
 

 

 

 

 

  

Universiteit Leiden  
 

Computer Science 
 

 

 

 
A Metadata Validation Process Design for an 

Automated High-Throughput Screening Workflow - 

Case Study in Metadata of CytomicsDB 

 

 

 

 

Name:  Zhihan Xia 

Date:   27/08/2014 

 

 

 

1st supervisor: Fons J.Verbeek 

2nd supervisor: Enrique Larios 

 

 

 

 

MASTER'S THESIS 

 

Leiden Institute of Advanced Computer Science (LIACS) 

Leiden University 

Niels Bohrweg 1 

2333 CA Leiden 

The Netherlands 

 



 1 / 37 

 

A Metadata Validation Process Design for an 

Automated High-Throughput Screening Workflow - 

Case Study in Metadata of CytomicsDB 

 

 

  

Zhihan Xia (1244205) 

Computer Science, 

LIACS 

Leiden University 

The Netherlands 

xzh1@live.cn 

Dr. Fons. J. Verbeek (Supervisor) 

Section Imaging and Bioinfomatcis, 

LIACS 

Leiden University 

The Netherlands 

f.j.verbeek@liacs.leidenuniv.nl 

Enrique Larios (Supervisor) 

Section Imaging and Bioinfomatcis, 

LIACS 

Leiden University 

The Netherlands 

e.larios.vargas@liacs.leidenuniv.nl 



 2 / 37 

 

Table of Contents 

1. Introduction .......................................................................................................................... 3 

2. Validation Strategies ............................................................................................................ 4 

2.1 Definitions ....................................................................................................................... 4 

2.2 Strategies ......................................................................................................................... 5 

2.2.1 “Trust Your Friends” and “Pass It On” ............................................................... 5 

2.2.2 Levenshtein distance ............................................................................................... 7 

2.2.3 Multi-objective Decision ......................................................................................... 9 

3. Validation Subjects ............................................................................................................... 9 

3.1 Treatment/Compounds ................................................................................................ 10 

3.2 siRNA ............................................................................................................................. 10 

4. Validation Workflow .......................................................................................................... 12 

4.1 Treatment/Compounds Validation ............................................................................. 12 

4.2 siRNAs Validation ........................................................................................................ 17 

5. the Architecture .................................................................................................................. 24 

5.1 The presentation layer ................................................................................................. 24 

5.2 The utility layer ............................................................................................................. 27 

5.3 The service layer ........................................................................................................... 27 

5.4 The persistence Layer .................................................................................................. 28 

5.5 The repository ............................................................................................................... 28 

6. Evaluation of the results .................................................................................................... 29 

6.1 Accuracy of locating contradictions ............................................................................ 30 

6.2 Accuracy of locating duplication ................................................................................. 31 

6.3 Accuracy of giving solutions ............................................................................................... 31 

7. Future Works ...................................................................................................................... 32 

7.1 Duplex detection for multi-attributes entities ............................................................ 32 

7.2 Multiple external data sources .................................................................................... 32 

7.3 Sequence correction ...................................................................................................... 33 

7.4 Multi-objective decision ............................................................................................... 34 

7.5 siRNA correction .......................................................................................................... 34 

Reference........................................................................................................................................ 35 

Appendix ........................................................................................................................................ 36 

RNA sequence links ............................................................................................................ 36 

The class diagram of siRNA validation process...................................................................... 37 

  



 3 / 37 

 

Abstract. High-Throughput Screening (HTS) techniques are commonly 

used to identify potential drug candidates by applying screening strategies 

on large-scale small molecules and genome-scale RNAi. HTS experiments 

are mechanical and repetitive by nature with large volume of data involved. 

Some HTS experiments management applications have been developed as 

automatic data management and analysis solutions to cope with repetitive 

steps and data volume. Computation and transferring of data are automated 

by these systems to reduce the risk of errors which usually caused by 

unnecessary repetition of researchers during these stages. However, little 

attention has been paid to the consistency, integrity and reliability of preset 

parameters used in experiments. However, if these metadata are not trustful, 

then no matter how accurate it could be during data processing, no correct 

conclusions can be retrieved. Thus, an effective progress to validate HTS 

experiments metadata is highly needed to solid the foundation for the 

experiments and then potential candidates can be expected. 

This thesis is going to propose a process to validate metadata (siRNA 

entities and Treatment/Compound names are going to be taken as use 

cases) during the pre-design stage of HTS experiments. The process is 

going to be performed when Master Tables for these parameters change 

(insert, update or delete entries) on CytomicsDB [1], which is a web based 

HTS workflow management platform runs with a modern RDBMS (Relational 

Database Management System). 

1 Introduction 

It is simply not possible to analyze the large amount of potential drug candidates available 

in the fields of biology and chemistry today through manual labor. The process of lead 

screening needs to be automated and its throughput increased if good new drug leads are 

expected to be identified within reasonable time frames and at reasonable cost. Then, 

using robotics, data processing and control software, liquid handling devices, and 

sensitive detectors, the methods of HTS are introduced to help researchers quickly assay 

and screen millions of chemical or genetic targets at a time. Through this process one can 

rapidly identify active compounds, antibodies or genes which are starting points for drug 

design. 

Usually HTS experiments follow the steps of (1) plate preparation, (2) reaction 

observation and (3) "screening". Parameters like chemical treatments, siRNAs, type of 

plates, type of microscopes are pre-stored and maintained as libraries and carefully 

catalogued. During the plate preparation stage, researchers design experiments by 

setting metadata for each microplate. Metadata specified for each experiment (such as a 

protein, cells, or an animal embryo, and the treatments conduct upon them) are selected 

from the metadata libraries. Then, according to the experimental design, each well of the 
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plate is automatically or manually filled with specified cell populations and designed 

treatments are induced into each population. After some incubation time has passed to 

allow the biological matter to absorb, bind to, or otherwise react with the compounds in the 

wells, measurements are taken across all the plate's wells. Using the preset parameters 

as parameters, Elementary measurements are automatically conducted on time-lapse 

images taken by microscopes. These images show changes or defects in embryonic 

development caused by the Treatment applied in each well. Based on the measurement 

result, researchers can do more assays and select liquid from wells that gave interesting 

measurement results. The selected liquid will be put into other plates for following screen 

experiments. By collecting further data on the narrowed set in the following experiments, 

researchers can continually confirm and refine observations. 

CytomicsDB system integrates the whole HTS workflow. The system relies on a modern 

relational database system, MonetDB [2], to store metadata and experiments' results, 

while providing a web base GUI for end-users to supervise and interact with data. During 

each stage of the HTS workflow, CytomicsDB involves a validation process to normalize 

metadata and intermediate data. This thesis presents the validation process which uses 

external databases to check the consistency of each metadata entry. The validation 

process is conducted during maintaining (adding, updating or deleting) metadata in 

master tables in CytomicsDB. 

Two kinds of metadata, Compound names and siRNAs, are taken as cases for the 

validation process as they are representative (the Compound name is single-attribute 

metadata while siRNA is a multi-attributes one) among all kinds metadata stored in 

CytomicsDB. The volume of metadata vocabularies of these two categories also 

determines that they mostly need the auto-validation process. The volume for each of 

these two metadata is over thousands of entries which is too big to check manually. The 

thesis is going to discuss this validation process from the following aspects in section 2 to 

5: (1) validation strategies; (2) validation subjects; (3) Workflows of the validation process 

and (4) the architecture of the validation process. An evaluation of the effectiveness of the 

validation process is going to be discussed in section 6. Some future improvements are 

going to be discussed in the final section. 

2 Validation Strategies 

2.1 Definitions 

The validation process can be abstracted as a model. In this model, each object which is 

objectively existed in the real world (e.g. a compound, or a siRNA) is defined as an entity 

E. For each entity, several attributes are assigned to it, like the name, the ID number and 

the publisher. The attributes that are used to describe one entity can be defined as a set: 

A = {a1, a2…, an}, in which ai (1≤i≤n) means the i
th 

attribute of the entity. 

In this model, multiple data sources are involved as well. They can be categorized as two 
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types. One set is from the lab in which researchers use CytomicsDB to manage their 

experiment data. In CytomicsDB, this set is uploaded by researchers and stored as 

master tables in the database. Another group of sources are from external databases. 

They are used to validate the metadata uploaded by researchers. All these data sources 

can be expressed as a collection S = {s1, s2…, sm} in which si (1≤i≤m) represents the i
th
 

data source among the m data sources. 

Adopted from [3], The data source si offers a fact value f(si, aj) for the attribute aj of an entity E. 

different data sources may have different fact values for a same attribute of the entity. For the 

entity E, if ∃aj∈[a1,an], f(si, aj) ≠ f(sl, aj), i ≠ l, then a confliction or inconsistency is found between 

data source si and sl. In all fact values from all data sources, those who correspond to the 

attribute value in the real world are called the true value. So the validation process is in fact a 

progress for identifying true values among all conflictions between data sources. 

