.00 2.00 0.34 4.00

RELATIVE MEAN 2.00 2.00 0.33 4.00

SIGN CASCOR 2.33 1.67 0.66 3.67

SIGN INIT 2.33 1.67 1.40 3.67

SIGN KEEP 2.33 1.67 0.68 3.67

SIGN MEAN 2.33 1.67 0.66 3.67

WEIGHT CASCOR 2.33 1.67 0.66 3.67

WEIGHT INIT 2.33 1.67 1.20 3.67

WEIGHT KEEP 2.33 1.67 0.66 3.67

WEIGHT MEAN 2.33 1.67 0.68 3.67



Experiments Chapter 7

52

(with 250 training cycles) theInit-method produced the biggest error (the infor-
mation learned during the training of the imperfect net was lost).

With theout selection methods (see TABLE 4), the results are quite different. All
the selection methods except theout-sign and theout-weight methods produced
only in two out of three trials the expected network structure. Theout-weight
method did not even produce the expected network once. Theout-sign method
produced in all three trials the desired structure. For the installing methods the
same can be concluded as before; theCasCor method is best, followed by the
Mean-method, theKeep-method and theInit-method, in that order.

7.1.2 The XOR3 XOR2 test

This XOR-based problem is comparable to the 2XOR problem. Now one of the
outputs has to learn the XOR function of three inputs and the other just the XOR
function of two of them. I mean by the XOR function of three inputs, the func-
tion presented in TABLE 5. The function results only in true if just one of the
inputs is true, otherwise the function returns false. This test is slightly more com-
plex than the previous one and I tried it because I expected that the 3XOR func-
tion as described above, would require a hidden layer of three units if there were
no direct connections between the input module and the output module, but the
results of the experiments (see below) proved me (terribly) wrong and thereby

TABLE 4. Results of the various methods on the 2XOR problem (OUT)

Selection
method

Installing
method

size
of A

size of
B SQE

#cor.
round.

COMBI CASCOR 2.33 1.67 0.4 3.67

COMBI INIT 2.33 1.67 0.98 3.67

COMBI KEEP 2.33 1.67 0.42 3.67

COMBI MEAN 2.33 1.67 0.41 3.67

MOMENT CASCOR 2.33 1.67 0.4 3.67

MOMENT INIT 2.33 1.67 0.98 3.67

MOMENT KEEP 2.33 1.67 0.42 3.67

MOMENT MEAN 2.33 1.67 0.41 3.67

RELATIVE CASCOR 2.33 1.67 0.4 3.67

RELATIVE INIT 2.33 1.67 0.98 3.67

RELATIVE KEEP 2.33 1.67 0.42 3.67

RELATIVE MEAN 2.33 1.67 0.41 3.67

SIGN CASCOR 2 2 0.31 4

SIGN INIT 2 2 1.12 4

SIGN KEEP 2 2 0.34 4

SIGN MEAN 2 2 0.33 4

WEIGHT CASCOR 3 1 1.09 3

WEIGHT INIT 3 1 1.33 3

WEIGHT KEEP 3 1 1.09 3

WEIGHT MEAN 3 1 1.09 3



Section 7.1.3 The 4XOR test

53

showed once again that to construct a ‘good’ network structure by hand is a com-
plicated task.

For these experiments I used the same approach as with the 2XOR problem:
three experiments for everyin and out selection method in combination with
every installing method, the training set was presented 250 times, before an addi-
tional unit was added and 250 times after the last one was added. As starting net-
work I used an input module (3 units), two ‘hidden’ modules (both of 1 unit) and
two output modules (see figure 20a). Each ‘hidden’ module is connected only to
its output module and there are no connections between the input module and the
output modules.

The results of these experiments are comparable with the ones obtained with the
2XOR test from the previous paragraph. If the selection method finds a ‘good’
structure, then theCascormethod results in the lowest error. All the selection
methods, except thein-weightand theout-weightmethods, found an appropriate
network structure to solve this problem (see figure 20).

7.1.3 The 4XOR test

In Chapter 3 I claimed that the standard Cascade Correlation Learning Architec-
ture strategy made too complex structures if the problem to be solved consists of
numerous independent problems. To verify this statement I tried the following
problem. There are 5 inputs and 4 outputs and the first output has to compute the

TABLE 5. The XOR function of three inputs.

input1 input2 input3 output

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 0

3

1 1

1 1

3

3 2

1 1

a) b) c)

xor3 xor xor3 xor

3

1 2

1 1

xor3 xor

figure 20Networks for the XOR3XOR2 problem, a) the starting network. b) the network that
all the selection methods except thein-weight and theout-weight methods produced. This net-
work is able to classify the test set correctly if rounding is used, but still has a large SQE. The
smallest error was obtained with the network of figure c).



