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Abstract

In this thesis we study the effect of target set size on transfer learning in deep learning con-
volutional neural networks. This is an important problem as labelling is a costly task, or for
new or specific classes the number of labelled instances available may simply be too small. We
first discuss feedforward neural networks and convolutional networks to provide some context.
In the main section of the thesis we present results for a series of experiments where we either
train on a target of classes from scratch, retrain all layers, or subsequently lock more layers
in the network, for the Tiny-ImageNet and MiniPlaces2 data sets. Our findings indicate that
for smaller target data sets freezing the weights for the initial layers of the network give better
results on the target set classes. We present a simple and easy to implement training heuristic
based on these findings, and provide interesting directions for future research.
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Chapter 1

Introduction

Current deep learning models such as convolutional neural networks and recurrent neural net-
works achieve state-of-the-art performance on all benchmark data sets. One can speak of a
Renaissance of the artificial neural network algorithm class. While in the 1990s, neural networks
went out of fashion due to limited computing power and lack of data, currently they are ar-
guably the most popular learning algorithms in machine learning. Both industry and academia
are highly interested in this branch of models as evidenced by the new research labs focused on
deep learning, from the largest tech giants in the market.
With regards to computer vision tasks, the convolutional neural networks perform the best
[25, 63, 66, 77]. Modern models make use of deep convolutional neural networks (CNN) such as
AlexNet [38]. However, training these models on large data sets such as ImageNet [11] can take
up a significant amount of time, and the number of labelled examples per class available may be
limited, so learning from scratch has its downsides. One approach to overcome this problem is
to use transfer learning. The objective of transfer learning is to use knowledge of a source task
and transfer that to a new target task [49]. It provides considerable benefits over learning from
scratch (i.e. from a random initialisation of the weights). One obvious advantage is that a model
can learn more efficiently since it starts with a pre-initialised weight matrix.
In their study, Yosinski et al. [74] trained AlexNet on the ImageNet data set and found that
the first three layers in a CNN contain generic and reusable features. Beyond the third layer,
the features gradually become more specific with respect to the source data set. However, the
authors did not take into account the size of the target data set, on which the model with the
transferred features will be trained.
The size of the target data set plays an important role, since it affects how much impact transfer
learning will have on the performance. Thus, it is logical to ask how well extracted features
generalise to smaller data sets. It would be helpful to know at what data set size transfer learning
would be still beneficial. More specifically, at what layer is the model still able to generalize to
a small data set size? Therefore, it is of both academic and practical interest to investigate at
what target data set size transfer learning can still provide any additional value. Furthermore,
Yosinski et al. only used the ImageNet data set [74]. It would be interesting to find out whether
the transfer learning properties are different when using a data set from a different domain.
In this work we will expand the study by [74], and measure the effect of target data set size
on the transferability of parameters in convolutional neural networks. Our main contribution is
to quantify the extent to which features are able to generalise to the target data set when we
systematically reduce its size. We will investigate this for each individual layer by evaluating
the accuracy as a function of the data set size. We will have three variants of this. First, we
will obtain a base score, without applying any form of transfer learning. In the second condition
we will completely fine-tune all the layers of the network. In the third one, we will freeze the
transferred features per individual layer. We will investigate this for different sizes of the target
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set. Moreover, we will test this on two different subsets of data sets, each with a different domain,
ImageNet and Places2.
The rest of the thesis is structured as follows. We first describe how the neural network al-
gorithm works, and next dive into the backpropagation and gradient descent algorithm. This
provides the fundamental building blocks of the convolutional neural networks. In the following
chapter we discuss in the detail convolutional neural networks and its operations. Moreover, we
briefly discuss another important deep neural network model, the recurrent neural network. In
chapter four we describe the methods used, followed by a discussion of relevant related work.
In chapter six we describe in detail our experimental approach based on our methodology, and
give information about the data sets used. In chapter seven we present the results, followed by
a discussion of its implications. We end the thesis by providing a conclusion.
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Chapter 2

Feedforward Neural Networks

In this chapter we will describe feedforward neural networks of the artificial neural network
(ANN) class, backpropagation and gradient descent. These three algorithms provide the funda-
mental structure for convolutional networks.
The first ideas about ANNs were developed in 1943 by McCulloch and Pitts [44]. They proposed
mathematical concepts of neurons and the “all-or-nothing” firing principle, found in neurons in
the physiological brain. Thus if the input reached a certain threshold value, the model would
output a one, otherwise it would stay zero. This idea got further expanded by Rosenblatt [56]
who developed the “perceptron” in 1958 inspired by the work in [26]. The perceptron has weights,
which allows it to “learn” a function. Moreover, using a method called ADALINE [72], these
weights could be adjusted. However, the main disadvantage of these perceptrons was that they
could only solve linearly separable problems, as described by Minsey & Papert [45]. This meant
that multiple layer perceptrons (MLP) were infeasible. Perceptrons could not solve the boolean
XOR function, and interest in ANN faded. Backpropagation, developed by Werbos [71] in 1974,
and later popularized by Rumelhart et al. [73] solved this issue and interest in ANNs rose again
during the 1980s. Moreover, during the 1970s and 1980s research was done on the gradient
descent optimization in MLPs [39,52,58,71]. This type of ANN is called the feedforward neural
network (FNN), and is arguably the most simple type of ANN. There exist many variations on
the traditional model of FNNs such as self organizing maps, spiking neural networks and radial
basis function networks.