2.2 Strategies 

2.2.1 “Trust Your Friends” and “Pass It On” [4]  

The relationships among the entity, its attributes and fact values from different data sources in 

CytomicsDB are sketched in Fig. 1. In CytomicsDB, the idea is to validate the metadata while 

researchers building the metadata master tables in the system. In Fig 1, it means that the data 

source S2 from the researcher needs validation. An assumption is considered that the fact 

values from reliable external databases can be treated as true values. Especially when those 

fact values are identical to the ones given by researchers, the possibility that those fact values 

are true values becomes quite high which can be assumed as 100%. This confliction 

avoidance strategy is referred as “Trust Your Friends” in [4]. The intuition behind this strategy 

is to trust some data sources which are most reliable, data-rich and independent to the data 

source which needs to be validated. What sources to trust is decided once and carried out for 

all data values. 

 

Fig. 1 the relationships between the entity, its attributes and fact values from data sources 
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One may have noticed that the fundamental assumption is a little bit arbitrary. Theoretically, no 

data sources can be 100% accurate in describing all entities in the real world. Since the 

researches should be experts to the metadata they upload, the researchers’ decisions are 

involved as a part of the confliction resolving strategy. The validation result from “Trust Your 

Friends” strategy is “Passed On (PASS IT ON [4])” to researchers (users, experts) to let them 

decide how to handle possible conflicts. For an entity, the validation result includes the status 

of its correctness and some possible solutions to handle conflicts when some conflictions are 

detected in some attributes. To the entity, the "Highest Quality [5]" entries (in all attributes) 

from external databases are given as recommended possible solutions to conflicts. The 

researchers have the final word on the confliction resolutions. 

For entities with only one unidentifiable attribute, additional fact values of identities from 

external data sources should be used in the validation strategy. For entities with several 

attributes, some multi-objective decision strategies can be implemented during selecting the 

“Highest Quality” matchers. 

The strategy can be mathematically expressed as following. [4] For a single-attribute entity, 

the conflict handling strategy received n entities from external data resources beside the entity 

itself. The strategy can be expressed as a function fch defined on a domain (the single attribute 

of the entity E) D and maps n+1 (the additional 1 input c represented the one fact provided by 

researchers) input values to one output value of the same or another domain S. Fact values (ci) 

conflicted from the fact value (c) provided by researchers in the entity are resolved to a 

solution s: 

𝑓𝑐ℎ: 𝐷
𝑛+1 → 𝑆    (1) 

𝑓𝑐ℎ(𝑐1, ⋯ , 𝑐𝑛 , 𝑐) = 𝑠, 𝑠 ∈ 𝑆, 𝑐𝑖  ∈ 𝐷, ∀𝑖 = 1⋯𝑛 

Similarly, an n+1-ary multi-attributes conflict handling function is a function fch defined on m 

domains Dj and maps n input m-tuples to one output value s which is from the same or another 

domain S. The idea here is that conflicts are resolved in an attribute by using additional 

knowledge from other attributes as well. The correspondences between values from the 

different attributes are not lost, therefore the validation function works with n m-tuples as: 

𝑓𝑐ℎ: 𝐷
𝑛+1 → 𝑆    (2) 

𝑓𝑐ℎ((𝑐1
1, ⋯ 𝑐1

𝑚), (𝑐2
1, ⋯ 𝑐2

𝑚),⋯ , (𝑐𝑛
1 , ⋯ , 𝑐𝑛

𝑚), (𝑐1, ⋯ , 𝑐𝑚)) = 𝑠, 𝑠 𝜖 𝑆, 𝑐𝑖
𝑗
 ∈ 𝐷, ∀𝑖 = 1⋯𝑛 

For a single attribute conflict handling function, additional information (e.g. one more attribute 

of ID) can be given as a separate parameter A to unify the single-attribute problem into a 

multi-attribute one. It can be expressed as: 

𝑓𝑐ℎ: 𝐷
𝑛+1 × 𝐴 → 𝑆    (3) 
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𝑓𝑐ℎ((𝑐1, 𝐴1)⋯ , (𝑐𝑛 , 𝐴𝑛), 𝑐) = 𝑠, 𝑠 ∈ 𝑆, 𝑐𝑖  ∈ 𝐷, ∀𝑖 = 1⋯𝑛 

The number n follows the number of external data sources. Taking the simplified 

single-attribute strategy as an example, if ∃ c𝑖 = 𝑐, ∀𝑖 = 1⋯𝑛 , then there is no conflict and 

the function should be evaluated as 𝑓𝑐ℎ(𝑐1,⋯ , 𝑐𝑛, 𝑐) = 𝑐. So the validation state of the entity 

should be "OK". Otherwise a ci should be selected by some selection rules and be given as a 

confliction solution to correct attributes of the entity. 

2.2.2 Levenshtein distance  

As mentioned before, there can be several ways (models) to select tuples with the "highest 

information quality" as recommended solutions to conflictions. For the underlying quality model, 

the similarity model is chosen for CytomicsDB. That is, the similarity between the entry from 

external data source and the entry provided by researchers is viewed as an indicator of the 

quality. The entries which are most similar to the entry provided by researchers are chosen as 

recommended solutions to deal with conflictions in attributes. To compare the similarity 

between two entries, first a similarity score is calculated for each attribute by comparing fact 

values for the attribute separately. Then a multi-objective decision algorithm gives an overall 

score on the similarity by considering similarity scores on all attributes. 

The types of attributes can be varied a lot from different datasets. However, attributes still can 

be categorized by their types. For most of the cases, they can be numerical, strings, 

categorical or taxonomical attributes [5]. For the metadata sets to be validated in CytomicsDB, 

their attributes can be viewed as strings (digit sequences). Then the task of computing the 

similarity for a pair of fact values is simplified to grading the similarity between two strings. The 

score of similarity is represented as the edit distance (or so called “Levenshtein distance” [6]) 

between a pair of fact values. The Levenshtein distance is a sensitive measure with which 

distances between strings are calculated. The algorithm finds the cost of the least expensive 

set of insertions (add a character to the string), deletions (delete a character from the string) or 

substitutions (replace a character from the one string by a character of the other string) that 

would be needed to transform one string into the other [7]. The distance between two strings is 

normalized to [0, 1] range to describe the similarity between these two strings. To compare the 

similarity between fact strings b and a The Levenshtein distance can be defined recursively as 

following:             (4) 

𝑑𝑖0 = ∑𝑤𝑑𝑒𝑙(𝑏𝑘)

𝑖

𝑘=1

,     1 ≤ 𝑖 ≤ 𝑚,𝑚 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑏) 

𝑑0𝑗 = ∑𝑤𝑖𝑛𝑠(𝑎𝑘)

𝑗

𝑘=1

,     1 ≤ 𝑗 ≤ 𝑛, 𝑛 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑎) 
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𝑑𝑖𝑗 =

{
 
 

 
 𝑑𝑖−1,𝑗−1 𝑎𝑗 = 𝑏𝑖 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛,

𝑚𝑖𝑛 {

𝑑𝑖−1,𝑗 + 𝑤𝑑𝑒𝑙(𝑏𝑖)

𝑑𝑖,𝑗−1 + 𝑤𝑖𝑛𝑠(𝑎𝑗)

𝑑𝑖−1,𝑗−1 + 𝑤𝑠𝑢𝑏(𝑎𝑗 , 𝑏𝑖)

𝑎𝑗 ≠ 𝑏𝑖 ,  𝑚 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑎), 𝑛 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑏)
 

In the formula, wdel, wins and wsub represent the weighted function to calculate the cost of 

deletions, insertions or substitutions. The dmn is the final similarity score between a and b. dmn 

can be normalized as: 𝑑𝑚𝑛
′ = 1 − 𝑎𝑟𝑐𝑡𝑎𝑛(𝑑𝑚𝑛) ×

2

𝜋
. This recurrence can be computed as a 

matrix. An example of computing the similarity score of siRNA sequences “GAATC” and 

“GATC” (the two sequences which are faked only for example are captured and cut off from 

the ‘siRNAdb’ [8]) is given here. First, the two sequences are initialized in a matrix as shown in 

Table 1: 

Table 1: initialization of Levenshtein distance 

  G A A T C 

 0 1 2 3 4 5 

G 1      

A 2      

T 3      

C 4      

The number in each block in the table means the distance score. In the example, all weight 

numbers for all 3 actions are to 1. The second step is filling the rest blocks following the rule 

that: 1) if the two corresponded characters for the block are the same (as shown in Table 2, the 

two characters for block a11 are the same “G”), then fill the block with the minimum number in 

its top-left block; otherwise, fill the block with the minimum weighted number calculated from 

the numbers added 1 in its left, top and top-left blocks (e.g. the value for block a12 in Table 2). 

Table 2: fill in the table to calculate Levenshtein distance 

  G A A T C 

 0 1 2 3 4 5 

G 1 a11 = 0 a12 = 0+1    

A 2      

T 3      

C 4      

As shown in Table 3, by repeating above steps until the table is full-filled, the value in the most 

right-bottom block is then the final similarity score between the two sequences (still needs to 

be normalized of course). 