Experiments Chapter 7

54

XOR function of the first two inputs, the second output has to compute the XOR
function of the second and the third output and so on. I tried to ‘solve’ this prob-
lem twenty times with the Cascade Correlation program1 and although it should
be possible to solve this with only 4 hidden units, Cascade Correlation produces
16 times a structure with 5 hidden units and four times with 6 hidden units.

7.2 TC problem

With the TC problem, a neural network should be able to recognize the letters T
and C in a 4x4 grid (see also [Rumelhart86]). Each letter, consisting of 3x3 pix-
els, can be rotated 0, 90, 180 or 270o and can be anywhere on the 4x4 grid. The
total number of input patterns is therefore 32 (there are 4 positions to put the 3x3
grid). The eight possible 3x3 patterns and a sample of such a pattern on a 4x4
grid are shown in figure 22. The sample pattern is one of the 32 input patterns for
the network. A black pixel was represented with an input value of 0.9, and white
pixels with an input value of 0.1. The output node was trained to respond with
0.1 for a T and with 0.9 for a C.

The method of Boers and Kuiper found the network of figure 23a. They com-
pared it with standard back-propagation networks (networks with one hidden

1.  The C code was re-engineered by Matt White of the code of Scott Crowder, who based his code
on the Lisp version of Scott Fahlman.

a) b) c)
figure 21Networks for the 4XOR problem. Since the network of figure a can solve the standard
XOR problem, the network of figure b can solve the 4XOR problem. Figure c is the smallest net-
work Cascade Correlation (CC) came up with. Note that a crossing of two lines indicate that the
corresponding units are connected (the bias unit is not drawn). The solution of CC has 75 con-
nections whereas the solution of figure b has only 20 and a hidden unit less.

input

hidden

output

figure 22The 8 letter orientations and one sample of an orientation in a 4x4 grid.



Section 7.3 ‘Where’ and ‘What’ categorization

55

layer). Their network outperformed the standard networks with a reasonable
margin (out of 50 trials their network did classify after 250 training cycles the
test set in 45 cases out of 50 where the best of the standard nets (one hidden layer
with 6 units) did classify the test set only in 32 cases.

In this research the network of figure 23b was used as a starting network. If
Keep, Mean or CasCorwere used as installing method than after adding one or
two units, the network classified the patterns correctly, independently of the
selection method! If the network was trained500 times instead of250 times, the
same can be said over theInit method: all the selection methods produced struc-
tures that learned the network after one or two units had been added. The starting
structure of figure 23b is almost a good enough structure. When I allowed the
network to keep adding modules even after the previous structure had solved the
problem, a large variety of structures were produced. Most of the times first one
or two units were added to one of the modulesC or D and after that three or four
units were added to the modulesA or B (see figure 23b). Two of the most suc-
cessful structures (structures that produced the least error) are (numbers indicate
the number of hidden units in moduleA, B, C andD respectively) 1-5-1-3, 4-1-1-
5 and 3-3-3-1).

7.3 ‘Where’ and ‘What’ categorization

Another problem that was tried by Boers and Kuiper [Boers92] was proposed by
Rueckl et al. [Rueckl89] where, like the TC problem, a number of 3x3 patterns
had to be recognized on a larger grid. With this problem, there are 9 patterns (fig-
ure 24a), which are placed on a 5x5 grid. Besides recognizing the form of the
pattern, the network should also encode the place of the pattern on the larger
input grid (of which there are 9 possibilities). Rueckl et al. conducted these
experiments in an attempt to explain why in the natural visual system ‘what’ and
‘where’ are processed by separate cortical structures (e.g. [Livingst88]). They
trained a number of different networks with 25 input and 18 output nodes, and
one hidden layer of 18 nodes. The 18 output nodes were separated in two groups
of 9: one group for encoding the form, one group for encoding the place. It
appeared that the network learned faster and made less mistakes when the hidden
layer was split and appropriate separate processing resources were dedicated to
the processing of what and where (see figure 24). Of importance was the number

figure 23Network structures for the TC problem: a) was produced by the algorithm of Boers and
Kuiper. Note that the structure only uses 13 of the 16 inputs. b) the starting network used with this
experiment.

a)

16

1 1

1 1

1

A B

C D

b)



Experiments Chapter 7

56

of nodes allocated to the form and place system respectively. The optimal net-
work found is shown in figure 24b, where 4 nodes are dedicated to the process-
ing of place and the remaining 14 nodes to the more complex task of processing
form. Analysis of these results by Rueckl et al. revealed that the processing of
what and where strongly interfere in the un-split model (one hidden layer of 18
nodes).

