
Biological metaphors
and the design of modular
artificial neural networks

Master’s thesis of Egbert J.W. Boers and Herman Kuiper

Departments of Computer Science and
Experimental and Theoretical Psychology

at Leiden University, the Netherlands

Preface

This thesis is the result of a research done at the departments of Computer Science and
Experimental and Theoretical Psychology at Leiden University, the Netherlands. It is a part of
the project ‘Architecture and Function of Modular Neural Networks’, done at the department of
Experimental and Theoretical Psychology by Bart L.M. Happel1.

The research comprised four parts: first, extensive reading was done to get familiar with the
areas of neural networks, genetic algorithms and formal grammars. Secondly, new methods were
developed to design modular structures, which were then transformed into software with which
a number of experiments were done. Finally, this thesis was written, together with manuals for
the software developed.

We wish to thank Bart Happel for his stimulating input and excellent suggestions whenever we
got stuck. Also, we wish to thank Ida Sprinkhuizen-Kuyper for her guidance throughout the
project. Finally, we thank the numerous proofreaders who helped to write (hopefully) a faultless
thesis and all the Sun users at the Computer Science department who had to put up with our
simulations.

Leiden, august 1992

Egbert Boers
Herman Kuiper

1 His work is sponsored in part by the Dutch Foundation for Neural Networks.

iv

Abstract

In this thesis, a method is proposed with which good modular artificial neural network structures
can be found automatically using a computer program. A number of biological metaphors are
incorporated in the method. It will be argued thatmodular artificial neural networks have a
better performance than their non-modular counterparts. The human brain can also be seen as
a modular neural network, and the proposed search method is based on the natural process that
resulted in the brain: Genetic algorithms are used to imitate evolution, and L-systems are used
to model the kind ofrecipesnature uses in biological growth.

A small number of experiments have been done to investigate the possibilities of the method.
Preliminary results show that the methoddoesfind modular networks, and that those networks
outperform‘standard’ solutions. The method looks very promising, although the experiments
done were too limited to draw any general conclusions. One drawback is the large amount of
computing time needed to evaluate the quality of a population member, and therefore in
chapter 9 a number of possible improvements are given on how to increase the speed of the
method, as well as a number of suggestions on how to continue from here.

vi

Contents

Preface iii

Abstract v

Contents vii

1 Introduction 1
Research goals 1
Neural networks 2
Genetic algorithms 3
L-systems 3
Overview 3

2 Neural Networks 5
The human brain 5
Artificial intelligence 6
The neuron 6
Neurons connected: the brain 7
Artificial neurons 8
Artificial neural networks 9
Backpropagation 9
A simple example: exclusive OR 12
Selecting the parameters for backpropagation 13
Problems with backpropagation 15
Modular backpropagation 16
Implementation 19

viii Contents

3 Genetic Algorithms 21
Overview 21
Selection 22
Crossover 23
Inversion 23
Mutation 23
Building blocks 24
Implicit parallelism 26
Applications 26
Implementation 28

4 L-systems 29
Biological development 29
Fractals 29
Simple L-systems 30
Bracketed L-systems 31
Context-sensitive L-systems 31
Implementation 32

5 The search for modularity 35
Modularity in nature 35
Modularity in the brain 36
Modularity in genetics 38
How modularity is coded 39
Imitating the evolution of the brain 40
Using graph grammars as recipes 41
Combination of metaphors 42

6 The grammar and its coding 43
From network to string 43
Example networks 44
Absolute pointer strings 44
Binary table strings 45
Relative skip strings 47
Production rules 49
Coding of production rules 50
Example 52
Repair mechanism 53

7 Implementation 55
Environment 55
Extended GenLIB 56
New genetic functions 59
Chromosome to grammar 60
L-system 61
Backpropagation 62
Main program 65

ix

8 Experiments 67
Exclusive OR (XOR) 67
TC problem 68
Handwritten digit recognition 69
‘Where’ and ‘what’ categorization 70
Mapping problem 70

9 Conclusions and recommendations 75
Conclusions 75
Further research 76

A Derivation of backpropagation 83

B Entropy of neural networks 87
Learning as entropy reduction 87
Definition of entropy 88

Addendum 89

References 91

x Contents

1 Introduction

‘Your quote could have been here.’

Modularity1 is everywhere. From astrophysics to quantum mechanics, one can see modularity.
In biology, the growth and development of living organisms is modular. The human brain also
is probably highly modular. Modularity in the brain can be identified at many different levels,
physical as well as functional. In this thesis, it will be argued that when modelling the brain
using artificial neural networksin order to create so-calledintelligent software, exploiting
modular design principles will result in better networks. Also, it will be shown that using
techniques based on biologicalgeneticsand growth to search for optimal neural network
topologies can result in an all-round search for good topologies for a variety of problems.

Research goals

Preliminary results show that using modularity when designing artificial neural networks can
improve their performance. As will be set forth in chapter 2, the topology of a network has a
large influence on the performance of that network but, so far, no method exists to determine
the optimal topology for a given problem because of the high complexity of large networks. The
(human) brain is a large scale neural network based on modularity and it might therefore be a
good idea to do areverse engineeringof the genetic search and development processes that led
to the brain. The genetic search in nature resulted in the usage of a kind ofrecipes(instead of
blueprints) to describe the development of the organism.

The goal of this research was to develop a method with which good neural network topologies
could be found using a computer. Because of the excellent results found in nature, we strived
to keep our method asbiological plausibleas possible, so the found topologies should have a

1 In this thesis, modularity is defined as a subdivision in identifiable parts, each with its own purpose or function.

2 1 Introduction

high degree of modularityand should be found using genetic search and recipes instead of
blueprints. L-systems (which can be seen as a kind of recipe) are able to encode repeated
patterns (modules) with a complex internal structure efficiently. Genetic algorithms (used to
simulate evolution) and L-systems are treated in chapters 3 and 4. Chapter 5 provides a more
thorough treatment of modularity in nature and also discusses the usefulness of this principle for
our research.

The thesis is divided in three parts: in the first part (chapters 2 through 4) introductions are given
to the three main disciplines used in this research. The second part (chapters 5 through 7), gives
a more thorough treatment of the ideas behind this research and the software developed. Finally,
in the last part, (chapters 8 and 9), the results of a number of experiments are reported and
recommendations for further research are given. In the remainder of this chapter the used
disciplines are briefly introduced.

Neural networks

Ever since computers were invented, humans have tried to imitate (human) intelligent behaviour
with computer programs. This is not an easy task because a computer program must be able to
do many different things in order to be called intelligent. Also, the meaning of the word
intelligenceis somewhat unclear, because many different definitions exist.

The methods used to achieve artificial intelligence in the early days of computers, like rule based
systems, never achieved the results expected and so far it has not been possible to construct a
set of rules that is capable of intelligence. Becausereverse engineeringproved to be successful
in many other areas, researchers have been trying to model the human brain using computers.
Although the main components of the brain,neurons, are relatively easy to describe, it is still
impossible to make an artificial brain that imitates the human brain in all its detailed complexity.
This is because of the large numbers of neurons involved and the huge amount of connections
between those neurons. Therefore large simplifications have to be made to keep the needed
computing power within realistic bounds.

An artificial neural network consists of a number ofnodeswhich are connected to each other.
Each of the nodes receives input from other nodes and, using this input, calculates an output
which is propagated to other nodes. A number of these nodes are designated asinput nodes (and
receive no input from other nodes) and a number of them are designated asoutputnodes (and
do not propagate their output to other nodes). The input and output nodes are the means of the
network to communicate with the outside world.

There are a number of ways totrain the network in order to learn a specific problem. With the
method used in this research,backpropagation, supervised learningis used to train the network.
With supervised learning, so-calledinput/output pairsare repeatedly presented to the net. Each
pair specifies an input value and the output that the network is supposed to produce for that
input. To achieve an internal representation that results in the wanted input/output behaviour, the
input values are propagated through the nodes. Using the difference between the resulting output
and the desired output, an error is calculated for each of the output nodes. Using these error
values, the internal connections between the nodes are adjusted. This process is described in
detail in chapter 2.

Neural networks 3

Genetic algorithms

Darwinian evolution, where fit organisms are more likely to stay alive and reproduce than non-fit
organisms, is modelled bygenetic algorithms. A population of strings is manipulated, where
each string can be seen as achromosome, consisting of a number ofgenes. These genes are used
to code the parameters for a problem for which a solution has to be found. Each string can be
assigned afitness, which indicates how good the string is as solution for the problem. As with
natural selection and genetics, where the chance of reproduction for an organism (and thus its
genes) depends on its ability to survive (its fitness), the strings used by the algorithm reproduce
proportional to their fitness. A new generation is created by selecting and recombining existing
strings based on pay-off information (their fitness) using a number of genetic operators. The
most commonly used operators areselection, crossover, inversion and mutation. They are
described in detail in chapter 3. In that chapter also a more thorough treatment is provided of
the basic mechanisms of genetic search as implemented by a genetic algorithm.

L-systems

The development of living beings is governed by genes. Each living cell contains genetic
information (thegenotype) which determines the way in which final form of the organism will
develop (thephenotype). This genetic information is not a blueprint of that final form, but can
be seen as arecipe. This recipe is followed not by the organism as a whole, but by each cell
individually. The shape and behaviour of each cell depends on the genes from which information
is extracted and this in turn depends on which genes have been read in the past and on
influences from the environment of all the neighbouring cells. So the development is solely
governed by the local interactions between elements that obey the same global rules. In order
to model this development in plants, the biologist Aristid Lindenmayer developed a mathematical
construct, calledL-systems. By using so-calledrewriting rules, with an L-system, a string can
be rewritten into another string by rewriting all characters in the stringin parallel into other
characters. The application of a rewriting rule depends on which rules have been applied in the
past and on the neighbouring characters of the character to be rewritten. Chapters 4 and 6
describe the standard L-systems and the L-system used during this research.

Overview

The method that resulted from the combination of the three techniques can be described as
follows. When looking for a network structure that is able to learn a task, a genetic algorithm
is used to produce production rules for an L-system. These rules result in a network structure.
That structure can then be evaluated by looking at the extent in which the network can learn the
task. This results in a fitness which is coupled to the original genetic coding of the production
rules. The fitness enables the genetic algorithm to evolve a set of production rules that generate
an optimal network structure.

4 1 Introduction

2 Neural Networks

‘The human brain is like an enormous fish. It is flat and slimy
and it has gills through which it can see. Should one of these
gills fail to open, the messages transmitted by the lungs don’t
reach the brain. It is as simple as that.’

— Monty Python on a disease calledhooping cough

‘We animals are the most complicated things in the known universe.’ This quote from the
biologist Richard Dawkins [DAWK86] (p.1) assents the complexity of the problems seen in
biology. The brain is perhaps the most complex organ of an animal, particularly in humans.
Discovering how the brain works, and how it is able to be intelligent, is probably the most
challenging task ever.

The human brain

The human brain is a network of a huge number of interconnectedneurons. Each neuron has a
very complex bio-electrical and bio-chemical behaviour, though its basic computational
principles are believed to be very simple: it adds its input and performs a threshold operation.
In other words: every neuron is capable of adjusting its output as a relatively simple function
of its input. How can it be that such a rather simple basic unit is able to generate such a
complex behaviour? The main key to the answer is the cooperation and interaction between
neurons. Although they work relatively slow compared to modern computers, there are a lot of
them and they all operate in parallel. This combined effort of these large numbers of neurons
is what is believed to be the origin of human intelligence. What intelligence means, and what
it is, is still unknown. But so far we humans seem to be the only ones who, in the future, may
be able to provide the answer1. There is little doubt that if we discover the origin of intelligence,
we will owe it to the wonderful organ in our head.

1 An interesting question is whether the human brain is capable to understand its own functioning. Gödel’s theorem
suggests that there may be ‘ideas’ which can not be understood by the brain, assuming the brain can be described as
a formal system... (see e.g. [HOFS79] and [PENR89])

6 2 Neural Networks

Artificial intelligence

The artificial intelligence community has for a long time been trying to imitate intelligent
behaviour with computer programs. This is not an easy task because a computer program must
be able to do many different things in order to be called intelligent. Something that has caused
a lot of confusion is the definition of artificial intelligence: the Webster’s Dictionary alone, for
example, gives 4 definitions of artificial intelligence:

1. An area of study in the field of computer science. Artificial intelligence is
concerned with the development of computers able to engage in human-like thought
processes such as learning, reasoning, and self-correction.

2. The concept that machines can be improved to assume some capabilities normally
thought to be like human intelligence such as learning, adapting, self-correction, etc.

3. The extension of human intelligence through the use of computers, as in times past
physical power was extended through the use of mechanical tools.

4. In a restricted sense, the study of techniques to use computers more effectively by
improved programming techniques.

Allan Turing has proposed a test that should be satisfied in order to speak of artificial
intelligence. In this test, known as theTuring Test[TURI63], a person, say Q, is placed in a
room with a terminal connected to two other sites. At one of the two terminals a person is
situated and at the other a computer. By asking questions, Q must determine at which of the two
terminals the computer is situated. Turing is willing to accept the computer program as being
intelligent if Q fails. Of course the set-up of the test should make it impossible to decide who
is who by measuring response-time etcetera. The Turing Test is disputed because some believe
it is possible to deceive Q without having an intelligent program.

The traditional ways of designing intelligent systems, like rule-based systems, never achieved
the results that were expected at the time people started to realize that computers could be used
for more than just calculating numbers. So far it has not been possible to construct a set of rules
that is capable of intelligence. There are some expert systems able to compete on a specialist-
level in very narrow areas, but there is no program yet that is capable of functioning in everyday
situations.

The problems encountered with the more traditional methods urge more and more researchers
to look for other approaches. A principle that has proved to be effective on many other occasions
is reverse engineering(looking for something that works, trying to understand it and then rebuild
it). In this particular case, it means looking at the natural brain and using its processing
principles in a computer program.

The neuron

Theneurons(the nerve cells) in the brain are the cells responsible for our thinking. Because all
artificial neural networks are based on the way neurons work, it is important to have an idea of
their functioning. The neuron, as shown in figure 1, can be divided in three functional parts: the
dendrites, thebodyand anaxon. The dendrites are the information collectors of the neuron. They
receive signals from other neurons, and transmit those signals in the form of electrical impulses
to the cell body. The body collects all these impulses and if the summed charge of all these
impulses exceeds a certain threshold, the cell body activates the axon. The axon transmits this

The neuron 7

activation, again as an electrical impulse, to the dendrites of other cells. To enable the brain to

Figure 1. The neuron.

change its internal processing and learn, the influence of one neuron to another is thought to be
variable. The learning takes place at the junction of the axons and dendrites. Each axon splits
into a number of these junctions, calledsynapses. Each synapse responds to the electrical
impulse in an axon by releasing certainneurotransmitters. These chemical substances, when
reaching the dendrite, cause the electrical activity that is collected at the body of the receiving
cell. Changes in this process causes learning and development.

Neurons connected: the brain

The brain is made up of around 1011 neurons. It should be clear that it is quite impossible to
fully connect each neuron with each other neuron. It has been estimated that a full connectivity
would result in a head with a 10 kilometre diameter, because of the huge amount of wiring
[HEEM91]. In order to reduce the amount of connections, the brain is divided in different
modules at several levels. The clearest division of the brain is the division in a right and a left
half, which function to a large extent independently. Instead of being fully connected, they are
connected by a relatively small amount of connections through a structure called thecorpus
callosum. At a smaller scale the brain is divided in a number offunctional areas, for example
the visual area, auditory area, and separated sensory and motor areas, and so on. Between these
areas too, only a relatively small number of connections exist. Gazzaniga [GAZZ89] describes
a patient who was not able to name the colour ofred fruit, after suffering from a head injury.
The patient was able to name the colour of every other object presented to him, including other
red objects. But when presented with redfruit, the answers where random. Apparently the
specific connections between the areas where fruit and the colour red are recognized were lost.
This example suggests a strong modularity in the brain, even at a smaller scale than the
functional areas. Indeed, a lot of psychological and physiological research indicates a very strong
modularization of the brain (see chapter 5). Despite of this highly specific structure of the brain,
there still are a lot of connections between neurons. On average every neuron receives input
from about 10 thousand synapses.

8 2 Neural Networks

Because of these huge numbers of neurons and connections, it is clear why researchers have not
been able to do a computer simulation of the brain, for the amount of computation needed is
huge. Let us make an estimate of the computing power of the brain. Every axon is able to
transmit one pulse every 10 milliseconds, and because the synapses are unable to use the
differences in the amplitude of the impulse, the axon can be seen as a cable transmitting 100 bits
per second. Combined with the total number of axons, this results in roughly 1013 bits per
second. This is an estimation of just the data transmission in the brain: the amount of
computation is even more staggering. Jacob Schwartz [SCHW88] estimates the total amount of
arithmetic operations needed to simulate the brain in every detail as high as 1018 per second,
needing 1016 bytes of memory. This is probably a million times as fast as the fastest
supercomputer available in the next decade. It is also a motivation to do a lot of research in
massive parallel computers.

Artificial neurons

As a consequence of the huge complexity of the human brain and the state of current hardware
technology, it is impossible to build an artificial brain that imitates the natural brain in all its
detail. So in order to make use of its functional principles, we are forced to make (very) large
simplifications regarding the computations performed by the neurons and their connectivity.

Artificial neurons take their input (real numbers), and

act f(stim)

stim
n

i 1

wixi θ

Figure 2. The basic processing element.

determine their output as a function of their input.
Most of the time the total stimulation of thesepro-
cessing elementsis simply the sum of all individual
inputs multiplied by their corresponding weights.
Sometimes a bias termθ is added in order to shift the

sum relative to the origin: .stim
n

i 1

wi xi θ

The analogy with the real neuron is obvious: in the
brain the activation of a neuron is transmitted through
the axon and arrives at the dendrites of the other cells
where the strength of the synapses determines the
extent in which the other cells are stimulated. Although
real neurons give either excitatory or inhibitory signals
at their synapses, in our model the weights of one node
can be positive and negative. There is a clear dis-
tinction between the stimulation of a processing el-
ement and its activation, the latter is usually imple-
mented as a function of the first:

.act f(stim) f

n

i 1

wi xi θ

Sometimes it is implemented as a function of the stimulation and the previous activation1:

.act(t) f(act(t 1),stim(t))

1 Because of the digital simulation of the networks, generally time is considered to be measured in discrete steps. The
notation t-1 indicates one timestep prior to time t.

Artificial neurons 9

Although f is chosen depending on the kind of network that is being used, the basic functioning
of the processing elements is the same in most neural networks, because it is assumed that this
kind of artificial neuron implements the basic computational principles of the biologic neuron.

Artificial neural networks

As is the case with the brain, artificial neural networks are made up of a number of intercon-
nected processing elements. The reader may now wonder what advantages neural networks offer
compared to more traditional methods. One of the largest problems with almost all traditional
artificial intelligence techniques is that the programmer has to supply all the knowledge (which
is very often incomplete, unknown, or wrong). Even if a human expert ‘knows’ how to make
certain decisions, for example in the medical world, he is very often incapable of telling exactly
why and on what grounds those decisions are made. This is why a new area of research, called
knowledge engineering, has arisen which purpose is to find methods for acquiring knowledge.
Very often it happens that the knowledge collected cannot be described by definite rules, but has
to be described using e.g. statistical reasoning methods andfuzzy logic. This difficulty of finding
rules can be solved with neural networks, because they do not have to be told what to do, but
are able tolearn it by themselves. Neural networks are capable of autonomously discovering
regularities, and extract knowledge from examples in complex task domains (like human
experts). This is why the neural network approach is so promising, especially in areas lacking
‘absolute knowledge’.

The fact is that all traditional methods, like rule based systems, and even newer methods like
fuzzy logic can be seen as special cases of neural networks. Since it is possible to construct the
logical NAND function using a neural net even proves thateverythinga computer can do can
be done using a neural network, because by combining these NAND networks a complete com-
puter can be built. This shows how powerful artificial neural networks in the future will become,
and even now there are already many examples available showing the strength of neural
networks, although the neural network research is just at its beginning.

Some areas where neural networks are successfully used are (for a more exhaustive overview
see e.g. [HECH90]):

- handwritten character recognition,
- image compression,
- noise filtering,
- broomstick balancing,
- automobile autopilot,
- nuclear power-plant control,
- loan application scoring,
- speech processing,
- medical diagnosis,

but this list is far from complete, and new applications seem to appear every day.

Backpropagation

There are a lot of different neural network paradigms, of which backpropagation probably is the
best known. It was formalized first by Werbos [WERB74] and later by Parker [PARK85] and

10 2 Neural Networks

Rumelhart and McClelland [RUME86]. It is a

Figure 3. A typical backpropagation network.

multi-layer feedforwardnetwork that is trained
by supervised learning. A standard back-
propagation network consists of 3 layers, an
input, an output and a hidden layer. The proces-
sing elements of both input and output layer are
fully connected with the processing elements of
the hidden layer, as shown in figure 31. The fact
that it is feedforward means that there are no
recurrent loops in the network. The output of a
node never returns at the same node, because
cycles are not allowed in the network. In stan-
dard backpropagation this can never happen because the input for each processing element
always comes from the previous layer (except the input layer, of course). This, again, is a large
simplification compared with the real brain because the brain itself appears to contain many
recurrent loops.

Supervised learning means that the network is repeatedly presented with input/output pairs
(I,O) provided by a supervisor, whereO is the output the network should produce when
presented with inputI. These input/output pairs specify the activation patterns of the input and
output layer. The network has to find an internal representation that results in the wanted
input/output behaviour. To achieve this, backpropagation uses a two-phasepropagate-adapt
cycle.

In the first phase the input is presented to the network and the activation of each of the nodes
(processing elements) of the input layer ispropagatedto the hidden layer, where each node sums
its input and propagates its calculated output to the next layer. The nodes in the output layer
calculate their activations in the same way as the nodes in the hidden layer.