Table 3: full-filled table for calculating Levenshtein distance 

  G A A T C 
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 0 1 2 3 4 5 

G 1 0 1 2 3 4 

A 2 1 0 1 2 3 

T 3 2 1 1 1 2 

C 4 3 2 2 2 1 

As one can see, the final Levenshtein distance between these two sequences is 1 which 

means deleting one “A” from “GAATC” sequence will make the two sequences identical to 

each other. 

2.2.3 Multi-objective Decision  

As the concern of performance, the multi-objective decision strategy is designed as simple as 

possible In CytomicsDB. Since the user has the final word on the solutions, the drawback 

(inaccuracy) of auto-generating possible solutions can be effectively overcome. There are 

several categories of multi-objective decision (Weighted Global Criterion Methods [9], Analytic 

Hierarchy Processes [10], Evolution Algorithms, etc.) but the most intuitive way is to convert 

the multi-objective decision problem to a single-objective decision problem by Weighted 

Global Criterion Method. Then it only needs to select the biggest sum-scored ones as the 

recommended solutions. For the entity E described in m domains, assuming n m-tuple entries 

from external data sources are given as candidates for potential solutions, if the similarity to Ej 

(1≤j≤m) has been scored as sij (1≤i≤n, 1≤j≤m) for each fact-value in the n m-tuple entries, the strategy 

can be represented as a weighted exponential sum formula: 

𝑈𝑖 = ∑ 𝑤𝑗 × (𝑠𝑖𝑗)
𝑝𝑚

𝑗=1      1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚  (5) 

Then the i
th
 entry with max (𝑈𝑖) in the n candidates is going to be given as a solution to 

conflicts. 

3 Validation Subjects 

There are usually two types of data inconsistency [4]: contradictions and duplications. For the 

contradictions, they may be caused by typos, version updates, shuffle of attributes, etc. 

Perceiving duplications for entities with unique identities is easily. The perceiving can be 

performed on the identifier attributes. Otherwise, additional identifier attributes are needed to 

perceive duplications, which add complexity to the problem. The goal of the validation process 

applied in CytomicsDB is to detect and correct the inconsistent data in the entities of metadata. 

In CytomicsDB, metadata attributes are mapped as fields in each table (or so called the 

“master table”). All the metadata stored in CytomicsDB can be validated for internal 

consistency to increase the accuracy and reliability of metadata for HTS Experiments. In this 

thesis, Compounds (which have only one attribute without unique identifier) and siRNAs 

(which have several attributes beside unique identities) are treated as test cases to implement 

the validation process. 

3.1 Treatment/Compounds 
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The Treatment/Compound is the most important factor of the experiment. In CytomicsDB, only 

the name of each Treatment is adopted. The consistency of this treatment name can be 

validated by using NCBI PubChem Compound database [11]. Here is an example of validating 

treatment “ETOPOSIDE”. The researchers just offer the name of a compound. The validation 

process needs to check if the compound’s real name is “ETOPOSIDE” and if the compound 

has been registered in the master table by another name. By checking the compound with the 

given name in the NCBI database, the following result is shown in Table 4. 

Table 4: The query result by checking the compound name in NCBI database 

CID Name 
Name 

Type 

Molecular 

Weight 

Molecular 

Formula 

2D 

structure 

71316630 

Etoposide o-Quinone synonym 

572.514120 C28H28O13 

 

Etoposide 3',4'-Quinone synonym 

59360017 

Etoposide MeSHHeading 

588.556580 C29H32O13 

 

Etoposide synonym 

46173784 

Etoposide glucuronide synonym 

764.680700 C35H40O19 

 

Etoposide glucuronide MeSHHeading 

Etoposide glucuronide MeSHTerm 

In Table 4 one is possible to see that the name for the compound is not a unique identifier. A 

compound entity can be described with several kinds of names like the source name, the 

Medical Subject Headings (MeSH) and terms, the synonym names, etc. A compound entity 

can have multiple names in each category as well (e.g “71316630” compound has two 

synonym names). Each of these names can be the same as the one from researchers or 

contains it. Fuzzy search (e.g. searching for “ETQPOSJDE” but “ETOPOSIDE” is got.) is not 

supported by the NCBI database. 

The CID (PubChem Compound Identification) is a non-zero integer PubChem accession 

identifier for a unique chemical structure. So it can be used as additional information to detect 

duplications. 

As shown in Table 4, the molecular weight and formula is the most distinguishable attributes 

for the researchers. So these two attributes are included into the process to assist the 

researchers to take a final decision. The 2D structure of each entity is also used in the similar 

way.  

3.2 siRNA 

Small interfering RNA (siRNA) [13] is a class of 20-25 base pairs in length, double–

stranded RNA molecules. In common cases, the siRNA is designed as a gene knockdown 

tool to interfere with the expression of specific genes with complementary nucleotide 
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sequences. siRNA inhibits expression from its homologous gene (i.e. the sequence of 

siRNA is a sub-sequence of its homologous DNA’s sequence). The symbol, ID, accession 

number and GI number of the siRNA follows the homologous gene as well. Usually one 

strand in the double strands of a siRNA sequence is recorded in the database. The 

sequence of a siRNA talked in the rest of the thesis is a one strand sequence if not 

specified. 

For the HTS experiment, the siRNA target is of crucial importance. One example of a 

siRNA provided by the researchers is listed below in Table 5. 

Table 5: one siRNA example provided by the researchers 

Duplex 

Number 
Gene ID 

Gene 

Symbol 

Accession 

Number 
GI Number Sequence 

D-004105-01 7272 TTK NM_003318 34303964 XXX (not disclosed) 

The consistency of this siRNA can be validated using external databases like NCBI 

Nucleotide [12], HGNC (HUGO Gene Nomenclature Committee) Gene symbols/IDs 

database [14] and BLAST+ (Basic Local Alignment Search Tool) sequence alignment 

application [15]. By searching with every attribute value (except the Duplex Number which 

is an internal unique identifier attribute in the research group) of the siRNA as a keyword 

in the external database, the following result is obtained (Table 6): 

Table 6: the query results from all external data sources 

Query 

Keyword 

External 

Data 

Source 

Gene ID 
Gene 

Symbol 
Accession Number GI Number Sequence 

GeneID: 7272 HGNC IDs 7272 TTK NM_003318 262399359 
100% 

Aligned 

GeneSymbol:TTK 
HGNC 

Symbols 
7272 TTK NM_003318 262399359 

100% 

Aligned 

Accession 

Number: 

NM_003318 

NCBI 

Nucleotide 
7272 TTK NM_003318.4 262399359 

100% 

Aligned 

GINumber: 

34303964 

NCBI 

Nucleotide 
7272 TTK NM_003318.3 34303964 

100% 

Aligned 

Sequence: 

************* 
BLAST+ 

100969041 TTK XM_008969441.1 675737708 
100% 

Aligned 

7272 TTK NM_003318.4 262399359 
100% 

Aligned 

7272 TTK NM_001166691.1 262399360 
100% 

Aligned 

Table 6 shows that querying with each fact value of attributes in the siRNA from 

researchers in external data sources may get different results. For example, as querying 
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with the fact value “NM_003318” of Accession Number attribute in NCBI Nucleotide 

database, the result entry of siRNA has a different GI number (“262399359”) to 

(“34303964”) the one provided by researchers. It is because the siRNA has a new version 

(GI Number “34303964” corresponds to Accession Number “NM_003318.3” which means 

the third version of the siRNA while GI Number “262399359” corresponds to Accession 

Number “NM_003318.4” which is the 4
th
 version of the siRNA) stored in the NCBI 

Nucleotide database. Confliction like this or other typos (e.g. the gene symbol given by the 

researchers might be miss-spelled or be using a synonym name) will be detected and 

presented to the user along with best matches from the external data sources and ask the 

user if he wants to use his own or one of the best matches. 

It is possible to notice that the result of query with some fact value from non-unique 

attribute may get non-unique results (e.g. searching the short sequence against BLAST+ 

application). Searching with Gene ID, Gene symbol and sequence in external data 

sources all may get multiple results. That’s one of the reasons that similarity measure and 

multi-objective decision are highly needed for automatically determination. 

To detect the duplication of all the siRNAs in master table, only the attribute “duplex 

number” is used as it is an internal unique identifier attribute.  

4 the Validation Workflow 

The validation workflow follows “Trust Your Friends” and “Pass It On” strategies while 

using “Levenshtein distance” and “Multi-Objective Decision” algorithms. There are two 

branches separately focusing on single-attribute and multi-attributes situations in the 

validation workflow. The two branches follow a common principle of the validation 

workflow. The principle is first parsing each fact value (the attribute value of metadata 

from researchers) into a standard unique identifier value by querying it as a keyword in an 

external data source, then getting the entries from an external database (which should be 

reliable) which uses the unique identifier as a primary key. The validation of Compounds 

and the validation of siRNAs can be viewed as two scenarios corresponding to the two 

branches of the workflow, respectively. 