In this research this problem was tried to see if the proposed selection methods
(criteria) were able to find the ‘optimal’ distribution of units between the two
hidden units if it was forced to use them. To do so I used the starting network of
figure figure 24c and tried all the selection methods combined with theInit
installation method1. Every selection method had to solve this problem 4 times.
For every experiment the same 4 random initializing values orrandseeds were
used, to be able to compare the results.

When the network was trained500 times all the selection methods except thein-
sign and theout-sign methods, produced network structures that learned the
problem within500 training cycles. The networks produced by thein-weight and
theout-weight criterion tended to be somewhat larger and performed a bit worse
than the one produced by thein- andout-, combi, moment andrelative criteria.

Although in some trials these criteria came up with the structure found by
Rueckl et al. (see figure 24b), they produced more often a network that has a hid-
den module of 13 units for the ‘what’ part and 6 units for the ‘where’ part.
Remarkable is that all the methods that performed well started with adding 3
units to the hidden module for the ‘where’ part. Then the ‘path’ to the ideal
structure differs for the different trials and methods, but in most cases the
‘where’ part still got a fourth additional unit before the ‘what’ part got its first
additional unit. A possible explanation for this is that when both the hidden mod-
ule for the ‘what’ part and the ‘where’ part still have one unit, a higher error
reduction can be obtained by adding a unit to hidden module of the ‘where’ part.
It is interesting to see the path the different methods follow. To accomplish that,
every network between 1 unit for both the ‘where’ and the ‘what’ module and 18
for both the ‘where’ and the ‘what’ module were trained 10 times with 300 train-
ing cycles and the average SQE was plotted (see figure 25). Another remarkable

1.  TheInit method was used to ensure that the performance of the network was a cause of the
structure and not caused by the ‘extra’ training the other weights got after adding an additional
unit.

14 4

25

wherewhat

input

9 9 9 9

1 1

25

figure 24 The ‘what’ and ‘where’ problem. a) the 9 patterns. b) the optimal network
according to Rueckl et al [Rueckl89]. c) the starting network used forbackmain (see
chapter 6).

a) b) c)



Section 7.4 Mapping problem

57

fact was that when I repeated this experiment but trained the network5000 times
instead of500 times the results where almost exactly the same, although the
SQE was generally a bit (but not much) smaller.

7.4  Mapping problem

This problem is more difficult for standard back-propagation networks with one
or no hidden layer. The original problem was one of the experiments done by
Van Hoogstraten [Hoog91] in order investigate the influence of the structure of
the network upon its ability to map functions. In the experiment, he created a
two-dimensional classification problem with an input space of . From
this space 100 (10 x 10) points  are assigned to four classes (he used col-
ours, Boers and Kuiper used symbols). He constructed two mappings, where the
second was derived from the first by ‘misclassifying’ three of the 100 points.
The second mapping is shown in figure 26a. The misclassified points are

,  and  and can be seen as noise. Although Van
Hoogstraten wanted networks that were not disturbed by that noise (and there-
fore ignored them), Boers and Kuiper were interested in networks that are able to
learn all points correctly.

Van Hoogstraten tried a number of networks, all of which had two input nodes
(for x and y respectively) and four output nodes, one for each symbol. Both a
network with a hidden layer of 6 nodes as a network with a hidden layer of 15
nodes were more or less able to learn the first mapping (without the noise), but
failed to learn the three changed points of the other mapping. Another network
with a hidden layer of 100 nodes was able to learn one of the misclassified
points, but not all of them. Only when he used a network with three hidden lay-
ers of 20 nodes each (with 920 connections!), all three misclassified points were
learned correctly. Boers and Kuiper tried this experiment hoping their method
would find a small, modular network that was able to learn the second mapping
correctly. It took six days and 11 Sun Sparc4 workstations to converge to the net-
work shown in figure 26b. It was found after roughly 85,000 string evaluations.

