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1 Introduction

High-Throughput Screening (HTS) is used by drug researchers to assess
whether molecular compounds can be used in drug design. HTS uses ad-
vanced technologies to test thousands of compounds a day. HTS is expensive
and inefficient, therefore Virtual Screening (VS) methods have been devel-
oped. Virtual screening [10] uses computational techniques to select a subset
of molecules from virtual libraries. Molecular compounds are selected based
on their chemical properties. A problem with existing VS methods is that
they do not take into account the risk related to selecting chemically similar
compounds. Selecting compounds with similar chemical structures is risky.
If the structure proves to be unusable, then all similar compounds will most
likely be unusable.

In an unpublished technical report Yevseyeva et al. [11] have suggested
that VS with risk of similarity can be seen as a Portfolio Selection Problem
(PSP). The PSP model was proposed by Markowitz [7] to solve the problem
of asset selection in the financial world. In finance you wish to select a
portfolio of assets that maximizes expected return while minimizing risk.

To find a suitable portfolio in the set of optimal portfolios (that is, in the
efficient set of portfolios, we first have to find the efficient set of portfolios.
The graphical representation of the efficient set is often referred to as non-
dominated front or Pareto front (PF). A portfolio is element of the efficient
set if it is not dominated by any other portfolio. In the case of PSP a portfolio
i is dominated by portfolio j if i.return ≤ j.return and i.risk ≥ j.risk given
i 6= j.

Figure 1: The given portfolio is dominated by all portfolios in the upper
left quadrant but dominates all portfolios in the lower right quadrant. The
portfolios in the upper right and lower left quadrants are imcomparable.
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This is demonstrated in Figure 1. The given portfolio is more efficient
than any portfolios in the lower right quadrant. Thus none of the portfolios
in this quadrant belong to the PF. The given portfolio is less efficient than
any portfolio in the upper left quadrant. When there are no portfolios in this
quadrant the given portfolio is part of the PF. By checking domination for
all portfolios we can find the PF. Figure 2 shows an example of a PF.

Figure 2: Pareto front for the given portfolios

In virtual screening we wish to select a subset of compounds for chemical
testing. We want a subset that maximizes expected return and minimizes risk
of similarity. Yevseyeva et al. have proposed a model formulation for subset
selection of compounds. To determine the correlation between compounds
they used Tanimoto similarity of molecular fingerprints combined with the
correlation function from the Solow Polasky diversity measure.

Tanimoto similarity Ts is a measure of similarity between two bit vectors
A and B. It can be calculated as:

Ts(A,B) =

∑
iAi ∧Bi∑
iAi ∨Bi

(1)

For molecular compounds we calculate the Tanimoto similarity using their
molecular fingerprint. A molecular fingerprint is a bit vector where each bit
represents whether a chemical substructure is part of the molecular com-
pound (’1’) or not (’0’). A simplified example of molecular fingerprints is
shown in Figure 3. For every pair of compounds in this example we can
calculate the Tanimoto similarity:

Ts(A,B) =
4

8
= 0.5, Ts(A,C) =

2

8
= 0.25, Ts(B,C) =

4

6
= 0.667
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(a) compound A

(b) compound B

(c) compound C

Figure 3: Simplified example of molecular fingerprints
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In [9] Solow and Polasky discuss different measures of diversity. Their aim
was to propose a diversity measure, that can be used as an objective function
when the aim is to preserve a set of species that maximize biological diversity.
Solow and Polasky took a utilitarian approach, suggesting species should be
preserved for their possible future medical benefit. They have suggested a
diversity function:

D(P ) = vF−1vT (2)

where F is the correlation matrix and v is a vector of ones. They also
suggested a correlation function f(dij) = e−θdij that computes the correlation
between two individuals, i and j, given their distance. The distance between
two compounds is calculated using the Tanimoto similarity: dij = 1 − Ts.
The value of θ has been computed so that a Tanimoto similarity of 0.9 equals
a correlation of 0.95 and a Tanimoto similarity of 0.5 equals a correlation of
0.1. Solving for θ gives us θ = 5.

Yevseyeva et al. defined a quadratic programming (QP) formulation and
used the Gurobi QP solver [6] to find an exact solution to the problem. In this
thesis we describe how we used genetic algorithms to approximate a solution.
Meinl et al. [8] have suggested a method of virtual screening that maximizes
diversity and maximizes (bio-)activity. In this thesis we propose a similar
model. We use a different diversity measure, namely the Solow Polasky
diversity measure. Instead of maximizing activity we maximize expected
return which is based on activity.

In section 2 we define risk, diversity and return in the scope of virtual
screening and elaborate on the model used by Yevseyeva et al. and the
diversity maximizing model we have designed. Section 3 describes the genetic
algorithms used. We discuss the results and compare them to the results of
the quadratic programming used by Yevseyeva et al. in section 4. In section
5 we discuss a problem with the probability formulation in the original model
and suggest an improved probability formulation.
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2 Portfolio selection for virtual screening

Markowitz’s portfolio selection theory [7] uses the expected return E(R) and
the variance of expected returns V (R), also referred to as risk, to find the
Pareto efficient set of portfolios. An efficient portfolio maximizes return while
minimizing risk. This is formally:

E(R) =
n∑
i=1

xi ∗ ri → max

V(R) =
n∑
i=1

n∑
j=1

xi ∗ xj ∗ σij → min

s.t. xi ∈ [0, 1]; i, j ∈ [1, n]

(3)

where n is the number of assets, xi is the proportion of money invested in
asset i, ri is the return on investment of asset i and σij is the covariance of
returns of assets i and j.

In the case of virtual screening we take molecular compounds as assets
that can either be selected (xi = 1) or not selected (xi = 0). We define the
return on investment of compound i as the probability of success times profit
per unit investment minus the probability of no success. This is formally:

ri = pi ∗
gi − ci
ci

+ (1− pi) ∗
−ci
ci

(4)

where pi is the probability of success for compound i, gi is the gain given
compound i is successful and ci is the price of compound i. In drug research
the gain for all successful compounds is equal:

gi = G (5)

In this paper we consider drug discovery done within funded research
projects. Therefore we assume that drug researchers have to stay within a
research budget. Thus investment is constrained by budget B:

n∑
i=1

ci ≤ B (6)
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Budget assigned to buying compounds that is not spent has to be returned
and from the perspective of the research project can be considered as a loss.
We can therefore say that the size of individual investments is irrelevant
as long as the constraint (6) holds. Combining this fact with (4) and (5)
Yevseyeva et al. come to a new return formulation:

ri = pi ∗G (7)

