
Attribute Grammars and Monadic Second Order LogicRoderick BloemOctober 15, 1996

AbstractIt is shown that formulas in monadic second order logic (mso) with one free variable canbe mimicked by attribute grammars with a designated boolean attribute and vice versa.We prove that mso formulas with two free variables have the same power in de�ningbinary relations on nodes of a tree as regular path languages have. For graphs in general,mso formulas turn out to be stronger. We also compare path languages against the routinglanguages of Klarlund and Schwartzbach. We compute the complexity of evaluating msoformulas with free variables, especially in the case where there is a dependency betweenfree variables of the formula.Last, it is proven that mso tree transducers have the same strength as attributed treetransducers with the single use requirement and ags.

IntroductionThe main purpose of this paper is to investigate the relation between tree transductionsde�ned by attribute grammars on one hand and tree transductions de�ned by monadicsecond order logic on the other. Along the way, we will cover path languages and we willgo into some complexity issues.Attribute grammars have been introduced by Knuth [Knu68] as a way to assign a meaningto a string from a context-free language, in a syntax directed way. Attribute grammarshave become popular as a tool for building compilers and as an object for study in formallanguage theory. One can take a slightly di�erent view from Knuth's, and see an attributegrammar as assigning a meaning to a derivation tree of a context-free language, or, in ourcase, to a tree over an operator alphabet. If we limit the possible meanings to trees, weobtain attributed tree transducers [Eng81, F�ul81]. Tree transducers de�ne functions fromtrees over one alphabet to trees over another. Our main interest lies in attributed treetransducers that have attributes whose value can range over trees (tree attributes), andattributes with a �nite semantic domain (ags). Furthermore, we will forbid a tree attributeto be used more than once, in order to limit the power of attributed tree transducers. Thisis Giegerich's single use requirement [Gie88].Our second important formalism, monadic second order logic, is used to de�ne prop-erties of graphs. It is popular because it combines great ease and strength of expressionwith desirable decidability properties. Closed monadic second order formulas de�ne setsof graphs, while open monadic order formulas de�ne relations on nodes of graphs. We alsouse monadic second order logic to de�ne tree transductions, as in [Eng91, Cou92]. Themonadic second order tree transducers that we consider are deterministic ones that cancopy nodes. A closed mso formula de�nes the domain of the transducer, while formulaswith one free variable de�ne the nodes in the output and formulas with two free variablesde�ne the edges.Regular path languages are regular languages over a set of directives that tell you howto move through a graph, while checking properties of the nodes by mso formulas with onefree variable. Path languages de�ne binary relations on nodes of a graph: a pair of nodesis in the relation if you can walk from the �rst to the second, following the directions ina string from the language. Routing languages, a concept akin to path languages are usedby Klarlund and Schwartzbach [KS93] to extend the concept of recursive data structures.They allow the de�nition of data structures such as circular linked lists in an elegant1

way, avoiding explicit use of pointers. It will turn out that there are structures thatcannot be de�ned by a routing language, while they can be de�ned by a path language.Path languages can be evaluated e�ciently, like the routing languages of Klarlund andSchwartzbach.In Chapter 1, we will introduce the necessary formalisms and notation.An operational description of closed mso formulas exists in the form of tree automata.In Chapters 2 and 3 we will explore operational characterizations of mso formulas withone and two free variables, respectively.An attribute grammar with a designated boolean attribute recognizes exactly thosenodes of a tree for which the boolean attribute has decoration `true'. In Chapter 2, we willprove that in this way, monadic second order formulas with one free variable are equivalentto attribute grammars with a designated boolean attribute.From this we derive the complexity of computing whether a �xed formula with freevariables holds for a given tree and nodes. This can be done in linear time. We also inferthe complexity of computing all node sequences for which a �xed formula holds, given atree. For an mso formula with k free variables, we can do this in O(nk) time.In the third chapter, we show that regular path languages and monadic second orderformulas with two free variables de�ne the same binary relations on nodes in trees. Ongraphs in general, monadic second order formulas will turn out to be stronger than regularpath languages. We will show that path languages that de�ne a partial function can beevaluated in linear time. From this result, we conclude that if there is a dependency in therelation de�ned by a monadic second order formula with k free variables, we can computethe relation de�ned by the formula in O(nk�1) time. This is a factor n more e�cient thanwas shown in Chapter 2.Finally, in Chapter 4, with help from the results of Chapters 2 and 3, we prove thatmonadic second order tree transducers have the same strength as attributed tree transduc-ers with ags and the single use requirement. We also show that monadic second ordertree transductions can be evaluated in linear time.

2

Chapter 1De�nitions and NotationIn this chapter we will de�ne the terminology and notations we use throughout this paper.First we give some common mathematical de�nitions, then we de�ne regular languages,terms and algebras, graphs and trees, tree automata, attribute grammars, and last of allmonadic second order logic.1.1 PreliminariesWe will discuss the basic mathematics here: sets, relations, functions and strings.SetsThe set of boolean values is B = ffalse; trueg:For the sake of brevity, we sometimes use 0 instead of false and 1 instead of true. The setof natural numbers is N = f0; 1; 2; : : :g:The set of positive natural numbers is N+ = N n f0g. We use the following notation forsets of integers (a; b 2 N): [a; b] = fx 2 N j a � x � bg:Sequences are denoted (a1; a2; : : : ; an) or ha1; a2; : : : ; ani. By (a1; : : : ; bi ; : : : ; an), we meanthe sequence (a1; : : : ; ai�1; b; ai+1; : : : ; an). Also,(a1; : : : ; bi ; : : : ; b0j ; : : : ; an) = 8<:(a1; : : : ; ai�1; b; ai+1; : : : ; aj�1; b0; aj+1; : : : ; an) if i < j(a1; : : : ; aj�1; b0; aj+1; : : : ; ai�1; b; ai+1; : : : ; an) if i > jFor a set A, P(A) is the power set of A, i.e., the set of all subsets of A. The cardinalityof A is denoted #A. A set fA1; : : : ; Ang of non-empty subsets of A is a partition of A ifSi2[1;n]Ai = A and Ai \Aj = ; for i 6= j. If fA1; : : : ; Ang is a partition of A, the sequence(A1; : : : ; An) is an ordered partition of A. 3

Relations and FunctionsFor sets A1; : : : ; An, a n-ary relation is a subset R � A1 � � � � � An. Its restriction toA01 � A1 is R � A01 = R \ (A01 � A2 � � � � � An).In particular, for sets A and B, a (binary) relation is a subset R � A� B. The imageof A0 � A under R is R(A0) = fb j 9a 2 A0 : (a; b) 2 Rg. If A0 = fag, we also write R(a),instead of R(fag), and whenever R(A0) = fbg, we can write R(A0) = b.The identity on a set A is the relation idA = f(a; a) j a 2 Ag.The composition of two relations R � B � C and S � A � B is R � S = f(a; c) 2A � C j 9b : (b; c) 2 R and (a; b) 2 Sg. We also use S ;R = R � S. If R � A � A, wede�ne R0 = idA, and Ri = Ri�1 ;R for i � 1. The transitive, reexive closure of R isR� = Si2N Ri.Let A be a set. A set A0 � A is closed under a relation R � A� A if for all x 2 A0: if(x; y) 2 R, then y 2 A0.A relation R � A � B is a (total) function, denoted R : A ! B, if #R(a) = 1 forevery a 2 A. So, for any function f : A ! B and A0 � A, f(A0) = ff(a) 2 B j a 2 A0g.A function f : fa1; : : : ; ang ! fb1; : : : ; bng, de�ned as f = f(a1; b1); : : : ; (an; bn)g is alsowritten as an enumerated function: [a1 7! b1; : : : ; an 7! bn].A relation R � A�B is a partial function, denoted R : A * B, if #R(a) � 1 for everya 2 A. The domain of R is the subset dom(R) = fa 2 A j #R(a) = 1g. We use the lettersf and g for total and partial functions.Strings and String LanguagesLet A be a �nite set, or alphabet. A string over A is a sequence (a1; : : : ; an), with n � 0,and ai 2 A, for all i 2 [1; n]. The string (a1; : : : ; an) has length n. The empty stringis the string with length 0, denoted ". The set of all strings over A is denoted A�, andA+ = A� n f"g.If a = (a1; : : : ; an), and b = (b1; : : : ; bm) are strings over A, then the concatenation ofa and b is a � b = (a1; : : : ; an; b1; : : : ; bm). The empty string is the unity with respect toconcatenation.Usually, we leave out the brackets and commas, and write a1a2 � � �an for (a1; a2; : : : ; an).Let A be an alphabet. A (string) language is a set of strings L � A�. We have thefollowing operations on string languages� Concatenation: for languages K;L � A�,K � L = fa � b 2 A� j a 2 K and b 2 Lg:� Powers: For L � A�, L0 = f"g, and Ln+1 = Ln � L, for n 2 N :4

� Kleene star and Kleene plus: for L � A�,L� = [n2N Ln; and L+ = [n2N+ Ln:� Naturally, the usual set operators can be used on string languages, as inK[L, K\L,and K n L.1.2 Regular LanguagesIn this section we discuss three well-known ways of de�ning regular string languages. See,for example [Gin75] for more details. Later on, we give an example of one language de�nedin these three di�erent ways.Finite State AutomataDe�nition 1.1. A �nite state (string) automaton (fsa, for short) over � is a quintupleA = (Q;�; �; q0; F), with� Q is a �nite set of states,� � is the input alphabet,� � � Q� ��Q is the transition relation,� q0 2 Q is the start state,� F � Q is the set of �nal states.A �nite state automaton A = (Q;�; �; q0; F) induces a step relation `A� (�� � Q) �(�� � Q), as follows. For every � 2 �, x 2 ��, and q 2 Q, if (q; �; q0) 2 �, then(�x; q) `A (x; q0).De�nition 1.2. An fsa A over � recognizes the string language kAk � ��:kAk = fx 2 �� j 9qf 2 F : (x; q0) `�A ("; qf)gIn most of the literature, the language kAk is denoted L(A). A language is calledrecognizable if there is an fsa that recognizes it.For reasons of notational convenience, we extend � to a relation over Q� �� �Q. Weinductively extend the de�nition of �: for all q, (q; "; q) 2 �, and for x 2 �+, � 2 �:(q; x � �; q0) 2 � if 9q00 : (q; x; q00) 2 � and (q00; �; q0) 2 �. This is equivalent to (q; x; q0) 2 �i� (x; q) `�A ("; q0).A deterministic �nite state automaton is a �nite state automaton for which the tran-sition relation � is a function Q � � ! Q. Accordingly, we also write �(q; x) = q0for (q; x; q0) 2 �. Deterministic automata recognize exactly the same languages as non-deterministic ones do. 5

Right-Linear GrammarsRight-linear grammars are very much akin to �nite state automata. They de�ne a way toderive, rather than recognize a regular string language.De�nition 1.3. A right-linear grammar is a quadruple G = (N;�; P; S), where� N is a �nite set of nonterminals,� � is the input alphabet,� P � (N � ��N) [(N � f"g), is the set of productions, and� S is the start symbol.If (n; �; n0) 2 P , we write n! �n0, for (n; ") 2 P we write n! ".We de�ne the language of a right-linear grammar by transforming it into an equiva-lent fsa. Let G = (�; N; P; S) be a right-linear grammar. The corresponding fsa AG is(N;�; �; S; fn j (n; ") 2 Pg), where� = (P \ (N � ��N))The language de�ned by G is simply kAGk.We use two ways of abbreviating a group of productions: if �1; : : : ; �n 2 �, n � 1,1. A ! �1 � � ��nB is an abbreviation for A ! �1A1, A1 ! �2A2, : : : , An�1 ! �nB(where A1; : : : ; An�1 are new non-terminals), and2. A ! �1 � � ��n is an abbreviation for A ! �1A1, A1 ! �2A2, : : : , An�1 ! �nAn,An ! " (where A1; : : : ; An are new non-terminals).Regular ExpressionsRegular expressions are the third way to de�ne a regular string language. First we de�neits syntax.De�nition 1.4. Let � be an alphabet. A regular expression over � is recursively de�nedas follows.1. ;, " and � (for every � 2 �) are regular expressions,2. if r and r0 are regular expressions over �, so are r + r0, r � r0 and r�.A regular expression r over � de�nes a language krk � ��, de�ned as follows.De�nition 1.5. Let � be an alphabet. 6

1. k;k = ;, k"k = f"g, and k�k = f�g for all � 2 �,2. if r and r0 are regular expressions over �, kr+ r0k = krk [kr0k, kr � r0k = krk � kr0k,and kr�k = krk�.A language L is called regular if there is a regular expression r with krk = L. The setof all regular languages is denoted reg.It is well known that reg is equal to the set of all recognizable languages, de�ned bya �nite state automaton or a right-linear grammar.Example 1.6. We specify one language in the three notations. The alphabet is � =fa; b; cg.� As a �nite state automaton: A = (fS; Tg;�; �; S; fSg), where� = �q; �:8<:S if either q = S and � = c, or q = T and � = b,T if q = S and � = a.See Figure 1.1 for the `transition graph'.� As a right-linear grammar: G = (fS; Tg;�; P; S), whereP = fS ! aT;S ! cS;S ! ";T ! bSg� As a regular expression: r = (ab+ c)�.
c ab ST

Figure 1.1: Transition Graph
7

1.3 Terms and AlgebrasWe here de�ne terms, which are strings over an operator alphabet of a certain form, andalgebras, a way to assign meaning to a term by giving a meaning to each element of thealphabet.De�nition 1.7. An operator alphabet is a pair (�; rk�), with � a �nite set and a rankfunction rk� : �! N. For all k 2 N, �k = f� 2 � j rk�(�) = kg.We will often keep the rank function implicit and refer to � as the operator alphabet.The subscript to rk is omitted whenever the set is clear from the context. The subset �k �� is the set of operators of rank k. The elements of �0 are called constants. The rank of anoperator alphabet is the maximum of the rank of its elements, rk(�) = maxfrk(�) j � 2 �g.An operator alphabet has a rank interval, rks(�) = [1; rk(�)].The set T� of terms over � is a subset of �+, inductively de�ned as follows.De�nition 1.8. Let � be an operator alphabet. T� is the smallest set satisfying the fol-lowing condition. If k � 0, � 2 �k; and t1; t2; : : : ; tk 2 T�, then �t1t2 � � � tk 2 T�.Please note that the base in this induction is for the operators with rank 0. Every termhas a unique decomposition in an operator and sub-terms.We also need terms with variables. These variables are treated as constants. Forvariables we use the letter �.De�nition 1.9. Let � be an operator alphabet and N a �nite set (of variables), such that� \ N = ;. �(N) is the operator alphabet with �(N)0 = �0 [N and �(N)k = �k fork � 1. T�(N) = T�(N) is the set of terms over � with variables in N .A term t 2 T�(N) is linear if every variable appears no more than once in t. It isnon-deleting if every variable appears at least once.These terms are merely syntactical. In order to be able to interpret them, we use analgebra.De�nition 1.10. Let � be an operator alphabet. A (deterministic) �-algebra is a set A,together with, for every � 2 �k (k � 0), a (total) function �A : Ak ! A. The algebra is�nite if A is �nite.We usually keep these functions implicit and refer to the algebra as A. We identify thenullary functions �A for � 2 �0 with the corresponding elements in A.It is not strictly necessary to associate functions with the elements of �. We can alsouse relations, and obtain a `non-deterministic algebra'.De�nition 1.11. Let � be an operator alphabet. A non-deterministic algebra is a set Awith, for every � 2 �k (k � 0), a relation �A � Ak � A.8

De�nition 1.12. Let A be a non-deterministic �-algebra. The subset algebra P(A) is the(deterministic) algebra consisting of the set P(A) of subsets of A, with for every � 2 �k,and A1; : : : ; Ak � A�P(A)(A1; : : : ; Ak) = �A(A1; : : : ; Ak)(= f�A(a1; : : : ; ak) j ai 2 Ai for 1 � i � kg):Every algebra is accompanied by an interpreting function, the valuation function `val'.First we give the valuation for terms without variables.De�nition 1.13. Given an operator alphabet � and a �-algebra A, the function valA :T� ! A is de�ned as follows. For every � 2 �k (k � 0) and t1; t2; : : : ; tk 2 T�,valA(�t1t2 � � � tk) = �A(valA(t1); valA(t2); : : : ; valA(tk))The valuation of terms with variables depends on the value given to the variables. So,a term with variables needs a variable assignment, i.e., a function N ! A. A term overT�(N) de�nes a function (N ! A)! A.De�nition 1.14. Let � be an operator alphabet, N a set of variables, t 2 T�(N), and� : N ! A. Then,valA(t)(�) = 8<:�A(valA(t1)(�); : : : ; valA(tk)(�)) if t = �t1 � � � tk for some � 2 �k (k � 0),�(t) otherwise (t 2 N)Note that if t 2 T�(N), then t 2 T�(N 0) for any N 0 � N . Also, if t 2 T�(N) and� : N ! A then valA(t)(�) = valA(t)(�0) for any �0 : N 0 ! A with �0 � N = �.Example 1.15. Consider the operator alphabet (�; rk�), where � = �0 [�2, with �0 =f0; 1; 2g, and �2 = f+g.Some terms over � are 0, +01, and +2+11. Mind the pre�x notation.An example of a �-algebra is N , with 0N = 0, 1N = 1, 2N = 2 and +N = �x; y:x+y, addi-tion of natural numbers. Then, valN(0) = 0N = 0, and valN(+01) = +N(valN(0); valN(1)) =valN(0) + valN(1) = 0N + 1N = 0 + 1 = 1. Similarly, valN(+2+11) = 4.Another �-algebra is A� = f�; �; g�, with 0A� = �, 1A� = �, 2A� = and +A� =�x; y:x � y, concatenation of strings. Now, valA�(0) = 0A� = �, valA�(+01) = � � � = ��,and valN(+2+11) = � (� � �) = ��.Introducing variables, +0+1� is a term from T�(f�g). If we assign a value from thealgebra to �, we can evaluate the term. For example, using algebra N , and assigning 5 to�, we obtain valN(+2+1�)[� 7! 5] = valN(2)[� 7! 5] + valN(+1�)[� 7! 5] = 2 + (valN(1)[� 7!5] + valN(�)[� 7! 5]) = 2 + (1 + 5) = 8.We can consider T�(N) to be an algebra itself, with very simple operations:9

De�nition 1.16. Let � be an operator alphabet and N a �nite set of variables, then T�(N)is the term �-algebra generated by N , in which for all k � 0, � 2 �k and t1; : : : ; tk 2T�(N), �T�(N)(t1; : : : ; tk) = �t1 � � � tk:This may not seem very useful, but we can use it to de�ne substitution of terms forvariables.De�nition 1.17. Let � be an operator alphabet, N a �nite set of variables, t 2 T�(N),and � : N ! T�(N), a substitution function. Then,t� = valT�(N)(t)(�)is the result of applying � to t.Applying � to t has the result of substituting �(�) for every occurrence of � in t, forevery � 2 N , leaving the rest of t unchanged. This is easily proven by induction on thestructure of t.We can now show that, in a way, valA is distributive over substitution. In the nextproposition, we omit the round brackets around an enumerated function. We will do thismore often.Proposition 1.18. For any �-algebra A, variable set N = f�1; : : : ; �ng, variable assign-ment � : N ! A, and terms t; s1; : : : ; sn 2 T�(N),valA(t[�1 7! s1; : : : ; �n 7! sn])(�) = valA(t)[�1 7! valA(s1)(�); : : : ; �n 7! valA(sn)(�)]Proof. In this proof, we use the shorthand [�i 7! si] for [�1 7! s1; : : : ; �n 7! sn] and[�i 7! valA(si)(�)] for [�1 7! valA(s1)(�); : : : ; �n 7! valA(sn)(�)]. We prove the propositionby induction on the structure of t.Base: Let t = �j 2 N . Then,valA(�j[�i 7! si])(�) = valA(sj)(�) [by de�nition of substitution]= valA(�j)[�i 7! valA(si)(�)] [by de�nition of val]Induction: Let t = �t1 � � � tk, where k � 0 and � 2 �k. Then,valA(�t1 � � � tk[�i 7! si])(�) = [by def. of substitution]valA(�t1[�i 7! si] � � � tk[�i 7! si])(�) = [by de�nition of val]�A(valA(t1[�i 7! si])(�); : : : ; valA(tk[�i 7! si])(�)) = [induction hypothesis]�A(valA(t1)[�i 7! valA(si)(�)]; : : : ; valA(tk)[�i 7! valA(si)(�)]) = [by de�nition of val]valA(�t1 � � � tk)[�i 7! valA(si)(�)]As a special case of this, if s1; : : : ; sn 2 T�, then valA(t[�1 7! s1; : : : ; �n 7! sn]) =valA(t)[� 7! valA(s1); : : : ; �n 7! valA(sn)].For a more thorough description of algebras see [Coh81].10

1.4 Graphs and TreesGraphsDe�nition 1.19. Let � and � be alphabets. A graph over (�;�) is a quadruple (V;E; nlab;elab), with V a �nite set of nodes and E � V � V the set of edges, nlab : V ! � is thenode-labelling function and elab : E ! � is the edge-labelling function.The set of all graphs over (�;�) is denoted GR(�;�). We say that G is a graph if thereare � and �, such that G is a graph over (�;�).So, we consider �nite, directed graphs with no multiple edges. Loops are allowed.� is the alphabet of node labels and � is the alphabet of edge labels. For a givengraph G, its nodes, edges, node-labelling function and edge-labelling function are denotedVG; EG; nlabG, and elabG respectively. Sometimes we do not need edge labels and nodelabels and we simply leave them out.If G is a graph, we say that an edge (with label l) runs from node v to node w if(v; w) 2 EG (and elabG(v; w) = l). This is denoted v !G w (v l!G w). We say that theedge is outgoing from v and incoming on w. A sequence (v0; v1; : : : ; vn) 2 V + is a (directed)path of length n, running from v0 to vn, if (vi; vi+1) 2 E for i 2 [0; n� 1]. The length of apath can be 0, so for every node v, there is a path from v to v. We say that a graph G iscyclic if there exists a path (v0; v1; : : : ; vn; v0), for some n � 1.De�nition 1.20. Two graphs G and H over (�;�) are isomorphic if there exists a bi-jection f : VG ! VH, such that for all v; w 2 VG: (v; w) 2 EG i� (f(v); f(w)) 2 EH,nlabG(v) = nlabH(f(v)) and elabG(v; w) = elabH(f(v); f(w)).A graph is automorphic if it is isomorphic to itself through a function f 6= idVG .We want to be able to `cut a piece' out of a graph and obtain a subgraph.De�nition 1.21. Let G be a graph and V 0 � VG. The graph H induced by V 0 is a subgraphof G, with VH = V 0, EH = EG \ (V 0 � V 0), nlabH = nlabG � VH and elabH = elabG � EH .Forests and TreesForests and trees are speci�c kinds of graphs. The trees and forests we consider are rootedand ordered.De�nition 1.22. Let � be an operator alphabet and � = rks(�). A graph G over (�;�)is a forest over � if� it is acyclic,� no node has more than one incoming edge, and11

� for every node v and for every i 2 [1; rk(nlabG(v))], there is exactly one edge outgoingfrom v with label i, and v has only outgoing edges with labels in [1; rk(nlabG(v))].A tree over � is a forest over � consisting of one connected component. The set of alltrees is denoted trees.In a forest, a node without incoming edges is called a root. A forest has as many rootsas it has connected components, so a tree t has only one root, denoted root(t). Thus, aforest is a disjoint union of trees. Edges are sometimes called branches and nodes with nooutgoing edges are called leaves.Each node of a forest has a rank equal to the rank of its label: rk(u) = rk(nlab(u)) foreach node u. The depth or level of a node u is the length of the (unique) path from a rootto u. The depth of a forest is the maximum of the depths of its nodes.For any nodes v and w, if an edge runs from v to w (with label i), w is called the (i-th)child of v and v is the parent of w. We use Dewey notation and denote the i-th child of vby v � i. Also, it is convenient to de�ne v � 0 = v.If a path runs from v to w, then v is an ancestor of w and w is a descendant of v. Inparticular, every node is both its own ancestor and its own descendant. A proper ancestor(descendant) of v is an ancestor (descendant) of v not equal to v itself. In a tree, every pairof nodes u and v has common ancestors. The least common ancestor of u and v, denotedlca(u; v) is the common ancestor with the highest depth (closest to nodes u and v).For a forest G over � and a node v of G, the subtree of G rooted in v, denoted bysubG(v) is the subgraph of G induced by v and all its descendants. Note that subG(v) is atree over � with root v.For a tree t over � and a node v of t, the context of v, denoted ctxt(v), is the subgraphinduced by v and all nodes that are not a descendant of v, in which the label of v is changedinto �, a �xed variable. Thus, ctxt(v) is a tree over �(f�g).The yield of a tree t over � is the string yield(t) over �0, consisting of the concatenationof the labels of the leaves of t in left-to-right order.Trees and TermsIt should be apparent that terms have a tree structure and vice-versa. We now formalizethat correspondence, and hereafter simply identify terms with trees.De�nition 1.23. For any operator alphabet �, tree is the bijection from T� to the set oftrees over � (modulo isomorphism), recursively de�ned as follows. Let t = �t1 � � � tk, forsome k � 0, � 2 �k, and t1; : : : ; tk 2 T�. Thentree(�t1 � � � tk) = (V;E; nlab; elab);with V = fvg [[i2[1;k]Vtree(ti)12