2.1 FNN computation

The feedforward neural network (FNN) lies at the core of convolutional neural networks. They
are called neural networks since they are loosely inspired by the human brain. Given a labeled
dataset {(x1, y1), . . . , (xn, yn)} FNNs take an n-dimensional input vector and compute a pre-
dicted output value hW,b(x). This model is parametrized by the weights of the network W and
a bias term b. In figure 2.1 we see a simple FNN with three layers, an input, hidden and output
layer respectively. This network has three inputs x1, x2 and, x3. The hidden layer consists of
three nodes, a21, a

2
2 and a23 which represent the hidden activations. Finally, the output layer l has

a single node a31 which represents the predicted output value by the net. Concretely, the FNN
computes a weighted sum of the inputs, zli, as follows [65]:

zli =

sl∑
j=1

W l
ija

l
j + bli (2.1)

The weighted sum zli then goes through an activation or transfer function, f(·), to finally output
activation ali:

3



Input
layer

Hidden
layer

Output
layer

a21

x1

x2 a22 a31

x3

a23

Input 1

Input 2

Input 3

hW,b(x)

Figure 2.1: Schematic model of a feedforward neural network (We did not include the bias term
in this illustration for simplicity).

ali = f(zli) = f(

sl∑
j=1

W l
ija

l
j + bli) = f(W Tx) (2.2)

The activation function is commonly a sigmoid function f(x) = (1 + e−x)−1. To compute a31 in
figure 2.1 we first calculate the activations of the hidden layer as follows:

a21 = f(W 1
10x0 +W 1

11x1 +W 1
12x2 +W 1

13x3) (2.3)

a22 = f(W 1
20x0 +W 1

21x1 +W 1
22x2 +W 1

23x3) (2.4)

a23 = f(W
(1
30x0 +W 1

31x1 +W 1
32x2 +W 1

33x3) (2.5)

Finally, we can compute the output:

hW,b(x) = a31 = f(W 2
10a

2
0 +W 2

11a
2
1 +W 2

12a
2
2 +W 2

13a
2
3) (2.6)

This process is also called the forward pass in the back-propagation algorithm (see section 2.4).

2.2 Cost function

We use a mean squared error cost function, J(θ) (2.8) (where θ denotes the weight matrix of the
network) to determine how well the algorithm fits the training data. The objective is to minimize
J(θ), by adjusting the set of weights. In other words, we try to minimize the difference or error
between the predicted value hW,b(x), and actual output y for each training example (xn, yn).
Here we use a cost function for regression, where the outputs of the network are real-valued
numbers as opposed to classes in a classification task. For a single training example the cost
function looks like (2.7), however when using n examples, we average over them to compute the
cost (2.8).
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One disadvantage of this cost function is that its error surface is non-convex. Therefore, the
optimization algorithm might get stuck in local minima and not converge properly.

J(θ) =
1

2
‖hW,b(x)− y‖2 (2.7)

J(θ) =

[
1

n

n∑
k=1

(
1

2
‖hW,b(x)− y‖2)

]
(2.8)

When doing multi-class classification with K possible output classes, a common cost function
to use is the cross-entropy loss:

J(θ) = −

[
n∑
i=1

K∑
k=1

1
{
yi = k

}
log

exp(θk>xi)∑K
j=1 exp(θj>xi)

]
(2.9)

2.3 Gradient descent

Various optimization algorithms exist to minimize our cost function, however the most used one
is gradient descent (GD) (1). Using GD we update our weights by computing the gradient of the
cost function with respect to the weights denoted by ∂

∂θj
J(θj), where θj is the current weight to

be updated, and multiplying that quantity by a learning rate α. This learning rate affects how
large the weight update will be. If we decide on a small value for α then it might take a long time
to converge. However, setting this hyper parameter too big GD might overshoot the minimum
and fail to converge, or even diverge. Finally, we update the weights by moving in the negative
direction of the gradient (2.13, 2.14). This process gets repeated until training gets terminated.

Algorithm 1 Gradient Descent

Repeat until convergence
for j = 1, . . . , n do
θj := θj - α ∂

∂θj
J(θj)

end for

2.3.1 Gradient descent schemes

There are generally three strategies for updating the parameters θ using GD, batch GD (2.10),
stochastic GD (2.10) and mini-batch GD (2.10).
In batch GD we calculate the gradients with respect to θ, denoted by ∇θJ(θ), for all the train-
ing examples and then do one update for θ. However, when the dataset is large, computing
the gradients for every instance in the data set is not efficient and can be very slow. In con-
trast, stochastic GD updates θ after each single training example, where ∇θ(J(θ, xi, yi) indicates
the gradient. This method greatly reduces training time since we can find the minimum much
quicker due to the frequency of the updates. However, the behaviour of the cost function is less
consistent and oscillates significantly. Finally, we can take an approach which lies in between the
aforementioned strategies, and use mini-batch GD where we take a mini-batch of size n train-
ing examples and compute the gradient, ∇θ(J(θ, xi+n, yi+n) from that batch. For deep learning
models mini-batch GD is a popular approach.