Probability of success for a given compound is proportional to the
(bio-)activity of that compound:

pi = k ∗ ai (8)

where ai is the activity of compound i and k is a proportionality constant.
Typically the activity data is available as the logarithm of ai, say `i. In this
case we use ai = e`i . To solve for k we need a fixed point. As in Yevseyeva
et al. we use the average activity and the average probability of success that
can be defined as:

a =
1

n
∗

n∑
i=1

ai , p =
1

n
∗

n∑
i=1

pi (9)

If we combine (8) and (9) we can derive k:

k = p ∗ 1

a
(10)

By substituting k in (8) we obtain an expression for the success probability
that is inversely proportional to the average activity:

pi = ai ∗ p ∗
1

a
(11)

Given the rule of thumb used by drug researchers from the Leiden Academic
Center for Drug Research (LACDR) which assumes that 1 in 100 compounds
will be successful, the probability of success becomes:

pi =
1

100
∗ ai

a
(12)
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As previously stated the risk in virtual screening is related to the similar-
ity between the compounds selected. The more similar two compounds are
the more similar their expected returns will be. As correlation and covari-
ance differ only by a constant we can use the correlation as the covariance
and obtain the same ranking of portfolios. We use the correlation term from
the Solow-Polasky diversity measure [9] to calculate the correlation between
two compounds:

σij = e−θdij (13)

where dij is the distance between compounds i and j and θ is the correlation
factor. A higher θ will decrease the correlation for a given distance, whereas
a smaller θ will increase the correlation for a given distance. We calculate
the distance between compounds i and j as:

dij = 1− sij (14)

where sij is the Tanimoto similarity between compounds i and j.
Combining (3), (6), (7), (11) and (13) we get the portfolio selection model

for virtual screening:

E(R) =
n∑
i=1

xi ∗ pi ∗G → max

V(R) =
n∑
i=1

n∑
j=1

xi ∗ xj ∗ σij → min

where pi =
1

100
∗ ai

a
; σij = e−θ(1−sij)

s.t. xi ∈ {0, 1}; i, j ∈ [1, n];
n∑
i=1

ci ≤ B

(15)

In practice the testing equipment is limited to process only a fixed amount
of compounds per unit of time. We will therefore also implement the model
as in (15) with the added cardinality constraint:

n∑
i=1

xi = N (16)
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Another way to look at the virtual screening is to maximize diversity
instead of minimizing risk of similarity. We use the diversity as proposed by
Solow and Polasky, which can be calculated as the sum of the entries of the
inverse of the correlation matrix for selected compounds:

D =
m∑
i=1

m∑
j=1

(F−1)ij → max (17)

where m is the number of compounds selected and F−1 is the inverse of the
correlation matrix for all selected compounds. This gives us the model:

E(R) =
m∑
i=1

pi ∗G → max

D =
m∑
i=1

m∑
j=1

(F−1)ij → max

where pi =
1

100
∗ ai

a
; Fij := e−θ(1−sij)

s.t. xi = 1; i, j ∈ [1,m];
m∑
i

ci ≤ B

(18)

While both models use the Solow Polasky correlation function, (15) min-
imizes the sum of the entries if the correlation matrix while (18) maximizes
the sum of the entries of the inverse of the correlation matrix. This en-
tails that the first favours smaller portfolios while the latter favours bigger
portfolios, since all entries of the matrices are positive.
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3 Implementation

We have implemented two well-known evolutionary multi-objective optimiza-
tion algorithms (EMOAs), namely NSGA-II [3] and SMS-EMOA [4], using
Python 2.7. In this section we will describe these evolutionary algorithms. As
we instantiate them on binary search spaces we will refer to them as genetic
algorithms (GAs). We will discuss the similarity and differences between the
two. We elaborate on the variation operators (selection, crossover and muta-
tion) chosen. Moreover, we will show the correctness of the implementation
by applying it to a different multi-objective optimization problem, for which
an exact solution has been obtained. From this section onwards we will use
the generic terms solution and population, where a solution is a portfolio of
molecules and a population is a set of portfolios.

3.1 NSGA-II

The Non-Dominated Sorting Genetic Algorithm II (NSGA-II) [3] is a well-
known genetic algorithm that is specifically designed to solve multi-objective
problems. Algorithm 1 shows the NSGA-II algorithm.

Algorithm 1 NSGA-II

initialize P0

fast-nondominated-sort(P0)
Q0 ← make-new-population(P0)
for t = 0 to num iter do
Rt ← Pt ∪Qt

F ← fast-nondominated-sort(Rt)
while |Pt+1|+ |Fi| < pop size do
Pt+1 ← Pt+1 ∪ Fi
i← i+ 1

Fi ← crowding-distance-assignment(Fi)
Pt+1 ← Pt+1 ∪ Fi
Pt+1 ← Pt+1[0 : pop size]
Qt+1 ← make-new-population(Pt+1)
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It starts by initialising the parent population P0. Then it applies fast-

nondominated-sort, which sorts the solutions into layers of non-dominated
fronts. The next step is to create an offspring population Q0 from the parent
population with make-new-population, which uses the variation operators
to create a new population.

Now for each iteration it combines the parent (Pt) and offspring (Qt)
population in Rt. It applies fast-nondominated-sort on the combined
population. Then it creates the parent population Pt+1 from which the next
generation of offspring is created. NSGA-II does this by adding the non-
domination fronts while |Fi| is smaller than pop size− |Pt+1|. Then it sorts
the next non-domination front using crowding-distance-assignment and
adds this front to Pt+1. Then it trims the solutions from this front that have
the smallest crowding distance so that Pt+1 has exactly pop size solutions.
Finally using make-new-population the new offspring population Qt+1 is
created again.

As mentioned earlier a non-dominated front is a representation of the
efficient set of solutions in the objective space. It can be found by checking
domination for all available solutions. The solutions that are not dominated
by any other solutions make up a non-dominated front. By identifying the
solutions that are only dominated by solutions on the non-dominated front(s)
we found before, we find the next front. We do this until all solutions are part
of a non-dominated front. We name the non-dominated fronts F1, F2, ...Flast,
where front F1 is the Pareto front for the given set of solutions and front Fi
is better than front Fj for all j > i. When a solution breaks a constraint it
will not dominate any other solutions and be part of the lowest ranked front
Flast. Figure 4 shows the non-dominated fronts for the given set of solutions.

Figure 4: An example of non-dominated fronts
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NSGA-II uses fast-nondominated-sort, which is a fast way of sorting
solutions into non-dominated fronts. Algorithm 2 describes how it works.