0

5

10

150
5

10
15

20
30
40
50
60
70
80

figure 25The average error per structure. The ‘where’ axis denotes the number of nodes in the
hidden layer of the associated subnetwork. The ‘what’ axis shows that number for its subnet-
work. The SQE axis denotes the average error after 300 training cycles over 10 trails.

what

where

SQE

0 1,[ ] 2

x y,( )

0.4 0.4,( ) 0.5 0.0,( ) 0.7 0.6,( )



Experiments Chapter 7

58

In comparison to the 2-20-20-20-4 network used by Van Hoogstraten, the net-
work from figure 26b had a consistently higher fitness and took less time to train
because the network contains only 146 connections instead of the 920 connec-
tions of the other network. After extended training, the network from figure 26b
had an error of 14, versus 74 for the 2-20-20-20-4 network.

When I tried this problem I used (again) the ideal network structure of Boers and
Kuiper and brought the number of units in a hidden module back to one. The
same conclusion as from the other experiments could be drawn with the excep-
tion of the in-sign and theout-sign selection methods. These methods were in
this experiment the best, thein-sign method came three times out of 4 trials up
with a 2-2-13-4 (the input is connected to both hidden layers, the connections
between the modules is the same as with the network of figure 26b) network that
classified all the patterns correctly. The error was on average 13.5. Surprisingly
enough in a lot of trials there were networks with substantial lower errors
(around 4) but these networks qualified ‘only’ 98 or 99 out of the 100 patterns
correctly.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

figure 26The mapping problem. a) the second mapping as introduced by Van Hoogstraten. b)
the ‘optimal’ structure found by the algorithm of Boers and Kuiper [Boers92].

a)

2

5

13

4

b)



59

8 Conclusions and
recommendations

8.1 Conclusions

One of the great advantages of neural networks embodies implicit also a great
disadvantage: since you do not have to teach these systems exactly how to solve
a problem, it is very hard to tell how these networks come to their solutions. Not
only for the scientific community but also for the people who are confronted
with the solutions provided by neural networks, it would be interesting to under-
stand a little more about how these neural networks function.

One of the most difficult tasks (for a human) is to determine if and how the struc-
ture of an existing neural network should be changed, in order to improve its per-
formance. The ‘logical’ way to tackle this problem is to use a computer to solve
this problem. The scientific community tries very hard to think of useful strate-
gies. Some use methods that modify the structure of a neural network during
training (see chapter 3, for example [Fahlman90] [Frean90]), others use the
example of evolution in nature to produce ‘good’ artificial neural network struc-
tures to solve a given problem (see chapter 4, for example [Boers92] [Gruau93]).
In general the methods for finding ‘good’ structures during training produce
problem independent structure types and the ones for finding ‘good’ structures
by an evolutionary approach take too much time to run effectively on large prob-
lems.

The method presented by Boers and Kuiper [Boers92] uses arecipe. Instead of
coding all the units and their connection, they coded just a set of rules that pro-
duces amodular network stucture.Their results showed that modular network
structures learn quicker and better then non modular networks for a couple of
problems, but it still takes their algorithm a lot of time to come up with ‘good’
structures for larger problems.

Adding a local optimization method can speed up a genetic algorithm (see for
example [Hinton87]). The objective of this research was to find a local optimiza-
tion method that could be used with the algorithm of Boers and Kuiper. The opti-



Conclusions and recommendations Chapter 8

60

mization method that resulted from this research adds a unit to an already
existing module to help that module, and thus the network structure as a whole,
to overcome computational deficiencies. A few criteria to see if a module lacked
computational power were developed (see §5.1) and tested with a couple of
ways to treat the weights of the existing network after adding a unit to a module
(see §5.2). The experiments showed that theCasCor method was the best way to
install a new unit in the network. The criteria where applied on theincoming
weights and on theoutgoing weights. Those criteria based on the incoming
weights produced in most cases far better results then the same criteria based on
the outgoing weights. Of those criteria thein-relative, in-moment and thein-
combicriteria where the best to use to decide which module should get an addi-
tional unit. Thein-sign criterion was too instable (in some experiments it pro-
duced unacceptable results, in other experiments it produced very good results)
and thein-weight criterion is not usable, only in a few trials it produced accept-
able results.

8.2 Further research

During this research only one method of locally optimizing a modular neural
network structure was tried. Although there were good reasons to do this (local
optimization should be fast and local), it may still be interesting to try other
approaches. One could for example try to find a criterion that indicates if two
unconnected modules should be connected. Besides adding computational
power, one could try to remove computational power as well, although that can
be ‘dangerous’ in a network that has not yet reached a (local) minimum. Danger-
ous because maybe with the connection it could solve the problem. When com-
bining the local optimization method with the algorithm of Boers and Kuiper it
takes too long to let all the structures train until they reach a (local) minimum.