(where we assume that the Vtree(ti) are mutually disjoint, and that v 62 Si2[1;k] Vtree(ti)),E = n�v; root(tree(ti))� j i 2 [1; k]o [[i2[1;k]Etree(ti),nlab = n(v; �)o [[i2[1;k]nlabtree(ti) , andelab = n��v; root(tree(ti))�; i� j i 2 [1; k]o [[i2[1;k] elabtree(ti) :1.5 Tree AutomataA tree automaton de�nes a tree language, i.e., a set of trees. We consider only �nite state,bottom-up tree automata.De�nition 1.24. Let � be an operator alphabet. A deterministic tree automaton over �is a tuple A = (Q;F), where Q is a �nite �-algebra and F � Q. The language recognizedby the tree automaton (Q;F) isL(A) = ft 2 T� j valQ(t) 2 Fg:A more operational description may be given in terms of automata theory. Elementsof Q are called states and F is the set of �nal states. A tree automaton A starts readingat each leaf of the tree, in a state determined by the label of that leaf. It then works itsway up in the tree. When a node v has label � 2 �k, the automaton will reach state�Q(s1; : : : ; sk) at v, where si is the state of A at the i-th child of v. A tree is accepted ifthe automaton reaches a �nal state in the root of the tree.A tree language L is called recognizable or regular if there is a tree automaton thatrecognizes L. The set of all regular tree languages is denoted regt.De�nition 1.25. Let � be an operator alphabet. A non-deterministic tree automatonover � is a tuple A = (Q;F), where Q is a non-deterministic �nite �-algebra and F � Qis the set of �nal states. The language recognized by A isL(A) = ft 2 T� j valP(Q)(t) \ F 6= ;g:If you wish, valP(Q)(subt(v)) gives the states in which the automaton can arrive at v,and the automaton succeeds if it can arrive at the root in a �nal state. Non-deterministictree automata recognize exactly the same tree languages as deterministic tree automatado. See [GS84] for this result and a more comprehensive introduction to tree automata.Proposition 1.26. For a tree automaton A over � the following are decidable:1. t 2 L(A), for any t 2 T�, 13

2. L(A) = ;, and3. L(A) = T�.1.6 Attribute GrammarsAttribute grammars were introduced by [Knu68], as a way to assign a semantics to acontext-free language. An overview and extensive bibliography can be found in [DJL88].To simplify the comparison with other formal models, our de�nition of attribute grammarsis a bit di�erent from Knuth's original.1.6.1 De�nitionAs in [F�ul81], attribute grammars act on trees over an operator alphabet, instead of parsetrees of an underlying context-free grammar. The semantic rules are grouped by operator,instead of by grammar rule. All operators have the same set of attributes, and thereare special rules for the inherited attributes of the root. Moreover, for each operator onesemantic condition is given.De�nition 1.27. An attribute grammar over � is a six-tupleG = h�;
; B; R; C; �meani;where� � is an operator alphabet;�
 is a �nite set of sets, the semantic domains of the attributes;� B = hS; I;W i, is the attribute description. Here,{ S is a �nite set, the set of synthesized attributes,{ I, disjoint with S, is a �nite set, the set of inherited attributes,{ W : (I [S)!
 is the domain assignment.We also use A for I [S, the set of all attributes;� R = hRint; Rrooti describes the semantic rules. Here,{ Rint is a function associating with every � 2 � a set of internal semantic rules.For every �, Rint(�) contains one ruleh�0; i0i = f(h�1; i1i; : : : ; h�k; iki);for every pair h�0; i0i, where either �0 is a synthesized attribute and i0 = 0, or �0is an inherited attribute and i0 2 [1; rk(�)]. Furthermore, k � 0, �1; : : : ; �k 2 A,14

i1; : : : ; ik 2 [0; rk(�)], f is a function from W (�1)� � � ��W (�k) to W (�0), andthe h�j; iji are mutually distinct.Usually, we simply write R(�) for Rint(�);{ Rroot is the set of semantic root rules; Rroot contains one ruleh�0; 0i = f(h�1; 0i; : : : ; h�k; 0i);for every �0 2 I, where k � 0, �1; : : : ; �k 2 A, f is a function from W (�1) �� � � �W (�k) to W (�0), and the h�j; iji are mutually distinct;� C is a function associating with every � 2 � a semantic condition C(�) of the formf(h�1; i1i; : : : ; h�k; iki)where k � 0, �1; : : : ; �k 2 A, i1; : : : ; ik 2 [0; rk(�)], and f is a function from W (�1)�� � � �W (�k) to B ;� �mean 2 S is the attribute giving the meaning of a tree.The semantic conditions can be left out if they are all tautologies. An attribute grammarwithout semantic conditions is called an unconditional attribute grammar. Also, �meancan be left out if it is not needed. If all sets in
 are �nite, then G is said to have �nitesemantic domains. Usually, for an (internal or root) ruleh�0; i0i = f(h�1; i1i; : : : ; h�k; iki);the function f is given as f = �x1; : : : ; xk:e for some expression e with variables infx1; : : : ; xkg. We will then informally denote the rule byh�0; i0i = e0;where e0 is obtained from e by substituting h�j; iji for xj for all j.For an operator � 2 �, we de�ne the set A(�) of attributes of � as fh�; ii j � 2A and i 2 [0; rk(�)]g. If h�0; i0i = f(h�1; i1i; : : : ; h�k; iki) is a rule in R(�), we say h�0; i0iis de�ned in terms of h�1; i1i; : : : ; h�k; iki (at �). Likewise, if h�0; 0i = f(h�1; 0i; : : : ; h�k; 0i)is a rule in Rroot, then h�0; 0i is said to be de�ned in terms of h�1; 0i; : : : ; h�k; 0i (at theroot). For attributes � and � in A, if there are i; j such that h�; ii is de�ned in terms ofh�; ji at some �, or at the root, then we say � is de�ned in terms of �.Remark 1.28. We do not require Bochmann normal form [Boc76].
15

1.6.2 Semantic Instructions and TestsLet t be a tree over �. The set of attributes of t isA(t) = A� Vt:De�nition 1.29. For every tree t 2 T�, and node u 2 Vt, if nlab(u) = �, andh�0; i0i = f(h�1; i1i; : : : ; h�k; iki)is a rule in R(�), then h�0; u � i0i = f(h�1; u � i1i; : : : ; h�k; u � iki)is an internal semantic instruction of t. Analogously, if h�0; 0i = f(h�1; 0i; : : : ; h�k; 0i) isa root rule of t, then h�0; root(t)i = f(h�1; root(t)i; : : : ; h�k; root(t)i) is a semantic rootinstruction of t. Likewise for the semantic conditions: if C(�) = f(h�1; i1i; : : : ; h�k; iki)),then f(h�1; u � i1i; : : : ; h�k; u � iki)) is a semantic test of t.The set of all internal semantic instructions of t is Rint(t). The set of all semantic rootinstructions is Rroot(t). The set of all semantic instructions of t is R(t) = Rint(t)[Rroot(t).The set of all semantic tests of t is C(t). So, semantic rules and conditions are associatedwith labels, and instructions and tests are associated with nodes of a tree.1.6.3 DecorationWe de�ne how to give the correct values to the attributes of the tree.De�nition 1.30. Let � be an operator alphabet, G an attribute grammar over �, and ta tree over �. Let dec be a function from A(t) to [
, such that dec(h�; ui) 2 W (�) for allh�; ui 2 A(t). The function dec is a decoration of t if the following two conditions hold.1. All semantic root instructions are obeyed, i.e., for every instructionh�0; root(t)i = f(h�1; root(t)i; : : : ; h�k; root(t)i)in Rroot(t),dec(h�0; root(t)i) = f(dec(h�1; root(t)i); : : : ; dec(h�k; root(t)i)):2. The internal semantic instructions are obeyed, i.e., for every instructionh�0; u � i0i = f(h�1; u � i1i; : : : ; h�k; u � iki)in Rint(t), dec(h�0; u � i0i) = f(dec(h�1; u � i1i); : : : ; dec(h�k; u � iki)):16

Moreover, dec is a valid decoration if the following condition holds:3. The semantic tests are passed, i.e., for every testf(h�1; u � i1i; : : : ; h�k; u � iki)in C(t), we have f(dec(h�1; u � i1i); : : : ; dec(h�k; u � iki)) = true :Note that the �rst two conditions can be merged to the following: for every instructionh�0; u0i = f(h�1; u1i; : : : ; h�k; uki)in R(t), dec(h�0; u0i) = f(dec(h�1; u1i); : : : ; dec(h�k; uki)):1.6.4 Weak Non-circularityWe introduce a condition that implies that an attribute grammar has a unique decorationon every tree. This criterion is a bit more relaxed than the classical concept of non-circularity, but it su�ers from a computability problem.For classical non-circularity [Knu68], we demand that the dependency graph is acyclicfor every tree. For some of our purposes, speci�cally in Chapter 4 (where we considerconditional semantic rules in combination with decomposition in phases), this condition istoo conservative. Therefore we introduce the concept of a weak-dependency graph, thathas edges corresponding to `real' dependencies only.De�nition 1.31. A function f depends on its ith argument if9a1; : : : ; ai�1; a; a0; ai+1; : : : ; ak : f(a1; : : : ; ai ; : : : ; ak) 6= f(a1; : : : ; a0i ; : : : ; ak):For example, the function �a; b; c:(a+ b)=c does depend on it's third argument, but thefunction �a; b; c:a+ b does not depend on its third argument.It is undecidable whether f depends on its ith argument. This follows from Rice'stheorem (`every non-trivial property of a computable function is undecidable'), see e.g.[Wei87].In a weak-dependency graph we depict how one attribute of a node depends on another.De�nition 1.32. For an attribute grammar G, the weak-dependency graph of a tree tover � is the unlabelled graph WDG(t) = (V;E), whereV = A(t)E = f(h�; ui; h�0; u0i) j 9i : (h�0; u0i = f(: : : ; h�; uii ; : : :)) 2 R(t)and f depends on its ith argumentg:17

Now, we call an attribute grammar G weakly non-circular if for every t, WDG(t) isacyclic.Unfortunately, because it is undecidable whether f depends on its ith argument, theweak-dependency graph is not computable, and weak non-circularity is in general notdecidable. In the special case of attribute grammars with �nite semantic domains, however,weak non-circularity is decidable, because dependencies are computable for �nite functions.Note that weak non-circularity is indeed implied by classical non-circularity.Proposition 1.33. If an attribute grammar G is weakly non-circular, then for every t,there is exactly one decoration of t.The truth of this proposition can most easily be seen by the fact that any weakly non-circular ag can be changed into a classically non-circular ag with the same decorations,in the following straightforward manner. For every semantic ruleh�0; i0i = f(h�1; i1i; : : : ; h�k; iki)and j 2 [1; k], we remove attribute h�j; iji if f does not depend on j (and changingf accordingly). This does not change the e�ect of the rules, but makes the attributegrammar classically non-circular. Weak non-circularity only makes a real di�erence if weuse a decomposition in phases, de�ned below in Subsection 1.6.7. There, we will presentan example in which weak non-circularity really di�ers from classical non-circularity.If t has a unique decoration, we denote it by decG;t. We will also write h�; uiG;t fordecG;t(h�; ui). We will leave out the subscripts whenever they are clear from context.Note that weak non-circularity is a su�cient, but not a necessary condition for unique-ness of the decoration, see for example [CM79].De�nition 1.34. A weakly non-circular attribute grammar G de�nes a partial functionG : T� *W (�mean), as followsG(t) = decG;t(h�mean; root(t)i); if decG;t is valid.For weakly non-circular unconditional attribute grammars, G is a total function (be-cause in that case, all decorations are valid).1.6.5 Weak Single Use RequirementThe `weak single use requirement' [Gie88] states that in no tree an attribute should beused more than once. We will use this in Chapter 4 to limit the power of tree transducers.De�nition 1.35. An AG G over � is wsur if for every t 2 T�, WDG(t) has no nodewith more than one outgoing edge.Wsur is in general not decidable, because dependencies are not computable.18

1.6.6 Computing the decorationWe show here how we can compute a valid decoration bottom-up, in a non-deterministicway, if one exists. This is not the way it is usually done, but we need this for Chapter 2,where we will have a tree automaton simulate an attribute grammar. See [Eng84], but also[FV95] for the usual ways to compute decorations.De�nition 1.36. Let � be an operator alphabet, G a weakly non-circular attribute gram-mar over � and t a tree over �. A top-less decoration of t is a function dec assigning toevery h�; ui 2 A(t) a value dec(h�; ui) 2 W (�), such that conditions 2 and 3 of De�ni-tion 1.30 are satis�ed.Loosely speaking, a top-less decoration is a valid decoration that does not necessarilysatisfy the root rules. A tree can have more than one top-less decoration (given an ag).Intuitively, this is because the inherited attributes of the root are not prescribed. However,a top-less decoration that satis�es condition 1 of De�nition 1.30, is a valid decoration.Using top-less decorations we can build a valid decoration bottom-up. We will haveto do this non-deterministically, guessing the right top-less decoration out of the possibleones, on every step up. The following lemma shows how to make a step up in the tree.Lemma 1.37. Let t = �t1 � � � tk be a tree over �, and G a weakly non-circular ag over�. A function dec is a top-less decoration of t i� the following conditions hold:� dec � A(ti) is a top-less decoration of ti, for all i 2 [1; k],� for every rule h�0; i0i = f(h�1; i1i; : : : ; h�r; iri)in R(�),dec(h�0; root(t) � i0i) = f�dec(h�1; root(t) � i1i); : : : ; dec(h�r; root(t) � iri)�; and� if C(�) = f(h�1; i1i; : : : ; h�r; iri), thenf�dec(h�1; root(t) � i1i); : : : ; dec(h�r; root(t) � iri)� = true :The straightforward proof is omitted.1.6.7 Decomposition in PhasesIn an attribute grammar, there may be a (natural) order in the attributes. Sometimesthe value of one attribute does not depend on the value of another. Then, the value of alloccurrences of one attribute can be evaluated before the value of any occurrence of anotherattribute is known. In such a case, the evaluation of the attributes can be decomposedinto phases. 19

De�nition 1.38. Let G = h�;
; B; R; C; �meani be a not necessarily weakly non-circularattribute grammar. An ordered partition P = (A1; : : : ; An) of A is a decomposition inphases if for all �; � 2 A, if � is de�ned in terms of �, and � 2 Ak, then � 2 Aj for somej � k. If P is a decomposition in phases, we de�ne phaseP (�) = p i� � 2 Ap.A decomposition in phases not only separates the attributes, but also the evaluationof the attributes. We can �rst evaluate the attributes in phase 1, then the attributes inphase 2, and so on, resulting in the original decoration (if it exists).For every phase p 2 [1; n] and tree t 2 T�, we have the set of tree attributes Ap(t) =Ap�Vt. Furthermore, we have the sets of semantic instructions Rpint(t), Rproot(t), and Rp(t),and the decoration decpG;t (if it exists). We will de�ne them using simultaneous inductionon p, assuming decqG;t exists for all q < p.� First, Rpint(t) consists of the instructions in Rint(t) with left-hand side h�; ii for certaini and � 2 Ap, where decq(h�; ji) takes the place of h�; ji, for all j and � withphase(�) = q < p. Technically, ifh�0; u0i = f(h�1; u1i; : : : ; h�k; uki) 2 Rint(t);and �0 2 Ap, then h�0; u0i = f 0(h�1; u1i; : : : ; h�k; uki) 2 Rpint(t);where for all w1 2 W (�1); : : : ; wk 2 W (�k), f 0(w1; : : : ; wk) = f(x1; : : : ; xk), wherexl = 8<:wl if phase(�l) � p,decq(h�l; ili) if phase(�l) = q < p.Note that in the second case, f 0 does not depend on its lth argument. Analogouslywe de�ne Rproot(t), and last, Rp(t) = Rpint(t) [Rproot(t).� A phase-p decoration is de�ned like in De�nition 1.30: it is a function from Ap(t) toS
 (that assigns values from the appropriate semantic domains) such that1. all semantic root instructions in Rproot(t) are obeyed, and2. all internal semantic instructions in Rpint(t) are obeyed.If t has a unique a phase-p decoration, it is denoted decpG;t.Note that decpG;t exists for all p i� decG;t exists, and that if that is the case, decG;t =Sp2[1;n] decpG;t. Note that for any p, phases 1 up to p constitute an attribute grammar inits own right.The fact that we have attributes and instructions for every phase means that we can de�nea weak-dependency graph for every phase. 20

De�nition 1.39. For ag G with decomposition in phases P = (A1; : : : ; An), the phase-pweak-dependency graph of a tree t over � is the unlabelled graph WDpG;P (t) = (V;E),where V = Ap(t)E = f(h�; ui; h�0; u0i) j 9i : h�0; u0i = f(: : : ; h�; uii ; : : :) 2 Rp(t)and f depends on its ith argumentg:This means the concepts of weak non-circularity and wsur generalize naturally tophases.De�nition 1.40. Let G be a (not necessarily weakly non-circular) attribute grammar, andP a decomposition in phases of G. Attribute grammar G is phase-p wsur with respect toP if for every tree t, no node in WDp(t) has more than one outgoing edge. It is phase-pweakly non-circular with respect to P if for every t, WDp(t) is acyclic. If G is phase-pweakly non-circular for every phase p, G is weakly non-circular with respect to P .Lemma 1.41. If an attribute grammar G is weakly non-circular with respect to a decom-position in phases P , then, for every t, there is exactly one decoration of t.The proof is analogous to the classical proof that non-circular attribute grammarsinduce a unique decoration on every tree.Note that if an attribute grammar is weakly non-circular, it is weakly non-circularwith respect to any decomposition in phases, because WDpG;P is a subgraph of WDG(t).The opposite need not hold: an attribute grammar can be non-circular with respect to adecomposition in phases while it is not non-circular. As shown in the next example, thishappens in particular when conditional semantic rules are used (as will be done in Chapter4).Example 1.42. Consider the attribute grammarG = h�;
; (S; I;W); Ri, with � = �0[�1,�0 = f�;#g, �1 = f�g,
 = fNg, S = f�; �; g, I = ;, W maps every element of S to N ,and the semantic rules are as follows. The set of rules R(�) ish�; 0i = 0h�; 0i = 0h; 0i = 0The set of rules R(#) is h�; 0i = 1h�; 0i = 1h; 0i = 121

 � �� � 111 1 11 11 1��##�
���#Figure 1.2: The dependency graph of ��#, its phase-1 dependency graph and its phase-2dependency graphThe set of rules R(�) is h�; 0i = 8<:h�; 0i if h; 1i = 01 otherwiseh�; 0i = 8<:0 if h; 1i = 0h�; 0i otherwiseh; 0i = h; 1iThe leftmost picture in Figure 1.2 shows the weak-dependency graph WD(t) of the treet = ��#. Clearly, the attribute grammar is circular. We can however decompose it, withdecomposition P = (fg; f�; �g). If we do this, we see that the weak-dependency graphsof both phases are acyclic, for example, in the case of tree t, the phase-1 and phase-2dependency graphs WD1(t) and WD2(t) are depicted in Figure 1.2. Note that the value of is known in the second phase, and hence in both the rules for � and �, one of the casesfalls away, which means that some dependencies no longer exist.It follows that G is weakly non-circular with respect to P . Indeed, there is a uniquedecoration for every tree: A tree of the form �� � � ��� has decG(h�; ui) = decG(h�; ui) =decG(h; ui) = 0 for all nodes u, and a tree of the form �� � � ��# has decG(h�; ui) =decG(h�; ui) = decG(h; ui) = 1 for all nodes u.1.7 Monadic Second Order Logic on GraphsMonadic second order logic is used to describe properties of graphs. We will informallyintroduce it here. The interested reader is refered to [Cou90, Eng91, Oos89].

22

SyntaxFor alphabets � and �, we use the language MSOL(�;�), of monadic second order (mso)formulas over (�;�). Formulas in MSOL(�;�) describe properties of graphs over (�;�).This logical language has node variables x; y; : : : , and node-set variables X; Y; : : : . Fora given graph G over (�;�), node variables range over the elements of VG, and node-setvariables range over the subsets of VG.There are three types of atomic formulas in MSOL(�;�):1. lab�(x), for every � 2 �, denoting that x has label �,2. edg(x; y), for every 2 �, denoting that an edge labelled runs from x to y, and3. x 2 X, denoting that x is an element of X.The formulas are built from the atomic formulas using the connectives ^ (conjunction),_ (disjunction), : (negation), and ! (implication), as usual. We can quantify both nodevariables and node-set variables, using the quanti�ers 9 and 8. The quanti�ers and negationbind more strongly than the binary connectives do.For every n, the set of mso formulas over (�;�) with n free node variables and nofree set variables is denoted MSOLn(�;�). Because we are predominantly interested intrees, an mso formula over (�; rks(�)) will also simply be called an mso formula over �(where � is an operator alphabet). Also, MSOL(�; rks(�)) and MSOLn(�; rks(�)) will beabbreviated to MSOL(�) and MSOLn(�), respectively.SemanticsFor a closed formula � 2 MSOL0(�;�) and a graph G 2 GR(�;�), we write G j= � if Gsatis�es �.Given a graph G, a valuation b is a function that assigns to each node variable anelement of VG, and to each node-set variable a subset of VG. We write (G; b) j= �, if �holds in G, where the free variables of � are assigned values according to the valuation b.If a formula � has free variables, say, x;X; y and no others, we also write �(x;X; y). Ifit is not ambiguous, we write (G; u; U; v) j= �(x;X; y) for (G; [x 7! u;X 7! U; y 7! v]) j=�(x;X; y), listing the values for the variables in alphabetical order of the variables (capitalletters come immediately after their lower-case counterparts).An mso formula de�nes a relation on the nodes of any graph.De�nition 1.43. Given a graph G 2 GR(�;�), a formula �(x1; : : : ; xm) 2 MSOLm(�;�)de�nes a relationRG(�) = f(u1; : : : ; um) 2 V mG j (G; u1; : : : ; um) j= �(x1; : : : ; xm)g:Associated with an mso formula are its graph and tree semantics.23

De�nition 1.44. Let �;� be alphabets, m � 0, and �(x1; : : : ; xm) 2 MSOLm(�;�). Thegraph semantics of �(x1; : : : ; xk) isLGR(�) = f(G; u1; : : : ; um) j G 2 GR(�;�); u1; : : : ; um 2 VG; and(G; u1; : : : ; um) j= �(x1; : : : ; xm)g;and, if � is an operator alphabet and � = rks(�), the tree semantics of �(x1; : : : ; xk) isL(�) = LGR(�) � T�:For any �;�, a graph language L � GR(�;�) is called mso de�nable if there is a closedformula � such that LGR(�) = L. Analogously, for any �, a tree language L � T� is calledmso de�nable if there is a closed formula � such that L(�) = L.The set of all mso de�nable tree languages is denoted msot. It is equal to the set ofregular tree languages.Proposition 1.45. [Don70, TW68] msot = regtBecause the proof of this lemma is constructive, from Proposition 1.26 we can concludethe following.Proposition 1.46. The following are decidable for any formula � 2 MSOL0(�):1. Membership: t 2 L(�),2. � is a contradiction: L(�) = ;, and3. � is a tautology: L(�) = T�.More NotationWe use syntactic substitution on formulas, in the same manner as we did for terms inSection 1.3. We will also abbreviate substitution. For example, if � has free variables x; y,we write �(z; y) for �[x 7! z; y 7! y], listing the substitutes in alphabetical order of thesubstituted variables.If A = fa1; : : : ; ang is a �xed set and �[a 7! aj] is an MSO formula for all j, wewrite Wa2A �, or 9a 2 A : �, for �[a 7! a1] _ � � � _ �[a 7! an]. Also, we write Va2A �, or8a 2 A : � for �[a 7! a1] ^ � � � ^ �[a 7! an]. For example, 9a 2 f; �g edga(x; y) denotesedg(x; y) _ edg�(x; y).We use some more abbreviations of formulas in MSOL(�;�), listed in Table 1.1. Themeaning of most of them is obvious. The abbreviation x = y � k, for a constant k meansthat x is the kth child of y if k > 0, and x = y if k = 0. If (G;U) j= closed�(x;y)(X), thenU is closed under RG(�). The formula path(x; y) states that x is connected to y through24

abbreviation stands for�$ (�!) ^ (! �)x = y 8X : (x 2 X $ y 2 X)x 6= y :(x = y)false 9x : x 6= xtrue : false9!x : � 9x(� ^ 8y(�[x 7! y]! y = x))x = y � k x = y if k = 0, and edgk(y; x) if k 2 N+closed�(x;y)(X) 8x; y�(x 2 X ^ �(x; y))! y 2 X�udg(x; y) edg(x; y) _ edg(y; x) (undirected edge)edg(x; y) 9 2 � : edg(x; y)udg(x; y) 9 2 � : udg(x; y)path(x; y) 8X : ((x 2 X ^ closededg(x;y)(X))! y 2 X)path(x; y) 8X : ((x 2 X ^ closededg(x;y)(X))! y 2 X)acpath(x; y) 9X : (x 2 X ^ 8z 2 X(z = y _ 9z0 2 X : edg(z; z0)))upath(x; y) 8X : ((x 2 X ^ closedudg(x;y)(X))! y 2 X)root(x) :9y : edg(y; x)leaf(x) :9y : edg(x; y)Table 1.1: Abbreviations for msoa path of edges with label only. In an acyclic graph, acpath is equivalent to path. Theabbreviations root(x) and leaf(x) mean that x is a root (no incoming edges) or leaf (nooutgoing edges) respectively.Transitive, Reexive ClosureFor any formula �(x; y), we de�ne the formula��(x; y) = 8X((x 2 X ^ closed�(x;y)(X))! y 2 X):The relation de�ned by ��(x; y) de�nes the transitive, reexive closure of the relationde�ned by �(x; y) ([Cou90]).Lemma 1.47. Let �;� be alphabets, G 2 GR(�;�), and �(x; y) 2 MSOL2(�;�). Then,RG(��) = RG(�)�.Proof. First we prove (u; v) 2 RG(��)) (u; v) 2 RG(�)�, and then we prove (u; v) 2RG(�)�) (u; v) 2 RG(��).� Suppose (G; u; v) j= 8X : ((x 2 X ^ closed�(x;y)(X)) ! y 2 X). The set U = fw 2VG j (u; w) 2 RG(�)�g is closed under RG(�). So, since u 2 U , it follows that v 2 U ,and thus (u; v) 2 RG(�)�. 25

� Let (u; v) 2 RG(�)�. We have to prove (G; u; v) j= 8X : ((x 2 X ^ closed�(x;y)(X))!y 2 X). Take a U � VG, with u 2 U and U closed under RG(�). Because (u; v) 2RG(�)�, there are u1; : : : ; un, with u1 = u, un = v, and (ui; ui+1) 2 RG(�). BecauseU is closed under RG(�), and u1 2 U , by induction u2; : : : ; un = v 2 U .

