Attribute Grammars and Monadic Second Order Logic

Roderick Bloem

October 15, 1996



Abstract

It is shown that formulas in monadic second order logic (MSO) with one free variable can
be mimicked by attribute grammars with a designated boolean attribute and vice versa.

We prove that MsoO formulas with two free variables have the same power in defining
binary relations on nodes of a tree as regular path languages have. For graphs in general,
MSO formulas turn out to be stronger. We also compare path languages against the routing
languages of Klarlund and Schwartzbach. We compute the complexity of evaluating MSo
formulas with free variables, especially in the case where there is a dependency between
free variables of the formula.

Last, it is proven that MSO tree transducers have the same strength as attributed tree
transducers with the single use requirement and flags.



Introduction

The main purpose of this paper is to investigate the relation between tree transductions
defined by attribute grammars on one hand and tree transductions defined by monadic
second order logic on the other. Along the way, we will cover path languages and we will
go into some complexity issues.

Attribute grammars have been introduced by Knuth [Knu68] as a way to assign a meaning
to a string from a context-free language, in a syntax directed way. Attribute grammars
have become popular as a tool for building compilers and as an object for study in formal
language theory. One can take a slightly different view from Knuth’s, and see an attribute
grammar as assigning a meaning to a derivation tree of a context-free language, or, in our
case, to a tree over an operator alphabet. If we limit the possible meanings to trees, we
obtain attributed tree transducers [Eng81, Fiil81]. Tree transducers define functions from
trees over one alphabet to trees over another. Our main interest lies in attributed tree
transducers that have attributes whose value can range over trees (tree attributes), and
attributes with a finite semantic domain (flags). Furthermore, we will forbid a tree attribute
to be used more than once, in order to limit the power of attributed tree transducers. This
is Giegerich’s single use requirement [Gie88|.

Our second important formalism, monadic second order logic, is used to define prop-
erties of graphs. It is popular because it combines great ease and strength of expression
with desirable decidability properties. Closed monadic second order formulas define sets
of graphs, while open monadic order formulas define relations on nodes of graphs. We also
use monadic second order logic to define tree transductions, as in [Eng91, Cou92]. The
monadic second order tree transducers that we consider are deterministic ones that can
copy nodes. A closed MsO formula defines the domain of the transducer, while formulas
with one free variable define the nodes in the output and formulas with two free variables
define the edges.

Regular path languages are regular languages over a set of directives that tell you how
to move through a graph, while checking properties of the nodes by MSO formulas with one
free variable. Path languages define binary relations on nodes of a graph: a pair of nodes
is in the relation if you can walk from the first to the second, following the directions in
a string from the language. Routing languages, a concept akin to path languages are used
by Klarlund and Schwartzbach [KS93] to extend the concept of recursive data structures.
They allow the definition of data structures such as circular linked lists in an elegant



way, avoiding explicit use of pointers. It will turn out that there are structures that
cannot be defined by a routing language, while they can be defined by a path language.
Path languages can be evaluated efficiently, like the routing languages of Klarlund and
Schwartzbach.

In Chapter 1, we will introduce the necessary formalisms and notation.

An operational description of closed MsO formulas exists in the form of tree automata.
In Chapters 2 and 3 we will explore operational characterizations of MSO formulas with
one and two free variables, respectively.

An attribute grammar with a designated boolean attribute recognizes exactly those
nodes of a tree for which the boolean attribute has decoration ‘true’. In Chapter 2, we will
prove that in this way, monadic second order formulas with one free variable are equivalent
to attribute grammars with a designated boolean attribute.

From this we derive the complexity of computing whether a fixed formula with free
variables holds for a given tree and nodes. This can be done in linear time. We also infer
the complexity of computing all node sequences for which a fixed formula holds, given a
tree. For an Mso formula with & free variables, we can do this in O(n*) time.

In the third chapter, we show that regular path languages and monadic second order
formulas with two free variables define the same binary relations on nodes in trees. On
graphs in general, monadic second order formulas will turn out to be stronger than regular
path languages. We will show that path languages that define a partial function can be
evaluated in linear time. From this result, we conclude that if there is a dependency in the
relation defined by a monadic second order formula with & free variables, we can compute
the relation defined by the formula in O(nf!) time. This is a factor n more efficient than
was shown in Chapter 2.

Finally, in Chapter 4, with help from the results of Chapters 2 and 3, we prove that
monadic second order tree transducers have the same strength as attributed tree transduc-
ers with flags and the single use requirement. We also show that monadic second order
tree transductions can be evaluated in linear time.



Chapter 1

Definitions and Notation

In this chapter we will define the terminology and notations we use throughout this paper.
First we give some common mathematical definitions, then we define regular languages,
terms and algebras, graphs and trees, tree automata, attribute grammars, and last of all
monadic second order logic.

1.1 Preliminaries

We will discuss the basic mathematics here: sets, relations, functions and strings.

Sets

The set of boolean values is
B = {false, true}.

For the sake of brevity, we sometimes use 0 instead of false and 1 instead of true. The set
of natural numbers is

N={0,1,2,...}.
The set of positive natural numbers is Ny = N\ {0}. We use the following notation for

sets of integers (a,b € N):
la,b] ={r € N|a <z <b}.

Sequences are denoted (aq,as,...,a,) or {aj,as,...,a,). By (ar,...,b,...,a,), we mean
(2
the sequence (a,...,a; 1,0,a;41,...,a,). Also,
, e
(a b b/ a )_ (ala"'7ai—1ab7ai+17"'7aj—17b7aj+17---7an) 1fZ<.]
1,..., Jyg oo o g U gy n — , . . .
v J (al,...,aj,l,b,ajH,...,ai,l,b,aHl,...,an) if ¢ >

For a set A, P(A) is the power set of A, i.e., the set of all subsets of A. The cardinality
of A is denoted #A. A set {Ay,...,A,} of non-empty subsets of A is a partition of A if
Uierin Ai = Aand A;N Ay =0 for i # j. If {Ay,..., A,} is a partition of A, the sequence
(Aq,..., Ay) is an ordered partition of A.



Relations and Functions

For sets Aq,..., A,, a n-ary relation is a subset R C A; x --- x A,. Its restriction to
Al CAisRITA =RN(A] x Ay x --- x Ap).

In particular, for sets A and B, a (binary) relation is a subset R C A x B. The image
of A/ C Aunder Ris R(A") ={b|3a € A" : (a,b) € R}. If A" = {a}, we also write R(a),
instead of R({a}), and whenever R(A’) = {b}, we can write R(A’) = b.

The identity on a set A is the relation idy = {(a,a) | a € A}.

The composition of two relations R C B x C and S C Ax Bis RoS = {(a,c) €
AxC | 3b: (bc) € Rand (a,b) € S}. We alsouse S;R = RoS. f RC AXx A, we
define R® = id,, and R = R"';R for i > 1. The transitive, reflevive closure of R is
R* = Ujen R

Let A be a set. A set A’ C A is closed under a relation R C A x Aifforallz € A": if
(x,y) € R, then y € A'.

A relation R C A x B is a (total) function, denoted R : A — B, if #R(a) = 1 for
every a € A. So, for any function f: A — B and A' C A, f(A") = {f(a) € B|a € A'}.
A function f : {a,...,an} — {b1,...,b,}, defined as f = {(ay,b1),..., (an,bn)} is also
written as an enumerated function: [a; = by, ..., a, — by].

A relation R C A x B is a partial function, denoted R : A — B, if #R(a) < 1 for every
a € A. The domain of R is the subset dom(R) = {a € A | #R(a) = 1}. We use the letters
f and ¢ for total and partial functions.

Strings and String Languages

Let A be a finite set, or alphabet. A string over A is a sequence (ay,...,a,), with n > 0,
and a; € A, for all i € [1,n]. The string (aq,...,a,) has length n. The empty string
is the string with length 0, denoted . The set of all strings over A is denoted A*, and
At = A*\ {e}.

If a = (a1,...,a,), and b = (by,...,b,) are strings over A, then the concatenation of
aand bisa-b= (a,...,an,b1,...,b,). The empty string is the unity with respect to
concatenation.

Usually, we leave out the brackets and commas, and write ajas - - - a,, for (ay, az, ..., ay,).

Let A be an alphabet. A (string) language is a set of strings L C A*. We have the
following operations on string languages

e Concatenation: for languages K, L C A*,

K-L={a-be A" |a€ K and b € L}.

e Powers: For L. C A*,

L ={e},and L"*' = L" - L, for n € N.



e Kleene star and Kleene plus: for L C A*,
L = U L", and LT = U L".

neN neNy

e Naturally, the usual set operators can be used on string languages, asin KUL, KNL,
and K\ L.

1.2 Regular Languages

In this section we discuss three well-known ways of defining regular string languages. See,
for example [Gin75] for more details. Later on, we give an example of one language defined
in these three different ways.

Finite State Automata

Definition 1.1. A finite state (string) automaton (fsa, for short) over ¥ is a quintuple
A= (Qa Ea 67 do, F); with

e () is a finite set of states,
e Y is the input alphabet,

e 0 C () XX X (@ is the transition relation,

qo € @ is the start state,
o ' C (@ s the set of final states.

A finite state automaton A = (@, X%, 9, qo, F') induces a step relation -4 C (¥* x Q) X
(X* x @), as follows. For every o € X, z € ¥* and q € Q, if (¢,0,¢') € J, then

(ox,q) Fa (z,q).

Definition 1.2. An fsa A over ¥ recognizes the string language ||A|] C T*:
[All = {z € X" [Jqy € F: (v,90) F) (6, 99)}

In most of the literature, the language ||Al| is denoted L(A). A language is called
recognizable if there is an fsa that recognizes it.

For reasons of notational convenience, we extend ¢ to a relation over () x ¥* x ). We
inductively extend the definition of §: for all ¢, (¢,£,q) € ¢, and for z € ¥, 0 € X:
(¢,z-0,q)€dif 3¢ : (¢q,2,¢") € 6 and (¢",0,¢') € 6. This is equivalent to (¢, x,¢") € &
iff (z,q) 4 (e,4).

A deterministic finite state automaton is a finite state automaton for which the tran-
sition relation § is a function @ x ¥ — . Accordingly, we also write §(¢,z) = ¢
for (¢,z,q") € §. Deterministic automata recognize exactly the same languages as non-
deterministic ones do.



Right-Linear Grammars

Right-linear grammars are very much akin to finite state automata. They define a way to
derive, rather than recognize a regular string language.

Definition 1.3. A right-linear grammar is a quadruple G = (N, 3, P, S), where
e N is a finite set of nonterminals,
e Y is the input alphabet,
e PC (N xXx N)U(N x {e}), is the set of productions, and

e S is the start symbol.

If (n,o,n') € P, we write n — on’, for (n,e) € P we write n — ¢.

We define the language of a right-linear grammar by transforming it into an equiva-
lent fsa. Let G = (X, N, P,S) be a right-linear grammar. The corresponding fsa Ag is
(N,%,6,5,{n | (n,e) € P}), where

d=(PN(NxXxN))

The language defined by G is simply [|Ag||.

We use two ways of abbreviating a group of productions: if oy,...,0, € ¥, n > 1,

1. A = o1---0,B is an abbreviation for A — 014, Ay — 0244, ..., A,_1 — 0,B
(where Ay, ..., A, 1 are new non-terminals), and

2. A — o01---0, is an abbreviation for A — 01 A, A1 — 024, ..., A1 — 0,A,,
A, — ¢ (where Ay, ..., A, are new non-terminals).

Regular Expressions

Regular expressions are the third way to define a regular string language. First we define
its syntax.

Definition 1.4. Let X be an alphabet. A regular expression over X is recursively defined
as follows.

1. 0, e and o (for every o € X)) are reqular expressions,

2. if r and r" are reqular expressions over X, so are r+1r', r-r' and r*.
A regular expression r over X defines a language [|r|| C X*, defined as follows.

Definition 1.5. Let Y be an alphabet.



L0 =0, llell = {e}, and ||o|| = {c} for all o € X,

2. if r and r' are regular expressions over X, ||r +1'|| = ||r|| U, [|7- || = [|7]] - [|']],
and ||| = [r[[*.
A language L is called regular if there is a regular expression r with ||r|| = L. The set

of all regular languages is denoted REG.
It is well known that REG is equal to the set of all recognizable languages, defined by
a finite state automaton or a right-linear grammar.

Example 1.6. We specify one language in the three notations. The alphabet is ¥ =
{a,b,c}.

e As a finite state automaton: A = ({S,T},%,0,5,{S}), where

S ifeither g =S and o =¢,or ¢ =T and o = b,
0= M\q,o0. )
T ifg=S5and o =a.

See Figure 1.1 for the ‘transition graph’.
e As a right-linear grammar: G = ({S,T},%, P, S), where

P={S — dT,
S — ¢S,
S — e,
T — bS}

e As a regular expression: r = (ab + ¢)*.

(T)
L)
(O

C

Figure 1.1: Transition Graph



1.3 Terms and Algebras

We here define terms, which are strings over an operator alphabet of a certain form, and
algebras, a way to assign meaning to a term by giving a meaning to each element of the
alphabet.

Definition 1.7. An operator alphabet is a pair (3,rky), with ¥ a finite set and a rank
function rky, : ¥ — N. Forallk € N, £ = {0 € ¥ | tkn(0) = k}.

We will often keep the rank function implicit and refer to ¥ as the operator alphabet.
The subscript to rk is omitted whenever the set is clear from the context. The subset ¥, C
Y. is the set of operators of rank k. The elements of ¥, are called constants. The rank of an
operator alphabet is the maximum of the rank of its elements, rk(X) = max{rk(c) | 0 € £}.
An operator alphabet has a rank interval, rks(X) = [1, rk(X)].

The set Ty, of terms over X is a subset of X, inductively defined as follows.

Definition 1.8. Let ¥ be an operator alphabet. Ty, is the smallest set satisfying the fol-
lowing condition. If k > 0, 0 € ¥y, and ti,ta, ...t € Tx, then otity-- -t € Tk.

Please note that the base in this induction is for the operators with rank 0. Every term
has a unique decomposition in an operator and sub-terms.

We also need terms with variables. These variables are treated as constants. For
variables we use the letter &.

Definition 1.9. Let X be an operator alphabet and N a finite set (of variables), such that
YNN = 0. X(N) is the operator alphabet with X(N)y = Lo U N and S(N), = Xy for
k> 1. Tx(N) = Txny is the set of terms over ¥ with variables in N.

A term t € Tx(N) is linear if every variable appears no more than once in ¢. It is
non-deleting if every variable appears at least once.

These terms are merely syntactical. In order to be able to interpret them, we use an
algebra.

Definition 1.10. Let 3 be an operator alphabet. A (deterministic) X-algebra is a set A,
together with, for every o € ¥y (k > 0), a (total) function o, : A¥ — A. The algebra is
finite if A is finite.

We usually keep these functions implicit and refer to the algebra as A. We identify the
nullary functions o4 for o € ¥ with the corresponding elements in A.

It is not strictly necessary to associate functions with the elements of 3. We can also
use relations, and obtain a ‘non-deterministic algebra’.

Definition 1.11. Let > be an operator alphabet. A non-deterministic algebra is a set A
with, for every o € ¥y, (k > 0), a relation 04 C A* x A.

8



Definition 1.12. Let A be a non-deterministic X-algebra. The subset algebra P(A) is the
(deterministic) algebra consisting of the set P(A) of subsets of A, with for every o € Yy,
and Ay,..., A, C A

UP(A)(Ala - '7Ak:) = UA(AIJ - 'JAk)
(: {JA(ala' . '7ak) | a; € Al fOT‘ 1< < k})

Every algebra is accompanied by an interpreting function, the valuation function ‘val’.
First we give the valuation for terms without variables.

Definition 1.13. Given an operator alphabet ¥ and a X-algebra A, the function valy :
Ty — A is defined as follows. For every o € ¥y (k> 0) and t,ts,... t, € Tk,

vala(otite -+ -tg) = oa(vala(ty), vala(ta), ..., vala(ty))

The valuation of terms with variables depends on the value given to the variables. So,
a term with variables needs a variable assignment, i.e., a function N — A. A term over
Ts(N) defines a function (N — A) — A.

Definition 1.14. Let & be an operator alphabet, N a set of variables, t € Tx,(N), and
a: N — A. Then,

ga(vala(ty)(a),...,vals(ty) (o)) if t =ty -ty for some o € Xy (k> 0),
vala(t)(a) = .
a(t) otherwise (t € N)
Note that if ¢ € Tx(N), then t € Ts(N') for any N’ O N. Also, if ¢t € Tx(N) and
a: N — A then valy(t)(a) = valy(t)(a/) for any o/ : N — A with o/ | N = a.

FEzample 1.15. Consider the operator alphabet (X, rky), where ¥ = ¥ U Xy, with ¥y =
{0,1,2}, and Xy = {+}.

Some terms over ¥ are 0, +01, and +2+11. Mind the prefix notation.

An example of a Y-algebra is N, with Oy = 0, 1y = 1, 2y = 2 and +y = Az, y.x +y, addi-
tion of natural numbers. Then, valy(0) = Oy = 0, and valy(+01) = +y(valy(0), valy(1)) =
valy(0) + valy(1) = Oy + 1y = 0+ 1 = 1. Similarly, valy(+2+11) = 4.

Another Y-algebra is A* = {a, 8,7}*, with 04« = a, 14+ = §, 24« = 7 and +,4- =
Az, y.x -y, concatenation of strings. Now, val«(0) = 04« = «, valy«(+01) = - f = af3,
and valy(+2+11) =~ - (- ) = 0.

Introducing variables, +0+1¢{ is a term from Ty e)). If we assign a value from the
algebra to &, we can evaluate the term. For example, using algebra N, and assigning 5 to
€, we obtain valy(+2+1&)[€ — 5] = valy(2)[€ — 5] + valy(+1€)[€ — 5] = 2 + (valn(1)[€ —
5] + valn(E)[ — 5]) =24+ (1 +5) =8. O

We can consider T5(N) to be an algebra itself, with very simple operations:

9



Definition 1.16. Let X be an operator alphabet and N a finite set of variables, then Tx(N)
s the term Y-algebra generated by N, in which for all k > 0, 0 € ¥) and ty,...,t; €
TE(N)’

O'TE(N)(tI; NN ,tk) = O'tl .- 'tk.

This may not seem very useful, but we can use it to define substitution of terms for
variables.

Definition 1.17. Let X be an operator alphabet, N a finite set of variables, t € Tx(N),
and a: N — Tx(N), a substitution function. Then,

ta = valry vy (t) (o)
15 the result of applying « to t.

Applying « to ¢ has the result of substituting «(§) for every occurrence of € in ¢, for
every & € N, leaving the rest of t unchanged. This is easily proven by induction on the
structure of ¢.

We can now show that, in a way, val, is distributive over substitution. In the next
proposition, we omit the round brackets around an enumerated function. We will do this
more often.

Proposition 1.18. For any Y-algebra A, variable set N = {&;,..., &}, variable assign-
ment a: N — A, and terms t, s, ..., s, € Ts(N),

vala(t[&r — s1,. .., & = su]) (@) = valu(t)[& — vala(sy) (@), ..., & — vala(s,)(a)]

Proof. In this proof, we use the shorthand [, — s;] for [& — si1,...,& — s,] and
(& — vala(s;)(a)] for [& — vala(s1) (@), ..., & — vala(s,)(a)]. We prove the proposition
by induction on the structure of .

Base: Let ¢t =& € N. Then,

vals (&8 — si]) (o) = vala(s;)(a) [by definition of substitution]
= valu(§)[& — vala(s;)(«)]  [by definition of val]
Induction: Let t = ot ---t, where £k > 0 and o € ¥;. Then,

vala(oty - - - tx[& — si]) (@) = [by def. of substitution]
vala(oti[& — 85|+ - tel& — si]) (@) [by definition of val]
oa(vala(t1[& — si]) (@), ..., vala(te[& — si]) (@) = [induction hypothesis]

[

oa(val(t)[& — vala(s;) ()], ..., vala(tx)[& — vala(s;)(a)]) = [by definition of val]
vala(oty - - - tx)[& > vala(s;)(a)]
U
As a special case of this, if si,...,s, € Ty, then vals(t[& — s1,...,.& — su]) =
vala(t)[€ — vala(sy),...,& — vala(sy,)]

For a more thorough description of algebras see [Coh81].

10



1.4 Graphs and Trees

Graphs

Definition 1.19. Let Y andT be alphabets. A graph over (X,T) is a quadruple (V, E, nlab,
elab), with V' a finite set of nodes and E C'V x V the set of edges, nlab : V' — ¥ is the
node-labelling function and elab : E — T' is the edge-labelling function.

The set of all graphs over (3, T") is denoted GR(X, I'). We say that G is a graph if there
are ¥ and I, such that G is a graph over (X,T).

So, we consider finite, directed graphs with no multiple edges. Loops are allowed.
Y is the alphabet of node labels and I' is the alphabet of edge labels. For a given
graph G, its nodes, edges, node-labelling function and edge-labelling function are denoted
Va, Eq,nlabg, and elabg respectively. Sometimes we do not need edge labels and node
labels and we simply leave them out.

If G is a graph, we say that an edge (with label [) runs from node v to node w if
(v,w) € Eg (and elabg(v, w) = I). This is denoted v —>¢ w (v 3¢ w). We say that the
edge is outgoing from v and incoming on w. A sequence (vg, v1,...,v,) € V1 isa (directed)
path of length n, running from vy to vy, if (v;,v;41) € E for i € [0,n — 1]. The length of a
path can be 0, so for every node v, there is a path from v to v. We say that a graph G is
cyclic if there exists a path (vg, vy, ..., v, vg), for some n > 1.

Definition 1.20. Two graphs G and H over (X,T) are isomorphic if there erists a bi-
jection f : Vg — Vi, such that for all vyw € Vg: (v,w) € Eg iff (f(v), f(w)) € En,
nlabg(v) = nlabg(f(v)) and elabg (v, w) = elabg (f(v), f(w)).

A graph is automorphic if it is isomorphic to itself through a function f # idy,.
We want to be able to ‘cut a piece’ out of a graph and obtain a subgraph.

Definition 1.21. Let G be a graph and V' C V. The graph H induced by V' is a subgraph
of G, with Vg =V', Eg = Ec N (V' x V'), nlaby = nlabg | Vg and elaby = elabg | Fy.

Forests and Trees

Forests and trees are specific kinds of graphs. The trees and forests we consider are rooted
and ordered.

Definition 1.22. Let X be an operator alphabet and T' = rks(X). A graph G over (X,T)
15 a forest over ¥ if

e it is acyclic,

e no node has more than one incoming edge, and

11



e for every node v and for every i € [1,rk(nlabg(v))], there is exactly one edge outgoing
from v with label i, and v has only outgoing edges with labels in [1,rk(nlabg(v))].

A tree over ¥ is a forest over ¥ consisting of one connected component. The set of all
trees is denoted TREES.

In a forest, a node without incoming edges is called a root. A forest has as many roots
as it has connected components, so a tree ¢ has only one root, denoted root(¢). Thus, a
forest is a disjoint union of trees. Edges are sometimes called branches and nodes with no
outgoing edges are called [eaves.

Each node of a forest has a rank equal to the rank of its label: rk(u) = rk(nlab(u)) for
each node u. The depth or level of a node u is the length of the (unique) path from a root
to u. The depth of a forest is the maximum of the depths of its nodes.

For any nodes v and w, if an edge runs from v to w (with label 7), w is called the (i-th)
child of v and v is the parent of w. We use Dewey notation and denote the i-th child of v
by v -i. Also, it is convenient to define v -0 = v.

If a path runs from v to w, then v is an ancestor of w and w is a descendant of v. In
particular, every node is both its own ancestor and its own descendant. A proper ancestor
(descendant) of v is an ancestor (descendant) of v not equal to v itself. In a tree, every pair
of nodes u and v has common ancestors. The least common ancestor of u and v, denoted
lca(u, v) is the common ancestor with the highest depth (closest to nodes u and v).

For a forest G over ¥ and a node v of G, the subtree of G rooted in v, denoted by
subg(v) is the subgraph of G induced by v and all its descendants. Note that subg(v) is a
tree over Y with root v.

For a tree ¢t over ¥ and a node v of ¢, the contezt of v, denoted ctx;(v), is the subgraph
induced by v and all nodes that are not a descendant of v, in which the label of v is changed
into &, a fixed variable. Thus, ctx;(v) is a tree over L({}).

The yield of a tree t over X is the string yield(¢) over g, consisting of the concatenation
of the labels of the leaves of ¢ in left-to-right order.

Trees and Terms

It should be apparent that terms have a tree structure and vice-versa. We now formalize
that correspondence, and hereafter simply identify terms with trees.