4.1 Treatment/Compounds Validation 

Validation of a Compound name is the case for validating single-attribute entities. Before 

inserting compound names into the master table, a syntactic validation will check if there 

are duplicated names already registered in the master table. Then later validation process 

will check the internal consistency of the entry inserted into master table. As mentioned 

before, since the attribute “Treatment Name” of a compound is not a unique identifier, the 

first step is parsing each name into the unique identifier, “CID”, by using external data 

sources. So the compound name retrieved from the master table is pushed to the parsing 

stage. Two soap based web services [16] are used to do query in NCBI PubChem 

Compound database. Using “Esearch” service[19] to query one compound name will get a 
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list of candidate “CID”s. Delivering the list of “CID”s to “Eesummary” web service[19] will 

get a list of corresponded compound entries (with attributes like molecular weights, 

molecular formulas, URLs to 2D structure images, etc.). The list of entries will be 

candidates for similarity comparing and screening. Entries which have the highest 

similarity scores among all candidates are picked up as the validation result. These 

entries are delivered to the user for decision. If there is any inconsistency in the compound, 

then these entries are potential solutions to them. An example of validation result which 

are about to “pass on” to users for final decisions is shown in Table 7. 

Table 7: a scope on treatment_validation_details table (example) 

TreaId treaName Result Id CID nameType 
Molecular 

Weight 

Molecular 

Formula 
2DStructure 

1714 VP 16-213 1 59360017 synonym 588.556580 C29H32O13 

 

1714 VP 16-213 2 50989217 synonym 588.556580 C29H32O13 

 

1714 VP 16-213 3 11758093 MeSHTerm 588.556580 C29H32O13 

 

2503 Etoposide 4 45356822 synonym 588.556580 C29H32O13 

 

2503 Etoposide 5 59360017 synonym 588.556580 C29H32O13 

 

These example records are stored in a validation result table beside the master table in 

the database in CytomicsDB. The “treaName” field is the fact value of compound name 

from researchers. The “treaId” field is an auto-generated primary identifier in the master 

table. The “CID”, “MolecularWeight”, “MolecularFormula” and “2DStructure” fields are fact 

values of entries retrieved from NCBI PubChem Compound database. The compound 
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name for each of these entries in the table is perfect matched (according to similarity 

comparison) to the “treaName” from researchers. So these entries’ names are not listed in 

the table. The “nameType” field indicates the type of these entries’ names. The “resultId” 

filed is an auto generated primary key value in the validation result table. 

It is mentioned in chapter 3.1 that query with a compound name (which may be matched 

at any part in different types of names in external data sources) will get 1-to-many 

corresponded “CID”s which will lead to multiple entities from external database. As one 

can see, The query in NCBI PubChem Compound database with compound name “VP 

16-213” (and also for compound name “Etoposide”) gets not only one perfect matched 

entries. These entries have the same molecular weight and molecular formula. Only some 

tiny differences on structures (location of Hydrogen bonds) are distinguishable for them. 

Besides that, one entry identified (CID) as “59360017” is hit by both names in query. 

So a strategy should be applied here to narrow down the choices space and to give 

potential solutions considering possible duplex. The basic idea is that if only one 

unregistered (by other names in the master table) perfect matched compound is found in 

the external data source whose CID is not registered by other entries in the validation 

result table, then the validation state of the given name is OK. Otherwise if multiple perfect 

matched compounds are found in the external data source, then the lead researcher 

(commonly is the administrator of the platform who might be the team leader in the lab) 

should decide on which one is exactly the “real” compound matched to the given name. 

Given the compound name “Etoposide” as an example, the user will be informed about 

multiple hits and a duplex while browsing No. “59360017” compound as an additional 

warning. Upon the decision made by the researcher, the result should be updated in the 

validation result table. If one unduplicated candidate (“45356822”) compound is confirmed 

as the only match to “Etoposide”, then other candidates (here is only the “59360017” 

compound for “Etoposide”) should be removed from the validation result table. Meanwhile, 

when the user reviews candidates for “VP 16-213”, there should no more duplication 

warning for “59360017” compound. Otherwise, if the user ignores the warning and 

confirms that No. “59360017” compound is the only match for “Etoposide”, then the 

decision should be checked in the validation result table. If “59360017” compound has 

been decided as the only match for name “VP 16-213” which logically means that 

“Etoposide” and “VP 16-213” are duplicated to each other, then the name “Etoposide” 

should be removed from master table along with all its validation results. If the 

corresponding compound for “VP 16-213” is not decided yet, then while deleting another 

candidate No. “45356822” for “Etoposide”, the state of candidate No. “59360017” for “VP 

16-213” should by updated to “duplex” which will lead to a duplex warning message when 

the user review the candidate to make the decision for “VP 16-213”. One occasion is that 

only one perfect matched compound is found in NCBI database for the given name but 

this compound is duplicated in the validation result table. In this situation, the matched 
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compound will be inserted into the validation result table with a duplex state and user 

should make a decision on the candidate. The confirmation process is the same as talked 

before in this paragraph. Assuming that the list of candidates (the list is not empty) for 

Compound Name n has been retrieved as l, the strategy is expressed as the following 

pseudo code: 

Start 

Step1: get best matched candidates c from l 

Step2: if length(c) = 1 && duplexDetect(c0) = false → return Validation State = ‘OK’,  

  else → go to Step3 

Step3: for i ← c0 to clength(c) - 1 

  if duplexdetect(i) = true → set i.state = ‘duplex’ 

  else → i.state = ‘’ 

   end for 

  go to Step 4 

Step4: wait for the user’s decision among c 

(abort for users interaction) 

Step5: get the user’s decided candidate d among c 

Step6: if d.state = ‘duplex’ → go to Step7, else → go to Step9 

Step7: get entries list el by d.CID from the validation result table 

Step8: for e ← el0 to ellength(el)-1 

if e is waiting for users’ decision → set e.state = ‘duplex’ 

else → delete the e’s corresponded treatment name in master table; 

  delete e 

  end for 

  go to Step 9  

Step9: get entries list el with CIDs which are among all candidates of n except d from the validation result table 

Step10: for e ← el0 to ellength(el)-1 

if e.state = ‘duplex’ → set e.state = ‘’ 

  end for 

  go to Step11 

Step 11: delete other candidates except d for n 

end  

 

Going back to the example, in fact the two names are all synonyms to the compound 

identified as “59360017”. So they are theoretically duplicated to each other. If the user 

makes a professional choice, one of the two treatment name should be removed from the 

master table following the duplex detection process. 

For a compound name which fails to get perfect matches among the query results from 

NCBI database, the top 3 “best matched” entries will be given as potential solutions to 

correct possible typos in the compound name. The entries “passed on” to users follow the 

same scenario (as talked in the last paragraphs) to warn researchers about duplexes and 

to update internal database according to users’ choices. 
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The workflow is used while the researcher inserting, updating or deleting a compound 

name from the master table. So some common functions like “delete entries from 

validation result table” and “mark duplex” are implemented as components for reusing. 

Based on these components, the whole workflow can be divided as four stages, i.e. 

“getting candidates”, “screening & marking duplex”, “updating duplex marks” and 

“cleaning up the validation result table”. The following diagram shows the workflow in each 

components and how they interact with each other. 

 

 

Fig. 2 (1) the workflow of "get Candidates" and "Screening & marking" components
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Fig. 2 (2) the workflow of "Clean Up" and "Update Duplex Marks" components in treatment validation 

While the user wants to insert or update a compound into the master table, the process 

starts to check whether the name has existed in the master table. If so, the name will not 

be stored. Otherwise, the process will call components in the order, i.e. "get 

candidates"->"screening"->"update duplex marks". If the user wants to ignore the 

validation results and keep the compound in the master table as it is, the user can select 

"ignore" which will call "clean up" component. If the user wants to delete the compound 

from master table, then after calling "clear up" component, the deleting action in the 

master table will follow. 

4.2 siRNAs Validation 

This is the case for validating multi-attributes entities. 5 types of siRNA attributes can be 

validated with external data sources. They are: the Gene ID, the Gene Symbol, the 

Accession Number, the GI number and the sequence. Since the Duplex Number (it is only 

used on the master table as a unique identifier which cannot be validated with external 

data source) attribute is registered on each siRNA entry in the master table, only a basic 

duplex validation of siRNAs is adopted, i.e. assuming the Duplex Number of the user–

provided siRNA is reliable, then only checking if the duplex number has existed in the 

master table is enough. 

To do the validation, not all the 5 kinds of attribute values can be directly used as input 
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fields for query in external data sources. Meanwhile, not all the 5 attributes are included in 

the query output for each external data source. The supported types of attributes for query 

input/output in external data sources are listed below in Table 8. 