26

Chapter 2Tree-Node LanguagesWe can use mso formulas with one free variable to select nodes of a tree. For the samepurpose, we can also use an attribute grammar with a designated boolean attribute �.Given a tree t, the attribute grammar recognizes those nodes v of t that have dect(h�; vi) =true. These two methods will turn out to be equivalent when we restrict the attributegrammar to have �nite semantic domains.In Section 2.5 we will go into the complexity of calculating whether an mso formulawith free variables holds for given tree and nodes, and the complexity of computing therelation de�ned by an mso formula with free variables, given a tree.2.1 De�nitionsFirst we de�ne tree-node languages, i.e., sets of tree nodes.De�nition 2.1. Let � be an operator alphabet. A tree-node language T over � is a setT � f(t; v) j t 2 T� and v 2 Vtg.Tree-node languages can be de�ned by an mso formula with one free variable. Accordingto De�nition 1.44, for an operator alphabet �, a formula �(x) 2 MSOL1(�) de�nes thetree-node language L(�(x)) = f(t; v) j t 2 T�, v 2 Vt, and (t; v) j= �(x)g.The set of all tree-node languages T , for which there is an operator alphabet � and aformula �(x) 2 MSOL1(�) such that L(�(x)) = T , is the set of mso-de�nable tree-nodelanguages, denoted mso-tn.Tree-node languages can also be recognized by an attribute grammar with �nite semanticdomains. A node-recognizing attribute grammar has a designated attribute � withW (�) =B (a `boolean attribute'). It recognizes the tree nodes v of a tree t with h�; vit = true.De�nition 2.2. Let � be an operator alphabet, G a weakly non-circular attribute grammarover � with �nite semantic domains, and � a boolean attribute of G. Then, the node-recognizing attribute grammar (G; �) recognizes the tree-node languageL(G; �) = f(t; v) j t 2 T�; v 2 Vt and h�; viG;t = trueg:27

The set of all tree-node languages T for which there is a node-recognizing attribute grammar(G; �), such that L(G; �) = T , is the set of all ag-recognizable tree-node languages, denotedag-tn.It should be clear that it makes no di�erence whether we use weakly non-circular orclassically non-circular in the above de�nition.We claim that mso-tn = ag-tn and will proceed to prove this in the next sections.First we introduce some more notation.We de�ne how to mark nodes in a tree. Let B1 = f1g. The operator alphabet �[(��B1) is the alphabet for which rk�[(��B1)(�) = rk�[(��B1)(h�; 1i) = rk�(�).We will use �[(��B1) to mark certain nodes in a tree: For any tree t over �[(��B1),a node v is called marked if its label is h�; 1i for some � 2 �.For every tree t 2 � [(� � B1), the underlying tree und(t) over � is obtained byreplacing every label h�; 1i in t by its �rst component �, and leaving the other labelsunchanged.There is an obvious bijection between tree nodes and certain marked trees.De�nition 2.3. For every tree t 2 T� and node v of t, mark(t; v) 2 T�[(��B1) is thecorresponding marked tree, de�ned as followsmark(t; v) = (Vt; Et; nlab0; elabt), wherenlab0 = �w 2 Vt:8<:nlabt(w) if w 6= vhnlabt(w); 1i if w = vSo, mark(t; v) has exactly one marked node: v. We use labels � instead of h�; 0i,because now any subtree of mark(t; v) rooted in a node u that does not have a markednode is equal to the subtree of t rooted in u.De�nition 2.4. Let T be a tree-node language over �. The test language of T is a treelanguage test(T) over � [(�� B1):test(T) = ft 2 T�[(��B1) j 8v 2 Vt : if 9� 2 � : nlab(v) = h�; 1i; then (und(t); v) 2 TgSince und(mark(t; v)) = t for all t and v, obviously (t; v) 2 T i� mark(t; v) 2 test(T).We will use this observation twice in the following sections.We prove mso-tn = ag-tn in two parts. In Section 2.2 we will prove that for anymso formula �(x) that de�nes a tree-node language T , there is a closed mso formula that de�nes the test language of T , and vice-versa. This is equivalent to T 2 mso-tn i�test(T) 2 msot. Next, in Section 2.3 we prove that for any node-recognizing attributegrammar that recognizes a tree-node language T there is a tree automaton that recognizesthe test language of T , or, in other words, that T 2 ag-tn i� test(T) 2 regt. Becausewe know that msot = regt (Proposition 1.45), we conclude in Section 2.4 that msoformulas with one free variable and node-recognizing attribute grammars recognize thesame languages, i.e., mso-tn = ag-tn. 28

2.2 MSO De�nable Tree-Node Languages and TestLanguagesA tree-node language is mso de�nable if and only if its test language is. This is proven byrewriting the formula de�ning a language into a formula de�ning the corresponding testlanguage and vice-versa.Let � be an operator alphabet, and let T be a tree-node language over �. Let �(x) be anmso formula over �, with one free node variable x, such that T = L(�(x)). From �(x) wecan obtain the closed mso formula over � [(�� B1): = 8x((9� 2 � : labh�;1i(x))! �0(x));where the mso formula �0(x) over � [(� � B1) is obtained from �(x) by substituting(lab�(y) _ labh�;1i(y)) for lab�(y), for every � 2 � and node variable y.Clearly, (t; v) j= �0(x) i� (und(t); v) j= �(x), and therefore L() = test(T).Example 2.5. Let � = �0 [�2, with �0 = f�;#g, and �2 = f�g. Now consider thefollowing mso formula from MSOL1(�).�(x) = 9!y : lab�(y) ^ 9y(path(x; y) ^ lab�(y)):For a tree t and a node u of t, (t; u) j= �(x) i� t has exactly one leaf labelled �, and u ison the path from the root of t to that leaf. The tree-node language de�ned by �(x) isL(�(x)) = f(t; u) j t 2 T�; (t; u) j= �(x)g;which is the language consisting of all tuples (t; u), where t is a tree with exactly one leafv labelled �, and u is on the path from root(t) to v. The test language corresponding toL(�) istest(L(�)) = ft 2 T�[(��B1) j 8v 2 Vt : if 9� 2 � : nlab(v) = h�; 1i; then (und(t); v) j= �g;which is the language consisting of all trees t 2 T�[(��B1), that have exactly one leaflabelled �, and in which only on nodes on the path from the root to that leaf are marked,and all trees from T�[(��B1) that have no marked nodes at all (i.e., T�). The closed msoformula that recognizes this language is = 8x�9� 2 � : labh�;1i(x)!�9!y(lab�(y) _ labh�;1i(y)) ^ 9y(path(x; y) ^ (lab�(y) _ labh�;1i(y)))��:
29

We now prove that for any closed mso formula that de�nes the language test(T) forsome tree-node language T , there is a formula �(x) that de�nes T . We do this in a similarmanner. Let T be a tree-node language over � and let be a closed mso formula over� [(��B1) such that L() = test(T). Assuming x is not a variable of , we construct aformula �(x) over � from , by replacing, for each node variable y,1. all occurrences of labh�;1i(y) by (lab�(y) ^ y = x), and2. all occurrences of lab�(y) by (lab�(y) ^ y 6= x).Clearly, (t; v) 2 L(�(x)) i� mark(t; v) 2 L(), and hence L(�(x)) = T .From these two observations we conclude the following result.Proposition 2.6. For every operator alphabet � and tree-node language T over �,T 2 mso-tn() test(T) 2 msot :2.3 AG Recognizable Tree-Node Languages and TestLanguagesIn this section we prove that a node language is ag-recognizable i� its test language can berecognized by a tree automaton. First we prove that T 2 ag-tn implies test(T) 2 regtand then we prove that T 2 ag-tn is implied by test(T) 2 regt.If a Tree-Node Language is ag Recognizable, its Test Language isRegularLet (G; �) be a node-recognizing attribute grammar over �, and letG = (�;
; (S; I;W); R).Note that by De�nition 2.2 we may assume G to be unconditional and without �mean. LetT = L(G; �) be the node language recognized by the node-recognizing attribute grammar.We want to construct a tree automaton A(G;�) = (Q;F) over � [(� � B1), such thatL(A(G;�)) = test(T).The tree automaton will be a non-deterministic, bottom-up one. Acting on t, it simu-lates the attribute grammar on und(t), by calculating the decoration on its way up, in anon-deterministic way. In the construction we use the letter d to denote the states of theautomaton, which are functions encoding a top-less decoration of a node of the tree (seeDe�nition 1.36). The automaton accepts as �nal states all decorations that satisfy the rootrules. The set of states and the set of �nal states areQ = fd : AG ! [
 j 8� 2 AG : d(�) 2 W (�)g;F = fd 2 Q j 8h�0; 0i = f(h�1; 0i; : : : ; h�r; 0i) 2 Rroot : d(�0) = f(d(�1); : : : ; d(�r))g:30

The automaton has the following operations. For � 2 �k, it makes sure that all rules at �are satis�ed:�Q = f((d1; : : : ; dk); d0) j 8h�0; i0i = f(h�1; i1i; : : : ; h�r; iri) 2 R(�) :di0(�0) = f(di1(�1); : : : ; dir(�r))g;and, for all h�; 1i 2 � � B1, it does the same, but at the same time makes sure that thedesignated attribute is set:h�; 1iQ = f((d1; : : : ; dk); d0) j 8h�0; i0i = f(h�1; i1i; : : : ; h�r; iri) 2 R(�) :di0(�0) = f(di1(�1); : : : ; dir(�r)) and d0(�) = trueg:Please note that Q is indeed �nite, because G has �nite semantic domains. For anymarked tree t, the automaton A(G;�) tries to �nd a top-less decoration of und(t), in whichh�; vit = true for every node v that is marked in t. It does so by guessing decorations ofthe nodes of the underlying tree. Moving up in the tree, it makes sure that all internalrules of G are satis�ed. The tree automaton can either succeed, in which case it has foundthe unique decoration of und(t) which satis�es this condition and the root rules, or fail, inwhich case there is no such decoration. The decoration of a node v is encoded as a functiond, such that d(�) represents h�; vi.Lemma 2.7. L(A(G;�)) = test(T).Proof. Let t be a marked tree. The top-less decorations are correct: d 2 valP(Q)(t) i� thereis a top-less decoration dec of und(t), with for every � 2 AG, d(�) = dec(h�; root(t)i), anddec(h�; ui) = true for every marked node u 2 Vt. This can easily be seen by induction ont, using Lemma 1.37.Now, valP(Q)(t) \ F 6= ; i� for every marked node u 2 Vt, the unique decorationdecG;und(t) of und(t) by G has decG;und(t)(h�; ui) = 1, or, equivalently, (und(t); u) 2 L(G; �)for every marked node u 2 Vt.So, we have proved that the test language for an ag recognizable language is indeedregular.Lemma 2.8. For any operator alphabet �, and tree-node language T over �,T 2 ag-tn =) test(T) 2 regt :A Tree-Node Language is AG Recognizable if its Test Languageis RegularWe will now show that if we have a test language test(T), that is recognizable, we can �nda node-recognizing attribute grammar that recognizes T .31

Let � be an operator alphabet, and let T be a tree-node language over �. Let A =(Q;F) be a deterministic �nite tree automaton over �[(��B1) with L(A) = test(T). Weconstruct an attribute grammarGA = (�;
; (S; I;W); R) over � with designated attribute�, such that L(GA; �) = T .The attribute grammar has inherited attribute �, with semantic domain P(Q) andsynthesized attributes � and �, with semantic domain Q and B respectively. Formally,
 = fQ;P(Q); Bg, S = f�; �g, I = f�g, and W is de�ned as W (�) = Q, W (�) = P(Q),and W (�) = B .Intuitively, for a tree t over T�, � simulates the behavior of the tree automaton on t,assuming that no node is marked. Attribute � of a node v holds those states q, for whichthe tree automaton accepts the tree, assuming that it has reached v in state q and thatthe context of v contains no marked nodes. For every node v 2 Vt, with label �, mark(t; v)is accepted by A if h�; 1iQ applied to the �-values of its children yields a successful value,i.e., a value in �. Attribute � of v is true if and only if this condition holds. The internalsemantic rules for every � 2 �k areh�; 0i = �Q(h�; 1i; h�; 2i; : : : ; h�; ki)h�; ii = fq 2 Q j �Q(h�; 1i; : : : ; qi ; : : : ; h�; ki) 2 h�; 0ig for 1 � i � kh�; 0i = �h�; 1iQ(h�; 1i; h�; 2i; : : : ; h�; ki) 2 h�; 0i�We have one semantic root rule: h�; 0i = F:The attribute grammarGA is weakly non-circular, because it is non-circular in the classicalsense [Knu68]. In fact, it is a two-pass ag [Boc76], with decomposition in phases A =(f�g; f�; �g).We want to prove that GA is correct, i.e., given a tree t, a node v is recognized by(GA; �) i� (t; v) 2 T . To this aim we have the following lemmata.Lemma 2.9. Let t be a tree over �. For every node v of t,h�; vi = valQ(subt(v)):Proof. We prove this by induction on the depth of subt(v).Base: v is a leaf, so subt(v) = � for some � 2 �0. Thenh�; vi = �Q [by de�nition of �]= valQ(�) [by de�nition of val]= valQ(subt(v))Induction: Let subt(v) = �t1t2 � � � tk, where k = rk(�). By induction, h�; yi = valQ(subt(y))for every i and every node y of ti. So in particular h�; v � ii = valQ(subt(v � i)) = valQ(ti).32

Hence,h�; vi = �Q(h�; v � 1i; : : : ; h�; v � ki) [by de�nition of �]= �Q(valQ(t1); : : : ; valQ(tk)) [follows from the induction hypothesis]= valQ(�t1 : : : tk) [by de�nition of val]= valQ(subt(v))
w ctxt(w)w � i subctxt(w�i)(w)Figure 2.1: Contexts and subtreesThe � attribute of a node v of t holds exactly those states the subtree rooted in v mayyield, so that valQ(t) 2 F , assuming the context of v holds no marked nodes. In otherwords,Lemma 2.10. Let t be a tree over �. For every node v of t,h�; vi = fq 2 Q j valQ(ctxt(v))[� 7! q] 2 FgProof. We prove this by induction on the depth of v.Base: The depth is 0, so v = root(t). Then,valQ(ctxt(v))[� 7! q] 2 F , valQ(�)[� 7! q] 2 F [v = root(t)], q 2 F [by de�nition of val], q 2 h�; root(t)i [because of the root rule], q 2 h�; viInduction: v = w � i for some node w of t and some i 2 [1; k], where k = rk(w). Forbetter understanding, please note thatctxt(w � i) = ctxt(w)[� 7! subctxt(w�i)(w)], and (2.1)subctxt(w�i)(w) = nlabt(w) subt(w � 1) � � � �i � � � subt(w � k); (2.2)33

(see Figure 2.1), and thus, valQ(subctxt(w�i)(w))[� 7! q]= valQ(nlabt(w) subt(w � 1) � � � �i � � � subt(w � k))[� 7! q]= [by de�nition of val, and because the subtrees of w do not contain label �](nlabt(w))Q(valQ(subt(w � 1)); : : : ; qi ; : : : ; valQ(subt(w � k)))= [by Lemma 2.9] (nlabt(w))Q(h�;w � 1i; : : : ; qi ; : : : ; h�;w � ki): (2.3)The proof follows. valQ(ctxt(w � i))[� 7! q] 2 F() [by Equation 2.1]valQ(ctxt(w)[� 7! subctxt(w�i)(w)])[� 7! q] 2 F() [by Proposition 1.18]valQ(ctxt(w))[� 7! valQ(subctxt(w�i)(w))[� 7! q]] 2 F() [by Equation 2.3]valQ(ctxt(w))[� 7! (nlabt(w))Q(h�;w � 1i; : : : ; qi ; : : : ; h�;w � ki)] 2 F() [by induction](nlabt(w))Q(h�;w � 1i; : : : ; qi ; : : : ; h�;w � ki) 2 h�; wi() [by de�nition of �] q 2 h�; w � ii
34

The following lemma proves the correctness of the attribute grammar. It states that �of a node v is true i� A succeeds on mark(t; v).Lemma 2.11. Let t be a tree over �, v a node of t, and k = rk(v). Thenh�; vi = true, valQ(mark(t; v)) 2 FProof. h�; vi = true() [by de�nition of �]hnlabt(v); 1iQ(h�; v � 1i; : : : ; ha; v � ki) 2 h�; vi() [by Lemma 2.10]valQ(ctxt(v))h� 7! hnlabt(v); 1iQ(h�; v � 1i; : : : ; h�; v � ki)i 2 F() [by Lemma 2.9]valQ(ctxt(v))h� 7! hnlabt(v); 1iQ(valQ(subt(v � 1)); : : : ; valQ(subt(v � k)))i 2 F() [by de�nition of val]valQ(ctxt(v))h� 7! valQ(hnlabt(v); 1i(subt(v � 1) : : : subt(v � k)))i 2 F() [by Proposition 1.18]valQ� ctxt(v)[� 7! hnlabt(v); 1i(subt(v � 1) : : : subt(v � k))]� 2 F() valQ(mark(t; v)) 2 FFrom this lemma it follows that (t; v) 2 L(GA; �) i� mark(t; v) 2 test(T), so L(GA; �) =T . So now we can conclude that if a tree-node language is ag recognizable, its test languageis indeed regular.Lemma 2.12. For any operator alphabet �, and tree-node language T over �,test(T) 2 regt =) T 2 ag-tn :And, combining this with Lemma 2.8, we get the following equivalence.Proposition 2.13. For any operator alphabet �, and tree-node language T over �,T 2 ag-tn() test(T) 2 regt :35

2.4 MSO De�nable and AG Recognizable Tree-NodeLanguages are the SameWe know that for any operator alphabet � and tree-node language T over �,1. T 2 mso-tn() test(T) 2 msot, from Proposition 2.6, and2. T 2 ag-tn() test(T) 2 regt, from Proposition 2.13.Now, because msot = regt (Proposition 1.45), we can conclude that mso de�nabletree-node languages are the same as ag recognizable tree-node languages.Theorem 2.14. ag-tn = mso-tnThis has the practical consequence that for any boolean attribute � of a weakly non-circular attribute grammar G with �nite semantic domains, we can assume that there isan mso formula �(x) with one free node variable, such that for any tree t and node u,decG;t(h�; ui) = true, (t; u) j= �(x);and vice-versa.This result implies that we can use an mso formula to test the value of any attributein an attribute grammar with �nite semantic domains.Lemma 2.15. Let G be a weakly non-circular attribute grammar with �nite semanticdomains. Let be an attribute of G with W () = fa1; : : : ; ang. For all i, there is an msoformula �=ai(x), with (t; u) j= �=ai(x) i� decG;t(h; ui) = ai.Proof. For all i 2 [1; n], we can make a boolean attribute �i, such that for all u, h�i; ui =true i� h; ui = ai. Hence, we can construct an mso formula �=ai(x), with (t; u) j=�=ai(x) i� decG;t(h; ui) = ai.2.5 ComplexityIn this section we address two points. First, suppose we have a �xed formula �(x1; : : : ; xk)with k � 0 free node variables. What is the complexity of checking whether or not(t; u1; : : : ; uk) j= �(x1; : : : ; xk), for a given tree t and nodes u1; : : : ; uk 2 Vt.Second, for a �xed formula �(x1; : : : ; xk) with k � 1 free node variables, what is thecomplexity of �nding Rt(�(x1; : : : ; xk)), given a tree t (see De�nition 1.43).
36

Basic LemmaWe generalize some of the notation and some of the results of the previous sections.De�nition 2.16. Let � be an operator alphabet, and k � 1. The set Bk is equal toB k nf0gk. The operator alphabet �[(��Bk) is the operator alphabet with, for any � 2 �,rk�[(��Bk)(�) = rk�(�), and for all h�; b1; : : : ; bki 2 � � Bk, rk�[(��Bk)(h�; b1; : : : ; bki) =rk�(�). Note that label h�; 0; : : : ; 0i is excluded.We can use this alphabet to attach k di�erent marks to the labels of the nodes of atree, cf. De�nition 2.3.De�nition 2.17. Let t be a tree over �, and let (u1; : : : ; uk) 2 V kt . The marked treemark(t; u1; : : : ; uk) over � [(�� Bk) is de�ned as follows.mark(t; u1; : : : ; uk) = (Vt; Et; nlab0; elabt);where nlab0 = �w 2 Vt:8<:nlabt(w) if w 6= ui for all ihnlabt(w); (w = u1); : : : ; (w = uk)i otherwise.Recall that for any u; v, (u = v) is equal to 1 (or true) if u is equal to v, and 0 (false)otherwise. We say that a node has mark j if its label is h�; b1; : : : ; 1j ; : : : ; bki for some �and bi (i 2 [1; k]). A node can have more than one mark. A node without any mark has alabel �.We now generalize the results from Section 2.2. The following lemma states that wecan move arbitrarily between free variables in the formula and marks in the tree.Lemma 2.18. For any �(x1; : : : ; xk) 2 MSOLk(�), and j 2 [1; k], there is an mso for-mula (xj+1; : : : ; xk) 2 MSOLk�j(� [(�� Bj)), such that(t; u1; : : : ; uk) j= �(x1; : : : ; xk) i� (mark(t; u1; : : : ; uj); uj+1; : : : ; uk) j= (xj+1; : : : xk);and vice versa.Proof. We proceed to prove the lemma in two parts. First we show how to construct from �, and then we show how to construct � from .� From an mso formula �(x1; : : : ; xk) we construct (xj+1; : : : ; xk) as follows: (xj+1; : : : ; xk) = 8x1 : : : xj((marked1(x1) ^ � � � ^markedj(xj))! �0(x1; : : : ; xk));where markedi(x) = 9(�; b1; : : : ; bj) 2 �� Bj : labh�;b1;:::;1i ;:::;bji(x);37

and �0(x1; : : : ; xk) is obtained from �(x1; : : : ; xk) by replacing each occurrence oflab�(z) by (lab�(z) _ 9(b1; : : : ; bj) 2 Bj : labh�;b1;:::;bji(z)), for all � and z.Clearly,(t; u1; : : : ; uk) j= �(x1; : : : ; xk) i� (mark(t; u1; : : : ; uj); uj+1; : : : ; uk) j= (xj+1; : : : ; xk):� The other way around is similar. Let us assume x1; : : : ; xj are not variables of (xj+1; : : : ; xk). We construct �(x1; : : : ; xk) by replacing, for each node variable y,1. all occurrences of lab�(y) by (lab�(y) ^ 8i 2 [1; j] : y 6= xi), and2. all occurrences of labh�;b1;:::;bji(y) by (lab�(y) ^ 8i 2 [1; j] : (bi = 1! y = xi)).It should be obvious that(t; u1; : : : ; uk) j= �(x1; : : : ; xk) i� (mark(t; u1; : : : ; uj); uj+1; : : : ; uk) j= (xj+1; : : : ; xk):
Checking a FormulaWe compute the complexity of checking a �xed formula on a given tree and nodes.Theorem 2.19. Let � be an operator alphabet, and let �(x1; : : : ; xk) 2 MSOLk(�) be a�xed mso formula with k � 0 free node variables. The complexity of checking whether ornot (t; u1; : : : ; uk) j= �(x1; : : : ; xk), for a given tree t and nodes u1; : : : ; uk 2 Vt is O(n).Proof. Please note that the size of the input (the tree together with k nodes) is of the sameorder as the size of the tree.The tree t with the nodes u1; : : : ; uk can be converted to a marked tree. This is arelabelling, which can be done in O(n) time, where n is the size of the tree. By Lemma 2.18(with j = k), the mso formula �(x1; : : : ; xk) with k free node variables can be convertedto a closed mso formula over marked trees such that (t; u1; : : : ; uk) j= �(x1; : : : ; xk)i� mark(t; u1; : : : ; uk) j= . Since msot = regt, there is a �nite deterministic treeautomaton, that checks whether the marked tree satis�es in O(n) time, so the total timeinvolved in checking the formula is O(n).Finding all Node Sequences Satisfying a FormulaWe determine the complexity of �nding Rt(�(x1; : : : ; xk)), given a formula �(x1; : : : ; xk).Theorem 2.20. Let � be an operator alphabet and let �(x1; : : : ; xk) 2 MSOLk(�) be a�xed formula with k � 1 free node variables. The complexity of �nding Rt(�(x1; : : : ; xk)),given a tree t, is O(nk). 38

Proof. First we consider the problem for formulas with only one free node variable, i.e.,k = 1. With the help of Theorem 2.14 we can transform �(x1) to a node-recognizing ag(G; �), with L(�(x1)) = L(G; �), or, in other words, (t; u) j= �(x1) i� h�; uiG;t = true.Since attribute evaluation takes linear time for a non-circular attribute grammar with�nite semantic domains [Eng84], it takes linear time to �nd all v such that (t; v) j= �(x1).Suppose k > 1. Using Lemma 2.18 (with j = k � 1), �(x1; : : : ; xk) can be transformedinto an mso formula (x) over � [(� � Bk�1) with one free node variable, such that(t; u1; : : : ; uk) j= �(x1; : : : ; xk) i� (mark(t; u1; : : : ; uk�1); uk) j= (x).Now, for any u1; : : : ; uk�1 2 Vt, we can �nd mark(t; u1; : : : ; uk�1) in O(n) time. Wecan then �nd all uk such that (mark(t; u1; : : : ; uk�1); uk) j= (x) in O(n) time, by usingan attribute grammar, as was shown above. There are O(nk�1) possible combinations foru1; : : : ; uk�1, so the time needed to �nd all u1; : : : ; uk such that (mark(t; u1; : : : ; uk�1); uk) j= (x) is O(nk).