θ = θ − α · ∇θJ(θ) (2.10a)
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θ = θ − α · ∇θJ(θ, xi, yi) (2.10b)

θ = θ − α · ∇θJ(θ, xi+n, yi+n) (2.10c)

A way to optimize GD is by adding a hyper parameter momentum η, which increases the rate of
convergence. When the error surface of the cost function contains steep narrow valleys or ravines,
GD will oscillate across such a ravine very slowly. Adding the momentum term will significantly
reduce oscillations along the ravine by creating larger weight updates [54, 57]. Specifically, we
update the weights by adding a fraction of the gradient from the previous time step, denoted
by vt−1. This term is controlled by a hyper parameter η. Finally, we subtract the resulting term
vt from θ to perform the update.

vt = α∇θJ(θ, xi, yi) + ηvt−1 (2.11)

θ = θ − vt (2.12)

Alternative methods to optimize GD include Nesterov accelerated gradient (NAG) [46], Adagrad
[13], Adadelta [76], Adam [37] and RMSprop [28]. However, in our experiments we only use
momentum.
Other optimization algorithms have proven to be faster and more stable than GD, such as
conjugate gradient (CG) and Limited-memory BFGS (L-BFGS) [47]. This is due their ability to
run in a distributed fashion in combination with a line search schema. However, these are more
complex to implement.

2.4 Backpropagation algorithm

In order to compute the gradients of the cost function J(θ) with regards to the parameters,
we use a method called backpropagation [57, 58]. Backpropagation consists of two phases, the

forward pass and the backward pass. In the forward pass we compute the activations a
(l)
i for

every neuron (2.2). In the backward pass we compute an “error” term δli (C.6) for every unit i in
layer l, starting with the output layer nl, and progressively move further back into the network
(see Appendix C for full derivation). Once we have the terms ali and δli we can compute the
partial derivatives (see algorithm 2).
Now that we have computed the gradients via backpropagation we can update our parameters,
where W l

ij is the weight for the jth neuron in the l − 1th layer, going to the ith neuron in lth

layer. Similarly, bli is the weight that corresponds to the bias neuron in layer l − 1 that is going
to the ith neuron in layer l layer.

W l
ij = W l

ij − α
∂

∂W l
ij

J(θ) (2.13)

bli = bli − α
∂

∂bli
J(θ) (2.14)
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Algorithm 2 Backpropagation

Forward Pass
Compute the activations ali for all nodes i in layer l in the network

Backward Pass
for unit i in output layer ol do

δoli = ∂J
∂a

ol
i

∂a
ol
i

∂z
ol
i

= (aoli − yi)f ′(z
ol
i )

{ δoli denotes the error in the output layer}
end for
for nodes i in layers l = ol − i do
δ
(l)
i =

∑sl+1

j=1 δ
l+1
j W l

ijf
′(zli)

end for
Compute gradients

∂
∂W l

ij

J(θ) = ali δ
l+1
i

∂
∂bli
J(θ) = δl+1

i
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Chapter 3

Deep Learning

In the main part of this chapter we describe in detail how convolutional neural networks op-
erate. This include the convolutional layer, the pooling layer and how backpropagation works.
Furthermore, we discuss recurrent neural networks which are used for predicting sequences of
data.
Convolutional neural networks (CNNs) are the most popular deep learning (DL) models for
computer vision tasks [8, 19, 36, 60, 67, 69]. Whereas previously, features had to be manually
engineered, with CNNs the model learns representations on its own. The model takes raw input
pixels and transforms them into internal representation in each of the subsequent layers. The
deeper we get in the model, the more abstract the features become. They achieve state-of-the-
art results on benchmark datasets such as ImageNet [11] (see figure 3.1). The reason that in
2012 DL took off can be contributed to two factors. The first one is the availability of large
labeled datasets, specifically ImageNet, which contains 1.2 million labeled images distributed
over 1,000 classes. Deep learning models generally perform better with more data. And two, there
is more computing power available. The advances in graphics processing units (GPUs) allowed
DL models to train much faster and efficiently, in particular technology company NVIDIA1

which specializes in GPU production, played an important role in the development of DL. DL
models can contain millions of parameters and training them using CPUs is not manageable.
Using GPUs makes training time orders of magnitude faster due to their parallel architecture.
Thus, sufficient amount of labeled data and an increase in computational power caused the DL
inflexion point.

3.1 Traditional computer vision

In traditional computer vision features had to be “hand engineered.” However, the problem was
that these features never had the representational power to be suited for more complex computer
vision tasks. While research on computer vision began in the 1960s [50] as a summer project at
MIT, it only took off in the late 1990s with algorithms such as SIFT (Scale Invariant Feature
Transform), [42] or later HOG (Histogram of Oriented Gradients) [10] and SURF (Speeded Up
Robust Features) [4]. These algorithms act as feature and object detectors. Moreover, algorithms
to compute or detect edges and blobs (i.e. areas where the brightness is above or below a value)
were needed as well. Furthermore, researchers required experience to decide which features the
most optimal to use. In sum, there was a significant amount of feature engineering necessary.
This is in stark contrast with current techniques, where we just need one model to compute all
the features automatically.

1http://www.nvidia.com/
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3.2 Background CNN

CNN models are characterized by local connections, spare connectivity, shared weights, and
the use of many layers in a hierarchical manner. Similar to neural networks, CNNs found their
inspiration from biology as well. In their seminal paper Hubel & Wiesel [32] discovered that
visual stimulations are processed in a hierarchical fashion by the visual cortex. Neurons in
the lower area of the cortex respond to simple features such as edges and lines. Cells in the
higher area of the visual cortex are activated by more complex features, such as combinations
of edges and lines. Fukushima [15] proposed the neocognitron neural network model which was
inspired by the work of Hubel and Wiesel and can be seen as the precursor of modern CNNs.
Lecun et al. [40] developed the first successful CNN model (LeNet-5) which was able to recognize
handwritten digits (see 3.2). The model consists of 7 layer, where the first four alternate between
convolutions and pooling layers. The final three consist of of fully connected layers followed by
the output layer. However, we note that LeNet-5 is almost identical to modern CNNs, the main
differences are that modern CNNs contain more layers and have more data to train on. Advances
in computing power have greatly contributed to the rise of deep CNNs as well.