Further one could try, of course, other criteria to decide if a module lacks compu-
tational power. For example one could look at the total amount of error within a
module to decide if it has a computational deficiency or not. In other parts of the
algorithm (see figure 27) one could also do a lot of research. Especially the GA.

Genetic Algorithm

L-Systems

Neural Network

Trained Neural Network

figure 27An overview of the method of creating a trained neural network with the algorithm of
Boers and Kuiper.



61

References

[Baldwin1896] J.M. Baldwin; ‘A new factor in evolution’. InAmerican Naturalist, 30:441–451,
1896.

[Belew89] R.K. Belew; ‘When both individuals and populations search: Adding simple
learning to the Genetic Algorithm’. In3th International Conference on Genetic
Algorithms, Morgan Kaufmann, 1989.

[Bloom88] F. Bloom and A. Lzerzon;Brain, Mind and Behavior. Freeman, 1988.

[Boers92] E.J.W. Boers and H. Kuiper;Biological metaphors and the design of modular
artificial neural networks. Master’s thesis, Leiden University, 1992.

[Cun90] Y. le Cun, J.S. Denker and S.A. Solla; ‘Optimal brain damage’. In D. Touretzky,
editor,Advances in Neural Information Processing Systems 2, 598–605, Morgan
Kaufmann Publishers, 1990.

[Darwin1859] C. Darwin;The Origin of Species. John Murray, 1859.

[Dawkins86] R. Dawkins;The Blind Watchmaker.Longman, 1986. Reprinted with appendix
by Penguin, London 1991.

[Fahlman88] S.E. Fahlman; ‘Faster-Learning Variations on Back-Propagation: An Empirical
Study’. InProceedings of the 1988 Connectionist Models Summer School, Mor-
gan Kaufmann, 1988.

[Fahlman90] S.E. Fahlman and C. Lebiere; ‘The Cascaded-Correlation Learning Architec-
ture’. InAdvances in Neural Information Processing Systems II, 524–532, Mor-
gan Kaufman Publishers, 1990.

[Fahlman91] S.E. Fahlman and C. Lebiere;The Cascaded-Correlation Learning Architecture,
CMU-CS-90-100, School of Computer Science Carnegie, Mellon University,
Pittsburgh, PA 15213, 1991.

[Frean90] M. Frean; ‘The Upstart Algorithm: A method for Constructing and Training
Feedforward Neural Networks’. InNeural Computations, 2, 198–209, 1990.



References

62

[Freeman91] J.A. Freeman and D.M. Skapura;Neural networks: algorithms, applications and
programming techniques. Addison-Wesley, Reading, 1991.

[Fritzke91] B. Fritzke; ‘Let it grow — Self-Organizing feature maps with problem depen-
dent cell structures’. InProc. of the ICANN-91 Helsinki, 1991.

[Fritzke93] B. Fritzke;Growing Cell Structures — A Self-organizing Network for Unsuper-
vised and Supervised Learning. TR-93-026, 1993.

[Gazzaniga89] M.S. Gazzaniga; ‘Organization of the human brain’. InScience, 245, 947-952,
1989.

[Goldberg89] D.E. Goldberg;Genetic algorithms in search, optimization and machine learn-
ing. Addison-Wesley, Reading, 1989.

[Gruau92] F. Gruau; ‘Cellular encoding of genetic neural network’. TR 92.21, Laboiratoire
de l’Informatique pour le Parallélisme, Ecole Normale Supérieure de Lyon,
1992.

[Gruau93] F. Gruau and D. Whitley;Adding learning to the cellular developmental of neu-
ral networks: Evolution and the Baldwin effect. In Evolutionary Programming,
1993.

[Hanson89] S.J. Hanson and L.Y. Pratt; ‘Comparing Biases for Minimal Network Construc-
tion with Back-propagation’. InAdvances in Neural Information Processing Sys-
tems 1 (NIPS 88), 177–185, San Mateao, California, Morgan Kaufmann, 1989.

[Happel92] B.L.M Happel; Architecture and function of neural networks: designing modular
architectures.Internal Report, Leiden University, 1992.

[Heemsk91] J.N.H. Heemskerk and J.M.J. Murre; ‘Neurocomputers: parallelle machines voor
neurale netwerken’. InInformatie, 33-6, 365-464, 1991.

[Hinton87] G.E. Hinton and S.J. Nowlan; ‘How learning can guide evolution’. InComplex
Systems, 1: 495–502, 1987.