39

Chapter 3Tree-Node RelationsIn this chapter we will consider graph-node and tree-node relations, i.e., binary relationsbetween nodes in a graph or tree. We consider two ways of de�ning such relations. The�rst way is by mso formulas with two free node variables. Two nodes are in the relationde�ned by such a formula, if they satisfy it. The other way is by regular path languages:regular languages consisting of directives on how to walk from one node to another throughthe graph, while checking mso properties of nodes. Two nodes are in the relation de�nedby a path language if you can walk from the one node to the other following the directionsof the language. For graphs, mso will turn out to be stronger at de�ning relations thanregular path languages. For trees, the strength will turn out to be the same.In Section 3.6 we will go into the complexity of computing the relation de�ned by anmso formula, when one of the free variables of the formula depends on the others.3.1 De�nitionsLet � and � be alphabets. A graph-node relation over (�;�) is a subset of f(G; u; v) j G 2GR(�;�) and u; v 2 VGg.MSO-de�nable graph node relationsLet � and � be alphabets. According to De�nition 1.44, an mso formula �(x; y) 2MSOL2(�;�) with two free node variables de�nes the graph-node relationLGR(�(x; y)) = f(G; v; w) j G 2 GR(�;�), v; w 2 VG, and (G; v; w) j= �(x; y)g:De�nition 3.1. The set of all graph-node relations L0, for which there are alphabets �;�and a formula �(x; y) 2 MSOL2(�;�) with LGR(�(x; y)) = L0 is the set of mso-de�nablegraph-node relations, denoted mso-nr.
40

Regular Graph-Node RelationsWe can de�ne graph-node relations with the help of path languages. They are akin to`regular 2-paths' in [Oos89], `routing languages' in [KS93], and `regular tree embeddings'in [Eng89].De�nition 3.2. Let � and � be alphabets. A path language over (�;�) is a string lan-guage over a set of directives, a �nite subset ofD�;� = [2�f# ; "g [MSOL1(�;�):For a path language � over �;�, D(�) is the smallest subset of D�;� such that � �D(�)�. It is always �nite.A string from a path language de�nes a relation between nodes of a graph. The stringgives a prescription of how to move from one node to another: # means \move along anedge labelled ", " means \move against an edge labelled ", and (x) means \check if holds for the current node". A pair of nodes (v; w) is in the relation de�ned by the stringif you can get from v to w following the prescription. It may seem a bit silly to use arrowsup and down instead of right and left, but the reason for that will become obvious whenwe constrain ourselves to trees.Formally, we can de�ne this as follows. Let G 2 GR(�;�). A string � over D�;�de�nes the relation RG(�) � VG� VG, which is de�ned by induction on the structure of �,as follows (where �1 and �2 are other strings over D�;�):RG(") = idVGRG(#) = f(v; w) j v !G wgRG(") = f(v; w) j w !G vgRG((x)) = f(v; v) j (G; v) j= (x)gRG(�1 � �2) = RG(�1);RG(�2)For a path language we de�ne something similar. A pair of nodes is in the relationde�ned by the language if it is in a relation de�ned by one of its constituents. So, for apath language � over (�;�), we de�ne RG(�) = SfRG(�) j � 2 �g. Now, a path language� de�nes the graph-node relationLGR(�) = f(G; v; w)) j G 2 GR(�;�) and (v; w) 2 RG(�)g:De�nition 3.3. A path language over (�;�) is regular if it is a regular string languageover a �nite subset of D�;�. If � is a regular path language, then LGR(�) is a regulargraph-node relation over (�;�). The set of all regular graph-node relations over any (�;�)is denoted rp-nr. 41

Example 3.4. Let � = f�; �g, and � = f; �g. In Figure 3.1 you �nd graph G 2 GR(�;�).Consider regular expression r1 =#�. It de�nes the relationRG(kr1k) = f(u1; u1); (u2; u2); (u3; u3); (u4; u4); (u1; u2); (u1; u4); (u2; u1); (u2; u4)g:Also, consider the expressions r2 = lab�(x) (lab� 2 MSOL1(�;�)), and r3 =#� � lab�(x),with the relations RG(kr2k) = f(u4; u4)g, and RG(kr3k) = f(u1; u4); (u2; u4); (u4; u4)g,respectively. u1 u2
u3 u4� �� � � �Figure 3.1: Graph GWe can view regular path languages as automata walking through a graph. We willuse this view in Section 3.5 and Chapter 4. For an automaton A over a set of directives,and a graph G, an element (u; q) of VG�Q is a con�guration of the automaton. It signi�esthat A is at node u in state q. A start con�guration is a con�guration (u; q0), and a �nalcon�guration is a con�guration (u; q) with q 2 F .De�nition 3.5. Let �;� be alphabets of node and edge labels, respectively, � a regularpath language over (�;�), and A = (Q;D(�); �; q0; F) a �nite state (string) automatonwith kAk = �. Given a graph G 2 GR(�;�), we de�ne the following binary relations overVG �Q. For every d 2 D(�), u; u0 2 VG and q; q0 2 Q,(u; q) d�A;G (u0; q0) i� (u; u0) 2 RG(d) and (q; d; q0) 2 �:If we leave out the label on the relation, we mean that con�guration (u0; q0) can be reachedfrom (u; q) through any single directive:(u; q)�A;G (u0; q0) i� 9d 2 D(�) : (u; q) d�A;G (u0; q0):Last, for every � = d1 � � �dn 2 D(�)�, u; u0 2 VG and q; q0 2 Q,(u; q) ��A;G (u0; q0) i� (u; q) d1�A;G; � � � ; dn�A;G (u0; q0):It follows from this de�nition that(u; q) ��A;G (u0; q0) i� (u; u0) 2 RG(�) and (q; �; q0) 2 �;42

and (u; q)��A;G (u0; q0) i� 9� 2 D(�)� : (u; q) ��A;G (u0; q0):A sequence (u0; q0) d1�A;G (u1; q1) d2�A;G � � � dn�A;G (un; qn) with qn 2 F , is called a walkof A on G (from u0 to un). Please note that a walk always starts in a start con�gurationand ends in a �nal con�guration.Let A be a deterministic automaton. In general, d�A is not a function for any d. Ifwe con�ne ourselves to trees, however, d�A is a (partial) function, because no node hastwo outgoing or two incoming edges with the same label. In graphs and trees alike, �Ais in general not deterministic, because the symbols of the automaton are interpreted asactions, so it is not always clear what transition to take from a given state.Lemma 3.6. For every automaton A = (Q;D(�); �; q0; F), and graph G:(u; u0) 2 RG(kAk) i� 9qf 2 F; � 2 D(�)� : (u; q0) ��A;G (u0; qf);i� 9qf 2 F : (u; q0)��A;G (u0; qf):This follows immediately from the de�nitions.Envision, if you wish, an automaton AG over D(�), derived from G, that has the nodesof G as states, and a transition relation �G with (u; #; v) 2 �G if u ! v, (u; "; v) 2 �G ifv ! u, and (u; (x); u) 2 �G if (G; u) j= (x). All states of AG are both start and �nalstates. Now, the ternary relation � ��A � is the transition relation of the usual productautomaton of AG and A.3.2 Regular Graph-Node Relations are MSO-de�nableFirst we will compare the strength of regular path languages and mso formulas on graphs.In this section, we show that for any regular path language there is an equivalent msoformula. In the next section, we will show that the opposite doe not hold.We claim that rp-nr � mso-nr. First we show how a regular path language canbe converted in an equivalent mso formula, and then we prove the correctness of theconstruction.ConstructionLet � be a regular path language over (�;�) and r a regular expression for �, i.e., krk = �.We construct a formula �r(x; y) 2 MSOL2(�;�), such that LGR(�r(x; y)) = LGR(krk). Wedo so using induction on the structure of r. Let r1; r2 be two regular expressions over D�;�;
43

then �"(x; y) = (x = y)�;(x; y) = false�# (x; y) = edg(x; y)�" (x; y) = edg(y; x)� (z)(x; y) = (x) ^ (x = y)�r1�r2(x; y) = 9z(�r1(x; z) ^ �r2(z; y))�r1+r2(x; y) = �r1(x; y) _ �r2(x; y)�r�1 (x; y) = ��r1(x; y)Proof of CorrectnessWe will prove that for any regular expression r, LGR(krk) = LGR(�r(x; y)). That is,for any regular expression r, graph G 2 GR(�;�) and v; w 2 VG, (v; w) 2 RG(krk) i�(G; v; w) j= �r(x; y).First note that for all �1;�2 � D��;�, RG(�1 ��2) = RG(�1);RG(�2), this is proven asfollows. RG(�1 � �2) = RG(f�1 � �2 j �1 2 �1; �2 2 �2g)=[fRG(�1 � �2) j �1 2 �1; �2 2 �2g=[fRG(�1);RG(�2) j �1 2 �1; �2 2 �2g=[fRG(�1) j �1 2 �1g;[fRG(�2) j �2 2 �2g= RG(�1);RG(�2)This implies that RG(�i) = RG(�)i and RG(��) = RG(�)�. Recall also from Section 1.7,that RG(�) = f(v; w) j (G; v; w) j= �(x; y)g.Now, we give the proof based on the structure of r:r = " (v; w) 2 RG(")() (v; w) 2 idVG() v = w() (G; v; w) j= (x = y)() (G; v; w) j= �"(x; y)r = ; (v; w) 2 RG(;)() (v; w) 2 ;() (G; v; w) j= false() (G; v; w) j= �;(x; y)44

r = (z) (v; w) 2 RG((z))() (G; v) j= (x) and v = w() (G; v) j= (x) and (G; v; w) j= (x = y)() (G; v; w) j= (x) ^ (x = y)() (G; v; w) j= � (z)(x; y)r =# (v; w) 2 RG(#)() v !G w() (G; v; w) j= edg(x; y)() (G; v; w) j= �# (x; y)r =" This case is analogous to r =# .r = r1 � r2 In the following formulas, we will also write the variable assignment as a func-tion, to avoid ambiguity (see Section 1.7).(v; w) 2 RG(kr1 � r2k) = RG(kr1k � kr2k) = RG(kr1k);RG(kr2k)()there is a node u : (v; u) 2 RG(kr1k) and (u; w) 2 RG(kr2k)() [induction]there is a node u : (G; v; u) j= �r1(x; y) and (G; u; w) j= �r2(x; y)()there is a node u : (G; [x 7! v; y 7! w; z 7! u]) j= �r1(x; z) ^ �r2(z; y)()(G; [x 7! v; y 7! w]) j= 9z : �r1(x; z) ^ �r2(z; y)()(G; v; w) j= �r1�r2(x; y)r = r1 + r2(v; w) 2 RG(kr1 + r2k) = RG(kr1k [kr2k) = RG(kr1k) [RG(kr2k)()(v; w) 2 RG(kr1k) or (v; w) 2 RG(kr2k)() [induction](G; v; w) j= �r1(x; y) or (G; v; w) j= �r2(x; y)()(G; v; w) j= �r1(x; y) _ �r2(x; y)()(G; v; w) j= �r1+r2(x; y)r = r�1 Note that the induction hypothesis is equivalent to RG(kr1k) = RG(�r1).(v; w) 2 RG(kr�1k) = RG(kr1k�) = RG(kr1k)� () [induction](v; w) 2 RG(�r1)� () [Lemma 1.47](v; w) 2 RG(��r1)() [De�nition of �r�](v; w) 2 RG(�r�1)() [De�nition of RG(�)](G; v; w) j= �r�1 (x; y)45

Thus, we conclude that for any regular path language �, there exists an mso formula�(x; y), such that LGR(�) = LGR(�(x; y)), and this gives the following inclusion.Proposition 3.7. rp-nr � mso-nr :Example 3.8. Consider Example 3.4 with the graph in Figure 3.1. The mso formulascorresponding to the languages of r1 =#�, r2 = lab�(x) and r3 =#� � lab�(x) are�r1(x; y) = edg�(x; y)= 8X((x 2 X ^ closededg(x;y)(X))! y 2 X);= path(x; y)�r2(x; y) = lab�(x) ^ x = y;and �r3(x; y) = 9z(�r1(x; z) ^ �r2(z; y))= 9z(path(x; z) ^ lab�(z) ^ z = y)= path(x; y) ^ lab�(y);respectively.3.3 MSO De�nable Graph-Node Relations are not Al-ways RegularIn this section we show that there are mso de�nable graph-node relations for which nopath language (regular or not) can be found. In mso-nr we can de�ne a relation thatholds between nodes u and v exactly when they are in di�erent connected components ofthe graph, i.e., there is no connection between them. Take, for example,�(x; y) = : upath(x; y):In rp-nr such a relation is clearly not feasible, since there is no way to walk from u to v.Accordingly, mso-nr 6� rp-nr, and we can conclude the following proper inclusion.Theorem 3.9. rp-nr � mso-nr :Even for connected graphs there are graph-node relations that can be expressed by anmso formula, but not by a path language.For any alphabets �;�, let CG(�;�) be the set of all connected graphs over (�;�).46

Proposition 3.10. Let �;� be alphabets. There is an mso formula �(x; y) 2 MSOL(�;�)such that there is no path language � over (�;�), with LGR(�) � CG(�;�) = LGR(�) �CG(�;�).Proof. We prove the proposition for the subclass of acyclic, connected graphs in which allincident edges of a node have di�erent labels, since this is a relatively di�cult subclass.One mso formula that cannot be simulated by a path language is�(x; y) = (x 6= y);with semantics LGR(�(x; y)) � CG(�;�) = f(G; u; v) j G 2 CG(�;�); u; v 2 VG; u 6= vg.We will prove this is not possible, by introducing a set of graphs that have a circularstructure, and are all very much alike, apart from the number of nodes. The path languagewill not be able to tell all of the graphs apart, since it can only use �nitely many msoformulas. Then, we �nd two indistinguishable graphs, such that any path that circles the�rst graph exactly halfway, fully circles the other graph. This leads to a contradiction,since any language that describes the relation u 6= v has to have a path circling the �rstgraph halfway, but cannot have a path that circles the second graph fully.Consider graphs over (�;�) = (f�g; fa; bg). We prove the proposition by contradiction.Suppose there is a path language � over (�;�), withLGR(�) � CG(�;�) = f(G; u; v) j G 2 CG(�;�); u; v 2 VG; u 6= vg:Only �nitely many unary mso formulas appear in �, say 1(x); : : : ; m(x). Every nodeu of a graph G has a type, typeG(u) = (b1; : : : ; bm) 2 Bm , with bi , ((G; u) j= i(x)).There are 2m di�erent types of nodes.We now de�ne the following set of graphs over (�;�). For any even n,Gn = (Vn; En; nlabn; elabn);with Vn = fui j 0 � i � n� 1g;En = f(ui; uj) j i even and j � i � �1modng;nlabn = �u:�elabn = �(ui; uj):8<:a if j � i � 1modn,b if j � i � �1modn.See Figure 3.2 for an example.Clearly, for a �xed graph Gn, all ui 2 Gn with even i have the same type, and allui 2 Gn with odd i have the same type. This is because of the automorphisms ofGn: fl(ui) = ui+lmodn is an automorphism for even l. The type of Gn is type(Gn) =(typeGn(u0); typeGn(u1)). There are 22m di�erent types of graphs.For every � 2 �, let nr(�) = ##a(�) + #"b(�) � (##b(�) + #"a(�)). This is the netnumber of `counter-clockwise' steps � takes in a graph of the above form.The following hold. 47

a b
a b

ab
b

u1 u2
u3
u4u5u6

u7
a

� ��
�
���

�
u0 Figure 3.2: G81. For any graph Gn, and � 2 �, if (u0; uj) 2 RGn(�), then nr(�)modn = j.2. For any two graphs Gn and Gn0 of the same type, and any � 2 �, if nr(�) = i and(u0; uimodn0) 2 RGn0 (�), then also (u0; uimodn) 2 RGn(�). This can be proven byinduction on the length of �, and basically depends on the fact that � cannot discern`in' which graph it is, judging by the information of the nodes, since they have thesame type and the same incident edges in both graphs.We now consider the sequence of graphs G2; G4; G8; : : : . Since this is an in�nite se-quence, there are graphs Gn, Gn0, with the same type, and n0 = n � 2k for some k � 1.Since u0 6= un0=2 in Gn0, there is a � 2 � such that (u0; un0=2) 2 RGn0 (�), by assumption.So, by (1), nr(�)modn0 = n0=2. But now, since (n0=2 + l � n0)modn = 0 for l 2 N , (2)implies (u0; u0) 2 RGn(�), a contradiction.Note that in the above proof, we do not demand that � be a regular path language.There is not any path language over a �nite alphabet that de�nes the above relation.It remains an open problem whether (regular) path languages and mso have the samestrength on rooted directed acyclic graphs (i.e., trees with shared subexpressions).3.4 MSO De�nable and Regular Tree-Node RelationsIn this section we con�ne ourselves to trees. First we will rede�ne the concepts that werede�ned for graphs in Section 3.1. Then we will prove that a node relation on trees de�nedby an mso formula can be recognized by a regular path language.

48

3.4.1 De�nitionsLet � be a operator alphabet. A tree-node relation over � is a subset of f(t; u; v) j t 2 T�and u; v 2 Vtg. According to De�nition 1.44, an mso formula �(x; y) 2 MSOL2(�) de�nesthe tree-node relationL(�(x; y)) = f(t; v; w) j t 2 T�, v; w 2 Vt, and (t; v; w) j= �(x; y)g:A path language over (�; rks(�)) is also called a path language over �. A path language� over � de�nes a tree-node relationL(�) = f(t; v; w)) j t 2 T� and (v; w) 2 Rt(�)g:As with graphs, this relation is called regular if � is a regular path language.De�nition 3.11. The set of mso de�nable tree-node relations is denoted mso-tnr. Theset of regular tree-node relations is denoted rp-tnr.We want to prove that mso-tnr = rp-tnr. Clearly, rp-tnr � mso-tnr follows fromProposition 3.7. In the following subsection, we prove mso-tnr � rp-tnr.3.4.2 MSO De�nable Tree-Node Relations are RegularLet � be an operator alphabet and let �(x; y) 2 MSOL2(�). We will prove that thereexists a path language � over � with L(�) = L(�(x; y)). This path language has a specialform: the strings in the language all describe paths in which no edge ever occurs morethan once, that is, the shortest path is always taken. Compare this with [Oos89].First we construct a tree automaton A over �[(��B2), that recognizes mark(t; u; v)exactly if (t; u; v) j= �(x; y) (recall that B2 = f(0; 1); (1; 0); (1; 1)g). The path languagethen simulates the tree automaton on the path from u to v, using mso formulas (or ratherattributes of an attribute grammar) to get information on the behavior of the automatonon the rest of the tree.Construction of A is easy. Lemma 2.18 proves that from �(x; y) we can construct aclosed formula over �[(��B2), such that mark(t; u; v) j= i� (t; u; v) j= �(x; y). Then,because the mso de�nable and regular tree languages are the same (Proposition 1.45), thereis a deterministic tree automatonA = (Q;F) over �[(��B2), with valQ(mark(t; u; v)) 2 Fi� (t; u; v) j= �(x; y).The Attribute GrammarIn order to gather information about parts of the tree outside the shortest path, we con-struct from A an attribute grammar G over � with �nite semantic domains. The ag hassynthesized attribute �, with semantic domain Q, and inherited attribute �, with semantic49

domain P(Q). This ag is like the one in Chapter 2, but it does not have the � attribute.The attribute grammar has the following rules for all k 2 rks(�) and � 2 �k:h�; 0i = �Q(h�; 1i; : : : ; h�; ki);h�; ii = fq 2 Q j �Q(h�; 1i; : : : ; qi ; : : : ; h�; ki) 2 h�; 0ig for 1 � i � k;and it has one root rule,h�; 0i = F:For any t 2 T� and v 2 Vt, the meaning of the attributes ish�; ui = valQ(subt(u)), and (3.1)h�; ui = fq 2 Q j valQ(ctxt(u))[� 7! q] 2 Fg; (3.2)as was proven in Lemma 2.9 and Lemma 2.10.The Regular Path LanguageIn a regular path language we are allowed to use mso formulas with one free node variable.From Section 2.4 we recall that the value of a boolean attribute in an attribute grammarcan always be calculated by an mso formula with one free node variable. This means that,for convenience, we can check boolean attributes instead of mso formulas. We do this bydescribing the boolean attribute between square brackets, using attributes � and � of G.Such a description is meant to denote the corresponding mso formula. For example, whenit says [�Q(h�; 1i; : : : ; qi ; : : : ; h�; ki) = q0] (where q; q0 2 Q and i 2 rks(�)) in a regularpath string, we mean \check the mso formula corresponding to the (synthesized) booleanattribute attq;q0;i", which has the following rule, for all k 2 rks(�) and � 2 �k:hattq;q0;i; 0i = ��Q(h�; 1i; : : : ; qi ; : : : ; h�; ki) = q0�:The right hand side of the rule is assumed to be `false' if i > k.For the other \assertions" in square brackets we can construct boolean attributes in asimilar manner. The right-hand sides of the rules for the attributes consist exactly of thetext between the square brackets. Again, a right hand side is assumed to be `false' if oneof its components is unde�ned.The language � that recognizes a pair of nodes (u; v) of a tree t i� mark(t; u; v) 2 L(A),consists of four groups of strings; � = �1[�2[�3[�4. See Figure 3.3 for the four possiblecases.1. For the case that u = v we have one string consisting of one mso formula:�1 = f[h�; 1; 1iQ(h�; 1i; : : : ; h�; ki) 2 h�; 0i]g:This formula checks if the automaton would recognize the tree if both marks wereon the current node, assuming there are no marks on any other nodes in the tree.50