Table 8: supported types of attributes (input & output) in external data sources 

External Data Source Supported types of attributes for query Query Output fields 

HGNC IDs GeneID GeneID, GeneSymbol, Accession Number 

HGNC Symbols GeneSymbol GeneID, GeneSymbol, Accession Number 

NCBI Nucleotide Accession Number, GINumber 
Accession Number, GINumber, GeneID, 

GeneSymbol, sequence 

BLAST+ Accession Number, GINumber, Sequence Accession Number, GINumber, sequence 

As shown in Table 8, each data source has some specified input fields (e.g. only BLAST+ 

application can search with a sequence and only HGNC databases can search with Gene 

ID/ symbol, etc.). And not all five fields are available in the output siRNA entities (in fact 

only NCBI Nucleotide database support all fields in the output). However, all these data 

sources do have a common field, “Accession number”, in the output. The Accession 

Number (or so called “GenBank Accession Number”) is a unique identifier given to a DNA 

entity record to track versions and associated entities over time of the entity record in a 

data repository [17]. A standard example of an accession number in table 6 is 

“NM_003318.4”. [18] It is a combination of an accession prefix (“NM_003318”) and a 

version number (“4”). If the sequence of the DNA entity changes, the accession prefix will 

remain the same but the version number will increment. GenBank GI number, however, 

will change each time the sequence changes – even if only one base is affected. So the 

accession number is used as a common identifier in the validation process. 

Another issue needs to be addressed is that the RNA sequence returned from external 

data sources is in fact a single strand (from the original two strands of the RNA) which can 

be viewed as mRNA. Although the homologous siRNA’s sequence provided by users is 

classified which is not authorized to be used in this thesis, just as described in chapter 3.2, 

one can imagine that the sequence of the siRNA should be possibly aligned perfectly to a 

part in its homologous mRNA strand (the “T” base and “U” base are equivalent for 

BLAST+ application in alignment). The BLAST+ application offers a functionality to align 

sequences and give a similarity score of the two sequences after alignment. 

An example of a user-provided siRNA is given in table 9. Attribute values from “Oder 

Number”, “Pool Catalog Number” and “Duplex Number” are not possible to be validated 

with external data sources as they are only defined and used internally in the lab. So they 

are not considered in the validation process. In Table 9, these fields are grey-marked. 

 

 

Table 9: an example for a user uploaded siRNA  
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Gene ID 7272 

Gene Symbol TTK 

Order Number 191376 

Pool Catalog Number D-004105-01 

Accession Number NM_003318 

GI Number 34303964 

Duplex Number D-004105-01 

Sequence ********************* 

In the first step to validate this siRNA, each attribute in the entity is parsed by a separate 

parser. The multi-attributes validation problem is then transformed into a single-attribute 

validation problem. Following the scenario talked in chapter 4.1, the first step of the 

validation process is parsing each attribute into the unique identifier, Accession Number, 

by using external data sources. The resolution of returned Accession numbers varies from 

databases to databases according to their settings. For example the accession number 

returned from HGNC databases omits the version number suffix. For a given Accession 

number without suffix queried in NCBI Nucleotide database (i.e. query with “NM_003318”), 

the returned accession number is always the latest version one. The Accession number 

from the user is usually without version suffix. So in the first stage, only the accession 

prefix of hit accession number is collected. The example result of first stage is listed in 

Table 10. 

Table 10: the list of accession prefix generated from the first stage of siRNA validation 

Input field & value Parsed to External data source 

Gene ID: 7272 NM_003318 HGNC Gene ID 

Gene Symbol: TTK NM_003318 HGNC Gene Symbol 

Accession Number: NM_003318 NM_003318 NCBI Nucleotide 

GI Number: 34303964 NM_003318 NCBI Nucleotide 

Sequence: ********************* 

XM_008969441 

BLAST+ NM_003318 

NM_001166691 

The duplicated results (as those grey cells shown in Table 10) are omitted from the list 

before sending the list to next step. As the example given in chapter 3.2, it is a common 

sense (or an empirical assumption) that if there is some inconsistence between the siRNA 

entry provided by the user and the siRNA entry found in external data source, it’s highly 

possible because of the version update. This means there is a comparatively higher 

chance to find a perfect match in one of the versions of the siRNA. So the next step is 

finding all existed version suffixes for accession numbers retrieved from the first step. 

These accession numbers (with version suffixes) corresponded RNAs are used as 

candidates for the next step. The latest version of accession numbers are fetched from 

NCBI Nucleotide database by NCBI Eutilities EFetch web service [19]. An iterator then is 
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applied on the version suffix to get a list of accession numbers from version one to the 

latest one. For those accession prefixes in step 1, the list of corresponded accession 

numbers is put in Table 11. 

Table 11: the list of accession number generated from the second stage of siRNA validation 

Accession numbers Latest version 

NM_003318.1 4 

NM_003318.2 

NM_003318.3 

NM_003318.4 

XM_008969441.1 1 

NM_001166691.1 1 

Then, RNA candidates from NCBI Nucleotide database by querying with these accession 

numbers using the NCBI EFetch service. The RNA candidates are listed in Table 12. 

Table 12: the list of siRNA candidates from NCBI database 

Acc-numbers 
GI 

numbers 

Gene ID Gene Symbol Sequence 

NM_003318.1 4507718 7272 TTK;MPS1L1 Appendix link.1 

NM_003318.2 23308721 7272 TTK;ESK;MPS1L1;PYT Appendix link.2 

NM_003318.3 34303964 7272 TTK;CT96;ESK;FLJ38280;MPS1;MPS1L1;PYT Appendix link.3 

NM_003318.4 262399359 7272 TTK; CT96;ESK;MPH1;MPS1;MPS1L1;PYT Appendix link.4 

XM_008969441.1 675737708 100969041 TTK Appendix link.5 

NM_001166691.1 262399360 7272 TTK;CT96;ESK;MPH1;MPS1;MPS1L1;PYT Appendix link.6 

One may noticed that, some candidates have several names in Gene Symbol attribute 

(e.g. “TTK; ESK; MPS1L1; PYT” for the “NM_003318.2” entry). It is because except one 

official gene symbol (here is “TTK”), one siRNA can have several synonym names. While 

retrieving candidates, all these synonym names will be collected and put behind the 

official gene symbol in the Gene Symbol field. Then if the siRNA from the user uses a 

synonym name, the validation process can detect it and give a warning to the user. 

The fourth step is using several comparators to calculate the similarity of each attribute 

between the candidate and the siRNA from the researcher. The result of this step is a 

matrix of size n×5 where n is the number of candidates. Each row in this matrix 

corresponds to an entry of candidates and each column corresponds to each attribute. 

The similarity score is stored in each cell of the matrix. Given one candidate RNA sc, the 

siRNA s from the researcher and the Levenshtein distance similarity grading function 

ld(attr1: string, attr2: string), the comparators used in this stage are listed below. 

Gene ID & GI number comparator: It simply calls the Levenshtein distance function to 

compare the similarity of attribute values of sc and s. To calculate the similarity score of 

Gene ID values, the function ld(s.geneId, sc.gengId) is used. The similarity score of the 
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two GI Number values equals to ld(s.GINumber, sc.GINumber).   

Gene Symbol comparator: The result of this comparator is a tuple because it is crucial to 

calculate the similarity score between s’s gene symbol and sc’s official gene symbol 

separately from the score between s’s gene symbol and sc’s gene synonym. The tuple can 

be presented as: 

〈
𝑙𝑑(𝑠. 𝐺𝑒𝑛𝑒𝑆𝑦𝑚𝑏𝑜𝑙, 𝑠𝑐 . 𝐺𝑒𝑛𝑒𝑆𝑦𝑚𝑏𝑜𝑙. 𝑠𝑝𝑙𝑖𝑡(;)[0])

max(𝑖: 𝐹𝑟𝑜𝑚 1 𝑡𝑜 𝑛, 𝑙𝑑(𝑠. 𝐺𝑒𝑛𝑒𝑆𝑦𝑚𝑏𝑜𝑙, 𝑠𝑐 . 𝐺𝑒𝑛𝑒𝑆𝑦𝑚𝑏𝑜𝑙. 𝑠𝑝𝑙𝑖𝑡(;)[𝑖]))
〉 

where n equals to sc.GeneSymbol.split(“;”).length-1.   

Accession number comparator: An accession number needs to be compared in two 

separated parts. As the accession number from the user usually does not have a version 

suffix, the comparison between suffixes is meaningless. So the comparing of accession 

numbers focus on the accession prefix part. In the prefix, there is a 2-letters-start (i.e. “NM” 

in “NM_003318.4”) followed by several numerical digits (i.e. “003318” in “NM_003318.4”). 

The two parts are separated by a “_”. The 2-letters-start presents the species the gene 

bellows to. The comparator returns the minimum similarity score of the two parts as output. 