In the second phase, the output of the network is compared with the desired output given by the
supervisor and for each output node the error is calculated. Then the error signals are transmitted
to the hidden layer where for each node its contribution to the total error is calculated. Based
on the error signals received, connection weights are thenadaptedby each node to cause the
network to converge toward a state that allows all the training patterns (input/output pairs) to be
encoded. For a more detailed description of backpropagation networks, the reader is referred to
appendix A. A short description of the standard backpropagation algorithm for a network with
p input, q hidden andr output nodes follows.

1. Initialize all the weights of the network with random values (e.g. between -1 and

1). We will denote the weights of the hidden layer and of the output layer asw h
ij

and respectively. The notation stands for the weight between input node iw o
ij w h

ij

and hidden node j.

2. Choose an input/output pair , where and are the(x,y) x

x1

xp

y

y1

yr

1 Throughout this thesis, all connections in the figures pointupwards. The input nodes are at the bottom, the output
nodes at the top.

Backpropagation 11

inputvector and outputvector, and assign the inputvector to the corresponding input
nodes.

3. Propagate the activation of the input

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-8 -6 -4 -2 0 2 4 6 8
ac

tiv
at

io
n

of
 th

e
no

de
stimulation of the node, including bias

Figure 4. The sigmoid function.

layer to the hidden layer, and cal-
culate the stimulation and activation
of the hidden nodes. Often the bias
(θ, see figure 2) of each node is
implemented as an extra node 0
with a standard activation of 1, the
weights from node 0 to the other
nodes in the network are used as
adaptive thresholds. The activation
of the nodes in the hidden layer
now becomes:

.hj f stim(hj)
1

1 e

p

i 0

w h
ij xi

f is the sigmoid function shown in figure 4.

4. Propagate the activation of theq hidden nodes to the output layer.

.oj

1

1 e

q

i 0

w o
ij hi

5. Calculate the deltas (the errors) of the output layer:

. (see appendix A for a derivation)δo
i oi 1 oi yi oi

6. Compute the deltas for the hidden layer: .δh
i hi 1 hi

r

j 1

δo
j w o

ij

7. Adjust the weights between the hidden layer and the output layer:

,w o
ij (t 1) w o

ij (t) αδo
j hi β∆w o

ij (t 1)

where .∆w o
ij (t) w o

ij (t 1) w o
ij (t)

The last term is called themomentum, it tends to keep the weight changes ()∆wij

going in the same direction by averaging the changes over the last few training
cycles. Usuallyα, the learning-rate parameter, is chosen between 0.1 and 0.5 and
β, themomentum parameterbetween 0.8 and 0.95.

8. Adjust the weights between the input layer and the hidden layer:

12 2 Neural Networks

.w h
ij (t 1) w h

ij (t) αδh
j xi β∆w h

ij (t 1)

9. Repeat steps 4 to 8 until thetotal error of the network is smallE 1

2

r

i 1

yi oi
2

enough for each of the training-vector pairs in the training-set.

It needs to be said that this algorithm does not correspond to the process of learning in the actual
brain. The resulting network after training, however, is assumed to employ some of its basic
computational principles. There are other network learning rules than backpropagation that more
closely correspond to the actual learning process employed by the natural brain.

A simple example: exclusive OR

We will now give an example of a small problem: learning the logic exclusive OR function. This
problem is of some historical interest because in "Perceptrons" Marvin Minsky and Seymour
Papert [MINS69] showed that it was not possible to make a network for this problem without a
hidden layer (for which no learning rule was known at the time). The trivial proof of this was
generalized and expanded by them. This was enough reason for most researchers at the time to
stop working on neural networks, because the book left the impression that neural networks had
beenprovento be a dead end.

The logical XOR function is a function of two binary variables:

f(0,0) = 0,
f(0,1) = 1,
f(1,0) = 0 and
f(1,1) = 0.

A possible network configuration

Figure 5. This figure shows a solution for the XOR problem. The radius
of the circle is proportional to the activation of the node.

for this problem is shown in figure
5. This network was trained until
convergence had occurred. The
numbers next to the connections in
the f igure correspond to the
weights, the numbers at the nodes
with the biases. The(I,O) pairs
were randomly selected from the
four different possibilities with the
booleans 0 and 1 represented by 0.1
and 0.9 respectively. These values
0.1 and 0.9 are not really important
for the inputvector, because the
weights and the biases are able to
scale and translate it. But for the
outputvector (here just one number) it is important, since the sigmoid function used to calculate
the activation of the output nodes keeps the activations within the interval (0,1). Output nodes
and hidden nodes, can never have an activation of exactly 0 or 1, for that would require an
infinite negative or positive input. Learning the XOR function with this network takes a lot of
training, about 2000 input/output pairs need to be presented, and sometimes it will not learn the

A simple example: exclusive OR 13

problem at all because it can get stuck in a local optimum. The probability of this to happen
depends on the learning parameters and the range of the random initializations of the weights.

Selecting the parameters for backpropagation

In the last paragraph we suggested some values: [-1,1] for the initial random weights, [0.1,0.5]
for the learning-rate and [0.8,0.95] for the momentum parameter. The optimal settings of these
parameters might, however, strongly depend on the task that has to be learned.

To get a feeling for the complexity of backpropagation, imagine a landscape with hills and
valleys. The position of a point on the surface corresponds to the weights of a network. The
height of that point depends on the total error of that network, given the coordinates (weights)
of that point. Generally, it is impossible to show how such aweight-spacelooks in reality
because we are unable to see more than 3 dimensions (our simple XOR network already has 9
dimensions, since each weight and bias corresponds to one dimension). But it is possible to take
a two-dimensional hyperplane through the weight-space.

Figure 6 gives an example of such a surface

Figure 6. A hyperplane of the 9 dimensional weight-space
of the XOR example network.

of our XOR network. The x-axis corresponds
to the weight from the first input node to the
first hidden node and the y-axis corresponds
to the weight from the second input node to
the first hidden node. All the other weights
are taken from our example solution from
figure 5, and are not changed. This is just one

of the possible combinations of two9

2
36

out of nine weights. The figure is created by
varying the two weights along the axes (the
picture is made with a range [-44,44] for both
axes) and measuring the performance (the
total error) of the resulting network. The
figure is drawn upside-down, so the best
weight-configuration corresponds to the highest point on the drawing. Note that this drawing is
just one of many possible two-dimensional hyperplanes in the real weight-space of this particular
XOR-network. If the same network would have been trained using other initial weights the
drawing might have looked quite different.

Looking at figure 6 it is clear why it often takes such a long time before a network finds a good
solution. As explained in appendix A, learning in backpropagation is a gradient descent process.
The next change of the network, ignoring the momentum for a moment, equals the negative
gradient of the position on the weight-space-surface multiplied byα. It can be compared with
someone standing on a hill, always taking a step in the downhill direction, where the size of the
step depends on the slope of the surface at the position where the person stands. If this slope is
very small, the steps, as a consequence, will be very small. This shows why there is a need for
a momentum. The momentum tends to add all these small steps together, so small steps all in
the same direction will gradually increase the momentum term and thereby increase the speed
of convergence.

Because the sigmoid function used in the backpropagation algorithm has its steepest slope around
the origin and the steps taken by the learning algorithm are proportional to the derivative of this

14 2 Neural Networks

sigmoid, it is usually best to take small initial weights in order to start the process of learning
at a good place. This can also be seen in figure 6, where the steepest slope is around the origin.
In figure 4 it can be seen that a large slope is present if the total stimulation of a node is
somewhere between -3 and 3. This suggests a better way to determine in advance the range from
which the random initialization should be chosen. Without loss of generality, we suppose all
inputvector-values are in the range (0,1) because this corresponds to the activation range of all
nodes not in the input layer. Now suppose we have a node with input from just one other node.
This input is between 0 and 1. To prevent the input of that node to be in an area of the sigmoid
function with a small slope, we have to give the weight of that input a value between -3 and 3.
If a node has more than one input, sayn, we have to make sure the total stimulation stays
between -3 and 3, so the random weights should be chosen from a smaller range. If we simply
divide this range of the random weights by the number of inputs,n, we are sure the total
stimulation will stay between -3 and 3.

But on average, because the standard deviation of the sum ofn numbers divided byn will be

times as small as the standard deviation of each individual number, the range of the totaln

stimulation will on average be times too small. So we propose to take the initial weights ofn

each node to be in the range . If this range is used to calculate the random initial

3

n
, 3

n
weights, the network will always have a reasonable initial weight setting no matter what the size
of the network may be.

The best choice of the learning-rate parameterα (α > 0) and the momentum parameterβ

Figure 7. Imaginary weight-space.

(0 ≤ β < 1) is also very dependent on the size of the network and the problem at hand, and
usually the optimal setting is unknown. An optimal setting forα andβ should result in a fast
and correct convergence of the network. To
get an impression of the influence ofα andβ
on the learning process, take a look at figure
7. It is a hypothetical 1-dimensional cross-
section of an error surface like figure 6 (but
not upside down). Suppose we do not use the
momentum (β=0). The ball representing the
current state of the network, positioned at A,
rolls down to B, but will stay there because it
does not acquire any momentum. If wedo
use momentum, but not enough, the ball will
roll to just before C, then roll back and start
a damped oscillation around the local mini-
mum B. If the momentum term is large
enough, the ball willovershootC and will fall in the global minimum D. If the momentum is
too large, the ball may roll up towards E and back again over C into B. With a momentum
parameter setting of 1, the ball will keep moving forever. This can be compared with moving
without friction. The setting of the learning-rate parameterα should not be too large, to prevent
missing the wanted minimum in the error-surface by taking too large steps. However, a very
small setting ofα will drastically increase the learning time.

Figure 8 gives an impression of the influence of the settings ofα andβ for the XOR example
of figure 5, varying both parameters from 0.05 to 0.95. It shows the average number of iterations

Selecting the parameters for backpropagation 15

needed to converge as a function ofα andβ.

Figure 8. Average amount of training cycles needed to train
the network of figure 5 as a function ofα and β.

The least iterations were needed atα=0.6 and
β=0.65.

Problems with backpropagation

As mentioned in the last paragraph, it is pos-
sible for backpropagation to get stuck in a
local minimum. When this local minimum
performs only slightly worse than the global
minimum it may not be a problem, but usual-
ly a local minimum is not a good solution. As shown, the momentum term is able to overcome
this problem in some cases.

One of the reasons why a backpropagation network sometimes does and sometimes does not
converge is the random initialization of the weights. For some initial weight settings,
backpropagation may not be able to reach the global minimum of the weight-space, while for
other initializations the same networkis able to reach it. And even when during training the
network reaches the global minimum, the network may not be useful. Suppose, for example, we
want to make a network able to recognize handwritten digits. It is clearly impossible to train the
network withall possible handwritings, so a small set ofexampleshas to be made and presented
to the network. This set of examples may be perfectly learned by the network, but this does not
say anything about how the network will respond to other handwritings. This property of being
able to respond correctly to inputnotseen during training is calledgeneralization. Generalization
can be compared withinterpolation in mathematics. Backpropagation usually generalizes quite
well, but sometimes it does not. One of the reasons why it may not generalize is an effect called
overtraining. This happens when a small set of examples of the total task domain is trained for
a very long time. The network initially learns to detect global features of the input, and as a
consequence generalizes quite well. But after prolonged training the network will start to
recognize each individual input/output pair rather than settling for weights that generally describe
the mapping for all cases. When that happens the network will give exact answers for the
training set, but is no longer able to respond correctly for input not contained in the training set.
In that case it is better to stop training before the network has converged. Overtraining is most
likely to happen in very large networks, because they can easily memorize each individual
input/output pair. The usual way to overcome this problem is to train a smaller network: it can
not learn the training set as good as before, but it will be able to respond correctly for other
input vectors. Another method is to add noise to the input data. This makes sure each
input/output pair is different, preventing the memorization of the complete training set.

Unfortunately backpropagation is not suitable forextrapolation: it cannot give good answers for
input vectors that are outside the domain of the training set. If for example a network is trained
to give the cosine of its input for values between 0.5 and 0.9, it will not be able to give correct
answers outside that range.

One last problem to be mentioned here is the problem ofinterference. Interference occurs if a
network is supposed to learn several unrelated problems at the same time. With a very small
network it may be that the network is simply not able to learn more than one of the problems.
But if the network is in principle large enough to learn all the problems at the same time, this
may still not happen. The different problems seem to be in each others way: if one of the
problems is represented in the weights of the network the other problem is forgotten, and vice

16 2 Neural Networks

versa. An example of such interference between more classifications is the recognition of both
position and shape of an input pattern (see [RUEC89]). Rueckle et al. conducted a number of
simulations in which they trained a three layer backpropagation network with 25 input nodes,
18 hidden nodes and 18 output nodes to simultaneously process form and place of the input
pattern. They used nine, 3x3 binary input patterns at 9 different positions on a 5x5 input grid.
So there were 81 different combinations of shape and position. The network had to encode both
form andplaceof a presented stimulus in the output layer. It appeared that the network learned
faster and made less mistakes when the tasks were processed in separated parts of the network,
while the total amount of nodes stayed the same. Of importance was the number of hidden nodes
allocated to both sub-networks. When both networks had 9 hidden nodes the combined perform-
ance was even worse than that of the single network with 18 hidden nodes. Optimal performance
was obtained when 4 hidden nodes were dedicated to theplace network, and 14 to the
apparently more complex task of theshapenetwork. It needs to be emphasized that Rueckle et
al. tried to explain why form and place are processed separately in the brain. The actual
experiment they did, showed that processing the two tasks in one un-split hidden layer caused
interference. What they failed to describe is that removing the hidden layer completely,
connecting input and output layer directly, leads to an even better network than the optimum
they found using 20 hidden nodes in separate sub-networks.

Analysis of these results revealed that the processing of what and where strongly interfered in
the non-split model. The non-split model was not constrained to develop in a particular way, and
in principle could have developed the same configuration of weights as the split network (no
connection being represented with a zero weight), but the chance of this to happen is very small.

The problems mentioned above are not restricted to backpropagation. Most other neural network
paradigms suffer from the same problems. There seems to be a solution for these problems,
already mentioned in the introduction of the brain, and hinted at in the last two sections:
modularity. In chapter 5, we will return to this, but here we will restrict ourselves to showing
how modularity can be incorporated in backpropagation.

Modular backpropagation

Figure 9. A network with two hidden layers.

Until now we have only discussed simple
backpropagation network topologies consis-
ting of an input layer, a hidden layer and an
output layer. The learning algorithm can be
used for other types of network topologies as
well, as long as the networks have a feedfor-
ward structure. One of the most simple
changes in structure is the addition of an
extra hidden layer, like in figure 9. A net-
work with just one hidden layer can compute
any function that a network with 2, or even
more, hidden layers can compute: with an
exponential number of hidden nodes, one node could be assigned to every possible input pattern
(see e.g. [HECH90]). However, learning is sometimes much faster with multiple hidden layers,
especially if the input is highly nonlinear, in other words, hard to separate with a series of
straight lines. The learning algorithm does not have to be modified, all hidden layers can simply
take the errors calculated at the next layer, whether output or hidden, to calculate their own
errors.

Modular backpropagation 17

Figure 10. An example network made of two
separated hidden sub-networks.

Because with more hidden layers each node in a layer
is still connected to the same nodes as all the other
nodes in that layer, only the weights are able to make
each node in a layer behave differently to the rest.
Another way to accomplish this is to make different
nodes see different things, that is, connect the nodes in
one layer differently. Instead of full connectivity
between two layers, specific connections can be left
out.

So the idea of adding more hidden layers can be
greatly extended with the possibility of splitting up
several layers into sub-layers, hereby reducing the

number of weights. Take for example figure 10 which shows an example of a division of the
network from figure 9 into two separate parts A and B. Because there are no connections
between both parts, the dimensionality (the number of weights) of the weight-space is reduced
by 10. This not only decreases the amount of computing, but also may take away several local
minima and increase the speed of convergence. It can now be seen that besides a vertical
organization in layers also a horizontal organization is possible.

In order to work more flexible with all kinds of different network topologies we define amodule

Figure 11. A modular
network.

to be a group of unconnected nodes, each connected to the same set of nodes. So the network
of figure 9 is made of 4 modules and the network of figure 10 is made
of 6 modules. The set of weights between two modules are also grouped
together to form aconnection. There is no loss of generality here,
because all possible feedforward network structures can be built with
these components: if necessary one can make modules consisting of just
1 node. The network of figure 10 can now more easily be visualized as
in figure 11.

As an example of how much depends on the structure of

Figure 12.
XOR network.

Figure 13. Number of training cycles needed for XOR by
figure 12 versusα and β.

the network, remember the XOR network shown in figure
5. The figure showed one possible solution, but on many
trials, the network did not converge. Rumelhart and
McClelland [RUME86] describe several occasions where the network of figure 5
got stuck in a local minimum. By changing the network topology we found a
network (figure 12) that, for as many times as we have tested it, always learned
the XOR problem. Not only did italwayslearn the problem, but it did it much
fasterthan the simple network
in figure 5. We tested both
networks the same way, by
training the network a 100
times, for all possible com-

binations of the parametersα and β (from
0.05 to 0.95 with steps of 0.05). The results
of this simulation for the original network are
shown in figure 8 and for the network of
figure 12, which has 2 additional weights
from the input nodes directly to the output
node, in figure 13. The original network

18 2 Neural Networks

needed on average 1650 training cycles for the best combination ofα and β, while the new
network needs only thirty training cycles on average. The large fluctuations in figure 8 signify
the dependence on the initial weights of the original network, and conversely figure 13 shows
the independence of the initial weights of the new network.

The intuitive idea behind making different network topologies for different problems can be
explained as follows. It may be seen as moulding the weight-space in such a way that all local
minima disappear, and no matter from where you start the training, there always is a clear path
from that starting point to a global minimum in weight-space.

If a network with one hidden layer withN nodes finds a solution, a permutation of the nodes
in the hidden layer, together with all their incoming and outgoing weights, will of course result
in the same solution. This means that when the training process starts, and there is a solution,
at least as many asN! possible solutions have to exist. If two or more nodes have the same input
and output weights, which is very unlikely, some permutations will result in the same network.
More likely, there will be several different solutions, with respect to all possible permutations.
This was frequently observed when testing the ‘standard’ XOR example. For networks with more
hidden layers the number of possible permutations of the subsequent layers may be multiplied,
so the total number of permutations possible with a network withi hidden layers withNi nodes
each (ignoring similar nodes, and different solutions with respect to permutation) is given by:

.
i

Ni !

This gives a strong indication ofwhy modular networks may be better at generalization than
fully connected networks. The network from figure 9 for example has 4!5! = 2880 permutations,
while the network shown in figure 10 has only 3!2!+2!2! = 16 permutations, which largely
reduces the amount of ambiguity of the eventual solution after training. This notion of the
number of possible solutions is generalized in appendix B.

Now a major problem arises: given a particular problem, how to find a network topology that
is optimal for this problem, which means:

- always converge, independent of arbitrary settings ofα, β and initial weights,
- converge as fast as possible,
- show no interference,
- be able to generalize.

At present there is little theory on how to design a good network topology for a particular
problem. Usually people working with backpropagation use some rules of thumb, like:

- take the number of hidden nodes equal to the average of the number of nodes in the
input and output layer,

- if the network does not converge take more hidden nodes,
- if that does not work add a hidden layer,
- if the network does not generalize well, take less hidden nodes,

and so on. There is not yet any method available in order to find a good (modular) network.
Finding such structured networks was the main subject of this research. In chapter 5 we will
return to this problem, and offer a possible solution.

Modular backpropagation 19

Implementation

The modular backpropagation network algorithm used in this research has been implemented in
C++, and runs under MS-DOS as well as UNIX. It allows a very flexible use of modular
networks. The library can easily be linked to other programs, and has already been used for
demonstration software, games and all simulations throughout this research. Plans are made to
extend the program to other network paradigms, the object oriented approach should then make
it possible to make networks with several different kinds of network paradigms combined.

20 2 Neural Networks

3 Genetic Algorithms

‘All modern men are descended from a worm-like
creature, but it shows more on some people.’

— Will Cuppy

One of the problems mentioned in the previous chapter is the problem of finding a topology able
to learn a specific task. It seems appropriate to use a computer program to relieve us of this
difficult, time consuming task. Traditional search methods however, are not suitable for the task
because of the vast number of possible connections between the nodes and because little is
known about why one topology is better than another. Recently, search methods have been
developed which can handle such multiple constraint problems. One of them,genetic algorithms,
will be treated in this chapter.

Genetic algorithms, introduced by John Holland [HOLL75], are based on thebiological metaphor
of evolution. In his recent book, David Goldberg [GOLD89] (p.1) describes genetic algorithms
as ‘... search algorithms based on the mechanics of natural selection and natural genetics
[resulting in] a search algorithm with some of the innovative flair of human search.’

Overview

Goldberg mentions the following differences between GAs (genetic algorithms) and more
traditional search algorithms:

1. GAs work with a coding of the parameter set, not the parameters themselves.
2. GAs search from a population of points, not from a single point.
3. GAs use pay-off (objective function) information, not derivatives or other auxiliary

knowledge.
4. GAs use probabilistic transition rules, not deterministic rules.

The parameters of a problem are coded into a string of (usually) binary features (analogous with
chromosomesin biology). This coding is done by the user of the GA. The GA itself has no
knowledge at all of the meaning of the coded string. If the problem has more than one

22 3 Genetic Algorithms

parameter, the string contains multiple sub-strings

Figure 1. Sample population of 10 strings. (The
population is sorted, although that is not necessary
for roulette wheel selection).

Bitstring: Fitness:

1
2
3
4
5
6
7
8
9
10

1100010101
0000100010
1000000001
0001100010
1101110101
0001000100
1111111000
0000000001
1100001000
1111111111

9
7
6
5
5
4
3
3
2
1

(or genes), one for each of the parameters. Each
coded string represents a possible solution to the
problem. The GA works by manipulating a popula-
tion of such possible coded solutions in areproduc-
tion processdriven by a number ofgenetic oper-
ators.

During the reproduction process, new solutions are
created by selecting and recombining existing sol-
utions based on pay-off information (often called
the fitness) using the genetic operators. The process
can be compared with natural selection and the Dar-
winian theory of evolution in biology: fit organisms
are more likely to stay alive and reproduce than
non-fit organisms.