Algorithm 2 fast-nondominated-sort(P )

for all p ∈ P do
Sp ← ∅
np ← 0
for all q ∈ P do
if p dominates q then
Sp ← Sp ∪ {q}

else if q dominates p then
np ← np + 1

if np = 0 then
F1 ← F1 ∪ {p}

i← 1
while Fi 6= ∅ do
for all p ∈ Fi do
for all q ∈ Sp do
nq ← nq − 1
if nq = 0 then
Fi+1 ← Fi+1 ∪ {q}

i← i+ 1
return F

For every pair of solutions p, q in the population it checks whether or not
p dominates q. If so, q is added to the set of solutions dominated by p (Sp). If
instead q dominates p, the number of solutions that dominate p is increased
(np + 1). If np = 0 after domination is checked for all q ∈ P , we can say
solution p is non-dominated and p is added to the first non-dominated front
F1. Now for every solution p in F1 it loops through all solutions q ∈ Sp and
decreases nq. If nq = 0, solution q is part of the next non-dominated front
F2. This is repeated until all solutions are part of a non-dominated front.
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An optimal non-dominated front consist of a uniformly distributed set of
solutions. This makes solutions which are crowded together less desirable
than solutions which are spread out. To determine which solutions of an
non-dominated front are more desirable, NSGA-II uses crowding-distance-
assignment. As can be seen in Algorithm 3, it measures the crowding dis-
tance for all solutions in a given set of solutions L. Crowding distance is
the space between the neighbouring solutions of a given solution in each
dimensions. For each solution the distance is set to zero. Then for each
objective m ∈ obj we sort the solutions. The first and last solutions, which
are the boundary points of the non-dominated front, get a distance of ∞
because they should always be part of a Pareto front approximation. For the
other solutions their distance is increased with the difference in m of their
neighbouring solutions. Finally it sorts the solutions in L according to their
crowding distance and returns the sorted set.

Algorithm 3 crowding-distance-assignment(L)

l← |L|
for all i ∈ L do
i.distance← 0

for all m ∈ obj do
L← sort(L,m)
L[1].distance, L[l].distance←∞
for i = 2 to l − 1 do
L[i].distance← L[i].distance+ (L[i+ 1].m− L[i− 1].m)

L← sort(L, distance, order=descending)
return L
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3.2 SMS-EMOA

The S-Metric Selection Evolutionary Multi-objective Optimization Algo-
rithm (SMS-EMOA) [4] is another well-known genetic algorithm that is
partially derived from NSGA-II. It is similar to NSGA-II for bi-objective
problems. Algorithm 4 shows the SMS-EMOA algorithm.

It starts by initialising the parent population P0. Then it applies fast-

nondominated-sort, which is the same as in NSGA-II (see Algorithm 2).
The next step is to create one offspring q0 from the parent population with
make-new-individual, which uses the variation operators to create a new,
single solution.

Algorithm 4 SMS-EMOA

initialize P0

fast-nondominated-sort(P0)
q0 ← make-new-individual(P0)
for t = 0 to num iter do
Rt ← Pt ∪ {qt}
F ← fast-nondominated-sort(Rt)
r ← hypervolume-assignment(Flast)
Pt+1 ← Rt − {r}
qt+1 ← make-new-individual(Pt+1)

Now for each iteration SMS-EMOA adds the parent population Pt and off-
spring solution qt toRt. It then sorts the solutions using fast-nondominated-

sort. To the last non-dominated front Flast it then applies hypervolume-

assignment, which returns the solution r with the smallest contribution to
the hypervolume indicator. SMS-EMOA then creates a new parent popula-
tion Pt+1 using all solutions in Rt except r. From this new parent population
a new offspring qt+1 is created.

In SMS-EMOA the distribution of solutions over the set is driven by
hypervolume-assignment. As we are dealing with a bi-objective problem,
the hypervolume contribution of a given solution can be seen as the area of
exclusive domination for that given solution. The higher the contribution of
a given solution, the more important that solution is. Algorithm 5 shows
how it can be calculated in the case of two objectives.
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First the algorithm sets the contribution for all points to 1. Then for both
objectives it sorts the solutions. The boundary points get a contribution of
∞ because they should always be part of a Pareto front approximation. For
the other solutions their contribution is multiplied with the difference of
objective m ∈ obj between a given solution i and the solution next to it. In
case of an objective to be minimized, the solution i+1 with a higher value of
m is considered. In case of maximization, the solution i− 1 with a lower m
is considered. When this is done for all objectives, it sorts the solutions by
their contribution in descending order. It then returns the solutions with the
smallest contribution to the hypervolume indicator, which will be discarded.

Algorithm 5 hypervolume-assignment(L); |obj| = 2

l← |L|
for all i ∈ L do
i.contribution← 1

L← sort(L,obj[0])
L[1].contribution, L[l].contribution←∞
for all m ∈ obj do
for i = 2 to l − 1 do
if m→ min then
L[i].contribution← L[i].contribution ∗ (L[i+ 1].m− L[i].m)

else if m→ max then
L[i].contribution← L[i].contribution ∗ (L[i].m− L[i− 1].m)

L←sort(L, contribution, order=descending)
return L[l]
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3.3 Variation Operators

Genetic algorithms use selection, crossover and mutation operators to create
offspring. According to Bäck [1] we can distinguish two types of selection:
mating selection and environmental selection. We have used the same mating
selection, crossover and mutation operators for both algorithms so we can
better compare their performance.

The choice of operators depends on the representation of solutions and
vice versa. We define a solution as a sorted list of indices of the compounds
selected. For example, if we select every second compound out of n com-
pounds our solution would be defined as [2, 4, 6, . . . , n]. If we selected only
the first 10 out of n compounds, the solution would be [1, 2, 3, . . . , 10]. By
representing a solution as a list of selected compounds we can easily constrain
the number of molecules chosen.

3.3.1 Environmental Selection

Environmental selection determines which solutions are kept and which so-
lutions are discarded after each iteration. For NSGA-II and SMS-EMOA the
environmental selection is done within the main algorithm. As can be seen
in Algorithm 1, NSGA-II uses (µ + λ)-selection. This means that from µ
parents λ offspring are created. From the combined µ+ λ solutions the best
µ are kept. SMS-EMOA on the other hand uses a (µ + 1)-selection, as can
be seen in Algorithm 4. This means that from µ parents only one offspring
is created and the µ best of the µ+ 1 solutions are kept.

3.3.2 Mating Selection

With mating selection we can choose which of the surviving solutions are
used to create offspring. Although not part of the original SMS-EMOA, we
have chosen to use binary tournament selection on both NSGA-II and SMS-
EMOA. Binary tournament selection randomly selects two solutions from
parent population Pt+1 and compares them. The best solution is added to
the mating pool. Because of this the mating pool will often consist of multiple
copies of the better solutions and a few not so good solutions.