It can be presented as: 

𝑠. 𝐴𝑐𝑐𝑒𝑠𝑠𝑁𝑢𝑚𝑏𝑒𝑟 = 𝑠. 𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑜𝑛𝑁𝑢𝑚𝑏𝑒𝑟. 𝑠𝑝𝑙𝑖𝑡(. ) 

𝑠𝑐. 𝐴𝑐𝑐𝑒𝑠𝑠𝑁𝑢𝑚𝑏𝑒𝑟 = 𝑠𝑐. 𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑜𝑛𝑁𝑢𝑚𝑏𝑒𝑟. 𝑠𝑝𝑙𝑖𝑡(. ) 

𝑠. 𝐴𝑐𝑐𝑒𝑠𝑠𝑃𝑟𝑥 = 𝑠. 𝐴𝑐𝑐𝑒𝑠𝑠𝑁𝑢𝑚𝑏𝑒𝑟. 𝑠𝑝𝑙𝑖𝑡(−)[0] 

𝑠𝑐 . 𝐴𝑐𝑐𝑒𝑠𝑠𝑃𝑟𝑥 = 𝑠𝑐 . 𝐴𝑐𝑐𝑒𝑠𝑠𝑁𝑢𝑚𝑏𝑒𝑟. 𝑠𝑝𝑙𝑖𝑡(−)[0] 

𝑠. 𝐴𝑐𝑐𝑒𝑠𝑠𝑀𝑖𝑑𝑥 = 𝑠. 𝐴𝑐𝑐𝑒𝑠𝑠𝑁𝑢𝑚𝑏𝑒𝑟. 𝑠𝑝𝑙𝑖𝑡(−)[1] 

𝑠𝑐 . 𝐴𝑐𝑐𝑒𝑠𝑠𝑀𝑖𝑑𝑥 = 𝑠𝑐 . 𝐴𝑐𝑐𝑒𝑠𝑠𝑁𝑢𝑚𝑏𝑒𝑟. 𝑠𝑝𝑙𝑖𝑡(−)[1] 

simiarity score = min(𝑙𝑑(𝑠. 𝐴𝑐𝑐𝑒𝑠𝑠𝑃𝑟𝑥, 𝑠𝑐. 𝐴𝑐𝑐𝑒𝑠𝑠𝑃𝑟𝑥)) , 𝑙𝑑(𝑠. 𝐴𝑐𝑐𝑒𝑠𝑠𝑀𝑖𝑑𝑥, 𝑠𝑐 . 𝐴𝑐𝑐𝑒𝑠𝑠𝑀𝑖𝑑𝑥)) 

Sequence comparator: The similarity score of two sequences is described by the 

bit-score and e-value from BLAST+ application. There is a raw score 𝑆 = ∑ 𝑠𝑟1𝑖 𝑟2𝑖
𝐿
𝑖=1  

which is a numerical value that describes the overall quality of an alignment. Higher 

numbers correspond to higher similarity. The score scale depends on the scoring system 

used (substitution matrix, gap penalty). An example of calculating the raw score is shown 

in Fig. 3. 

 

Fig. 3 example of calculating the raw score in BLAST+ 
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In the context of sequence alignments (BLAST), the bit-score S’ is a normalized score 

expressed in bits that shows the estimation on the magnitude of the search space where 

one would has to look through before he or she would expect to find an score as good as 

or better than this one by chance. The bit-score follows the following definition: 

𝑆′ =
𝜆𝑆−ln (𝐾)

ln (2)
         (6) 

where S is the raw score. Parameters λ and K depend on the substitution matrix and on 

the gap penalties. If the bit-score is 30, one would have to score, on average, about 2
30

≈1 

billion independent segment pairs to find a score could match this score by chance. Each 

additional bit doubles the size of the search space (which is proportional to the product of 

the query sequence length n multiplying the sum of the lengths of the sequences in the 

database m. So the size of the search space is obtained by N=n×m). The bit-score is thus 

a rescaled version of the raw alignment score. 

The e-value or so called “Expectation value” is the number of distinct alignments, with a 

score equivalent to or better than S, that are expected to occur in a database search by 

chance. The lower the e-value, the more significant the score is. 

The comparator calculates the final similarity score as:  

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒 = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑏𝑖𝑡 − 𝑠𝑐𝑜𝑟𝑒 𝑒 − 𝑣𝑎𝑙𝑢𝑒⁄ ) ×
2

𝜋
     (7) 

which will lead to a similarity score within range [0,1]. 

The example of resulted matrix generated from the fourth step is attached in Table 13. 

Table 13: the example of similarity matrix 

 
GI numbers 

similarity 

Gene ID 

similarity 

Gene Symbol 

similarity 

Accession Number 

similarity 

Sequence 

similarity 

siRNA from user 
Compare to: 

34303964 

Compare to: 

7272 

Compare to: 

TTK 

Compare to: 

NM_003318 

Compare to: 

User's Sequence 

Candidate1 0.0056 1 <1,0> 1 1 

Candidate2 0.1051 1 <1,0> 1 1 

Candidate3 1 1 <1,0> 1 1 

Candidate4 0.0792 1 <1,0> 1 1 

Candidate5 0.0792 0.07 <1,0> 0.0056 1 

Candidate6 0.0903 1 <1,0> 0.0056 1 

The fifth step of the process is using the multi-objective decision method to screen best 

candidates and feed it back to the user for decision (if a perfect matched candidate is 

found then the user will get a positive feedback for instead. e.g. the candidate 3 in Table 

13 scores 1 for all comparators except the Gene Symbol comparator. For the Gene 

Symbol comparator, either cell in the returned tuple is 1. It is a perfect match for the 

siRNA). If no perfect matched candidates are found, then an error message along with the 

top 3 best matched candidates decided by the multi-objective decision method will be sent 
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to the user. If the perfect matched candidate is targeted, it still needs to check if a new 

version of the gene exists in external database (e.g. the candidate 4 in Table 13) or if the 

candidate is using a synonym name (the value of the first cell in the Gene Symbol 

comparator returned tuple is less than 1 while the second cell value is 1). If so, a warning 

message will be sent to the user. The user can choose to ignore solutions from the 

validation process or accept one as a correction. The workflow of the whole process can 

be presented in Fig. 4. 

 

Fig. 4 the workflow of siRNA validation process 
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Parsers in stage one and comparators in stage four are put to multi-threads to run 

parallely. The BLAST+ application itself can be set to run in a parallel way as well. When 

the user adds a new siRNA to the master table or updates one the validation process will 

run automatically. A detailed class diagram of this validation process can be checked in 

Fig. 1 in Appendix.  

5 the Architecture 

The architecture is designed to support the workflow of validation described in section 4. 

The performance stability, speed and pressure distribution are main concerns for the 

architecture because the overhead of connecting to external web services and loading a 

BLAST+ local sequence database into the ram are heavy tasks during the validation. 

Besides that, since the workflow relays on external application (e.g. BLAST+ gets different 

I/O schema in Windows and Linux), it needs to concern the compatibility cross operation 

systems. 

The validation process consists of four main activities: retrieving candidates, screening 

candidates, reporting inconsistence, and updating master table according to users’ 

decision. The four activities are distributed in several components which interact with each 

other (The component diagram in Fig. 5 shows the interaction between these 

components). These components can be categorized into a five-layer architecture which 

is composed with a presentation layer, a utility layer, a services layer, a persistence layer 

and a data repository. 

 

Fig. 5 components diagram of validation workflow 

5.1 The presentation layer 
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The validation process is functionally enabled for users using a single web based 

graphical user interface. The presentation layer supports the GUI for users. Coded in the 

JSF 2.0 and PrimeFaces 4.0 front end framework which fully support HTML5 and 

JavaScript/AJAX, the presentation layer makes it easier for users to interact with data in 

master tables [20]. On the web page, users can send requests to batch-upload a list of 

entries into master tables, create or update a single new entry in a master table, view 

entries in master tables, or delete one entry. The validation process will be triggered by 

the user's operations on the presentation layer. During uploading or creating entries in the 

data repository, the validation process will be triggered to validate the new entries at the 

back end. While the user viewing the detail of one entry, the validation result and 

recommended solutions show synchronously. Users with privilege can direct make 

decisions (choose one candidate to correct the detected inconsistence or keep his own 

one in the master table) on the view dialog. The choice will be updated into the data 

repository by the validation process. After the user deleting or updating an entry from the 

master table, the validation process will be called to update the duplication information in 

the validation result table if necessary. Besides that, the presentation layer is the first 

stage of validation in the platform by considering mandatory fields for uploading 

experiment metadata. The presentation layer also controls messages bubbling. Some 

errors happened during the validation process will be reported to users by an alert 

message on the web page. Fig 6 is a collection of screenshots of the presentation layer. 

     

Fig. 6 (1a) upload new entries into the master table    Fig. 6 (1b) create a new entry in the master table 
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Fig. 6 (2) in the view dialog one of the entries passed the validation 

 

Fig. 6 (3) a new version was found for one entry in external database 

 

Fig. 6 (4) one entry gets a typo in the last base of Accession Number and used a wrong Gene ID 

 

Fig. 6 (5) the administrator can decide to "accept" the correction 
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Fig. 6 (6) the administrator can decide to "ignore" the correction 

 

Fig. 6 (7) the validation result can be overviewed in the grid 

5.2 The utility layer 

The utility layer includes manage beans and several utilities like parsers and comparators. 