The fitness of a string (or solution) can be evaluated in many different ways. If the problem, for
example, is finding the root of a mathematical function, the fitness can be the inverse of the
square of the function value of the proposed solution. If the problem is finding an optimal neural
net, the fitness could be the inverse of the convergence time and zero if the network couldn’t
learn the problem. It could also be the inverse of the error at the output nodes. The GA is not
aware of themeaningof the fitness value, just the value itself. This implies that the GA can’t
use any auxiliary knowledge about the problem. Figure 1 shows a sample population of 10
strings, and represents all the knowledge a GA would have.

Starting with a population of random strings, each new population (generated by means of
reproduction) is based upon (and replaces) the previous generation. This should, in time, lead
to a higher overall fitness, and thus to better solutions to the original problem.

The four most commonly used genetic operators used areselection, crossover, inversionand
mutation. With each of these operators, only random number generating, string copying and
changing of bits are involved. Crossover, mutation and inversion are all applied with a certain
probability: for each application of an operator it must be decided whether to apply the operator
or not. Selection alone is usually not enough for the GA to work, so, one or more of the other
genetic operators have to be applied to the selected string(s).
In what follows, an explanation of the genetic operators is given. After that, a more thorough
treatment is provided of the basic mechanisms of genetic search as implemented by a GA.

Selection

Figure 2. The roulette wheel for the sample
population from figure 1. Member 1 has a
20% chance (9/45) of being selected.

Selection is used to choose strings from the population for
reproduction. In parallel with the natural selection mechan-
ism, strings (solutions) with a high fitness are more likely
to be selected than less fit strings. The two selection
methods applied in this research are described respectively
by Goldberg [GOLD89] and Whitley [WHIT89A].

With roulette wheel selection[GOLD89], strings are
selected with a probability proportional to their fitness.

Selection 23

Another method is calledrank based selection[WHIT89A], where the chance of being selected
is defined as a linear function of the rank of an individual in the population. The population
must remain sorted by fitness for this method to work. One advantage of rank based selection
is that it does not need the fitness scaling necessary with other methods, to prevent high fitness
strings from dominating the population, which may result in a premature convergence into a non-
optimal solution.

Crossover

Figure 3. Crossover of mem-
bers 1 and 2.

The crossover operator creates new members for the population by
combining different parts from two selected parent strings.

First, a number ofcrossover points(usually two) are chosen at
random. A new string is created by using alternate parts of the
parent strings. A sample crossover with two crossover points is
shown in figure 3.

Inversion

Inversion is an operator that reorders the positions of genes within the chromosome (string).
Two inversion points are chosen at random between genes, and the

Figure 4. Inversion of the
crossover result from figure 3.

genes between the two points swap places: the first is swapped with
the last, the second with the last but one, etc.
A new member is constructed by concatenating the reordered genes
together.

An example is shown in figure 4, using strings with genes con-
taining only 1 bit.

Inversion complicates the GA somewhat because one has to keep
track of the position of each gene within the chromosome. To

prevent mixing different parameters during crossover (because two strings have a different gen
order), the genes are put temporarily in the same order before crossover is applied. The newly
created string inherits the gen order from one of the two parents.

Figure 5. Mutation of the
inverted string. Bit 7 has been
mutated.

Mutation

Mutation is possibly the simplest of the genetic operators. It
randomly flips bits in the string from 0 to 1 or from 1 to 0.

The purpose of this string mutation is to improve the algorithm by
introducing new solutions not present in the population, and by
protecting the algorithm against accidental, irrecoverable loss of
(valuable) information due for example, to unfortunate crossovers.

In order to keep the algorithm from becoming a simplerandom
search, mutation rate has to be low, so it doesn’t interfere too much with crossover and
inversion. There are some applications however, where selection and mutation are enough for
the GA to function (e.g. [GARI90]).

24 3 Genetic Algorithms

Building blocks

So far, it may not be clear how and why those simple genetic operators combine into such a
powerful and robust search method. Or, as Goldberg [GOLD89] (p.28) describes it: ‘The
operation of genetic algorithms is remarkably straightforward. After all, we start with a random
population of strings, copy strings with some bias toward the best, mate and partially swap sub-
strings, and mutate an occasional bit value for good measure.’

The principle of structured information exchange with crossover and inversion leads to an
exponential increase of high fit pieces of genetic information (partial solutions) which are
combined to produce good overall solutions. To explain this, let us first take a look at an
example.

If we want to maximize the functionF(x) = x 2, for x in the

Figure 6. Example with F = x2.
Four members with their fitness.

Bitstring: Fitness:

00001101
11000110
00111001
11110001

169
39204
3249
57600

range 0..255, we can take binary strings (chromosomes) of
length 8, withx coded as the binary representation ofx. The
best solution is of coursex = 255, becausex2 is maximal for
the largest possiblex. But if we have the strings shown in
figure 6 in our population and we don’t know anything
about the fitness functionF, the best way to proceed would
be to look forsimilarities between highly fit strings if we
wanted to create a new, more fit, string. In figure 6, it
appears that having 1’s on the first positions results in a
high fitness. Therefore it might be a good idea to put those 1’s in the first positions of the new
string too. This idea of using similar (small) parts of highly fit strings to create a new string can
be explained more precisely using the concepts ofschemataandbuilding blocks.

A schema(introduced by John Holland, [HOLL68] and [HOLL75]) is a template describing a
subset of strings with similarities at certain string positions. If we take for example a population
of binary strings, schemata for these strings are strings themselves, consisting of 0, 1 and *
symbols. The * (wild card or don’t caresymbol), matches either a 0 or a 1. A schemamatches
a particular string if at every position a 1 in the schema matches a 1 in the string and a 0
matches a 0 in the string. If we take strings of length 8 (binary representations of the numbers
0..255) the schema 1*0001*0 matches four strings: 10000100, 10000110, 11000100 and
11000110.

First, let us take a look at the number of schemata involved in a population ofn strings of length
l. If each string is built fromk symbols (k=2 for binary strings), there are (k+1)l different
schemata (because each of thel positions can be one of thek symbols, or an asterisk). So, for
our example, there are only 256 (28) different strings, but there are (2+1)8 = 6561 different
schemata. Also, a string of length 8 belongs to 28 different schemata because each position may
take on its actual value or a wild card (*) symbol. For strings of lengthl, this number is 2l. So,
for a population of sizen, the population contains somewhere between 2l andn·2l schemata. So
even moderately sized populations contain a lot of information about important similarities. By
using schemata in the genetic search, the amount of information can be much larger than by
looking at the strings only.

Every schema can be assigned a fitness: this is the average fitness of the members in the
population corresponding to that particular schema. We will denote this average fitness withfs.
Also, every schema has adefining length(or δ) which is the distance between the first and the
lastnon-wild card. Looking at the defining length, we note that crossover has a tendency to cut

Building blocks 25

schemata of long defining length when the crossover points are chosen uniformly at random: for
example, the schema 1*****10 has a higher chance of being cut than *****10* (6/7 or 86%
vs 1/7 or 14%).
A lower bound on thecrossover survival probability ps for a schema with defining lengthδ can
be expressed with the following formula (for crossover with one crossover point):

(1)ps ≥ 1 pc

δ
l 1

where pc is the probability with which crossover will occur,δ is the defining length of the
schema, andl is the length of the schema. The formula contains a ‘≥’ instead of a ‘=’ because
even when the schema is cut it can survive if the crossover results in a string that still contains
the schema. New strings with the schema can also come into existence.

We can also calculate the effect ofselectionon the number of schemata. When we havem(t)
examples of a particular schema at timet in our population, we can expect

m(t 1) m(t)n
fs

n

i 1

fi

examples at timet+1, wheren is the population size,fs the average fitness of the strings

representing the schema and the total fitness of the population. If we rewrite the formula,
n

i 1

fi

using

favg = 1
n

n

i 1

fi

for the average fitness of the whole population, it becomes:

(2)m(t 1) m(t)
fs

favg

Or: a particular schema grows as the ratio of the average fitness of the schema and the average
fitness of the population. So schemata with fitness values above the average population fitness
have a higher chance of being reproduced and receive an increasing (exponential) number of
samples in the new population. This is carried out foreachschema in the population in parallel.

Because mutation has only a very small effect on the number of schemata (mutation rate is
usually chosen very low), the combined effect of selection and crossover can be expressed with
the following formula, which is the result of combining (1) and (2):

(3)m(t 1) ≥ m(t)
fs

favg

1 pc

δ
l 1

So a particular schema grows or decays depending upon a multiplication factor. With both
selection and crossover the factor depends upon whether the schema’s fitness is above or below
the population’s average fitness and on the length of the schema. Especially schemata with high

26 3 Genetic Algorithms

fitness and a short defining length are propagated exponentially throughout the population (the
Schema Theorem, [GOLD89]). Those short schemata are calledbuilding blocks. Crossover directs
the genetic search towards finding building blocks (or partial solutions) and also combines them
into better overall solutions (thebuilding block hypothesis, [GOLD89]). Inversion also facilitates
the formation of building blocks. Complex problems often consist of multiple parameters which
are coded by different genes on the chromosome. With these multiple parameter problems
however, complex relations may exist between different parameters. When defining the coding
of such a problem, related genes should be positioned close together. When not much is known
about the relations between the parameters, inversion can be used as an automatic reordering
operator.

Implicit parallelism

The exponential propagation of high fit, small size schemata (building blocks) goes on in
parallel, without any more special bookkeeping or memory than a population ofn strings.
Goldberg [GOLD89] presents a more precise count of how many schemata are processed usefully
in each generation: the number turns out to be roughlyn3. Because onlyn function evaluations
(fitness calculations) are done for each generation, this feature has also been calledimplicit
parallelism, and is apparently unique to genetic algorithms.

Applications

The genetic algorithms described, and many variations, are still a active topic of research.
However, they are used in many applications already, and in this paragraph a few are mentioned.
Also one application is described in more detail as an example.

Goldberg’s book [GOLD89] contains a table with an overview of the history of genetic
algorithms. Below is an extract from that table, which shows the diversity of problems where
genetic algorithms have been applied. The table shown here is far from complete, and new
applications are found continuously.

Year Investigators Description

1967

1987

Biology

Rosenberg

Sannier and Goodman

Simulation of the evolution of single-celled
organism populations
GA adapts structures responding to spatial and
temporal food availability

1979
1985

Computer Science

Raghavan and Birchard
Rendell

GA-based clustering algorithm
GA search for game evaluation function

Applications 27

Year Investigators Description

1983
1985
1986
1986

Engineering and OR

Goldberg
Davis and Smith
Goldberg and Smith
Minga

Optimization of pipeline systems
VLSI circuit lay out via GA
Blind knapsack problem with simple GA
Aircraft landing strut weight optimization

1985

1985
1981

Miscellaneous

Brady

Gillies
Smith and De Jong

Travelling salesman problem via genetic-like
operators
Search for image feature detectors via GA
Calibration of population migration model
using GA search

With the travelling salesman problem (TSP) mentioned in the last row, a hypothetical salesman
must make a complete tour of a given number of cities in the order that minimizes the total
distance travelled. He should return to the starting point and no city may be visited more than
once. Although it may seem a trivial problem, it is NP-complete which means it is currently not
solvable in deterministic polynomial time. Because of this, research has been done using GAs
in order to find (near-)optimal solutions in reasonable time.
Experimenting with GAs, we also have tried to solve the TSP problem (using only a variation
of the inversion operator) and it did find (near-)optimal solutions in time roughly proportional
to N2 (with N the number of cities). As described before, the GA had no knowledge at all of the
problem (so no graph theory could be used), only the fitness of each member. The used variation
on inversion (swapping of a sub-path in the whole path) propagates the earlier described building
blocks through the population. Figures 7 through 10 show some of the best members of
subsequent populations found during a simulation with thirty cities. Figure 7 is the starting best
member, figure 10 is the found optimum. The total travelling length for each solution is also
given. In figure 11, the fitness of the best solution (the length of the path) is given against the
number of recombinations so far. The GA converged quickly to a length of around 3000 and
then slowly to the found optimum.

Figure 8. The GA quickly converged to this solution.Figure 7. The path from the starting solution.

28 3 Genetic Algorithms

Figure 10. The optimum solution found.Figure 9. The path after 50500 recombinations.

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

0 2 4 6 8 10 12 14

number of recombinations x10,000

di
st

an
ce

Figure 11. Length of best member against number of recombinations.

Implementation

Goldberg’s book contains programs
to implement a genetic algorithm
(in Pascal). Some changes to the
standard algorithm proposed by
W h i t l e y a r e d e s c r i b e d i n
[WHIT89A]. His program, called
GENITOR, besides using rank
based selection, also usesone-at-a-
time selection and replacement: a
new solution replaces the worst
member of the population when the
new solution has a higher fitness.
The best solutions always stay
within the population and therefore
the best fitness value increases monotonously (thestatic population model). One-at-a-time
replacement is always better than creating a whole new population if it is possible to evolve
from a string with good fitness to a string with a fitness that is a global maximum without
passing any local maxima. Then it will be assured that the best string in the population does not
lead to a local maximum.

At the department of Experimental and Theoretical Psychology at the Leiden University, where
this research took place, a library was written (in C) to create and manipulate populations of
binary strings either using Goldberg or Whitley selection and replacement ([HAPP92] and
[MURR92]). To make the functions more convenient for our purposes, several changes and
improvements have been introduced to the original library (see also chapter 7).

4 L-systems

‘The ignorant man marvels at the exceptional; the wise
man marvels at the common; the greatest wonder of all
is the regularity of nature.’

— George Dana Boardman

The third main ‘real world model’ used in this research is, again, based upon a biological
example: the development and growth of living organisms.

Biological development

The development of living organisms is governed by genes. Each living cell contains genetic
information (thegenotype) which determines the way in which the final form of the organism
will develop (thephenotype). This genetic information is not a blueprint of that final form, but
can be seen as a recipe. For example, in his excellent book "The blind watchmaker", Richard
Dawkins [DAWK86] describes how this ‘recipe’ is followed not by the organism as a whole, but
by each cell individually. The shape and behaviour of a cell depend on the genes from which
information is extracted. This in turn depends upon which genes have been read in the past and
on influences from the environment of all the neighbouring cells. Therefore the development is
solely governed by the local interactions between elements that obey the same global rules. Such
a principle lies also at the basis of a mathematical system calledfractals.

Fractals

Fractals have been made popular by Benoit Mandelbrot with his book "The fractal geometry of
nature" [MAND82]. Before describing one of the oldest examples of a fractal, the Koch-graph,
let’s take a look at an experiment by meteorologist Lewis Richardson. He tried to measure the
length of the perimeter of the west-coast of England and found that the results depended strongly
upon the scale of the map he used. Repeating the experiment using just one map with all the
details on it, but decreasing the unit of measure each time, we would find that for each decrease,
the length of the coast would increase.

30 4 L-systems

This implies that the

Figure 1. One of the oldest examples of a fractal: the Koch-graph.

west-coast of England
has an infinite length!
So it seems that the
‘length’ is not a very
useful method of de-
scribing a coastline
and that a measure of
twirliness would be better. Mandelbrot called this twirliness, a number between 1 and 2, the
fractal dimension(a fractional dimension).

If we call the unit of measurea and if we need to use itN times to make an approximation of
the length of the line for which we are calculating the fractal dimension (the measured length

will then beNa), the fractal dimension can be defined as:D lim
a →0

logN

log 1
a

TheKoch-graphis another example of a curve with infinite length. Proposed by Helge von Koch
in 1905 [KOCH05], it shocked mathematicians: a curve where each part, however small, had an
infinite length! Mandelbrot restates its construction as follows:

‘One begins with two shapes, aninitiator and agenerator.

a. The initiator

b. The generator

c. The generator rewritten

Figure 2. The first steps of generating the
Koch-graph.

The latter is an oriented broken line made up ofN equal
sides of lengthr. Thus each stage of construction begins
with a broken line and consists in replacing each straight
interval with a copy of the generator, reduced and dis-
placed so as to have the same end points of those of the
interval being displaced.’

The resulting ‘snowflake’ curve (shown in figure 1) is a
classical example of a graphical object defined in terms of
a simple rewriting rule that is recursively applied to each
element. As can be seen in figure 2c, a fractal is veryself-
similar.

Simple L-systems

A special class of fractals are called L-systems and were introduced in 1968 by Aristid
Lindenmayer [LIND68] in an attempt to model the biological growth of plants. An L-system is
a parallel string rewriting mechanism, a kind ofgrammar.

A grammar consists of a starting string and a set ofproduction rules. The starting string, also
known as theaxiom, is rewritten byapplyingthe production rules: each production rule describes
how a certain character or string of characters should be rewritten into other characters. Whereas
in other grammars production rules are applied one-by-one sequentially, in an L-system all
characters in a string are rewritten in parallel to form a new string.

When we attach a specific meaning (based on a LOGO-style turtle, [SZIL79]) to the characters
in a string, we are able to visualize the string.

The Koch-graph from figure 1, for example, can be described with the following L-system:

Simple L-systems 31

axiomF
and

production ruleF → F-F++F-F.

Each of the characters can be thought of as ‘directions’ for aturtle. If we associateF with draw
a line, - with take a left turnand+ with take a right turn, the turtle looks at the symbols in the
string, one at a time, and for each symbol, it either moves and draws a line, or it turns around.
The angle for the- and+ is variable and will be denoted withδ.
Usingδ = 60°, figure 2a shows the axiom and figure 2b shows the right-hand-side (the part after
the →) of the production rule.

The left-hand-side of the production rule (the part before the→) describes the sub-string to be
replaced, and the right-hand-side describes the string with which it should be replaced. In the
first step, the axiom will be rewritten asF-F++F-F.

In the second step,each newF will be replaced, in parallel, withF-F++F-F, resulting in

Figure 4.
Each side is represented by
F-F+FF-F-FF-FF-FF+
F-FF+F+FF+FF+FFF.

Figure 3.
Each side is represented by
F-f+FF-F-FF-Ff-FF+
f-FF+F+FF+Ff+FFF.

F-F++F-F-F-F++F-F++F-F++F-F-F-F++F-F (with each of the rewrittenF’s
underlined). If no production rule is
given for a character, the character is
replaced with itself. Figure 2c shows
the string created from the axiom after
two rewriting steps.

Besides-, + and F, more symbols
can be used. For example, thef sym-
bol tells the turtle to move, butwith-
out drawing a line. The difference
betweenf andF is shown in figures
3 and 4, whereδ = 90°.

Bracketed L-systems

Figure 5.
5 steps,δ = 23°,
axiom X
X → F[-[[X]+X]+F[+FX]-X
F → FF

With the turtle symbols described in the previous paragraph, only
so-calledsingle line drawings can be made, in contrast with the
branching seen in real life plants. In order to give the turtle the
‘freedom’ to move, two new symbols are introduced:

[Remember the current position and direction of the turtle.
] Restore the last stored position and direction.

With these new symbols, more realistic drawings can be obtained,
as shown in figures 5 and 6. Both these L-systems, and the others
used in this chapter, are from the book "The Algorithmic Beauty of
Plants", by Prusinkiewicz and Lindenmayer [PRUS90]. For figure 5
the X symbols are ignored during the drawing of the string.

Context-sensitive L-systems

A final extension of L-systems, calledcontext, is needed to model information exchange between
neighbouring cells, as described in the first paragraph. Context also leads to more natural looking

32 4 L-systems

plants. Context can be left, right or both for a certain sub-string. A

Figure 6.
5 rewriting steps
δ = 26°, axiom F
F → F[+F]F[-F]F

production rule in a context-sensitive L-system has the following form:

L < P > R → S

P (also called thepredecessor) andS (the successor) are what we earlier
called the left-hand-side and the right-hand-side of a production rule.L
andR (the left- andright-contextrespectively) may be absent. Technically,
an L-system without context is called a 0L-system. If all production rules
have one-sided context or no context at all, it is called a 1L-system, and
a 2L-system has production rules with two-sided context.

A production rule with left and right contextL andR can only replaceP
by S if P is preceded byL and followed byR. If two production rules
apply for a certain character, one with and one without context, the one
with context is used.

For example, with the production rules from figure 7a, the

Figure 7. Production rules with and
without context.

A → X A → X
B → Y B → Y
C → Z Y < C → Z
(a) (b)

stringABC will be rewritten asXYZ, but with the production
rules from figure 7b, the stringABC will be rewritten as
XYC. C is not rewritten because it is preceded byB during its
rewriting, notY.
If we try to rewriteXYZ using the rules from figure 7a the
string remainsXYZ (no production rules apply) but if we try
to rewrite the stringXYC using the rules from figure 7b it can
now be rewritten toXYZ becauseC is now preceded by aY.

The plant in figure 8 was created with the

Figure 8. 30 rewriting steps
δ = 16°, axiom F1F1F1
Production rules as in figure 8.

production rules from figure 9. All production
rules have both left and right context. Note
that the turtle commandF is not rewritten at
all, and that only0 < 0 > 1 and
1 < 0 > 1 actually create new twigs: all
the other production rules are used for the
interaction between the different parts of the
plant. During context matching, the geometric
symbols (-, + andF) are ignored. During the
drawing of the string, the1s and 0s are
ignored. The production rules were con-
structed by Hogeweg and Hesper [HOGE74],
along with 3583 other patterns generated by
bracketed 2L-systems.

Implementation

Przemyslaw Prusinkiewicz and James Hanan
[PRUS89] present a small L-system program
for the Macintosh (in C). In order to experi-
ment with L-systems, we have ported the
source code to work on PC’s. Besides fixing some ‘irregularities’, the program was also

Implementation 33

rewritten extensively in order to accept less rigid input

Figure 9. The production rules for figure 8.