For NSGA-II solution i is better than solution j when i.rank < j.rank
or (i.rank = j.rank and i.crowding distance > j.crowding distance).
For SMS-EMOA solution i is better than solution j when i.rank < j.rank
or (i.rank = j.rank and i.hypervolume > j.hypervolume).
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3.3.3 Crossover

The crossover operator combines two parent solutions from the mating pool
to create two offspring solutions. We apply crossover with a probability of
pCO. We have implemented n-point crossover. This means we randomly
select n points and after each point we change the parent we copy onto
the offspring. So we start with copying the first parent p1 onto the first
offspring c1 and the second parent p2 onto the second offspring c2 until the
first crossover point. After this point we copy p2 onto c1 and p1 onto c2
until the next crossover point where we switch again. An example of 2-point
crossover is shown in Figure 5.

Figure 5: 2-point crossover

3.3.4 Mutation

We use the mutation operator to introduce new compounds to the population.
We have chosen a simplistic mutation operator. For every compound in the
solution we replace it with a random new compound with probability pMR.
We also expand our list of solutions by adding a compound with probability
pMA. And we delete a compound from a given solution with probability pMD.
Examples of these mutations are shown in Figure 6.

We can constrain the number of compounds selected by changing pMA

and pMD. In case of a constant number of compounds we take pMA = 0
and pMD = 0. For if we do not add or delete compounds, the number of
compounds will stay equal to the size of the initial solution.
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(a) replace

(b) add

(c) deleting

Figure 6: Mutation
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3.4 Correctness of code

To test the implementation we applied the algorithm to a different optimiza-
tion problem for which an exact solution exists. We used the generalized
Schaffer’s problem proposed by Emmerich and Deutz [5]:

f1(x) = 1
nα

(
∑n

i x
2
i )
α → min

f2(x) = 1
nα

(
∑n

i (1− xi)2)α → min
(19)

Emmerich and Deutz have proved that the Pareto front can be computed
with:

f2 = (1− fγ1 )
1
γ , where γ = 1

2α
(20)

We applied both NSGA-II and SMS-EMOA for 10,000 iterations with a pop-
ulation size of 15. We used n = 5 and γ ∈ {0.4, 0.6, 1.0, 2.0}. The results
are shown in Figure 7. For NSGA-II we can see how the solutions approach
the Pareto front, but only a few are actually on the PF. For SMS-EMOA we
can see that most of the solutions are on the PF. From this we can conclude
that both implementations are approximating the PF but that SMS-EMOA
delivers more accurate results. It is noticeable that SMS-EMOA performs
better than NSGA-II even though it is computationally more expensive as it
does 15 times more function evaluations.

(a) NSGA-II (b) SMS-EMOA

Figure 7: Optimization of Schaffer’s Problem
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4 Results

To compare our proposed model to the existing models we have experi-
mented with all three models. We compare the NSGA-II algorithm with
the SMS-EMOA algorithm. We also compare the results obtained with the
genetic algorithms to the exact Gurobi Quadratic Programming solver used
by Yevseyeva et al.

4.1 Experiments

We use three datasets of chemical compounds provided in Yevseyeva et al.
Each dataset contains a subset of compounds from the ZINC database, which
has been sorted by activity. The first dataset contains the 1000 most active
compounds, the second contains the 2500 most active compounds and the
third contains the 5000 most active compounds. Each dataset consists of
the cost and logarithmized activity for each compound and the Tanimoto
similarity for every pair of compounds in the dataset. In Figure 8 we have
plotted the activity and cost of the compounds in each of the datasets.

Figure 8: Cost and activity for the compounds in the datasets of 1000 (green),
2500 (green and pink) and 5000 (green, pink and blue) compounds
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We have appplied all three models to each of the datasets. First we
applied the model in (15) which minimizes risk. Then we used the cardinality
constraint model, which uses the constraint in (16) with the model in (15).
For this model we compare the results that we obtained with NSGA-II and
SMS-EMOA to the results obtained by Yevseyeva et al. using quadratic
programming. After that we applied our new model that maximizes diversity
as described in (18).

As in Yevseyeva et al., we set the fixed amount of molecules to one hun-
dred (N = 100). The budget is set to a hundred times the average cost of
the compounds in the dataset: B = 100 ∗ c. For the dataset of 1000 com-
pounds this yields B = 34502, for the dataset of 2500 compounds this yields
B = 34400 and for the dataset of 5000 compounds this results in B = 34622.

We used a small population size: pop size = 10. Besides, we used 1-point
crossover with probability pCO = 0.2. In other words, for every 10 offspring
there are 2 that have been created using 2 parents while the other 8 offspring
are copies of some parent. We replaced a compound in the solution with
pMR = 0.01, which on average is one compound per offspring. We added
a compound to half the offspring on average: pMA = 0.5. We removed a
compound from a solution on average once per 10 offspring: pMD = 0.1.

For the dataset of 1000 compounds we run NSGA-II for 10,000 iterations.
Since SMS-EMOA creates 1 offspring each iteration whereas NSGA-II creates
10 offspring each iteration, we run SMS-EMOA for 100,000 iterations. For
the bigger datasets we increase the number of iterations with the same factor
as the size of the dataset. Thus for the dataset containing 2500 compounds
we run NSGA-II for 25,000 iterations and SMS-EMOA for 250,000 iterations.
For the dataset of 5000 compounds we run NSGAII for 50,000 iterations and
SMS-EMOA for 500,000 iterations. This way the number of evaluations of
the objective functions is the same for both algorithms.

Because of the randomness of the initialization, crossover and mutation
we should not compare only one run of NSGA-II and SMS-EMOA. Instead
we should compare some average of several runs. Comparisons using a con-
vergence measure are not possible since there is no exact formulation of the
Pareto front. We therefore compute the average using attainment curves [2]
which allow for a visual comparison. This method uses a generalization of
the median as an average and is robust against outliers.
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In Figure 9 we can see attainment curves of the best, average and worst
out of 10 runs for all three models. We can see that SMS-EMOA is very
robust, especially in the models minimizing risk. NSGA-II is less robust, but
good enough to let us compare the average runs.
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(a) NSGA-II minimizing risk
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(d) SMS-EMOA cardinality constraint
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(e) NSGA-II maximizing diversity
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Figure 9: Robustness of NSGA-II and SMS-EMOA based on attainment
curves
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4.2 Minimizing risk without cardinality constraint

In this section we will show and discuss the results for the risk minimizing
model as described in (15). Figure 10 shows how the average front changes
over the iterations. Both NSGA-II and SMS-EMOA seem to find solutions of
the efficient set in a few iterations. However these solutions are found for low
variance only. It seems that more iterations result in more efficient solutions
for higher variance.
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Figure 10: Comparison of number of iterations for minimization of risk

22



Figure 11 shows a direct comparison of NSGA-II and SMS-EMOA on
each of the datasets. We can clearly see SMS-EMOA outperforms NSGA-II
in finding more concave solutions. However, NSGA-II is better in finding
solutions with higher variance.
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Figure 11: Comparison of NSGA-II and SMS-EMOA
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Figure 12 gives an insight in the cardinality of the solutions in the popu-
lation obtained after a typical run of both algorithms. We can see a problem
with a model that minimizes risk without a cardinality constraint. It selects
very small subsets, as well as the empty set, as part of the optimal front.
Given the model this makes sense as there is no subset with a higher return
given a variance of 0. However, in practice this is undesirable.