3.3 Convolutional layer

In this section we will describe what the convolutional layer does. Mathematically, convolution
computes the amount of overlap of a function g when this is slided over another function f
where f and t are real-valued [5]:

h(t) = (f ∗ g)(t) =

∫
f(a)g(t− a)da (3.1)

In CNNs the convolution operation occurs with filters or kernels over all spatial locations of the
input image. These filters can be seen as a matrix of parameters and this is what the model
learns. A filter is a small patch of size w x h x d, where w and h represent the spatial width and
height respectively, and d represents the dimension of the filter. It slides across the input image
of size Wj x Hj x Dj , where Wj and Hj are the width and height of the input image, and Dj the
dimension of the image. For colour images Dj would be equal to three, since the image would
have RGB channels. The filter then computes a matrix multiplication (the Hadamard product)
between the its spatial dimensions and the current image region. From the resulting matrix we
sum all elements and return a single activation value for that particular region of the image.
Since the filter moves along the whole image, we compute the activation for every location of
the image, which results in an activation map of size Wj+1 x Hj+1 x Dj+1. We can compute the
size of each activation map with the following formula:

Wj+1 =
(Wj − F + 2P )

S + 1
(3.2)

Hj+1 =
(Hj − F + 2P )

S + 1
(3.3)

Dj+1 = K (3.4)

Note that is very similar to regular feedforward networks, however in this case we have a whole
activation map, rather than just a single activation neuron. This process is repeated with K
filters, to obtain K activation maps. The filter moves along the input with a certain step size
called stride, S. The stride dictates how many pixels the filter moves across the input. Fur-
thermore, we can zero-pad the activation maps with hyper parameter P , in order to retain the
spatial dimension. Every time we perform a convolution, the dimensions of the activation maps

9
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Figure 3.1: ImageNet Large Scale Visual Recognized Challenge (ILSVRC) error scores for the
ImageNet object classification task. There is a significant drop in error in 2012, the year Hinton
et al. used a deep CNN [38] and won the competition. The winning teams for the following years
were Clarifai (2013), Google (2014) [66] and Microsoft Research Asia (2015) [25].

Figure 3.2: LeNet-5 architecture (illustration taken from [40]).
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shrink in size however this leads to smaller representations the deeper we go into the network.
In appendix E we provide the backpropagation algorithm for CNNs.

3.3.1 Sparsity and weight sharing

In normal neural networks every neuron connects to all the layers in the hidden layer, however
CNNs use sparse connectivity. This means that not all the weights are connected to the input.
This is necessary in order to reduce the parameters in the network. An image with a dimension
of 500 x 500 x 3 would have 750,000 parameters. It would become unmanageable to train such
a dense network. Moreover, each activation map has identical weights. This is done with the
assumption that a feature at one location, for example an edge, might also be useful at another
location.

3.3.2 ReLU

CNNs do not employ a sigmoid activation function, rather a rectified linear unit (ReLU) is
used f(z) = max(0, z). ReLUs output zero for every activation that is zero or lower, when
the activation is higher than zero it returns the activation value. The main reasons for choosing
ReLU is one, they do not suffer from the vanishing gradient problem [30]. The sigmoid activation
functions outputs values a where a ∈ [0, 1]. However, due to these small values, the gradients
will become small and reach zero, or “vanish,” during backpropagation in deep networks. Thus,
the problem becomes that these parameters do not get updated. And two, it creates sparsity in
the network. Since activations that are equal or smaller than zero return zero, the network will
contain activations with value zero. This will make the network less parameter dense and speeds
up learning.

Batch normalization Initialization of the parameters in deep forward can make a significant
difference in the performance of the network. The authors in [33] introduce a method called batch
normalization. This initialization strategy reduces the internal covariate shift by normalizing the
inputs.

3.3.3 Pooling and Fully-Connected layer

After the convolution layer each activation map undergoes a downsampling process. The pooling
or subsample layer reduces the dimension Wj+1 x Hj+1 of the activation map by splitting the
activation map into regions of m x n. Over these regions we take the maximum, minimum or
average value of the parameters. This is done to reduce the number of weights which speeds up
computing, and it also prevents overfitting (see figure 3.4). Finally, after several convolution and
pooling layers CNNs contain one or two fully connected layer (FC). Similarly to a regular neural
network, in the FC layer all the neurons are fully connected to the nodes in the previous layer.
This part of the network contains the majority of the weights. The only layer which follows after
the FC is the output layer where the CNN makes its classification.

3.3.4 Dropout

A popular method to prevent overfitting in deep neural networks is dropout [29]. The idea is to
stochastically remove or “drop,” the activations and their weights to zero with a probability p
= 0.5 during training. In deep neural networks neurons will co-adapt, therefore dropping units
will break their relationships and improve generalization. A neural net with n nodes, results in
2n possible models with dropout. Each training example gets fed into such a network. Rather
than averaging each outcome for each model in the test phase, the weights that were preserved
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Figure 3.3: The convolution operation. In this figure we take an input image of size 7 x 7 x 3 and
convolve it with a filter of size 3 x 3 x 3 , where K = 1 and stride S = 2. We apply a padding
of P = 1. Since K = 1, we end up with one activation map of size 3 x 3 x 1. This activation
will be the input for the following filter. We note that only the first layer of filters have access
to the raw input pixels. The filters in the hidden layers convolve on the activation maps. The
weight sharing scheme allows the layer to have 3 x 3 x 3 x 1 = 27 parameters connecting to the
activation map, rather than 27 x 9 = 243. We omit the bias node for simplicity.