0 < 0 > 0 → 0
0 < 0 > 1 → 1[-F1F1]
0 < 1 > 0 → 1
0 < 1 > 1 → 1
1 < 0 > 0 → 0
1 < 0 > 1 → 1F1F
1 < 1 > 0 → 1
1 < 1 > 1 → 0

+ → -
- → +

files. Two features were added:probabilistic production
rules and production rule ranges(both from [PRUS89]).
With probabilistic production rules, more than one produc-
tion rule for the sameL, P andR can be given, each with
a fixed probability. When rewriting a string, one of the
rules is selected at random, proportional to its probability.
This results in more natural looking plants, while they are
still recognizable as belonging to the same ‘family’. Figure
10 shows two plants that were created with the same set
of (probabilistic) production rules.

Production rule ranges introduce a temporal aspect to the L-system and tell which rules should
be looked at during a certain rewriting step. This can be used for example, to generate twigs first
and then the leafs and flowers at the end of those twigs.

In chapter 5 a method is set forth that combines the GAs from chapter 3 and L-systems in order
to obtain an efficient search for good neural network topologies.

Figure 10. Both plants were created with the rules F→ F[+F]f[-F]F,
F → F[+F]F and F → F[-F]F, each with a 33% probability.

34 4 L-systems

5 The search for modularity

‘Nature gets credit which should in truth be reserved for ourselves:
the rose for its scent, the nightingale for its song; and the sun for
its radiance. The poets are entirely mistaken. They should address
their lyrics to themselves and should turn them into odes of self
congratulation on the excellence of the human mind.’

— Alfred North Whitehead

This chapter will present an overview of the principle ofmodularityas seen in nature. It will be
explained why modularity incorporated in neural networks might greatly improve their
performance. It will conclude with a method to find modular structures, a method whichitself
is also based on modular principles.

Modularity in nature

Modularity is found in nature on all possible scales, in living organisms as well as in dead
objects. A very broad definition of the principle of modularity may be:a subdivision in
identifiable parts, each with its own purpose or function. This of course, applies to almost
everything, but that is exactly the point to be made. Almost everythingis modular.

At the smallest possible scale, that of quantum physics, the principle of modularity sets of. All
elementary particles can be seen as the modules of which everything else is made. These
particles can, however, no longer be divided into smaller particles so they themselves are at the
lowest level of modularity. At a larger scale these modules (the elementary particles) form into
progressively larger entities: atoms, molecules, solids and fluids, celestial bodies, star-systems,
galaxies, clusters, super-clusters up to the universe itself. Between each of these scales a clear
subdivision of one into the other can be made.

But not only in the domain of physics and astrophysics modularity may be found, biology is also
based on modular principles. The same kind of progressive subdivision as made in the last
paragraph is possible. All possible classes of living organisms are made of atoms, molecules,
solids and fluids. The mammals for example, can be subdivided in their cells, each of which can
be subdivided in several organelles (specialized parts of a cell) positioned in the nucleus and in
the cytoplasm (the primary living matter of a cell not including the nucleus). These cells are

36 5 The search for modularity

grouped together to form organs, which in turn form the whole organism. In the organism each
organ has one or more specific functions. Each organ itself is again divided into parts with
different functions, and in those parts each cell has its own tasks.

These examples suggest a recursive modularity inside modularity itself. Two kinds of modularity
can be identified:iterativemodularity anddifferentiatingmodularity. Iterative modularity refers
to using the same kind of module several times, while differentiating modularity refers to the
organization of a whole in several differing modules. Self similarity, as seen in fractals, can be
seen as a recursive iterative modularity, modules iterating themselvesin themselves.

Modularity in the brain1

The importance of modularity becomes clear when looking at the brain. The brain shows a
remarkable modular structure. Its modularity can be described on several levels. The lowest level
is of course the subdivision in neurons. But also on larger scales a strong modular structure is
present (see also chapter 2). Here it will be argued thatanatomically, the brain has a highly
specific, modular organization, which has strongfunctional implications for cognitive
information processing and learning.

Two of the most prominent structural characteristics of the brain will be referred to ashorizontal
structure andvertical structure. Horizontal structure is found where processing in the brain is
carried out by subsequent hierarchical neuron layers. Such multi-stage information processing
can for example be identified in the primary visual system, where simple features of visual
images as lines and arcs are represented in layers ofsimple neuronswhich are combined and
represented by neurons in subsequent layers that possess increasingly complex representational
properties (e.g. [HUBE62]).

Apart from horizontal structure or a layered structure, there exist at all levels in the primate brain
multiple parallel processing pathways that constitute a vertical structuring (e.g. [LIVI 88],
[ZEKI88]). Vertical structure allows for the separate processing of different kinds of information.
A good example can, once more, be found in the visual system, where different aspects of visual
stimuli like form, colour, motionandplace, are processed in parallel by anatomically separate,
neural systems, organized in themagno cellularand parvo cellular pathways (e.g. [LIVI 88],
[HILZ89]). Convergent structures integrate this separately processed visual information at higher
hierarchical levels to produce a unitary percept (e.g. [ZEKI88], [POGG88], [YOE88]). The
presence of both horizontal and vertical structure leads to amodular organizationof the brain
[MURR92].

The subdivision of the brain into two hemispheres, as already mentioned in chapter 2, illustrates
anatomical modularity at a very large scale. Functionally, this division is paralleled by
hemispheric specialization. Whole groups of mental functions are allocated to different halves
of the brain.Split brain patients in which the connection between the two hemispheres (the
corpus callosum) is cut, can live an almost normal life showing that the two hemispheres indeed
function to a large extend independently. Within each hemisphere individual functions are again
organized anatomically into separate regions. Analysis of behavioral functions indicate that even
the most complex functions of the brain can be localized to some extent [KAND85]. For example

1 Parts of this paragraph are adapted from [HAPP92]. It should be noted that the ideas of this paragraph are not
universally accepted by all researchers.

Modularity in the brain 37

studies oflocalizedbrain damage reveal that isolated, mental abilities can be lost as a result of
local lesions leaving other abilities unimpaired. Warrington described a subject with a severe
impairment of arithmetic skills that was not accompanied by a deficit in other cognitive abilities
[WARR82]. Also, different types of aphasia (language disorders) indicate that different functions
are separately localized in the brain. Patients withWernicke’s aphasiaare not able to understand
written or spoken language while they can speak and write unintelligibly but fluently.Broca’s
aphasia shows the reverse symptoms. The ability of patients to understand language is
unimpaired while they are not, or hardly, able to produce language.

An important functional advantage of the anatomical separation of different functions might be
the minimization of mutualinterferencebetween the simultaneous processing and execution of
different tasks, needed to perform complex skills like, for example, walking through a forest or
driving a car. In psychology, interference studies with multiple task execution indicate that some
tasks can easily be performed in parallel, while others strongly interfere. Tasks that are
sufficiently dissimilar can be executed simultaneously without much interference. A striking
result was reported by Allport, Antonis, and Reynolds who demonstrated that subjects could
sight-read music and perform an auditory shadowing task concurrently, without any interference.
The simultaneous execution of similar tasks (like presentation of two auditory or two visual
messages), causes much more interference. The difference in performance found in these tasks
can be explained by assuming a modular organization of the brain [ALLP80]. Some tasks are
processed in separate modules and do not interfere. Other tasks require simultaneous processing
in single modules and are thus harder to execute in parallel.

In describing the modular organization of cognitive functions in the brain we went from a very
large scale grouping of functions into separate hemispheres to a modular organization of
individual functions. Evidence indicates that individual functions, again, can be split up into
functionally different subprocessesor subtasks, which, once more, can be localized in
anatomically separate regions. Within the field of psychology, for example,word-matching
experiments show that the human information processing system uses a number of subsequent
levels of encoding in performing lexical tasks [POSN86], [MARS74]. In an experiment by
Marshall & Newcombe [MARS74], subjects had to decide if two simultaneously presented words
did, or did not belong to the same category. Reaction times for visually identical words like
TABLE-TABLE were shorter than for visually different words like TABLE-table. Even longer
reaction times are found for words that belong to a different category like TABLE-DOG. Posner,
Lewis & Conrad [POSN72] explain these data as follows: Visually identical words can be
compared on the level of the visual encoding of words. Matching of visually different words can
take place when also a phonological code has been formed. Different category words can be
compared when an additional semantic code has been formed. These studies indicate that in
lexical tasks a separate visual, phonological and semantic encoding analysis of words is involved.
PET-scan (positron emission tomography) studies show that these functionally distinguished
subprocesses are also separately localized in the brain [POSN88]. Local changes in nerve cell
metabolism corresponding to changes in neuronal activity, were registered in subjects during the
execution of different lexical tasks. These experiments revealed that visual encoding of words
takes place mainly in the occipital lobe in the posterior part of the brain. Phonological codes are
formed in the left temporal parietal cortex. Semantic encoding takes place in the lateral left
frontal lobe.

An important argument that can be derived from these studies is that thenatureof information
processing in the brain is modular. Individual functions are broken up into subprocesses which
can be executed in separate modules (without mutual interference). The modular architecture of
the brain might form the necessary neural substrate for the independent processing of different

38 5 The search for modularity

tasks or subtasks. It can be speculated that the subdivision of modules into smaller modules and
of functions into sub-functions, might go on into extreme depth. For example, modules
containing between 90 and 150 neurons, also known asminicolumns, have been proposed as the
basic functional and anatomicalmodularunits of the cerebral cortex (e.g. [MOUN75], [SZEN77],
[ECCL81]). These modules are thought to cooperate in the execution of cortical functions
[CREU77].

The question may now be raised at what moment in the development of the brain this modularity
arises. An important argument supporting the view that part of the structure is in some way pre-
wired, is the anatomical location of different functional regions in the brain. The location of most
functions are situated at the same place for almost all individuals, see e.g. [GUYT86]. Another
argument to support this view is that most stages in the development of language in children are
the same, independent of the language learned. Furthermore all the basic grammar rules are the
same all over the world. So clearly, most of the global structure in the brain is already present
in the brain at birth, and, as a consequence, has to be genetically coded in some way. This has
to be a modular coding, because the genes do not have enough capacity to store all specific
connections.

Modularity in genetics

The genetic coding of all life forms on earth is also (very) modular. All genetic information is

Figure 1. The Genetic Code of RNA (from [HOFS79]).

U C A G

U

phe
phe
leu
leu

ser
ser
ser
ser

tyr
tyr
*
*

cys
cys
*

trp

U
C
A
G

C

leu
leu
leu
leu

pro
pro
pro
pro

his
his
gln
gln

arg
arg
arg
arg

U
C
A
G

A

ile
ile
ile
met

thr
thr
thr
thr

asn
asn
lys
lys

ser
ser
arg
arg

U
C
A
G

G

val
val
val
val

ala
ala
ala
ala

asp
asp
glu
glu

gly
gly
gly
gly

U
C
A
G

stored in genes, which are contained in long double-stranded helical strings, the DNA, of which
each cell in an organism has a copy1. This genetic information is a digital coding with four
different bases:adenine, guanine, thymineandcytosine. The information stored in the DNA helix
is transcribed into strings of RNA,
which is an inverse copy of a part of
the DNA. RNA is built from the same
bases as DNA, except thymine which
is replaced byuracil. Each triplet of
bases in the RNA forms a coding for
one of 20 amino acids or amarker(see
figure 1, with * as marker). The RNA
is translated into proteins by aribo-
somethat reads the RNA, and connects
the amino acids in the order coded in
the RNA. Markers tell where to start
and where to stop reading the RNA
string.

Amino acids are the building blocks of
which all proteins are built. Most of
the proteins areenzymesthat catalyze
the different chemical reactions in the
cells. Each protein consists of a some-
times very large number of amino
acids put together in a specific order. It
is this order that determines the shape,

1 Although there are life forms containing only RNA.

Modularity in genetics 39

and through that shape the functioning of the protein. For each protein, of which about 30,000
exist in humans, the order of the amino acids is written in the DNA, where each protein is coded
by one gene. In this way, the DNA determines what kind of proteins are built and therefore how
each cell will operate. It is supposed that during the growth of an embryo a process ofcell
differentiation takes place that is caused by the forming of certain proteins that generate a
positive feedback on the genes in the DNA that produced those proteins. These proteins will also
repress another group of genes and once the positive feedback has started, it will never stop, so
the repressed group of genes will never be active again. Embryological experiments show also
that certain cells in an embryo control the differentiation of adjacent cells [GUYT86], hereby
implementing the idea ofcontext. Most mature cells in humans only produce about 8000 to
10,000 proteins rather than the total amount of 30,000. It is this process of cell differentiation
that determines the final shape of the organism in all its detail.

As argued in the previous paragraph, the brain is supposed to have an initial structure at birth.
It is the process of cell differentiation that forms the shape of the brain in a way that is still
unknown. But somehow the initial structure has to be coded in the genes (genetic modules of
information, or building blocks).

How modularity is coded

In addition to the already mentioned minicolumns, the cortex apparently contains, at a higher
level, yet another form of modular organization. So calledmacro modulesconsist of an
aggregation of a few hundred minicolumns, forming a larger processing module. According to
Szentagothai [SZEN77]: ‘the cerebral cortex has to be envisaged as a mosaic of columnar units
of remarkable similar internal structure and surprisingly little variation of diameter’.

This kind of iterative modularity can be seen almost everywhere in nature:

- leaves of a tree,
- alveoli in the lungs,
- scales of a fish,
- rods and cones in the eye,
- minicolumns in the brain,
- hairs on the skin,
- ants in a colony,

and so on. It suggests that iterative modularity is a very common principle in nature. In the
process of evolution it has time and again been profitable for all kinds of species toduplicate
that which already has been ‘invented’ once before. An example of this is found in [DAWK86]:
The middle part of the body of a snake is composed of a number ofsegments. Each segment
consists of a vertebra, a set of nerves, a set of blood vessels, a set of muscles etcetera. Although
each individual segment has a very complex structure, it is exactly similar to other segments.
Therefore, in order to add new segments all that has to be done is a relatively simple process
of duplication. The genetic code for building one segment, which is of great complexity, is the
result of a long and gradual evolutionary search. However, since the genetic code for building
one segment is already present, new identical segments may easily be added by a single
mutational step. ‘A gene for inserting extra segments may read, simply,more of the same here.’
Snakes have many more vertebrae than their fossil ancestors as well as their living relatives. ‘We
can be sure that during the evolution of snakes, numbers of vertebrae changed in whole
numbers. We can not imagine a snake with 26.3 vertebrae, it either has 26 or 27.’ This example

40 5 The search for modularity

shows that complex, partial architectures (read: modules) once encoded during evolution, can be
used repeatedly to produce the whole system. So apparently genetics is not only on a small scale
based on modules, but it has the effect of generating modular structures at larger scales as well.

The conclusion that may be drawn from this iterative nature of the translation from genes to
organisms (or: fromgenotypeto phenotype) is an important one: the genetic code does not
describe exactly what the final form of an organism will be, but describes a number of rules that,
when followed, will result in the final form. In other words: instead of ablueprint the genes
contain a kind ofrecipe [DAWK86]. This means that there is no one-to-one correspondence
between a part of the DNA and a part of the actual organism. It allows the genetic search to
utilize already discovered principles repeatedly. Not the resulting organisms, but the recipes that
built them are combined in evolution. Only the rules (proteins) that are able to work together
in the forming of a fit organism will survive.

This is probably what has happened in the case of the human brain. The human brain is the
result of an evolutionary process, during which the brain (in our predecessors) became larger and
larger. If the human brain is compared with the brain of, for example, a cat or a macaque
monkey, the only difference is the size, which is in the case of the human significantly larger,
in particular the cerebrum (the largest part of the brain consisting of the left and right
hemisphere) which is responsible for all higher cognitive functions. This ‘size’ has of course to
be corrected for the size of the animal. The brain of an elephant is much larger, for example.
(See [JERI85] for a measure of brain sizes: theencephalization quotient.) The cortex contains,
as mentioned, a high amount of repeating modules. The only thing that was necessary, as was
the case with the segments of the snake, were genes saying ‘more of this, please’.

Exactly how the coding of structure in organisms is actually done in nature is mostly unknown,
and is still an active area of research.

Imitating the evolution of the brain

Modularity is an important principle in nature and, as argued, is to a large extent present in the
brain. The question is whether this modularity, when used to constructartificial neural networks,
will result in better performances. Preliminary results show that this may be the case (e.g.
[RUEC89],[SOLL89],[MURR92],[HAPP92]), but so far no results are available concerning large
artificial neural networks with a modular structure. The problem is that the operation of neural
networks is very complex: even with a well known algorithm like backpropagation it is very
difficult, if not impossible, to understand exactly what happens inside, particularly when more
hidden layers are used. It becomes even more difficult whenrecurrentnetworks are used, these
are networks without the feedforward restriction of the backpropagation algorithm (see chapter
2). The behaviour of these networks can only be described by a large number of coupled
differential equations, of which no solution exists in practice. This has large consequences for
the designof neural networks. It is not possible to calculate in advance what the optimal
topology of a network should be, given a specific task. The only way of determining the quality
of a given network for a specific task istesting it. The only description of the behaviour of a
network is its simulation.

But thereis a large scale neural network that functions rather well and is based on modularity:
the brain. And as in chapter 2, where was explained how reverse engineering of the brain led
to the ‘invention’ of artificial neural networks, reverse engineering can also be used to find a
method that is able to find good modular structures for artificial neural networks. The process

Imitating the evolution of the brain 41

that ‘invented’ the brain is, of course, evolution. In millions of years the process of evolution
gradually resulted in the increased complexity of an aggregation of information processing cells,
the brain. Reverse engineering of this process logically leads to the use of a genetic algorithm,
that, as described in chapter 3, is a simulation of evolution.

The use of genetic algorithms relieves us of a problem mentioned above: the impossibility of
describing why one network performs better than another. Genetic algorithms do not care why
one solution is better than the other, they are not evenable to use such information. The only
drive behind its reproductive functioning is the fitness of the members in its population. This
fitness can easily be calculated. Just generate the neural network represented by one of the
members of the population, andtest it.

There are several ways in which a genetic algorithm can be used to find neural network
solutions. The main two possibilities are:

- Use the genetic algorithm to find the weights of a given network structure that
result in the smallest error. With this method, the genetic algorithm is used instead
of a learning algorithm like backpropagation. The genes of the algorithm have a
one-to-one correspondence to the weights of the network. A slight variation of this
method is to use the genetic algorithm to find a set of reasonably good weights,
leaving thefine tuning to a learning algorithm (see for example [WHIT89B] and
[GARI90]).

- Use the genetic algorithm to find the structure of a network. With this method the
genetic algorithm tries to find the optimal structure of a network, instead of the
weights of a given structure. The genes of the genetic algorithm now contain a
coding for the topology of the network, specifying which connections are present.
The weights of the network have to be trained as usual (see for example
[DODD90]).

Of course also combinations of the two methods are possible: coding the presence of connections
as well as their weights in the genes. But shown by the XOR example in chapter 2, with the
input and output layer directly connected, given a good topology the network should always
converge, so the training of the weights can better be done using a learning algorithm instead
of a genetic algorithm.

Most of the work done on finding good network topologies with genetic algorithms used a kind
of blueprint method of coding the topology in the genes of the members of the population
(e.g. [HARP89],[MARI90]). But because nature doesnot code for blueprints, a research project
trying to construct a method that enables the coding ofrecipesin genes was started [HAPP92].

Using graph grammars as recipes

A neural network, when seen as a collection of nodes and edges, is agraph. So what was needed
to code neural network structures was a method ofgraph generation. There are several formal
languages describing graphs, some rewrite nodes, others rewrite edges, others perform operations
on adjacency matrices, but a more logical choice for this research was again found in biology.
To describe the form and the growth of plants, the biologist Aristid Lindenmayer made a
mathematical construct called L-systems (see chapter 4), to describe the development of
multicellular organisms. The method takes genetic, cytological and physiological observations

42 5 The search for modularity

into account as well as purely morphological ones [LIND68]. Since the biological metaphor is
one of the mainstays of this research, taking L-systems for our recipes was an obvious choice
(the original idea coming from [HAPP92]). Besides, L-systems offer the possibility of describing
highly modular structures. They are very good at describing (giving a recipe of) both iterative
and differentiating modularity, and are often used to describe fractals. Other graph grammars
were shortly investigated, but they seemed to lack the flexibility offered with L-systems. One
of the major advantages of L-systems over usual graph grammars is the ease of including
context, enabling the analogy of cell differentiation in the ‘growth’ of the neural network.

L-systems are however not specifically designed to describe graphs. It is just a string rewriting
method. The actual meaning of the resulting strings depends on the interpretation of the symbols
used. In chapter 6 will be explained which symbol interpretation was used, and how the
production ruleswere coded genetically.

Combination of metaphors

In this research we tried to combine three methods with their origin in biology:

- Genetic Algorithms

Figure 2. Global structure.

- L-systems
- Neural Networks

Our goal was to design a method that searches auto-
matically for optimal modular neural network architec-
tures. In this chapter it was argued that the concept of
modularity is frequently used in nature, and results in
good solutions. Our working hypothesis throughout this
research has been that by making use of modular
techniques based on biological metaphors, both in
search method and in network structure, the eventual
performance of our method for finding optimal neural
network structures would be better than other methods.

Our method can be summarized as follows:

1. A genetic algorithm generates a bit string, this is the chromosome of a member of
its population. The search of the genetic algorithm is directed towards members
with a high fitness, a measure resulting from step 3.

2. An L-system implements the growth of the neural network that results from the
recipe coded in the chromosome. The chromosome is decoded and transformed into
a set of production rules. These are applied to an axiom for a number of iterations,
and the resulting string is transformed into a structural specification for a network.

3. A neural network simulator (in this research backpropagation) trains the resulting
network structure for the specified problem. The resulting error is then transformed
into a measure of fitness: a low error results in a high fitness. This fitness is
returned to the genetic algorithm.

This method combines the theory explained in the last three chapters. The next chapter describes
in detail the transformation from genotype to phenotype.

6 The grammar and its coding

‘Cheer up, the worst is yet to come.’
— Philander Johnson

This chapter describes a number of L-system grammars that can be used to define network
structures. Besides the L-system actually used, some other possible codings we looked at are
described too. In the last paragraph the coding of the rules into the chromosomes is described.