(a) NSGA-II

(b) SMS-EMOA

Figure 12: Solutions in the population after 1 run. Size of the point is
representative of the size of the subset
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In Figure 13 we can see the cost and activity for all compounds in the
dataset of 1000 compounds. Highlighted are the compounds selected in any
of the solutions of the population after a typical run. We can see a dif-
ference between NSGA-II and SMS-EMOA. NSGA-II seems to prefer cheap
compounds while SMS-EMOA selects more expensive and more active com-
pounds. This explains the difference in performance we saw in Figure 11.

(a) NSGA-II

(b) SMS-EMOA

Figure 13: Cost and activity for all compounds in dataset 1000. In green are
the compounds selected in the population after a typical run.
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4.3 Cardinality constraint

In this section we show and discuss the results we obtained for the risk
minimizing model as in (15) with the added cardinality constraint as in (16).
In Figure 14 we can compare the performance of NSGA-II, SMS-EMOA and
the Gurobi QP solver used by Yevseyeva et al. We can clearly see that SMS-
EMOA outperforms NSGA-II and that SMS-EMOA approaches the Pareto
front found by Gurobi.
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Figure 14: Comparison of NSGA-II, SMS-EMOA and Gurobi QP solver
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In Figure 15 we compare the datasets for each of the methods. It is inter-
esting to see that the bigger datasets perform better, since from all datasets
a constant number of 100 compounds are selected and the 2500 and 5000
dataset do not contain more active compounds, which have a higher success
probability and expected return. One could argue that this may be the result
of applying more iterations in the bigger datasets. However, as can be seen in
Figure 16 the 1000 dataset converges after 10,000/100,000 iterations, which
means that running the algorithms for more iterations will not be effective.
The real reason for this behaviour is the probability calculation. When we
calculate probability we normalize the activity with the formula (11). As the
bigger datasets contain more compounds with low activity, the average activ-
ity is lower in the bigger dataset. Therefore the success probability of a given
compound is higher in the bigger dataset than that of the same compound
in the smaller dataset. We will discuss this further in section 5.

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 200  220  240  260  280  300  320  340  360

re
tu

rn

variance

5000
2500
1000

(a) NSGA-II

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 200  220  240  260  280  300  320  340  360

re
tu

rn

variance

5000
2500
1000

(b) SMS-EMOA

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 200  220  240  260  280  300  320  340  360

re
tu

rn

variance

5000
2500
1000

(c) Gurobi QP solver

Figure 15: Comparison of datasets
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Figure 16: Comparison of number of iterations
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In Figure 17 we can see the cost and activity for all compounds in the
dataset of 1000 compounds. Highlighted are the compounds selected in all
solutions of the population after one run. These graphs clearly show us that
not only the most active compounds are selected, though 90 percent of the
100 most active molecules have been selected at least once. We can see that
not only cheap molecules are selected. It is noticeable that more expensive
compounds have been chosen over less expensive compounds with equal or
higher activity. This shows how the genetic algorithms select compounds
based on both activity and similarity.

(a) NSGA-II

(b) SMS-EMOA

Figure 17: Cost and activity for all compounds in dataset 1000. In green are
the compounds selected in the population after 1 run.
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4.4 Maximizing diversity

In this section we show and discuss the results obtained for the model in
(18). In Figure 18 we can see the average front at 5 intervals. We can see
that running SMS-EMOA for 10 times more iterations is justified, as NSGA-
II converges after only 10,000 iterations while SMS-EMOA needs 100,000
to converge. Figure 18 also shows justification for increasing the number of
iterations as the size of the database increases.
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Figure 18: Comparison of number of iterations for maximization of diversity
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Figure 19 shows a direct comparison of NSGA-II and SMS-EMOA on
each of the datasets. We can clearly see SMS-EMOA outperforms NSGA-II
in finding more concave solutions. However, NSGA-II is better in finding
solutions with higher diversity.
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Figure 19: Comparison of NSGA-II and SMS-EMOA
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In Figure 20 we see the cost and activity for all compounds in the dataset
of 1000 compounds. Highlighted are the compounds selected in all solutions
of the population after one run. What we notice is a preference for cheap
molecules. This can be explained by looking at the diversity calculation.
Diversity will always increase as the cardinality of the solution increases. We
want to maximize diversity. By maximizing the cardinality we also maximize
the diversity. As we are bound by a budget, we maximize the number of
compounds while staying under budget. Thus we select subsets with cheap
compounds.

(a) NSGA-II

(b) SMS-EMOA

Figure 20: Cost and activity for all compounds in dataset 1000. Highlighted
are the compounds selected in the population after 1 run.
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5 Correction for probability calculation

As we have seen in Figure 15, there is a problem with the success probability
calculation. A problem arises because the success probability of a compound
is inversely proportional to the average activity of the dataset it is in. If the
datasets would be uniformly selected from the ZINC database this would be
a correct approach. However, as we have seen in Figure 8, the datasets con-
sist of the most active compounds in the database. Thus the bigger datasets
contain more compounds with a lower activity than the small dataset. This
means that the average activity of the dataset of 1000 compounds is higher
than average activity of the datasets containing 2500 and 5000 compounds
respectively. As the success probability of a compound is inversely propor-
tional to the average activity of the dataset it is in, the same compound
will have a higher probability of success when it is considered as part of the
dataset with 5000 compounds than when if it were considered as part of the
dataset containing 1000 compounds.