Definition 1.23. For any operator alphabet 33, tree is the bijection from Tx, to the set of
trees over ¥ (modulo isomorphism), recursively defined as follows. Let t = oty ---ty, for
some k >0, 0 € Xy, and ty,...,ty € Ts. Then

tree(oty - - - 1) = (V, E,nlab, elab),
with

V= {U} U U Wree(ti)

1€[1,k]

12



(where we assume that the Vieew,) are mutually disjoint, and that v ¢ Uicn & Viree(t:) )

E = {(v,r00t(tree(t;))) | i € [LAI}U | Eireer)s
i€[1,k]
nlab = {(v, a)} U U nlabiree(;) , and
1€[1,k]

elab = {((v,root(tree(ti))),i) | i€ [L, k]} U | elabgee) -

i€[1,k]

1.5 Tree Automata

A tree automaton defines a tree language, i.e., a set of trees. We consider only finite state,
bottom-up tree automata.

Definition 1.24. Let ¥ be an operator alphabet. A deterministic tree automaton over X
is a tuple A = (Q, F), where Q is a finite ¥-algebra and F C Q. The language recognized
by the tree automaton (Q, F) is

L(A) = {t € Tx | valg(t) € F}.

A more operational description may be given in terms of automata theory. Elements
of @@ are called states and F' is the set of final states. A tree automaton A starts reading
at each leaf of the tree, in a state determined by the label of that leaf. It then works its
way up in the tree. When a node v has label 0 € ¥, the automaton will reach state
og(s1,...,Sk) at v, where s; is the state of A at the i-th child of v. A tree is accepted if
the automaton reaches a final state in the root of the tree.

A tree language L is called recognizable or reqular if there is a tree automaton that
recognizes L. The set of all regular tree languages is denoted REGT.

Definition 1.25. Let ¥ be an operator alphabet. A non-deterministic tree automaton
over X is a tuple A = (Q, F), where Q is a non-deterministic finite X-algebra and F C Q
is the set of final states. The language recognized by A is

If you wish, valp(g)(sub;(v)) gives the states in which the automaton can arrive at v,
and the automaton succeeds if it can arrive at the root in a final state. Non-deterministic
tree automata recognize exactly the same tree languages as deterministic tree automata
do. See [GS84] for this result and a more comprehensive introduction to tree automata.

Proposition 1.26. For a tree automaton A over X the following are decidable:

1. t € L(A), for anyt € Ty,

13



2. L(A) =0, and

1.6 Attribute Grammars

Attribute grammars were introduced by [Knu68], as a way to assign a semantics to a
context-free language. An overview and extensive bibliography can be found in [DJL88].
To simplify the comparison with other formal models, our definition of attribute grammars
is a bit different from Knuth’s original.

1.6.1 Definition

As in [Fiil81], attribute grammars act on trees over an operator alphabet, instead of parse
trees of an underlying context-free grammar. The semantic rules are grouped by operator,
instead of by grammar rule. All operators have the same set of attributes, and there
are special rules for the inherited attributes of the root. Moreover, for each operator one
semantic condition is given.

Definition 1.27. An attribute grammar over X is a siz-tuple
G=(3,9B,R,C,anean),
where
e Y is an operator alphabet;
e () is a finite set of sets, the semantic domains of the attributes;
e B=(S,I,WW), is the attribute description. Here,

— S is a finite set, the set of synthesized attributes,
— I, disjoint with S, is a finite set, the set of inherited attributes,
— W : (I US)— Q is the domain assignment.

We also use A for IUS, the set of all attributes;
e R = (Rjn, Rroot) describes the semantic rules. Here,

— R 15 a function associating with every o € ¥ a set of internal semantic rules.
For every o, Ryy(0) contains one rule

<a07 Z‘0> - f(<a17 Z'1>7 SR <O‘ka ik>)a

for every pair (v, o), where either oy is a synthesized attribute and ip = 0, or oy
is an inherited attribute and iy € [1,vk(0)]. Furthermore, k >0, oy, ..., € A,

14



iy, € [0,1k(0)], f is a function from W(aq) X -+ X W(ay) to W(ay), and

the {aj,i;) are mutually distinct.
Usually, we simply write R(o) for Riu(o);

— Rioot 1S the set of semantic root rules; R, contains one rule

(g, 0) = f({aq,0),...,{(a,0)),

for every ag € I, where k >0, ay,...,can € A, f is a function from W(ay) X
<o X W(ayg) to W), and the (o;,i;) are mutually distinct;

e C is a function associating with every o € ¥ a semantic condition C(o) of the form

faq,it), ..., (ag, ix))

where k >0, ay,...,a5 € A, iy,...,10 € [0,tk(0)], and f is a function from W (ay) X
coo X W(ag) to B;

® Qyean € S 1S the attribute giving the meaning of a tree.

The semantic conditions can be left out if they are all tautologies. An attribute grammar
without semantic conditions is called an unconditional attribute grammar. Also, amean
can be left out if it is not needed. If all sets in 2 are finite, then G is said to have finite
semantic domains. Usually, for an (internal or root) rule

<a07i0> = f(<alai1>7 SR <ak7ik>)a

the function f is given as f = Axq,...,x.e for some expression e with variables in
{z1,...,2}. We will then informally denote the rule by

<O[0, ZO) = 617

where €' is obtained from e by substituting («;, i;) for z; for all j.

For an operator ¢ € X, we define the set A(o) of attributes of o as {{a,i) | o €
A and i € [0,rk(0)]}. If (ap,i0) = f({1,01), ..., (g, i) is a rule in R(o), we say («y, io)
is defined in terms of (a1, 11), . .., {ag, i) (at o). Likewise, if (o, 0) = f({a1,0), ..., {(ax,0))
is a rule in Ry, then (g, 0) is said to be defined in terms of (ay,0),..., (ax,0) (at the
root). For attributes o and 3 in A, if there are i,j such that («,i) is defined in terms of
(3,7) at some o, or at the root, then we say « is defined in terms of f.

Remark 1.28. We do not require Bochmann normal form [Boc76].

15



1.6.2 Semantic Instructions and Tests

Let ¢t be a tree over X. The set of attributes of ¢ is

Aty =Ax V.
Definition 1.29. For every tree t € Tx, and node u € V, if nlab(u) = o, and

<Oéo, Zo> = f((Oél, i1>, Ceey <Oék, Zk>)

is a rule in R(0), then

(g, u-do) = f({on,u-in), ..., (s u - ix))
is an internal semantic instruction of t. Analogously, if {(ay,0) = f({c,0), ..., {ag,0)) is
a root rule of t, then (ap,root(t)) = f((a,root(t)),..., (ax,root(t))) is a semantic root
instruction of t. Likewise for the semantic conditions: if C(o) = f({an,i1), ..., (o, ix))),
then f({aq,u-i1),...,{a, u-ig))) is a semantic test of t.

The set of all internal semantic instructions of ¢ is Rjy(¢). The set of all semantic root
instructions is R0t (f). The set of all semantic instructions of ¢ is R(t) = Rint (t) U Ryoot ().
The set of all semantic tests of ¢ is C(t). So, semantic rules and conditions are associated
with labels, and instructions and tests are associated with nodes of a tree.

1.6.3 Decoration

We define how to give the correct values to the attributes of the tree.

Definition 1.30. Let ¥ be an operator alphabet, G an attribute grammar over X, and t
a tree over ¥.. Let dec be a function from A(t) to UQ, such that dec({c,u)) € W () for all
{ar,u) € A(t). The function dec is a decoration of t if the following two conditions hold.

1. All semantic root instructions are obeyed, i.e., for every instruction
(g, root(t))y = f({ay,root(t)), ..., (g, root(t)))
in Ryoor(t),
dec({ag, root(t))) = f(dec({c,root(t))),...,dec({ay, root(t)))).

2. The internal semantic instructions are obeyed, i.e., for every instruction
{ag,u-igy = f({ar,w-iy), ..., (g, u-ig))
m Rint (t),

dec({av, u - ip)) = f(dec({aq,u-i1)),...,dec({ag, u- i))).

16



Moreover, dec is a valid decoration if the following condition holds:

3. The semantic tests are passed, i.e., for every test

fag,w-iy), ..., {(og, u-ig))
in C(t), we have

f(dec({o,u-1y)),...,dec({ay,u-ig))) = true.
Note that the first two conditions can be merged to the following: for every instruction

(o, wo) = f({ag,ur), ..., (g, ug))

in R(t),
dec({av, ug)) = f(dec({ay,ur)), ..., dec({ay, ug))).

1.6.4 Weak Non-circularity

We introduce a condition that implies that an attribute grammar has a unique decoration
on every tree. This criterion is a bit more relaxed than the classical concept of non-
circularity, but it suffers from a computability problem.

For classical non-circularity [Knu68|, we demand that the dependency graph is acyclic
for every tree. For some of our purposes, specifically in Chapter 4 (where we consider
conditional semantic rules in combination with decomposition in phases), this condition is
too conservative. Therefore we introduce the concept of a weak-dependency graph, that
has edges corresponding to ‘real’ dependencies only.

Definition 1.31. A function f depends on its ith argument if

Elal,...,ai,l,a,a',aiﬂ,...,ak:f(al,...,ciz,...,ak) %f(al,...,(%',...,ak).

For example, the function Aa, b, c.(a + b)/c does depend on it’s third argument, but the
function Aa, b, c.a + b does not depend on its third argument.

It is undecidable whether f depends on its i¢th argument. This follows from Rice’s
theorem (‘every non-trivial property of a computable function is undecidable’), see e.g.
[Wei87].

In a weak-dependency graph we depict how one attribute of a node depends on another.

Definition 1.32. For an attribute grammar G, the weak-dependency graph of a tree t
over X is the unlabelled graph WDg(t) = (V, E), where

V = A(t)

E ={({a,u), (", u)) | Fi: (o u') = f(... ,(a,@), ...)) € R(t)

)

and f depends on its ith argument}.

17



Now, we call an attribute grammar G weakly non-circular if for every t, WDg(¢) is
acyclic.

Unfortunately, because it is undecidable whether f depends on its ith argument, the
weak-dependency graph is not computable, and weak non-circularity is in general not
decidable. In the special case of attribute grammars with finite semantic domains, however,
weak non-circularity is decidable, because dependencies are computable for finite functions.
Note that weak non-circularity is indeed implied by classical non-circularity.

Proposition 1.33. If an attribute grammar G is weakly non-circular, then for every t,
there is exactly one decoration of t.

The truth of this proposition can most easily be seen by the fact that any weakly non-
circular AG can be changed into a classically non-circular AG with the same decorations,
in the following straightforward manner. For every semantic rule

<Oéo, Zo> = f((Oél, i1>, Ceey <Oék, Zk>)

and j € [1,k], we remove attribute (a;,4;) if f does not depend on j (and changing
f accordingly). This does not change the effect of the rules, but makes the attribute
grammar classically non-circular. Weak non-circularity only makes a real difference if we
use a decomposition in phases, defined below in Subsection 1.6.7. There, we will present
an example in which weak non-circularity really differs from classical non-circularity.

If ¢ has a unique decoration, we denote it by decg,. We will also write (o, u)q, for
decg i ({a, u)). We will leave out the subscripts whenever they are clear from context.

Note that weak non-circularity is a sufficient, but not a necessary condition for unique-
ness of the decoration, see for example [CM79].

Definition 1.34. A weakly non-circular attribute grammar G defines a partial function

G : Ty — W (atmean), s follows

G(t) = decg +({mean, ro0t(t))), if decq, is valid.

For weakly non-circular unconditional attribute grammars, G is a total function (be-
cause in that case, all decorations are valid).

1.6.5 Weak Single Use Requirement

The ‘weak single use requirement’ [Gie88] states that in no tree an attribute should be
used more than once. We will use this in Chapter 4 to limit the power of tree transducers.

Definition 1.35. An AG G over X is WSUR if for every t € Ts,, WDg(t) has no node
with more than one outgoing edge.

WSsUR is in general not decidable, because dependencies are not computable.

18



1.6.6 Computing the decoration

We show here how we can compute a valid decoration bottom-up, in a non-deterministic
way, if one exists. This is not the way it is usually done, but we need this for Chapter 2,
where we will have a tree automaton simulate an attribute grammar. See [Eng84], but also
[FV95] for the usual ways to compute decorations.

Definition 1.36. Let ¥ be an operator alphabet, G a weakly non-circular attribute gram-
mar over Y and t a tree over ¥. A top-less decoration of t is a function dec assigning to
every (a,u) € A(t) a value dec({a,u)) € W{(a), such that conditions 2 and 3 of Defini-
tion 1.30 are satisfied.

Loosely speaking, a top-less decoration is a valid decoration that does not necessarily
satisfy the root rules. A tree can have more than one top-less decoration (given an AG).
Intuitively, this is because the inherited attributes of the root are not prescribed. However,
a top-less decoration that satisfies condition 1 of Definition 1.30, is a valid decoration.

Using top-less decorations we can build a valid decoration bottom-up. We will have
to do this non-deterministically, guessing the right top-less decoration out of the possible
ones, on every step up. The following lemma shows how to make a step up in the tree.

Lemma 1.37. Let t = oty ---t; be a tree over 3, and G a weakly non-circular AG over
Y. A function dec is a top-less decoration of t iff the following conditions hold:

e dec [ A(t;) is a top-less decoration of t;, for alli € [1,k],

o for every rule
<0405 Z'0> = f(<ala Z’1>a R <a1"? ZT‘))
in R(0),

dec({ag, root(t) - ip)) = f(dec((al, root(t) - i1)), . .., dec({a,, root(t) - ir>)), and

e if C(o) = f({ar,i1), ..., {(Q,ir)), then

£ (dec({ar, root(t) - ir)),. .., dec({ay, To0t() - ir))) = true.

The straightforward proof is omitted.

1.6.7 Decomposition in Phases

In an attribute grammar, there may be a (natural) order in the attributes. Sometimes
the value of one attribute does not depend on the value of another. Then, the value of all
occurrences of one attribute can be evaluated before the value of any occurrence of another
attribute is known. In such a case, the evaluation of the attributes can be decomposed
into phases.

19



Definition 1.38. Let G = (X,Q, B, R, C, Qpean) be a not necessarily weakly non-circular
attribute grammar. An ordered partition P = (A, ..., An) of A is a decomposition in
phases if for all o, 8 € A, if o is defined in terms of 3, and o € Ay, then B € A; for some
j < k. If P is a decomposition in phases, we define phasep(a) =p iff o € A,.

A decomposition in phases not only separates the attributes, but also the evaluation
of the attributes. We can first evaluate the attributes in phase 1, then the attributes in
phase 2, and so on, resulting in the original decoration (if it exists).

For every phase p € [1,n]| and tree ¢t € T, we have the set of tree attributes A,(t) =
A, x V;. Furthermore, we have the sets of semantic instructions R (¢), Rb, (¢), and RP(t),
and the decoration decf,, (if it exists). We will define them using simultaneous induction
on p, assuming dech’t exists for all ¢ < p.

e First, R, (t) consists of the instructions in Rin(t) with left-hand side {(«, ) for certain

i and a € A,, where dec?((f3,j)) takes the place of (f3,7), for all j and § with
phase(3) = ¢ < p. Technically, if

(ag,up) = f({ar,ur), ..., {ag, ug)) € Ring(t),

and oy € A,, then

<a01 U0> = fl(<ala u1>7 cee <O‘ka Uk>) € R?nt(t)a

where for all wy € W(a),...,w, € W(ag), f'(wi,...,wp) = f(x1,...,2%), where

w; if phase(ay) > p,
T =
"7 Vdec({cy,ir)) if phase(ay) = g < p.

Note that in the second case, f' does not depend on its [th argument. Analogously
we define RY((t), and last, RP(t) = RF (t) U RY, .. (%).

int

e A phase-p decoration is defined like in Definition 1.30: it is a function from A,(t) to
U (that assigns values from the appropriate semantic domains) such that
1. all semantic root instructions in R, (¢) are obeyed, and

2. all internal semantic instructions in R! (¢) are obeyed.

int

If ¢ has a unique a phase-p decoration, it is denoted dec’é’t.

Note that dec’é’t exists for all p iff decq, exists, and that if that is the case, decq; =
Upept g dec’é’t. Note that for any p, phases 1 up to p constitute an attribute grammar in
its own right.

The fact that we have attributes and instructions for every phase means that we can define
a weak-dependency graph for every phase.

20



Definition 1.39. For AG G with decomposition in phases P = (A4, ..., Ay), the phase-p
weak-dependency graph of a tree t over ¥ is the unlabelled graph WDg, p(t) = (V, E),
where

V= A4,(1)
E ={({a,u), (', u"y) | Fi: (") = f(... ,(a;u>,...) € RP(1)

and f depends on its ith argument}.

This means the concepts of weak non-circularity and WSUR generalize naturally to
phases.

Definition 1.40. Let G be a (not necessarily weakly non-circular) attribute grammar, and
P a decomposition in phases of G. Attribute grammar G is phase-p WSUR with respect to
P if for every tree t, no node in WDP(t) has more than one outgoing edge. It is phase-p
weakly non-circular with respect to P if for every t, WDP(t) is acyclic. If G is phase-p
weakly non-circular for every phase p, G is weakly non-circular with respect to P.

Lemma 1.41. If an attribute grammar G is weakly non-circular with respect to a decom-
position in phases P, then, for every t, there is exactly one decoration of t.

The proof is analogous to the classical proof that non-circular attribute grammars
induce a unique decoration on every tree.

Note that if an attribute grammar is weakly non-circular, it is weakly non-circular
with respect to any decomposition in phases, because WD’é’P is a subgraph of WD (t).
The opposite need not hold: an attribute grammar can be non-circular with respect to a
decomposition in phases while it is not non-circular. As shown in the next example, this

happens in particular when conditional semantic rules are used (as will be done in Chapter
4).

Ezample 1.42. Consider the attribute grammar G' = (3, Q, (S, I, W), R), with ¥ = XU,
Yo ={x#}, X1 ={0}, Q={N}, S={a, 3,7}, [ =0, W maps every element of S to N,
and the semantic rules are as follows. The set of rules R(x) is

(o, 0) =0
(8,0) =
(7,

The set of rules R(#) is
<aa 0> =1
(6,0) =1
(7,0) =1



(4 e e o 1 11
(#)—s (#) (et

Figure 1.2: The dependency graph of oo#, its phase-1 dependency graph and its phase-2
dependency graph

The set of rules R(o) is

otherwise

(ﬂ,0>:{0 if (y,1) =0

(0.0 {iﬁ, 0) if (1,1) =0

(a, 0) otherwise
(7:0) =(7,1)

The leftmost picture in Figure 1.2 shows the weak-dependency graph WD(¢) of the tree
t = oo#. Clearly, the attribute grammar is circular. We can however decompose it, with
decomposition P = ({7}, {«, 5}). If we do this, we see that the weak-dependency graphs
of both phases are acyclic, for example, in the case of tree ¢, the phase-1 and phase-2
dependency graphs WD'(¢) and WD?(#) are depicted in Figure 1.2. Note that the value of
v is known in the second phase, and hence in both the rules for a and 3, one of the cases
falls away, which means that some dependencies no longer exist.

It follows that G is weakly non-circular with respect to P. Indeed, there is a unique
decoration for every tree: A tree of the form oo ---ox has decg({o, u)) = decq((B,u)) =
decg({y,u)) = 0 for all nodes u, and a tree of the form oo ---o# has decg({a,u)) =
decq((B,u)) = decg({,u)) =1 for all nodes u. O

1.7 Monadic Second Order Logic on Graphs

Monadic second order logic is used to describe properties of graphs. We will informally
introduce it here. The interested reader is refered to [Cou90, Eng91, O0s89].

22



Syntax

For alphabets ¥ and T', we use the language MSOL(X, I'), of monadic second order (MSO)
formulas over (X,T"). Formulas in MSOL(X, T") describe properties of graphs over (X, T).
This logical language has node variables z,vy, ..., and node-set variables X,Y,.... For
a given graph G over (X,T'), node variables range over the elements of Vg, and node-set
variables range over the subsets of V.

There are three types of atomic formulas in MSOL(X, T'):

1. lab,(z), for every o € X, denoting that x has label o,
2. edg, (,y), for every v € T, denoting that an edge labelled v runs from x to y, and
3. ¢ € X, denoting that x is an element of X.

The formulas are built from the atomic formulas using the connectives A (conjunction),
V (disjunction), = (negation), and — (implication), as usual. We can quantify both node
variables and node-set variables, using the quantifiers 4 and V. The quantifiers and negation
bind more strongly than the binary connectives do.

For every n, the set of MsO formulas over (X,T') with n free node variables and no
free set variables is denoted MSOL, (X, I"). Because we are predominantly interested in
trees, an MsO formula over (X, rks(X)) will also simply be called an Mso formula over X
(where ¥ is an operator alphabet). Also, MSOL(3, rks(X)) and MSOL, (X, rks(X)) will be
abbreviated to MSOL(X) and MSOL,, (X), respectively.

Semantics

For a closed formula ¢ € MSOLy(%,T') and a graph G € GR(X,T), we write G | ¢ if G
satisfies ¢.

Given a graph G, a waluation b is a function that assigns to each node variable an
element of Vg, and to each node-set variable a subset of V. We write (G,b) = ¢, if ¢
holds in GG, where the free variables of ¢ are assigned values according to the valuation b.

If a formula ¢ has free variables, say, x, X,y and no others, we also write ¢(z, X, y). If
it is not ambiguous, we write (G, u,U,v) E ¢(z, X,y) for (G,[z — u, X — U,y — v]) E
é(z, X, y), listing the values for the variables in alphabetical order of the variables (capital
letters come immediately after their lower-case counterparts).

An Mso formula defines a relation on the nodes of any graph.

Definition 1.43. Given a graph G € GR(X,T), a formula ¢p(xq,...,z,) € MSOL,,(3,T)
defines a relation

R () = {(ur, ..., um) € VI | (Gyuy, ... um) E o2, ..., 2m)}-

Associated with an MsO formula are its graph and tree semantics.

23



Definition 1.44. Let 3, T be alphabets, m > 0, and ¢(xq,...,2y) € MSOL,(X,T). The
graph semantics of ¢(xy, ..., zx) is

LGR(d)) = {(G,Ul, .. .,Um) | G e GR(E,F),Ul, e, Uy € VG', and
(Gyury o yum) E (2, ..o Tm) ),

and, if ¥ is an operator alphabet and T' = rks(X), the tree semantics of ¢(x1, ..., xy) is
L(¢) = Lar(9) I Ts.

For any ¥, T, a graph language L C GR(X,T) is called Mso definable if there is a closed
formula ¢ such that Lgr(¢) = L. Analogously, for any 3, a tree language L C T is called
MSO definable if there is a closed formula ¢ such that L(¢) = L.

The set of all MsO definable tree languages is denoted MsSOT. It is equal to the set of
regular tree languages.

Proposition 1.45. [Don70, TW6S8]

MSOT = REGT

Because the proof of this lemma is constructive, from Proposition 1.26 we can conclude
the following.

Proposition 1.46. The following are decidable for any formula ¢ € MSOLy(X):
1. Membership: t € L(¢),
2. ¢ is a contradiction: L(¢) =0, and
3. ¢ is a tautology: L(p) = Tx.

More Notation

We use syntactic substitution on formulas, in the same manner as we did for terms in
Section 1.3. We will also abbreviate substitution. For example, if ¢ has free variables z, y,
we write ¢(z,y) for ¢[z — 2,y — y|, listing the substitutes in alphabetical order of the
substituted variables.

If A= {ay,...,a,} is a fixed set and ¢la — q,] is an MSO formula for all j, we
write Vaeq @, or da € A : ¢, for ¢la — a1] V-V ¢la — ay]. Also, we write A,c4 @, or
Va € A : ¢ for dla — ai] A -+ A ¢la — ay,]. For example, Ja € {v,0}edg,(z,y) denotes
edg, (z,y) V edgs(z,y).

We use some more abbreviations of formulas in MSOL(X, '), listed in Table 1.1. The
meaning of most of them is obvious. The abbreviation x = y - k, for a constant £ means
that z is the kth child of y if £ > 0, and z =y if k = 0. If (G,U) |= closed (s, (X), then
U is closed under Rg(¢). The formula path, (z,y) states that = is connected to y through

24



abbreviation stands for

bt (6> 6) A (6 — 9)
rT=1y VX:(zeX < yeX)

T Fy —(z=y)

false dr:x#x

true —false

Nz ¢ Jz(¢ AVy(S[z = y] = y = 2))

xr=1y-k =y if k=0, and edg,(y,z) if k € Ny
closedg(z,4)(X) Ve, y((a: € XNo(z,y)) =y € X)

udg,, (2, ) edg, (z,y) Vedg, (y,r) (undirected edge)

edg(x,y) Iy €T :edg,(z,y)

udg(x,y) Jy el :udg, (z,y)

path(x,y) VX : ((z € X Aclosedeqg(ey) (X)) =y € X)

path, (z,y) VX 1 ((z € X A closededg () (X)) = y € X)
acpath(z, y) X (r € XAVze X(z=yV I € X :edg(z72)))
upath(z, y) VX : ((z € X Aclosedydg(ay) (X)) =y € X)

root(x) -y : edg(y, x)

leaf(x) —Jy : edg(z,y)

Table 1.1: Abbreviations for MSO

a path of edges with label v only. In an acyclic graph, acpath is equivalent to path. The
abbreviations root(x) and leaf(xz) mean that x is a root (no incoming edges) or leaf (no
outgoing edges) respectively.