They work as the pivot in the validation process to control the generation of candidates, 

the screening of candidates and the responding actions after the researcher makes a 

choice on the presentation layer. The manage beans are controllers to request the utilities 

to visit resources from external web services (or applications) and do calculations. They 

also control the calling of internal web services in the service layer to do CRUD (create, 

update, read and delete) actions in master tables. Running results or errors are collected 

and sent back to the presentation layer. The purpose of separating those utilities from 

manage beans (as independent components) is to make it easier to run those utility 

instances in a parallel way. 

5.3 The service layer 

This layer consists of multiple web services which support every step in the HTS workflow. 

These web services invoke different APIs which are in charge of the Experiment design, 

Image Analysis and Data Analysis [20]. This structure allows easy extension with more 

functional modules. For example, parsers in the utility layer use web services to access 

external data sources. The Simple Object Access Protocol (SOAP) messages are 

selected for invoking the web services and receiving results because of its approved 

interoperability in web applications and heterogeneous environments. For these web 

services, one big portion of work is keeping the persistence in the database by using 
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modules from the persistence layer. The MonetDB (www.monetdb.org) database used in 

CytomicsDB is not a transaction database [2]. Therefore, operations like insertions, 

updates and deletions are minimized by batching them as many as possible. 

5.4 The persistence Layer 

This layer is based on the principle of object-relational mapping (ORM) which involves 

delegating access to relational database, which in turn give an object-oriented view of 

relational data, and vice versa. The Java Persistence API (JPA) framework has been 

implemented in this layer to keep a bidirectional correspondence between the database 

and objects. Those Java objects used in the framework are known as Java Entities [21]. 

Entities are objects that live shortly in memory and persistently in the database. Besides 

that, they have all the features of a Java class like instantiation, abstraction, inheritance, 

relationships and so on. The entities used in CytomicsDB follow the structure of the tables 

they mapped to i.e. mapping the fields as properties in the objects. Basic CRUD 

(create/read/update/delete) operations are registered as named query methods which are 

written in Java Persistence Query Language (JPQL). Customized queries can be attached 

to entities as native queries via JPA. 

5.5 The repository 

The master tables are stored in an open source column-based database system, 

MonetDB, which is used as the data repository. A validation process needs to use three 

tables. Their structures are shown in Fig. 7. The tables in the middle (“sirna” table and 

“treatment” table) are the master tables. The validation state (“OK”, “Warning” or “error”) 

for each entity in the master table is stored in the validation state table. In the validation 

details tables, solutions to correct inconsistencies in each entity are stored there. 

Therefore, the entries in validation state table are one-to-one correspond to those in 

master tables while the validation details tables have one-to-many correspondence to 

master tables. 

 

Fig. 7 the database structure 
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MonetDB is proved to have superior performance in processing analytical queries on 

large scale data [2] which is suitable for the complex data manipulation in the validation 

workflow. Thus, in CytomicsDB, MonetDB is used to store the experiment metadata and 

validation intermediate results. 

The overall architecture of modules in CytomicsDB is shown in Fig. 8. 

 

Fig. 8 CytomicsDB architecture 

6 Evaluation of the results 

This thesis analyses the overall performance of the validation strategy from three aspects. 

The evaluation focuses more on the accuracy of the results from the validation progress 

than other factors like the efficiency which could be important for a real-time web based 

system. 

The efficiency is indeed an important factor. Running in a multi-threads pathway with 

minimized I/O (input/output) to all web services, it will take two seconds to validate one 

single-attribute entry or four seconds or so to validate a multi-attributes entry in a Linux 

system with stable Internet connection. However the time overhead is not going to be 

accurately measured and evaluated in this thesis. The first reason is that this validation 

process is performed during the experiment prepare stage. Once the metadata uploaded 

and validated, changes on metadata will be very limited (i.e. “once created, use forever”). 

So the overhead of one round validation can be a less important issue than its accuracy. 

The second reason is that the overhead relies on several other aspects like: 1) the speed 

of the Internet, 2) the implementation of multi-threads in the core architecture of the 

operation system, 3) the operation system which the BLAST+ application runs on 

(BLAST+ application requires extra I/O operations with local file system in Windows 

system). These issues are not going to be discussed elaborately in this thesis. So only the 

rough estimation of time overhead is given in this thesis. 

As talked in chapter 3. There are several kinds of possible inconsistencies. It’s possible 

that an entry has some spelling errors in some attributes or accidentally uses values from 

other entries or its other attributes (i.e. has contradictions to real values of those 

attributes). How good the validation process can find these contradictions will be 

evaluated in chapter 6.1. It’s also possible that an entry is semantically duplicated to other 

entry (e.g. the entry uses a synonym name to the name of another entry). The evaluation 

on the performance of targeting semantic duplications will be talked in chapter 6.2. The 
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accuracy of feeding solutions to fix inconsistences is evaluated in chapter 6.3. 

6.1 Accuracy of locating contradictions 

Based on the degree of how hard to figure semantic contradictions out, the 

inconsistencies can be divided into two levels. The junior level of contradictions is simple 

typos or spelling errors which should be comparatively easier to be found out. The senior 

level is that the attribute itself is a valid one but appears in a wrong entry. The evaluation 

wants to check the performance of detecting these two levels of inconsistencies for the 

validation strategy. The F-measure which is a common measure of a test’s accuracy is 

adopted as an indicator of the performance. The F-measure considers both the precision 

p and the recall r of the test to compute the score. 

𝑝 =
𝑡𝑝

𝑡𝑝+𝑓𝑝
            (8) 

𝑟 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∗ 𝑝 ∗ 𝑟

𝑝 + 𝑟
 

Where the siRNAs involve inconsistency are considered as the positive class, and tp, fp 

and fn denote the number of true positives, false positives, and false negatives, 

respectively. 

300 randomly chosen siRNAs are used in the evaluation. They were uploaded to 

CytomicsDB by researchers and are proved to be valid by them. To do the evaluation, 200 

siRNAs of the data set is selected and the value of one of the 5 attributes is slightly 

changed (to a random wrong value by adding, modifying or deleting one base) for each 

siRNA. To better demonstrate the performance when contradictions happen in different 

attributes, the 200 siRNAs are divided in five groups, i.e., every 40 siRNAs have errors in 

a respective attribute. The aim is to see if the validation strategy is able to figure out these 

intentional errors. 

Uploading the 300 records to the test database of CytomicsDB, the measures are listed 

as following (Fig. 9). The overall F-measure is 0.96 (where the range for F-measure is [0, 

1]). 

 

Fig. 9 Evaluation result of the performance of detecting errors 
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As shown in the result figure, the validation strategy can accurately detect errors in 

attributes like: Gene ID, Accessing Number and GI Number. There are two false negative 

cases when the errors are in Gene Symbols. The two are judged as warnings (instead of 

errors) because the “wrong gene symbols” are accidently among synonyms. So the 

validation results still make sense. However, for detecting errors in Sequence, there is still 

a big space for improvement in the validation strategy. 

6.2 Accuracy of locating duplication 

100 compound names are adopted in this evaluation. They are from users of CytomicsDB 

and proved to be inconsistent by them. In this evaluation, synonyms of the 100 compound 

names are added to the data set as another 100 compounds. So in total, 200 compound 

names are uploaded to the test database of CytomicsDB. In the 200 compounds, the last 

100 compounds should be semantically duplicated to the first 100 ones. Another 100 

consistent un-duplicated compound names are attached in the data set after the 200 

names to detect possible false positive cases. The aim of the evaluation is to see the 

performance of the validation strategy detecting these duplex. This evaluation still uses 

F-measure as the indicator of the performance. The second 100 compound names (which 

are duplicated) are viewed as positive cases. The measurement result is listed below in 

Fig. 10. 

 

Fig. 10 Evaluation result of the performance of detecting duplexes 
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“44308022” but the CID got for “MEDRYSONE” is “247839”. However, the compounds 

identified by the two CIDs do have the same molecular weight and formula. The structures 

of them only have slightly differences. This kind of failed cases is quite common in all the 

false negatives. So it may make sense to have molecular formula as an extra condition 

(i.e. if CID is same or molecular formula is same then alert the user about the possible 

duplex) to do the duplex determination.  

6.3 Accuracy of giving solutions 

In the 185 correctly detected wrong siRNAs from the first evaluation, 162 of them get the 

original correct siRNA entities as recommended solutions to correct the inconsistencies. 

The real siRNA entries (i.e. the siRNAs before the intentional modifications) are missing 

from the recommended solutions for 2 siRNAs with wrong Gene Symbols and 21 siRNAs 

with wrong sequences. The possible improvement for correcting sequence is going to be 

discussed in Chapter 7.3.  
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When the typos in each attribute get more severe (more than one base goes wrong) and 

more attributes in one siRNA have typos, the recommended solutions from the validation 

strategy make less sense. When all attribute values in one siRNA are incorrect, the 

corrections do not reliable any more. 

For the 69 true positive treatment names (i.e. truly detected as duplex by the validation 

strategy) in the second evaluation, the validation strategy correctly points out the 

treatments they duplicated to for all of them. 