We propose a new formulation for the success probability better suited to
datasets without a uniform distribution of activities. As before we assume a
proportionality to the activity:

pi = k ∗ ai
But instead of having k proportional to the average probability in the dataset
we use a constant derived from the average probability and activity of the
dataset with 1000 compounds:

p1000 = k ∗ a1000 (21)

where a1000 is the average activity and p1000 the average success probability
of the compounds in the dataset with 1000 compounds. This gives us:

k = p1000 ∗
1

a1000
(22)

Thus the probability formulation becomes:

pi = p1000 ∗
ai
a1000

(23)

Given the LACDR’s drug researchers rule of thumb that the average prob-
ability of success is 1/100, we get a new success probability formulation:

pi =
1

100
∗ ai
a1000

(24)
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In Figure 21 we can see the average run for the cardinality constraint
model using the new probability formulation. We can see how the expected
returns of all three datasets are similar now. For the dataset of 1000 com-
pounds the average is the same as in Figure 15 since the proportionality
constant k was obtained from this dataset. We can see that with the SMS-
EMOA we find the same optimal solutions with higher risk for all datasets.
However, for the bigger dataset SMS-EMOA finds better solutions with lower
risk. For the NSGA-II we see that solutions selected for the bigger datasets
are dominated by the solutions of the small dataset, with the exception of
the solutions with lower risk.
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Figure 21: Comparison of datasets with improved probability formulation
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6 Conclusions

We have seen three models for solving the portfolio selection problem for
drug discovery. The first model maximizes expected return while minimizing
variance of returns. The second model is the same as the first model with
an added cardinality constraint for which the number of the compounds to
be selected is constant. The third model maximizes both expected return
and diversity. Yevseyeva et al. solved the second model with the Gurobi
Quadratic Programming solver. We have solved all three models using two
genetic algorithms, namely NSGA-II and SMS-EMOA. In all three models
we haven seen SMS-EMOA performing better than NSGA-II. While NSGA-
II performs well in the boundary points of the Pareto front, it seems to
struggle with finding concave solutions. For the second model we can see
how the SMS-EMOA results are a very close approximation to the Gurobi
QP results.

The problem with the first model is that the empty subset is part of the
Pareto front. Common sense tell us that testing only a few or no compounds
is not effective. The cardinality constraint of the second model solves this
problem. However, it is not always desirable to fix the number of compounds
selected. The third model solves the problem of the first model without a
constraint on the number of compounds selected. The diversity of a subset
increases as cardinality of the subset increases, as does the expected return.
Thus a small subset of compounds is undesirable. This however poses another
problem. Because increasing the cardinality will always cause an increase in
diversity, maximizing diversity is basically maximizing the cardinality. Thus
the model has a preference for cheap compounds, filling the subset with as
many compounds as possible while staying under budget.

We have seen a problem with the success probability formulation. In
the original model the activity is normalized given average activity of the
dataset. As the average activity increases the probability decreases. Because
of this a given subset of the dataset with 1000 compounds has a smaller
return than the same subset of the dataset with 5000 compounds. We pro-
posed a new formulation where probability of success is proportional to the
activity and the proportionality constant is based on the average activity of
the dataset containing 1000 compounds. Our research has suggested that
this new formulation is correct.
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7 Future work

In this thesis we have focussed on finding the Pareto optimal set of portfolios.
However, for in-vitro testing we will need to choose one of the portfolios of
the optimal set. The selection of a portfolio from the optimal front was not
within the scope of this thesis but poses a new challenge for future work.
In their work Yevseyeva et al. used the Sharpe ratio which is often used in
financial Portfolio Selection Problems. The Sharpe ratio is a ratio between
expected return and variance. A similar ratio could be created for the model
that maximizes diversity.

Now that we have shown that the models, solved using the SMS-EMOA
algorithm, can be used for virtual screening it would be interesting to see
how this can be integrated into the process of drug discovery. A possibility
would be to use the SMS-EMOA on bigger datasets to do a pre-selection
and then use the Gurobi QP solver to find the optimal solution from the
pre-selection. An issue with this is computation time, as the runtime of the
SMS-EMOA is proportional to the number of compounds in the dataset and
it takes approximately 10 minutes to compute a selection from a dataset of
1000 compounds.

The more likely scenario is using this model as an optimizer on a subset of
the database. This subset, of say 2500 compounds, should be selected from
the database using some fast heuristic filter. On this subset we can apply the
model that has a cardinality constraint to select 100 compounds for physical
testing.
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A Main.py

from GAs import SMS EMOA, NSGA
from ReadFi les import ∗
import time , random
random . seed ( )

de f v a r i a b l e s ( sim , top ) :
C = 1 .0/ (100 . 0∗math . exp (6 .76529709791) )
ID , PRICE, RET, Q = r e a d F i l e s ( sim , top ,C,THETA=5,GAIN=1000)
SIZE DB = len ( ID)
SIZE SUBSET = 100
BUDGET = SIZE SUBSET∗sum(PRICE)/SIZE DB
POP SIZE = 10
CO N = 1
CO R = 2.0/POP SIZE
MR A = 5.0/POP SIZE
MR D = 1.0/POP SIZE
MR C = 1.0/SIZE SUBSET
return l o c a l s ( )

OBJ=[(” exp return ” , ”max” ) , ( ” var iance ” , ”min” ) ]

VAR=v a r i a b l e s ( ” s i m i l a r i t y D a t a . txt ” , ” pr i c eAct iv i tyData . txt ” )
a=time . time ( ) ;
f o r i in range ( 1 0 ) :

p r i n t ”run” , i+1
SMS EMOA(VAR,OBJ,NUM GEN=100000)
p r i n t ” runtime ” , time . time ()−a ; a=time . time ( ) ;
NSGA(VAR,OBJ,NUM GEN=10000)
p r i n t ” runtime ” , time . time ()−a ; a=time . time ( ) ;

VAR=v a r i a b l e s ( ” data / sim2500 . txt ” , ” data / top2500 . txt ” )
a=time . time ( ) ;
f o r i in range ( 1 0 ) :

p r i n t ”run” , i+1
SMS EMOA(VAR,OBJ,NUM GEN=250000)
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pr in t ” runtime ” , time . time ()−a ; a=time . time ( ) ;
NSGA(VAR,OBJ,NUM GEN=25000)
p r i n t ” runtime ” , time . time ()−a ; a=time . time ( ) ;

VAR=v a r i a b l e s ( ” data / sim5000 . txt ” , ” data / top5000 . txt ” )
a=time . time ( ) ;
f o r i in range ( 1 0 ) :

p r i n t ”run” , i+1
SMS EMOA(VAR,OBJ,NUM GEN=500000)
p r i n t ” runtime ” , time . time ()−a ; a=time . time ( ) ;
NSGA(VAR,OBJ,NUM GEN=50000)
p r i n t ” runtime ” , time . time ()−a ; a=time . time ( ) ;
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B GAs.py

from Mol e cu l eSe l e c t i on import ∗
import import l ib , time

c l a s s NSGA:
de f i n i t ( s e l f ,VAR,OBJ,NUM GEN=1000000 ,TIME=1000000):

t=time . time ( ) ; gen=0
P=Populat ion ( ) ; P . i n i t i a l (VAR) ; f a s t nondominated so r t (P,OBJ) ;
Q=Populat ion ( ) ; Q. make new pop (P,VAR) ;
R=Populat ion ( ) ;
whi l e time . time ()− t < TIME and gen < NUM GEN:

R. s o l u t i o n s = P. s o l u t i o n s+Q. s o l u t i o n s
F=fas t nondominated so r t (R,OBJ)
P=Populat ion ( )
rank=1
whi le l en (P. s o l u t i o n s )+ len (F [ rank ])<VAR[ ’POP SIZE ’ ] :

P . s o l u t i o n s += F[ rank ]
rank+=1

F[ rank ] = s e l f . c rowd ing d i s tance as s i gnment (F [ rank ] ,VAR,OBJ)
P. s o l u t i o n s += F[ rank ]
P. s o l u t i o n s = P. s o l u t i o n s [ :VAR[ ’POP SIZE ’ ] ]
Q=Populat ion ( ) ; Q. make new pop (P,VAR) ;
gen+=1

pr in t gen , ”NSGA” ; P. p r i n t s o l u t i o n s (VAR)

de f c rowd ing d i s tance as s i gnment ( s e l f , L ,VAR,OBJ) :
l = l en (L ) ;
f o r i in L :

i . d i s t ance = 0 ;
f o r m, n in OBJ:

L=sor t ed (L , key=lambda x : g e t a t t r (x ,m) ) ;
max(L , key=lambda x : g e t a t t r (x ,m) ) . d i s t ance +=99999999;
min (L , key=lambda x : g e t a t t r (x ,m) ) . d i s t anc e +=99999999;
f o r i in range (1 , l −1):

L [ i ] . d i s t anc e += g e t a t t r (L [ i +1] ,m)− g e t a t t r (L [ i −1] ,m)
L=sor t ed (L , key=lambda x : x . d i s tance , r e v e r s e=True )
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f o r i in range ( l ) :
L [ i ] . f i t n e s s+=i /(VAR[ ’POP SIZE ’ ] ∗ 2 . 0 )

re turn L

c l a s s SMS EMOA:
de f i n i t ( s e l f ,VAR,OBJ,NUM GEN=1000000 ,TIME=1000000):

t=time . time ( ) ; gen=0;
P=Populat ion ( ) ; P . i n i t i a l (VAR) ; f a s t nondominated so r t (P,OBJ) ;
q=So lu t i on ( [ ] ) ; q . make new solut ion (P,VAR)
R=Populat ion ( ) ;
whi l e time . time ()− t < TIME and gen < NUM GEN:

P. s o l u t i o n s = P. s o l u t i o n s +[q ]
F=fas t nondominated so r t (P,OBJ)
r=s e l f . hypervolume assignment (F [ max(F . keys ( ) ) ] ,VAR,OBJ)
P. s o l u t i o n s . remove ( r [−1])
q=So lu t i on ( [ ] ) ; q . make new solut ion (P,VAR)
gen+=1

pr in t gen , ”SMS” ;P. p r i n t s o l u t i o n s (VAR)
s e l f .P=P

def hypervolume assignment ( s e l f , L ,VAR,OBJ) :
l = l en (L ) ;
f o r i in L :

i . volume = 1 . 0 ;
f o r (m, n) in OBJ:

L=sor t ed (L , key=lambda x : g e t a t t r (x ,m) ) ;
max(L , key=lambda x : g e t a t t r (x ,m) ) . volume+=99999999;
min (L , key=lambda x : g e t a t t r (x ,m) ) . volume+=99999999;
i f n == ”min” :

f o r i in range (1 , l −1):
L [ i ] . volume ∗= ( g e t a t t r (L [ i +1] ,m)− g e t a t t r (L [ i ] ,m) )

e l i f n == ”max” :
f o r i in range (1 , l −1):

L [ i ] . volume ∗= ( g e t a t t r (L [ i ] ,m)− g e t a t t r (L [ i −1] ,m) )
L=sor t ed (L , key=lambda x : x . volume , r e v e r s e=True )
f o r i in range ( l ) :

L [ i ] . f i t n e s s+=i /(VAR[ ’POP SIZE ’ ]+1 .0)
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r e turn L

de f f a s t nondominated so r t (P,OBJ) :
F={}; S={}; n={}; F [ 1 ] = [ ]
f o r p in P. s o l u t i o n s :

S [ p ] = [ ] ; n [ p]=0
f o r q in P. s o l u t i o n s :

i f dominates (p , q ,OBJ) :
S [ p]=S [ p ]+[ q ]

e l i f dominates (q , p ,OBJ) :
n [ p]+=1

i f n [ p]==0:
F[1 ]=F[ 1 ] + [ p ]
p . f i t n e s s = 1

i=1
whi le F [ i ] ! = [ ] :

F [ i +1]=[]
f o r p in F [ i ] :

f o r q in S [ p ] :
n [ q]−=1
i f n [ q]==0:

F [ i +1]=F[ i +1]+[q ]
q . f i t n e s s = i+1

i+=1
F. pop ( i )
r e turn F

de f dominates (p , q ,OBJ) :
i f p . a l lowed==False :

r e turn Fal se ;
i f q . a l lowed==False :

r e turn True ;
dom = True ;
f o r m, n in OBJ:

i f n == ”min” :
i f g e t a t t r (p ,m) > g e t a t t r (q ,m) :
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r e turn Fal se
e l i f n == ”max” :

i f g e t a t t r (p ,m) < g e t a t t r (q ,m) :
r e turn Fal se

re turn True ;
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C MoleculeSelection.py

import numpy , math , random

c l a s s Populat ion :
de f i n i t ( s e l f ) :

s e l f . s o l u t i o n s = [ ] ;

de f i n i t i a l ( s e l f ,VAR) :
i n t s=range (VAR[ ’SIZE DB ’ ] ) ;
f o r i in range (VAR[ ’POP SIZE ’ ] ) :

s e l e c t e d=random . sample ( in t s ,VAR[ ’SIZE SUBSET ’ ] ) ;
S=So lu t i on ( s e l e c t e d ) ;
S . c a l c u l a t e o b j e c t i v e s (VAR) ;
s e l f . s o l u t i o n s +=[S ] ;

de f make new pop ( s e l f ,P,VAR) :
parents = b ina ry tou rnament s e l e c t i on (P,VAR) ;
c h i l d r e n = n p o i n t c r o s s o v e r ( parents ,VAR) ;
s e l f . s o l u t i o n s = mutation ( ch i ld r en ,VAR) ;
f o r s in s e l f . s o l u t i o n s :

s . c a l c u l a t e o b j e c t i v e s (VAR) ;

de f p r i n t s o l u t i o n s ( s e l f ,VAR) :
P=sor t ed ( s e l f . s o l u t i o n s , key=lambda x : x . exp re turn ) ;
p r i n t ” var iance ” , ” d i v e r s i t y ” , ” exp return ” , ” num se lected ”
f o r i in P:

p r i n t i . var iance , i . d i v e r s i t y , i . exp return , l en ( i . s e l e c t e d )

c l a s s So lu t i on :
de f i n i t ( s e l f , s e l e c t e d ) :