Activation map Pooled activation map
6 3 5 2

2 1 7 8

1 8 4 1

6 3 5 2
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 6 8

8 5



Figure 3.4: The max-pool operation. The activation map is divided into regions of 2 x 2, and
from these regions we take the maximum value. We end up with a pooled activation map which
contains fewer parameters.
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Figure 3.5: RNN hidden state hi computation time line. Each hidden state get forwarded in the
next time step.

during training will get multiplied by that probability p. A modification of dropout is adaptive
dropout [3], where p is different for the different hidden nodes and depends on the activations.
The study showed that this method of dropout is more effective than regular dropout.

3.4 Recurrent Neural Networks

Modelling sequences of data cannot be done using a CNN, instead recurrent neural networks
(RNNs) [21] are used. In RNNs the hidden nodes gets fed back into the input nodes.Thus, RNNs
contain a loop where information gets “stored.” For instance, this is useful when the task is to
predict the next word in a sentence. In such a case it would be useful to know which words came
before it in order to make a proper prediction.
RNNs have proven to be extremely powerful and can be used to do language translation [2],
text prediction [27], image captioning [35], speech recognition [21], image generation [23] or even
to evaluate short lines of programming code [75]. Since we are modeling sequences, there is a
temporal factor t involved. In its simplest form, a RNN can be formulated by 3.6, where ht is
the current hidden state, ht−1 is the state of the previous time step, θxhxt is the current input,
yt is the output, and where g is usually a hyperbolic tangent transfer function [5, 20].

ht = g(θhhht−1 + θxhxt) (3.5)

yt = θhyht (3.6)

In figure 3.5 we can see a high level view of how at each time step ti the hidden state hi gets
propagated to the next time step ti+1. Moreover, at each time step a sequenced output yti gets
computed.
However, RNNs are trained with backpropagation which makes it susceptible to the vanishing
gradient problem, where the weights of the gradients will become very small in the early layers
of a deep feedforward networks [30]. This happens because backpropagation has to be performed
over many steps back through time. Moreover, the gradients will grow exponentially when the
parameters are large [6]. In [53] a formal description is provided on why this problem occurs
(see appendix D). Several solutions are Hessian Free optimization or using echo state machines.
However, the most common method to these problems are the Long Short Term Memory (LSTM)
networks.

3.4.1 Long Short Term Memory networks

The LSTM model was developed by Schmidhuber & Hochreiter [31] and consists of three main
“gates,” an input (it), output (ot) and a forget gate (ot) that interact on modules called memory
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cells (C l) which store information. These cells have the capability to preserve information for a
long time, and they determine what the activation of the new hidden states will be.
For each gate, the hidden activation of the previous time step ht−1 and the current input xt get
multiplied with the weights W , and fed through a sigmoid function σ. This output is a quantity
between zero and one and will affect the value of the memory cell C lt by scaling it. The input
gate together with equation g can add something to the cell. The forget gate determines how
much of the previous value of the cell C lt−1 will be added to the current value by taking the
element wise product. Finally, to compute the activations of the new hidden layer ht, the value
of the cell get fed through a hyperbolic tangent function and get element wise multiplied with
the final output gate ot. Thus, the LSTM learns with gradient descent and backpropagation,
how its gates must scale the values of the cell in order to compute the hidden activation state.
Moreover, there are many variants of the LSTM network. In [22] the authors analyze in detail
eight different LSTM models. However, the study found that none of the models significantly
outperform the original LSTM architecture.

it = σ(Wi[ht−1, xt] + bi) (3.7)

ot = σ(Wo[ht−1, xt] + bo) (3.8)

ft = σ(Wf [ht−1, xt] + bf ) (3.9)

g = tanh(Wg[ht−1, xt] + bg (3.10)

C lt = ft � C lt−1 + it � g (3.11)

ht = tanh(C lt)� ot (3.12)
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Chapter 4

Methods

In the first part of this chapter we give a description of the overall methodological approach
we took. In the second part of the chapter we provide an overview of related works of transfer
learning in deep neural networks.

4.1 General approach

We will transfer features from a CNN trained on a source task, to a target task, i.e. data sets
with disjunct outcome classes. We will consider the scenario where the target data set is the same
size, as well as smaller in size as the source data set. The latter condition is the conventional
setting in transfer learning [49]. Hypothetically the value of transfer learning should increase
with smaller transfer data sets. Moreover, for each scenario we will investigate the first case
where we will fine-tune all the layers with the transferred features. In the second case we will
transfer the features but freeze the network weights in the first layers.
The first step in our approach is to split the data set into a source and target halve (see section
5.1. Once we have the target task, we can sample the smaller target splits from it. We train our
CNN model on the source split first to obtain the features. Next, we transfer the features from
all the layers of the trained source model, to the corresponding layers of the task model. In this
condition we retrain the weights in all layers during training time. Since we have six target tasks
of variable size, we repeat this six times (section 5.2).
In the second and main experiment, we extract the learned features per layer from the source
model, and transfer them to the corresponding layer of the model which will be trained on one
of the smaller target data sets (see 4.1)Moreover, these transferred features will not be updated
during the backpropagation process. Our model CNN model consists of eight layers (see section
5.1.1), thus we repeat this seven times for each target task. Moreover, we repeat the experiments
however, now we use the source split as our target split and vice versa Finally, we conduct the
experiments described on a second data set as a means to better generalize our results. We will
implement the model using the popular Caffe library (section 5.3).
We hypothesize that a transfer learning approach by fixing the first layers is more valuable if
the target set is smaller, and that for larger data sets updating all layers will give better results,
and validate this on data sets from two different image classification domains.