1 2 3 4u = v vu u v u vw
Figure 3.3: The four di�erent groups2. The following set of strings accounts for the cases that u is a proper descendant ofv, or, more precisely, u = v � i1 � � � � � in:�2 = f [h�; 1; 0iQ(h�; 1i; : : : ; h�; ki) = qn]�"in � [�Q(h�; 1i; : : : ; qnin ; : : : ; h�; ki) = qn�1]�..."i2 � [�Q(h�; 1i; : : : ; q2i2 ; : : : ; h�; ki) = q1]�"i1 � [h�; 0; 1iQ(h�; 1i; : : : ; q1i1 ; : : : ; h�; ki) 2 h�; 0i] jn 2 N+ ; i1; : : : ; in 2 rks(�) and q1; : : : ; qn 2 Qg:A string in this group checks to see if the automaton accepts the tree with marksplaced on u and v, and nowhere else. The states encode a potential run of theautomaton, and the mso formulas check if this run is correct.3. This group of strings accounts for the case that u is a proper ancestor of v, moreprecisely, v = u � j1 � � � � � jn:�3 = f [h�; 1; 0iQ(h�; 1i; : : : ; p1j1 ; : : : ; h�; ki) 2 h�; 0i]� #j1 �[�Q(h�; 1i; : : : ; p2j2 ; : : : ; h�; ki) = p1]� #j2 �...[�Q(h�; 1i; : : : ; pmjm ; : : : ; h�; ki) = pm�1]� #jm �[h�; 0; 1iQ(h�; 1i; : : : ; h�; ki) = pm] jm 2 N+ ; j1; : : : ; jm 2 rks(�); and p1; : : : ; pm 2 Qg:Each string in this group checks a potential run of the automaton, like in the lastgroup. The order in which the states are checked is top-down, rather than bottom-up,but this is not relevant.4. The last group of strings accounts for the case that neither u is an ancestor of v, norv of u. More precisely, there is a w, such that u = w � i1 � � � � � in and v = w � j1 � � � � � jm,51

and i1 6= j1. Note that w is the least common ancestor of u and v.�4 = f [h�; 1; 0iQ(h�; 1i; : : : ; h�; ki) = qn]�"in � [�Q(h�; 1i; : : : ; qnin ; : : : ; h�; ki) = qn�1]�..."i2 � [�Q(h�; 1i; : : : ; q2i2 ; : : : ; h�; ki) = q1]�"i1 � [�Q(h�; 1i; : : : ; q1i1 ; : : : ; p1j1 ; : : : ; h�; ki) 2 h�; 0i]� #j1 �[�Q(h�; 1i; : : : ; p2j2 ; : : : ; h�; ki) = p1]� #j2 �...[�Q(h�; 1i; : : : ; pmjm ; : : : ; h�; ki) = pm�1]� #jm �[h�; 0; 1iQ(h�; 1i; : : : ; h�; ki) = pm] jm;n 2 N+ ; i1; : : : ; in; j1; : : : ; jm 2 rks(�); i1 6= j1; and q1; : : : ; qn; p1; : : : ; pm 2 Qg:Strings in this last group have a form that combines that of the two groups before.Again, the states are encoded in the formulas and the path language checks to see ifthe run is correct, walking from u to v.We now give a right-linear grammar for � to show that it is regular. The grammar hasa nonterminal S, and nonterminals Uq and Dq for every q 2 Q. The start symbol for thegrammar is S, and the productions are the following.stop immediately: (u = v)S ! [h�; 1; 1iQ(h�; 1i; : : : ; h�; ki) 2 h�; 0i]start moving up: S ! [h�; 1; 0iQ(h�; 1i; : : : ; h�; ki) = q] � Uq 8q 2 Qstart moving down: (u is a proper ancestor of v)S ! [h�; 1; 0iQ(h�; 1i; : : : ; pj ; : : : ; h�; ki) 2 h�; 0i]� #j �Dp 8p 2 Q and j 2 rks(�)move another step up:Uq !"i �[�Q(h�; 1i; : : : ; qi ; : : : ; h�; ki) = q0] � Uq0 8q; q0 2 Q and i 2 rks(�)turn around: (u is not an ancestor of v or vice-versa)Uq !"i �[�Q(h�; 1i; : : : ; qi ; : : : ; pj ; : : : ; h�; ki) 2 h�; 0i]� #j �Dp8p; q 2 Q; i; j 2 rks(�); with i 6= j52

move another step down:Dp ! [�Q(h�; 1i; : : : ; p0j ; : : : ; h�; ki) = p]� #j �Dp0 8p; p0 2 Q; j 2 rks(�)stop moving up: (v is a proper ancestor of u)Uq !"i �[h�; 0; 1iQ(�1; : : : ; qi ; : : : ; �k) 2 h�; 0i] 8q 2 Qstop moving down:Dp ! [h�; 0; 1iQ(h�; 1i; : : : ; h�; ki) = p] 8p 2 QProof of CorrectnessBefore we proceed with the proof, we present two lemmata. The �rst is a generalization ofLemma 2.9.Lemma 3.12. For any tree t over � and nodes u; v; w of t, if u and v are not descendantsof w, then valQ(submark(t;u;v)(w)) = h�;wi.Proof. The assumption that u and v are not descendants of w is equivalent to the statementsubmark(t;u;v)(w) = subt(w). So, since h�;wi = valQ(subt(w)) by Lemma 2.9, h�;wi =valQ(submark(t;u;v)(w)).The second lemma is a generalization of Lemma 2.10 and Lemma 2.11.Lemma 3.13. For any tree t over � and nodes u; v; w of t, if u and v are descendants ofw, then valQ(mark(t; u; v)) 2 F , valQ(submark(t;u;v)(w)) 2 h�; wi.Proof. The assumption that u and v are descendants of w, is equivalent to ctxmark(t;u;v)(w) =ctxt(w). Therefore,valQ(mark(t; u; v)) 2 F ()valQ�ctxmark(t;u;v)(w)[� 7! submark(t;u;v)(w)]� 2 F () [Proposition 1.18]valQ(ctxmark(t;u;v)(w))[� 7! valQ(submark(t;u;v)(w))] 2 F ()valQ(ctxt(w))[� 7! valQ(submark(t;u;v)(w))] 2 F () [Lemma 2.10]valQ(submark(t;u;v)(w)) 2 h�; wiTo prove that � does what we want it to do, we have to prove that for any tree t 2 T�and u; v 2 Vt, (t; u; v) 2 L(�) i� (t; u; v) 2 L(�(x; y)). To that extent it su�ces to prove(t; u; v) 2 L(�) i� mark(t; u; v) 2 L(A), or equivalently,(u; v) 2 Rt(�) i� valQ(mark(t; u; v)) 2 F:53

We distinguish four cases, analogous to the cases used before: �rst: u = v, second: u isa proper descendant of v, third: u is a proper ancestor of v, and fourth: a third node isthe least common ancestor of u and v. What the path language does is simulate the treeautomaton. For those parts of the tree on which it can assume no marks are placed, it canuse mso formulas (or attributes) to calculate what value the tree automaton gives. For thepath between u and v, it keeps track of the state of the automaton. We check here that itdoes that correctly.1. Let u = v and � = [h�; 1; 1iQ(h�; 1i; : : : ; h�; ki) 2 h�; 0i]. Then,valQ(mark(t; u; v)) 2 F() [Lemma 3.13] valQ(submark(t;u;v)(u)) 2 h�; ui() [u = v] hnlabt(u); 1; 1iQ�submark(t;u;v)(u � 1) � � � submark(t;u;v)(u � rk(u))� 2 h�; ui() [Lemma 3.12] hnlabt(u); 1; 1iQ(h�; u � 1i; : : : ; h�; u � rk(u)i) 2 h�; ui() [by de�nition of �] (u; u) 2 Rt(�)() (u; u) 2 Rt(�)We will clarify the last step. First, (u; u) 2 Rt(�) implies (u; u) 2 Rt(�), because� 2 �. Second, if (u; u) 2 Rt(�), then (u; u) 2 Rt(�), because we can not use a string�0 2 � n �1. This can easily be seen if we consider the other possibilities. Suppose�0 2 �2, then (u; v) 2 Rt(�0) implies that u is a proper descendant of v. This is notthe case. It is not possible that �0 2 �3, for a similar reason. Last, �0 =2 �4, because(u; v) 2 Rt(�4) implies that the least common ancestor of u and v is not equal to uor v.2. u is a proper descendant of v. Suppose u = v � i1 � � � � � in. Let u0 = v, ul = ul�1 � iland ql = valQ(submark(t;u;v)(ul)) for 1 � l � n. Now let� = [h�; 1; 0iQ(h�; 1i; : : : ; h�; ki) = qn]�"in � [�Q(h�; 1i; : : : ; qnin ; : : : ; h�; ki) = qn�1]�..."i2 � [�Q(h�; 1i; : : : ; q2i2 ; : : : ; h�; ki) = q1]�"i1 � [h�; 0; 1iQ(h�; 1i; : : : ; q1i1 ; : : : ; h�; ki) 2 h�; 0i]:54

� First, assume that valQ(mark(t; u; v)) 2 F . We prove all the assertions in �, forun; : : : ; u1; u0 respectively, because that proves (u; v) 2 Rt(�) and thus (u; v) 2 Rt(�),since � is an element of �. The �rst assertion is clearly true for un = u, since, byLemma 3.12,hnlab(u); 1; 0iQ(h�; u � 1i; : : : ; h�; u � rk(u)i) = valQ(submark(t;u;v)(u)) = qn:The second assertion up to the second last assertion are also true, since for all l � 2,nlab(ul�1)Q(h�; ul�1 � 1i; : : : ; qlil ; : : : ; h�; ul�1 � rk(ul�1)i) =nlab(ul�1)Q(h�; ul�1 � 1i; : : : ; valQ(submark(t;u;v)(ul))il ; : : : ; h�; ul�1 � rk(ul�1)i) =valQ(submark(t;u;v)(ul�1)) = ql�1:For the last assertion, valQ(mark(t; u; v)) 2 F , combined with Lemma 3.13, impliesvalQ(submark(t;u;v)(v)) 2 h�; vi, and thushnlab(v); 0; 1iQ(h�; v � 1i; : : : ; q1i1 ; : : : ; h�; v � rk(v)i) 2 h�; vi:� Second, suppose (u; v) 2 Rt(�), so we can walk from u to v following the instruc-tions in �. We will prove that the tree automaton succeeds on mark(t; u; v).If (u; v) 2 Rt(�), then there is a �0 2 �, such that (u; v) 2 Rt(�0). Clearly, �0 2 �2,with i01 = i1; : : : ; i0n = in, but possibly di�erent q01; : : : ; q0n. What are the values ofq01; : : : ; q0n?Since hnlab(u); 1; 0iQ(h�; u � 1i; : : : ; h�; u � rk(u)i) = valQ(submark(t;u;v)(u)), the �rstassertion of �0 implies q0n = valQ(submark(t;u;v)(un)) = qn. Furthermore, if q0l = ql,then it follows from the assertions in �0 thatq0l�1 = nlab(ul�1)Q(h�; ul�1 � 1i; : : : ; q0lil ; : : : ; h�; ul�1 � rk(ul�1)i)= nlab(ul�1)Q(h�; ul�1 � 1i; : : : ; qlil ; : : : ; h�; ul�1 � rk(ul�1)i)= valQ(submark(t;u;v)(ul�1))= ql�1:So, by induction, q0l = valQ(submark(t;u;v)(ul)) = ql for all l 2 [1; n]. Hence, �0 = �.Because the last assertion in � is true, it follows thathnlab(v); 0; 1iQ(h�; v � 1i; : : : ; valQ(submark(t;u;v)(u1))i1 ; : : : ; h�; v � rk(v)i) 2 h�; vi;in other words, valQ(submark(t;u;v)(v)) 2 h�; vi:55

Because of Lemma 3.13, this implies thatvalQ(mark(t; u; v)) 2 F:3. u is a proper ancestor of v. Suppose v = u � j1 � � � � � jm. Let v0 = u, vl = vl�1 � jl, andpl = valQ(submark(t;u;v)(vl)), for 1 � l � m. Now, let� =[h�; 1; 0iQ(h�; 1i; : : : ; p1j1 ; : : : ; h�; ki) 2 h�; 0i]� #j1 �[�Q(h�; 1i; : : : ; p2j2 ; : : : ; h�; ki) = p1]� #j2 �...[�Q(h�; 1i; : : : ; pmjm ; : : : ; h�; ki) = pm�1]� #jm �[h�; 0; 1iQ(h�; 1i; : : : ; h�; ki) = pm];� First, suppose that valQ(mark(t; u; v)) 2 F . We will prove (u; v) 2 Rt(�). SincevalQ(mark(t; u; v)) 2 F , it follows that valQ(submark(t;u;v)(u)) 2 h�; ui, so the �rstassertion of � is true. For the second to the second last assertion, note that for all1 � l � m� 1 nlab(vl)Q(h�; vl � 1i; : : : ; pl+1jl+1 ; : : : h�; vl � rk(vl)i) =nlab(vl)Q(h�; vl � 1i; : : : ; valQ(submark(t;u;v)(vl � jl+1))jl+1 ; : : : ; h�; vl � rk(vl)i) =valQ(submark(t;u;v)(vl)) = pl;so these assertions are true as well. The last assertion is true, sincehnlab(v); 0; 1iQ(h�; v � 1i; : : : ; h�; rk(v)i) = valQ(submark(t;u;v)(v)):So, clearly, (u; v) 2 Rt(�), and since � 2 � it follows that (u; v) 2 Rt(�).� Second, we assume that (u; v) 2 Rt(�) and we prove valQ(mark(t; u; v)) 2 F . Theproof is very similar to that of the previous case; �rst we observe that there is a�0 2 � with (u; v) 2 Rt(�0). Now clearly �0 2 �3, with j 01 = j1; : : : ; j 0m = jm, butpossibly di�erent p01; : : : ; p0m. From the last assertion it follows that p01 = p1, andby the other assertions, it follows with induction that p0l = pl for all 1 � l � m.Therefore, �0 = �. Now we can conclude from the �rst assertion thathnlab(u); 1; 0iQ�h�; u � 1i; : : : ; valQ(submark(t;u;v)(v1))j1 ; : : : ; h�; u � rk(u)i� 2 h�; ui;and thus that valQ(submark(t;u;v)(u)) 2 h�; ui, and �nally, by Lemma 3.13, thatvalQ(mark(t; u; v)) 2 F . 56

4. For the fourth and last case, assume there is a node w, that is the least common properancestor of u and v. More precisely, let u = w � i1 � � � � � in, and v = w � j1 � � � � � jm,with i1 6= j1. Let u0 = w, ul = ul�1 � il and ql = valQ(submark(t;u;v)(ul)) for 1 � l � n.Let v0 = w, vl = vl�1 � jl and pl = valQ(submark(t;u;v)(vl)) for 1 � l � m. Now, let� = [h�; 1; 0iQ(h�; 1i; : : : ; h�; ki) = qn]� (i)"in � [�Q(h�; 1i; : : : ; qnin ; : : : ; h�; ki) = qn�1]� (ii)... (ii)"i2 � [�Q(h�; 1i; : : : ; q2i2 ; : : : ; h�; ki) = q1]� (ii)"i1 � [�Q(h�; 1i; : : : ; q1i1 ; : : : ; p1j1 ; : : : ; h�; ki) 2 h�; 0i]� #j1 � (iii)[�Q(h�; 1i; : : : ; p2j2 ; : : : ; h�; ki) = p1]� #j2 � (iv)... (iv)[�Q(h�; 1i; : : : ; pmjm ; : : : ; h�; ki) = pm�1]� #jm � (iv)[h�; 0; 1iQ(h�; 1i; : : : ; h�; ki) = pm] (v)� First, we assume valQ(mark(t; u; v)) 2 F , and we prove that (u; v) 2 Rt(�). Theassertions marked (i) or (ii) are true; the proof is analogous to that of case 2. Theassertions marked (iv) or (v) are also true; the proof is analogous to that of the case 3.Only the assertion marked (iii) remains to be proven. Well, valQ(mark(t; u; v)) 2 Fimplies valQ(submark(t;u;v)(w)) 2 h�; wi, and sincesubmark(t;u;v)(w) = nlab(w)Q(h�;w � 1i; : : : ; q1i1 ; : : : ; p1j1 ; : : : ; h�;w � rk(w)i)this assertion is also true. Now it follows that (u; v) 2 Rt(�), and, because � 2 �,(u; v) 2 Rt(�).� Second, we assume (u; v) 2 Rt(�) and we prove valQ(mark(t; u; v)) 2 F . If (u; v) 2Rt(�), then there is a �0 2 � such that (u; v) 2 Rt(�0). Now �0 2 �4, and from thereasoning in cases 2 and 3, it is clear that the qi and pj are as given, for all i and j.This leads us to conclude thatnlab(w)Q(h�;w � 1i; : : : ; q1i1 ; : : : ; p1j1 ; : : : ; h�;w � rk(w)i) 2 h�; wi;and so valQ(submark(t;u;v)(w)) 2 h�; wi and valQ(mark(t; u; v)) 2 F .Lemma 3.14. Let � be an operator alphabet. For every �(x; y) 2 MSOL2(�) there isa regular path language � over �, such that for every tree t 2 T� and nodes u; v 2 Vt,(u; v) 2 Rt(�) i� (t; u; v) j= �(x; y). Moreover, for all t 2 T�, and u; v 2 Vt with (t; u; v) j=�(x; y), there is a unique string � 2 � such that (u; v) 2 Rt(�).If A is a deterministic �nite state string automaton recognizing �, and (u; v) 2 Rt(kAk),then there is a unique walk (u; q0) d1�A;t : : : dn�A;t (v; qf) with qf 2 F .57

Proof. The �rst part of the lemma is proven above. The second part then easily followsfrom Lemma 3.6, the fact that � = d1 � � �dn is unique, and the fact that d�A;t is a (partial)function for any d.It follows that mso-tnr is a subset of rp-tnr.Lemma 3.15. mso-tnr � rp-tnr3.4.3 MSO and Regular Tree-Node Relations are the SameFrom Proposition 3.7 and the last lemma, we obtain the following equality.Theorem 3.16. mso-tnr = rp-tnr :This has the practical consequence that for any mso formula �(x; y) with two free nodevariables, there is a path language �, such that for any tree t and nodes u and v of t,(t; u; v) j= �(x; y), (u; v) 2 Rt(�);and vice-versa.Remark 3.17. From here on, we can, and will, assume that all regular path languages areof the (shortest-path) form presented in Subsection 3.4.2.3.5 Comparison with Routing LanguagesThe path languages de�ned above are syntactically richer than the routing languages of[KS93]. They are also semantically richer: there are tree-node relations that can be de�nedby a path language, but not by a routing language.De�nition 3.18. A routing language over (�;�) is a string language over the followingconstrained set of directives.Dr�;� = [2�f#; "g [froot(x)g [fleaf(x)g [flab�(x) j � 2 �g;where root(x) and leaf(x) are the MSO formulas with one free node variable de�ned inSection 1.7.Routing languages are restricted path languages, so without further ado, we can speakabout the relation and tree-node language de�ned by a routing language.58

Routing languages are used by Klarlund and Schwartzbach to de�ne recursive datastructures. Recursive data strutures have an intrinsic tree structure (that can be de�nedby, e.g., a tree automaton). Path languages are used to de�ne extra pointers in the treestructure, for instance to produce the data structure of circulary linked lists or root-linkedbinary trees. If t is an instance of a data structure (i.e., a tree), a tuple (u; v) in therelation de�ned by the routing language signi�es a pointer from node u to node v. Klarlundand Schwartzbach show that many useful data structures can be de�ned using functionalrouting languages (i.e., routing languages � for which Rt(�) is functional for every t). Theyalso prove that the pointers de�ned by such routing languages can be computed e�ciently.We show here that there are structures that can be de�ned by path languages, but not byrouting languages. In Section 3.6 we will show that path languages can be evaluated justas e�ciently as routing languages.Proposition 3.19. There is a (functional) regular path language �, such that there is noregular routing language �0 with L(�0) = L(�).Proof. We consider binary trees with red and black leaves, i.e., leaves with label `red' andleaves with label `black', respectively. Let � = �0 [�2, with �0 = fred; blackg, and�2 = finternalg. We de�ne a path language � that connects the leafs of a tree. If there isexactly one red leaf, all leaves have a pointer to that leaf. If there is no red leaf, or if thereis more than one, all leaves are linked in left-to-right circular order.To be able to construct the corresponding path language, we de�ne two abbreviations:all stands for the regular path expression #1 + #2 + "1 + "2, and step abbreviates"�2 �("1 � #2 +root(x))� #�1. Expression all allows to move in any direction, while stepdescribes the language that moves from one leaf to the next in left-to-right circular order.We also de�ne the mso formula orl = 9!x : labred(x), that is true i� there is exactly onered leaf.Now consider the path language� = k((leaf(x) ^ orl) � all� � labred(x)) + ((leaf(x) ^ :orl) � step � leaf(x))k:If a tree t has exactly one red leaf v, then (u; v) 2 Rt(�) i� u is a leaf. Otherwise,(u; v) 2 Rt(�) i� u and v are both leaves, and v follows u in left-to-right circular order.Note that Rt(�) is a partial function for every t 2 T�.This tree-node relation cannot be de�ned by a regular routing language. We prove soby contradiction.Suppose there is a regular routing language �0 � (Dr�;rks(�))�, with L(�0) = L(�). LetA0 = (Q;D(�0); �; q0; F) be a �nite state (string) automaton with kA0k = �0. Now considerthe trees t and t0 in Figure 3.4. Name the leaves in both trees u1 through u#Q+1 in left-to-right order. In t, all leaves are black. In t0, leaves u1 through u#Q are black and leafu#Q+1 is red. In the following, let succ(k) = (k + 1)mod(#Q+ 1), giving the successor ofa node number in left-to-right circular order.Since t has no red leaves, for every k 2 [1;#Q + 1], there is an fk 2 F , such that(uk; q0)��A;t (usucc(k); fk) (see Lemma 3.6). On the other hand, since t0 has exactly one red59

#Q� 1 #Q� 1Figure 3.4: To the left: tree t, with only black leaves; to the right: tree t0, with one redleafleaf, for all k 6= #Q, there is no f 2 F : (uk; q0) ��A;t0 (usucc(k); f). This implies that forall k there is a qk 2 Q such that (uk; q0)��A;t (u#Q+1; qk)��A;t (usucc(k); fk). This is easilyproven: any walk by A in t that does not go through u#Q+1 can also be done in t0 (andthe walk starting in u#Q goes through u#Q+1 anyhow).Concentrating solely on tree t now, this means that for all k 2 [1;#Q + 1], there is aqk 2 Q, with (uk; q0)��A;t (u#Q+1; qk)��A;t (usucc(k); fk):But since there are #Q + 1 possibilities for k, and only #Q states, there have to be a kand k0 6= k 2 [1;#Q+ 1] such that qk = qk0 , and(uk; q0)��A;t (u#Q+1; qk)��A;t (usucc(k); fk)and (uk0; q0)��A;t (u#Q+1; qk0)��A;t (usucc(k0); fk0):But since qk = qk0, this implies(uk0; q0)��A;t (u#Q+1; qk)��A;t (usucc(k); fk)and thus (uk0; usucc(k)) 2 Rt(�0) with k 6= k0, a contradiction.3.6 ComplexityKlarlund and Schwartzbach proved that for any regular routing language � and tree t,Rt(�) can be computed in linear time, if it is a partial function. Although path languages60

are stronger than the routing languages, we can evaluate them in the same order of time.This gives us a linear time method of computingRt(�(x; y)) for given �(x; y), if that relationis a partial function. Compare this to Theorem 2.20, where we stated that Rt(�(x; y)) canbe computed in O(n2) time in any case.Lemma 3.20. Let � be an operator alphabet, �(x; y) 2 MSOL2(�), and t 2 T�. IfRt(�(x; y)) = f(u; v) j (t; u; v) j= �(x; y)g is a partial function, then Rt(�(x; y)) can becomputed in time linear to the size of the tree.Proof. The main part of this proof is adapted from [KS93].Let t be a tree over �. To be able to compute Rt(�(x; y)) in linear time, we �rsttransform �(x; y) into an equivalent regular path language �, as was shown in Section3.4. We can compute and store fu j (t; u) j= (x)g in linear time, for all (x) thatoccur in � (see Theorem 2.20). For � we construct a �nite state (string) automatonA = (Q;�; �; q0; F), with kAk = �.In the next algorithm, we build a table T . The table is indexed with the con�gurationsof the automaton A, walking on t (see Lemma 3.5). For every con�guration (u; q) 2 Vt�Q,T [u; q] = u0 2 Vt, where u0 is a node with (u; q) ��A;t (u0; qf), for some qf 2 F , if such anode exists. If it does not, T [u; q] = nil. Then, by the functionality of Rt(�), for any nodeu, T [u; q0] = u0 i� (u; u0) 2 Rt(�) = Rt(�(x; y)), and henceRt(�) = f(u; u0) j T [u; q0] = u0; u0 6= nilg:typeEntry = Vt �Q;varT : array [Entry] of Vt;(u; q), (u0; q0) : Entry;L : queue of Entry;beginInit(L);for all (u; q) 2 Vt �Q doT [u; q] := nilod ;for all (u; q) 2 Vt � F doT [u; q] := u;L((u; q)od ;while : IsEmpty(L) do(u0; q0)(L;for all (u; q) 2 Vt �Q with T [u; q] = nil and (u; q)�A;t (u0; q0) doT [u; q] := T [u0; q0];L((u; q); 61

ododendIn this algorithm, Init initializes the queue, L((u; q) puts (u; q) on the end of queueL, (u; q) (L removes the �rst element from the queue and assigns it to (u; q), andIsEmpty(L) returns true if L is empty.This algorithm runs in time linear to the size of the tree, as was proved in [KS93]. Thecrux in this proof is the following. Consider the last for loop. Because the path language is�xed, in the automaton A, any state q0 has a �xed number of incoming arrows. For everyarrow, the source q and label d are �xed, and, since the automaton walks on a tree, thereis at most one u such that (u; q) d�A;t (u0; q0). This means that in the last for loop, only aconstant number of entries (u; q) have to be considered, given (u0; q0). It should be notedthat every such u can be computed in constant time. For the directives "i and #i this isclear, and for the directives it is true because fu j (t; u) j= (x)g has been precomputedfor all .The correctness of the algorithm should be clear: in the second for loop, the table is �lledin correctly (with respect to the intended contents of the table) for all �nal con�gurations.From there on, the automaton is followed back on its walk, and every possible previouscon�guration is �lled in correctly. Since every con�guration that has a walk leading to a�nal con�guration is eventually reached, the algorithm is correct.More than Two Free VariablesTheorem 2.20 states we can �nd Rt(�) in O(nk) time if � has k free node variables. Wecan speed up calculation of Rt(�) for formulas with more than one free node variable, ifone of the variables depends on (some of) the others.First we will formally de�ne dependencies. We speak of a dependency in a relationwhen the value of one of the elements of a tuple in the relation is fully determined by thevalue of some of the others.De�nition 3.21. Let R be a k-ary relation, i 2 [1; k], and D � [1; k]. We say that i(functionally) depends on D (in R) if for all ((a1; : : : ; ak); (a01; : : : ; a0k)) 2 R with ad = a0dfor all d 2 D, ai is equal to a0i.Note that for any relation R, i depends on fig, and if i depends on D, then for anyD0 � D, i depends on D0.Recall that Rt(�(x1; : : : ; xk)) = f(u1; : : : ; uk) j (t; u1; : : : ; uk) j= �(x1; : : : ; xk)g for a treet 2 T�.Theorem 3.22. Let � be an operator alphabet, k � 2, �(x1; : : : ; xk) 2 MSOLk(�) andt 2 T�. If there is an i 2 [1; k], and a D � [1; k] with i =2 D, such that i depends on D inRt(�(x1; : : : ; xk)), then Rt(�(x1; : : : ; xk)) can be computed in O(nk�1) time.62