From network to string

As described in chapter 5, our GA has to manipulate a population of sets of production rules.
Each member of the population is a binary string consisting of one or more production rules for
an L-system. To determine the fitness of a string, the production rules are extracted from the
string and an L-system rewrites an axiom using those rules. The resulting string is interpreted
as a network to be trained by (in our case) backpropagation. Using backpropagation restricts the
possible topologies tofeedforwardnetworks: all the nodes can be indexed in such a way that
there are only connections fromni to nj with i < j.

One of the first ideas was to represent each node in the network with any letter from the
alphabet and use extra symbols ([,] and digits) to implement modularity and connections.
A variation of this coding usedimplicit connections between neighbouring letters and the extra
symbols for special connections. The comma was introduced to note that two neighbouring
letters were not connected (as inA,B). Letters could be grouped using the[] symbols. Each
pair of brackets was associated with a number (or level) and connections to these groups could
be made by using that number. These strings, which will be calledabsolute pointer strings, are
described later.

Another idea restricted the alphabet to1s and0s representing nodes in a network at various
levels. Using a connection table, forward connections were made between specific combinations
of 1s and0s. Modules are introduced by placing nodes at different levels in a string. The nodes

44 6 The grammar and its coding

within a module were connected to nodes at the same level according to the connection table.
The resulting strings, calledbinary table stringsare described in detail later.

The last strings that will be described are the ones actually used in our research (calledrelative
skip strings). They don’t have the numbered brackets (although they do have the brackets
themselves) and use digits to indicate a relative jump within the string in order to make a
specific connection. Two variations are possible: neighbouring characters are connected by
default and a comma is used to denote the opposite, or neighbouring characters are not
connected by default and a minus symbol is used to indicate a connection between neighbouring
characters.

Example networks

This paragraph presents a number of connection structures that we used to evaluate the string
notations. For each of these structures (and many others) we tried to find a string representation,
in order to test the representational potential of the used grammar.

Basic networks

Figure 1. Four basic elements.

Figure 1 shows four basic elements that were
used to evaluate the strings. 1a and 1b are the
simple elemental structures whereas 1c and
1d combine these elements introducing modu-
larity which should be exploited by the gram-
mar.

XOR

Figure 2. Two possible networks for
solving the XOR problem.

Figure 2 shows two networks that are able to solve the XOR
problem (exclusive OR - see chapter 2).
The extra connection in 2b results in better performance,
although often more complicated strings were needed to code
it.

Absolute pointer strings

With absolute pointer strings, nodes of the network are represented by characters from the
alphabet. The same character can be used for all nodes, but if more characters are used, specific
contexts can be used. If characters are placed within[]’s the nodes they represent are said to
form a moduleand they can be referred to as one group of nodes in other parts of the string.

Each pair of[]’s has an index associated with it (denoted as). By appending a digit pointer[
i

]
i

to a node (or module), a connection is coded from that node (or module) to all modules of which
the index corresponds to that pointer. Connections between neighbouring nodes (or modules) are
made automatically unless they are separated by a comma. Only feedforward connections are
made by connecting nodes and modules to nodes and modules to their right in the string.

Absolute pointer strings 45

Basic networks

The basic elements shown in figure 1 are easy to represent using the grammar described. Figure
1a can be represented by a single character (A for example) and figure 1b by two characters (for
exampleAA or AB). is a possible string encoding the network of figure 1c, whereA1,A[

1
A]

1

the first A is connected to the thirdA, but not to the second. There is a much better, smaller
solution:[A,A]A. The fourth example from figure 1 is more difficult: is[A,A1]A,A[

1
A]
1

one of the simplest representations.

XOR networks

Since the XOR network of figure 2b is a simple extension of the network shown in figure 2a,
it will be convenient to be able to use the string representing figure 2a for creating a string
representing figure 2b. Because two modules are always fully connected, 2a can easily be written
as[A,A][A,A]A. To make the extra connection in figure 2b, just one pair of brackets and
a digit have to be added: .[A,A1][A,A][

1
A]
1

These strings are able to model all feedforward networks because every single node can be put
between numbered brackets so digits can be used for all connections. Below however, are some
considerations that made us decide not to use the grammar in the described form because we
were looking for simple strings and production rules.

- The L-system should be able to generate the numbers of the brackets automatically.

- Production rules should be able to rewrite a specific module (referred to by pointer)
as well as all modules with a specific content and thus the pointers should be
matched against some sort ofwild card, which requires changes to the L-system.

- Removing a pair of brackets with a production rule also requires the corresponding
pointers to be removed. This can not be done with a production rule and therefore
requires changes to the L-system.

At the same time when we were experimenting with this grammar, we looked at the binary table
strings, which use a binary alphabet.

Binary table strings

In binary table strings, nodes are represented by1s and0s. When a bit is rewritten brackets are
automatically placed and are as such not present in the production rules. Nodes between brackets
are said to be at a different level. The brackets are indexed with0 or 1, depending on the
character they originated from.

Connections are made depending upon aconnection table. Using the values of the characters as
indexes in the connection table, a character is connected with all characters to its right (ensuring
a feedforward connection) for which theConnect? column contains a1. In the string0110,
using the connection table from figure 3, the first0 is connected to both1s, but not to the last
0. The first1 is connected to the last0, as is the second1. For the rest of this paragraph, the
connection table shown in figure 3 is used.

46 6 The grammar and its coding

Context plays an important role, only single bits are

Figure 3. Sample connection table

From To Connect?

0
0
1
1

0
1
0
1

0
1
1
0

Figure 4. Visualization of
binary string.

used as predecessors and depending on their context
they are rewritten by a
successor string which is
surrounded by brackets
indexed with the original
character. Using the pro-
d u c t i o n r u l e s
0 > 0 → 10 and 1 → 11, the string 001 will then be
rewritten as after one step. This string can be[

0
10]

0
0[
1
11]

1

visualized by the network in figure 4, where the modules are
highlighted in rectangles. The bottom rectangle represents the10
sub-string and the top rectangle the11 sub-string. The fifth node
represents the single0.

Figure 4 also shows how connections are made when modules are
present. First is decided which nodes and modulesmaybe connected
by looking at the1s and0s at the outermost level (the nodes that
are not within brackets and the numbers below the outermost

brackets). In our example, the10 module has number0 and may be connected to the11
module (which has number1), but not to the0. The single0 may also be connected to the11
module.

To determine which nodes are actually connected with nodes in the other module, we look at
the next level. In our example, the1 and0 of the10 module are compared against the1s in
the11 module. Because1-1 has a0 in the third column of figure 3, only the second node (the
0) is actually connected to the nodes in the11 module. The0 that is not within brackets is
connected to both1s from the11 module because we are at the lowest level for the0 (there
are no more brackets). This applies to all nodes/modules: if there are no more levels to compare,
the remaining nodes/modules are fully connected.

This process of comparing numbers using the connection table is repeated for all remaining
levels and modules.

Basic networks

Figure 1a can be represented by either a0 or a1 and figure 1b by either01 or 10. The third
element from figure 1 can for example be written as001 or 110. The fourth example is more
difficult: we need multiple levels to code the network. One of the simplest possibilities is

. In order to reconstruct the network from this string, we first note that the[
1
0]

1
[
0
01]

0
[
0
01]

0

first module may be connected to the second and third module (using the numbers below the
brackets), but the second not to the third. To determine which of the nodes actually are
connected to the second and third module, each of them is compared against the nodes from
those other modules (again using the connection table). Finally, the nodes within the second and
third module are connected.

Binary table strings 47

XOR networks

The first XOR network from figure 2 was easy

Figure 5. Connection table used to represent for
figure 2b.

From To Connect?

0
0
1
1

0
1
0
1

1
0
1
1

(00110), but we were not able to find a string repre-
senting figure 2b using the connection table from
figure 3. However, when we used the connection table
shown in figure 5, the solution was not too difficult:

. We also tried figure 2a again using[
1
01]

1
01[

0
1]
0

this table. The found solution is not as simple as the
first one: .[

1
[
0
01]

0
]
1
01[

0
1]
0

Another network tried is shown in figure 6. Coding it

Figure 6. Network with 2 input nodes, 1 output
node and a hidden layer of 4 nodes.

was easy using the table from figure 3 (0011110),
but using the table from figure 5 resulted in

[
1
[
1
[
1
[
0
01]

0
]
1
]
1
]
1
0[

1
0[
1
01]

1
]
1
[
0
[
0
[
0
1]
0
]
0
]
0

The hidden layer is underlined.

When we had to decide which type of grammar to use
in our research we still had some doubts about the
possibility to codeall possible feedforward networks
with the binary table strings.

Also, because the production rules only contain1s

Figure 7. A NAND style connection table.

From To Connect?

0
0
1
1

0
1
0
1

1
1
1
0

and 0s (the brackets are inserted automatically)
complete modules (including the brackets) can not be
rewritten into smaller modules. At the time of writing
we had discovered a method to code all feedforward
networks using the table shown in figure 7. The
problem with rewriting modules still remains.

For the last type of strings we tried, we returned to a normal alphabet (A-Z) and some of the
ideas used with the absolute pointer strings.

Relative skip strings

The strings actually used in our research are made of characters from the alphabet
{A-Z,1-9,[,]} ∪ {,}. A node from the network is represented by a letter from our alphabet
(A-Z). Two adjoining letters are automatically connected feedforward. If two letters are
separated by a comma, no connection is made. Modules can be created by grouping nodes (or
other modules) between square brackets. In contrast to the multilevel strings, brackets don’t have
indexes attached. Two adjoining modules arenot fully connected. Instead, alloutput nodesfrom
the first module are connected to allinput nodesfrom the second module. An input node is a
node that receives no input from within the module. An output node has no output to other
nodes within the module. This specific connecting of modules facilitates the combining of
independent networks into one larger network. As with single characters, a comma is used to
prevent the connection of two adjoining modules.

48 6 The grammar and its coding

In order to make specific connections between nodes or modules that are not side by side in the
string, single digits are used to denote askip within the string. When a digitx is encountered,
it should be interpreted as "skipx nodes and/or modules to your right, and make a connection
to the next node or module". So within the stringA1BC theA is connected toC (the 1 skips
theB) but also toB (because there is no comma between theA andB). In A1,BC or A,1BC
theA is only connected to theC.
Modules count as one while skipping, so inA1,[BC]D theA is connected toD, not C.

Figure 8. The string [A2[B,C]D]E visual-
ized.

If a skip is contained in a module and goes beyond the
closing bracket, the skip is continued after the].
In the string[A2[B,C]D]E, A is connected toB andC
because both are input nodes in the[B,C] module (if
there is no comma betweenB and C, A would not be
connected toC). A is also connected toE because the 2
skips the[B,C] and theD and connects toE (even
thoughE is outside the module containingA). The network
coded by this string is shown in figure 8.

Basic networks

Using the connection method described above, the coding
of the networks from figure 1 is easy:

Figure 1a: A (or any other letter fromA-Z,
only A is used in the examples)

Figure 1b: AA

Figure 1c: [A,A]A (bothA’s in [A,A] are output nodes)
Figure 1d: [A,A2]A,AA

XOR networks

The XOR networks too, are not very difficult:

Figure 2a: [A,A][A,A]A
Figure 2b: [A,A1][A,A]A (note the similarity between the two strings)

The network from figure 6 with 4 hidden nodes can be written as:

[A,A][A,A,A,A]A

As can be seen in this string, in order to generate layers of internally unconnected nodes
(modules), production rules should be generated that insert commas into the string.
Because we wanted modular networks with unconnected blocks of nodes to develop as easily
as possible, we also tried a variation that does not connect neighbouring nodes (a minus symbol
or zero skip needs to be explicitly specified to do so).

The strings encoding figure 1c and 1d then become[AA]-A and[AA2]-AA-A respectively.
The XOR networks can be written as[AA]-[AA]-A and[AA1]-[AA]-A. Finally, the
network from figure 6 can be written as[AA]-[AAAA]-A.

Relative skip strings 49

Production rules

The L-system used for generating the strings described in the previous paragraph is a 2L-system:
every production rule can have both left and right context. The production rules have the same
format as described in chapter 4:

L < P > R → S

The four parts of the production rule can not be arbitrary strings over the alphabet
{A-Z,1-9,[,]} ∪ {,}. The following restrictions apply to the different parts:

Predecessor

The predecessor (P) may only contain complete modules and nodes. Therefore the number of
left and right brackets must be equal and in a correct order. Each module must be complete and
thus the following string (for example) will be discarded:A]BC[D. Also, the predecessor may
not contain empty modules ([]). Finally, the predecessor should at least contain one letter
(node).

Successor

The successor (S) has the same constraints as the predecessor. The successor can be absent, in
which case the predecessor is removed from the string when applying the production rule.

Contexts

If a context is present, the same constraints as for the successor and predecessor apply. In
addition, no loose digits are allowed: each digit must follow a node or module. For example, the
string1A[B] is not allowed because of the leading1.

A deviation from the L-systems described in chapter 4 is the handling of the context. Whereas
in the L-systems from chapter 4 the context is matched against the characters to the left and/or
right of the predecessor, in the L-system used, the context is compared with the coding
characters of the nodes from which one or more nodes in the predecessor receive their input (left
context), or the nodes connected with the output from one or more nodes in the predecessor
(right context).

Because of this special interpretation of context, the context string should be seen as an
enumeration of a number of nodes and/or modules, all of which should be connected with the
predecessor at the time of context matching. The context must be asubsetof all nodes connected
to the predecessor (left context) or all nodes the predecessor is connected to (right context) in
order to match.

For an example let us look at the production rules

Figure 9. Sample production rules.

1: A → BBB
2: B > B → [C,D]
3: B → C
4: C < D → C
5: D > D → C1

shown in figure 9. If we takeA as axiom, the rewriting
process can be described as follows:

First we have the axiomA (figure 10a).
After one rewriting step we have the stringBBB
(figure 10b).

50 6 The grammar and its coding

During the second rewriting step, the firstB

Figure 10. The rewriting of A with rules from figure 9
visualized.

is rewritten using rule 2 because the firstB is
connected to the second (figure 10c). The
secondB is also rewritten using rule 2 (figure
10d). The thirdB is rewritten using rule 3
because the thirdB is not connectedto an-
other B (there is only a connectionfrom
anotherB). This finally results in the string
[C,D][C,D]C, shown in figure 10e.
Because all rewriting goes on in parallel, the
strings for figures 10c and 10d are not cre-
ated separately, but figure 10b is directly
rewritten into 10e. The other figures are there
for clarity.

During the third rewriting step the firstD is
rewritten using rule 5 because the firstD is
connected to the secondD (figure 10f) and the secondD is rewritten using rule 4 because the
first C is connected to the secondD.
No more rules apply, so the final string is[C,C1][C,C]C, shown in figure 10g. Again,
figure 10f is just for clarity, in reality figure 10e is rewritten in parallel into figure 10g.

Coding of production rules

As described in chapter 3, genetic algorithms work with coded parameters of a problem. In our
research, the parameters represent a set of production rules. This paragraph describes the coding
from production rules to binary strings that can be used by a GA.

A production rule consists of four (possibly empty) parts. Each of these parts is a string over the
alphabet {A-Z,1-9,[,]} ∪ {,}. Although this particular alphabet implies using 26 different
letters, any number is possible (by using other symbols for the nodes too). The same goes for
the number of skip symbols. We choose (rather arbitrary) to use 8 different letters (A-H) and
5 different skips (1-5). This brings the total numbers of characters in our alphabet to 16
(8+5+2+1).

There are several ways to code a rule, but we decided to represent each character from the rule
by a fixed-length binary string. A binary string of lengthl can be used to code 2l different
characters. All 2l binary codes must be assigned to one of the characters of our alphabet. Both
the number of codes (determined byl) and a distribution had to be chosen.

The length and distribution we choose are loosely based upon the biologicalgenetic codewhich
uses a four character code (see inset). Each of the four different bases used in the genetic code
is coded binary (using two digits) and therefore, each triplet of bases is in our translation
replaced by a binary string of length 6.

The 64 possible strings of length 6 were then distributed amongst 17 symbols. The 17 symbols
include the 16 characters from our alphabet plus a special symbol (an asterisk), used to separate
constituent parts of production rules (context, predecessor, successor) from each other within a
chromosome. The asterisks can be compared to the start and stop markers used for the
transformation from RNA to protein.

Coding of production rules 51

The resulting table is shown in figure 11 (the orig-

Figure 11. The conversion table used.

00 01 10 11

00

3
3
*
*

[
[
[
[

D
D
2
2

]
]
2
5

00
01
10
11

01

*
*
*
*

1
1
1
1

E
E
F
F

]
]
]
]

00
01
10
11

10

2
2
2
4

A
A
A
A

G
G
H
H

[
[
]
]

00
01
10
11

11

,
,
,
,

B
B
B
B

*
*
[
[

C
C
C
C

00
01
10
11

A short introduction to the genetic code(adapted from A.C. Guyton’s Textbook of Medical Physiology).

Besides controlling the development and final
form of a biological organism, genes also control
the reproduction and day-to-day function of all
cells. Each gene, a nucleic acid calleddeoxyribo-
nucleic acid (DNA), automatically controls the
formation of another nucleic acid,ribonucleic
acid (RNA), which spreads throughout the cell
and controls the formation of specific proteins.
These proteins control the function of the cells.

Genes are contained, large numbers of them
attached end on end, in long, double-stranded,
helical molecules of DNA. The two strands of
the helix are held together by four kinds ofbases
(which names can be represented by the four
letter alphabetA, T, G and C) and ahydrogen
bonding. Because the hydrogen bonding is very
loose, the two strands can easily split up. If it
does so, the bases of each strand are exposed.
These exposed bases form the key to the so
calledgenetic code. Research studies in the past
few years have demonstrated that this genetic

code consists of successive ’triplets’ of bases -
that is, each three successive bases are a code
word. These words control the sequence of
amino acids in a protein molecule during its
synthesis in the cell. The bases can be ‘read’ in
both directions, and reading can start at any
position, not only from positions 1, 3, 6 etc.

Because the DNA is located at the nucleus of the
cell and most of the functions of the cell are
carried out in thecytoplasm(which surrounds the
nucleus), the information from the DNA is
transcribedonto RNA, which it then transports
to the cytoplasm. The base triplets from the
DNA are transcribed into base triplets on the
RNA. The RNA also contains four bases (ab-
breviated asU, A, CandG). Each of the (4x4x4
= 64) base triples of the RNA is then translated
into one of twenty amino acids or a ‘start protein
building’ or a ‘stop protein building’ signal. The
conversion table used for this is also called the
genetic code.

inal genetic code table can be found in chapter 5).

The table is read as follows: to determine the charac-
ter corresponding to a bitstring, determine which of
the four rows on the left corresponds to the first two
bits of the string. Then, choose a column according
to the middle two bits, and finally choose a row on
the right using the last two bits. For example, the
character corresponding to100100 is the firstA in
the table.

The other way around, from character to bitstring is
also easy: the bitstring is the concatenation of the
two bits to theleft, the two bitsaboveand the bits
to the right of the character. So the bit string for
character5 is 001111.

As mentioned above, an extra character (the asterisk)
is used to separate the four parts of a single produc-
tion. The following rules are followed in order to
extract a production rule from the chromosome:

1. Pick a starting point anywhere in the bitstring (chromosome). Start reading the L
part of the production rule.

2. Do this by reading the bits, six at a time. Look up the character corresponding to
the six long bitstring using the table from figure 11.

52 6 The grammar and its coding

3. If the character is not an asterisk, add the character to the string read so far.

4. Otherwise, assign the string read so far (which can be empty) to the current part of
the production rule (L,P,R or S). Advance to the next part of the production rule.
If the last part read isS, start reading the next production rule.

5. Repeat steps 2-4 until all bits from the chromosome are read. If no more bits are
present to complete the current production rule, discard this production rule.

With real DNA, the strands are ‘read’ by choosing a starting point within the bases on the strand
and then reading triplets of bases until a punctuation mark is read (which can be compared to
the asterisk in our chromosomes), at which time the building of the current protein is ‘finished’,
and the building of a new protein starts. Research indicates that different proteins can be coded
with thesamegenetic information. The different proteins are build by adjusting the starting point
for reading by just one base compared to the starting point of the other proteins, instead of three
bases needed for one code word. The genetic information can be seen as a number ofoverlap-
ping recipes for different proteins. In order for our chromosomes to contain this kind of
overlapping information, our algorithm can start atany bit position. As a result of this the
chromosome can be readtwelve timesby following the above rules first with the starting point
at bits 0 to 5 respectively, reading the stringforwards, and then by following the rules with the
starting point the last six bits respectively, reading the stringbackwards. Because of the high
level of information contained in our chromosomes, the level of implicit parallelism may event-
ually be significantly higher than with a genetic algorithm using strings which are read only
once.

Example

A (small) example is shown in figure 12, although in our research we often used chromosomes
of length 512 or longer.

In the example, a bitstring is shown

Figure 12. Extract from a chromosome together with 4 translations.

together with four translations. The
same string also contains six other
translations which are not shown for
reasons of clarity.

The four translations shown are:
(taking into account the direction of
reading)

2][[]A
,H[2[D,
*A*BBB*
,*2]]C1,

None of these strings forms a complete production rule on its own, but if we imagine the third
string being part of a longer string, for example:

F1,**A*BBB*C*A]],

Example 53

(where thebold part is the third string), the underlinedpart can be seen as a complete pro-
duction rule (it contains five asterisks). If we write the production in our usual notation, we get:

A > BBB → C

Repair mechanism

Using chromosomes of lengthl results in characters (which means more characters than2 6 l
6

the total number of bits). For chromosomes of 1024 bits long this results in a string of 2040
characters. The total number of possible valid production rules for strings of this length usually
is about 250: the 64-character translation table contains 8 asterisks, so a string of 2040 characters

contains roughly markers. Almost each marker can be used as a starting point8

64
2040 ≈ 255

for a production rule (the last four markers placed at the end of all ten strings, can not be used).
If we discard all production rules that contain invalid character combinations (those described
earlier), we are left with much less production rules.