4.2 Related work

Several studies have investigated the generalizability of features and have proven the success of
transfer learning [16,48,61]. A popular strategy for transfer learning is fine-tuning, by training a
linear classifier on top of the final layer of a CNN. Zeiler et al. [77] examined this by pre-training
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Figure 4.1: We transfer the features from a source task (red) to a target task (blue). The vertical
bars indicate the weight vectors. The cubes represent the activations. In this figure we have
transferred and locked the first two layers of features from the source to the target, S2T . We let
the other six parameter layers of the target task initialize randomly. In the condition FTall we
transfer the parameters from the first seven layers to the target network.

a CNN on ImageNet, and then training a linear classifier on three target data sets, PASCAL
VOC 2012, Caltech-101 [14] and Caltech-256 [24]. They varied the target data set size, as well as
the layer from which the classifier is trained on. They found that the model generalizes extremely
well to Caltech-101 and Caltech-256, however less so to PASCAL. Nonetheless, the study proved
the benefits of applying transfer learning. Similarly, good results were yielded in [55] using this
approach of transfer learning. The authors pre-trained on ImageNet in combination with a SVM
classifier, and use Pascal VOC and MIT-67 Indoor Scenes as target tasks.
In [12] the researchers investigated how well features transfer to different domain target problems,
and they investigated at what layer in the network this is most optimal. They first trained
AlexNet on the ImageNet data set, and tested these features on a basic object recognition task
using the Caltech-101 [14] data set. Second, they tested the network on domain adaptation,
where there is a small amount of data is available, using the Office database [59]. Thirdly, they
tested how well their model performs on a more fine grained data set, using the Caltech-UCSD
birds data set [70]. Since the images in this data set are very similar to each other, this is a
rather difficult image classification task. Finally, the authors tested their model on the SUN-397
Large-Scale Scene Recognition database. This task is quite different from the source task, where
the task was to classify objects. The objective of the SUN-397 data set is to classify scenic
categories. In every experiment the authors improved the benchmark scores, indicating that the
features learned from ImageNet provide substantial generalisable properties.
In [1] the authors develop a relatively easy way to create new related tasks on which a CNN
can train using the Caltech 101 data set. The features learned from this are then used for the
target task. The CNN architecture consisted of two convolutional layers, each followed by a
max pooling layer. The pseudo-tasks consists of taking a small random patch from an image,
and generating a filter to perform a convolution on all training examples. The study found that
transfer learning improved performance.
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The authors in [9] use a CNN to learn Chinese characters from Latin and the other way around.
The researchers first apply transfer learning for Latin characters only, where they pre-train the
CNN on digits. They transfer the learned parameters to a new task where the objective is to
classify uppercase letters. The authors vary the size of the target task (10, 50, 100, 500, 1000) and
find that as the data set grows the effect of transfer learning decreases, however it still perform
better than starting from scratch. Next, the main experiment is conducted, where the source
and target task are from different data sets namely Chinese characters and Latin characters.
The results were that transfer learning again gives a better performance. Moreover, in these
experiments the transferred parameters were frozen at each layer in the CNN. Thus, the authors
have proven the reusability of parameters.
Furthermore, in [62] the authors apply transfer learning to medical image data (thoraco-abdominal
lymph node and interstitial lung disease). To this end they transferred parameters, which were
pre-trained on ImageNet, to all CNN layers except the last one. These parameters were then
further fine-tuned to the new task. They found that transfer learning resulted in a better perfor-
mance over random initialization of the parameters. This shows that transfer learning is helpful
across disparate data sets.
Moreover, [7] notes that overfitting to a particular class may occur during transfer learning.
In [17] the authors investigate how representations can transfer across 22 different domains in
sentiment classification for product reviews. This kind of problem is referred to by the authors as
domain adaptation. Stacked denoising auto-encoders (SDAs) were used to perform unsupervised
feature extraction on the domains that had no labels. The learned features were then used as
feature vectors to the new task, rather than parameters. Similarly, [79] attempts to increase
transferability of features by training deep autoencoders, with two encoding layers.
In [41] the researcher attempt to reduce the task specificity of features which occurs in deeper
layers of an ANN when doing transfer learning. To this end, they develop a Deep Adaptation
Network (DAN) architecture which increases the transferability of task specific features. DAN is
an extension of AlexNet, where the first three layers are frozen, and layer four and five are fine-
tuned. On the final three fully connected layers, a multiple kernel maximum mean discrepancies
(MK-MMD) is added which make sure the source and target distribution of the data become
similar in these layers. The experiments were done on the Office-31 [59], Office-10 and Caltech-
10 [18] data sets. DAN was compared to five other models, and out-performed them in most of
the transfer tasks.
Our research is a direct extension of the work by Yosinski et al. [74]. They investigated how
transferable features are between layers in the AlexNet architecture. To this end they trained
two networks, N1 and N2, each on a random split of the ImageNet data set containing half
of the data, split A and split B. After both networks were trained on their respective splits,
the features of the first layer from network N1, the base, were transferred to the first layer of
network N2, the target. The remaining layers in network N2 were randomly initialised. Finally,
network N2 gets trained on the B partition of the ImageNet data set. Thus, what happens is
that network N2 does not train from scratch, but rather, it uses the pre-initialised features from
network N1. The researchers do this for layer one to seven in the network, transferring both from
A to B as well as from B to A. They found that the features in the first three layers are fairly
general and could be transferred and boost performance. However, features in deeper layers of
the network are more specific to the source task and therefore, transferring them worsens the
performance.
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Chapter 5

Experiments

In this chapter we describe the experimental setup in detail. We will discuss the steps we took
to pre-process the data and describe the model used. Moreover, we will explain the features
transfer process and our implementation of the model.