7 future works 

7.1 Duplex detection for multi-attributes entities 

For the siRNAs, now the validation process only checks the value of attribute “Duplex 

Number” to determine duplexes. However, values in this attribute may not be consistent 

since they are not validated as well. A similar sematic way of detecting duplex may need 

to be adopted from the single-attribute entity validation process. That is, if there are two 

identical candidates stored in the validation details table (where the candidates will be 

recommended as corrections to users), the user should be warned while they see one of 

them when they make the decisions. Similar checking and updates as the progress 

described in chapter 4.1 should be performed for multi-attributes validation as well.  

7.2 Multiple external data sources 

Now the validation strategy is based on an assumption that the NCBI databases are inner 

consistent and reliable. However, the assumption is not one hundred percent correct. 

There can be some overlooked errors while audition or some data loss while backing up 

or data migration. So only using the NCBI database to retrieve the list of candidates from 

the list of Accession Numbers is not a quite trustful operation. It could be better to have 

some other data sources as prove while retrieving candidates. There might be some 

conflictions during the proving process as well (e.g. the entries from NCBI database and 

entities from other databases by querying with the same Accession Number might have 

conflicts). To deal with conflictions in data from multi external data sources, a handy tool 

might be the Markov Logic network [3]. For example (Table 14), if several siRNA 

candidates are obtained from different data sources by querying with an Accession 

Number (NM_003318), the algorithm can be used to construct a candidate which is more 

trustful than others. In the example, the gene symbol from S1 and S3 are correct but 

presented in different ways. The gene symbol provided by S2 contains information from 

S1 and S3. The gene symbol provided by S4 is wrong. The value “TTK” is going to be 

selected as the trustful value for Gene Symbol attribute if the algorithm runs properly. 

Table 14: example candidates from different data sources for NM_003318 

Source Keyword GI Number Gene ID Gene Symbol Sequence 

S1 NM_003318 4507718 7272 TTK Seq1 

S2 NM_003318 34303964 7272 TTK;ESK Seq2 

S3 NM_003318 262399359 7272 ttk Seq3 

S4 NM_003318 675737708 100969041 MPH1 Seq4 

The Markov Logic network applies Markov network to a collection of formulas from 

first-order logic. In the network, the vertices of the network are atomic formulas and the 
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edges are the logical connectives used to construct the formula. For a set of values 

𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑛), the network is trying to find the most possible one (i.e. find the most 

possible Gene Symbol value for the attribute from all candidates in the example). There is 

a weight number for each formula which should be learned by the network during 

auto-training. The joint distribution represented by the network is: 

𝑃(𝑋 = 𝑥) =
1

𝑍
exp (∑ 𝑤𝑗𝑓𝑗(𝑥)𝑗 )          (9) 

The 𝑓𝑗(𝑥) ∈ {0,1} is each binary formula in the network and 𝑤𝑗 is the weight number for 

each formula. Z is known as the partition function [23]. Here is one example of 𝑓𝑗(𝑥). As a 

common sense, the value appeared the most frequent in all candidates is more possible 

to be the accurate value. So for one attribute a, one predicate formula can be defined as 

MaxFrequence(a,x)=> isAccurate(x). The formula can be proved as true or false by each 

specific test case. The formula can also be defined between data source s and value x as 

well. Usually the more trustful data source may give the trustworthy value with higher 

possibility. i.e. provide(s,x)^isTrustWorthy(s)=>isTrustWorthy(x). As these formulas use 

common parameters (like “s” or “a”) and logical connections between them, they can be 

connected to each other as an undirected graph. The trained Markov Network can predict 

the true value for each attribute from several candidates. By combining predicted true 

values together, the final candidate can be generated. 

7.3 Sequence correction 

For now, it is only possible to check if the siRNA’s sequence existed in its homologous 

gene’s sequence. If the siRNA’s sequence has several miss-spelled bases which lead to a 

low alignment score, the validation strategy can only tell the user that there might be some 

typos in the siRNA’s sequence and give the matched part (which might be shorter than the 

siRNA’s sequence or might have skips) in its homologous gene’s sequence as a possible 

correction. To make the recommendation more reliable, a possible solution is involving 

some siRNA design rules. Then when mismatch happens, the validation strategy may do 

some guesses on the possible correct siRNA sequence by cross comparing those siRNA 

sequences generated from design rules with the matched sequence clips. Constructing 

siRNAs is via finding target areas on a mRNA. One common used rule to find interesting 

regions (which can be used as siRNA targets) on the mRNA is “Rational siRNA design 

algorithm” [22]. It identifies eight characteristics associated with siRNA functionality. 

These characteristics are used to evaluate potential targeted sequences and assign 

scores to them. Sequences with higher scores will have higher chance of success in RNA 

interfering. The Table 15 lists the 8 criteria and the methods of score assignment. 

Table 15: rational siRNA design criteria (criteria 3: Tm of potential internal hairpin < 20 ̊C) 

Criteria Description Score 

Yes No 

1 Moderate to low (30%-52%) GC Content 1 point  

2 At least 3 A/Us at positions 15-19 (sense) 1 point /per A or U  

3 Lack of internal repeats 1 point  

4 A at position 19 (sense) 1 point  

5 A at position 3 (sense) 1 point  

6 U at position 10 (sense) 1 point  

7 No G/C at position 19 (sense)  -1 point 
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8 No G at position 13 (sense)  -1 point 

A sum score of 6 defines the cutoff for selecting siRNAs. All siRNAs scoring higher than 6 

are acceptable candidates. With this algorithm, several potential areas on the mRNA 

sequence can be targeted. Then one of the closest regions to the matched area can be 

given as a possible correction to the siRNA sequence. More criteria can be applied in the 

process to narrow down the number of target areas. 

7.4 Multi-objective decision 

The similarity scores for a candidate of multi-attributes entity can be presented as a vector 

�⃗� (for the siRNA’s 5 attributes, the dimension of the vector is 5). Accordingly, the weights 

is a vector �⃗⃗⃗� which has the same number of dimensions as �⃗�. Then the sum formula in 

multi-objective decision is simply described as 𝑈 = �⃗⃗⃗� ∙ �⃗�. In the case of validating siRNA, 

the weight vector is [1,1,1,1,1] by default. However, the weight vector can be tuned by 

involving the user’s previous decisions. So the recommendation result will optimized 

dynamically based on users selections. Assuming the vector of the user chosen candidate 

is 𝑐, then the weight vector can be tuned as: 

�⃗⃗⃗�′ = (1 − 𝜌) × �⃗⃗⃗� + 𝜌 ×
𝑐

|𝑐|
         (10) 

where the 𝜌 is an exponential smoothing parameter which controls the weight vector not 

to change too violet. While validating the next siRNA entity, the tuned weight vector can be 

used in multi-objective decision stage. 

7.5 siRNA correction 

For now, if every attribute in the given siRNA has typos, then the possible correction given 

by the validation strategy tends to be random. However, for the dataset from users of 

CytomicsDB, the duplex number can be an auxiliary to give potential solutions when all 

decision strategies fail. 

As described in the beginning of chapter 3, a RNA can have several potential regions 

which can be siRNA targets. This means that in the master table of CytomicsDB, several 

siRNAs may correspond to a same homologous gene. This situation has been considered 

in duplex number. For example, the duplex number “D-004105-01” is actually assembled 

by two parts. The first part “D-004105” is a registered identifier for the RNA in the lab. The 

second part “01” means this siRNA corresponds to the first target region. In this case, if 

there are some typos in attributes (excepts Sequence) which lead to the possible 

corrections not making sense any more, the validation strategy may try to find a validated 

siRNA in the master table where the first part of duplex number is the same but the 

second part is different. Then the Gene Symbol, Gene Id, GI Number and Accession 

Number from the validated siRNA can be given as a solution to correct the wrong siRNA. 

This method might be helpful when there are some internal identifier attributes while doing 

the multi-attributes validation. 
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Appendix 

Link.1: the RNA sequence of NM_003318.1 (identifier: accession number) 

http://www.ncbi.nlm.nih.gov/nuccore/NM_003318.1 

Link.2: the RNA sequence of NM_003318.2 (identifier: accession number) 

http://www.ncbi.nlm.nih.gov/nuccore/NM_003318.2 

Link.3: the RNA sequence of NM_003318.3 (identifier: accession number) 

http://www.ncbi.nlm.nih.gov/nuccore/NM_003318.3 

Link.4: the RNA sequence of NM_003318.4 (identifier: accession number) 

http://www.ncbi.nlm.nih.gov/nuccore/NM_003318.4 

Link.5: the RNA sequence of XM_008969441.1 (identifier: accession number) 

http://www.ncbi.nlm.nih.gov/nuccore/XM_008969441.1 

Link.6: the RNA sequence of NM_001166691.1 (identifier: accession number) 

http://www.ncbi.nlm.nih.gov/nuccore/NM_001166691.1 
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Fig. 1: the class diagram of siRNA validation process 

 