Transitive, Reflexive Closure

For any formula ¢(z,y), we define the formula
o*(z,y) = VX ((x € X Aclosedyz) (X)) =y € X).

The relation defined by ¢*(x,y) defines the transitive, reflexive closure of the relation
defined by ¢(z,y) ([Cou90]).

Lemma 1.47. Let 3, T be alphabets, G € GR(X,T), and ¢(z,y) € MSOLy(X,T). Then,
Rq(¢%) = Ra(9)".

Proof. First we prove (u,v) € Rg(¢*) = (u,v) € Rg(d)*, and then we prove (u,v) €
Rg(d))* = (U,U) S Rg(¢*)

e Suppose (G,u,v) = VX : ((x € X Aclosedy(yy)(X)) =y € X). The set U = {w €
Ve | (u,w) € Rg(¢)*} is closed under Rg(¢). So, since u € U, it follows that v € U,
and thus (u,v) € Rg(d)*.

25



o Let (u,v) € Rg(¢)*. We have to prove (G, u,v) = VX : ((z € X Aclosed gz (X)) —
y € X). Take a U C Vg, with u € U and U closed under Rg(¢). Because (u,v) €
Rg(p)*, there are uy, ..., u,, with u; = u, u, = v, and (u;, u;41) € Rg(¢). Because
U is closed under Rg(¢), and uy € U, by induction us, ...,u, =v € U.

O

26



Chapter 2

Tree-Node Languages

We can use MsO formulas with one free variable to select nodes of a tree. For the same
purpose, we can also use an attribute grammar with a designated boolean attribute d.
Given a tree ¢, the attribute grammar recognizes those nodes v of ¢ that have dec,((,v)) =
true. These two methods will turn out to be equivalent when we restrict the attribute
grammar to have finite semantic domains.

In Section 2.5 we will go into the complexity of calculating whether an MSO formula
with free variables holds for given tree and nodes, and the complexity of computing the
relation defined by an Mso formula with free variables, given a tree.

2.1 Definitions

First we define tree-node languages, i.e., sets of tree nodes.

Definition 2.1. Let ¥ be an operator alphabet. A tree-node language T over ¥ is a set
T C{(t,v) |t €Ty andv € V;}.

Tree-node languages can be defined by an MSO formula with one free variable. According
to Definition 1.44, for an operator alphabet ¥, a formula ¢(x) € MSOL;(X) defines the
tree-node language L(¢(z)) = {(¢t,v) |t € T, v € V, and (t,v) = ¢(z)}.

The set of all tree-node languages T', for which there is an operator alphabet ¥ and a
formula ¢(r) € MSOL;(X) such that L(é(x)) = T, is the set of Mso-definable tree-node
languages, denoted MSO-TN.

Tree-node languages can also be recognized by an attribute grammar with finite semantic
domains. A node-recognizing attribute grammar has a designated attribute 0 with W (9) =
B (a ‘boolean attribute’). It recognizes the tree nodes v of a tree ¢ with (d, v), = true.

Definition 2.2. Let Y be an operator alphabet, G a weakly non-circular attribute grammar
over Y with finite semantic domains, and & a boolean attribute of G. Then, the node-
recognizing attribute grammar (G, ) recognizes the tree-node language

L(G,0) ={(t,v) |t € Ts,v € V; and (0,v)q = true}.

27



The set of all tree-node languages T for which there is a node-recognizing attribute grammar
(G,6), such that L(G,§) =T, is the set of all AG-recognizable tree-node languages, denoted
AG-TN.

It should be clear that it makes no difference whether we use weakly non-circular or
classically non-circular in the above definition.

We claim that MSO-TN = AG-TN and will proceed to prove this in the next sections.
First we introduce some more notation.

We define how to mark nodes in a tree. Let B; = {1}. The operator alphabet ¥ U (2 x
By) is the alphabet for which rkyymyp,)(0) = tksymxn,) ({0, 1)) = rks (o).

We will use XU(X x By) to mark certain nodes in a tree: For any tree t over XU(X X By),
a node v is called marked if its label is (o, 1) for some o € .

For every tree t € ¥ U (¥ x By), the underlying tree und(t) over ¥ is obtained by
replacing every label (o,1) in ¢ by its first component o, and leaving the other labels
unchanged.

There is an obvious bijection between tree nodes and certain marked trees.

Definition 2.3. For every tree t € Ty and node v of t, mark(t,v) € TsuisxBy) 18 the
corresponding marked tree, defined as follows

mark(t,v) = (V;, E;,nlab’,elab;), where
alabl = e ;. 4 Mabe®) fuv
v (nlab;(w),1) ifw=w

So, mark(¢,v) has exactly one marked node: v. We use labels o instead of (o, 0),

because now any subtree of mark(t,v) rooted in a node u that does not have a marked
node is equal to the subtree of £ rooted in wu.

Definition 2.4. Let T be a tree-node language over ¥. The test language of T is a tree
language test(T) over ¥ U (X X By):

test(T) = {t € Txumxpy | Vv € Vi@ if Jo € ¥ : nlab(v) = (0,1), then (und(t),v) € T'}

Since und(mark(¢,v)) = ¢ for all ¢ and v, obviously (¢,v) € T iff mark(¢,v) € test(T).
We will use this observation twice in the following sections.

We prove MSO-TN = AG-TN in two parts. In Section 2.2 we will prove that for any
MSO formula ¢(x) that defines a tree-node language T, there is a closed MsoO formula 1)
that defines the test language of T', and vice-versa. This is equivalent to T" € MSO-TN iff
test(T)) € MsOT. Next, in Section 2.3 we prove that for any node-recognizing attribute
grammar that recognizes a tree-node language 7" there is a tree automaton that recognizes
the test language of T', or, in other words, that T € AG-TN iff test(T)) € REGT. Because
we know that MSOT = REGT (Proposition 1.45), we conclude in Section 2.4 that MSO
formulas with one free variable and node-recognizing attribute grammars recognize the
same languages, i.e., MSO-TN = AG-TN.

28



2.2 MSO Definable Tree-Node Languages and Test
Languages

A tree-node language is MSO definable if and only if its test language is. This is proven by
rewriting the formula defining a language into a formula defining the corresponding test
language and vice-versa.

Let ¥ be an operator alphabet, and let T' be a tree-node language over . Let ¢(x) be an
MsO formula over 3, with one free node variable x, such that "= L(¢(z)). From ¢(x) we
can obtain the closed Mso formula 1) over ¥ U (X X By):

Y =Vr((3o € T : labyy(x)) — ¢'(x)),

where the Mso formula ¢'(z) over ¥ U (X x B;) is obtained from ¢(x) by substituting
(lab,(y) V lab(,.1y(y)) for lab,(y), for every o € ¥ and node variable y.
Clearly, (t,v) | ¢'(x) iff (und(¢),v) | ¢(z), and therefore L(1)) = test(T).

Ezxample 2.5. Let ¥ = ¥y U Xy, with ¥y = {*,#}, and ¥y = {o}. Now consider the
following Mso formula from MSOL;(X).

¢(x) = Fly : lab,(y) A Jy(path(z, y) A lab,(y)).

For a tree t and a node u of ¢, (t,u) | ¢(x) iff ¢ has exactly one leaf labelled x, and w is
on the path from the root of ¢ to that leaf. The tree-node language defined by ¢(x) is

L(p(x)) = {(t,u) | t € Tx;, (t,u) = o(2)},

which is the language consisting of all tuples (¢, u), where ¢ is a tree with exactly one leaf
v labelled *, and « is on the path from root(t) to v. The test language corresponding to

L(9) is
test(L(¢)) = {t € Tsumxn,) | Vv € V; 1 if 3o € ¥ : nlab(v) = (0,1), then (und(?),v) = ¢},

which is the language consisting of all trees ¢ € Txyiwxp,), that have exactly one leaf
labelled *, and in which only on nodes on the path from the root to that leaf are marked,
and all trees from T5ymxp,) that have no marked nodes at all (i.e., T%). The closed MSO
formula that recognizes this language is

W =Va (EIJ €Y lab(g,1>(1’) -
(ﬂ!y(lab* () Vlabg 1y (y)) A Jy(path(z, y) A (lab,(y) V 1ab<*,1>(y)))))-

O

29



We now prove that for any closed Mso formula ¢ that defines the language test(T") for
some tree-node language T, there is a formula ¢(x) that defines T. We do this in a similar
manner. Let T be a tree-node language over ¥ and let ¢ be a closed MSO formula over
Y U (X x By) such that L(¢)) = test(T"). Assuming z is not a variable of ¢, we construct a
formula ¢(x) over ¥ from ¢, by replacing, for each node variable ,

1. all occurrences of labi,1y(y) by (lab,(y) Ay = z), and
2. all occurrences of lab,(y) by (lab,(y) Ay # x).

Clearly, (t,v) € L(¢(x)) iff mark(¢,v) € L(v), and hence L(¢p(x)) =T.
From these two observations we conclude the following result.

Proposition 2.6. For every operator alphabet 3 and tree-node language T over X,

T € MSO-TN <= test(T') € MSOT.

2.3 AG Recognizable Tree-Node Languages and Test
Languages

In this section we prove that a node language is AG-recognizable iff its test language can be
recognized by a tree automaton. First we prove that T' € AG-TN implies test(T) € REGT
and then we prove that 7' € AG-TN is implied by test(7) € REGT.

If a Tree-Node Language is AG Recognizable, its Test Language is
Regular

Let (G, 0) be a node-recognizing attribute grammar over ¥, and let G = (3, Q, (S, I, W), R).
Note that by Definition 2.2 we may assume G to be unconditional and without auean. Let
T = L(G, 0) be the node language recognized by the node-recognizing attribute grammar.
We want to construct a tree automaton Ags = (Q,F) over ¥ U (¥ x By), such that
L(A(G,(;)) = test(T).

The tree automaton will be a non-deterministic, bottom-up one. Acting on t, it simu-
lates the attribute grammar on und(¢), by calculating the decoration on its way up, in a
non-deterministic way. In the construction we use the letter d to denote the states of the
automaton, which are functions encoding a top-less decoration of a node of the tree (see
Definition 1.36). The automaton accepts as final states all decorations that satisfy the root
rules. The set of states and the set of final states are

Q={d: Ag - UQ |Va € Ag : d(a) € W(a)},
F={deQ|Y{(a,0)=f({a1,0),...,{0,0)) € Rpooy : d(cg) = f(d(cv1),...,d(c))}.

30



The automaton has the following operations. For o € ¥, it makes sure that all rules at o
are satisfied:

oo ={((dy,...,dp),dy) | Vg, io) = f({r,i1),..., (i) € R(0) :
dio (ao) = f(d’il(al)’ oy di, (ar))}a

and, for all (o,1) € ¥ x By, it does the same, but at the same time makes sure that the
designated attribute is set:

(0,1)g ={((dy,...,dp),do) | V{ag,io) = f({ar,i1),...,{a,ir)) € R(0) :
dio () = f(di, (1), ... ,d; (o)) and dy(0) = true}.

Please note that () is indeed finite, because G has finite semantic domains. For any
marked tree 7, the automaton A tries to find a top-less decoration of und(t), in which
(0,v); = true for every node v that is marked in ¢. It does so by guessing decorations of
the nodes of the underlying tree. Moving up in the tree, it makes sure that all internal
rules of G are satisfied. The tree automaton can either succeed, in which case it has found
the unique decoration of und(¢) which satisfies this condition and the root rules, or fail, in
which case there is no such decoration. The decoration of a node v is encoded as a function
d, such that d(«) represents (o, v).

Lemma 2.7. L(A,)) = test(T).

Proof. Let t be a marked tree. The top-less decorations are correct: d € valp(g)(t) iff there
is a top-less decoration dec of und(t), with for every o € Ag, d(ar) = dec({c, root(t))), and
dec((d,u)) = true for every marked node u € V;. This can easily be seen by induction on
t, using Lemma 1.37.

Now, valp(g)(t) N F # 0 iff for every marked node u € V;, the unique decoration
decg,unaqy) of und(t) by G has decg una) ({0, u)) = 1, or, equivalently, (und(t),u) € L(G, 9)
for every marked node u € V;. O

So, we have proved that the test language for an AG recognizable language is indeed
regular.

Lemma 2.8. For any operator alphabet 3, and tree-node language T over 3,
T € AG-TN = test(7T) € REGT.

A Tree-Node Language is AG Recognizable if its Test Language
is Regular

We will now show that if we have a test language test(T"), that is recognizable, we can find
a node-recognizing attribute grammar that recognizes T'.

31



Let ¥ be an operator alphabet, and let 7" be a tree-node language over ¥. Let A =
(@, F) be a deterministic finite tree automaton over XU (X x B;) with L(A) = test(T"). We
construct an attribute grammar G4 = (X,Q, (S, I, W), R) over ¥ with designated attribute
J, such that L(G 4,0) =T.

The attribute grammar has inherited attribute 3, with semantic domain P((Q)) and
synthesized attributes o and ¢, with semantic domain ) and B respectively. Formally,
Q={Q,P(Q),B}, S={«a,0}, I = {3}, and W is defined as W (a) = Q, W(5) = P(Q),
and W(J) = B.

Intuitively, for a tree ¢ over Tk, a simulates the behavior of the tree automaton on ¢,
assuming that no node is marked. Attribute 3 of a node v holds those states ¢, for which
the tree automaton accepts the tree, assuming that it has reached v in state ¢ and that
the context of v contains no marked nodes. For every node v € V;, with label o, mark(, v)
is accepted by A if (o, 1) applied to the a-values of its children yields a successful value,
i.e., a value in 3. Attribute 0 of v is true if and only if this condition holds. The internal
semantic rules for every o € ¥, are

(a,0) = 0g({a, 1), (0, 2),...,{(a, k))
(B,i) ={q € Q| UQ(<a,1>,...,?,...,(a,k>) €(3,0)} for1 <i<k

(8,0) = ({0, Da{a, 1), (@,2), ..., (a, k) € (8,0))
We have one semantic root rule:
(3,0) = F.

The attribute grammar G 4 is weakly non-circular, because it is non-circular in the classical
sense [Knu68|. In fact, it is a two-pass AG [Boc76], with decomposition in phases A =

({o}, {B,0}).

We want to prove that G4 is correct, i.e., given a tree ¢, a node v is recognized by
(G 4,9) iff (t,v) € T. To this aim we have the following lemmata.
Lemma 2.9. Let t be a tree over ¥. For every node v of t,

(o, v) = valg(suby(v)).

Proof. We prove this by induction on the depth of suby(v).
Base: v is a leaf, so sub,(v) = o for some o € ;. Then

(a,v) = og [by definition of o]
= valg(0) [by definition of val]
= valg(sub(v))

Induction: Let sub,(v) = otity - - - t, where k = rk(o). By induction, («, y) = valg(suby(y))
for every i and every node y of ¢;. So in particular («, v - i) = valg(sub(v - 7)) = valg(t;).

32



Hence,

(a,v) = og({a,v-1),...,{(a,v-k)) [by definition of o]

valQ(atl Ce tk)
= valg(sub(v))

og(valg(ty),...,valg(ty)) [follows from the induction hypothesis]

[by definition of val]

ctxy (w)

SUbctx, (u-) (W)

Figure 2.1: Contexts and subtrees

The 3 attribute of a node v of ¢ holds exactly those states the subtree rooted in v may
yield, so that valg(t) € F, assuming the context of v holds no marked nodes. In other

words,

Lemma 2.10. Lett be a tree over X. For every node v of t,

(B8,v) = {g € Q| valg(ctx;(v))[§ = q] € F}

Proof. We prove this by induction on the depth of v.
Base: The depth is 0, so v = root(¢). Then,

valg(ctx(v))[E — ¢ € F <
<~
f=—
f=—

valg(€)[€ = q] € F [0 = oot (¢)

qgeF [by definition of val]
q € {8, root(t)) [because of the root rule]
q € (f,v)

Induction: v = w - i for some node w of ¢t and some i € [1, k|, where k = rk(w). For
better understanding, please note that

ctxg(w - 1) = ctxy(w)[§ — subegx, (w-i) (w)], and (2.1)
SUDcix, (w-i) (w) = nlaby(w) suby(w « 1) -+ - & - - suby(w - k),

)

33



(see Figure 2.1), and thus,

ValQ (Schtxt(w-i)(w))[g = q]

valg (nlaby (w) suby(w - 1) -+ - &+ - - suby(w - k))[€ — ¢]

)

= [by definition of val, and because the subtrees of w do not contain label ¢]

(nlab;(w))q(valg(suby(w - 1)),...,q, ..., valg(subs(w - k)))

)

= [by Lemma 2.9]

(nlaby(w))o({a,w-1),...,q,...,{a,w-k)). (2.3)

)

The proof follows.

valg(ctx;(w - 4))[§ — q] € F
«— [by Equation 2.1]
valg (ctx; (w)[€ = subcy, iy (W)])[E > ¢] € F
«— [by Proposition 1.18]
valg (ctzy(w))[€ = valg(subeg, w-i) (w))[€ — q]] € F
s [by Equation 2.3]

valg (ctx(w))[€ — (nlaby(w))g({a,w - 1),...,q,...,(,w-k))] € F

<= [by induction]

(nlaby(w))o({a,w - 1),...,q,...,{c,w-k)) € (B, w)

)

<= [by definition of f]

q € (ﬂ,wz>

34



The following lemma proves the correctness of the attribute grammar. It states that ¢
of a node v is true iff A succeeds on mark(t, v).

Lemma 2.11. Let t be a tree over 3, v a node of t, and k = rk(v). Then
(6,v) = true < valg(mark(t,v)) € F
Proof.
(0,v) = true
<= [by definition of J]
(nlab(v), 1)g({a,v - 1), ..., (a,v - k)) € (3,v)

<= [by Lemma 2.10]

valg (ctx;(v)) [€ = (nlaby (v), Lyo({a, v+ 1),... (o v k)] € F
<= [by Lemma 2.9]

valg (ctx,(v))[€ = (nlaby(v), 1)g(valg(suby (v - 1)), ..., valg(suby(v - k)))] € F
<= |by definition of val]
valg (ctxy(v))[€ = valg((nlaby (v), 1)(suby(v - 1) .. .suby(v - k)| € F

<= [by Proposition 1.18|

valg ( ctx,(v)[€ > (nlaby(v), 1) (suby(v - 1)...suby(v - k))]) € F

valg(mark(t,v)) € F
0

From this lemma it follows that (t,v) € L(G 4,0) iff mark(¢,v) € test(T), so L(G 4,0) =
T. So now we can conclude that if a tree-node language is AG recognizable, its test language
is indeed regular.

Lemma 2.12. For any operator alphabet 32, and tree-node language T over X,

test(T) € REGT = T € AG-TN.
And, combining this with Lemma 2.8, we get the following equivalence.
Proposition 2.13. For any operator alphabet 33, and tree-node language T over Y,

T € AG-TN <= test(T) € REGT.

35



2.4 MSO Definable and AG Recognizable Tree-Node
Languages are the Same

We know that for any operator alphabet > and tree-node language T over 3,
1. T € MSO-TN <= test(T') € MSOT, from Proposition 2.6, and
2. T € AG-TN <= test(T') € REGT, from Proposition 2.13.

Now, because MSOT = REGT (Proposition 1.45), we can conclude that Mso definable
tree-node languages are the same as AG recognizable tree-node languages.

Theorem 2.14.
AG-TN = MSO-TN

This has the practical consequence that for any boolean attribute § of a weakly non-
circular attribute grammar GG with finite semantic domains, we can assume that there is
an MSO formula ¢(x) with one free node variable, such that for any tree ¢ and node u,

decg+((d,u)) = true & (t,u) = ¢(x),

and vice-versa.
This result implies that we can use an MSO formula to test the value of any attribute
in an attribute grammar with finite semantic domains.

Lemma 2.15. Let G be a weakly non-circular attribute grammar with finite semantic
domains. Let vy be an attribute of G with W(v) = {as,...,a,}. For all i, there is an MSO

formula ¢y—q, (), with (t,u) = Gy=q, () iff deca ({7, u)) = a;.

Proof. For all i € [1,n], we can make a boolean attribute §;, such that for all u, (d;,u)
true iff (y,u) = a;. Hence, we can construct an MsSO formula ¢,—,, (), with (¢, u)

Py, () iff deca i ((v, 1)) = a;.

O

2.5 Complexity

In this section we address two points. First, suppose we have a fixed formula ¢(z1,. .., )
with £ > 0 free node variables. What is the complexity of checking whether or not
(t,ugy...,u) = é(z1,...,x1), for a given tree t and nodes uq, ..., u; € V;.

Second, for a fixed formula ¢(xq,...,2;) with k& > 1 free node variables, what is the
complexity of finding Ry(¢(z1,..., %)), given a tree ¢ (see Definition 1.43).

36



Basic Lemma

We generalize some of the notation and some of the results of the previous sections.
Definition 2.16. Let ¥ be an operator alphabet, and k > 1. The set By is equal to
B* \ {0}*. The operator alphabet XU (X x By,) is the operator alphabet with, for any o € X,

rksusxp,) (0) = tks (o), and for all (o,b1,...,br) € ¥ X By, tkeysyme)({0,b1,...,br)) =
rks (o). Note that label (0,0, ...,0) is excluded.

We can use this alphabet to attach k different marks to the labels of the nodes of a
tree, cf. Definition 2.3.

Definition 2.17. Let t be a tree over S, and let (uy,...,ux) € V¥, The marked tree
mark(t, uy, ..., ug) over ¥ U (X X By) is defined as follows.

mark(t, uy, ..., u) = (V;, Ey,nlab’; elab,),
where

nlab, (w) if w# u; for all i

(nlaby(w), (w =wuy),...,(w=ug)) otherwise.

nlab’ = \w € V,. {

Recall that for any u,v, (u = v) is equal to 1 (or true) if u is equal to v, and 0 (false)
otherwise. We say that a node has mark j if its label is (o, by,...,1,...,b;) for some o
j

and b; (i € [1,k]). A node can have more than one mark. A node without any mark has a
label o.

We now generalize the results from Section 2.2. The following lemma states that we
can move arbitrarily between free variables in the formula and marks in the tree.

Lemma 2.18. For any ¢(z1,...,1x) € MSOLk(X), and j € [1,k], there is an MSO for-
mula Y(xjq1, ..., x,) € MSOL,_; (X U (X x By)), such that

(tur, ..o u,) = o(z, ..o op) iff (mark(t, e, .o ug), i, - oo uk) = 0(241, ... Tk),

and vice versa.

Proof. We proceed to prove the lemma in two parts. First we show how to construct ¢
from ¢, and then we show how to construct ¢ from .

e From an Mso formula ¢(z1, ..., z;) we construct ¢ (z;41,..., ;) as follows:
V(Tjg1, .-y 2k) =Vay ... xj((marked; (z1) A - - - Amarked;(z;)) = ¢' (21, ..., 2%)),
where

marked;(z) = 3(0,b1,...,0;) € ¥ x Bj :labey, 1.5, (2),

3

37



and ¢'(xy,...,zy) is obtained from ¢(z1,...,x;) by replacing each occurrence of
labs(2) by (labs(2) V 3(by,...,bj) € Bj : labgp, . 5.1(2)), for all o and z.

Clearly,
(tury .. u,) = oz, ... o) iff (mark(t, we, . oo ug), i, ..o ug) E9(T40, ..., @)

e The other way around is similar. Let us assume x,...,z; are not variables of
Y(xjq1,. .., 7). We construct ¢(xq,...,z;) by replacing, for each node variable y,
1. all occurrences of lab,(y) by (lab,(y) AVi € [1,j] : y # z;), and
2. all occurrences of labi,, 5y (y) by (labs(y) AVi € [1,4]: (i =1 = y = ;).

It should be obvious that
(tywry .. oyuk) = oz, ... o) ff (mark(t, wi, .o ug), e, .o ug) EO(Ti40, ..., o).

O

Checking a Formula

We compute the complexity of checking a fixed formula on a given tree and nodes.

Theorem 2.19. Let ¥ be an operator alphabet, and let ¢(xq,...,1x) € MSOLE(X) be a
fized MSO formula with k > 0 free node variables. The complezity of checking whether or
not (t,uy,...,u) = é(x1,...,x1), for a given tree t and nodes uy, ..., ux € Vi is O(n).

Proof. Please note that the size of the input (the tree together with k£ nodes) is of the same
order as the size of the tree.

The tree t with the nodes uq,...,u; can be converted to a marked tree. This is a
relabelling, which can be done in O(n) time, where n is the size of the tree. By Lemma 2.18
(with j = k), the Mso formula ¢(xq,...,x;) with & free node variables can be converted
to a closed Mso formula ¢ over marked trees such that (¢, ui,...,ux) E ¢(xy,...,zx)
iff mark(¢,uq,...,ux) = . Since MSOT = REGT, there is a finite deterministic tree
automaton, that checks whether the marked tree satisfies ¢ in O(n) time, so the total time
involved in checking the formula is O(n). O

Finding all Node Sequences Satisfying a Formula
We determine the complexity of finding R;(é(x1, ..., 7)), given a formula ¢(xq, ..., xx).
Theorem 2.20. Let ¥ be an operator alphabet and let ¢(xy,...,x) € MSOLL(X) be a

fized formula with k > 1 free node variables. The complezity of finding Ry(¢(z1, ..., xx)),
given a tree t, is O(nF).