5.1 Data pre-processing

In our experiments, we use a subset of the ImageNet data set [11], Tiny-ImageNet. This data
set contains 100,000 images with 200 classes, where each class contains 500 images, each of size
64 x 64 pixels (see appendix A). The data set contains images of a wide range of objects such as
cats, parking meters, cliffs and rugby balls. The validation set contains 10,000 separate images.
Moreover, we extend the work by Yosinski et al. [74] by also repeating the experiments on a
second data set, MiniPlaces2. This is a scaled down version of the larger MIT Places database
[78]. The data set is made up of images with settings such as a food court, golf course, an office,
and ice skating rink. It contains 100,000 images with 100 classes (see appendix B). Each class
consists of 1000 pictures of size 128 x 128 pixels, however we resize them to 64 x 64 pixels to keep
the image size consistent with Tiny-ImageNet. Again, the validation set contains 10,000 images.
In figure 5.1 we present several image classes of both data sets to underline the difference between
the two domains. For example, with regards to the top row (Tiny-ImageNet), the network will
use features learned from class lighthouse, and use them to predict class umbrella. Thus, we will

(a) Lighthouse (b) Sulphur
butterfly

(c) Umbrella

(d) Museum (e) Baseball field (f) Valley

Figure 5.1: Top: A sample of training images from the Tiny-ImageNet data set. Bottom: A
sample of training images from the MiniPlaces2 data set.
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Figure 5.2: Visualisation of the separate validation set splits obtained by the t-SNE algorithm
[43]. The first row displays the source and target split of Tiny-ImageNet respectively. Likewise,
the bottom row shows the source and target split of MiniPlaces2.

investigate how well the network is able to transfer learned from one class to another within a
data set.
To measure the effect of data set size on the generalizability of features, we transfer the features
from a source task to a target task, where the latter has a variable size. We will test this on
a subset of the ImageNet and Places2 data set. We use a subset of the data sets rather than
training on the full data sets of ImageNet and Places2 (respectively containing 1.2 million and
8.1 million images for training) due to computational limitations. We denote our target data set
as N target. Moreover, we define the data set splits with a variable size as M targeti where M targeti

⊆ N target. To obtain M targeti from N target we execute the following procedure:

1) We randomly split the entire data set into a source and a target partition, N source and
N target respectively, where each partition contains 50,000 images. In both the source and
target partition the images are equally distributed over k = 100 classes with 500 images
per class for Tiny-ImageNet. In MiniPlaces2 the split is k = 50 classes per partition, with
1,000 images per class.

2) We artificially reduce N target by drawing random samples of size M targeti from each class
k, where i equals 5001, 400, 300, 200, 100 and 50 in case of Tiny-ImageNet. For MiniPlaces2
i equals 10001, 900, 800, 700, 600 and 500.

Moreover, for both Tiny-ImageNet and MiniPlaces2, we split the respective validation sets in
half to create V target and V source, each containing 5,000 test images. The classes in V target

correspond to the classes in N target. Therefore, V target will be the validation set for all M targeti

1Note that in the case where i = 500 and i = 1,000 we do not reduce N target for Tiny-ImageNet and MiniPlaces2
respectively.
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Figure 5.3: AlexNet architecture (illustration taken with permission from [38]).

sizes in our experiments. The other validation half, V source, contains classes corresponding to
N source. In sum, we train our model on M targeti , and evaluate it on a separate validation set
V target, to obtain our accuracy a.

5.1.1 CNN model

The CNN architecture we will use is AlexNet, developed by Krizhevsky et al. [38] (see figure
5.3), which was the winning model in the ImageNet Large Scale Visual Recognition Challenge
2012.
The model consists of five convolutional layers and three fully connected layers. The first two
convolutional layers are followed by a max pooling layer and a normalization layer respectively.
The fifth convolutional layer is followed only by a max pooling layer. The first two fully connected
layers contain 4,096 neurons. The final fully connected layer contains 1000 neurons for the target
class scores. It is interesting to note that the authors used Rectified Linear Units (ReLUs) as
activation functions instead of the regular sigmoid. Moreover, they applied a regularization
technique called dropout to reduce overfitting [64].

5.2 Transferring features

To create a model from which we can transfer the features, we first train our network on N source.
The parameters of the source model are stored in a Caffemodel object (see section 5.3), which
we use to transfer the parameters from the source model to the target model.
To obtain our baseline score we do not apply any transfer learning at all, and let the model train
on the given training set. In our first experiment we fine-tune the network by transferring all
the features from the source task to the model, and continue with backpropagation on the new
task.
However, since we are also interested in at what layer l of the network features are able to
generalize, we transfer the features from the source to the target task, one layer at a time.
AlexNet has eight layers in total. Therefore, we transfer from layer l = 1, up until layer l = 7.
When we transfer the parameters to the target model, we keep them fixed. That is to say, we
do not update the parameters by gradient descent. The remaining 8 - l layers of the network we
randomly initialize and let the errors backpropagate through the layers.
Finally, to get a mean accuracy score, we run the experiments again by following the same
procedure, but now use N source as N target and vice versa.
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5.3 Training