With real DNA, in the few hours between DNA replication and mitosis (the actual process of
a cell splitting into two new cells), a period of very active repair and ‘proofreading’ of the
strands starts. Special enzymes cut out defective areas and replace them with appropriate
nucleotides. Because of this, almost never mistakes are made in the process of cell replication
(if it does happen, it is calledmutation).

The developed software also contains functions to repair faulty strings. The functions remove
spare brackets, commas, digits, etc. in order for the string to meet the restrictions from the
previous paragraph. The functions are described in chapter 7. The number of usable production
rules after this ‘repair’ process is usually about 50.

54 6 The grammar and its coding

7 Implementation

Hofstadter’s Law: ‘It always takes longer than you expect,
even when you take into account Hofstadter’s Law.’

— Douglas R. Hofstadter

The software written and used during our research consists of a number of separate programs:
a main module (GENALG) which controls the population of production rules, and three sub
programs. The first of these (CHR2GRAM) translates a member from the population into a set of
production rules. The production rules are then rewritten using the second program (LSYSTEM),
which has an adjacency matrix of the network as its output. Finally, the network represented by
this matrix is trained using backpropagation (BACKPROP).

This chapter describes the software. All programs were written in C, except for the back-
propagation module, which was written in C++. Some elements are described in detail, while
other parts are just briefly mentioned.

Environment

All the software has been written to run on both MS-DOS computers as well as Unix based
machines. During our research we had two PC’s (an i386 with 387 and an i486) at our disposal.
Once the software was more or less finished we started porting it to the Sun network at the
department of Computer Science at Leiden University. That network, consisting of several
Sparc4 based Sun’s (ELC, LPC and IPX models) provided us with the parallel computing power
needed for the larger simulations. However, Murphy’s Law also liked that network, and during
our testing and simulations, the network was down regularly. This was due to internal
reorganizations, bad cabling, full hard disks and no system operator for the network (of which
three items have been resolved at the time of writing). The final version of the software can
easily be ported to other computers (for example a network of transputers) wich have both C and
C++ languages available.

56 7 Implementation

Extended GenLIB

The GenLIB library mentioned in chapter 3 was rewritten so chromosomes with length longer
than 16 bits could be used.

Figure 1. Overview of the main datastructures.

The new version, calledExtended
GenLIB, also includes functions to
manipulate the population on disk,
instead of in memory, because with
long chromosomes the total popu-
lation size (in bytes) can become
very large. Next, the main data-
structures and all the functions from
the library are described shortly.
Three functions specific to our
research are described also in detail.

Datastructures

Each population is described by aPOPULATION structure:

typedef struct /* contains population info */
{

unsigned popSize, /* nr of members in this population */
nrGenes, /* nr of genes in each member */
genSize; /* size of gene in bits

(must be multiple of 8) */

MEMBER *member;
} POPULATION;

The pointer toMEMBER is an array ofMEMBER structures:

typedef struct /* contains information for each member */
{

float fitness; /* fitness of the member */
unsigned *genPos; /* pointer to array of genpositions */
BYTE **genValue; /* pointer to array of chromosomes */

} MEMBER;

EachMEMBER structure contains pointers to an array of genpositions (used by inversion) and an
array of bytes containing the actual chromosome. In order to keep the source as simple as
possible, only chromosomes with a length which is a multiple of 8 (the number of bits in a byte)
are allowed.

When the population is saved to disk, the file starts with a header:

typedef struct /* this structure is the header of a
populationfile on disk */

{
unsigned long generation; /* generation number

(parameter of Save...()) */
unsigned popSize,

nrGenes,
genSize;

} POPFILEHEADER;

Extended GenLIB 57

Then, for each member, the fitness, position array and bitstring are saved.

Functions

The library is divided in several modules, where each module contains functions for a specific
task. Next each of the modules will described together with its functions.

The initialization module

This module contains functions for allocating memory for either a whole population or just one
member (useful when memory is short).

POPULATION *DefinePopulation(unsigned popSize,
unsigned nrGenes,
unsigned genSize,
BOOLEAN initialize);

MEMBER *DefineMember(unsigned nrGenes, unsigned genSize);

The initialize parameter is used to indicate whether the bit strings should be randomly
initialized or cleared to zero.
Depending on which of the functions is used to allocate the datastructures, one of the following
functions is used to free the allocated memory:

void FreePopulation(POPULATION *p);
void FreeMember(MEMBER *m, unsigned nrGenes);

Storing and retrieving the members

Functions are available to save and load whole populations from disk, either by name or by
reference to a file pointer.

int SavePopulation(POPULATION *p, FILE *fp,
unsigned long generation);

int SavePopName(POPULATION *p, char *fileName,
unsigned long generation);

int LoadPopulation(POPULATION *p, FILE *fp,
unsigned long *generation);

int LoadPopName(POPULATION *p, char *fileName,
unsigned long *generation);

The generation parameter is stored (or retrieved) in the file, and can be used as a kind of
progress indicator.

If memory is short, the members can manipulated directly on disk with the following functions:

int SaveMember(MEMBER *m, unsigned nrMember, FILE *fp,
unsigned nrGenes, unsigned genSize);

int LoadMember(MEMBER *m, unsigned nrMember, FILE *fp,
unsigned nrGenes, unsigned genSize);

The nrMember parameter specifies which member to save or load.

58 7 Implementation

Selection and replacement

Both selection methods described in chapter 3 (roulette wheel and rank based) are available
using the functions

unsigned Select(POPULATION *p);
unsigned RankSelect(POPULATION *p, double pressure);

The pressure parameter indicates how much larger the probability is of the highest ranked
member being selected than the member in the middle of the population. E.g. with a pressure
of 2.0, the top ranking member in a population of 100 members has a twice as large probability
of being selected than number 50. This function is the same as proposed by Whitley [WHIT89A]
and accepts pressure values between 1.0 and 2.0.

For rank based selection to work, the population must be sorted. This can be done with the
quicksort algorithm using:

void SortPopulation(POPULATION *p);

The one-at-a-time replacement described by Whitley can be done using

unsigned RankReplace(POPULATION *p, POPULATION *np,
unsigned newmember);

The genetic operators

The genetic operators described in chapter 3 can be applied with the following functions:

void Mutate(POPULATION *pop, unsigned member,
int variance, double pMut);

int Crossover(POPULATION *oldpop,
unsigned parent1, unsigned parent2,
POPULATION *newpop, unsigned child,
double pCross, unsigned points);

int Invert(POPULATION *pop, unsigned member, double pInv);

ThepMut, pCross andpInv parameters set the probability of the operator being applied. For
Crossover() the member to receive the crossover result can be specified, the other functions
operate on, and change the parent bitstring.

Finally, a function is available that generates a complete new population using roulette wheel
selection, crossover, inversion and mutation:

int Propagate(POPULATION *p, double pInv, double pMut,
double pCross, unsigned int points);

A sample program using one-at-a-time selection and replacement is given below. The program
calls a functionFitness(POPULATION *p, unsigned member), which should supply the
GA with the fitness of the member passed as a parameter. The program performs no error
checking.

Extended GenLIB 59

#include "extgen.h"
extern float Fitness(POPULATION *pop, unsigned member);

#define POPSIZE 100
#define CHROMSIZE 512
#define PRESSURE 1.5
#define PCROSS 0.8
#define PINV 0.6
#define PMUT 0.005

void main(void)
{ POPULATION *pop; /* contains the main population */

POPULATION *newpop; /* used to hold crossover result */
unsigned p1, p2; /* the chosen parent strings */
unsigned i; /* loop counter */

pop = DefinePopulation(POPSIZE, 1, CHROMSIZE, TRUE);
newpop = DefinePopulation(1, 1, CHROMSIZE, FALSE);

/* The following loop creates new strings and replaces them
into the population. When the minimal fitness wanted is
reached by the best string in the population, the loop
ends. */

for(i=0; pop->member[0].fitness < MINFITNESS; i++)
{

p1 = RankSelect(pop, PRESSURE);
p2 = RankSelect(pop, PRESSURE);

Crossover(pop, p1, p2, newpop, 0, PCROSS, 2);
Invert(newpop, 0, PINV);
Mutate(newpop, 0, 2.0, PMUT);

newpop->member[0].fitness = Fitness(newpop, 0);

SortPopulation(pop);
RankReplace(pop, newpop, 0);

}

SavePopulation(pop, "sample.pop", i);
}

When the program has finished, the last population is saved to disk (namedsample.pop) and
contains the number of iterations needed to reach the desired minimum fitness.

New genetic functions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

r

in
de

x
to

 m
em

be
r

p=2
p=20p=20

Figure 2. The function used with
BitRankSelect().

In order to experiment with pressure values larger than
2.0, a newRankSelect() function was written:

unsigned BitRankSelect(POPULATION *pop,
double pressure);

It accepts all pressure values larger than 1.0 and returns
the index of the selected member using the function:

popsize (1 r)

p 1
2

2
r

60 7 Implementation

with r a random number in the range [0.0,1.0) andp the pressure. The function is plotted for
valuesp=2.0 andp=20.0 in figure 1. With this function, the probability to be selected for the
best member in the population isp times as high as the median member.

int BitCrossover(POPULATION *oldpop,
unsigned parent1, unsigned parent2,
POPULATION *newpop, unsigned child,
double pCross, unsigned points);

The originalCrossOver() function only supported a maximum of one crossover point per gene.
In our research we used just one (long) gene, but wanted more than one crossover point. So a
new crossover function was implemented that chooses the crossover points uniformly random
over the whole chromosome. A new member is created as normal by concatenating the alternate
parts from two parents (after the genes were temporarily put in the same order, see chapter 3).

void BitInvert(POPULATION *p, unsigned m, double pInv);

TheInvert() function from the library swaps genes, as described in chapter 3. In our research
we used just one gene, containing the (variable-length) production rules end on end. In order to
have an automatic reordering operator likeInvert(), a new function was implemented that acts
on the first (and only) gene like it was a chromosome consisting of 1-bit long genes. So
inversion points are chosen within the gene and the bits in between are swapped bitwise.

Chromosome to grammar

The first sub-program (CHR2GRAM) reads the bitstring from a member of the population and
translates it into a set of production rules. This is done using the table presented in chapter 6.
In order to ensure that the production rules adhere to the restrictions mentioned in chapter 6,
‘clean-up’ functions are called for each production rule. Below is an extract of the function that
checks the context. Code not shown checks the context on irregularities concerning digits and
commas.

int CheckContext(char *context)
{ unsigned i=0,

l=0, r=0; /* count the number of [’s and]’s */

while(context[i]) /* context string terminate with \0 */
if(context[i]=’[’)
{ l++; i++;
}
else if(context[i]=’]’)
{ if(++r > l || !i) /* remove extraneous] */

{ RemoveCharacters(context,i,1);
r--; }

else if(context[i-1]==’[’) /* remove empty []’s */
{ RemoveCharacters(context,i-1,2);

i--; }
else if(context[i-1]==’,’) /* remove useless , */
{ RemoveCharacters(context,i-1,1);

r--; i--; }
else

i++;
}

return l==r;
}

Chromosome to grammar 61

The functions for checking the predecessor and successor are similar.

L-system

The file containing the production rules (which also contains the axiom) is used as input for the
LSYSTEM sub-program. This program comprises three parts: the first part reads the input and
generates the string, the second part translates this string into an adjacency matrix and the third
part reorganizes the matrix in order to remove unnecessary connections.
Below is an extract from the first part. It shows the functionFindProduction(), which returns
a pointer to a production data structure. The function is called for each character in the string
(pointed to by thecurPtr pointer) that is rewritten:

struct Production
{ char *lCon; /* the left context */

int lConLen; /* the length of the left context */
char *pred; /* the strict predecessor */
int predLen; /* the length of the strict predecessor */
char *rCon; /* the right context */
int rConLen; /* the length of the right context */
char *succ; /* the successor */
int succLen; /* the length of the successor */

};

FindProduction() calls three other functions:prefix(), which returns TRUE if the current
character(s) pointed to bycurPtr are the predecessor of the current production rule and
LeftContext() andRightContext(), two functions that return TRUE if the context of the
current production rule is a subset of the nodes connected to the predecessor and the nodes the
predecessor is connected to.

PRODUCTION *FindProduction(char *curPtr,
PRODUCTION prodSet[])

{
while(prodSet->predLen)
{ if(!prefix(prodSet->pred, curPtr) ||

!LeftContext(curPtr, prodSet->predLen,
prodSet->lCon) ||

!RightContext(curPtr, prodSet->predLen,
prodSet->rCon))

++prodSet;
else

return prodSet;
}
return NULL;

}

Figure 3. The
left chain can be
replaced by the
one on the right.

In the second part the string is translated into an adjacency matrix using the
ParseModule() function. This function connects all nodes within a module,
and when a module within the current module is found, it is called recursively
for that new module.

A chain of nodes (see figure 2) is not very useful with backpropagation. Also,
the backpropagation library trainsall output nodes, regardless of the number
actually needed. All these extraneous nodes increase computing time and
therefore the last part of the program examines the matrix and removes unused
output nodes and chains of nodes.

62 7 Implementation

This process (nicknamedSuperSnoei) is done using theCleanupMatrix() function. Below
is an extract from this function. The adjacency matrix is contained in a two-dimensional array
called adjMatrix[][]. The number of nodes in the matrix is contained in the variable
nrNodes.

void CleanupMatrix(void)
{ unsigned i,j;

unsigned n; /* node counter */
unsigned nc, nr; /* counts for node n the number of 1’s in

corresponding column and row */
unsigned from,to;

n=0;
do
{ nr=nc=0;

for(j=n+1; j < nrNodes; j++)
if(adjMatrix[n][j])
{ if(++nr > 1)

break;
to=j;

}

for(i=0; i < n; i++)
if(adjMatrix[i][n])
{ if(++nc > 1)

break;
from=i;

}
if(nc==nr && nr<=1) /* Chain or unconnected node */
{ for(j=n+1; j < nrNodes; j++) /* Move one left */

for(i=0; i < nrNodes; i++)
adjMatrix[i][j-1]=adjMatrix[i][j];

for(i=n+1; i < nrNodes; i++) /* Move one up */
for(j=0; j < nrNodes; j++)

adjMatrix[i-1][j]=adjMatrix[i][j];

nrNodes--; /* We removed a node */

/* If the node was connected two nodes, make a
direct connection */

if(nc && nr) adjMatrix[from][to-1]=1;

n=0; /* Rescan the matrix */
}
else

n++; /* Done with this one */
}
while(n < nrNodes);

}

Backpropagation

The matrix that results from theLSYSTEM program is used as input for the backpropagation
algorithm. The backpropagation algorithm was written in C++, because an object oriented
approach lent itself admirably to the implementation of modular backpropagation. The class
network implements the complete network, it makes use of the classesmodule and
connection.

Backpropagation 63

class network // Implements a backpropagation network
{

unsigned inputSize, outputSize,
totalModules,
inputModules, outputModules,
totalConnections;

class connection** connection;
class module** module;

public:
network(unsigned, unsigned, // size of in and output

unsigned*, // size of each module
conSpec*); // specifies the connections

network(char, char*); // load network, MATRIX or NET
~network();

int save(char*); // saves the network
void reset(); // selects ’optimal’ random weights
void train(double*, // input

double*, // desired output
double*); // calculated output, before training

void calc(double*, double*); // input, output
class module* getModule(unsigned);
class connection* getConnection(unsigned, // fromID

unsigned); // toID
void setAlphaBeta(double,double);
unsigned getInputSize();
unsigned getOutputSize();

};

The simplest way to implement a backpropagation network is to make two arrays, one specifying
the size of each module, the other specifying the connectivity. The example network of figure
10 in chapter 2 can be declared as follows:

unsigned mod[]={4,3,2,2,2,3,0};
conSpec con[]={{0,1},{0,2},{1,3},{2,4},{3,5},{4,5},{0,0}}

class network net(4,3,mod,con); // First two parameters are
// input and output size

Note that both arrays end with zeros to indicate the last element. A networknet can be trained
with:

net.train(input,output,calc);

that takes the input and desired output as first two parameters, the third parameter returns the
output of the network itself for the presented input. The desired output needs to be calculated
before learning in order for backpropagation to compute the errors (see chapter 2).

Trained networks can be saved with:

net.save("net.net");

which saves the complete current status of the network, including all weights and moment terms.
Saved networks can be loaded using:

new class network net(NET,"net.net");

64 7 Implementation

witch dynamically creates the network. Another way, used mostly in this research, is to load the
specification for a network in matrix-form. This is done with the same function:

new class network net(MATRIX,"net.mat");

We used the convention of specifying matrix

Figure 4. Adjacency matrix for the example network.

#nodes 16
0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

files with the extension.mat and network files
with .net. A matrix file (which is in fact an
adjacency matrix for the nodes of the network)
that implements the same network as the last
example is shown in figure 3 (note that for this
example each module can be seen as a block of
ones).

It is also possible to work directly with modules
and connections, this enables the user to set
several values (of weights etc.) himself. This was
for example used to make figure 6 of chapter 2,
where the saved network of figure 5 was loaded
and tested after each change of the two specified
weights.

The following C++ code shows an extract of a program implementing the XOR problem:

// Learn XOR

#include "backprop.h"

#define ALPHA 0.4 // learning rate parameter
#define BETA 0.9 // momentum term parameter
#define MAXITER 10000 // maximum of training iterations
#define EPSILON 0.2 // error below which training is stopped

void main(void)
{ unsigned mod[] = { 2,2,1,0 };

conSpec con[] = { {0,1},{0,2},{1,2},{0,0} };
double error,

input[2], output[1], calc[1];
int i,n;

class network net(2, 1, mod, con);

net.setAlphaBeta(ALPHA, BETA);
net.reset();
for(n=0; n < MAXITER; n++)
{

error=0.0;
for(i=0; i < 4; i++)
{

input[0]=(double)(i/2); // Calculate input/output pair
input[1]=(double)(i%2);
output[0]= (i==1 || i==2) ? 0.9 : 0.1;
net.train(input, output, calc);
error += output[0]-calc[0];

}
if(error < EPSILON) // Stop after sufficient convergence

break;
}
net.save("xor.net");

}

Backpropagation 65

The software for backpropagation is available through the libraryBACKPROP.LIB, which can
be linked to the rest of the program. Only the filebackprop.h has to be included, which
contains function prototypes, data structure definitions and predefined constants. The library can
also be used with normal C programs, if they are compiled with a C++ compiler.

Main program

Two variations of the main program were written: one implementing the roulette wheel selection
described by Goldberg [GOLD89], and one implementing rank based selection and one-at-a-time
replacement, as described by Whitley [WHIT89A].

Both programs first read a simulation file, which contains all the necessary parameters. This file
is an ASCII file containing lines starting with the# symbol, followed by a keyword. Parameters
are separated by spaces and follow the keyword. An example simulation file, containing all the
valid keywords is shown below.

Sample simulation file
##
#files c:\simulation\
#population test.pop
#control test.ctl

#size 100

#pmut 0.005
#pcross 0.5
#sites 20
#pinv 0.3
#pressure 1.5

#steps 6
#axiom ABC

Empty lines and lines starting with## are ignored (usable as comment lines). The first three
keywords indicate the location of the files used during the simulation and the names of both a
control file and the population file.#size specifies number of members in the population.
#pmut, #pcross, #sites, #pinv and#pressure influence the genetic operators.#steps
(maximum number of rewriting steps) and#axiom are used by the L-system.

Multiple computers can run the same simulation simultaneously. If roulette wheel selection is
used, each running program reads a specified number of un-processed members from the
population file and ‘locks’ them using a control file containing an indicator for each member
which can beFREE, PROCESSING orDONE. If one of the programs notices that all indicators
areDONE, the population file is locked and the fitness values in the population file are updated
and the control file is reset toFREE. Also the fittest member found in this generation is
archived and a new population is created.

If one-at-a-time replacement is used, each program opens the main population file and creates
a small local population file containing a specified number of newly created strings. Then each
program processes these local members and when all have been assigned a fitness, the program
locks the main population file and replaces its local members into the main population using
RankSelect(). It then fills its local population file with new strings and starts processing
again.

66 7 Implementation

In both cases, the processing is done by presenting a member toCHR2GRAM, which writes its
output to a file. The name of that file is then transferred toLSYSTEM, whose matrix output file
is finally passed toBACKPROP.

Because the population-update loop of the one-at-a-time version very much resembles the
example given at the beginning of the chapter, only an extract from the roulette wheel selection
version is given.

if((p=DefinePopulation(size, 1, CHROMSIZE, FALSE))==NULL)
ErrorExit(NO_MEMORY, __FILE__, __LINE__);

if((np=DefinePopulation(3, 1, CHROMSIZE, FALSE))==NULL)
ErrorExit(NO_MEMORY, __FILE__, __LINE__);

if((file=fopen(popFile, "rb+"))==NULL)
ErrorExit(READ_ERROR, __FILE__, __LINE__);

if(LoadPopulation(p, file, &g)!=GEN_NO_ERROR)
ErrorExit(READ_ERROR, __FILE__, __LINE__);

for(i=0; i < p->popSize; i++)
{

do
{ p1 = Select(p);

p2 = Select(p);
}
while(p1 == p2); /* the two parents must be different */

CopyMember(p, p1, np, 0); /* copy to temp. population */
CopyMember(p, p2, np, 1);

BitInvert(np, 0, pInv);
BitInvert(np, 1, pInv);

BitCrossover(np, 0, 1, np, 2, pCross, sites);

Mutate(np, 2, 10, pMut);

if(SaveMember(&np->member[2], i, file, 1, CHROMSIZE) !=
GEN_NO_ERROR)

ErrorExit(WRITE_ERROR, __FILE__, __LINE__);
}

fclose(file);

The results of the experiments that were done with the software can be found in chapter 8. A
number of suggestions to improve and/or expand the software can be found in chapter 9.

8 Experiments

‘Results! Why, man, I have gotten a lot of results.
I know several thousand things that won’t work.’