38



Proof. First we consider the problem for formulas with only one free node variable, i.e.,
k = 1. With the help of Theorem 2.14 we can transform ¢(z1) to a node-recognizing AG
(G,0), with L(¢(x1)) = L(G, 6), or, in other words, (t,u) = ¢(xy) iff (§,u)q, = true.
Since attribute evaluation takes linear time for a non-circular attribute grammar with
finite semantic domains [Eng84], it takes linear time to find all v such that (¢,v) = ¢(xy).

Suppose k > 1. Using Lemma 2.18 (with j = k — 1), ¢(z1,...,2,) can be transformed
into an Mso formula 1 (x) over ¥ U (X X Bj_;) with one free node variable, such that
(tyur, .. uk) = @(xy, ... o) iff (mark(t, uy, ... k1), ug) = ().

Now, for any wuy,...,ux 1 € Vi, we can find mark(¢,uy,...,ux 1) in O(n) time. We
can then find all uy, such that (mark(¢, uq, ..., uk—1),ux) = ¥(x) in O(n) time, by using
an attribute grammar, as was shown above. There are O(n*"!) possible combinations for
Uy, ..., Ug_1, 0 the time needed to find all uy, . .., ug such that (mark(¢, uy, ..., ux_1),ux) =

Y(x) is O(nk). [

39



Chapter 3

Tree-Node Relations

In this chapter we will consider graph-node and tree-node relations, i.e., binary relations
between nodes in a graph or tree. We consider two ways of defining such relations. The
first way is by Mso formulas with two free node variables. Two nodes are in the relation
defined by such a formula, if they satisfy it. The other way is by regular path languages:
regular languages consisting of directives on how to walk from one node to another through
the graph, while checking MSO properties of nodes. Two nodes are in the relation defined
by a path language if you can walk from the one node to the other following the directions
of the language. For graphs, Mso will turn out to be stronger at defining relations than
regular path languages. For trees, the strength will turn out to be the same.

In Section 3.6 we will go into the complexity of computing the relation defined by an
MSO formula, when one of the free variables of the formula depends on the others.

3.1 Definitions
Let ¥ and T" be alphabets. A graph-node relation over (3,T') is a subset of {(G,u,v) | G €
GR(X,T) and u,v € Vg}.

MSO-definable graph node relations

Let ¥ and T be alphabets. According to Definition 1.44, an mso formula ¢(z,y) €
MSOL, (X, T') with two free node variables defines the graph-node relation

Ler(d(7,y)) = {(G,v,w) | G € GR(Z, 1), v,w € Vg, and (G, v,w) [ é(z,y)}.
Definition 3.1. The set of all graph-node relations L', for which there are alphabets ¥, T

and a formula ¢(z,y) € MSOLy (X, T') with Lar(¢(x,y)) = L' is the set of MmsO-definable
graph-node relations, denoted MSO-NR.

40



Regular Graph-Node Relations

We can define graph-node relations with the help of path languages. They are akin to
‘regular 2-paths’ in [O0s89], ‘routing languages’ in [KS93|, and ‘regular tree embeddings’
in [Eng89].

Definition 3.2. Let ¥ and T be alphabets. A path language over (X,T') is a string lan-
guage over a set of directives, a finite subset of

DE,F = U {\L’ya T'y} U MSOLl(E, F)

yer

For a path language IT over ¥,T", D(II) is the smallest subset of Ds r such that IT C
D(IT)*. Tt is always finite.

A string from a path language defines a relation between nodes of a graph. The string
gives a prescription of how to move from one node to another: |, means “move along an
edge labelled ¥”, T, means “move against an edge labelled 4”7, and v¢(z) means “check if ¢
holds for the current node”. A pair of nodes (v, w) is in the relation defined by the string
if you can get from v to w following the prescription. It may seem a bit silly to use arrows
up and down instead of right and left, but the reason for that will become obvious when
we constrain ourselves to trees.

Formally, we can define this as follows. Let G € GR(X,T'). A string 7 over Dy
defines the relation Rg(7m) C Vi x Vi, which is defined by induction on the structure of 7,
as follows (where 7 and 7 are other strings over Dy r):

For a path language we define something similar. A pair of nodes is in the relation
defined by the language if it is in a relation defined by one of its constituents. So, for a
path language IT over (£, T"), we define R(I1) = U{Rg(7) | 7 € II}. Now, a path language
IT defines the graph-node relation

Ler(Il) = {(G,v,w)) | G € GR(E,T") and (v,w) € Rg(I)}.

Definition 3.3. A path language over (X,T) is regular if it is a reqular string language
over a finite subset of Dyr. If 11 is a regular path language, then Lgr(IT) is a regular
graph-node relation over (X,T"). The set of all reqular graph-node relations over any (3,T)
15 denoted RP-NR.

41



Ezample 3.4. Let ¥ = {0, p}, and T' = {~,}. In Figure 3.1 you find graph G € GR(X, T).
Consider regular expression ry =]%. It defines the relation

Ra([Ir1]]) = {(u1, u), (u2, ug), (us, uz), (ua, ua), (w1, ua), (w1, us), (ug, ur), (ug, ua)}.

Also, consider the expressions 7, = lab,(z) (lab, € MSOL, (%, I')), and r3 =] -lab, (=),
with the relations Rg(||re|]) = {(us4,uq)}, and Re(||r3|]) = {(u1,us), (ug, ug), (g, uq)},
respectively. O

Figure 3.1: Graph G

We can view regular path languages as automata walking through a graph. We will
use this view in Section 3.5 and Chapter 4. For an automaton A over a set of directives,
and a graph G, an element (u, q) of Vz X Q is a configuration of the automaton. It signifies
that A is at node u in state q. A start configuration is a configuration (u, q), and a final
configuration is a configuration (u,q) with g € F.

Definition 3.5. Let X, 1" be alphabets of node and edge labels, respectively, I1 a reqular
path language over (X,T), and A = (Q, D(I1), 4, qo, F) a finite state (string) automaton
with ||A|| = II. Given a graph G € GR(X,T), we define the following binary relations over
Ve x Q. For every d € D(IT), u,u’ € Vg and q,q¢' € Q,

(u,q) —d»A,G (u',q") iff (u,u’) € Rg(d) and (¢,d,q') € 6.

If we leave out the label on the relation, we mean that configuration (u',q") can be reached
from (u,q) through any single directive:

(u,q) > ag (sq) iff 3d € D) : (u,q) >aa (' q).

Last, for every m =dy - --d, € D(IN)*, u,u’ € Vg and q,q' € Q,

T . d dn
(U7Q) —AG (u’,q’) iff (U7Q) —I»A,G; T TPAG (Ulaq,)'

It follows from this definition that
(u, q) —W»A,G (u',q") iff (u,u’) € Rg(m) and (q,m,q") € 9,

42



and
(u,q) =g (u',q") iff 3m e D(I)* : (u,q) —W»A’G (u',q").

d d dn . .
A sequence (ug, qo) —;A,G (u1,q1) —iA,G o A (Un, q) with g, € F, is called a walk

of A on G (from ugy to u,). Please note that a walk always starts in a start configuration
and ends in a final configuration.
d
Let A be a deterministic automaton. In general, — 4 is not a function for any d. If

we confine ourselves to trees, however, < 4 1s a (partial) function, because no node has
two outgoing or two incoming edges with the same label. In graphs and trees alike, — 4
is in general not deterministic, because the symbols of the automaton are interpreted as
actions, so it is not always clear what transition to take from a given state.

Lemma 3.6. For every automaton A = (Q, D(I1), 4§, qo, F'), and graph G

(u,u') € R(||All) iff 3qy € F,m € D) = (u,q0) >a (0, y),
f 3qp € F 2 (u,q0) =g (W, qp)-

This follows immediately from the definitions.

Envision, if you wish, an automaton Ag over D(IT), derived from G, that has the nodes
of G as states, and a transition relation 6 with (u, ., v) € d¢ if u = v, (u,1,,v) € ¢ if
v 5 u, and (u,¢(z),u) € dg if (G,u) = ¢(z). All states of Ag are both start and final

states. Now, the ternary relation - —»4 - is the transition relation of the usual product
automaton of Ag and A.

3.2 Regular Graph-Node Relations are MSO-definable

First we will compare the strength of regular path languages and MsO formulas on graphs.
In this section, we show that for any regular path language there is an equivalent MSO
formula. In the next section, we will show that the opposite doe not hold.

We claim that RP-NR C MSO-NR. First we show how a regular path language can
be converted in an equivalent MSO formula, and then we prove the correctness of the
construction.

Construction

Let IT be a regular path language over (3, ") and r a regular expression for I, i.e., ||r|| = II.
We construct a formula ¢,(x,y) € MSOLy (X, T'), such that Lor(ér(x,y)) = Lar(||7]]). We
do so using induction on the structure of r. Let r1, r, be two regular expressions over Dy, p;

43



then

¢e(z,y) = (. =y)

oo(z,y) = false

¢y, (z,y) = edg, (v, y)

¢¢ (z,y) =ed 7(y,:v)

Gy (T, y) = P(2) A (2 =y)
Gryors (T, y) = 32(¢r, (7, 2) A Ory (2, 7))
Gri4rs(T,Y) = Or (2,9) V Oy (2, 1)

O (2, y) = ¢, (7,9)

Proof of Correctness

We will prove that for any regular expression r, Lor(||r||) = Lar(¢r(x,y)). That is,
for any regular expression r, graph G € GR(X,T') and v,w € Vg, (v,w) € Rg(||r|]) iff

(G,v,w) | ér(2,y).
First note that for all IT;, I, C D5, Re(I1; - I1) = Rg(I11); Rg(I1y), this is proven as
follows.
R(;(Hl - H2) = Rg({ﬂ'l * T | 1 € H1,7T2 € HQ})
= U{RG T '71'2) | m € H1,7T2 € Hg}
= U{Rg(ﬂ'l Rg(ﬂ'g) | T € H1,7T2 € ]._.[2}
= U{RG(WI | m € Hl}, U{RG 7T2 | Ty € HQ}
= Re(I1y); Ra (1)

This implies that Rg(TT1Y) = Rg(I1)* and Rg(IT*) = Rg(I)*. Recall also from Section 1.7,
that Ra(¢) = {(v,w) | (G,v,w) |= ¢(x,y)}.

Now, we give the proof based on the structure of r:

(v,w) € Rg(e) < (v,w) € idy,
— V=W
— (G,U,U)) ): (x :y)
= (G,v,w) [ ¢(z,y)
r=10

(v,w) € Rg(0) <= (v,w) € 0
<~ (G,v,w) [ false
— (vaaw) ): QS@(I‘ay)

44



and (G,v,w) E (r =y)
() A (z=y)
¢1/1(Z)(x’y)

r=,

(v,w) € Ra(l,) = v Bgw
— (G,v,w) | edg,(z,y)
— (G,v,w) ): ¢¢7(x’y)

r =1, This case is analogous to r =|,.

r =1, - 19 In the following formulas, we will also write the variable assignment as a func-
tion, to avoid ambiguity (see Section 1.7).

(v,w) € Ra(|lry - rall) = Ba(llril - lIrall) = Ra(llra]l); Ra(([r2l)) <=
there is a node u : (v,u) € Rg(||r1]|) and (u,w) € Rg(||r2||) <= [induction]
there is a node u : (G,v,u) = ¢, (z,y) and (G, u, w) = ¢, (z,y) <=
there is a node u : (G, [x — v,y — w, 2 — u]) E ¢, (2,2) A dpy(2,y) <
(G, [z = v,y = w]) =3z ¢, (2, 2) A,y (2,9) =
(G,v,w) [ &rpro (2, )
r=ry+7nr
(v,w) € Ra(|lre +72l]) = Ra(llri Ulirall) = Ra(llri]l) U Ra(llr|
(v,w) € Rg(||r1]]) or (v, w) € Ra(||r2]] [induction]

—
—
—

(G v, w) | by (2,9) V bry (2, y) =

)

)

(G, v, w) | ¢, (z,y) or (G, v, w) = b, (2,Y)
)

(Ga U, w) ): ¢7‘1+r2 (xa y)

r =r; Note that the induction hypothesis is equivalent to Rg(||r1]]) = Ra(¢r,)-

(v,w) € Ra(|lrill) = Ra(l[r[[) = Ra([lr1])* <= [induction]
(v,w) € Ra(dyr,)" <= [Lemma 1.47]
(v,w) € Ra(¢;,) <= [Definition of ¢,]
(v,w) € Rg(¢r+) <= [Definition of Ru(¢)]
(G0, w) = dry (2,)

45



Thus, we conclude that for any regular path language II, there exists an MSO formula
é(x,y), such that Lar(IT) = Lgr(é(z,y)), and this gives the following inclusion.

Proposition 3.7.
RP-NR C MSO-NR.

Example 3.8. Consider Example 3.4 with the graph in Figure 3.1. The MsoO formulas

corresponding to the languages of i =]%, 7, = lab,(z) and 73 =|? -lab,(z) are

Opi (2, y) = edg’ (2, y)
=VX((r e XA closededg, (x,) (X)) = yeX),
= pathfy(xa y)

Or, (2, y) = lab,(z) Nz =y,

and
¢r3(xa y) = 32(¢r1 (SU, Z) A ¢r2 (Z, y))
= Jz(path, (7, 2) Alab,(2) Az =y)
= path, (z,y) Alab,(y),
respectively. O

3.3 MSO Definable Graph-Node Relations are not Al-
ways Regular

In this section we show that there are MSO definable graph-node relations for which no
path language (regular or not) can be found. In MSO-NR we can define a relation that
holds between nodes v and v exactly when they are in different connected components of
the graph, i.e., there is no connection between them. Take, for example,

¢(x,y) = ~upath(z,y).

In RP-NR such a relation is clearly not feasible, since there is no way to walk from u to v.
Accordingly, MSO-NR Z RP-NR, and we can conclude the following proper inclusion.

Theorem 3.9.
RP-NR C MSO-NR.

Even for connected graphs there are graph-node relations that can be expressed by an
MsO formula, but not by a path language.
For any alphabets ¥, T', let CG(X,T") be the set of all connected graphs over (X,T).

46



Proposition 3.10. Let X, T be alphabets. There is an MSO formula ¢(x,y) € MSOL(X,T)
such that there is no path language 11 over (X,T), with Lgr(I1) | CG(X,T) = Lgr(d) |
CG(%,T).

Proof. We prove the proposition for the subclass of acyclic, connected graphs in which all
incident edges of a node have different labels, since this is a relatively difficult subclass.
One MSO formula that cannot be simulated by a path language is

oz, y) = (v # y),

with semantics Lar(¢(x,y)) | CG(E,T) ={(G,u,v) | G € CG(E,T),u,v € Vg, u # v}.

We will prove this is not possible, by introducing a set of graphs that have a circular
structure, and are all very much alike, apart from the number of nodes. The path language
will not be able to tell all of the graphs apart, since it can only use finitely many MsoO
formulas. Then, we find two indistinguishable graphs, such that any path that circles the
first graph exactly halfway, fully circles the other graph. This leads to a contradiction,
since any language that describes the relation u # v has to have a path circling the first
graph halfway, but cannot have a path that circles the second graph fully.

Consider graphs over (X,T') = ({¢}, {a,b}). We prove the proposition by contradiction.
Suppose there is a path language IT over (X,T), with

Ler(IT) | CG(E,T) = {(G,u,v) | G € CG(E,T),u,v € Vg, u # v}.
Only finitely many unary Mso formulas appear in T1, say (), ..., ¥y, (z). Every node
u of a graph G has a type, typeg(u) = (b1,...,bm) € B™, with b; & ((G,u) E ¥;(x)).
There are 2™ different types of nodes.
We now define the following set of graphs over (X,T'). For any even n,
G, = (V,,, E,,nlab,, elab,),
with

Vo=A{u; | 0<i<n-—1},
E, = {(uj,u;) | i even and j — i = Flmodn},

nlab,, = \u.c

a if 7 —i = 1modn,

See Figure 3.2 for an example.

Clearly, for a fixed graph G,, all u; € G, with even ¢ have the same type, and all
u; € G, with odd 7 have the same type. This is because of the automorphisms of
Gn: fi(u;) = Uiyimodn 1S an automorphism for even [. The type of G, is type(G,) =
(typeg, (uo), typeg, (u1)). There are 2*™ different types of graphs.

For every m € II, let nr(mw) = #,, (1) + #+,(7) — (#,,(7) + #+,(7)). This is the net
number of ‘counter-clockwise’ steps 7 takes in a graph of the above form.

The following hold.

47



Ug Uy Uy
a b
(@ (@
Uy us
b a
@O—"—~—(
U U1 U9

Figure 3.2: Gy

1. For any graph G, and 7 € I, if (ug,u;) € Rg, (7), then nr(7) modn = j.

2. For any two graphs G, and G, of the same type, and any = € II, if nr(7r) = i and
(0, Uimodn') € Ra ,(m), then also (u, %imodn) € Rg,(m). This can be proven by
induction on the length of 7, and basically depends on the fact that 7 cannot discern
‘in” which graph it is, judging by the information of the nodes, since they have the
same type and the same incident edges in both graphs.

We now consider the sequence of graphs G5, G4, Gg,.... Since this is an infinite se-
quence, there are graphs G,,, G,», with the same type, and n' = n - 2* for some k > 1.

Since ug # Upsj2 in Gy, there is a 7 € IT such that (ug, u,2) € Re , (), by assumption.
So, by (1), nr(m) modn' = n'/2. But now, since (n'/2+1-n')modn =0 for [ € N, (2)
implies (ug, up) € Rg, (7), a contradiction. O

Note that in the above proof, we do not demand that Il be a regular path language.
There is not any path language over a finite alphabet that defines the above relation.

[t remains an open problem whether (regular) path languages and MSO have the same
strength on rooted directed acyclic graphs (i.e., trees with shared subexpressions).

3.4 MSO Definable and Regular Tree-Node Relations

In this section we confine ourselves to trees. First we will redefine the concepts that were
defined for graphs in Section 3.1. Then we will prove that a node relation on trees defined
by an MsoO formula can be recognized by a regular path language.

48



3.4.1 Definitions

Let ¥ be a operator alphabet. A tree-node relation over X is a subset of {(¢,u,v) |t € Ty
and u,v € V;}. According to Definition 1.44, an MSO formula ¢(z,y) € MSOLy(X) defines
the tree-node relation

L(¢(z,y)) = {(t,v,w) | t € Ts, v,w € V,, and (t,v,w) E ¢(x,y)}.

A path language over (X, rks(X)) is also called a path language over ¥. A path language
IT over ¥ defines a tree-node relation

L(T) = {(t,v,w)) | t € Ty and (v, w) € Ry(I1)}.
As with graphs, this relation is called regular if I is a regular path language.

Definition 3.11. The set of MSO definable tree-node relations is denoted MSO-TNR. The
set of reqular tree-node relations is denoted RP-TNR.

We want to prove that MSO-TNR = RP-TNR. Clearly, RP-TNR C MSO-TNR follows from
Proposition 3.7. In the following subsection, we prove MSO-TNR C RP-TNR.

3.4.2 MSO Definable Tree-Node Relations are Regular

Let ¥ be an operator alphabet and let ¢(x,y) € MSOLy(X). We will prove that there
exists a path language IT over X with L(IT) = L(¢(x,y)). This path language has a special
form: the strings in the language all describe paths in which no edge ever occurs more
than once, that is, the shortest path is always taken. Compare this with [O0s89)].

First we construct a tree automaton A over ¥ U (X X By), that recognizes mark(¢, u, v)
exactly if (t,u,v) E ¢(z,y) (recall that By, = {(0,1),(1,0),(1,1)}). The path language
then simulates the tree automaton on the path from u to v, using Mso formulas (or rather
attributes of an attribute grammar) to get information on the behavior of the automaton
on the rest of the tree.

Construction of A is easy. Lemma 2.18 proves that from ¢(z,y) we can construct a
closed formula ) over YU (X X By), such that mark(¢, u,v) E ¢ iff (¢,u,v) = ¢(x,y). Then,
because the MSO definable and regular tree languages are the same (Proposition 1.45), there
is a deterministic tree automaton A = (Q), F') over XU(X x By), with valg(mark(t, u,v)) € F

it (t,u,0) = o(r, y).
The Attribute Grammar

In order to gather information about parts of the tree outside the shortest path, we con-
struct from A an attribute grammar G over ¥ with finite semantic domains. The AG has
synthesized attribute a;, with semantic domain (), and inherited attribute 3, with semantic

49



domain P(Q). This AG is like the one in Chapter 2, but it does not have the ¢ attribute.
The attribute grammar has the following rules for all £ € rks(X) and o € Xy

(a,0) =0g((a, 1),..., (v, k)),
(B,0) ={q€ Q| oo, 1),...,q,..., (v, k)) € (3,0)} for 1 <i <k,

)

and it has one root rule,

(3,0) = F.
For any ¢ € Ty, and v € V}, the meaning of the attributes is

(o, u) = valg(suby(u)), and (3.1)
(B,u) = {q € Q | valg(ctx;(u))[€ = ¢] € F},

as was proven in Lemma 2.9 and Lemma 2.10.

The Regular Path Language

In a regular path language we are allowed to use Mso formulas with one free node variable.
From Section 2.4 we recall that the value of a boolean attribute in an attribute grammar
can always be calculated by an MsO formula with one free node variable. This means that,
for convenience, we can check boolean attributes instead of MSO formulas. We do this by
describing the boolean attribute between square brackets, using attributes o and (3 of G.
Such a description is meant to denote the corresponding Mso formula. For example, when
it says [og((a,1),...,q,...,{a,k)) = ¢'] (where ¢,¢" € @ and i € rks(X)) in a regular
13

path string, we mean “check the MSO formula corresponding to the (synthesized) boolean
attribute att,,;”, which has the following rule, for all k£ € rks(X) and o € Xy:

(attg i, 0) = (0q((e, 1), .. e (k) = q).

The right hand side of the rule is assumed to be ‘false’ if ¢ > k.

For the other “assertions” in square brackets we can construct boolean attributes in a
similar manner. The right-hand sides of the rules for the attributes consist exactly of the
text between the square brackets. Again, a right hand side is assumed to be ‘false’ if one
of its components is undefined.

The language II that recognizes a pair of nodes (u, v) of a tree ¢ iff mark(¢, u,v) € L(A),
consists of four groups of strings; IT = II; UTT, UTI3UTI,. See Figure 3.3 for the four possible
cases.

1. For the case that u = v we have one string consisting of one MSO formula:

I = {[{o, 1, 1>Q(<aa 1),....{a, k) € (B,0)]}.

This formula checks if the automaton would recognize the tree if both marks were
on the current node, assuming there are no marks on any other nodes in the tree.

50



u v u v

Figure 3.3: The four different groups

2. The following set of strings accounts for the cases that u is a proper descendant of
v, or, more precisely, u = v - iy ----- in:

[l = { [<Ua 1v0>Q(<a7 1>7 ) <av k>) = qn]'
T oo, 1),. ..,%,:, oo (o, kY) = o]

T (ool oo (@) = il
Til . [<07 071>Q(<a 1> . 7‘21117--'7<a7 k>) € <Ba 0>] |
n € Ny, iy,... i, €rks(¥) and ¢1,...,q, € Q}.

A string in this group checks to see if the automaton accepts the tree with marks
placed on u and v, and nowhere else. The states encode a potential run of the
automaton, and the Mso formulas check if this run is correct.

3. This group of strings accounts for the case that u is a proper ancestor of v, more
precisely, v =w -7y ----- Jnt

Iy ={ [(0,1,0)0((c, 1),. ..,1;11,...,<a, ky) € (6,0)]- 1, -
[UQ((O{,1>,...,];22,---,<O{, k>) :pl]' \Lj2 :

[UQ(<a7 1>7 : "7];_1:1""7<O‘7 k>) :pmfl]: \ij :

[(O’,O, 1>Q(<av 1>v SREE) <a7 k>) = pm] |
m € N, j1,...,Jm € tks(2), and py,...,pm € Q}.

Each string in this group checks a potential run of the automaton, like in the last
group. The order in which the states are checked is top-down, rather than bottom-up,
but this is not relevant.

4. The last group of strings accounts for the case that neither u is an ancestor of v, nor
v of u. More precisely, there is a w, such that u = w-4;----- pand v =w-jy--- - Jms

51



and 7; # j;. Note that w is the least common ancestor of v and v.