s e l f . exp re turn =0;
s e l f . va r i ance =0;
s e l f . d i v e r s i t y=0
s e l f . t o t a l c o s t =0;
s e l f . s e l e c t e d=s e l e c t e d ;
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de f c a l c u l a t e o b j e c t i v e s ( s e l f ,VAR) :
s e l f . s e l e c t e d . s o r t ( )
i f l en ( s e t ( s e l f . s e l e c t e d ))< l en ( s e l f . s e l e c t e d ) :

s e l f . a l lowed=False ; s e l f . reason=” Dupl i ca te s ” ; r e turn
c=[VAR[ ’PRICE ’ ] [ i ] f o r i in s e l f . s e l e c t e d ]
s e l f . t o t a l c o s t = sum( c ) ;
i f s e l f . t o t a l c o s t>VAR[ ’BUDGET’ ] :

s e l f . a l lowed=False ; s e l f . reason=”Budget” ; r e turn
r =[VAR[ ’RET’ ] [ i ] f o r i in s e l f . s e l e c t e d ]
s e l f . exp re turn = sum( r )

M=numpy . array ( [ [VAR[ ’Q’ ] [ i ] [ j ] f o r j in s e l f . s e l e c t e d ] f o r i in s e l f . s e l e c t e d ] )
s e l f . va r i ance=numpy . sum(M)
i f not M. s i z e or numpy . l i n a l g . det (M)<0.0001:

s e l f . a l lowed=False ; s e l f . reason=”No Inve r s e ” ; r e turn
Minv=numpy . l i n a l g . inv (M)
s e l f . d i v e r s i t y =(numpy . sum(Minv ) )
s e l f . a l lowed=True ;

de f make new solut ion ( s e l f ,P,VAR) :
parents = [ ] ; i=1
parents = b ina ry tou rnament s e l e c t i on (P,VAR) ;
c h i l d r e n = n p o i n t c r o s s o v e r ( parents [ 0 : 2 ] ,VAR) ;
s e l f . s e l e c t e d = mutation ( ch i ld r en ,VAR) [ 0 ] . s e l e c t e d ;
s e l f . c a l c u l a t e o b j e c t i v e s (VAR) ;

de f b ina ry tou rnament s e l e c t i on (P,VAR) :
parents = [ ] ;
f o r i in range (VAR[ ’POP SIZE ’ ] ) :

x=random . sample (P. s o l u t i o n s , 2 ) ;
i f x [ 0 ] . f i t n e s s < x [ 1 ] . f i t n e s s :

parents . append ( x [ 0 ] ) ;
e l s e :

parents . append ( x [ 1 ] ) ;
r e turn parents ;

de f n p o i n t c r o s s o v e r ( parents ,VAR) :
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c h i l d r e n = [ ] ;
f o r i in range (0 , l en ( parents )−1 ,2) :

p1=parents [ i ] . s e l e c t e d [ : ]
p2=parents [ i +1] . s e l e c t e d [ : ]
i f random . random()<VAR[ ’CO R ’ ] :

i f l en ( p1)>0:
f o r i in range (VAR[ ’CO N ’ ] ) :

x=random . randrange ( l en ( p1 ) ) ;
a=p2 [ : x]+p1 [ x : ]
p1=p1 [ : x]+p2 [ x : ]
p2=a

c h i l d r e n . append ( So lu t i on ( p1 ) )
c h i l d r e n . append ( So lu t i on ( p2 ) )

re turn c h i l d r e n ;

de f mutation ( ch i ld r en ,VAR) :
f o r s in c h i l d r e n :

l=s . s e l e c t e d
i f random . random()<VAR[ ’MR A ’ ] and l en ( l )<VAR[ ’SIZE DB ’ ] :

l . append ( random . randrange (VAR[ ’SIZE DB ’ ] ) )
i f random . random()<VAR[ ’MR D ’ ] and l en ( l )>0:

l . pop ( random . randrange ( l en ( l ) ) )
f o r x in range ( l en ( l ) ) :

i f random . random()<VAR[ ’MR C ’ ] :
l [ x ] = random . randrange (VAR[ ’SIZE DB ’ ] ) ;

r e turn c h i l d r e n ;
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D ReadFiles.py

D.1 With original probability calculation

import math

de f r e a d F i l e s ( sim , top , C, THETA=5, GAIN=1000):
f=open ( sim , ”rU” ) ;
g=open ( top , ”rU” ) ;
PRICE= [ ] ;
Ac t i v i t y =[ ]
ID = [ ] ;
i =−1;
f o r l i n e in g :

i f i>−1:
j=l i n e . s p l i t ( )
PRICE. append ( i n t ( j [ 2 ] ) ) ;
Ac t i v i t y . append (math . exp ( f l o a t ( j [ 1 ] ) ) ) ;
ID . append ( j [ 0 ] ) ;

i +=1;
Normal izat ion=( l en ( Act i v i t y )/100)/sum( Act iv i ty ) ;
RET=[a∗Normal izat ion ∗GAIN f o r a in Act i v i ty ]

Q = f . r e a d l i n e s ( ) [ 1 : ] ;
f o r i in range ( l en (Q) ) :

l i n e=Q[ i ] . s p l i t ( ) [ 1 : ]
Q[ i ]=[ math . exp(−THETA∗(1− f l o a t ( x ) ) ) f o r x in l i n e ]

f . c l o s e ( ) ; g . c l o s e ( ) ;
p r i n t ” f i l e s read ” , l en ( ID)
re turn ID , PRICE, RET, Q
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D.2 With improved probability calculation

import math

de f r e a d F i l e s ( sim , top , C, THETA=5, GAIN=1000):
f=open ( sim , ”rU” ) ;
g=open ( top , ”rU” ) ;
PRICE= [ ] ;
Ac t i v i t y =[ ]
ID = [ ] ;
i =−1;
f o r l i n e in g :

i f i>−1:
j=l i n e . s p l i t ( )
PRICE. append ( i n t ( j [ 2 ] ) ) ;
Ac t i v i t y . append (math . exp ( f l o a t ( j [ 1 ] ) ) ) ;
ID . append ( j [ 0 ] ) ;

i +=1;
RET=[C∗a∗GAIN f o r a in Act i v i ty ]

Q = f . r e a d l i n e s ( ) [ 1 : ] ;
f o r i in range ( l en (Q) ) :

l i n e=Q[ i ] . s p l i t ( ) [ 1 : ]
Q[ i ]=[ math . exp(−THETA∗(1− f l o a t ( x ) ) ) f o r x in l i n e ]

f . c l o s e ( ) ; g . c l o s e ( ) ;
p r i n t ” f i l e s read ” , l en ( ID)
re turn ID , PRICE, RET, Q
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