Proof. The case of k = 2 is proven in the last lemma.For the other cases, without loss of generality, we can assume i = k and D = [1; k� 1].What we will do is the following. For every possibility for the �rst k � 2 arguments, webuild a tree with k � 2 marks at the appropriate places, and we have a formula checkingthe last two arguments, in which the last argument depends on the previous one.We proceed like we did in Section 2.5, using Lemma 2.18. We transform �(x1; : : : ; xk)into an mso formula (xk�1; xk) over � [(� � Bk�2) with two free node variables, suchthat(t; u1; : : : ; uk) j= �(x1; : : : ; xk)() (mark(t; u1; : : : ; uk�2); uk�1; uk) j= (xk�1; xk):For all tuples (u1; : : : ; uk�1; uk) and (u1; : : : ; uk�1; u0k) in the relation Rt(�(x1; : : : ; xk)),by the dependency, uk is equal to u0k. Hence, if(mark(t; u1; : : : ; uk�2); uk�1; uk) j= (xk�1; xk);and (mark(t; u1; : : : ; uk�2); uk�1; u0k) j= (xk�1; xk);then uk = u0k. So, Rmark(t;u1;:::;uk�2)((xk�1; xk)) is a partial function (its second argumentdepends on its �rst).For any sequence of nodes u1; : : : ; uk�2 2 Vt, we can �nd the corresponding markedtree mark(t; u1; : : : ; uk�2) in O(n) time. Because uk depends on uk�1, we can then �nd allpairs (uk�1; uk) such that (mark(t; u1; : : : ; uk�2); uk�1; uk) j= (xk�1; xk) in O(n) time, asshown in Lemma 3.20. There are O(nk�2) possible combinations for u1; : : : ; uk�2, so thetime needed to �nd all u1; : : : ; uk such that (mark(t; u1; : : : ; uk�2); uk�1; uk) j= (xk�1; uk)is O(nk�1).Dependency is DecidableFor the above theorem to be of any use, we have to be able to �nd out whether a dependencyexists. Given a formula �(x; y) 2 MSOL2(�), it is decidable whether Rt(�) is a partialfunction for all t 2 T�. Consider the closed formulafunc� = 8x(9!y : �(x; y) _ :9y : �(x; y)):Now Rt(�) is a partial function for all t 2 T� i� func� is a tautology. This is decidable byProposition 1.46.In general, given a formula �(x1; : : : ; xk) 2 MSOLk(�), for any i and D it is decidablewhether for all t, i functionally depends on D in Rt(�). Here we have the formulafunc� = 8x1; : : : ; xk; 8x01; : : : ; x0k�(�(x1; : : : ; xk) ^ �(x01; : : : ; x0k) ^ 8d 2 D(xd = x0d))!xi = x0i�;and i depends on D in Rt(�) for all t 2 T� i� func� is a tautology.63

Chapter 4Tree TransducersIn this chapter we consider functions from trees over one alphabet to trees over another:tree transductions. More precisely, we look at tree transducers, i.e., speci�c methods ofde�ning tree transductions. We consider both tree mso tree transducers and attributedtree transducers, a form of attribute grammars. We show how attributed tree transducerscan be modi�ed in such a way that they de�ne the same class of transductions as mso treetransducers do.In the last section we will go into the complexity of computing an mso de�nable treetransduction.4.1 MSO TransducersMso graph transducers de�ne their output graph in terms of mso formulas on the inputgraph. See for example [Eng91, Cou92, Cou94], for a somewhat more general approach.In the next two de�nitions we de�ne syntax and semantics of mso graph transducers.De�nition 4.1. An mso graph transducer from GR(�1;�1) to GR(�2;�2) is a quadrupleT = (C; �;	; X);where1. C is a �nite set, the copy set,2. � is a closed mso formula over (�1;�1), the domain formula,3. 	 = f �2;c(x)g�22�2;c2C, where the �1 ;c(x) 2 MSOL2(�1;�1) are the node formulas,and4. X = f�2;c;c0(x; y)g22�2;c;c02C , where the �2;c;c0(x; y) 2 MSOL2(�1;�1) are the edgeformulas.The copy number of T is #C. 64

De�nition 4.2. An mso graph transducer T = (C; �;	; X) from GR(�1;�1) to GR(�2;�2)de�nes a partial function Tgr : GR(�1;�1)* GR(�2;�2), with Tgr(G1) = G2 i�1. G1 j= �,2. VG2 = f(v; c) j v 2 VG1 ; c 2 C and 9!�2 2 �2 : (G1; v) j= �2;c(x)g,3. EG2 = f((v; c); (v0; c0)) j (v; c); (v0; c0) 2 VG2 ; and9!2 2 �2 : (G1; v; v0) j= �2;c;c0(x; y)g,4. nlabG2 = f((v; c); �2) j (v; c) 2 VG2 and (G1; v) j= �2;c(x)g, and5. elabG2 = n�((v; c); (v0; c0)); 2� j ((v; c); (v0; c0)) 2 EG2 and (G1; v; v0) j= �2;c;c0(x; y)o.Note that dom(Tgr) = fG1 2 GR(�1;�1) j G1 j= �g.Remark 4.3. For the sake of convenience, we can assume without loss of generality that foran mso graph transducer T from GR(�1;�1) to GR(�2;�2), and for all G1 2 GR(�1;�1),the following hold.1. For �xed c, the �2;c(x) are mutually exclusive, i.e., for any v 2 VG1 , there is not morethan one �2 2 �2 such that (G1; v) j= �2;c(x) (which implies that we can replace9!�2 by 9�2 in case 2 of the last de�nition).2. For �xed c; c0, the �2;c;c0(x; y) are mutually exclusive, i.e., for any v; v0 2 VG1, thereis not more than one 2 2 �2, such that (G1; v; v0) j= �2;c;c0(x; y) (which implies thatwe can replace 9!2 by 92 in case 3 of the last de�nition).3. An edge formula �2;c;c0(x; y) only holds for nodes v; v0 2 VG1 if (u; c); (v; c0) are inthe output graph. In other words, if Tgr(G1) = G2, then 82 2 �2; c; c0 2 C; v; v0 2VG1 : ((G1; v; v0) j= �2;c;c0(x; y) implies (v; c); (v0; c0) 2 VG2).4. The edge and node formulas are only true if the domain formula is satis�ed. Thatmeans that for all �2; c; v: if (G1; v) j= �2;c(x), then G1 j= �, and likewise, for all2; c; c0; v; v0: if (G1; v; v0) j= �2;c;c0(x; y), then G1 j= �.These conditions are all easily achieved. For example, the third condition is achievedby changing every formula �2;c;c0(x; y) into �02;c;c0(x; y) = 9!�2 : �2 ;c(x) ^ �j;c;c0(x; y) ^9!�2 : �2;c(y). The other conditions are achieved in a likewise simple manner. The givenrequirements allow us to check fewer conditions in the remainder of the chapter.De�nition 4.4. Let � and � be operator alphabets. An mso tree transducer from � to� is an mso graph transducer T from (�; rks(�)) to (�; rks(�)) for which Tgr(t) 2 T� forall t 2 T� \ dom(Tgr). It de�nes the partial function T : T� * T�, where T = Tgr � T�.The set of all mso de�nable tree transductions is denoted msott.65

Example 4.5. We give an mso tree transducer from � to �, where � = �0 [�2, with�0 = f#g, and �2 = f�g, and � = �0 [�1 [�2, with �0 = �0, �2 = �2, and �1 = f�g.The transducer transforms a tree by inserting a � on each of its edges. See Figure 4.1 foran example. The transducer is
σ

σ

#

σ

σ

#

∗ ∗

#

#

#

∗ ∗

1 2

21

1

1

2

21

1
1

1

Figure 4.1: Example of a tree and its transductionT = (C; �;	; X);with� The copy set C is f0; 1g. A node hv; 0i of T (t) is a direct copy of a node v of t (withthe same label), and a node hv; 1i has label �, and has node hv; 0i as its child. Twocopies are made of every node except the root.� The domain formula � = true, there are no input restrictions.� The node formulas are as follows. �;0(x) = lab�(x) for all � 2 �, �;0(x) = false; �;1(x) = false; for all � 2 �, and �;1(x) = : root(x):� And the edge formulas are�j;0;0(x; y) = false for all j 2 f1; 2g,�j;1;1(x; y) = false for all j 2 f1; 2g,�j;0;1(x; y) = edgj(x; y) for all j 2 f1; 2g,�1;1;0(x; y) = x = y; and�2;1;0(x; y) = false :We give one more example, adapted from [FV95].66

Example 4.6. Let T be an mso tree transducer from � to �. The operator alphabet �is f�; �;#g, with rk�(�) = 2, and rk�(#) = rk�(�) = 0. The operator alphabet � isf1; 2; �;#g, with rk�(1) = rk�(2) = 1, and rk�(�) = rk�(#) = 0. If the input treet contains exactly one leaf labelled �, the transducer transforms it into a tree over �,which codes the path leading from the root of t to the leaf labelled � in the obviousway. Otherwise, the output is #. For example, T (�(�(#; �(#; �));#)) = 1(2(2(�))), andT (�(�; �(#; �))) = #.T = (fcg; �; f 1;c; 2;c; �;c; #;cg; f�1;c;cg);where � = true 1;c(x) = 9!y : lab�(y) ^ 9y�edg1(x; y) ^ 9z(path(y; z) ^ lab�(z))�; 2;c(x) = 9!y : lab�(y) ^ 9y�edg2(x; y) ^ 9z(path(y; z) ^ lab�(z))�; �;c(x) = 9!y : lab�(y) ^ lab�(x); #;c(x) = :9!y : lab�(y) ^ root(x);�1;c;c(x; y) = edg1(x; y) _ edg2(x; y):For the last formula, please note that an edge in the output tree is only drawn if both nodesit is incident to exist, so this need not be checked explicitly. However, this rule violatesthe third condition of Remark 4.3. Without altering the transduction, we can comply withthe third condition by changing the edge formula into�1;c;c(x; y) = 9� 2 �; c 2 C : �;c(x) ^ (edg1(x; y) _ edg2(x; y)) ^ 9� 2 �; c 2 C : �;c(y):
4.2 Attributed Tree TransducersAn attributed tree transducer de�nes a function from trees over one alphabet to trees overanother, like mso tree transducers do. They are based on attribute grammars, with someextra constraints, see [F�ul81].We will here develop a kind of attributed tree transducers that is equivalent to mso treetransducers. The �rst type we consider is that of plain attributed tree transducers, basedon unconditional attribute grammars with trees over � as the only semantic domain. Thesemantic rules are limited to involve substitution only.De�nition 4.7. Let �;� be operator alphabets. A plain attributed tree transducer (att,for short) from � to � is an unconditional, (weakly) non-circular attribute grammar(�;
; (S; I;W); R; �mean) with the following additional properties.67

�
 = fT�g.� Every semantic rule is of the formh�0; i0i = f(h�1; i1i; : : : ; h�k; iki);where for all t1; : : : ; tk 2 T�,f(t1; : : : ; tk) = r0[�1 7! t1; : : : ; �k 7! tk];for some linear, non-deleting r0 2 T�(f�1; : : : ; �kg).The set of all transductions that can be de�ned by a plain attributed tree transducer isdenoted att.From here on, in a semantic rule, we will abbreviate f(h�1; i1i; : : : ; h�k; iki) by r, wherer = r0[�1 7! h�1; i1i; : : : ; �k 7! h�k; iki]. Note that, since the h�j; iji are mutually distinct(see De�nition 1.27), r is a linear term in T�(A� rks(�)).We require non-deleting terms, because that implies that weak non-circularity coincideswith the classical concept of circularity (and hence is decidable). Linearity of the termsused in the rules is a convenient technical detail. It can always be achieved by duplicatingattributes, although this will not preserve the wsur (this will become important later on).We give an example of a rule that is not linear, and we then transform it to two linearrules. If the output alphabet is �, with � 2 �2, a typical rule would beh�; 0i = f(h�; 1i), with f(t) = �(�; �)[� 7! t1]:This rule would be abbreviated h�; 0i = �(h�; 1i; h�; 1i) (note that the abbreviation of arule is a linear term over T�(A � rks(�)) i� the term used in the rule is linear). We canmake it linear by adding an attribute �0, with ruleh�0; 0i = f 0(h�; 1i), where f 0(t) = �[� 7! t]; for all t;and changing the rule for � toh�; 0i = f 00(h�0; 0i; h�; 1i), with f 00(t1; t2) = �(�1; �2)[�1 7! t1; �2 7! t2]:Note that the wsur is not preserved (h�; 1i is used twice).Remark 4.8. By De�nition 1.34, an att G induces a (total) function G from T� to T�:G(t) = decG;t(h�mean; root(t)i).We are looking for a sort of attributed tree transducer that is equivalent to mso treetransducers. Plain attributed tree transducers will not do, not even for transductions thatare total functions, although this is not a trivial observation. Example 4.6 on page 6768

is from [FV95]1, where it is proven that it is not a transduction computable by a plainattributed tree transducer.To overcome this problem, we generalize plain attributed tree transducers to attributedtree transducers with ags. Flags are attributes with a �nite semantic domain. An attwith ags is a 2-phase attribute grammar: one can always evaluate the ags �rst, and thetree attributes second. The operations on tree attributes are also limited: only substitutioncan be used, and ags can be tested.De�nition 4.9. Let � and � be operator alphabets. An attributed tree transducer withags (fatt) from � to � is an attribute grammar over � with the following constraints.� Each set in
 is either �nite or equal to T�. Attributes with semantic domain T� arecalled tree attributes. The set of all these tree attributes is denoted B (boom, Baum= tree). An attribute with �nite semantic domain is called a ag; the set of all agsis denoted F .� The attribute �mean is a tree attribute.� Every semantic rule has one of the following forms:{ it is either a ag rule, h0; i0i = f(h1; i1i; : : : ; hk; iki);with i 2 F , and f : W (1)� � � � �W (k)!W (0),{ or a tree rule,h�; ii = 8>>><>>>:f1(h�11; i11i; : : : ; h�1k1 ; i1k1i) if h; 0i = e1... ...fN(h�N1; iN1i; : : : ; h�NkN ; iNkN i) if h; 0i = eNwhere �; �jj0 2 B, 2 F , and W () = fe1; : : : ; eNg, and as in De�nition 4.7,for all j and all t1; : : : ; tkj , fj(t1; : : : ; tkj) = r0j[�1 7! t1; : : : ; �kj 7! tkj], for somelinear, non-deleting r0j 2 T�(f�1; : : : ; �kjg). We will abbreviate the functions inthe way we did in De�nition 4.7.� The semantic conditions pertain only to the ags, i.e., they are of the formf(h1; i1i; : : : ; hk; iki);with 1; : : : ; k ags and f a function from the appropriate semantic domains to B .1The example is not exactly the one given in [FV95], but if there is an att that calculates this trans-duction, it can easily be rewritten in their notation. Removing all rules with righthand side # then givesan att that would calculate their transduction. 69

� The attribute grammar is weakly non-circular with respect to (F;B) (see De�nition1.40).The set of all transductions de�nable by an attributed tree transducer with ags is denotedfatt.The att rules of the form h�; ii = r, that were introduced in De�nition 4.7 for plain atts,are easily mimicked by fatts. Intuitively, this is done by adding a ag , with a singletonsemantic domain, say ftrueg. Now, the rule can be writtenh�; ii = nr if h; 0i = trueThe simple technical details are omitted. Thus, we will allow plain att rules in atts withags.On one hand, plain atts are weaker then mso tree transducers, as was just discussed.On the other hand, plain atts and atts with ags are stronger than mso tree transducers,since they can produce an output with size exponential in the size of the input, whereasan mso tree transducer can enlarge the input by a constant factor only (the copy number).For this reason we restrict the fatts by adding the weak single use requirement (De�nition1.35), for the second phase.De�nition 4.10. Let �;� be operator alphabets. A plainwsur attributed tree transducer(satt) is an wsur plain att. An wsur attributed tree transducer with ags (sfatt) is anfatt that is phase-2 wsur with respect to (F;B). The sets of all transductions de�nable bysatts and sfatts are denoted satt and sfatt respectively.Next, we give an example of a wsur attributed tree transducer with ags.Example 4.11. The transduction in Example 4.6 can be computed by the wsur att withags (�;
; (S; I;W); R; C; �), de�ned as follows.The semantic domains are
 = fT�; f0; 1;manygg. We have two synthesized attributes, and �, with W () = f0; 1;manyg and W (�) = T�. Thus, F = fg, and B = f�g.Intuitively, h; ui is the number of occurrences of � in subt(u), where `many' means `morethan one'.In R(�) we have the rulesh�; 0i = 8>><>>:1(h�; 1i) if h; 1i = 1 and h; 2i = 0,2(h�; 2i) if h; 1i = 0 and h; 2i = 1,# otherwise,and h; 0i = h; 1i+ h; 2i; 70

where addition is to be interpreted in the obvious way (1 + 1 = many, and many plusanything equals many). The rules in R(#) are h�; 0i = # and h; 0i = 0. The rules inR(�) are h�; 0i = � and h; 0i = 1.Note that the tree rules in R(�) does not follow the appropriate format (it may onlytest on one ag). We will use this looser form throughout the remainder of the chapter,since the right format can easily be achieved by adding an extra ag.We will illustrate this in this example. The proper format is achieved by adding asynthesized ag 0, with semantic domain W (0) = f1; 2; 3g, and the following rule inR(�): h0; 0i = 8>><>>:1 if h; 1i = 1 and h; 2i = 0,2 if h; 1i = 0 and h; 2i = 1,3 otherwise.Apart from that, the only tree rule in R(�) is changed intoh�; 0i = 8>><>>:1(h�; 1i) if h0; 0i = 1,2(h�; 2i) if h0; 0i = 2,# if h0; 0i = 3.
4.3 For every WSUR attributed tree transducer thereis an MSO transducerWe show here that every attributed tree transduction de�ned by an sfatt is an mso treetransduction.4.3.1 Some AssumptionsWithout loss of generality, we will assume the following for an sfatt.� For every tree rule h�; ii = 8>>><>>>:r1 if h; 0i = e1... ...rN if h; 0i = eNand all j 2 [1; N], not more than one node of rj is labelled with a label from �.We can obtain this form by introducing some new tree attributes. We introducean attribute for every subexpression of rj, except for the subexpressions that areattributes. As a technical convenience, we view the expressions as trees and assumeall trees in all rules of the attribute grammar to be mutually disjoint. For every71

j 2 [1; N], and for every node v of rj which has a label � 2 �, we add a synthesizedtree attribute rj;v. Let k = rk(�). This attribute has the following rule at every� 2 �: hrj;v; 0i = �(wv�1; : : : ; wv�k);where, for any node u of rj, wu is either the attribute giving the subexpression rootedat u, or the attribute that is the label of u:wu = 8<:hrj;u; 0i if nlabrj(u) 2 �;nlabrj (u) otherwise (nlabrj (u) is an attribute):Then, in the original rule, rj is replaced by hrj;root(rj); 0i, if it is not an attribute, andit stays the same, otherwise.This construction preserves the wsur, because an attribute hrj;v�m; ui is only usedonce, to de�ne hrj;v; ui.� The semantic conditions are of the formh; 0i = truefor some 2 F with W () = B .This is easily achieved by adding an extra ag for every existing semantic condition,which is true i� the corresponding condition is true. The original condition can thenbe replaced by a test on this ag.Copy RulesTree rules pose a special problem when one of the cases in the rule merely copies the valueof another attribute. A tree ruleh�; ii = 8>>><>>>:r1 if h; 0i = e1... ...rN if h; 0i = eNis a copy rule if there is a j, such that rj 2 B � [0; rks(�)] (the rule merely copies a valuewhen h; 0i = ej).4.3.2 Plain Attributed Tree TransducersFor the sake of clarity we will �rst prove that plain (i.e., ag-free) wsur attributed treetransductions are always mso transductions. We assume that the transducer has no copyrules, we will �nd a solution for copy rules in Subsection 4.3.4.The output tree of such an attributed tree transduction is very similar to the depen-dency graph of the input tree. More precisely, it consists of a part of the dependency graph72

with all edges reversed, and labels added. This part is the subgraph of the dependencygraph induced by all nodes from which there is a path to h�mean; root(t)i. Every node labelis the (single!) label used in the corresponding rule, and edge labels are added appropri-ately. The single use requirement (and the non-circularity of the ag) makes sure that thispart of the dependency graph is indeed a tree.Example 4.12. We give a simple example of a plain wsur attributed tree transducer: T =(�;
; (S; I;W); R; C; �). Given a tree t, it reproduces the monadic tree that constitutesthe path from the root of t to its leftmost leaf. The input alphabet is the same as inExample 4.6: �2 = f�g, and �0 = f�;#g. The output alphabet is � = �1 [�0, with�1 = f�g, and �0 = f�;#g. The only semantic domain is T�, there is only one synthesizedattribute �, which is the meaning attribute, and there are no inherited attributes. Therules are simple: the single rule in R(�) is h�; 0i = �h�; 1i, R(�) holds the single ruleh�; 0i = � and R(#) holds the single rule h�; 0i = #.�� � �
�� �� � �# # #��

1 1�
Figure 4.2: Dependency graph and outputIn Figure 4.2, for the tree ��##� �#, the dependency graph is given to the left, andthe output tree ��# to the right (ignore the dotted lines).Let G = (�; fT�g; (S; I;W); R; �mean) be a plain wsur attributed tree transducerwithout copy rules, from � to �. The corresponding mso transducer isT = (B; �; f �;�g�2�;�2B; f�j;�;�0gj2rks(�);�;�02B);where� The copy set is B, the set of (tree) attributes of G. Thanks to the single use restric-tion, not more than #B copies of any node can be made by G.� We have no semantic conditions, so any tree is allowed and � = true.� The edge formulas check for a dependency. An edge formula �j;�;�0(x; y) checks thesemantic rules to see if there is a semantic instruction that de�nes h�; xi in terms of73

h� 0; yi. For all j 2 rks(�), �; � 0 2 B, the edge formulas are�j;�;�0(x; y) = 9i; i0 2 [0; rk(�)]; 9� 2 �; 9z(x = z � i ^ y = z � i0 ^ lab�(z) ^ 9� 2 � : h�; ii = �(� � � ; h� 0; i0ij ; � � �) 2 R(�)) _(root(x) ^ x = y ^ 9� 2 � : h�; 0i = �(� � � ; h� 0; 0ij ; � � �) 2 Rroot)� The node formulas determine the right label, and check that the attribute really doescontribute to the transduction. For all � 2 �, � 2 B, they are �;�(x) = right-lab�;�(x) ^ connected-to-�-mean�(x);where right-lab�;�(x) checks if there is a semantic instruction that assigns �(� � �) toh�; xi:right-lab�;�(x) = 9i 2 [0; rk(�)]; 9� 2 �; 9z(x = z�i^lab�(z)^h�; ii = �(� � �) 2 R(�))_ (root(x) ^ h�; 0i = �(� � �) 2 Rroot);and connected-to-�-mean�(x) checks if the meaning attribute of the root depends onattribute � of x, as follows (where B = f�1; : : : ; �Lg):connected-to-�-mean�(z) = 9X�1 : : : X�L�8l 2 [1; L]; 8y 2 X�l�(y = z ^ �l = �) _(9l0; 9y0 2 X�l0 ; 9j : �j;�l;�l0 (y; y0))� ^ (8x(root(x)! x 2 X�mean))�:To understand the latter formula, note that in an acyclic graph, path(x; z) is equiv-alent to acpath(x; z) = 9X�8y 2 X(y = z _ 9y0 2 X : edg(y; y0)) ^ x 2 X�:If we translate this formula from the output tree of the transduction to the inputtree, using the usual method of [Cou91], we obtain the formulaconn�;�(x; z) = 9X�1 : : :X�L�8l 2 [1; L]; 8y 2 X�l�(y = z ^ �l = �) _(9l0; 9y0 2 X�l0 ; 9j : �j;�l;��(y; y0))� ^ x 2 X��We now obtain connected-to-�-mean�(z) by �lling in h�mean; root(t)i as startingpoint, i.e.,(t; v) j= connected-to-�-mean�(z)() (t; root(t); v) j= conn�mean;�(x; z):
74

Proof of CorrectnessWe will show that the above way to construct an mso transducer from a wsur plainattributed tree transducer without copy rules is indeed correct. Please keep in mind thattree rules have exactly one operator.We �rst de�ne the semantic graph of an att G on a tree t. The semantic graph of atree t is the same as the dependency graph WDG(t) of t, except that it has all the edgesreversed, and is labelled. The nodes are labelled with the single operator � 2 � used inthe semantic instruction associated with the node, and the edges are labelled according tothe order of the attributes in the instruction. Also, it is close to the transduction of t: aswill be proven below, the transduction of t is the subtree of the semantic graph rooted inh�mean; root(t)i.De�nition 4.13. The semantic graph SG(t) of a plain wsur attributed tree transducerG from � to � on a tree t 2 T� is a forest over � (see De�nition 1.22).SG(t) = (V;E; nlab; elab);where V = A(t);E = n((�; u); (�0; u0)) j 9� 2 � : (�; u) = �(� � � ; (�0; u0); � � �) 2 R(t)onlab = n((�; u); �) j (�; u) = �(� � �) 2 R(t)o; andelab = n�((�; u); (�0; u0)); j� j 9� 2 � : (�; u) = �(� � � ; (�0; u0)j ; � � �) 2 R(t)o:Lemma 4.14. For every plain wsur attributed tree transducer G without copy rules thereis an mso tree transducer T with T = G.Proof. Since the attribute grammar is non-circular andwsur, the semantic graph is acyclicand every node has at most one incoming edge, so SG(t) is a forest over �. We now provethat G(t) = subSG(t)(h�mean; root(t)i) = T (t), where the mso transducer T is obtained fromG in the manner described above, see Figure 4.3.We will do this in two parts: �rst we prove G(t) = subSG(t)(h�mean; root(t)i), and secondT (t) = subSG(t)(h�mean; root(t)i).1. G(t) = subSG(t)(h�mean; root(t)i). Since t has a unique decoration (see Proposition1.33), decG;t, it su�ces to show that subSG(t) is a decoration. When this is established,it follows that decG;t = subG;t, and hence that G(t) = decG;t(h�mean; root(t)i) =subG;t(h�mean; root(t)i).According to De�nition 1.30, a function is a decoration if all semantic instructionsin R(t) are obeyed. If there is a semantic instructionh�0; u0i = �(h�1; u1i; : : : ; h�k; uki);75