I :{ [<01170>Q(<a11>7"'7<a7k>) :qn]'
T - loo({a, 1), .. s (o, k)) = Gn1)

in

1, - '[UQ(@,1>,...,%,...,<a,k>):ql]-
T o logUa, 1), . qu, .y, (g k) € (B,0)] 1y, -

i1 Ji
log({a, 1), ... y D2y (a, kY) =] L, -
J2

log({a, 1), ... s Pms- s (a, kY) = pm—1]- 4, -

Jm

[(O’,O, 1>Q(<av 1>v SRR <a7 k>) = pm] |
m,n € N—I—aila"'ainajl?"'ajm € rkS(E),il 7éj17 and qis---yqn,P15- -+, Pm € Q}

Strings in this last group have a form that combines that of the two groups before.
Again, the states are encoded in the formulas and the path language checks to see if
the run is correct, walking from u to v.

We now give a right-linear grammar for II to show that it is regular. The grammar has
a nonterminal S, and nonterminals U, and D, for every ¢ € (). The start symbol for the
grammar is S, and the productions are the following.

stop immediately: (u = v)
S = (o1, )o({a, 1), ... (e, k) € (5,0)]
start moving up:
S — [(0,1,0)0({e, 1), ..., {a,k)) =4¢q]- U, Vqge@
start moving down: (u is a proper ancestor of v)

S = [(0,1,0)0({e, 1),. .. ,}j), oo {ayk)) € (B,0)]-1;-D,  ¥p € Q and j € rks(X)

move another step up:

U, = 1i [oo((a,1), .. e (a,k)) = ¢']- Uy Vq,q' € Q and i € rks(X)

)

turn around: (u is not an ancestor of v or vice-versa)

U, — 1 -[JQ((a,1>,...,q,...,;@;,...,(a,k>) € (B,0)]- ; -D,

i

Vp,q € Q,i,j € tks(¥), with i # j

D2



move another step down:

Dy = [og({e, 1),...,0s...,{a, k) = p|]- | -Dy Vp,p' € Q,j € rks(X)
j

stop moving up: (v is a proper ancestor of u)

Uq _>TZ '[<0-7 071>Q(a17"'7Q7"'7ak) S <ﬁao>] vq € Q

)

stop moving down:
D, — [(0,0,1)o({cv, 1), ..., (a, k)) = p] Vp € Q

Proof of Correctness
Before we proceed with the proof, we present two lemmata. The first is a generalization of

Lemma 2.9.

Lemma 3.12. For any tree t over ¥ and nodes u,v,w of t, if u and v are not descendants
of w, then valg(Submark(t,u,.) (w)) = (a, w).

Proof. The assumption that u and v are not descendants of w is equivalent to the statement
SUbmark(t,uv) (W) = subg(w). So, since (o, w) = valg(sub,(w)) by Lemma 2.9, (o, w) =
valo (Submark(t,uw) (W))- O

The second lemma is a generalization of Lemma 2.10 and Lemma 2.11.

Lemma 3.13. For any tree t over ¥ and nodes u,v,w of t, if u and v are descendants of
w, then valg(mark(t,u,v)) € F < valg(submarkt,u) (w)) € (8, w).

Proof. The assumption that u and v are descendants of w, is equivalent to ctXmark(t,u,0) (w) =
ctx;(w). Therefore,

valg (mark(t, u,v)) € =
valg (ctxmarktw( )[{»—)submark(tuv)( w)]) € F < [Proposition 1.18]
valg (ctXmark(t,u,0) (W))[€ = valg(Submark(tue (w))] € F <=

<= [Lemma 2.10]

(
valg (ctx; (w ))[5 = ValQ(Smeark tuv)( w))] € F
ValQ(Su mark(t,u,v) ( )) <ﬂa >

O

To prove that II does what we want it to do, we have to prove that for any tree ¢t € Ty,
and u,v € Vj, (t,u,v) € L(II) iff (¢,u,v) € L(¢(x,y)). To that extent it suffices to prove
(t,u,v) € L(IT) iff mark(¢, u,v) € L(A), or equivalently,

(u,v) € Ry(IT) iff valg(mark(t,u,v)) € F.

53



We distinguish four cases, analogous to the cases used before: first: u = v, second: u is
a proper descendant of v, third: w is a proper ancestor of v, and fourth: a third node is
the least common ancestor of u and v. What the path language does is simulate the tree
automaton. For those parts of the tree on which it can assume no marks are placed, it can
use MSO formulas (or attributes) to calculate what value the tree automaton gives. For the
path between u and v, it keeps track of the state of the automaton. We check here that it
does that correctly.

1. Let u=v and 7 = [{0,1,1)o({a, 1), ..., (v, k)) € (5,0)]. Then,
valg(mark(t, u,v)) € F

<= [Lemma 3.13]

ValQ (Smeark(t,u,v) (u)) € <67 u>

(nlaby(w), 1, 1) g (Submark(tauw (1) + - SUbmark(ru) (1 - rk(u))) € (8,u)

<= [Lemma 3.12]

(nlaby(u), 1, D)g({a,u-1),..., (o, u-rk(u))) € (3,u)
<= [by definition of 7]

(u,u) € Ry(m)

(u,u) € Ry(IT)

We will clarify the last step. First, (u,u) € Ry(r) implies (u,u) € Ry(II), because
7 € II. Second, if (u,u) € Ry(IT), then (u,u) € Ri(m), because we can not use a string
n' € I\ IT;. This can easily be seen if we consider the other possibilities. Suppose
7' € Ty, then (u,v) € Ry(7") implies that u is a proper descendant of v. This is not
the case. It is not possible that 7' € T3, for a similar reason. Last, 7’ ¢ I14, because
(u,v) € Ry(Tl;) implies that the least common ancestor of v and v is not equal to u

or v.
2. u is a proper descendant of v. Suppose u = v - iy ----- In. Let ug = v, uy = w1 -4
and ¢ = valg (submark(t,u,e) (w)) for 1 <1 <n. Now let

T = [(0,1,0)({a, 1), ..., (a, k) = gy
Tin o oo, 1),. ..,czlg, oo (o kY) = quoq]

;rig : [UQ(<a7 1>7 . --,‘1227 S (CY, k>) = Q1]'

79

ti s (o, 0 Dol 1), g1 (s B) € (B, 0)):

54



e First, assume that valg(mark(¢,u,v)) € F. We prove all the assertions in , for
Unp, - - -, U7, Uy Tespectively, because that proves (u, v) € Ry(m) and thus (u,v) € Ry(IT),
since 7 is an element of II. The first assertion is clearly true for u, = u, since, by
Lemma 3.12,

(nlab(u), 1,0)g((a, u - 1), ..., (o, u - 1k(u))) = valg(submark(t,u,e) (¥)) = ¢n-

The second assertion up to the second last assertion are also true, since for all [ > 2,
nlab(ui1)o((a, w1 - 1),y qry ooy (o upy - tk(ug 1)) =
1

nlab(u;—1)o((a, wi—1 - 1), ..., valg (submark(t,u,v)(ul)), o {ayug o tk(uq))) =

)

ValQ (Submark(t,u,v) (Ulfl )) =dq;-1-

For the last assertion, valg(mark(t,u,v)) € F, combined with Lemma 3.13, implies
valg (submark(t,uw) (V) € (B,v), and thus

(nlab(v), 0, 1)o({a,v - 1),. .., (1111, . {ayv-tk(v))) € (B, v).

e Second, suppose (u,v) € R;(IT), so we can walk from u to v following the instruc-
tions in II. We will prove that the tree automaton succeeds on mark(t, u, v).

If (u,v) € Ry(IT), then there is a n’ € II, such that (u,v) € Ry(n"). Clearly, n' € Iy,
with ¢} = i,...,i, = i,, but possibly different ¢/,...,q,. What are the values of
Qs qn?

Since (nlab(u),1,0)q({a,u - 1), ..., (o, u - tk(u))) = valg(submark(u,e) (v)), the first
assertion of 7' implies ¢, = valg(Submark(t,u,v)(tn)) = ¢n. Furthermore, if ¢ = ¢,
then it follows from the assertions in 7’ that

g1 = nlab(ui_1)o({a, w1 - 1), ... gy -+, (o wiy - Tk (1))
i

= nlab(ui—1)o({a, w1 - 1), ... q, - oy (o u—y - k(1))

]
= ValQ(Smeark(t,u,v) (ul—l))
=dqi-1-
So, by induction, ¢; = valg(submark(t,uw) (w)) = ¢ for all [ € [1,n]. Hence, 7’ = 7.

Because the last assertion in 7 is true, it follows that

(nlab(v), 0, 1)o({a, v - 1),. .., valg(submark(tuw) (U1)), - - -, (o, v - Tk(v))) € (B, v),

(51
in other words,
valg (Submark(t,uw) (V) € (B,0).

%)



Because of Lemma 3.13, this implies that

valg (mark(t, u,v)) € F.

3. u is a proper ancestor of v. Suppose v = u-jy----- Jm- Let vg =u, vy =v;_1 -7, and
P = valg (Submark(t,uw) (1)), for 1 <1 < m. Now, let

T =[0,1,0)q({a, 1), ..., p1,..., (0, k) € (B,0)]- L, -

oo ({a, 1),. ..,};22, ol k) =mpi] Ly,

log({a, 1), ... s Pms- - (o, k)) = pm—1]- 44,

Jm

[(Gv 07 1>Q(<av 1>v S <a7 k>) = pm]a

e First, suppose that valg(mark(?, u,v)) € F. We will prove (u,v) € Ry(m). Since
valg(mark(t,u,v)) € F, it follows that valg(submarkuw) (1)) € (B, u), so the first
assertion of 7 is true. For the second to the second last assertion, note that for all
1<l<m-1

nlab(v)o({a, v - 1), ... praa, - - (o, v - tk(vy))) =

Ji+1
nlab(vl)Q(<Oé; Ul ° 1>7 st ,ValQ (Smeark(t,u,v) (Ul ) jl+1)), e <a, Ul . rk(vl)>) -
Ji+1
ValQ (Smeark(t,u,v) (UZ)) = D,

so these assertions are true as well. The last assertion is true, since

(nlab(v), 0, )o({a,v-1),..., (o, 1k(v))) = valg(submark(t,uw) (V))-

So, clearly, (u,v) € Ry(m), and since 7 € II it follows that (u,v) € R,(II).

e Second, we assume that (u,v) € R,(II) and we prove valg(mark(t,u,v)) € F. The
proof is very similar to that of the previous case; first we observe that there is a
n' € Il with (u,v) € Ry(n"). Now clearly n' € II3, with j| = ji,...,7), = jm, but
possibly different p,...,p),. From the last assertion it follows that p| = p;, and
by the other assertions, it follows with induction that p; = p; for all 1 <1 < m.
Therefore, 7" = . Now we can conclude from the first assertion that

(nlab(u),1,0)q (o, u- 1), . ., valg(sUbmark(tun) (v1)), - - -, (o, u - Tk(u))) € (B,u),

Ji

and thus that valg(Submark(tuw(®)) € (B,u), and finally, by Lemma 3.13, that
valg(mark(t, u,v)) € F.

56



4. For the fourth and last case, assume there is a node w, that is the least common proper
ancestor of v and v. More precisely, let v = w -4y - ---- In, and v = w - J1 -+ I,
with i # j1. Let ug = w, w; = w1 - 4 and ¢ = valg(submark(t,u,) (w)) for 1 <1 <n.
Let vo = w, vy = v;_1 - ji and p; = valg(submark(t,u,e) (1)) for 1 < l < m. Now, let

™= [<01170>Q(<a11>7"'7<a7 k)) = ¢l (i)
Tin ' [UQ(<O‘71>7"'7?:7"'7<av k>) ZQn—l]' (11)

: (i1)

Ty [UQ(<a,1>,...,?22, ask)) = aqr] (ii)

iy [UQ(<a,1>,...,(1111,...,]j3_11,...,(a,k))G (8,0)]- 4, - (iii)
[0’@((04,1>,...,];22,...,<a,k>) :pl]'\sz : (iV)

(iv)

[UQ(<O‘71>7"'7€Z%"'7<O‘7 k>) :pm—l]'J/jm ) (IV)
[(U,O,l)@((&,l),...,(&, k>) :pm] (V)

e First, we assume valg(mark(t, u,v)) € F, and we prove that (u,v) € Ry(m). The
assertions marked (i) or (ii) are true; the proof is analogous to that of case 2. The
assertions marked (iv) or (v) are also true; the proof is analogous to that of the case 3.
Only the assertion marked (iii) remains to be proven. Well, valg(mark(¢,u,v)) € F
implies valg (Submark(t,uw) (w)) € (B, w), and since

SUbmark(t,u,) (W) = nlab(w)q({a, w - 1), ...,qu, ..., 1, -, (@, w - tk(w)))

L1 J1

this assertion is also true. Now it follows that (u,v) € Ry(7), and, because 7w € TI,
(u,v) € Ry(IT).

e Second, we assume (u,v) € Ry(IT) and we prove valg(mark(t, u,v)) € F. If (u,v) €
Ry(IT), then there is a 7’ € II such that (u,v) € Ry(7’"). Now 7" € TI,, and from the
reasoning in cases 2 and 3, it is clear that the ¢; and p; are as given, for all ¢ and j.
This leads us to conclude that

nlab(w)o((a, w-1),...,q,- .. ,]]9_11, oo {a,w - tk(w))) € (B, w),

11

and so valg (submark(t,uw)(w)) € (B, w) and valg(mark(t, u,v)) € F.

Lemma 3.14. Let ¥ be an operator alphabet. For every ¢(x,y) € MSOLy(X) there is
a reqular path language 11 over X3, such that for every tree t € Tx and nodes u,v € Vi,
(u,v) € Ry(IT) iff (t,u,v) E ¢(x,y). Moreover, for allt € Tx, and u,v € V; with (t,u,v) =
oé(z,y), there is a unique string m € 1 such that (u,v) € Ry().

If A is a deterministic finite state string automaton recognizing I1, and (u,v) € Ry(||A]|),
d dn
then there is a unique walk (u, qo) —»,14,,5 ooy (v,qp) with gf € F.

S7



Proof. The first part of the lemma is proven above. The second part then easily follows

d
from Lemma 3.6, the fact that 7 = d, - - - d,, is unique, and the fact that — 4, is a (partial)
function for any d. 0

It follows that MSO-TNR is a subset of RP-TNR.

Lemma 3.15.
MSO-TNR C RP-TNR

3.4.3 MSO and Regular Tree-Node Relations are the Same

From Proposition 3.7 and the last lemma, we obtain the following equality.

Theorem 3.16.
MSO-TNR = RP-TNR.

This has the practical consequence that for any Mso formula ¢(z, y) with two free node
variables, there is a path language II, such that for any tree ¢t and nodes u and v of ¢,

(t,u,v) = o(x,y) & (u,v) € Ry(TD),

and vice-versa.

Remark 3.17. From here on, we can, and will, assume that all regular path languages are
of the (shortest-path) form presented in Subsection 3.4.2.

3.5 Comparison with Routing Languages

The path languages defined above are syntactically richer than the routing languages of
[KS93]. They are also semantically richer: there are tree-node relations that can be defined
by a path language, but not by a routing language.

Definition 3.18. A routing language over (X,T) is a string language over the following
constrained set of directives.

DI = U{ly 1y} U{root(z)} U {leaf(z)} U {lab,(z) | 0 € £},

y€eT

where root(x) and leaf(x) are the MSO formulas with one free node variable defined in
Section 1.7.

Routing languages are restricted path languages, so without further ado, we can speak
about the relation and tree-node language defined by a routing language.

58



Routing languages are used by Klarlund and Schwartzbach to define recursive data
structures. Recursive data strutures have an intrinsic tree structure (that can be defined
by, e.g., a tree automaton). Path languages are used to define extra pointers in the tree
structure, for instance to produce the data structure of circulary linked lists or root-linked
binary trees. If ¢ is an instance of a data structure (i.e., a tree), a tuple (u,v) in the
relation defined by the routing language signifies a pointer from node u to node v. Klarlund
and Schwartzbach show that many useful data structures can be defined using functional
routing languages (i.e., routing languages IT for which R,(IT) is functional for every t). They
also prove that the pointers defined by such routing languages can be computed efficiently.
We show here that there are structures that can be defined by path languages, but not by
routing languages. In Section 3.6 we will show that path languages can be evaluated just
as efficiently as routing languages.

Proposition 3.19. There is a (functional) reqular path language T1, such that there is no
reqular routing language TI'" with L(IT") = L(II).

Proof. We consider binary trees with red and black leaves, i.e., leaves with label ‘red’ and
leaves with label ‘black’, respectively. Let ¥ = ¥, U ¥,, with ¥ = {red,black}, and
¥, = {internal}. We define a path language IT that connects the leafs of a tree. If there is
exactly one red leaf, all leaves have a pointer to that leaf. If there is no red leaf, or if there
is more than one, all leaves are linked in left-to-right circular order.

To be able to construct the corresponding path language, we define two abbreviations:
ALL stands for the regular path expression |; + |2 + 171 + T2, and STEP abbreviates
15 (11 - Jo +root(z))- ;. Expression ALL allows to move in any direction, while STEP
describes the language that moves from one leaf to the next in left-to-right circular order.
We also define the Mso formula orl = 3!z : labeq(x), that is true iff there is exactly one
red leaf.

Now consider the path language

IT = ||((leaf(x) A orl) - ALL" - labyeq (7)) + ((leaf(z) A —orl) - STEP - leaf(z))]|.

If a tree ¢t has exactly one red leaf v, then (u,v) € Ry(II) iff u is a leaf. Otherwise,
(u,v) € Ry(II) iff u and v are both leaves, and v follows w in left-to-right circular order.
Note that R,(II) is a partial function for every ¢ € Tk.

This tree-node relation cannot be defined by a regular routing language. We prove so
by contradiction.

Suppose there is a regular routing language TI' C (D5, . x))*, With L(IT") = L(IT). TLet
A'=(Q, D(IT'), 4, qo, F') be a finite state (string) automaton with ||A’|| = IT". Now consider
the trees t and t' in Figure 3.4. Name the leaves in both trees u; through uggi in left-
to-right order. In ¢, all leaves are black. In t', leaves u; through uyq are black and leaf
Uzq+1 is red. In the following, let succ(k) = (k + 1) mod(#Q + 1), giving the successor of
a node number in left-to-right circular order.

Since t has no red leaves, for every k € [1,#Q + 1], there is an f; € F, such that
(uk,q0) =%+ (Usuce(k)s f&) (see Lemma 3.6). On the other hand, since #' has exactly one red

59



Figure 3.4: To the left: tree ¢, with only black leaves; to the right: tree ¢', with one red
leaf

leaf, for all k # #Q, there is no f € F': (ug,qo) =%y (Usuce(r), f). This implies that for
all k there is a ¢ € Q such that (ug, qo) =7, (upgi1, @) —5s (Usuce(r), fr). This is easily
proven: any walk by A in ¢ that does not go through ugg1 can also be done in ' (and
the walk starting in ugqo goes through uggii anyhow).
Concentrating solely on tree ¢ now, this means that for all k € [1, #Q + 1], there is a
qr € Q, with
(uky G0) s (U1 @) = (Usuce(k)s fr)-

But since there are #(@ + 1 possibilities for k, and only #() states, there have to be a k
and k' # k € [1,#Q + 1] such that ¢, = ¢, and

(uka QO) _»z,t (U#Q—I—la Qk) _»j;,t (usucc(k)a fk)
and
(uk’a QO) _»z,t (U#Q—I—la Qk’) _»*A,t (Usucc(k’)a fk’)
But since g, = ¢, this implies

(uk’7 QO) _»*A,t (U#Q—I—la Qk) _»z,t (usucc(k)a fk)

and thus (up, Usuce(r)) € Re(I1') with k # £', a contradiction. O

3.6 Complexity

Klarlund and Schwartzbach proved that for any regular routing language II and tree ¢,
Ry(IT) can be computed in linear time, if it is a partial function. Although path languages

60



are stronger than the routing languages, we can evaluate them in the same order of time.
This gives us a linear time method of computing R;(¢(z, y)) for given ¢(x, y), if that relation
is a partial function. Compare this to Theorem 2.20, where we stated that R;(¢(x,y)) can
be computed in O(n?) time in any case.

Lemma 3.20. Let X be an operator alphabet, ¢(x,y) € MSOLy(X), and t € Tx. If
R6(r.w) = {(w0) | (tow,v) | o(r.y)} is o partial function, then R(6(x,y)) can be

computed in time linear to the size of the tree.

Proof. The main part of this proof is adapted from [KS93].

Let ¢ be a tree over ¥. To be able to compute Ri(¢(z,y)) in linear time, we first
transform ¢(x,y) into an equivalent regular path language II, as was shown in Section
3.4. We can compute and store {u | (t,u) = ()} in linear time, for all ¢(z) that
occur in IT (see Theorem 2.20). For IT we construct a finite state (string) automaton
A=(Q,%,0,q, F), with ||A]| =TI

In the next algorithm, we build a table T'. The table is indexed with the configurations
of the automaton A, walking on ¢ (see Lemma 3.5). For every configuration (u,q) € V; X Q,
Tlu,q] = u' € Vi, where u' is a node with (u,q) =%, (v',qy), for some ¢y € F, if such a
node exists. If it does not, T[u, g] = NIL. Then, by the functionality of R;(¢), for any node
u, Tlu, qo] = v’ iff (u,u') € Ry(I1) = Ry(¢(x,y)), and hence

Ri(¢) = {(u,u') | T[u,qo] = v, u" # NIL}.

type
Entry =V, x Q;
var
T : array [Entry| of V};
(u,q), (v',¢') : Entry;
L : queue of Entry;
begin
Init(L);
for all (u,q) € V; x Q do
T|u,q] :== NIL
od ;
for all (u,q) € V; x F do
Tu,q] == u;
L < (u,q)
od ;
while - IsEmpty(L) do
(v, q) < L;
for all (u,q) € V; x Q with T'[u, ¢] = NIL and (u,q) -4, (v',¢') do
Tu,q] == Tu',q'];
L <= (u,q);

61



od
od
end

In this algorithm, Init initializes the queue, L < (u, q) puts (u, q) on the end of queue
L, (u,q) <= L removes the first element from the queue and assigns it to (u,q), and
IsEmpty(L) returns true if L is empty.

This algorithm runs in time linear to the size of the tree, as was proved in [KS93]. The
crux in this proof is the following. Consider the last for loop. Because the path language is
fixed, in the automaton A, any state ¢’ has a fixed number of incoming arrows. For every
arrow, the source ¢ and label d are fixed, and, since the automaton walks on a tree, there

is at most one u such that (u, q) —d»A,t (u',q'). This means that in the last for loop, only a
constant number of entries (u,q) have to be considered, given (u/,¢"). It should be noted
that every such u can be computed in constant time. For the directives 1; and |; this is
clear, and for the directives 1) it is true because {u | (t,u) | ¥ ()} has been precomputed
for all .

The correctness of the algorithm should be clear: in the second for loop, the table is filled
in correctly (with respect to the intended contents of the table) for all final configurations.
From there on, the automaton is followed back on its walk, and every possible previous
configuration is filled in correctly. Since every configuration that has a walk leading to a
final configuration is eventually reached, the algorithm is correct. O

More than Two Free Variables

Theorem 2.20 states we can find Ry(¢) in O(n*) time if ¢ has k free node variables. We
can speed up calculation of Ry(¢) for formulas with more than one free node variable, if
one of the variables depends on (some of) the others.

First we will formally define dependencies. We speak of a dependency in a relation
when the value of one of the elements of a tuple in the relation is fully determined by the
value of some of the others.

Definition 3.21. Let R be a k-ary relation, i € [1,k], and D C [1,k]. We say that i
(functionally) depends on D (in R) if for all ((ay,...,ax),(a},...,a})) € R with ag = a,
for all d € D, a; is equal to al.

Note that for any relation R, i depends on {i}, and if i depends on D, then for any
D' O D, i depends on D'.

Recall that Ry(¢(x1, ..., xx)) = {(w1, ... uk) | (tur, ... ug) = d(xq, ..., xx)} for a tree
teTs.

Theorem 3.22. Let ¥ be an operator alphabet, k > 2, ¢(xq,...,xx) € MSOLL(X) and
t € Tx. If there is an i € [1,k|, and a D C [1,k] with i ¢ D, such that i depends on D in
Ry(p(z1,...,71)), then Ry(d(x1,...,x1)) can be computed in O(n*1) time.

62



Proof. The case of k = 2 is proven in the last lemma.

For the other cases, without loss of generality, we can assume i = k and D = [1,k — 1].
What we will do is the following. For every possibility for the first £ — 2 arguments, we
build a tree with £ — 2 marks at the appropriate places, and we have a formula checking
the last two arguments, in which the last argument depends on the previous one.

We proceed like we did in Section 2.5, using Lemma 2.18. We transform ¢(xy, ..., zy)
into an MsoO formula ¢ (zg_1,xx) over X U (X X Bji_y) with two free node variables, such
that

(tyury .. uk) E o(xy, ... xp) <= (mark(t, ug, ..., up_2), g 1, ur) = O(zr_1, Tk).