[Hoehfeld91] M. Hoehfeld and S.E. Fahlman;Learning with Limited Numerical Precision
Using the Cascade-Correlation Algorithm, CMU-CS-90-130, School of Com-
puter Science Carnegie, Mellon University, Pittsburgh, PA 15213, 1991.

[Hoog91] R.J.W. van Hoogstraten; ‘A neural network for gentic facie recognition’.MSc
Thesis, Leiden, 1991.

[Koch05] H. von Koch; ‘Une methode geometrique elementaire pour l’etude de certaines
questions de la theorie des courbes planes’. InActa mathematica, 30, 1905.

[Kohonen82] T. Kohonen; ‘Self-Organized Formation of Topologically Correct Feature
Maps’. InBiological Cybernetics, 43, 59–66, 1982.

[Linden68] A. Lindenmayer; ‘Mathimatical models for cellular interaction in development,
parts I and II’. InJournal of theoretical biology, 18, 280–315, 1968.

[Livingst88] M. Livingstone and D. Hubel; ‘Segregation of form, color, movement and depth:
anatomy, physiology and perception. InScience, 240, 740–749, 1988.

[Marchand90] M. Marchand, M. Golea and P. Ruján; ‘A Convergence Theorem for Sequential
Learning in Two-Layer Perceptrons’.Europhysics Letters, 11, 487–492, 1990.

[Mézard89] M. Mézard and J-P Nadal; ‘Learning in Feedforward Layered Networks: The
Tiling Algorithm’. In Journal of Physics A, 22, 2191–2204, 1989.



References

63

[Minsky69] M. Minsky and S. Papert;Perceptrons. MIT Press, Cambridge, MA, 1969.

[Moody88] J. Moody and C. Darken; ‘Learning with Localized Receptive Fields’. In Pro-
ceedings of the 1988 Connectionist Models Summer School, 133–143, 1988.

[Mozer89] M. Mozer and P. Smolensky; ‘Skeletonization: A technique for trimming the fat
from a network via relevance assessment’. InAdvances in Neural Information
Processing Systems, 107–115, Morgan Kaufmann Publishers, 1989.

[Nguyen93] H. Nguyen;Automatic Determination of Neural Network Architecture, MSc
Thesis, Univeristy of Leiden, 1993.

[Omlin93] C.W. Omlin and C.L. Giles;Pruning recurrent Neural Networks for Improved
Generalization Performance. Revised Technical Report No. 93-6, April 1993,
Computer Science Department, Rensselaer Polytechnic Institute, Troy, N.Y.,
1993.

[Parker85] D.B. Parker;Learning logic. MIT Press, Cambridge, MA, 1985.

[Prunsik89] P. Prunsikiewicz and J. Hanan; ‘Lindenmayer Systems, Fractals and Plants’.
Springer-Verlag, New York, 1989.

[Prunsik90] P. Prunsikiewicz and A. Lindenmayer; ‘The algorithmic beauty of plants’.
Springer-Verlag, New York 1990.

[Rueckl89] J.G. Rueckl, K.R. Cave and S.M. Kosslyn; ‘Why are “what” and “where” pro-
cessed by separate cortical visual systems? A computational investigation’. In
Journal of cognitive neuroscience, 1, 171–186, 1989.

[Rumelhart86] D.E. Rumelhart and J.L. McClelland (Eds.);Parallel distributed processing. Vol-
ume 1: Foundations. MIT Press, Cambridge, MA, 1986.

[Simon92] N. Simon, H. Corporaal and E. Kerckhoffs;Variations on the Cascade-Correla-
tion Learning Architecture for Fast Convergence in Robot Control, Delft Uni-
versity of Technology, Electrical engineering Department, 1992.

[Szilard79] A.L, Szilard and R.E. Quinton; ‘An interpretation for D0L-systems by computer
graphics’. InThe Science Terrapin, 4, 8–13, 1979.

[Werbos74] P.J. Werbos; ‘Beyond regression: new tools for prediction and analysis in the
behavioral sciences’. Unpublished Ph.D. thesis, Harvard University, Cambridge,
MA, 1974.

[Whitley89] D. Whitley; ‘The GENITOR algorithm and selection pressure: why rank-based
allocation of reproductive trials is best’. InProceeding of the 3rd International
Conference on Genetic Algorithms and their applications (ICGA), 116–121, J.D.
Schaffer (Ed.), Morgan Kaufmann, San Mateo CA, 1989.