— Thomas A. Edison

This chapter presents some of the results from the experiments done throughout the research.
The following problems were tried using the developed software:

- exclusive OR (XOR)
- TC problem
- handwritten digit recognition
- ‘where’ and ‘what’ categorization
- mapping of [0.0,1.0)2 values onto four categories

In the following paragraphs, each of the problems is described and some of the results are given.

Exclusive OR (XOR)

The XOR function (see also chapter 2) is a

Figure 1. Three sample XOR networks.

boolean (logical) function of two variables:

f(0,0) = 0
f(0,1) = 1
f(1,0) = 1
f(1,1) = 0

It was proven in 1969 that a network able to
solve this problem should have a hidden layer
[M INS69]. Some of the ‘standard’ solutions of
networks able to solve XOR are shown in figure 1. In this experiment we tried both an L-system
where the comma is used to separate two neighbouring nodes/modules, as well as an L-system

68 8 Experiments

where a minus is used to make a specific connection

Figure 2. Two other networks for XOR.

between neighbouring nodes/modules (see chapter 6).
Both methods worked fine, but the method using minus
symbols was faster in finding modules (groups of
internally unconnected nodes) whereas the comma
method ‘preferred’ chains of nodes. Because of this, we
decided to use the minus symbols for the rest of this
research instead of the comma symbols.

All three networks shown in figure 1 were found. Two
of the other networks that were able to learn XOR and
were found are shown in figure 2. The matrix cleanup
method described in chapter 7 (‘SuperSnoei’) was not used in this experiment and the networks
shown are the result of ‘human’ pruning of the resulting adjacency matrices.

TC problem

With the TC problem, a neural network should be able to recognize the letters T and C in a 4x4

Figure 3. The 8 possible letters and one sample
input grid of 4x4.

grid (see also [RUME86]). Each letter, consisting of 3x3 pixels, can be rotated 0, 90, 180 or 270°
and can be anywhere on the 4x4 grid. The total
number of input patterns is therefore 32 (there are
4 positions to put the 3x3 grid). Figure 3 shows the
eight possible 3x3 patterns and a sample 4x4 grid
that would be presented as input to the network. A
black pixel was represented with an input value of
0.9, and white pixels with an input value of 0.1.
The output node was trained to respond with 0.1 for
a T and with 0.9 for a C. An approximation of the
maximum possible error we used to calculate the fitness of the network is:

error 0.92 32 ≈ 5.1

Figure 4. The network found for the TC problem.

and the fitness was calculated as 6 -error.

A network with 16 input nodes would be expected
(each of the pixels of the 4x4 grid is presented to
one input node), but the network that was found
(shown in figure 4) has only 13 input nodes. Even
with three input nodes less then expected, this
network was able to learn all input combinations
(the fitness of the member containing this network
was 5.9, after roughly 7500 recombinations).

We also compared this network to a number of simple backpropagation networks with one
hidden layer. We varied the number of nodes in the hidden layer for these standard networks
from 3 to 8. We presented the 32 patterns 250 times to each network. Then each network was
tested 50 times. The results are shown in figure 5. Each bar represents the 50 test cycles and the
dark (lower) part equals the number of times the network did not classifyall 32 pattern
correctly. As can be seen in figure 5, the found network outperformed all one hidden layer

TC problem 69

networks easily. For the networks with

Figure 5. Comparison between found network and standard
networks.

one hidden layer, the optimum is a hid-
den layer of 6 nodes.

Handwritten digit recognition1

For this problem, a neural network
should be found that is able to recog-
nize handwritten digits 0,1..,9, pres-
ented on a 5x5 grid. 200 handwritten
digit stimuli were obtained by instruc-
ting 20 human subjects to write the
digits 0,1..,9 over a 5x5 grid using a
computer mouse. The proportion black-
ness in each square of the grid constituted an activation value. The network is trained with one
half of the stimuli, the other half was used to test network generalization capabilities. The data
was originally used as a test for network design principles using genetic algorithms and CALM
networks [HAPP92] (for a short introduction to CALM, see inset). One of the networks found

Short introduction to CALM.(For a more complete description, the reader is referred to [MURR92]).

The CALM model (Categorizing And Learning
Module) [MURR92] was proposed as a candidate
for the incorporation of modular information
processing principles in artificial neural net-
works. CALM is a modular network algorithm
that has been especially developed as a function-
al building block for large modular neural net-
works. A number of neurophysiological con-
straints are implemented in CALM by using the
general architecture of the neocorticalmini-
columns[SZEN75] as a basic design principle.
These modules contain about 100 neurons, and
an important feature of these modules is the
division in excitatory pyramidal cells, which
form long ranging connections to other cortical
regions, and various types of short range, within
module, inhibitory interneurons. The structural
principle of intramodular inhibitionimplies that
the main process within a module will be a
winner take all competition[PHAF91],[MURR92].
Competition enables a system to autonomously
categorize patterns and, therefore, can be used to
implement unsupervised competitive learning.
Categorization and learning have also been in-

corporated in the CALM model. Basically a
CALM module consists of a number ofrepresen-
tation-nodes(R-nodes) that are fully connected
to the input through learning connections. The
number of R-nodes in a module is referred to as
its size. Categorization in a CALM module is
operationalized as the association of an input
pattern with a unique R-node that is said to
represent the pattern. Different patterns are
categorized in CALM by repeated subsequent
presentations of a set of input vectors. During
and following the categorization process learning
takes place, which preserves the association
between input pattern and R-node by adjusting
the learning weights. The categorization proceeds
through the resolution ofcompetitionbetween all
R-nodes that are activated by the pattern, me-
diated by specialized inhibitory veto-nodes
(V-nodes). The winning R-node constitutes the
representation of the pattern. Different activation
patterns will lead to different representations.
The specific learning rule of CALM enables it to
even discriminate non-orthogonal patterns.

during that test is shown in figure 6. This particular network had an correct generalization score
of 81%.

It proved to be too simple a problem for backpropagation because our method found a network
withouta hidden layer (25 input and 10 output nodes) that classified 97% of the test set correctly

1 For this experiment training and test data from [HAPP92] were used.

70 8 Experiments

(and 100% of the training set). However, one of the advantages of the CALM network is the
ability to learnnewpatterns without interfering too much with the earlier learned patterns.

‘Where’ and ‘what’ categorization

Figure 6. CALM network used for handwrit-
ten digit recognition.

Another problem we tried was proposed by Rueckl et al.
[RUEC89] where, like the TC problem, a number of 3x3
patterns had to be recognized on a larger grid. With this
problem, there are 9 patterns (see figure 7), which are
placed on a 5x5 grid. Besides recognizing theformof the
pattern, the network should also encode theplaceof the
pattern on the larger input grid (of which there are 9
possibilities). Rueckl et al. conducted these experiments
in an attempt to explain why in the natural visual system
whatandwhereare processed by separate cortical struc-
tures (e.g. [LIVI 88]). They trained a number of different
networks with 25 input and 18 output nodes, and one
hidden layer of 18 nodes. The 18 output nodes were
separated in two groups of 9: one group for encoding the form, one group for encoding the
place. It appeared that the network learned faster and made less mistakes when the hidden layer
was split and appropriateseparate processing resourceswere dedicated to the processing ofwhat
and where (see figure 8). Of importance was the number of nodes allocated to theform and
place system respectively. Figure 8 shows the optimal network found, where 4 nodes are
dedicated to the processing ofplaceand the remaining 14 nodes to the more complex task of
processingform. Analysis of these results by Rueckl et al. revealed that the processing ofwhat
andwherestrongly interfere in the un-split model (one hidden layer of 18 nodes).

When we tried this problem using our

Figure 8. The network
from [Rueck89].

Figure 7. The nine patterns.

method, the optimal network found was
again a networkwithout a hidden layer.
Although this seems surprising, it is not
difficult to see that a network without a
hidden layer is very capable of learning the
problem. The specific split network found
by Rueckl et al. is only necessary if a
hidden layer is used: only then interference
can occur.

Mapping problem

The last problem tried was more of a problem for standard backpropagation networks with one
or no hidden layer. The original problem was one of the experiments done by Van Hoogstraten
[HOOG91] in order investigate the influence of the structure of the network upon its ability to
map functions. In the experiment, he created a two-dimensional classification problem with an
input space of [0,1)2. From this space 100 (10 x 10) points (x,y) are assigned to four classes (he
used colours, we use the symbols). He constructed two mappings, where the second
was derived from the first by ‘misclassifying’ three of the 100 points. The second mapping is
shown in figure 9. The misclassified points are (0.4,0.4), (0.5,0.0) and (0.7,0.6) and can be seen

Mapping problem 71

asnoise. Although Van Hoogstraten wanted networks that were not fouled by that noise (and
therefore ignored them), we were interested in networks that are able to learnall points correctly.

Van Hoogstraten tried a number of networks, all

Figure 9. The input grid for the mapping problem.

of which had two input nodes (forx and y
respectively) and four output nodes, one for each
symbol. Both a network with a hidden layer of
6 nodes as a network with a hidden layer of 15
nodes were more or less able to learn the first
mapping (without the noise), but failed to learn
the three changed points of the other mapping.
Another network with a hidden layer of 100
nodes was able to learn one of the misclassified
points, but not all of them. Only when he used
a network with three hidden layers of 20 nodes
each (with 920 connections!), all three misclas-
sified points were learned correctly. We tried this
experiment hoping our method would find a
small, modular network that was able to learn
the second mapping correctly. For this experi-
ment the following values for the various parameters were used:

- population size 500, chromosomes of length 1024
- Whitley selection and replacement, pressure of 1.4
- mutation probability 0.01
- crossover probability 0.5, 10 crossover points
- inversion probability 0.7
- L-system axiomA, with a maximum of 6 rewriting steps

It took three days and 11 Sun Sparc4 workstations to converge to the last network shown in
figure 10. It was found after roughly 35,000 string evaluations. The other networks shown in
figure 10 can be seen as its ‘ancestors’ and were found earlier in the simulation.

Figure 10. The networks found during the simulation.

72 8 Experiments

For each of the networks the production rules used to create the network are also shown. Clearly,
the production rules evolved from each other.

Figure 12 shows the fitness of the worst and best

Figure 11. The last network found.

member of the population throughout the simulation, as
well as the average fitness value. The fitness was
determined by adding the total error of the output for
each of the input stimuli, which was subtracted from
2000. So a low error resulted in a high fitness.

It took three more days to reach the network shown in
figure 11, which was found after roughly 85,000 string
evaluations.

In comparison to the 2-20-20-20-4 network used by
Van Hoogstraten, the last network from figure 10 and
the network from figure 11 had a consistently higher
fitness and took less time to train because the network
contains only 146 connections instead of the 920 connections of the other network. After
extended training, the network from figure 11 had an error of 14, versus 74 for the 2-20-20-20-4
network. Figure 13 shows the convergence of the networks from Van Hoogstraten vs the
genetically found network shown in figure 11, during one training session.

1840

1860

1880

1900

1920

1940

1960

0 500 1000 1500 2000 2500 3000 3500

Number of evaluations x20

F
itn

es
s

Best

Average

Worst

Figure 12. Graph showing the fitness of the population during one simulation.

Mapping problem 73

20

40

60

80

100

120

0 100 200 300 400 500 600 700 800 900 1000

0

20

40

60

80

0 100 200 300 400 500 600 700 800 900 1000

2-20-20-20-4 network

Number of training cycles x10

E
rr

or

Best found network with GA

Number of training cycles x10

E
rr

or

Figure 13. Comparison of convergence.

74 8 Experiments

9 Conclusions and
recommendations

‘Perfection is attained by slow degrees;
it requires the hand of time.’

— Voltaire

Although in a very early stage, the combination of search methods, growth mechanisms and
computational principles based on nature and biology results in a very promising strategy for
designing artificial intelligent systems, no matter what definition one chooses for artificial
intelligence. One of the major problems in the future will be the general acceptance of the
products based on these principles. The systems will become very complex, and their functioning
will no longer be understandable. It is very difficult for people to accept a conclusion from an
artificial intelligent system, not knowing how the system came to its result, even if the results
of the system are just as good, or even better than results of human experts. This is something
we have to get used to in the future. Perhaps continuing research of thesecomplex systemswill
result in new mathematical techniques thatare able to explain what is happening inside a
working neural network.

Conclusions

Genetic algorithms are being used to find architectures for neural networks that are best suited
for a specific task. With a genetic blueprint representation, good results can be obtained for small
networks. This blueprint method does not work well for large size networks, because of the
exponential growing number of possible connections that have to be coded. The goal of this
research was to design a method that allowed, in principle, all possible network architectures,
but did not suffer from the exponential growth of the bits needed to represent each member of
the population. The method that resulted from this research uses the metaphor of a recipe, where
not the network itself is coded, but just a set of rules to produce that network. Preliminary
results, shown in chapter 8, suggest that the method does work, and finds modular networks that
perform better than networks without specific structure. The idea to use rules of a grammar that
directs the genetic search towards modular architectures seems to be justified with the results
that were obtained. However, a lot of experimenting still needs to be done in order to optimize
the proposed method.

76 9 Conclusions and recommendations

One of the problems encountered was the amount of computing power needed. The mapping
problem described in chapter 8 needed about a week to converge to its final solution, using 11
Sun Sparc4 workstations in parallel. This is caused by the large amount of computing needed
to evaluate each architecture.

Further research

During this research just one branch out of many has been tried. As usual, after working
intensively on a project, large numbers of unanswered questions remain and a lot of ideas could
not be implemented and tested in six months, the duration of this project. In the remainder of
this chapter, a number of these ideas are presented as well as some suggestions for improvements
and possible further research. Each suggestion is followed by a short explanation. Also, some
parallels with nature are pointed out.

Backpropagation and other network paradigms

As already mentioned, it takes a lot of computing time to train a network, which has to be
repeated for each new chromosome during a simulation. However, a lot of networks that are
generated, especially when the genetic algorithm is more or less converged, have the same
topology.

Make a database containing networks already evaluated. If a network is
evaluated, say, ten times and the average error is used to calculate the fitness of that
network architecture, the chance of a chromosome coding for that network receiving
an erroneous fitness is small. If a population is almost converged, and is generating
many equal network structures, it may be a good idea to create a database
containing already trained network architectures. This will reduce the amount of
computing time needed considerably. This only works if the genetic algorithm
generates a discrete output. As soon as floating point parameters are coded, the
probability of two members being equal becomes too small.

Prune extraneous input nodes. With the SuperSnoei pruning method, only
extraneous output nodes and chain ares removed. However, extraneous input nodes
can also be removed from the network.

The genetic algorithm

Calculate the fitness of the initial population. While using the algorithm based
on Whitley [WHIT89A], we initialized the population with random chromosomes.
The fitness of all randomly determined initial members were however not evaluated,
and were set to zero. This might have caused a direct loss of useful information that
happened to be present in the random initialization. When each initial member is
tested the moment it is placed in the population, the selection of parents begins with
correct fitness values.

Initialize the population with members having a non zero fitness. The previous
suggestion can be improved by making sure each initial memberhasa fitness. In
this research it happened very often that a newly generated chromosome had no

Further research 77

fitness (a fitness of zero). This could happen if the network that resulted from this
string had less output nodes than a given minimum, or was simply too large, given
a maximum number of nodes. It also happened frequently that a string did not
contain any production rules that could be applied at all. When the program was
running, these new chromosomes were of course not inserted in the population. But
the selection can already start at the initialization of the population. Only insert the
next initial member if it has a non-zero fitness. This will probably also result in a
more diverse population, the probability that several initial members are inserted
with the same production rules is very small. It may also prevent an evolution that
gets stuck with one accidental reasonable set of production rules, which can not
evolve any further. This can very well be seen as a local optimum in evolution.

This last idea gives rise to a comparison with the ‘primeval soup’ theories (see e.g. [ORGE73]).
The atmosphere of the earth at the time when there was no life on earth, contained no oxygen
but plenty of hydrogen and water, carbon dioxide, and very likely some ammonia, methane and
other simple organic gases. The ‘primeval soup’ theory states that this environment, under
influence of lightning and ultraviolet light (there was no ozone layer), after thousands of millions
of years spontaneously created some molecules that were able to replicate themselves, and
subsequently started evolution. Once started, evolution could slowly give rise to more and more
complex creatures. This is something that can be found in our simulations as well. It sometimes
took quite a while to find a production rule that could be applied, but after that, an increasing
number of useful new chromosomes were found. The experiments that were described in chapter
8 can, according to us, be compared only to the period just after the start of evolution, given the
small part of the full potential of our method that was actually used. Much longer simulations
on much larger tasks may perhaps require the full potential of our method. The last suggestion
will keep the ‘primeval soup’ period as short as possible, and will start the simulation with a
high amount of randomly found rules that, when combined, may quickly result in good solutions.

Make an initial population with ‘useful’ production rules. The previous
suggestion may become substantially faster if the initial population already contains
several sets of production rules that can create known standard solutions of the
problem at hand. Also, production rules found at previous simulations may be
taken. It needs to be tested whether this method is really faster than waiting for
random members, because the evolution from the initial handmade population to
members with the wanted solution, may well be a longer process than starting from
scratch. This is particularly likely to happen when the optimal solution is something
completely different from the structure that was expected.

Include the axiom in the genetic process. In our simulations we used axioms that
did not change during the simulation. They were fixed in a parameter file that was
used by the genetic algorithm. Including the axiom as a separate gene in the
members of the population will probably find better axioms than our ad hoc chosen
axioms. Some production rules that are very useful may only come into existence
given specific axioms on which they operate.

This last suggestion also leads to a link to biology, because the genetic information that is stored
in the nucleus of the cell, can only be read (the process of transcription) with a special enzyme
(RNA polymerase) that is already present in the cell. The human ovum can be seen as the axiom
on which the production rules coded in the genes can build, and contains all that is necessary
for the initial embryo to start growing.

78 9 Conclusions and recommendations

Use chromosomes with a different size. During our simulations we worked mostly
with chromosomes of 1024 bits. But looking at the results, we noticed that most
solutions were made using just a few production rules. By decreasing the size of the
chromosomes, the amount of freedom is reduced which may result in a faster
convergence of the genetic algorithm. This however, may also have its negative
effects, because the chance of finding a production rule in the initial population that
can be applied to the axiom will be much smaller using small chromosomes.

Use chromosomes with a variable length. Another idea that could be tried is to
have the genetic algorithm decide for itself what the most useful chromosome
length will be. This needs a change of the genetic algorithm. Crossover has to be
changed in such a way that the parts of both parents that are copied into the new
child are chosen so that the child has the preferred chromosome size. This size can
be coded as a separate gene, coding the length of the individual members of the
population.

This idea too has its counterpart in nature where each different species has its own number of
chromosomes. Slight deviations in the number or size of the chromosomes in nature usually lead
to functional disorders of the organism, like Down’s syndrome with humans (mongolism). But
as can be safely assumed, some changes have to lead to improvements.

In reality, the individuals of a population never have an eternal life. This, we believe, is not an
accident, and is probably a necessary condition for evolution to work in the real world. During
our many tests on different network structures for the same problem we noticed very often that
accidental good initial weights could result in a reasonably good performing trained network. See
for example figure 5 in chapter 8. Even the worst network with a hidden layer of three nodes
found a correct input/output mapping several times. But it clearly is not the wanted solution,
because we were looking for network structures specific for this problem thatalways, or at least
as many times as possible, correctly learned the task. Now suppose this network is generated in
an early stage of a simulation, and receives a high fitness because of an accidental good
initialization of its weights. It will stay in the population and, because of its high fitness, will
be chosen as a parent more frequently than other members of the population. If that situation
continues for a long time, there will be offspring of this bad network that, again accidentally,
is able to learn the task. This will result in an increasing part of the population containing copies
of the original bad member. Now suppose that the production rules of this bad architecture are
such that small changes will lead to even worse network architectures. This means that the
genetic algorithm is trapped in a local optimum caused by the randomness that is present in
backpropagation. But it is just this kind of randomness that we were trying to eliminate by
finding the right architecture. During the test phase of our software we have indeed sometimes
run simulations that ended in local optima. That is why we trained each generated network more
than once in later simulations, each time using another random initialization of the network’s
initial weights, taking the average error of those separate training as a measure for the fitness
of that architecture.

Use ‘aging’. An idea that came up when discussing the above problems was to
‘age’ the population. The artificial aging of the members of a static population can
be done by multiplying all fitness values of the members with a value slightly
below one, just after every new chromosome that is evaluated. Of course this only
concerns the static population model we used (see chapter 3), because the variant
described by Goldberg generates a completely new population every generation. The
result of this will, hopefully, be that the unwanted members eventually disappear

Further research 79

from the population because their offspring will only by chance have a high enough
fitness to be inserted into the population. If a network is found that is ‘really’ good,
which means that the network continuously generates offspring with high fitness,
the original good network will, as a consequence of the aging process, slowly leave
the population, but its children will carry its information on to next generations. It
is important not to choose theaging factor(the percentage that is taken from the
fitness each time) too large, because a chromosome with a high fitness should stay
in the population long enough to generate enough offspring. Also, a copy of the
best member found so far should be saved, just in case.

Re-evaluate each member. A variation on the last suggestion is to regularly re-
evaluate each member of the population (again only with a static population model),
for example each time a number of new chromosomes equal to the population size
is generated. Members that have a low probability of repeatedly scoring a high
fitness will now also leave the population.

These suggestions are necessary when genetic algorithms with a static population are used in
areas where the fitness has a large random component. Current research on genetically
optimizing CALM networks (see inset chapter 8), at the group where this research took place,
already is using the idea of aging. They are constructing a CALM network that has to be able
to learn sequences in time, and they had major problems with the noise used in the CALM
modules, because it occasionally resulted in a correct sequence. This resulted in an occasional
high fitness, and resulted in a population with a very high level of noise.

The L-system

The suggestion about axioms above, also applies to this section.

Use wild cards in the production rules. These wild cards can be used to improve
and extend production rule matching in the context. For example, a lower case letter
can be used to matchanydigit (and the same letter can be used in the predecessor
to copy that digit). Also empty brackets ([]) can be used to indicateany module.

Use a different number of rewriting steps. In all experiments done throughout
this research, the number of rewriting steps for the L-systems was six. Only if the
string reached a maximum length, less rewriting steps were used. Different numbers
of rewriting steps should be examined to see what effect it has on the resulting
networks.