For all tuples (w1, ..., ur_1,u) and (uq,...,ug_1,u}) in the relation Ry(p(xq, ..., zk)),
by the dependency, uy is equal to u). Hence, if

(mark(t, uy, ..., uk—2), Uk_1, ur) = Y(Tp_1, k),

and
(mark(t, Uty - -y Uk72); Uk—1, U;c) ): w(xkfla xk)a

then uy, = uj. So, Rumark(t,u,
depends on its first).

For any sequence of nodes uy,...,u;_ o € V;, we can find the corresponding marked
tree mark(¢, uq,...,ux o) in O(n) time. Because u; depends on uy 1, we can then find all
pairs (ug_1,uy) such that (mark(t,uy,...,ug_2), uk_1,ur) = Y(rg_1,2%) in O(n) time, as
shown in Lemma 3.20. There are O(n*~2) possible combinations for wuy,...,u;_s, so the
time needed to find all uy, ..., ug such that (mark(¢, uy, ..., ur_o), ur_1,ur) = ¥(rp_1, ug)
is O(n*=1). O

ur_»)(U(Tp—1,21)) is a partial function (its second argument

.....

Dependency is Decidable

For the above theorem to be of any use, we have to be able to find out whether a dependency
exists. Given a formula ¢(z,y) € MSOLy(X), it is decidable whether R;(¢) is a partial
function for all ¢ € Tx.. Consider the closed formula

funcy, =Vz(3ly : ¢(z,y) V -3y : ¢(z,y)).

Now R;(¢) is a partial function for all ¢ € T%; iff funcy is a tautology. This is decidable by
Proposition 1.46.

In general, given a formula ¢(xq,...,zr) € MSOL,(X), for any i and D it is decidable
whether for all ¢, i functionally depends on D in R;(¢). Here we have the formula

funcy =V, ...,z Vo, ... ,x%((d)(xl, cexp) ANP(x, . x) AV € D(xg = 2l)) —

and i depends on D in R;(¢) for all ¢ € T, iff func, is a tautology.

63



Chapter 4

Tree Transducers

In this chapter we consider functions from trees over one alphabet to trees over another:
tree transductions. More precisely, we look at tree transducers, i.e., specific methods of
defining tree transductions. We consider both tree MSO tree transducers and attributed
tree transducers, a form of attribute grammars. We show how attributed tree transducers
can be modified in such a way that they define the same class of transductions as MSO tree

transducers do.
In the last section we will go into the complexity of computing an MSO definable tree

transduction.

4.1 MSO Transducers

Mso graph transducers define their output graph in terms of MSO formulas on the input
graph. See for example [Eng91, Cou92, Cou94], for a somewhat more general approach.
In the next two definitions we define syntax and semantics of MSO graph transducers.

Definition 4.1. An Mso graph transducer from GR(21,Ty) to GR(2,, ) is a quadruple
T=(C¢7,X),
where
1. C s a finite set, the copy set,
2. ¢ is a closed MSO formula over (31,T1), the domain formula,

3. U =A{g,.c(T) }ores,.ccos where the 1)y, (x) € MSOLy (X1, T'y) are the node formulas,
and

4o X = X' (T, Y) broeroevcc, where the X, e (r,y) € MSOLy(24,1'y) are the edge
formulas.

The copy number of T" is #C'.

64



Definition 4.2. An Mso graph transducer T = (C, ¢, ¥, X) from GR(X1,T1) to GR(X2,T'2)
defines a partial function T, : GR(X1,T) = GR(X2, '), with T, (Gh) = G iff

1. Gy E ¢,
2. Vo, ={(v,¢) |v e Vg,,c€ C and Aoy € 3 : (G1,0) = Ygyc(T)},

3. EGz = {((ch)v (vla CI)) | (ch)v (vla CI) € VGza and
3'72 S FZ : (Gl,U,U,) ): X’YQ,C,C’(xay)}:

4. nlabg, = {((v,¢),09) | (v,¢) € Vg, and (G1,v) = py.c()}, and
5. elabg, = {(((v,c), (v’,c’)),w) | ((v,¢), (v, ) € Eg, and (G1,v,v") = XW,C,CI(:J:,y)}.
Note that dom(7g) = {G1 € GR(E,I'1) | G = ¢}

Remark 4.3. For the sake of convenience, we can assume without loss of generality that for
an MSO graph transducer 7" from GR(3;,T) to GR(2,,Ts), and for all G; € GR(X,T),
the following hold.

1. For fixed ¢, the ¢,, .(z) are mutually exclusive, i.e., for any v € Vi, , there is not more
than one oy € ¥y such that (Gy,v) = 9,,.(r) (which implies that we can replace
Jloy by Jos in case 2 of the last definition).

2. For fixed ¢,c, the x,, (2, y) are mutually exclusive, i.e., for any v,v" € Vi, there
is not more than one v, € I'y, such that (G, v,v") = Xy.c (7, y) (Which implies that
we can replace 3!y, by 37, in case 3 of the last definition).

3. An edge formula x., .~ (z,y) only holds for nodes v,v" € Vg, if (u,c), (v,c) are in
the output graph. In other words, if 74 (G1) = G, then Vy, € T'y, ¢, € C,v,0" €
Ve, : ((G1,v,0") E Xoysee (x,y) implies (v, ¢), (v, ) € Vg,).

4. The edge and node formulas are only true if the domain formula is satisfied. That
means that for all o9, ¢, v: if (G1,v) = 9,,.(), then G; = ¢, and likewise, for all

Yo, €, ¢ v, 0" i (G, v,0") E X (7,Y), then Gy = ¢.

These conditions are all easily achieved. For example, the third condition is achieved
by changing every formula X, .o (z,y) into X, . «(2,y) = 302 1 Yoy c(2) A Xjeo(T,9) A
Aloy = 1y, .c(y). The other conditions are achieved in a likewise simple manner. The given
requirements allow us to check fewer conditions in the remainder of the chapter.

Definition 4.4. Let X and A be operator alphabets. An MSO tree transducer from ¥ to
A is an MSO graph transducer T from (X,rks(X)) to (A,rks(A)) for which Ty (t) € Ta for
all t € Ty, Nndom(7,,). It defines the partial function T : Ts, = Ta, where T = Ty [ Tk..
The set of all MSO definable tree transductions is denoted MSOTT.

65



Example /.5. We give an MSO tree transducer from ¥ to A, where ¥ = ¥y U X5, with
Eg = {#}, and EQ = {O’}, and A = Ag UAl UAQ, with Ag = 20, AQ = 22, and Al = {*}
The transducer transforms a tree by inserting a * on each of its edges. See Figure 4.1 for
an example. The transducer is

1 2 }/D E\l

# #
2
1 2 g
/ 1
# # # #
Figure 4.1: Example of a tree and its transduction

T - (07 ¢7 w) X)?
with

e The copy set C'is {0,1}. A node (v,0) of T(¢) is a direct copy of a node v of ¢ (with
the same label), and a node (v, 1) has label %, and has node (v,0) as its child. Two
copies are made of every node except the root.

e The domain formula ¢ = true, there are no input restrictions.

e The node formulas are as follows.

VYso(z) = labs(x) for all § € X,
buola) = false,
Ysi(x) = false, for all 6 € ¥, and
Ya1(z) = —root(x).
e And the edge formulas are
Xjo0(z,y) = false for all j € {1,2},
xja(z,y) = false for all j € {1,2},
Xjo1(v,y) =edg;(v,y) forallje{1,2},
X10(T,y) =2 =y, and
X210(z,y) = false

We give one more example, adapted from [FV95].

66



Example /.6. Let T be an MSO tree transducer from ¥ to A. The operator alphabet X
is {0, *,#}, with rkx(0) = 2, and rks(#) = rkg(x) = 0. The operator alphabet A is
{1,2,%,#}, with rka(1) = rka(2) = 1, and rka(*) = rka(#) = 0. If the input tree
t contains exactly one leaf labelled x, the transducer transforms it into a tree over A,
which codes the path leading from the root of ¢ to the leaf labelled % in the obvious
way. Otherwise, the output is #. For example, T (o(o(#, 0(#, %)), #)) = 1(2(2(x))), and
T(o(*,0(#,%))) = #.

— ({C}, ¢a {¢1,ca ¢2,07 ¢*,ca "l}#,c}a {Xl,c,c})a

where

«(y) ATy (edgl(x, y) A Jz(path(y, z) A lab*(z))),
«(y) ATy (edg2 (x,y) A 3z(path(y, 2) A lab*(z))),
) Alab,(x),

(y) A root(x),
Vedgy(z,y).

@

(o9

o

—

—

‘.H ..
<

N

For the last formula, please note that an edge in the output tree is only drawn if both nodes
it is incident to exist, so this need not be checked explicitly. However, this rule violates
the third condition of Remark 4.3. Without altering the transduction, we can comply with
the third condition by changing the edge formula into

Xiee(Z,y) =30 € Ajc € C:hs0(x) A (edg (7, y) Vedgy(z,y)) AT € A, c€ C: ye(y).
]

4.2 Attributed Tree Transducers

An attributed tree transducer defines a function from trees over one alphabet to trees over
another, like MSO tree transducers do. They are based on attribute grammars, with some
extra constraints, see [Fiil81].

We will here develop a kind of attributed tree transducers that is equivalent to MSO tree
transducers. The first type we consider is that of plain attributed tree transducers, based
on unconditional attribute grammars with trees over A as the only semantic domain. The
semantic rules are limited to involve substitution only.

Definition 4.7. Let ¥, A be operator alphabets. A plain attributed tree transducer (att,
for short) from ¥ to A is an unconditional, (weakly) non-circular attribute grammar
(3,9, (S, I,W), R, tmean) with the following additional properties.

67



e O ={Tx}.

e Fvery semantic rule is of the form
(v, 10) = f({a1,i1), .-y (Qgyix)),
where for all ty,...,t, € Th,
f(ty, . ote) =76 =ty &6 — tr],
for some linear, non-deleting r' € Ta({&1, .-, &k })-

The set of all transductions that can be defined by a plain attributed tree transducer is
denoted ATT.

From here on, in a semantic rule, we will abbreviate f({c,1),..., {ag, ix)) by r, where
r=r'l& — (ai,i1),...,& — (o, ik)]. Note that, since the («@;,i;) are mutually distinct
(see Definition 1.27), r is a linear term in Tx(A x rks(X)).

We require non-deleting terms, because that implies that weak non-circularity coincides
with the classical concept of circularity (and hence is decidable). Linearity of the terms
used in the rules is a convenient technical detail. It can always be achieved by duplicating
attributes, although this will not preserve the wsUR (this will become important later on).

We give an example of a rule that is not linear, and we then transform it to two linear
rules. If the output alphabet is A, with § € Ay, a typical rule would be

<a7 0> = f(<aa 1>)a with f(t) = 5(5) 5)[5 = tl]'

This rule would be abbreviated (a,0) = 0({a, 1), (o, 1)) (note that the abbreviation of a
rule is a linear term over Tx(A x rks(X)) iff the term used in the rule is linear). We can
make it linear by adding an attribute o', with rule

(/,0) = f'({«, 1)), where f'(t) = &[> t], for all ¢,
and changing the rule for a to
<av 0> = f”(<alv 0>v <av 1>)v with f”(tlth) = 6(617 62)[61 — tl) 62 — tQ]-

Note that the WSUR is not preserved ((«, 1) is used twice).

Remark 4.8. By Definition 1.34, an att G induces a (total) function G from T% to Ta:
G(t) = decg +({Qumean, root(t))).

We are looking for a sort of attributed tree transducer that is equivalent to MSO tree

transducers. Plain attributed tree transducers will not do, not even for transductions that
are total functions, although this is not a trivial observation. Example 4.6 on page 67

68



is from [FV95]', where it is proven that it is not a transduction computable by a plain
attributed tree transducer.

To overcome this problem, we generalize plain attributed tree transducers to attributed
tree transducers with flags. Flags are attributes with a finite semantic domain. An att
with flags is a 2-phase attribute grammar: one can always evaluate the flags first, and the
tree attributes second. The operations on tree attributes are also limited: only substitution
can be used, and flags can be tested.

Definition 4.9. Let ¥ and A be operator alphabets. An attributed tree transducer with
flags (fatt) from ¥ to A is an attribute grammar over ¥ with the following constraints.

e Fach set in ) is either finite or equal to Ta. Attributes with semantic domain Ta are
called tree attributes. The set of all these tree attributes is denoted B (boom, Baum
= tree). An attribute with finite semantic domain is called o flag; the set of all flags
1s denoted F.

o The attribute qupean 1S o tree attribute.
e Fuvery semantic rule has one of the following forms:

— it s either a flag rule,

<ﬂ0v Z.0> = f(<ﬂ17 i1>7 ) <ﬂk7 Zk>)a
with fl; € F, and f: W(fl;) x --- x W(fly) = W(flp),

— or a tree rule,

f1(<6117i11>7 AR <ﬁlk17i1k1>) Zf <ﬂ70> = €1
(B,1) = §: :
fN(<ﬁN177;N1>7"'7<ﬁNkN77;NkN>) if<ﬂv0>:6N

where 3, 6;; € B, l € F, and W(fl) = {e1,...,en}, and as in Definition 4.7,
forall j and all ty, ... ty,, fi(tr, ... ty) = 15[ =ty &y = ], for some
linear, non-deleting r; € TA({&1,---,&; }). We will abbreviate the functions in
the way we did in Definition 4.7.

e The semantic conditions pertain only to the flags, i.e., they are of the form

F((fyydq), .oy (i, i),

with fly, ..., fly flags and f a function from the appropriate semantic domains to B.

'The example is not exactly the one given in [FV95], but if there is an att that calculates this trans-
duction, it can easily be rewritten in their notation. Removing all rules with righthand side # then gives
an att that would calculate their transduction.

69



e The attribute grammar is weakly non-circular with respect to (F, B) (see Definition

1.40).

The set of all transductions definable by an attributed tree transducer with flags is denoted
FATT.

The att rules of the form (3, 7) = r, that were introduced in Definition 4.7 for plain atts,
are easily mimicked by fatts. Intuitively, this is done by adding a flag fl, with a singleton
semantic domain, say {true}. Now, the rule can be written

(B,i) = {r if (fl,0) = true

The simple technical details are omitted. Thus, we will allow plain att rules in atts with
flags.

On one hand, plain atts are weaker then MSO tree transducers, as was just discussed.
On the other hand, plain atts and atts with flags are stronger than MSO tree transducers,
since they can produce an output with size exponential in the size of the input, whereas
an MSO tree transducer can enlarge the input by a constant factor only (the copy number).
For this reason we restrict the fatts by adding the weak single use requirement (Definition
1.35), for the second phase.

Definition 4.10. Let X, T be operator alphabets. A plain WSUR attributed tree transducer
(satt) is an WSUR plain att. An WSUR attributed tree transducer with flags (sfatt) is an
fatt that is phase-2 WSUR with respect to (F, B). The sets of all transductions definable by
satts and sfatts are denoted SATT and SFATT respectively.

Next, we give an example of a WSUR attributed tree transducer with flags.

Example /.11. The transduction in Example 4.6 can be computed by the WSUR att with
flags (2,9, (S, I,W), R, C, (), defined as follows.

The semantic domains are 2 = {Ta, {0, 1, many}}. We have two synthesized attributes,
fl and 8, with W(fl) = {0,1, many} and W(5) = Ta. Thus, FF = {fl}, and B = {3}.
Intuitively, (fl, u) is the number of occurrences of * in sub;(u), where ‘many’ means ‘more
than one’.

In R(o) we have the rules

1({(5,1)) if(A,1) =1 and (fl, 2)
(8,0) =<2({(3,2)) if (l,1) =0 and (f,2)
# otherwise,

0,
1

Y

and
(f,0) = ({1, 1) +(fL,2),

70



where addition is to be interpreted in the obvious way (1 + 1 = many, and many plus
anything equals many). The rules in R(#) are (3,0) = # and (fl,0) = 0. The rules in
R(x) are (,0) = % and (fl,0) = 1.

Note that the tree rules in R(o) does not follow the appropriate format (it may only
test on one flag). We will use this looser form throughout the remainder of the chapter,
since the right format can easily be achieved by adding an extra flag.

We will illustrate this in this example. The proper format is achieved by adding a
synthesized flag fI', with semantic domain W (') = {1,2,3}, and the following rule in
R(0):

1 if (fl,1) =1 and (f,2) =0,
(f",0) =<2 if (A,1) =0 and (f1,2) = 1

3 otherwise.

Apart from that, the only tree rule in R(o) is changed into
1((8,1)) if (A',0) =1,

<ﬂa 0> = 2(<ﬂa 2>) if <ﬂ,50> =2,
" if (7, 0) = 3.

O

4.3 For every WSUR attributed tree transducer there
is an MSO transducer

We show here that every attributed tree transduction defined by an sfatt is an MSO tree
transduction.

4.3.1 Some Assumptions

Without loss of generality, we will assume the following for an sfatt.
e For every tree rule
™ if <ﬂ, 0> = €1
(B,i) = :
N if <ﬂ, 0> = €N

and all j € [1, N], not more than one node of r; is labelled with a label from A.

We can obtain this form by introducing some new tree attributes. We introduce
an attribute for every subexpression of r;, except for the subexpressions that are
attributes. As a technical convenience, we view the expressions as trees and assume
all trees in all rules of the attribute grammar to be mutually disjoint. For every

71



j € [1, N], and for every node v of r; which has a label § € A, we add a synthesized
tree attribute r;,. Let k = rk(d). This attribute has the following rule at every
o€ X

<Tj,’u; 0> = 5(wv.1, Cay wv.k),

where, for any node u of r;, w,, is either the attribute giving the subexpression rooted
at u, or the attribute that is the label of u:

(rju,0)  if nlab, (u) € A,
Wy, =
nlab, (u) otherwise (nlab,, (u) is an attribute).

Then, in the original rule, r; is replaced by (7 root(r;), 0), if it is not an attribute, and
it stays the same, otherwise.
This construction preserves the WSUR, because an attribute (7 ,.,,u) is only used
once, to define (r;,, u).

e The semantic conditions are of the form

(fl, 0) = true

for some fl € F with W (fl) = B.

This is easily achieved by adding an extra flag for every existing semantic condition,
which is true iff the corresponding condition is true. The original condition can then
be replaced by a test on this flag.

Copy Rules

Tree rules pose a special problem when one of the cases in the rule merely copies the value
of another attribute. A tree rule

IS if <ﬂ, 0> =€

N if <ﬂ, 0> = EN

is a copy rule if there is a j, such that r; € B x [0,rks(X)] (the rule merely copies a value
when (fl, 0) = ¢;).

4.3.2 Plain Attributed Tree Transducers

For the sake of clarity we will first prove that plain (i.e., flag-free) WSUR attributed tree
transductions are always MSO transductions. We assume that the transducer has no copy
rules, we will find a solution for copy rules in Subsection 4.3.4.

The output tree of such an attributed tree transduction is very similar to the depen-
dency graph of the input tree. More precisely, it consists of a part of the dependency graph

72



with all edges reversed, and labels added. This part is the subgraph of the dependency
graph induced by all nodes from which there is a path to (mean, root(t)). Every node label
is the (single!) label used in the corresponding rule, and edge labels are added appropri-
ately. The single use requirement (and the non-circularity of the AG) makes sure that this
part of the dependency graph is indeed a tree.

Example /.12. We give a simple example of a plain WSUR attributed tree transducer: 7" =
(3,9,(S,I,W),R,C,3). Given a tree t, it reproduces the monadic tree that constitutes
the path from the root of ¢ to its leftmost leaf. The input alphabet is the same as in
Example 4.6: ¥y = {0}, and ¥y = {x,#}. The output alphabet is A = A; U A, with
Ay = {0}, and Ay = {x,#}. The only semantic domain is Tx, there is only one synthesized
attribute [, which is the meaning attribute, and there are no inherited attributes. The
rules are simple: the single rule in R(o) is (3,0) = o(8,1), R(x) holds the single rule
(3,0) = % and R(#) holds the single rule (3,0) = #.

P
Oy (amGan ¢
#ﬂl#ﬂ *ﬂi#ﬂ |

Figure 4.2: Dependency graph and output

In Figure 4.2, for the tree co##0 * #, the dependency graph is given to the left, and
the output tree oo# to the right (ignore the dotted lines). O

Let G = (X,{Ta},(S,I,W), R, tmean) be a plain WSUR attributed tree transducer
without copy rules, from ¥ to A. The corresponding MSO transducer is

T = (B, ¢, {ts58}sen,8eB, {Xj,8,8 }jcrks(A),8,8'€B)
where

e The copy set is B, the set of (tree) attributes of G. Thanks to the single use restric-
tion, not more than #B copies of any node can be made by G.

e We have no semantic conditions, so any tree is allowed and ¢ = true.

e The edge formulas check for a dependency. An edge formula x; g4 (x,y) checks the
semantic rules to see if there is a semantic instruction that defines (3, z) in terms of

73



(0", y). For all j € rks(A), 3,3 € B, the edge formulas are

Xj:ﬁaﬂ,(l‘7y) = 37/7 Z.I E [07 rk(E)L 30— E Ea HZ
(r=2-iNy=2zi'"Nlabs(2) Ao € A:(B,7) =6(---,(B,7), ) € R(0)) V

J

(root(x) Az =yATFd€ A:{3,0)=0(---,(F,0), ) € Rroot)

J

The node formulas determine the right label, and check that the attribute really does
contribute to the transduction. For all § € A, § € B, they are

Vs.5(x) = right-labs () A connected-to-a-meang(x),

where right-labs 3(x) checks if there is a semantic instruction that assigns J(---) to

(8, z):
right-lab; s(z) = 3i € [0,rk(X2)], Jo € X, Fz(x = z-iAlab, (2)A(0, i)
V (root(x) A {3,0) =§

o(---) € R(0))
() € Rroot)a

and connected-to-a-meang(z) checks if the meaning attribute of the root depends on
attribute [ of z, as follows (where B = {f1,...,0.}):

connected-to-a-meang(z) = 3Xg, ... Xp, (Vl € [1,L],Yy € Xg, ((y =2ANB,=0)V

(30, 3y € X5, 3t X580 (1:9)) A (Y (r00t(z) = 7 € Xa0n)))-

To understand the latter formula, note that in an acyclic graph, path(z, z) is equiv-
alent to

acpath(z, z) = EIX(Vy eX(y=zVvI € X:edg(y,y)) Az € X).

If we translate this formula from the output tree of the transduction to the input
tree, using the usual method of [Cou91], we obtain the formula

conng g(z,z) = 3Xpg, ... Xp, (Vl €[l,L],Vy € Xgl((y =zANB=0)V
(3,3 € X5, 35 2 Xjp (1:9))) Aw € Xa)

We now obtain connected-to-a-meang(z) by filling in (uean, root(t)) as starting
point, i.e.,

(t,v) = connected-to-a-meang(z) <= (t,root(t),v) = conn,,, .. s(z, 2).

74



Proof of Correctness

We will show that the above way to construct an MSO transducer from a WSUR plain
attributed tree transducer without copy rules is indeed correct. Please keep in mind that
tree rules have exactly one operator.

We first define the semantic graph of an att G on a tree t. The semantic graph of a
tree t is the same as the dependency graph WDg(t) of ¢, except that it has all the edges
reversed, and is labelled. The nodes are labelled with the single operator 6 € A used in
the semantic instruction associated with the node, and the edges are labelled according to
the order of the attributes in the instruction. Also, it is close to the transduction of ¢: as
will be proven below, the transduction of ¢ is the subtree of the semantic graph rooted in

{mean, TOO(%)).

Definition 4.13. The semantic graph Sg(t) of a plain WSUR attributed tree transducer
G from 3 to A on a tree t € Ty, is a forest over A (see Definition 1.22).

Sa(t) = (V, E,nlab, elab),

where
V= A),
E={((o,u),(o/,u)) [ 36 € At (o,u) = (-, (o), 0),-+) € R(t)}
nlab = {((a,u),0) | (a,u) =6(---) € R(t)}, and
elab = {(((0,u), (o, /), 4) | 30 € A (a,u) =6(-++ , (o, ), -+ +) € R(1) }.

J

Lemma 4.14. For every plain WSUR. attributed tree transducer G without copy rules there
18 an MSO tree transducer T with T = G.

Proof. Since the attribute grammar is non-circular and WSUR, the semantic graph is acyclic
and every node has at most one incoming edge, so Si(t) is a forest over A. We now prove
that G(t) = subg ) ((@mean, 100t (t))) = T (t), where the MSo transducer 7" is obtained from
G in the manner described above, see Figure 4.3.

We will do this in two parts: first we prove G(t) = subg ) ({@mean, root(t))), and second

T (t) = subs, ) ({mean, T00t())).

1. G(t) = subg, ) ({@mean, root(t))). Since ¢ has a unique decoration (see Proposition
1.33), decg,, it suffices to show that subg, s is a decoration. When this is established,
it follows that decg; = subg,, and hence that G(t) = decg ({(@mean, root(t))) =

SubG,t ( <amean , Toot (t) > ) .