G(t)
=S subSG(t)(h�mean; root(t)i)t S(t) =

T

G

T (t)Figure 4.3: How the transductions relate to the semantic graphthen nlabSG(t)(h�0; u0i) = �, and for all j 2 [1; k] : h�0; u0i j!SG(t) h�j; uji, and hence,since SG(t) is a forest over �,subSG(t)(h�0; u0i) = �(subSG(t)(h�1; u1i); : : : ; subSG(t)(h�k; uki));i.e., subSG(t) obeys the semantic instructions.2. T (t) = subSG(t)(h�mean; root(t)i). Note that the equality only holds on the levelof abstract graphs: we identify the nodes hv; �i of T (t) with the nodes h�; vi insubSG(t)(h�mean; root(t)i).We will show that if we drop the connected-to-�-mean�(x) from the node formulas,the transduction of t is equal to SG(t). Because (t; u) j= connected-to-�-mean�(x) ifand only if (SG(t); h�mean; root(t)i; h�; ui) j= acpath(x; y), it then follows that T (t) =subSG(t)(h�mean; root(t)i).Let T 0 be T , disregarding the connected-to-�-mean formulas:T 0 = (B; true; fright-lab�;�g�2�;�2B; f�j;�;�0gj2rks(�);�;�02B):It is obvious that for any t 2 T�, T 0(t) = SG(t), from the way the semanticinstructions are derived from the semantic rules (De�nition 1.29). More exactly,(t; u) j= right-lab�;�(x) i� there is a semantic instruction (�; u) = �(� � �) 2 R(t), and(t; u; v) j= �j;�;�0(x; y) i� there is a semantic instruction (�; u) = �(� � � ; (� 0; v)j ; � � �) 2R(t) for certain � 2 �. Hence, T 0(t) = SG(t).76

4.3.3 Attributed Tree Transducers with FlagsWe now show that any wsur fatt is an mso transduction. We still assume that thetransducer has no copy rules; we postpone handling copy rules to Subsection 4.3.4.By Lemma 2.15, for each ag 2 F and each e 2 W (), we can make an mso formula!=e(x), with 8t 2 T�; 8u 2 Vt : (t; u) j= !=e(x) i� h; uit = e. From here on we simplywrite (x) = e for !=e(x).Let G be a wsur attributed tree transducer from � to � without copy rules. Thecorresponding mso transducer isT = (B; �; f �;� j � 2 �; � 2 Bg; f�j;�;�0 j j 2 rks(�); �; � 0 2 Bg);where� The copy set B is the set of tree attributes.� The domain formula checks whether all semantic conditions hold:� = 8x; 8� 2 �; 8 2 F ((lab�(x) ^ \C(�) is h; 0i = true")! (x) = true)� Again, the edge formulas check the dependencies. Because of the case structure of therules, the edge formulas are a bit more complicated here. For all j 2 rks(�); �; � 0 2 B,they are:�j;�;�0(x; y) = 9i; i0 2 [0; rk(�)]; 9� 2 �; 9z; 9 2 F; 9e 2 W ()�x = z � i ^ y = z � i0 ^ lab�(z) ^ (z) = e ^9� 2 � : h�; ii = 8>>>><>>>>:�(� � � ; h� 0; i0ij ; � � �) if h; 0i = e... ... 9>>>>=>>>>; 2 R(�)� _9 2 F; 9e 2 W ()�root(x) ^ x = y ^ (x) = e ^9� 2 � : h�; 0i = 8>>>><>>>>:�(� � � ; h� 0; 0ij ; � � �) if h; 0i = e... ... 9>>>>=>>>>; 2 Rroot�:� The node formulas for all � 2 �; � 2 B are �;�(x) = right-lab�;�(x) ^ connected-to-�-mean�(x);
77

whereright-lab�;�(x) = 9i 2 [0; rk(�)]; 9� 2 �; 9z; 9 2 F; 9e 2 W ()�x = z � i ^ lab�(z) ^ (z) = e ^h�; ii = 8>>><>>>:�(� � �) if h; 0i = e... ... 9>>>=>>>; 2 R(�)� _9 2 F; 9e 2 W ()�root(x)^(x) = e^h�; 0i = 8>>><>>>:�(� � �) if h; 0i = e... ... 9>>>=>>>; 2 Rroot�;and connected-to is de�ned like before:connected-to-�-mean�(z) = 9X�1 : : : X�L�8l 2 [1; L]; 8y 2 X�l�(y = z ^ �l = �) _(9l0; 9y0 2 X�l0 ; 9j : �j;�l;�l0 (y; y0))� ^ (8x(root(x)! x 2 X�mean))�:Proof of CorrectnessThe proof forwsur fatts G without copy rules is much the same as for plain attributed treetransducers without copy rules. Again, we de�ne a semantic graph. The semantic graphof a tree t assumes the phase-1 decoration dec1G;t of t to be known. The graph is a labelledversion of the phase-2 weak-dependency graph WD2G(t) of t, with the edges reversed. Thenode labels are the ones appropriate considering the phase-1 decoration, and the edges arelabelled in order.De�nition 4.15. The semantic graph SG(t) of a wsur attributed tree transducer withags G from � to � on a tree t 2 T� is a forest over �.SG(t) = (V;E; nlab; elab);where V = B � Vt;E = n((�; u � i); (� 0; u � i0)) j 9 2 F; 9e 2 W ()(dec1(h; ui) = e and9� 2 � : h�; u � ii = 8>>><>>>:�(� � � ; h� 0; u � i0i; � � �) if h; ui = e... ... 9>>>=>>>; 2 R(t))onlab = n((�; u � i); �) j 9 2 F; 9e 2 W ()(dec1(h; ui) = e andh�; u � ii = 8>>><>>>:�(� � �) if h; ui = e... ... 9>>>=>>>; 2 R(t))o; and78

elab = n�((�; u � i); (�; u � i0)); j� j 9 2 F; 9e 2 W ()(dec1(h; ui) = e and9� 2 �h�; u � ii = 8>>>><>>>>:�(� � � ; h� 0; u � i0ij ; � � �) if h; ui = e... ... 9>>>>=>>>>; 2 R(t))o:The semantic graph SG(t) is equal to the phase-2 dependency graph WD2(t), withthe exception of the labels and the direction of the edges. This should be clear from thefollowing two facts.1. The nodes are the same: A2(t) = B � Vt.2. The edges (apart from their direction) are also the same. Consider a semantic in-structionh�; u � ii = 8>>><>>>:f1(h�11; u � i11i; : : : ; h�1k1; u � i1k1i) if h; ui = e1,... ...fN (h�N1; u � iN1i; : : : ; h�NkN ; u � iNkN i) if h; ui = eNin R(t), and a phase-1 decoration that has dec1G;t(h; ui) = ej. From this instructionwe obtain a phase-2 instruction in R2(t) that is equivalent toh�; u � ii = fj(h�j1; u � ij1i; : : : ; h�jkj ; u � ijkji);keeping only the dependencies from the sub-instruction for h; ui = ej. For theedges of SG(t), we consider all tree rules, i.e., exactly those rules that give rise to aphase-2 instruction in R2(t), and we take into account the correct dependencies, byconsidering the phase-1 decoration.Note that the semantic graph is indeed a forest, since the attributed tree transducer isweakly non-circular and wsur with respect to (F;B).Lemma 4.16. For every wsur fatt G without copy rules there is an mso tree transducerT with T = G.Proof. Let T be the mso tree transducer derived for T in the manner described above.Phase 2 of G is unconditional. Clearly, t j= � i� dec1G;t satis�es the semantic tests, sodom(T) = dom(G).Assume t 2 T� with t j= �. We prove G(t) = subSG(t)(h�mean; root(t)i) = T (t), in thesame way as before.1. G(t) = subSG(t)(h�mean; root(t)i). The decomposition in phases of G is (F;B). Since�mean is a tree attribute, and thus in phase 2, we only have to show that subSG(t) is aphase-2 decoration, i.e., it satis�es all rules in R2(t) (see Lemma 1.41). We consider79

dec1G;t to be known. It is clear how the semantic instructions are divided over thephases: the phase-1 instructions de�ne the ags, and the phase-2 instructions de�nethe tree attributes.We consider the semantic instructions in R(t) that give rise to a phase-2 instructionin R2(t). Let h�0; u � i0i = 8>>><>>>:... ...�(h�1; u � i1i; : : : ; h�k; u � iki) if h; ui = e... ...be a semantic instruction in R(t), and let dec1(h; ui) = e. Then, nlabSG(t)(h�0; u �i0i) = �, and for all j 2 [1; k] : h�0; u�i0i j!SG(t) h�j; u�iji, and therefore subSG(t)(h�0; u�i0i) = �(subSG(t)(h�1; u � i1i); : : : ; subSG(t)(h�k; u � iki)), and hence, since SG(t) is a for-est over �, subSG(t) obeys the phase-2 semantic instruction corresponding to theabove instruction.2. T (t) = subSG(t)(h�mean; root(t)i). This follows the same line of reasoning as case 2for plain attributed tree transducers.4.3.4 Copy RulesThe process described above is not suitable for attributed tree transducers with copy rules.We now show how to construct an mso transducer for an att with copy rules.Let G be an sfatt with copy rules.� First we change the attributed tree transducer. Assume � =2 �. By �[f�g we meanthe operator alphabet with the same rank function as � has, and rk�[f�g(�) = 1.Let G0 be the sfatt from � to �[f�g obtained by replacing every case h�; ii, of everyright-hand side of every rule in G by �(h�; ii). For example, a ruleh�; 0i = 8<:�(h�; 1i; h� 0; 2i) if = 1h�; 1i if = 2,is a copy rule because of the second case. It is transformed toh�; 0i = 8<:�(h�; 1i; h� 0; 2i) if = 1�(h�; 1i) if = 2,Please note that the output of G is equal to that of G0, with the �s \cut out".� Because G0 has no copy rules, we can build an mso transducer T 0 with T 0 = G 0.80

� We build an mso transducer T 00 from � [f�g to �, that cuts all nodes labelled �from a tree. The transduction has copy number 1, we leave the subscripted c out.T 00 = (fcg; true; f �g�2�; f�jgj2rks(�));where for every � 2 �, �(x) = lab�(x);so we copy exactly those nodes that do not have label �. For the edge formulaswe give regular path expressions. By the path expressions we mean, of course, thecorresponding mso formulas (Theorem 3.16). For all j 2 rks(�),�j(x; y) =#j �(lab�(z)� #1)�:Thus, an edge is drawn between two nodes whenever they are connected throughnodes labelled � alone.� Note that T 0 ; T 00 = G, and that mso transductions are closed under composition[Cou91]. This implies that there is an mso transducer T , with T = G.We have now handled all cases, and can conclude that for any wsur attributed treetransducer with ags and copy rules, there is an equivalent mso tree transducer.Lemma 4.17. For every wsur attributed tree transducer with ags G there is an msotree transducer T , such that T = G, orsfatt � msott :4.4 For every MSO tree transducer there is an WSURtree transducerWe will prove that for every mso tree transducer there is an equivalent wsur attributedtree transducer with ags. First we give the intuitive idea, then, in four subsections, weprove some basic properties, we present the formal construction, we give an example, and�nally we prove the correctness of the construction.Let T = (C; �;	; X) be an mso tree transducer from � to �. We will build a wsurfatt G in the following manner. Let t 2 dom(T), and t0 = T (t).With every node u, we have tree attributes �c for every c 2 C. If (u; c) is a node of t0,attribute h�c; ui will hold the value subt0(u; c).A di�cult point is that if (v; c0) is a child of (u; c) in t0, v does not have to be near u in t.We use copy rules to transport the data through the tree, but we have to know the properroute. If (v; c0) is the jth child of (u; c) in t0, then there is an edge formula �j;c;c0(x; y) thatis satis�ed by (t; u; v). There is also a path language corresponding to �j;c;c0(x; y) and anautomaton Aj;c;c0 that recognizes its language. This automaton has a unique walk(u; q0)�t : : :�t (v; qf) for some qf 2 FAj;c;c0 ;81

along the shortest path from u to v. We will transport the data backwards from h�c0; vi toh�c; ui using attributes �(j;c;c0);q (cf. the proof of Lemma 3.20). An attribute h�(j;c;c0);q; wiwill hold the value subt0(hv; c0i) if (w; q) is on the walk of the automaton. The dependencieswill run parallel to the walk of the automaton: h�(j;c;c0);q; wi depends on h�(j;c;c0);q0; w0i i�(w; q)� (w0; q0) is a part of the walk of the automaton. A problem here is that h�(j;c;c0);q; wimay depend both on attributes of children of w and on attributes of the parent of w.Yet, we have to choose h�(j;c;c0);q; wi to be either synthesized or inherited. This problemis circumvented by making �(j;c;c0);q synthesized, and adding an extra inherited attribute�(j;c;c0);q;�.The last thing is to make the value of h�mean; root(t)i equal to t0. If (ur; cr) is the rootof t0, then the value of h�cr ; uri (which is t0) is transported to root(t) by copy rules. Thisis done by synthesized attribute �root.4.4.1 Some Basic PropertiesLet T = (C; �;	; X) be an mso tree transducer from � to �. Please note that in thissection, we will make use of the four assumptions given in Remark 4.3. These assumptionsare equivalent to the following.� if (t; u) j= �;c(x), then t j= �, and (u; c) 2 VT (t), and� if (t; u; v) j= �j;c;c0(x; y), then t j= �, and ((u; c); (v; c0)) 2 ET (t).We have three lemmata.Lemma 4.18. For all t 2 T� with t j= �, all (u; c) 2 VT (t) with label �, and all j 2 rks(�),9!(v; c0) 2 VT (t)((t; u; v) j= �j;c;c0(x; y)) if j � rk(�),and :9(v; c0) 2 VT (t)((t; u; v) j= �j;c;c0(x; y)) if j > rk(�).This is the unique destination property (udp), cf. [KS93]. It follows from the fact thatT (t) is a tree, so a node w has exactly one outgoing edge labelled j for all j 2 [1; rk(w)],and the fact that the edge formulas are mutually exclusive. The latter condition is needed,because otherwise two di�erent edge formulas could be true, resulting in no edge beingdrawn in the output.Lemma 4.19. For all t 2 T� with t j= �, and all (v; c0) 2 VT (t), there is at most one(u; c) 2 VT (t), such that there is a j 2 rks(�) with (t; u; v) j= �j;c;c0(x; y).This is the unique source property (usp). Again, it depends on the edge formulas beingmutually exclusive, and the fact that T (t) is a tree, so no node has two incoming edges.82

According to De�nition 1.43, for every j; c; c0 and every tree t 2 T�, �j;c;c0(x; y) de�nesthe relation Rt(�j;c;c0(x; y)) = f(u; v) j (t; u; v) j= �j;c;c0(x; y)g. As a special case of theunique destination property (using the assumptions in Remark 4.3), Rt(�j;c;c0(x; y)) is apartial function on Vt. Because of the unique source property, this partial function isinjective.In order to simulate the edge formulas of the transducer, we need path languages.For every �e(x; y) (with e = j; c; c0), we build a regular path language �e over D�;rks(�)(Theorem 3.16). For the regular language we construct a deterministic �nite state (string)automaton Ae = (Qe; D(�e); �e; qe;0; Fe) accepting �e. These automata play an importantrole in the following. We will also denote an automaton Ae simply by e = (j; c; c0) 2rks(�)� C � C, writing, for example �e, instead of �Ae.The walks of these automata are very restricted. This is of major importance to therules of the attribute grammar we are to present. The next lemma describes the uniquewalk property (uwp).Lemma 4.20. Let t 2 T� and e 2 rks(�) � C � C. For every (w; q) 2 Vt � Qe, if thereare u; v 2 Vt such that(u; qe;0)��e;t (w; q)��e;t (v; qf); for some qf 2 Fe,then there are unique u0; : : : ; un 2 Vt, unique q0; : : : ; qn 2 Qe, and unique d1; : : : ; dn 2D(�e) such that q0 = qe;0, qn 2 Fe,(u0; q0) d1�e;t (u1; q1) d2�e;t : : : dn�e;t (un; qn);and (w; q) = (ui; qi) for some i 2 [0; n].Proof. Remember that Lemma 3.14 states that if A is a deterministic �nite state stringautomaton corresponding to a regular path language, and (u; v) 2 Rt(kAk), there is aunique walk (u; q0) d1�A;t : : : dn�A;t (v; qf) with qf 2 FA.Because Rt(kAek) = Rt(�e(x; y)) is an injective partial function, for every node u thereis at most one node v such that (u; qe;0) ��e (v; qf) for some qf 2 Fe, and vice-versa, forevery node v there is at most one node u such that (u; qe;0) ��e (v; qf) for some qf 2 Fe.This implies that for every con�guration (w; q) of Ae for which there are nodes u; v suchthat (u; qe;0)��e (w; q)��e (v; qf) for some qf 2 Fe, u and v are uniquely determined. Thisimplies that the entire walk is determined.Note that this result means that all walks of a given automaton Ae are disjoint.4.4.2 ConstructionLet T = (C; �;	; X) be an mso tree transducer from � to �. We now build an sfattG = (�;
; (S; I;W); R; C; �mean) from � to �[f?g that simulates T , using the automataAe de�ned above. Here, � [f?g has the same rank function as �, but rk�[f?g(?) = 0.We make sure that for all t in the domain of G, G(t) 2 T�. We proceed in this way, becausewe want to have an extra element to signify that the value of a tree attribute is `unde�ned'.83

The Input Alphabet and the Semantic DomainsThe input alphabet � is already given, and the set of semantic domains
 is equal tofB ; [0; rk(�)]; T�[f?gg.The AttributesWe �rst describe the attributes, with their intended values. The semantic rules will begiven later.With every tree attribute we have a boolean ag, `def', that is `true' i� the attributehas a proper value. The value of the attribute is set to ?, whenever the correspondingdef ag is false. The latter step is not necessary, since the tree attribute is not used if itscorresponding def ag is false, but it makes for convenient reading.The value of the def ags, and indeed the value of all ags used, can be computedby mso formulas. Recall that the attributed tree transducer has decomposition in phases(F;B), where the �rst phase constitutes an attribute grammar with �nite semantic domainsin its own right. This implies that Theorem 2.14 gives a method to compute their values.Hence, we omit details like whether the ags are inherited or synthesized.First we give these boolean def ags, then the corresponding tree attributes. Alongwith the attributes, we give their intended value, for every t 2 T� and u 2 Vt, denotingT (t) by t0 whenever t j= �.� defc. For all c 2 C.hdefc; ui = true i� 9� : (t; u) j= �;c(x); that is, i� (u; c) 2 Vt0 .� defe;q. For all e = (j; c; c0) 2 rks(�)� C � C and q 2 Qe.hdefe;q; ui = true i� there are nodes v; w such that (v; qe;0) ��e (u; q) ��e (w; qf) forsome qf 2 Fe; i.e., if the con�guration (u; q) is on a walk of the automaton Ae. Notethat, if it exists, this walk is unique because of the unique walk property for (u; q),and hence, if v; w exist, they are also unique.� defe;q;�. For all e = (j; c; c0) 2 rks(�)� C � C and q 2 Qe.For all l 2 [1; rk(u)], hdefe;q;�; u � li = true i� 9v; w; 9q0 2 Qe such that (v; qe;0) ��e(u � l; q0) "l�e (u; q)��e (w; qf) , for some qf 2 Fe. If these v; w exist, they are unique.Moreover, hdefe;q;�; root(t)i = false. Note that for every u, there is at most one l suchthat hdefe;q;�; u � li = true. This follows from the unique walk property for (u; q).� defroot.hdefroot; ui = true i� t j= � and root(t0) = (v; c) for some c 2 C and v 2 subt(u).Note that all defs are false if t does not satisfy �.Now the tree attributes themselves. Again, we give the intended values for everyt 2 T� and u 2 Vt, denoting T (t) by t0 whenever t j= �.84

� �c. Synthesized, for all c 2 C.This attribute gives the subtree of t0, rooted in (u; c), if (u; c) is a node of t0.h�c; ui = 8<:subt0(u; c) if hdefc; ui,? otherwise.� �e;q. Synthesized, for all e = (j; c; c0) 2 rks(�)� C � C, and q 2 Qe.This attribute is used to `transport' the values of the �c0 through the graph, accordingto the instructions of the automaton Ae. Please note that the direction in which theautomaton walks through the tree is exactly opposite to the direction of the attributedependencies.h�e;q; ui = 8<:subt0(w; c0) if hdefe;q; ui, and 9qf 2 Fe : (u; q)��e (w; qf), for w 2 Vt,? otherwise.Note that w is uniquely determined as is explained in the description of defe;q.� �e;q;�. Inherited, for all e 2 rks(�)� C � C and q 2 Qe.This attribute is used so the synthesized attribute �e;q0 of a node u � l for some l candepend on the value of �e;q at u.h�e;q;�; u � li = 8<:h�e;q; ui if hdefe;q;�; u � li? otherwise� �root is the meaning attribute. Synthesized.h�root; ui = 8<:t0 if hdefroot; ui,? otherwise.The fact that �c is synthesized is rather arbitrary. As will be shown in the rules, h�c; uidepends only on other attributes of u, not on attributes of the parent or children of u.For �e;q, and �e;q;�, the situation is a bit more complicated. Attribute h�e;q; ui would bedependent both on attributes of the parent of u, as on attributes of the children of u. Sincethis is not possible with a single attribute, the synthesized attribute �e;q is joined by theinherited attribute �e;q;�. See Figure 4.4 for an illustration of their relation (where the solidlines represent copy rules).Now we describe the remaining ags. These all check relatively simple properties.Again, these are properties that can be computed by an mso formula.We list the ags together with their intended value for all t 2 T�, and u 2 Vt, wheret0 = T (t) whenever t j= �.� dom. W (dom) = B .hdom; ui = true i� t j= �, i.e., the tree satis�es the domain formula.85

�e;q
�e;q0

u
�e;q;� "l u � lFigure 4.4: Step of the automaton (dotted line) and attribute dependencies (solid lines),when the automaton moves up� �;c. W (�;c) = B , for all � 2 �; c 2 C.h �;c; ui = true i� (t; u) j= �;c(x).� . W () = B , for all mso formulas (x) 2 MSOL1(�) \D(�e) for some e.h ; ui = true i� (t; u) j= (x).� chno (child number). W (chno) = [0; rk(�)].hchno; ui = l i� (t; u) j= 9y : edgl(y; x), but 0 if u = root(t).� rootc. W (rootc) = B , for all c 2 C.hrootc; ui = true i� root(t0) = (u; c), in other words, hrootc; ui = true i� (t; u) j= 9� : �;c(x) ^ :9y; 9c0 2 C; 9j : �j;c0;c(y; x) .The Semantic RulesFirst we give the rules for the tree attributes.In the following formula, let ej stand for (j; c; cj). For all � 2 �; c 2 C,h�c; 0i = 8>><>>:�(h�e1;qe1;0 ; 0i; : : : ; h�ek;qek;0; 0i) if h �;c; 0i, and 8j 2 [1; k] : hdefej ;qej ;0; 0i,for � 2 �, k = rk(�), c1; : : : ; ck 2 C,? if :hdefc; 0iis a rule in R(�). Note that the �rst case of the above rule really consists of many cases,one for each � 2 � and c1; : : : ; crk(�) 2 C, abbreviated to one. We have to make sure thatonly one case holds at any time, or, in other words, that �, k, and cj for all j are uniquelydetermined. Assume hdefc; ui = true. This implies t j= �, and (u; c) is a node of t0. Clearly,� (and thus k) is uniquely determined, because the node formulas are mutually exclusive.It follows from the udp that for every j 2 [1; rk(�)] there is a unique (wj; cj) such that(t; u; wj) j= �j;c;cj(x; y), i.e., (u; qej ;0) ��ej (wj; qf) for some qf 2 Fej . Hence, for every j,there is a unique cj such that hdefej ;qej ;0 ; ui = true.Note also that if (wj; cj) is chosen such that (t; u; wj) j= �j;c;cj(x; y), thensubt0(u; c) = �(subt0(w1; c1); : : : ; subt0(wk; ck));86

which proves the correctness of this rule with respect to the intended meaning of theattributes.The attributes h�e;q; ui transport the data through the tree, according to the steps ofthe automaton Ae. They do so by checking if the con�guration (u; q) is indeed on a walk ofAe, which is the case if hdefe;q; ui is true. If so, the rule follows one step of the automaton.It checks if a step is possible, and if the resulting con�guration is also on the walk of theautomaton. This will be the case for exactly one step, because of the unique walk property.In the next rule, please add the condition hdefe;q; 0i to every case but the �rst. For all� 2 �, e = (j; c; c0) 2 rks(�)� C � C, and q 2 Qe,
h�e;q; 0i = 8>>>>>>>>>>><>>>>>>>>>>>:

? if :hdefe;q; 0i,h�c0; 0i if q 2 Fe and hdefc0; 0i,h�e;q0; li if �e(q; #l) = q0 and hdefe;q0; li, for l 2 [1; rk(�)] and q0 2 Q,h�e;q0;�; 0i if 9l : l = hchno; 0i, �e(q; "l) = q0, and hdefe;q0;�; 0i, for q0 2 Q,h�e;q0; 0i if 9 2 D(�e) \MSOL1(�): �e(q;) = q0, h ; 0i, and hdefe;q0; 0i,for q0 2 Qis a rule in R(�). Again, each of the last three cases consists of many cases. There alwaysis exactly one true case: consider a node u. If hdefe;q; ui is true, then 9!v; w : (v; qe;0) ��e(u; q)��e (w; qf), for some qf 2 Fe. From the unique walk property we can conclude thateither (u; q) = (w; qf) (which corresponds to the second case), or 9!(u0; q0); d 2 D(�e) :(v; qe;0) ��e (u; q) d�e (u0; q0) ��e (w; qf) (which corresponds to exactly one of the othercases).From this, the correctness of the rule with respect to the intended meaning of theattributes should also be clear: in the second case, h�e;q; ui = h�c0; ui = subt0(u; c0), and inthe other cases h�e;q; ui = h�e;q0; u0i = subt0(w; c0).For all � 2 �, l 2 [1; rk(�)], e 2 rks(�)� C � C, and q 2 Qe,h�e;q;�; li = 8<:h�e;q; 0i if hdefe;q;�; li,? otherwiseis a rule in R(�).For all � 2 �, h�root; 0i = 8>><>>:h�c; 0i if hrootc; 0i, for c 2 C,h�root; li if hdefroot; li, for l 2 [1; rk(�)],? otherwiseis a rule in R(�).The only root rules we have are for every e 2 rks(�)� C � C, and q 2 Qe,h�e;q;�; 0i = ?87

is in Rroot.We do not give rules for the ags. All the ags are speci�ed by an mso formula.Although mso formulas have not been speci�ed for defe;q, defe;q;�, and defroot, it is clearthat they exist. For defe;q, we can check whether (u; q) ��e (u0; q0) by a regular pathlanguage. This is the language de�ned by the automaton (Qe; D(�e); �e; q; fq0g) (which isAe with start state q and �nal state q0). Thus, we can check whether (u; q)��e (u0; q0) byan mso formula. A formula for defe;q;� is easily constructed when formulas for defe;q areknown. Last, hdefroot; ui = true i� 9c 2 C; 9v : hrootc; vi = true and path(u; v), a propertythat can easily be expressed by an mso formula.Note that the method of deriving attribute rules frommso formulas presented in Section2.3 introduces more than one attribute (all of �nite semantic domain), and hence, strictlyspeaking, we have not listed all attributes of the attributed tree transducer.The Semantic ConditionsFor all � 2 �, we have the semantic conditionC(�) = (hdom; 0i = true):The Meaning AttributeAs mentioned before, �root is the meaning attribute:�mean = �root:This concludes the description of the attributed tree transducer.4.4.3 ExampleExample 4.21. We will show a simple mso tree transducer and the corresponding at-tributed tree transducer. Let the input alphabet be � = �0 [�2, with �0 = f#; �g,and �2 = f$g. The output alphabet is � = �0 [�1, with �1 = �0 = f#; �g, and�0 = f#0; �0g.We present an mso transducer T , such that for any tree t 2 T�, T (t) is equal to theyield of t as a monadic tree (a string can be seen as a monadic tree, with its �rst characteras root, the second character as child of the �rst, etcetera, up to the last character, whichis the leaf of the tree). We have to beware, because all labels in the monadic tree thatconstitutes the yield have rank 1, except for the last one, which has rank 0. We willtherefore use elements of �1 for all of the labels, except the last one, for which we will usea corresponding label from �0.First we present a few more mso formulas over �. The next formula checks if x is therightmost leaf of a (binary) treerml(x) = 9y : (root(y) ^ path2(y; x)):88

We also have a formula to check if x is the leftmost leaf of a treelml(x) = 9y : (root(y) ^ path1(y; x)):Let T = (fcg; �; f �;cg�2�0 [f �0;cg�2�0 ; f�1;c;cg), be the mso tree transducer from �to �, with � = true; �;c(x) = lab�(x) ^ : rml(x) for � 2 �0, �0;c(x) = lab�(x) ^ rml(x) for � 2 �0,�1;c;c(x; y) = 9z (9zl(edg1(z; zl) ^ path2(zl; x)) ^ 9zr(edg2(z; zr) ^ path1(zr; y))) :For leaves x and y, the last formula checks if y directly follows x in the left-to-right order ofleaves. Note that this transducer satis�es all constraints of Remark 4.3, except the third.We will �x this by replacing the one edge formula by�1;c;c(x; y) = leaf(x) ^9z (9zl(edg1(z; zl) ^ path2(zl; x)) ^ 9zr(edg2(z; zr) ^ path1(zr; y))) ^ leaf(y):We will now construct the unconditional sfattG = (�; fB ; f0; 1; 2g; T�[?g; (S; I;W); R; �root);that corresponds to this mso tree transducer. First of all, the path language that corre-sponds to �1;c;c(x; y) is � = leaf(x)("2)� "1#2 (#1)� leaf(x):The transition graph of the corresponding automaton is depicted in Figure 4.5, in whichthe states are numbered in Roman numerals. The start state is i, and the single �nal stateis v. leaf(x) leaf(x)#2"1"2 #1I II III IV V
Figure 4.5: The automaton for �1;c;c(x; y)In the following, let e = (1; c; c). For every node u of t, the values of the ags of G are� hdefc; ui = true i� u is a leaf.� hdefe;i; ui = true i� u is a leaf, but not the rightmost one.89

� hdefe;ii; ui = true i� u is not on the path from the root to the rightmost leaf.� hdefe;iii; ui = true i� u is not a leaf.� hdefe;iv; ui = true i� u is not on the path from the root to the leftmost leaf.� hdefe;v; ui = true i� u is a leaf, but not the leftmost one.� hdefe;i;�; ui = hdefe;iv;�; ui = hdefe;v;�; ui = false.� hdefe;ii;�; ui = true i� u = u0 � 2 for some u0, and u is not on the path from the rootto the rightmost leaf.� hdefe;iii;�; ui = true i� u = u0 � 1 for some u0.� hdefroot; ui = true i� u is on the path from the root of t to its leftmost leaf.Apart from these, we have the ags dom, (for various formulas), chno and rootc, whichwe will not discuss here.As an example of how we derived the above values, we will show why hdefe;iii;�; ui = truei� u = u0 � 1 for some u0, one of the more di�cult cases. From the de�nition of defe;iii;�,hdefe;iii;�; ui = true i� 9u0 : u = u0 � l and 9v; w; q0 such that(v; qe;0)��e (u0 � l; q0) "l�e (u0; iii)��e (w; qf); for some qf 2 Fe.If we look at the automaton, we see that q0 = ii and "l= "1, so this condition is equivalentto 9u0 : u = u0 � 1 and 9v; w such that(v; qe;0)��e (u0 � 1; ii) "1�e (u0; iii)��e (w; qf); for some qf 2 Fe.Consider the automaton once again. Rewriting the above rule, by substituting regularexpressions for parts of the automaton, we obtain the condition9u0 : u = u0 � 1,9v : (v; u) 2 Rt(k leaf(x)("2)�k), and9w : (u0; w) 2 Rt(k #2 (#1)� leaf(x)k):The second formula of the three is always true (any subtree rooted in a node u has arightmost leaf v). The third one is equivalent to saying u0 is not a leaf, which is impliedby the �rst formula. So, hdefe;iii;�; ui = true i� u is a left child.We now give the tree rules. For all � 2 �, the rule for �c in R(�) ish�c; 0i = 8>>>>>>>><>>>>>>>>:
�(h�e;i; 0i) if hlab�(x) ^ : rml(x); 0i,#(h�e;i; 0i) if hlab#(x) ^ : rml(x); 0i,�0 if hlab�(x) ^ rml(x); 0i,#0 if hlab#(x) ^ rml(x); 0i,? if :hdefc; 0i.90

The following �ve rules are for the �e;q. Still, e stands for 1; c; c. For all � 2 �, R(�)contains the ruleh�e;i; 0i = 8<:? if :hdefe;i; 0i,h�e;ii; 0i if hleaf(x); 0i, hdefe;ii; 0i, and hdefe;i; 0i.For all � 2 �, R(�) containsh�e;ii; 0i = 8>><>>:? if :hdefe;ii; 0i,h�e;ii;�; 0i if hchno; 0i = 2, hdefe;ii;�; 0i, and hdefe;ii; 0ih�e;iii;�; 0i if hchno; 0i = 1, hdefe;iii;�; 0i, and hdefe;ii; 0i.The rules for state iii are di�erent for operators in �0 and �2. The sets R(#) and R(�)contain the semantic ruleh�e;iii; 0i = ?;and R($) contains the semantic ruleh�e;iii; 0i = 8<:? if :hdefe;iii; 0i,h�e;iv; 2i if hdefe;iv; 2i and hdefe;iii; 0i.Likewise for state iv. For all � 2 �0, R(�) containsh�e;iv; 0i = 8<:? if :hdefe;iv; 0i,h�e;v; 0i if hleaf(x); 0i, hdefe;v; 0i, and hdefe;iv; 0i,and R($) containsh�e;iv; 0i = 8>><>>:? if :hdefe;iv; 0i,h�e;iv; 1i if hdefe;iv; 1i and hdefe;iv; 0ih�e;v; 0i if hleaf(x); 0i, hdefe;v; 0i, and hdefe;iv; 0i.Last, for all � 2 �, R(�) containsh�e;v; 0i = 8<:? if :hdefe;v; 0i,h�c; 0i if hdefc; 0i and hdefe;v; 0i.We have some more rules. First for the �e;q;�, for l 2 f1; 2g, R($) containsh�e;q;�; li = 8<:h�e;q; 0i if hdefe;q;�; li,? otherwise, 91

and second for �root, R($) containsh�root; 0i = 8>>>>><>>>>>:h�c; 0i if hlml(x); 0i,h�root; 1i if hdefroot; 1i,h�root; 2i if hdefroot; 2i,? otherwise,and R(#) and R() contain the semantic ruleh�root; 0i = 8<:h�c; 0i if hlml(x); 0i,? otherwise.The root rules are h�e;q;�; 0i = ? for every state q. The att is unconditional, as mentionedbefore, and the meaning attribute is �root.

II I

III

IV

V III V III

V

III

IV IV

IV

II

III

II

Figure 4.6: All walks of the automaton on tree tTo conclude the example, we consider how G acts on tree t = $$#$ �##, with outputT (t) = # �##0. Figure 4.6 gives all walks of the automaton on t.Figure 4.7 gives the phase-2 (tree attributes) dependency graph. It shows the inheritedattributes to the left of the node, and the synthesized attributes to the right. The attributenames have been abbreviated. Attribute �root is denoted rt, �c is denoted c, and theattributes �e;q and �e;q;� are both denoted q, for all q. The synthesized attributes �e;i;�,�e;iv;�, and �e;v;� have been left out, because they are never used.92

I IIIc IIIVrtIIIII V II IIIIcrt IVII III

V II III

V

Icrt IVII III

V IIIcIVII III V II IIIIcrtIII II III

V II IIIIcIV

V II IIIIcIVrt

rt IV

II III rt

II III
#

∗ #

#

$

$

$

Figure 4.7: The phase-2 dependency graph of tWe can easily infer the values of the attributes. Let the nodes of t be numbered u1through u7 in level order. The values of the �c areh�c; u3i = #0;h�c; u7i = ##0;h�c; u6i = �##0;h�c; u4i = # �##0;(and the other occurrences of �c have value ?). The rules for all the other attributesmerely copy values, so h�mean; root(t)i = # �##0.4.4.4 CorrectnessWe have to prove that the transducer is non-circular with respect to (F;B), and that itsatis�es the wsur.Lemma 4.22. Attribute grammar G is weakly non-circular and phase-2wsur with respectto (F;B). 93

Proof. The �rst phase of the transduction is non-circular, because the ags are computedin the manner of Chapter 2. For the second phase, we want to prove that WD2(t) is aforest without labels and with the edges reversed.Again, keep in mind that the direction the automaton walks and the direction of theattribute dependencies are opposite, and that the terms unique source and destinationpertain to the walk of the automaton.First of all, if t =2 dom(T), all node and edge formulas are false and so all phase-2semantic instructions are equivalent to h�; ui = ?, for the appropriate � and u. Hencethere are no dependencies, and WD2(t) is a discrete graph.
1 21 2 1 21 2 3

h�mean; root(t)ih�c; vi(v; c)
Figure 4.8: To the left: t0, to the right: WD2(t), where dashed lines symbolize pathsSuppose t 2 dom(T), and let t0 = T (t) 2 T�. We claim that WD2(t) has the reversed-forest form suggested in Figure 4.8. We will make this claim more precise and then prove it.For the sake of readability, the edge relation!t0 will be denoted by a bold arrow!!!. Theedge relation !WD2(t) will be denoted by an ordinary arrow !. We bijectively associatethe nodes (v; c) of t0 with the nodes h�c; vi in WD2(t) for which hdefc; vi = true.The phase-2 dependency graph WD2(t) has nodes h�c; vi, nodes h�root; vi, and nodesh�e;q; vi and h�e;q;�; vi, for all v 2 Vt. The nodes h�e;q; vi and h�e;q;�; vi are called intermedi-ate nodes because of their role in the dependency graph. The edges of WD2(t) are arrangedas follows. There is a single path h�c0; v0i !� h�c; vi through intermediate nodes only, ifthere is an edge (v; c)!!! (v0; c0). The intermediate nodes all have exactly one incomingand exactly one outgoing edge. Let (v; c) be the root of t0, and let v = root(t) � i1 � � � � � in.There is one more path h�c; root(t) � i1 � � � � � ini ! h�root; root(t) � i1 � � � � � in�1i !h�root; root(t) � i1 � � � � � in�2i ! � � � ! h�root; root(t)i. There are no other edges, andWD2(t) may have isolated nodes (viz., all nodes that have def = false).We prove the claim, that WD2(t) has exactly the above mentioned nodes and edges,and thus is a reversed unlabelled forest, which implies that G is phase-2 wsur and weaklynon-circular with respect to (F;B).First we discuss the path involving �root attributes. A ag hdefroot; ui is true i� u ison the unique path from the root of t to node v for which hrootc; vi = true (v and c94

are unique). Looking at the rules for �root, we can then see that the path involving �rootattributes has the formh�c; root(t) � i1 � � � � � ini ! h�root; root(t) � i1 � � � � � in�1i ! � � � ! h�root; root(t)i:From here on we concentrate on the more di�cult paths involving the attributes �c,�e;q, and �e;q;�. The line of thought is the following. For every edge in t0 there is a walk ofan automaton. A walk of an automaton induces a path in the phase-2 weak-dependencygraph, in which a con�guration (v; q) of automaton Ae is associated with node h�e;q; viin WD2(t), and a step in the automaton corresponds to a dependency (or possibly two,involving an attribute �e;q0;�). Di�erent edges in t0 give di�erent walks. Since di�erentwalks of one automaton are disjoint and therefore induce disjoint paths in the dependencygraph (as far as the intermediary nodes are concerned), and two di�erent automata inducedisjoint paths as well, di�erent edges in t induce disjoint paths in WD2(t).First we will formally show that an edge in t0 implies a path in the dependency graph,and we will give the precise form of such a path. Suppose there is an edge (v0; c) j!!! (vn; c0),and let e = (j; c; c0). By the uwp there are unique q1; : : : ; qn�1 2 Qe, qn 2 Fe, v1; : : : ; vn�1and d1; : : : ; dn such that (v0; qe;0) d1�e (v1; q1) d2�e : : : dn�e (vn; qn):Let q0 be qe;0. The above walk of the automaton implies that� 8i 2 [0; n] : hdefe;qi; vii = true, and� 8i 2 [1; n] : if 9l 2 rks(�) : di ="l then hdefe;qi;�; vi�1i = true.It also implies the following dependencies for all i.� If di 6="l for every l, then h�e;qi�1; vi�1i h�e;qi; vii, and� If di ="l for some l, then h�e;qi�1; vi�1i h�e;qi;�; vi�1i h�e;qi; vii, and furthermore� h�c; v0i h�e;q0; v0i, and h�e;qn; vni h�c0; vni.See also Figure 4.9, in which such a path in the dependency graph is sketched, assumingthat vi is the parent of vi�1. direction of the automatondirection of the datah�c; v0i h�e;q0 ; v0i h�e;q1 ; v1i h�e;qn ; vni h�c0 ; vnih�e;qi�1 ; vi�1i h�e;qi ; viih�e;qi ;�; vi�1i
Figure 4.9: A path in the dependency graphNow we shall show that any edge in the dependency graph is on a path of dependencieslike the one described above. We �rst consider three cases for three di�erent combinationsof the starred and unstarred form of the �e;q attributes.95

1. If, for some e; q; q0; u; u0, h�e;q; ui h�e;q0; u0i,then hdefe;q; ui = true, hdefe;q0; u0i = true and 9d 2 D(�e) with d 6="l for every l,such that �e(q; d) = q0, and (u; u0) 2 Rt(d).Hence, 9v; w : (v; qe;0)��e (u; q)��e (w; qf) for some qf 2 Fe,9v0; w0 : (v0; qe;0)��e (u0; q0)��e (w0; qf) for some qf 2 Fe, and(u; q) d�e (u0; q0). This implies(v; qe;0)��e (u; q) d�e (u0; q0)��e (w0; qf); for some qf 2 Fe;and thus (t; v; w0) j= �e(x; y), and so (Remark 4.3),(v; c) j!!! (w0; c0):There is only one walk of automaton Ae from (v; c) to (w0; c0), which, as describedabove, corresponds to a path in the dependency graph, with h�e;q; ui h�e;q0; u0i onit (because (u; q) d�e (u0; q0) is a step in that walk, and d 6="l for every l).2. If h�e;q0;�; u0i h�e;q; ui,then q = q0, u0 = u � l for some l, and hdefe;q;�; u � li = true.Hence, 9v; w; 9q00 : (v; qe;0) ��e (u � l; q00) "l�e (u; q) ��e (w; qf) for some qf 2 Fe, andthus (v; c) j!!! (w0; c0):So there is a path in the dependency graph corresponding to this walk, that hash�e;q0;�; u0i h�e;q; ui on it.3. If h�e;q; ui h�e;q0;�; u0i,then u = u0 = u00 � l for some u00 and l, hdefe;q; ui = true, hdefe;q0;�; ui = true and�e(q; "l) = q0.Hence, 9v; w : (v; qe;0)��e (u00 � l; q)��e (w; qf) for some qf 2 Fe,9v0; w0; 9q00 : (v0; qe;0)��e (u00 � l; q00) "l�e (u00; q0)��e (w0; qf) for some qf 2 Fe, and(u00 � l; q) "l�e (u00; q0). This implies(v; qe;0)��e (u00 � l; q) "l�e (u00; q0)��e (w0; qf); for some qf 2 Fe;and thus (v; c) j!!! (w0; c0):And through the same reasoning as above, h�e;q; ui h�e;q0;�; u0i is on the path inthe dependency graph that corresponds to this walk.Two cases for two di�erent combinations of the �c and �e;q attributes are still to be con-sidered. 96

1. If h�c; ui h�e;q; u0i,then u = u0, q = qe;0, hdefc; ui = true, and hdefe;qe;0; ui = true. From the latter itfollows that 9w : (u; qe;0)��e (w; qf) for some qf 2 Fe, and thus(u; c) j!!! (w0; c0):So h�c; ui h�e;q; u0i is on the path in the dependency graph that corresponds tothis walk.2. If h�e;q; ui h�c0; u0i,then u = u0, q 2 Fe, hdefe;q; ui = true, and hdefc0; ui = true. From the former itfollows that 9v : (v; qe;0)��e (u; q), and thus(v; c) j!!! (u; c0):So h�e;q; ui h�c0; u0i is on the path in the dependency graph that corresponds tothis walk.Now we have established that all dependencies are on a path h�c0; v0i !� h�c; vi throughintermediate nodes only. Last we show that such a path has no branches, i.e., the interme-diate nodes do not have more than one incoming and one outgoing node. It is clear thatno such node has more than one incoming edge, since such an attribute always depends onone other attribute only.Suppose a node has two outgoing edges. We prove a contradiction. Two outgoing edgeswould imply that there are an e, a qn 2 Fe and two possible paths of the automaton:(v0; qe;0)�e : : :�e (vi; qi)�e (vi+1; qi+1)�e : : :�e (vn; qn);and (v00; qe;0)�e : : :�e (v0i; q0i)�e (vi+1; qi+1)�e : : :�e (vn; qn);with (v0i; q0i) 6= (vi; qi). But by the unique walk property, (vi+1; qi+1) lies on a unique walk.We conclude that the dependency graph has the aforementioned forest shape, and thusthat G is wsur and weakly non-circular with respect to (F;B).We have proven that the attribute grammar is weakly non-circular and phase-2 wsurwith respect to (F;B). It follows, by Lemma 1.41, that every tree t has a unique decorationdecG;t. Because the intended meaning of the attributes (as given in Subsection 4.4.2)satis�es the semantic rules, it is equal to that unique decoration. Hence,G(t) = decG;t(h�mean; root(t)i) = decG;t(h�root; root(t)i) = t0 = T (t):Thus, we conclude the following lemma. 97

Lemma 4.23. For every mso tree transducer T there is a wsur attributed tree transducerwith ags G with T = G, or msott � sfatt :From Lemmata 4.17 and 4.23, we conclude the following equality.Theorem 4.24. msott = sfatt :4.5 ComplexityAn mso de�nable tree transduction can be evaluated in linear time. We can show this intwo di�erent ways, either from the de�nition of an mso transducer, or from the de�nitionof the equivalent attributed tree transducer.Theorem 4.25. For every mso tree transducer T and tree t, T (t) can be constructed intime linear in the size of t.Proof. First we will prove the result from the de�nition of mso tree transducers. Thedomain formula can be checked in linear time, by using a tree automaton (Lemma 1.45).The node formulas can be evaluated in linear time too, by Theorem 2.20. Last, since theedge formulas de�ne partial functions (cf. the discussion after Lemma 4.19), by Theorem3.22, the edge formulas can be checked in linear time as well.The result is also easily obtained by looking at attributed tree transducers. For everynode of the tree we have a constant number of attributes, so the number of attributes islinear in the size of the tree. For every attribute we have to evaluate one rule, and everygiven rule can be computed in constant time, since they either concern a �nite semanticdomain, or tree substitution. Hence, the attribute grammar can be evaluated in lineartime in the size of the tree.

98

Bibliography[Boc76] Gregor V. Bochmann. Semantic evaluation from left to right. Communicationsof the ACM, 19:55{62, 1976.[CM79] Laurian M. Chirica and David F. Martin. An order-algebraic de�nition ofKnuthian semantics. Mathematical Systems Theory, 13:1{27, 1979.[Coh81] P.M. Cohn. Universal Algebra, revised edition. Reidel, 1981.[Cou90] Bruno Courcelle. Graph rewriting: An algebraic and logic approach. In Jan vanLeeuwen, editor, Handbook of Theoretical Computer Science, volume B, chapter 5,pages 193{242. Elsevier, 1990.[Cou91] Bruno Courcelle. The monadic second order logic of graphs V: On closing the gapbetween de�nability and recognizability. Theoretical Computer Science, 80:153{202, 1991.[Cou92] Bruno Courcelle. Monadic second-order de�nable graph transductions. In CAAP,volume 581 of Lecture Notes in Computer Science, pages 124{144. Springer, 1992.[Cou94] Bruno Courcelle. Monadic second-order de�nable graph transductions: a survey.Theoretical Computer Science, 126:53{75, 1994.[DJL88] Pierre Deransart, Martin Jourdan, and Bernard Lorho. Attribute Grammars,De�nitions, Systems and Bibliography, volume 323 of Lecture Notes in ComputerScience. Springer, 1988.[Don70] John Doner. Tree acceptors and some of their applications. Journal of Computerand System Sciences, 4:406{451, 1970.[Eng81] Joost Engelfriet. Tree transducers and syntax-directed semantics. Technical Re-port Memorandum nr. 363, Twente University of Technology, The Netherlands,1981.[Eng84] Joost Engelfriet. Attribute grammars: Attribute evaluation methods. In B. Lorho,editor, Methods and Tools for Compiler Construction, pages 103{138. CambridgeUniversity Press, 1984. 99

[Eng89] Joost Engelfriet. Context-free NCE graph grammars. In Fundamentals of Compu-tation Theory, volume 380 of Lecture Notes in Computer Science, pages 148{161.Springer, 1989.[Eng91] Joost Engelfriet. A characterization of context free NCE graph languages bymonadic second order logic on trees. In Graph Grammars and their Applicationto Computer Science, volume 532 of Lecture Notes Computer Science, pages 311{327. Springer, 1991.[F�ul81] Zolt�an F�ul�op. On attributed tree transducers. Acta Cybernetica, 5:261{279, 1981.[FV95] Zolt�an F�ul�op and S�andor V�agv�olgyi. Attributed tree transducers cannot induceall deterministic bottom-up tree transformations. Information and Computation,116:231{240, 1995.[Gie88] R. Giegerich. Composition and evaluation of attribute coupled grammars. ActaInformatica, 25:355{423, 1988.[Gin75] S. Ginsburg. Algebraic and Automata-Theoretic Properties of Formal Languages,volume 2 of Fundamental Studies in Computer Science. North-Holland, 1975.[GS84] Ferenc G�ecseg and Magnus Steinby. Tree Automata. Akad�emiai Kiad�o, Budapest,1984.[Knu68] Donald E. Knuth. Semantics of context-free languages. Mathematical SystemsTheory, 2:127{145, 1968. Correction: Mathematical Systems Theory, 5: 95{96,1971.[KS93] Nils Klarlund and Michael L. Schwartzbach. Graph types. In Proceedings of the20th Conference on Principles of Programming Languages, pages 196{205, 1993.[Oos89] V. van Oostrom. Graafgrammatica's en 2e orde logica. Master's thesis, Universityof Leiden, 1989. In dutch.[TW68] J.W. Thatcher and J.B Wright. Generalized �nite automata theory with an appli-cation to a decision problem of second-order logic. Mathematical Systems Theory,2:57{81, 1968.[Wei87] Klaus Weihrauch. Computability, volume 9 of EATCS Monographs on TheoreticalComputer Science. Springer, 1987.
100