The above idea can be extended by not using a fixed number of rewriting steps, but by varying
this number during the rewriting.

Do not use a fixed number of rewriting steps. For example, the L-system can
continue rewriting until either a maximum string length is reached, or the network
created sofar has sufficient input and output nodes. Also, after each rewriting step,
the network created sofar could be tested and the fitness values should be stored.
When a predetermined maximum string length or number of rewriting steps is
reached, the highest fitness so far could be returned.

80 9 Conclusions and recommendations

The production rules, their coding and the resulting strings

Use another translation table. Although the table chosen for the translation from
chromosome to characters in a production rule (see figure 11, chapter 6) was based
on the genetic code, the actual distribution of the characters in the table was chosen
rather arbitrarily. Experiments should be done with different distributions: not only
the placements of the characters in the table, also the number of each of the
characters can be varied (more asterisks, less digits, etc.). Also more symbols can
be introduced by increasing the size of the table, for example to allow larger skips.

If other network learning paradigms are used, where the feedforward restriction does not apply,
provisions have to be made in order for the strings being able to represent recurrent networks.

Use negative skips. These negative skips (which can be represented by special
symbols, or maybe the minus symbol can be used with the skips currently used) are
needed to allow for recurrent networks. This suggestion also implies changes to the
translation table.

Examine the number of building blocks. In this research, it is assumed that by
using overlapping information in the chromosomes, the number of building blocks
evaluated with each string evaluation is higher than with standard genetic
algorithms that do not use overlapping strings. It should be examined how large the
amount of building blocks being processed with each string evaluation actually is.

The above suggestion can be extended to strings with different density.

Use less overlapping strings. The amount of building blocks resulting from the
above suggestion should be compared to the amount of building blocks for strings
with less overlapping information. For example, the strings could only be read
forward (resulting in a string being read 6 times). As a result of these experiments,
the amount of overlapping information could be changed.

Try a fourth type of string. One type of strings we thought about, but have not
tried, are strings wereeachletter represents a complete module. The size of these
modules can be fixed (for example, A has size 1, B has size 2, etc.), or a separate
gene can be used to code the length of each module. One advantage of this method
could be that modular networks can be represented with shorter strings. However,
if the number of production rules needed (and their length) does not change, this
method may not have any advantages.

Miscellaneous

A large simulation should be tried. The experiments and simulations done
throughout this research were all of a small scale. In order to investigate the real
potential of the methods proposed, a large simulation should be done. Preferably,
because of the amount of computing time needed, a supercomputer or large network
of (for example) transputers should be used, so adjustments to the used method can
be easily made, without having to wait several days for a simulation to finish.

Further research 81

More exhaustive comparisons should be made. The method proposed should be
compared more exhaustively with other methods, like the ones using blueprints. The
methods should be compared according to convergence of the GA, the performance
of the networks found, the different length of chromosomes used etcetera.

Investigate scalability. If an appropriate problem is found, the possibilities of
scalability of the method proposed should be investigated. Convergence of the GA
and performance of the networks found should be compared with the same problem
at larger scales, as well as with other methods.

Make a tool to display network architectures. When the networks get larger and
larger it will be more and more difficult to get an impression of the structure of the
networks. A tool for drawing networks from adjacency matrices will be necessary.

82 9 Conclusions and recommendations

A Derivation of
backpropagation

This appendix contains the derivation of the backpropagation learning algorithm (thegeneralized
delta ruleGDR). The explanation is restricted to a minimum, the interested reader can find a
more extensive treatment in [RUME86], or in [FREE91]. The derivation will be given for a simple
three-layer network, but can easily be generalized for networks with more layers. Several other
artificial neural network classes are treated in [FREE91], which offers a good general introduction
into the field of neural networks.

The error for an output node during training is , with the desired output, andδj yj oj yj oj

the actual output for thejth output node. The error that is minimized by the GDR is:

,E 1

2

r

j 1

δ2
j

with r the number of output nodes. To determine the change of weights to the output nodes, we

calculate the negative gradient with respect to the weights . Considering each∇ E wo
ij

component of separately we get:∇ E

E 1

2

r

j 1

yj oj
2

and

∂E

∂w o
ij

yj oj

∂f

∂ stimo
j

∂ stimo
j

∂w o
ij

where

84 A Derivation of backpropagation

,
∂ stimo

j

∂w o
ij

∂
∂w o

ij

q

i 1

w o
ij hi θj hi

with q the number of hidden nodes, theith hidden node, and therefore:hi

.∂E

∂w o
ij

yj oj f stimo
j hi

The weights are changed proportional to the negative gradient, so:

,w o
ij (t 1) w o

ij (t) ∆w o
ij (t)

where

.∆w o
ij α yj oj f stimo

j hi

The factorα is the learning-rate parameter. Notice the requirement that the function f be
differentiable. The function that is usually used is:

.f(stim) 1 e stim 1

The derivative of f is:

,f f(1 f) oj 1 oj

so

.w o
ij (t 1) w o

ij (t) α yj oj oj 1 oj hi

This is the formula used to update the weights from the hidden layer to the output layer. If

,δo
j yj oj f stimo

j δj f stimo
j

we can rewrite the formula as:

. (*)w o
ij (t 1) w o

ij (t) αδo
j hi

The problem with the calculation of the weights from the input layer to the hidden layer is that
the desired activation for each node in the hidden layer is, contrary to the output layer, unknown.
But the total errorE is related to the activation of the nodes in the hidden layer:

E 1

2

r

j 1

yj oj
2

85

1

2
j

yj f stimo
j

2

.1

2
j

yj f

q

i 1

w o
ij hi θj

2

It is now possible to calculate the gradient ofE with respect to the weights from the input layer
to the output layer:

∂E

∂w h
ij

1

2

r

k 1

∂
∂w h

ij

yk ok
2

k

yk ok

∂ok

∂ stimo
k

∂ stimo
k

∂hj

∂hj

∂ stimh
j

∂ stimh
j

∂w h
ij

.
k

yk ok f stimo
k w o

jk f stimh
j xi

with the ith input node. The weights to the hidden layer are updated with the negative of thisxi

gradient:

∆w h
ij αf stimh

j xi

r

k 1

yk ok f stimo
k w o

jk

or

.∆w h
ij αf stimh

j xi
k

δo
kw

o
jk

Notice that every weight update on the weights to the hidden layer depends onall the error

terms of the output layer. This is where the notion ofbackpropagationarises. The knownδo
k

errors on the output layer arepropagated backto the hidden layer to determine the appropriate
weight changes on that layer. By defining

δh
j f stimh

j

r

k 1

δo
kw

o
jk

we can write the weight update formula for the weights to the hidden layer:

,w h
ij (t 1) w h

ij (t) αδh
j xi

which has the same form as (*). Both have the same form as thedelta rule, which is used for
training networks without hidden layer (see e.g. [FREE91]).

86 A Derivation of backpropagation

B Entropy of neural networks

All throughout this study we claimed and showed examples of the fact that the initial structure
given to a neural network greatly determines its performance. This appendix gives a more
mathematical foundation to these claims. It is partly based on [SOLL89].

Learning as entropy reduction

A neural network, when trained, is performing aninput-output mapping. The mapping that is
implemented by the network depends on the architecture of the network and its weights. When
the architecture is fixed, the mapping of network is solely determined by the weights. The set
of all possible weight configurations (the weight space) of a network determines aprobability
distributionover the space of possible input-output mappings that can be implemented with the
fixed architecture. Theentropyof this distribution is a quantitative measure of the diversity of
the mappings realizable by the architecture under consideration.

Learning from examples reduces the intrinsic entropy of the untrained network by excluding
configurations which realize mappings incompatible with the training set. The residual entropy
of the trained network measures its generalization ability. The goal of this research has been to
design a method to find a network structure for a given task, that has a residual entropy of zero
after training from examples, which means that the network converges to a state that implements
the desired mapping independent of the initial weight configuration. If a network architecture
is able to give several different mappings as a result of the training from examples, the residual
entropy will not be zero. This will probably lead to a bad generalization because onlyexamples
of the complete domain are used for training, and it is possible to extract the same set of
examples from many different mappings. A correct topology of the network will only allow for
the mapping that is actually wanted. If the residual entropy after training is not zero, small
deviations from the input patterns in the training set can give large errors in the output. This can

88 B Entropy of neural networks

be seen by imagining a weight space with a large number of minima, each implementing exactly
the mapping of the training set, but just one (or none) representing the actual wanted mapping.
It also shows the importance of the selection of the training set.

Definition of entropy

Before it is possible to give a definition of the entropy of a neural network, the probability of
a network implementing a mappingf has to be defined. Given a network architecture and its
corresponding weight spaceW (the set of all possible weight settingsw), Sara Solla [SOLL89]
defines thea priori probability of the network for a mappingf as

,P0
f Ωf /ΩW

where equals the total volume of the allowed weight space, andΩW

Ωf ⌡
⌠
ΩW

Θf (w)dw

is the volume in the initial weight space that implements the desired mapping with

Θf (w)

1 if w implements mappingf
0 otherwise

So in other words: is the probability the network implements the desired mapping throughP0
f

an arbitrary setting ofw. Obviously the network should be able to implement the desired

mapping: . If , the network is unable to learn the desired input/output mapping.P0
f ≠ 0 P0

f 0

Selecting a network structure defines a class of functions that are realizable with that network.
A useful measure of the diversity of possible mappingsf that can be implemented with the
chosen architecture is the entropy [DENK87]

S0

{ f }

P0
f ln P0

f

of the a priory probability distribution. Since not just for the desired mappingf but alsoP0
f ≠ 0

for mappings , the distribution of is such that .f ’≠ f P0
f S0 > 0

The definitions of thea priory probability and the entropy of neural networks give a
mathematical notion of the necessity to find networks with a good initial structure. A correct
initial structure of a network results in a high a priory probability, which in turn leads to a low

intrinsic entropy of the untrained network. It is the intrinsic entropy of the untrained networkS0

that needs to be eliminated via a learning process. The purpose of training is to confine the

configuration space to the region , thus eliminating all ambiguity about thew Θf (w) 1
input-output mapping implemented by the trained output.

Addendum

At the time this thesis was almost finished, we found a reference to an article by Kitano
[K ITA90] with the title: "Designing neural networks using genetic algorithms with graph
generation system". This addendum gives a summary of the method used by Kitano and high-
lights the main differences between the method he proposed and the one proposed in this thesis.

Kitano uses a standard genetic algorithm to search for artificial neural networks. The GA is used

Figure 1. Sample production rules.

With the production rules:

A → 10 B → 11 C → 01
11 10 01

The axiom: can be rewritten as:

AB 1011
CA 1110

0110
0111

in combination with a kind of graph grammar which can also be called amatrix rewriting sys-
tem. With this grammar, each production rule has a single symbol (non-terminal) as left-hand-
side, and the right-hand-side consist of a 2x2 matrix, either containing non-terminals, or 1s and
0s. The axiom is also a 2x2 matrix. For each rewrit-
ing step, the non-terminals are replaced by the 2x2
matrix from the matching production rule. 1s and 0s
are replaced by a 2x2 matrix of all 1s or all 0s
respectively. Note that the matrix grows by a factor
two in size with each rewriting step. This process
can be repeated a number of times. If any non-
terminals remain after the last rewriting step, they
are replaced by 0s. The binary matrix that results
from the last rewriting step is used as an adjacency
matrix for the network to be created. A (very) small
example is shown in figure 1.

The chromosomes used by Kitano for the genetic algorithm are fixed length binary strings
consisting of two parts: in the first part, on which genetic operators such as crossover and
mutation are performed, for each of the non-terminals, a production rule is coded that rewrites
that symbol into other non-terminals. In the second part, which is not changed during the genetic
search, for 16 predetermined non-terminals a matrix consisting of 1s and 0s is pre-encoded. For

90 Addendum

a more precise description of the production rules used, as well as the rewriting method itself,
the reader is referred to [KITA90].

With the method proposed by Kitano, the final size of the network is determineddirectly by the
number of rewriting steps. Although his method has the advantage that with the same chromo-
some length different size networks can be coded and that for larger networks no exponentially
larger chromosomes are needed, the method proposed in this thesis has even less constraints on
the resulting network size (although restraintscan be made, if necessary).

Another important difference between his method and the one proposed here, is the fact that
Kitano’s method does not use anycontext. We believe that, since context plays an important role
in biological growth, there should be context incorporated in any method that is supposed to be
biological plausible (and that is exactly what Kitano tried to do).

The results from [KITA90] do indicate his method works and that the method has less scaling
problems than can be expected with so-calledblueprint methods. However, to our knowledge,
the method proposed by Kitano has not been used by many others. Perhaps he was too early
with his proposals, perhaps his method was not flexible enough (for example because no context
was used).

References

[ALLP80] D.A. Allport; ‘Pattern and actions’. In:New directions in cognitive psychology,
G.L. Clagton (Ed.), Routledge and Kegan Paul, London, 1980.

[CREU77] O.D. Creutzfeldt; ‘Generality of the functional structure of the neocortex’. In:
Naturwissenschaften 64, 507-517, 1977.

[DAWK86] R. Dawkins;The blind watchmaker, Longman, 1986. Reprinted with appendix by
Penguin, London, 1991.

[DENK87] J.S. Denker, D.B. Schwartz, B.S. Wittner, S.A. Solla, R.E.Howard, L.D. Jackel and
J.J. Hopfield; ‘Large automatic learning, rule extraction and generalization’. In:
Complex systems, 1, 877-922, 1987.

[DODD90] N. Dodd, ‘Optimization of network structure using geneticalgorithms’. In:
Proceedings of the International Neural Network Conference, INNC-90-Paris, 693-
696, B. Widrow and B. Angeniol (Eds.), Kluwer, Dordrecht, 1990.

[FREE91] J.A. Freeman and D.M. Skapura;Neural networks: algorithms, applications and
programming techniques. Addison-Wesley, Reading, 1991.

[GARI90] H. De Garis; ‘Brain building with GenNets’. In:Proceedings of the International
Neural Network Conference, INNC-90-Paris, 1036-1039, B. Widrow and
B. Angeniol (Eds.), Kluwer, Dordrecht, 1990.

[GAZZ89] M.S. Gazzaniga; ‘Organization of the human brain’. In:Science, 245, 947-952.

[GOLD89] D.E. Goldberg;Genetic algorithms in search, optimization and machine learning.
Addison-Wesley, Reading, 1989.

[GUYT86] A.C. Guyton;Textbook of medical physiology. Saunders, Philadelphia, 1986.

92 References

[HAPP92] B.L.M. Happel;Architecture and function of neural networks: designing modular
architectures. In prep., 1992.

[HARP89] S.A. Harp, T. Samad and A. Guha; ‘Toward the genetic synthesis of neural
networks’. In: Proceedings of the 3rd International Conference on Genetic
Algorithms and their applications (ICGA), 360-369, J.D. Schaffer (Ed.), Morgan
Kaufmann, San Mateo CA, 1989.

[HECH90] R. Hecht-Nielsen;Neurocomputing. Addison-Wesley, Reading, 1990.

[HEEM91] J.N.H. Heemskerk and J.M.J. Murre; ‘Neurocomputers: parallelle machines voor
neurale netwerken’. In:Informatie, 33-6, 365-464, 1991.

[HOFS79] D.R. Hofstadter;Gödel, Escher, Bach: an eternal golden braid.Basic Books, New
York, 1979.

[HOGE74] P. Hogeweg and B. Hesper; ‘A model study on biomorphological description’. In:
Pattern Recognition, 6, 165-179, 1974.

[HOLL68] J.H. Holland;Hierarchical descriptions of universal spaces and adaptive systems.
University of Michigan Press, Ann Harbor, 1968.

[HOLL75] J.H. Holland;Adaptation in natural and artificial systems. University of Michigan
Press, Ann Harbor, 1975.

[HOOG91] R.J.W. van Hoogstraten;A neural network for genetic facies recognition.
Unpublished student report, Leiden, 1991.

[HUBE62] D.H. Hubel and T.N. Wiesel; ‘Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex’. In:Journal of physiology, 160, 106-154.

[JERI85] H.J. Jerison; ‘Issues in brain evolution’. In:Oxford surveys in evolutionary biology,
2, 102-134, R. Dawkins and M. Ridley (Eds.), 1985.

[KAND85] E.R. Kandel and J.H. Schwartz;Principles of neuroscience. Elsevier, New York.

[K ITA90] H. Kitano; ‘Designing neural networks using genetic algorithms with graph
generation system’. In:Complex Systems, 4, 461-476, Champaign, IL, 1990.

[KOCH05] H. von Koch; ‘Une méthode géometrique élémentaire pour l’étude de certaines
questions de la théorie des courbes planes’. In:Acta mathematica, 30, 1905.

[L IND68] A. Lindenmayer; ‘Mathematical models for cellular interaction in development,
parts I and II’. In:Journal of theoretical biology, 18, 280-315, 1968.

[L IVI 88] M. Livingstone and D. Hubel; ‘Segregation of form, color, movement and depth:
anatomy, physiology and perception’. In:Science, 240, 740-749, 1988.

[MAND82] B.B. Mandelbrot;The fractal geometry of nature. Freeman, San Francisco, 1982.

[MARI90] B. Maricic and Z. Nikolow; ‘GENNET - Systems for computer aided neural
network design using genetic algorithms’. In:Proceedings of the International Joint
Conference on Neural Networks, Washington DC, 1, 102-105, 1990.

[MARS74] J.C. Marshall and F.J. Newcombe;Journal of physiology, 2,175, 1974.

[M INS69] M. Minsky and S. Papert;Perceptrons. MIT Press, Cambridge, MA, 1969.

[MOUN75] V.B. Mountcastle; ‘An organizing principle for cerebral function: the unit module
and the distributed system’. In:The mindful brain, G.M. Edelman, V.B. Mountcastle
(Eds.), MIT Press, Cambridge, MA, 1975.

[MURR92] J.M.J. Murre;Categorization and learning in neural networks. Modelling and
implementation in a modular framework.Dissertation, Leiden University, 1992.

93

[ORGE73] L.E. Orgel;The origins of life. Wiley, New York, 1973

[PARK85] D.B. Parker;Learning logic. MIT Press, Cambridge, MA, 1985.

[PENR89] R. Penrose;The emperor’s new mind. Oxford University Press, New York, 1989.

[PHAF91] R.H. Phaf;Learning in natural and connectionist systems: experiments and a model.
Unpublished dissertation, Leiden University, Leiden, 1991.

[POSN72] M.I. Posner, J. Lewis, C. Conrad; In:Language by ear and by eye, 159-192,
J.F. Kavanaugh and I.G. Mattingly (Eds.), MIT Press, Cambridge, MA, 1972.

[POSN86] M.I. Posner;Chronometric explorations of mind. Oxford University Press, 1986.

[POSN88] M.I. Posner, S.E. Peterson, P.T. Fox and M.E. Raichle; ‘Localization of cognitive
operations in the human brain’. In:Science, 240, 1627-1631, 1988.

[PRUS89] P. Prusinkiewicz and J. Hanan;Lindenmayer systems, fractals and plants. Springer-
Verlag, New York, 1989.

[PRUS90] P. Prunsikiewicz and A. Lindenmayer;The algorithmic beauty of plants. Springer-
Verlag, New York, 1990.

[RUEC89] J.G. Rueckl, K.R. Cave and S.M. Kosslyn; ‘Why are ‘what’ and ‘where’ processed
by separate cortical visual systems? A computational investigation’. In:Journal of
cognitive neuroscience, 1, 171-186, 1989.

[RUME86] D.E. Rumelhart and J.L McClelland (Eds.);Parallel distributed processing. Volume
1: Foundations. MIT Press, Cambridge, MA, 1986.

[SCHW88] J.T. Schwartz; ‘The new connectionism: developing relationships between
neuroscience and artificial intelligence’, 1988.

[SOLL89] S.A. Solla; ‘Learning and generalization in layered neural networks: the contiguity
problem’. In:Neural networks: from models to applications, 168-177, L. Personnas
and G. Dreyfus (Eds.), I.D.S.E.T, Paris, 1989.

[SZEN75] J. Szentagothai; ‘The neural network of the cerebral cortex: a functional interpre-
tation’. In: Proceedings of the Royal Society of London, B, 201, 219-248, 1975.

[SZEN77] J. Szentagothai; ‘The ‘module-concept’ in the cerebral cortex architecture’. In:Brain
Research, 95, 475-496, 1977.

[SZIL79] A.L. Szilard and R.E. Quinton; ‘An interpretation for D0L-systems by computer
graphics’. In:The Science Terrapin, 4, 8-13, 1979.

[TURI63] A. Turing; ‘Computing machinery and intelligence’. In:Computers and thought,
E.A. Feigenbaum and J. Feldman (Eds.), McGraw-Hill, New York, 1963.

[WARR82] E.K. Warrington; The fractionation of arithmetical skills: a single case study. In:
Quarterly journal of experimental psychology: human experimental psychology, 34,
A(1), 31-51, 1982.

[WERB74] P.J. Werbos;Beyond regression: new tools for prediction and analysis in the
behavioral sciences. Unpublished Ph.D. thesis, Harvard University, Cambridge, MA,
1974.

[WHIT89A] D. Whitley; ‘The GENITOR algorithm and selection pressure: why rank-based
allocation of reproductive trials is best’. In:Proceedings of the 3rd International
Conference on Genetic Algorithms and their applications (ICGA), 116-121,
J.D. Schaffer (Ed.), Morgan Kaufmann, San Mateo CA, 1989.

94 References

[WHIT89B] D. Whitley and T. Hanson; ‘Towards the genetic synthesis of neural networks’. In:
Proceedings of the 3rd International Conference on Genetic Algorithms and their
applications (ICGA), 391-396, J.D. Schaffer (Ed.), Morgan Kaufmann, San Mateo
CA, 1989.

[ZEKI88] S. Zeki and S. Shipp; ‘The functional logic of cortical connections’. In:
Nature, 335, 311-317, 1988.