According to Definition 1.30, a function is a decoration if all semantic instructions
in R(t) are obeyed. If there is a semantic instruction

(g, ug) = 6({ar, ur), ..., (g, ug)),

I6)



o
S(t) )
s subgc(t) ((ameana I'OOt(t)>)
t
T\/

Figure 4.3: How the transductions relate to the semantic graph

then nlabg, ) ({0, uo)) = 6, and for all j € [1, k] : (v, uo) ASG(t) (aj, uj), and hence,
since Sg(t) is a forest over A,

subg, ) ({0, o)) = d(subg, ) ({ar, u1)), ..., subg, @ ((ar, ur))),
i.e., subg, ;) obeys the semantic instructions.

. T(t) = subgg)({Qmean,r00t(%))). Note that the equality only holds on the level
of abstract graphs: we identify the nodes (v, ) of T(t) with the nodes (3,v) in

SUbSG () ( <amean7 root (t) > ) :

We will show that if we drop the connected-to-a-meang(z) from the node formulas,
the transduction of ¢ is equal to S¢(t). Because (¢, u) = connected-to-a-meang(z) if
and only if (Sg(t), (@mean, root(t)), {3, u)) = acpath(z,y), it then follows that 7 (¢) =
subg,, 1) ({mean, T00t(1))).

Let T" be T, disregarding the connected-to-a-mean formulas:

T' = (B, true, {right-labs s }sea,gen, {Xj,8,6 }ierks(A),8,5€B)-

It is obvious that for any ¢t € Ty, T'(t) = Si(t), from the way the semantic

instructions are derived from the semantic rules (Definition 1.29). More exactly,

(t,u) |= right-labs g(x) iff there is a semantic instruction (8,u) =d(---) € R(t), and

(t,u,v) = X585 (x,y) iff there is a semantic instruction (3,u) =4d(---, (6, v),--+) €
j

R(t) for certain 6 € A. Hence, T'(t) = S (t).
U



4.3.3 Attributed Tree Transducers with Flags

We now show that any WSUR fatt is an MSO transduction. We still assume that the
transducer has no copy rules; we postpone handling copy rules to Subsection 4.3.4.

By Lemma 2.15, for each flag fl € F and each e € W (fl), we can make an MSO formula
wh=e(x), with Vt € Tx,Yu € V; : (t,u) = wa=e(x) iff (l,u); = e. From here on we simply
write fl(x) = e for wa—.(z).

Let G be a WSUR attributed tree transducer from ¥ to A without copy rules. The
corresponding MSO transducer is

T = (Ba¢7 {wt;,ﬂ | 0 € Aaﬂ € B}J{Xjﬁyﬁ' |.7 € I‘kS(A),ﬂ,ﬁl € B});

where
e The copy set B is the set of tree attributes.

e The domain formula checks whether all semantic conditions hold:

¢ =Vr,Yo € ¥Vl € F((lab,(z) A “C(0) is (fl,0) = true”) — fl(z) = true)

e Again, the edge formulas check the dependencies. Because of the case structure of the
rules, the edge formulas are a bit more complicated here. For all j € rks(A), 3,3 € B,
they are:

X605 (x,y) = 3i,i" €[0,rk(X)],Jo € ,32,3fl € F,3e € W(f)
(:c:z-i/\y:z-i'/\laba(z)/\ﬂ(z):e/\
35€A<ﬂ,2>: 6(7<ﬁljll>a) 1f<ﬂ70>:6 GR(U))\/

dfl € F,3e € W(ﬂ)(root(:c) ANx=yAfl(z)=eA

€A (B,0) = 5(---,<5’;0>,---) if<ﬂ,0>=€ € Rroo )-

e The node formulas for all € A, € B are

Ys.5(x) = right-labs () A connected-to-a-meang(z),

7



where
right-lab; g(z) = 3 € [0,rk(2)], Jo € ¥, 32,3l € F,Te € W(fl)
(:L‘zz-i/\lab(,(z) AN(z) =eA

(Briy =4 O(-) if (1,00 = ¢ € R(o))V

Afl € F,3e € W(1l) (root(x)/\ﬂ(x) =eN(3,0) = 5( ) lf (1,0) =e ;€ Rroot)a

and connected-to is defined like before:
connected-to-a-meang(z) = 3X3, ... Xg, (Vl € [1,L],Yy € Xg, ((y =2AB=0)V
@,3y' € X5, 37 Xigs (4:9))) A (Ve (root(z) — & € X))
Proof of Correctness

The proof for WSUR fatts G without copy rules is much the same as for plain attributed tree
transducers without copy rules. Again, we define a semantic graph. The semantic graph
of a tree ¢ assumes the phase-1 decoration decé’t of t to be known. The graph is a labelled
version of the phase-2 weak-dependency graph WDQG(t) of t, with the edges reversed. The
node labels are the ones appropriate considering the phase-1 decoration, and the edges are
labelled in order.

Definition 4.15. The semantic graph Sq(t) of a WSUR altributed tree transducer with
flags G from X to A on a tree t € Ty, is a forest over A.

Se(t) = (V, E,nlab, elab),
where

V=B xV,
E={((8u-i),(# u-i') | 3 € F, e € W(fl)(dec' (,u)) = e and

WA (Buriy=1{ 80 (Fu-i)-) if fouy=e § e R(H)}
nlab = {((8,u-i),0) | 3fl € F, 3e € W (fl)(dec' ((fl, u)) = e and

(Byu-i) = 5() if (fl,u) =e ER(t))}, and

78



elab = {(((8,u-14),(8,u-i")),5) | 3 € F,3e € W()(dec' ((,u)) = e and

36 € A(B,u-i) = (o (i) i () = € R(1)}.

J

The semantic graph Sg(t) is equal to the phase-2 dependency graph WD?(#), with
the exception of the labels and the direction of the edges. This should be clear from the
following two facts.

1. The nodes are the same: Ay(t) = B X V;.

2. The edges (apart from their direction) are also the same. Consider a semantic in-
struction

Fi(Buyw-dnn)y ooy (B w - ik, ) if (fl, u) = e,
fN(<ﬁN1,U . iN1>, ey <6NkN7u . iNkN>) lf (ﬂ,u> = €N

in R(t), and a phase-1 decoration that has decg,((fl, u)) = e;. From this instruction
we obtain a phase-2 instruction in R%(¢) that is equivalent to

(Byu-i) = fi((Bjsu-iji)s -y (Bjyr w0 ijny)),

keeping only the dependencies from the sub-instruction for (fl,u) = e;. For the
edges of Sg(t), we consider all tree rules, i.e., exactly those rules that give rise to a
phase-2 instruction in R*(t), and we take into account the correct dependencies, by
considering the phase-1 decoration.

Note that the semantic graph is indeed a forest, since the attributed tree transducer is
weakly non-circular and WSUR with respect to (F, B).

Lemma 4.16. For every WSUR fatt G without copy rules there is an MSO tree transducer
T with T =G.

Proof. Let T be the MSO tree transducer derived for 7" in the manner described above.
Phase 2 of G is unconditional. Clearly, ¢ = ¢ iff decé’t satisfies the semantic tests, so
dom(7) = dom(G).

Assume t € Ty, with ¢ = ¢. We prove G(t) = subg, ) ({(@mean, r00t(t))) = T (t), in the
same way as before.

1. G(t) = subgg)({Qmean, root(t))). The decomposition in phases of G is (F, B). Since
Oimean 18 @ tree attribute, and thus in phase 2, we only have to show that subg,) is a
phase-2 decoration, i.e., it satisfies all rules in R%(¢) (see Lemma 1.41). We consider

79



decg’t to be known. It is clear how the semantic instructions are divided over the
phases: the phase-1 instructions define the flags, and the phase-2 instructions define
the tree attributes.

We consider the semantic instructions in R(t) that give rise to a phase-2 instruction
in R?(t). Let

(Bosw-d9) = 0((Br,u-ir),...,(Br,u-ig)) if (u)y=e

be a semantic instruction in R(t), and let dec'({fl, u)) = e. Then, nlabs, ({5, u -
io)) = &, and for all j € [1, k] : (Bo, u-io) Dsa (Bj,u-i;), and therefore subs, ) ((Bo, u-
i0)) = d(subg, ) ((Br,u-i1)), ..., subg,u ({(Be, u-ix))), and hence, since S¢(t) is a for-
est over A, subg,) obeys the phase-2 semantic instruction corresponding to the
above instruction.

. T(t) = subg, @) ((@mean, root(t))). This follows the same line of reasoning as case 2

for plain attributed tree transducers.

O

4.3.4 Copy Rules

The process described above is not suitable for attributed tree transducers with copy rules.
We now show how to construct an MSO transducer for an att with copy rules.
Let G be an sfatt with copy rules.

First we change the attributed tree transducer. Assume x ¢ A. By AU {x} we mean
the operator alphabet with the same rank function as A has, and rkaygg (%) = 1.
Let G' be the sfatt from ¥ to AU{x} obtained by replacing every case (3, 1), of every
right-hand side of every rule in G by *({3,i)). For example, a rule

_Jos 1), (p,2)) iffi=1
Wﬁy_{WJ> it =2,

is a copy rule because of the second case. It is transformed to

_Jos 1), (p,2)) iffi=1
<&m_{NWJ» iffl =2,

Please note that the output of G is equal to that of G', with the xs “cut out”.

Because G’ has no copy rules, we can build an MSO transducer 7" with 7' = G'.

80



e We build an MsoO transducer 7" from A U {x} to A, that cuts all nodes labelled
from a tree. The transduction has copy number 1, we leave the subscripted ¢ out.

T" = ({c}, true, {¢s }sea, {X; }jErks(A) ),

where for every 6 € A,
s (x) = labg(z),
so we copy exactly those nodes that do not have label x. For the edge formulas

we give regular path expressions. By the path expressions we mean, of course, the
corresponding MsO formulas (Theorem 3.16). For all j € rks(A),

Xi(7,y) =) -(lab.(2)- }1)"

Thus, an edge is drawn between two nodes whenever they are connected through
nodes labelled * alone.

e Note that 7';7"” = G, and that MSO transductions are closed under composition
[Cou91]. This implies that there is an MSO transducer T, with 7 = G.

We have now handled all cases, and can conclude that for any WSUR attributed tree
transducer with flags and copy rules, there is an equivalent MSO tree transducer.

Lemma 4.17. For every WSUR attributed tree transducer with flags G there is an MSO
tree transducer T, such that T =G, or

SFATT C MSOTT.

4.4 For every MSO tree transducer there is an WSUR
tree transducer

We will prove that for every MSO tree transducer there is an equivalent WSUR attributed
tree transducer with flags. First we give the intuitive idea, then, in four subsections, we
prove some basic properties, we present the formal construction, we give an example, and
finally we prove the correctness of the construction.

Let T = (C,¢,¥, X) be an MSO tree transducer from ¥ to A. We will build a wSURr
fatt G in the following manner. Let ¢ € dom(7), and ¢’ = T (¢).

With every node u, we have tree attributes (. for every ¢ € C. If (u,¢) is a node of ¢/,
attribute (., u) will hold the value suby (u, c).

A difficult point is that if (v, ¢') is a child of (u, ¢) in #, v does not have to be near u in ¢.
We use copy rules to transport the data through the tree, but we have to know the proper
route. If (v, ') is the jth child of (u,c) in ¢, then there is an edge formula x; . (z,y) that
is satisfied by (¢,u,v). There is also a path language corresponding to xj.(z,y) and an
automaton A, .~ that recognizes its language. This automaton has a unique walk

(u,qo0) =1 ... = (v,qp) for some qr € Fu.

1,C,€

81



along the shortest path from u to v. We will transport the data backwards from (3., v) to
(B, u) using attributes 3.4 (cf. the proof of Lemma 3.20). An attribute (5 cq.q, w)
will hold the value suby ((v, ¢')) if (w, ¢) is on the walk of the automaton. The dependencies
will run parallel to the walk of the automaton: (8 c)q w) depends on (B ceyq,w') iff
(w,q) = (w',¢') is a part of the walk of the automaton. A problem here is that (3 . ,¢, w)
may depend both on attributes of children of w and on attributes of the parent of w.
Yet, we have to choose (f(je),q w) to be either synthesized or inherited. This problem
is circumvented by making [ ., synthesized, and adding an extra inherited attribute
Blicras

The last thing is to make the value of (@mean, root(t)) equal to ¢'. If (u,,c,) is the root
of t', then the value of (f,.,,u,) (which is #') is transported to root(¢) by copy rules. This
is done by synthesized attribute Sqot.

4.4.1 Some Basic Properties

Let T = (C,¢,¥,X) be an MSO tree transducer from ¥ to A. Please note that in this
section, we will make use of the four assumptions given in Remark 4.3. These assumptions
are equivalent to the following.

o if (t,u) = ¢5.(x), then t |= ¢, and (u,c) € V), and
o if (t,u,v) = Xj.eo(,y), then t = ¢, and ((u,c), (v,c)) € Er.
We have three lemmata.
Lemma 4.18. Forallt € Tx, with t = ¢, all (u,c) € V) with label 0, and all j € rks(A),

E”(U, C,) € VT(t)((tJ u, U) ): Xj,C,C'(x7 y)) if j < I‘k(é),

and

~3(v,¢) € Vi ((t,u,0) F X (0,9)) i 5 > 1K(6).

This is the unique destination property (udp), cf. [KS93]. It follows from the fact that
T (t) is a tree, so a node w has exactly one outgoing edge labelled j for all j € [1, rk(w)],
and the fact that the edge formulas are mutually exclusive. The latter condition is needed,
because otherwise two different edge formulas could be true, resulting in no edge being
drawn in the output.

Lemma 4.19. For all t € Ty, with t = ¢, and all (v,c') € V), there is at most one
(u,c) € Vi, such that there is a j € tks(A) with (t,u,v) = Xjee (2, Y).

This is the unique source property (usp). Again, it depends on the edge formulas being
mutually exclusive, and the fact that 7 (¢) is a tree, so no node has two incoming edges.

82



According to Definition 1.43, for every j, ¢, ¢ and every tree t € Ty, X, (7,y) defines
the relation Ry(Xjee(7,v)) = {(u,v) | (t,u,v) = Xjee(T,y)}. As a special case of the
unique destination property (using the assumptions in Remark 4.3), Ri(xjc(x,v)) is a
partial function on V;. Because of the unique source property, this partial function is
injective.

In order to simulate the edge formulas of the transducer, we need path languages.
For every x.(x,y) (with e = j,¢,¢), we build a regular path language II, over Ds ;iqx)
(Theorem 3.16). For the regular language we construct a deterministic finite state (string)
automaton A, = (Q., D(IL.), 0¢, ¢e 0, Fe) accepting II,. These automata play an important
role in the following. We will also denote an automaton A, simply by e = (j,¢,¢') €
rks(A) x C' x C, writing, for example —»,, instead of — 4.

The walks of these automata are very restricted. This is of major importance to the
rules of the attribute grammar we are to present. The next lemma describes the unique
walk property (uwp).

Lemma 4.20. Let t € Ts, and e € tks(A) x C' x C. For every (w,q) € V; X Q., if there
are u,v € V; such that

(ane,U) _»Z,t (w;Q) _»:,t (anf)a fO’I" some qy € Fe;

then there are unique ug,...,u, € Vi, unique qo,...,qn € Qe, and unique dy,...,d, €
D(I1,) such that qo = Gep, qn € Fe,
d d dn
(UOa CIO) _;')e,t (ula Q1) _?')e,t - TPt (una qn)a

and (w, q) = (ui, q;) for some i € [0,n].

Proof. Remember that Lemma 3.14 states that if A is a deterministic finite state string

automaton corresponding to a regular path language, and (u,v) € Ry(||A]]), there is a

d dp .
unique walk (u, go) —uy ... =4y (v,q7) with g5 € F4.

Because Ry(||Ae||) = Ri(xe(z,y)) is an injective partial function, for every node u there
is at most one node v such that (u,geo) =% (v,qs) for some ¢; € F,, and vice-versa, for
every node v there is at most one node u such that (u,g.o) =% (v,qy) for some g € F..
This implies that for every configuration (w,q) of A, for which there are nodes u, v such
that (u, gep) =% (w,q) =% (v, q¢) for some ¢y € F,, u and v are uniquely determined. This
implies that the entire walk is determined. O

Note that this result means that all walks of a given automaton A, are disjoint.

4.4.2 Construction

Let T = (C,¢,¥,X) be an MsO tree transducer from ¥ to A. We now build an sfatt
G= (3,95 1,W),R,C, atmean) from ¥ to AU{ L} that simulates T', using the automata
A, defined above. Here, A U {1} has the same rank function as A, but rkayg3(L) = 0.
We make sure that for all ¢ in the domain of G, G(t) € Ta. We proceed in this way, because
we want to have an extra element to signify that the value of a tree attribute is ‘undefined’.

83



The Input Alphabet and the Semantic Domains

The input alphabet ¥ is already given, and the set of semantic domains 2 is equal to
{B, [0, rk(X)], TAU{J—}}'

The Attributes

We first describe the attributes, with their intended values. The semantic rules will be
given later.

With every tree attribute we have a boolean flag, ‘def’; that is ‘true’ iff the attribute
has a proper value. The value of the attribute is set to L, whenever the corresponding
def flag is false. The latter step is not necessary, since the tree attribute is not used if its
corresponding def flag is false, but it makes for convenient reading.

The value of the def flags, and indeed the value of all flags used, can be computed
by Mso formulas. Recall that the attributed tree transducer has decomposition in phases
(F, B), where the first phase constitutes an attribute grammar with finite semantic domains
in its own right. This implies that Theorem 2.14 gives a method to compute their values.
Hence, we omit details like whether the flags are inherited or synthesized.

First we give these boolean def flags, then the corresponding tree attributes. Along
with the attributes, we give their intended value, for every ¢ € Ty, and u € V;, denoting

T (t) by t' whenever ¢ = ¢.

e def.. Forall c € C.
(def,,u) = true iff 39 : (t,u) = Vs.(x); that is, iff (u,c) € Vp.

e def,,. Forall e = (j,e, ) € rtks(A) x C x C and ¢ € Q..
(defe 4, u) = true iff there are nodes v, w such that (v, g.0) —% (u,q) =% (w,qs) for
some q; € F,; i.e., if the configuration (u, ¢) is on a walk of the automaton A,. Note
that, if it exists, this walk is unique because of the unique walk property for (u,q),

and hence, if v, w exist, they are also unique.

o def,, .. Foralle= (j,¢,c)€rks(A) x C' x C and q € Q..
For all | € [1,rk(u)], (defe 4., u - 1) = true iff v, w,3¢" € Q. such that (v,q¢.0) —;

T . .
(u-1,q") v (u,q) =% (w,qy) , for some ¢y € F,. If these v, w exist, they are unique.

Moreover, (def, ,.,root(t)) = false. Note that for every u, there is at most one [ such
that (defe ., u - [) = true. This follows from the unique walk property for (u, q).

o Clefroo‘u-
(defy o1, u) = true iff ¢ = ¢ and root(t') = (v, ¢) for some ¢ € C' and v € suby(u).

Note that all defs are false if £ does not satisfy ¢.
Now the tree attributes themselves. Again, we give the intended values for every
t € Ts, and u € V;, denoting 7 (¢) by t' whenever ¢ = ¢.

84



e (.. Synthesized, for all ¢ € C.
This attribute gives the subtree of ', rooted in (u, ¢), if (u,¢) is a node of ¢’

(Bor) = {subt/(u,c) if (def., u),

1 otherwise.

e (., Synthesized, for all e = (j,¢,¢') € rks(A) x C' x C, and ¢ € Q..
This attribute is used to ‘transport’ the values of the 3. through the graph, according
to the instructions of the automaton A.. Please note that the direction in which the
automaton walks through the tree is exactly opposite to the direction of the attribute
dependencies.

suby (w, ') if (def. 4, u), and 3y € F, : (u,q) =% (w,qy), for w € V;,
1 otherwise.

<ﬂe,qau> = {

Note that w is uniquely determined as is explained in the description of def, .

® (4. Inherited, for all e € rks(A) x C' x C' and ¢ € Q..
This attribute is used so the synthesized attribute 3, , of a node u - [ for some [ can
depend on the value of 3., at u.

(Beqgyuy 1if (def, . u-1)
1 otherwise

(Beguru 1) = {

® (.0t is the meaning attribute. Synthesized.

t"if (defroor, u),

1 otherwise.

<ﬁr00ta u> = {

The fact that [, is synthesized is rather arbitrary. As will be shown in the rules, (3., u)
depends only on other attributes of u, not on attributes of the parent or children of wu.
For fe4, and [, .., the situation is a bit more complicated. Attribute (3,4, u) would be
dependent both on attributes of the parent of u, as on attributes of the children of u. Since
this is not possible with a single attribute, the synthesized attribute 3., is joined by the
inherited attribute f. .. See Figure 4.4 for an illustration of their relation (where the solid
lines represent copy rules).

Now we describe the remaining flags. These all check relatively simple properties.
Again, these are properties that can be computed by an Mso formula.
We list the flags together with their intended value for all ¢ € Ty, and u € V,, where
t' = T (t) whenever t = ¢.

e dom. W(dom) = B.
(dom, u) = true iff t = ¢, i.e., the tree satisfies the domain formula.

85



Pesq

66,(1,* 66,‘]'

Figure 4.4: Step of the automaton (dotted line) and attribute dependencies (solid lines),
when the automaton moves up

o V5. W(ths.) =B, forall § € Ajce C.
(s,e,u) = true iff (£, u) = s ().

e . W(¢) =B, for all Mso formulas ¢(x) € MSOL;(X) N D(IL,) for some e.
(,u) = true iff (t,u) E ¥(z).

e chno (child number). W(chno) = [0, rk(X)].
(chno,u) = L iff (t,u) = Jy : edg,(y, ), but 0 if u = root(t).

e root.. W(root.) =B, for all c € C.
(root,, u) = true iff root(t') = (u,c), in other words, (root,, u) = true iff (¢t,u) =39 :
%,C(SU) A _'Ely; e Ca 3] : Xj,c’,c(yax) .

The Semantic Rules

First we give the rules for the tree attributes.
In the following formula, let e; stand for (j,¢,¢;). Forallo € ¥,c € C,

6((561,%1,0, 0>v R </Bek:aqgk,0’ 0>) if <77Z}5,ca 0>, and Vj S [lv k] : <def6j,qej,0v 0>v
(Bc,0) = for 0 € A, k =rk(d), ¢1,...,¢c, € C,
L it —(def,, 0)

is a rule in R(o0). Note that the first case of the above rule really consists of many cases,
one for each § € A and cy,. .., cys) € C, abbreviated to one. We have to make sure that
only one case holds at any time, or, in other words, that §, k, and ¢; for all j are uniquely
determined. Assume (def., u) = true. This implies ¢ = ¢, and (u, ¢) is a node of ¢'. Clearly,
d (and thus k) is uniquely determined, because the node formulas are mutually exclusive.
It follows from the udp that for every j € [1,rk(0)] there is a unique (wj,¢;) such that
(tsu, wj) B Xjee; (,9), ey (u,qe;0) =7, (wj,qp) for some gy € F,;. Hence, for every j,
there is a unique ¢; such that (defej,qej,o, u) = true.
Note also that if (w;,¢;) is chosen such that (¢, u,w;) F Xjee, (7, y), then

suby (u, ¢) = §(suby (wy, ¢1), . . ., suby (wg, cx)),

86



which proves the correctness of this rule with respect to the intended meaning of the
attributes.

The attributes (f 4, u) transport the data through the tree, according to the steps of
the automaton A,.. They do so by checking if the configuration (u, ¢) is indeed on a walk of
A., which is the case if (def, ,, u) is true. If so, the rule follows one step of the automaton.
It checks if a step is possible, and if the resulting configuration is also on the walk of the
automaton. This will be the case for exactly one step, because of the unique walk property.

In the next rule, please add the condition (def, ,,0) to every case but the first. For all
oY, e=(j,c,c)€rks(A) x C xC,and q € Q.,

(1L if =(def,,,0),

(B, 0) if ¢ € F, and (def.,0),

(Beqs 1) if 0c(q,d1) = ¢ and (def, ., 1), for [ € [1,rk(0)] and ¢' € Q,
(Be,qg,0) if 31 : 1 = (chno,0), d.(q, 1) = ¢', and (def, 4., 0), for ¢’ € Q,
(Bogs0)  if 3 € D(IL) NMSOL:(S): (g, 1) = s (1,0), and (def.,0),

\ for ¢ € Q

<5e,qa 0> =

is a rule in R(o). Again, each of the last three cases consists of many cases. There always
is exactly one true case: consider a node u. If (def. ,, u) is true, then v, w : (v, geo) =%
(u,q) =% (w,qy), for some ¢y € F,. From the unique walk property we can conclude that
either (u,q) = (w,qs) (which corresponds to the second case), or (v, ¢’),d € D(IL,) :

*

(v, ¢e0) 5 (u,q) —d»e (v',q") =% (w,qr) (which corresponds to exactly one of the other
cases).

From this, the correctness of the rule with respect to the intended meaning of the
attributes should also be clear: in the second case, (feq, u) = (Be,u) = suby(u, ), and in
the other cases (4, u) = (fe,y, u') = suby (w, ).

For all o € ¥, 1 € [1,rk(0)], e € rks(A) x C' x C, and ¢ € Q.,

e.qy0) if (def 4., 1),
(ﬁe’qw:{w, ) if (def, g, 1)

1 otherwise

is a rule in R(o).
For all 0 € ¥,

Be, 0) if (root,, 0), for ¢ € C,

(
<6r00t7 0> = <ﬁr00ta l> 1f <defr00ta l>, fOI" l S [17 I'k(O')],
L otherwise

is a rule in R(0).
The only root rules we have are for every e € rks(A) x C' x C, and ¢ € Q,,

<5e,q,*v 0> =1

87



is in Ryoot-

We do not give rules for the flags. All the flags are specified by an MsO formula.
Although Mso formulas have not been specified for def, ,, def. ., and def,,y, it is clear
that they exist. For def,,, we can check whether (u,q) —? (u',¢') by a regular path
language. This is the language defined by the automaton (Q., D(Il.), d., ¢, {¢'}) (which is
A, with start state ¢ and final state ¢'). Thus, we can check whether (u,q) —* (v/,¢') by
an MsoO formula. A formula for def, ;. is easily constructed when formulas for def,, are
known. Last, (def,,o, u) = true iff Ic € C,Jv : (root,, v) = true and path(u,v), a property
that can easily be expressed by an MSO formula.

Note that the method of deriving attribute rules from MsoO formulas presented in Section
2.3 introduces more than one attribute (all of finite semantic domain), and hence, strictly

speaking, we have not listed all attributes of the attributed tree transducer.

The Semantic Conditions

For all o0 € ¥, we have the semantic condition

C(o) = ((dom, 0) = true).

The Meaning Attribute

As mentioned before, (3,4 is the meaning attribute:

Omean — ﬂroot .

This concludes the description of the attributed tree transducer.

4.4.3 Example

Ezxample /.21. We will show a simple MSO tree transducer and the corresponding at-
tributed tree transducer. Let the input alphabet be ¥ = ¥ U 3y, with Xy = {#, x},
and ¥ = {$}. The output alphabet is A = Ay U Ay, with A; = 55 = {#,*}, and
Ag = {#,+'}.

We present an MSO transducer T, such that for any tree t € T, T (¢) is equal to the
yield of ¢ as a monadic tree (a string can be seen as a monadic tree, with its first character
as root, the second character as child of the first, etcetera, up to the last character, which
is the leaf of the tree). We have to beware, because all labels in the monadic tree that
constitutes the yield have rank 1, except for the last one, which has rank 0. We will
therefore use elements of A; for all of the labels, except the last one, for which we will use
a corresponding label from A,.

First we present a few more MSO formulas over . The next formula checks if x is the
rightmost leaf of a (binary) tree

rml(z) = Jy : (root(y) A path,(y, z)).

88



We also have a formula to check if z is the leftmost leaf of a tree
Iml(z) = Jy : (root(y) A path, (y, x)).

Let T = ({c}, ¢, {¥s.c}sesy U {to ¢ }oesos {X1.cc}), be the MSO tree transducer from ¥
to A, with
¢ = true,
Vsc(x) =labs(x) A ~rml(z) for 6 € X,
Vs o(r) = labs(z) Arml(z)  for 6 € X,
Xiee(®,y) = 2 (Fz(edg, (2, 21) A pathy (2, 2)) A J2,.(edgy (2, 2,) A path, (2.,v))).
For leaves x and y, the last formula checks if y directly follows x in the left-to-right order of

leaves. Note that this transducer satisfies all constraints of Remark 4.3, except the third.
We will fix this by replacing the one edge formula by

Xl,c,c(xa y) = leaf(:c) AN
3z (Fzi(edg, (2, 21) A pathy(z;, ) A Tz, (edgy(z, 2) A pathy(z,,y))) A leaf(y).

We will now construct the unconditional sfatt
G - (27 {IB, {07 17 2}7 TAUJ—}? (57 [7 W)) R? ﬂroot)a

that corresponds to this MSO tree transducer. First of all, the path language that corre-
sponds to X1..(x,y) is

IT = leaf(x)(12)* T1d2 (41)" leaf(x).

The transition graph of the corresponding automaton is depicted in Figure 4.5, in which
the states are numbered in Roman numerals. The start state is 1, and the single final state
is V.

leaf(x) —~ ™ 1s mleaf(x)

- (1) I 1) v—=V)
. O

T2 h
Figure 4.5: The automaton for xi ..(z,y)

In the following, let e = (1, ¢, ¢). For every node u of ¢, the values of the flags of G are
e (def.,u) = true iff u is a leaf.

o (def.1,u) = true iff u is a leaf, but not the rightmost one.

89



e (def, 11, u) = true iff u is not on the path from the root to the rightmost leaf.

o (def, 11, u) = true iff u is not a leaf.

e (def, 1y, u) = true iff u is not on the path from the root to the leftmost leaf.

o (def,vy,u) = true iff u is a leaf, but not the leftmost one.

o (def, 1., u) = (def, v ., u) = (def, v ., u) = false.

o (def, 114, u) = true iff uw = v’ - 2 for some u', and u is not on the path from the root
to the rightmost leaf.

o (def, 1114, u) = true iff uw = ' - 1 for some u'.

e (def oo, u) = true iff u is on the path from the root of ¢ to its leftmost leaf.

Apart from these, we have the flags dom, ¢ (for various formulas ¢), chno and root,., which
we will not discuss here.

As an example of how we derived the above values, we will show why (def, 111.., u) = true
iff u =u'-1 for some u', one of the more difficult cases. From the definition of def, 111 .,
(defe 1114, ) = true iff Ju' : w =o' - [ and Fv, w, ¢’ such that

(v, Geo) —5 (u' -1 q) e (U, T1T) = * (w,qy), for some ¢y € F.

If we look at the automaton, we see that ¢’ = 11 and 7, =14, so this condition is equivalent
to Ju' : w = -1 and Jv, w such that

(0, Geo) =5 (u' - 1,11) —T»le (u',111) =% (w, qy), for some g5 € F.,.

Consider the automaton once again. Rewriting the above rule, by substituting regular
expressions for parts of the automaton, we obtain the condition

' ru=u'-1,
Jv: (v,u) € Ry(]| leaf(z)(T2)*|]), and
Jw : (v, w) € Ry(|| 12 (41)" leaf(z)|]).

The second formula of the three is always true (any subtree rooted in a node u has a
rightmost leaf v). The third one is equivalent to saying v’ is not a leaf, which is implied
by the first formula. So, (def, 111, u) = true iff u is a left child.

We now give the tree rules. For all o € ¥, the rule for 3. in R(0) is

(((0e1,0)) if (lab,(2) A ~rml(2), 0),
#((Be,1,0)) if (laby(z) A =rml(z), 0),

(Be,0) = <+’ if (lab,(z) A rml(x), 0),
# if (laby(z) A rml(x), 0),
(L if —(def., 0).

90



The following five rules are for the f3.,. Still, e stands for 1,¢,c. For all o € ¥, R(o)
contains the rule

1 if —(def, 1, 0),

(Bt 0) = {(ge,n, 0) if (leaf(x),0), (def,1,0), and (def,1,0).

For all o € ¥, R(0) contains

1 if ﬁ(defe’n, 0>,
<66,H? 0> = <ﬁe,II,*7 0> if <Chn07 0> = 27 <defe,H,*7 0>7 and <defe,Ha 0>
(Beq1r«, 0) if (chno,0) =1, (def, 1114,0), and (def, 11, 0).

The rules for state 111 are different for operators in ¥y and ¥y. The sets R(#) and R(x)
contain the semantic rule

(Be11,0) = L,

and R($) contains the semantic rule

1 if ﬂ(defe,ln, 0>,

e 70 = 1
(ea-) {<ﬁe,IV72> if (def,,1v,2) and (def, i1, 0).

Likewise for state 1v. For all 0 € 23, R(0) contains

1 if ﬁ(defe’lv, O>,

) = {we,v, 0) if (leaf(x), 0), {def,,v, 0), and (def,,rv,0),

and R($) contains

L if ﬂ(defe’lv, 0>,

(Beav,0) = ¢ (Berv, 1) if (def, v, 1) and (def, 1v,0)
(Bev,0) if (leaf(x),0), (def.v,0), and (def, 1y, 0).

Last, for all 0 € ¥, R(0) contains

L if —|<defeyv, 0>,

0= {wc, 0) if (def.,0) and (def.,v, 0).

We have some more rules. First for the ., for [ € {1,2}, R($) contains

(Beq,0) if (def, ., 1),
L otherwise,

<ﬂe,q,*: l> = {

91



and second for .00, R($) contains

(B.,0)  if (iml(z),0),
Broots 1) if (defoon, 1),
(ﬁroot, 2> if <defr00ta 2>7
L otherwise,

<ﬂroota 0> -

and R(#) and R() contain the semantic rule

(B, 0) if (Iml(x),0),
1 otherwise.

<ﬂroot; 0> — {

The root rules are (4., 0) = L for every state g. The att is unconditional, as mentioned
before, and the meaning attribute is Brpot-

VIV Il | VIV Il |

Figure 4.6: All walks of the automaton on tree ¢

To conclude the example, we consider how G acts on tree t = $$#$ * ##, with output
T(t) = # = ##'. Figure 4.6 gives all walks of the automaton on ¢.

Figure 4.7 gives the phase-2 (tree attributes) dependency graph. It shows the inherited
attributes to the left of the node, and the synthesized attributes to the right. The attribute
names have been abbreviated. Attribute (..o iS denoted rt, 3. is denoted ¢, and the
attributes 3., and .4, are both denoted g, for all ¢. The synthesized attributes 3,1 .,
Be1v., and B, v . have been left out, because they are never used.

92



Figure 4.7: The phase-2 dependency graph of ¢

We can easily infer the values of the attributes. Let the nodes of ¢ be numbered wu;
through u; in level order. The values of the 3. are

(Be, uz) = g
(Beyur) = #4F,
(B, ug) = i
(Bes ug) = # % ##,

(and the other occurrences of (3. have value L). The rules for all the other attributes
merely copy values, SO (Qmean, r00t(t)) = # * #4'. O

4.4.4 Correctness

We have to prove that the transducer is non-circular with respect to (F, B), and that it
satisfies the WSUR.

Lemma 4.22. Attribute grammar G is weakly non-circular and phase-2 WSUR with respect
to (F, B).

93



Proof. The first phase of the transduction is non-circular, because the flags are computed
in the manner of Chapter 2. For the second phase, we want to prove that WD?(#) is a
forest without labels and with the edges reversed.

Again, keep in mind that the direction the automaton walks and the direction of the
attribute dependencies are opposite, and that the terms unique source and destination
pertain to the walk of the automaton.

First of all, if t ¢ dom(7), all node and edge formulas are false and so all phase-2
semantic instructions are equivalent to (3,u) = 1, for the appropriate § and u. Hence
there are no dependencies, and WD?(¢) is a discrete graph.

. {(mean, T00t (1))

(v.0) . (Bert)

Figure 4.8: To the left: #, to the right: WD?(#), where dashed lines symbolize paths

Suppose t € dom(T), and let #' = T(t) € Ta. We claim that WD?(¢) has the reversed-
forest form suggested in Figure 4.8. We will make this claim more precise and then prove it.
For the sake of readability, the edge relation — will be denoted by a bold arrow —. The
edge relation —yp2(y will be denoted by an ordinary arrow —. We bijectively associate
the nodes (v, c) of ¢' with the nodes (3,,v) in WD?(t) for which (def.,v) = true.

The phase-2 dependency graph WD?(¢) has nodes (3,,v), nodes (Bo01,v), and nodes
(Be,q,v) and (B, .4, v), for all v € V;. The nodes (B, 4, v) and (B, 4., v) are called intermedi-
ate nodes because of their role in the dependency graph. The edges of WD?(#) are arranged
as follows. There is a single path (8.,v") —=* ((.,v) through intermediate nodes only, if
there is an edge (v,c) = (v/,'). The intermediate nodes all have exactly one incoming

and exactly one outgoing edge. Let (v, ¢) be the root of ¢, and let v = root(t) - iy - - - - - in.
There is one more path (3., root(t) - iy - -+ - in) — (Broot, FOOL(t) = 4y = -+ - ip 1) —
(Broots TOOL(E) + iy + ==+ = ip_o) —> -++ = (B0, r00t(t)). There are no other edges, and

WD?(t) may have isolated nodes (viz., all nodes that have def = false).

We prove the claim, that WD?(#) has exactly the above mentioned nodes and edges,
and thus is a reversed unlabelled forest, which implies that G is phase-2 WSUR and weakly
non-circular with respect to (F, B).

First we discuss the path involving (.. attributes. A flag (def oo, u) is true iff w is
on the unique path from the root of ¢ to node v for which (root.,v) = true (v and ¢

94



are unique). Looking at the rules for (o0, we can then see that the path involving (o0
attributes has the form

(Beyroot(t) < aq -+ - - in) = {Broot, TOOL(E) « 4y -+ -+ - in-1) = -+ = {Broot, root(t)).

From here on we concentrate on the more difficult paths involving the attributes (.,
Be.q» and fe 4. The line of thought is the following. For every edge in ¢’ there is a walk of
an automaton. A walk of an automaton induces a path in the phase-2 weak-dependency
graph, in which a configuration (v,¢q) of automaton A, is associated with node (f.4,v)
in WD?(¢), and a step in the automaton corresponds to a dependency (or possibly two,
involving an attribute (3, .). Different edges in t' give different walks. Since different
walks of one automaton are disjoint and therefore induce disjoint paths in the dependency
graph (as far as the intermediary nodes are concerned), and two different automata induce
disjoint paths as well, different edges in ¢ induce disjoint paths in WD?(#).

First we will formally show that an edge in ¢ implies a path in the dependency graph,

and we will give the precise form of such a path. Suppose there is an edge (vy, ¢) N (U, ),
and let e = (j,¢,¢). By the uwp there are unique qi,...,¢,—1 € Qe, ¢n € Fe, v1,...,Up_1
and dy,...,d, such that

d d dn,
(U07Qe,0) _;e (UlaQI) j’e Cee TP (Uan)-

Let gy be g.o. The above walk of the automaton implies that
e Vi€ [0,n]: (def.,,, v;) = true, and
e Vic[l,n]: if 3l € rks(X) : d; =1y then (def, 4 ., v;1) = true.
It also implies the following dependencies for all i.
o If d; #7, for every [, then (3., ,,vi—1) < (Beq; Vi), and
o If d; =7, for some [, then (B4, ,,vi—1) < (Begix, Vie1) < {Be.q:» Vi), and furthermore

i <ﬁca UO> — <ﬁe,qoa U0>a and <6e,qna Un> — <5c’a Un>-

See also Figure 4.9, in which such a path in the dependency graph is sketched, assuming
that v; is the parent of v;_;.

[ = L = @ o o o O o= ® o o o o= @
(Be, vo) (Be,aorv0)  {Be,arrv1) (Besai 1> vi=1) (Beqi,» Vi—1) {Beya;» Vi) (Besansvn)  (Beryvn)

direction of the automaton

direction of the data

Figure 4.9: A path in the dependency graph

Now we shall show that any edge in the dependency graph is on a path of dependencies
like the one described above. We first consider three cases for three different combinations
of the starred and unstarred form of the (3, , attributes.

95



1. If, for some e, q, ¢, u, v, (Beg, u) < (Be,q,u'),
then (def,,, u) = true, (def, ,,u') = true and 3d € D(II,) with d #1, for every I,
such that d.(¢,d) = ¢, and (u,u’) € Ry(d).
Hence, Jv,w : (v, qe0) =% (u,q) =% (w,qy) for some ¢, € F,

' W' (V) geo) =k (W, q") =% (W', qf) for some ¢ € F,, and

(u,q) —d»e (u',q"). This implies

(U7Qe,0) _»: (U7Q) _d»e (ulaq,) _»: (w,,qu), fOI' some qf € Fe’

and thus (¢,v,w") = xe(x,y), and so (Remark 4.3),
(v,¢) EN (w', ).

There is only one walk of automaton A, from (v, ¢) to (w', ), which, as described
above, corresponds to a path in the dependency graph, with (B4, u) < (Ge,qy,u') on

it (because (u, q) —d»e (u',q') is a step in that walk, and d #71, for every [).

2' If </Beaq’a*7ul> A </Beaq7u>’
then ¢ = ¢/, v’ = u - [ for some [, and (def, , ., u - [) = true.

Hence, Jv,w,3¢" : (v,qe0) —5 (u-1,4") iI»e (u,q) =% (w,qys) for some ¢ € F,, and
thus ,
(v,¢) 3 (w', ).

So there is a path in the dependency graph corresponding to this walk, that has
<ﬂe,q',*aul> A </Be’q, U> on lt

3. If (Begs u) < (Berg o u'),
then u = v = " - [ for some u” and [, (def.,, u) = true, (def, , ., u) = true and
56((]7 Tl) = q,'

Hence, Jv,w : (v,qe,0) —

*
e

(u" - 1,q) =% (w,qy) for some q; € F,

', w', 36" 0 (V' geo) % (u"-1,4") il»e (u”",q") =% (w', qr) for some ¢ € F,, and

e e

(u"-1,q) 1l»e (u”,¢"). This implies

s
(V,Ge0) —i (u" - 1,q) —l»e (u",q") =% (W', qp), for some ¢ € F,

and thus .
(v,c) N (w', ).

And through the same reasoning as above, (.4, u) < (Beq ., 1) is on the path in
the dependency graph that corresponds to this walk.

Two cases for two different combinations of the . and ., attributes are still to be con-
sidered.

96



L. If (Beyu) < (Beg, u'),
then v = v/, ¢ = geo, (def,,u) = true, and (def,, ,,u) = true. From the latter it

follows that Jw : (u, ¢e) =% (w, ¢r) for some ¢y € F,, and thus
(u,c) ER (w', ).

So (Be,u) < (Beq,u) is on the path in the dependency graph that corresponds to
this walk.

2. If (Beg,u) < (B, u'y,
then u = u', ¢ € F,, (def. 4, u) = true, and (def.,u) = true. From the former it
follows that Jv : (v,¢eo) =% (u,q), and thus

(v,¢) EN (u, ).

So (Beq,u) < (B, ') is on the path in the dependency graph that corresponds to
this walk.

Now we have established that all dependencies are on a path (3., vy —* (3., v) through
intermediate nodes only. Last we show that such a path has no branches, i.e., the interme-
diate nodes do not have more than one incoming and one outgoing node. It is clear that
no such node has more than one incoming edge, since such an attribute always depends on
one other attribute only.

Suppose a node has two outgoing edges. We prove a contradiction. Two outgoing edges
would imply that there are an e, a ¢, € F, and two possible paths of the automaton:

(U[]aqe,(]) e ... Ve (U’i;qi) e (U’i+laqi+1) e .. TP (Un;qn)a

and

(UéaQe,U) e ... Ve (U;aq;) e (U’i+17Q’i+1) e ... e (Umqn)a

with (v}, q!) # (v;,¢;). But by the unique walk property, (viy1,¢i+1) lies on a unique walk.
We conclude that the dependency graph has the aforementioned forest shape, and thus
that G is WSUR and weakly non-circular with respect to (F, B). O

We have proven that the attribute grammar is weakly non-circular and phase-2 WSUR
with respect to (F, B). It follows, by Lemma 1.41, that every tree ¢ has a unique decoration
decg,. Because the intended meaning of the attributes (as given in Subsection 4.4.2)
satisfies the semantic rules, it is equal to that unique decoration. Hence,

G(t) = decg i ({mean, r00t())) = decg +({Broot, root(t))) = t' = T (t).

Thus, we conclude the following lemma.

97



Lemma 4.23. For every MSO tree transducer T there is a WSUR attributed tree transducer
with flags G with T =G, or
MSOTT C SFATT.

From Lemmata 4.17 and 4.23, we conclude the following equality.

Theorem 4.24.
MSOTT = SFATT .

4.5 Complexity

An MsoO definable tree transduction can be evaluated in linear time. We can show this in
two different ways, either from the definition of an MSO transducer, or from the definition
of the equivalent attributed tree transducer.

Theorem 4.25. For every MSO tree transducer T and tree t, T (t) can be constructed in
time linear in the size of t.

Proof. First we will prove the result from the definition of MSO tree transducers. The
domain formula can be checked in linear time, by using a tree automaton (Lemma 1.45).
The node formulas can be evaluated in linear time too, by Theorem 2.20. Last, since the
edge formulas define partial functions (cf. the discussion after Lemma 4.19), by Theorem
3.22, the edge formulas can be checked in linear time as well.

The result is also easily obtained by looking at attributed tree transducers. For every
node of the tree we have a constant number of attributes, so the number of attributes is
linear in the size of the tree. For every attribute we have to evaluate one rule, and every
given rule can be computed in constant time, since they either concern a finite semantic
domain, or tree substitution. Hence, the attribute grammar can be evaluated in linear
time in the size of the tree. O

98



Bibliography

[BocT6]

[CM79]

[Coh81]

[Cou90]

[Coudl]

[Cou92]

[Cou94]

[DJL88]

[Don70]

[Eng81]

[Eng84]

Gregor V. Bochmann. Semantic evaluation from left to right. Communications

of the ACM, 19:55-62, 1976.

Laurian M. Chirica and David F. Martin. An order-algebraic definition of
Knuthian semantics. Mathematical Systems Theory, 13:1-27, 1979.

P.M. Cohn. Universal Algebra, revised edition. Reidel, 1981.

Bruno Courcelle. Graph rewriting: An algebraic and logic approach. In Jan van
Leeuwen, editor, Handbook of Theoretical Computer Science, volume B, chapter 5,
pages 193-242. Elsevier, 1990.

Bruno Courcelle. The monadic second order logic of graphs V: On closing the gap
between definability and recognizability. Theoretical Computer Science, 80:153—
202, 1991.

Bruno Courcelle. Monadic second-order definable graph transductions. In CAAP,
volume 581 of Lecture Notes in Computer Science, pages 124—144. Springer, 1992.

Bruno Courcelle. Monadic second-order definable graph transductions: a survey.
Theoretical Computer Science, 126:53-75, 1994.

Pierre Deransart, Martin Jourdan, and Bernard Lorho. Attribute Grammars,
Definitions, Systems and Bibliography, volume 323 of Lecture Notes in Computer
Science. Springer, 1988.

John Doner. Tree acceptors and some of their applications. Journal of Computer
and System Sciences, 4:406-451, 1970.

Joost Engelfriet. Tree transducers and syntax-directed semantics. Technical Re-
port Memorandum nr. 363, Twente University of Technology, The Netherlands,
1981.

Joost Engelfriet. Attribute grammars: Attribute evaluation methods. In B. Lorho,
editor, Methods and Tools for Compiler Construction, pages 103—138. Cambridge
University Press, 1984.

99



[Eng89]

[Eng91]

[Fiil81]

[FV95]

[Gie88]

[Gin75]

[GS84]

[Knu68]

[KS93]

[O0s89]

[TW63]

[Wei87]

Joost Engelfriet. Context-free NCE graph grammars. In Fundamentals of Compu-
tation Theory, volume 380 of Lecture Notes in Computer Science, pages 148—161.
Springer, 1989.

Joost Engelfriet. A characterization of context free NCE graph languages by
monadic second order logic on trees. In Graph Grammars and their Application
to Computer Science, volume 532 of Lecture Notes Computer Science, pages 311—
327. Springer, 1991.

Zoltan Fiilop. On attributed tree transducers. Acta Cybernetica, 5:261-279, 1981.

Zoltan Filop and Sandor Vagvolgyi. Attributed tree transducers cannot induce
all deterministic bottom-up tree transformations. Information and Computation,
116:231-240, 1995.

R. Giegerich. Composition and evaluation of attribute coupled grammars. Acta
Informatica, 25:355-423, 1988.

S. Ginsburg. Algebraic and Automata-Theoretic Properties of Formal Languages,
volume 2 of Fundamental Studies in Computer Science. North-Holland, 1975.

Ferenc Gécseg and Magnus Steinby. Tree Automata. Akadémiai Kiadé, Budapest,
1984.

Donald E. Knuth. Semantics of context-free languages. Mathematical Systems
Theory, 2:127-145, 1968. Correction: Mathematical Systems Theory, 5: 95-96,
1971.

Nils Klarlund and Michael L. Schwartzbach. Graph types. In Proceedings of the
20th Conference on Principles of Programming Languages, pages 196-205, 1993.

V. van Oostrom. Graafgrammatica’s en 2° orde logica. Master’s thesis, University
of Leiden, 1989. In dutch.

J.W. Thatcher and J.B Wright. Generalized finite automata theory with an appli-
cation to a decision problem of second-order logic. Mathematical Systems Theory,
2:57-81, 1968.

Klaus Weihrauch. Computability, volume 9 of FATCS Monographs on Theoretical
Computer Science. Springer, 1987.

100