To conduct our experiments, we use the Caffe deep learning framework developed at UC Berkeley
[34]. We make use of a single Nvidida GTX Titan X graphics card to enable Caffe in GPU mode,
to speed up our training time. We use the AlexNet reference model which is included in Caffe.
Detailed information about the model architecture can be found in [38]. Moreover, we follow the
same training regime as specified by the reference model.
Furthermore, in terms of data augmentation we take a random crop in the training phase and
use random mirroring as specified by Caffe. In the test phase we take a center crop of the images.
Since our input images are 64 x 64, we change the crop size to 57, rather than upscaling the
images to 256 x 256 and applying the default crop size of 227. Thus, we stay consistent with the
ratio used in the AlexNet reference model. Moreover, we subtract the image mean from each
image.
Finally, to determine for how many iterations we should train the models, we trained on N source

of both data sets and validated on the respective V source, without applying any form of transfer
learning.
We found that the model began to overfit on the training data around 10,000 iterations (see figure
5.4 and 5.5). Therefore, we found it reasonable for subsequent experiments to let each model
run for 10K iterations in order to measure the positive effect of transfer learning. Moreover,
the more we reduce N target, the faster the model will reach the point of overfitting, which is
evidenced by the decreasing accuracy of the base training conditions across our experiments.
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Figure 5.4: Top: The accuracy on V source after training on N source of the Tiny-ImageNet data
set after 25K iterations. This split contains 100 classes, with 500 images per class. Bottom: The
log loss over the training set with the identical split.
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Figure 5.5: Top: The accuracy on V source after training on N source of the MiniPlaces2 data set
after 25K iterations. This split contains 50 classes, with 1000 images per class. Bottom: The log
loss over the training set with the identical split.
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Chapter 6

Results

In this chapter we present the results from our experiments.

6.1 Results Tiny-ImageNet

In figure 6.1 we see the results of transfer learning on different data set sizes. The plot shows
the accuracy on the validation set after 10K iterations of training. The first two conditions are
the base case (base) and fine-tune all (FTall). The condition base indicates we did not apply
transfer learning. Condition FTall means we fine-tuned through all the layers, and the notation
SnT denotes up until which layers we freeze the transferred features from the source in the target
model. For instance, S3T implies we transferred the first three feature layers from the model
trained on N source to the model trained on M targeti . The final seven scores are the accuracies
where we transfer the parameters per layer from the source, and freeze that particular layer.
We notice an effect of data set size on the accuracy of the baseline score. As we decrease the
data set size, we find that the accuracy decreases as well. In figure 6.1 we observe that the
accuracy worsens as we keep more layers fixed when transferring parameters from the source
task. Moreover, we observer a peculiar spike at layer l = 2 for each data set size. Furthermore,
there is a sever drop in accuracy at layer l = 4. Though after this layer, accuracy seems to
increase again at l = 5. However, the deeper we get into the network, the worse the performance
becomes. Furthermore, as we decrease the data set size, the difference between the base condition
and FTall increases.

6.2 Results MiniPlaces2

As can be seen from figure 6.2, even though this is a task from a different domain, the results
follow a pattern very similar to Tiny-ImageNet. We notice the same spike at layer l = 2 and
drop at layer l = 4 as we did on the Tiny-ImageNet data set. With smaller target set sizes the
benefits of locking the first few layers increases. We find that in higher layers of the model the
accuracy drops. Only for M target1000 the graphs seem to indicate that training from scratch is
better, but this is truly just a baseline. Moreover, as we decrease the data set size the condition
FTall only has a better performance for M target500 . For the rest of the data set sizes the base
condition has a higher accuracy than FTall. In a real deployment one would probably expect
that the source classes also still need to be recognized, and performance of tuning all layers is
still lower than locking some of the initial layers.
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Figure 6.1: Mean accuracy obtained after training on the target splits of Tiny-ImageNet where
i in M targeti equals 500, 400, 300, 200, 100 and 50 and validating on V target. Note that we ran
the same experiments again, but used N source as N target and vice versa. Thus, we obtained our
mean accuracies by averaging the scores.
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Figure 6.2: Mean accuracy after training on the target splits of MiniPlaces2, where i in M targeti

equals 1000, 900, 800, 700, 600 and 500 and validating on V target.
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Chapter 7

Discussion

In this chapter we interpret our results, and conclude with several suggestions for future research
directions.
Our results reveal that data set size affects the accuracy in transfer learning with deep convolu-
tional neural networks. The first effect we notice is on the baseline case (to repeat, just training
the network with randomly initialized weights). We can see that the model starts to overfit on
the training data when we artificially reduce the data set size, which leads to a steady decline in
accuracy on both Tiny-ImageNet as well as MiniPlaces2. This can be explained by a sub-optimal
parameter configuration as a result of overfitting on a small data set size.
Furthermore, fine-tuning all the layers only appears to have a positive effect with smaller data
sets for Tiny-ImageNet where i in M targeti ranges from 400 until 50, and MiniPlaces2 where
M targeti equals 500. This is an interesting result, as a network for which all layers can be adapted
still benefits from potentially valuable initialization of the weights. We speculate that the source
features are important for the target data set splits as well. Thus, the effect of initializing the
model with parameters obtained from a model trained on a larger data set clearly shows its
advantage. Moreover, we notice a visible spike in accuracy in all our graphs, when we transfer
parameters from the first two layers. This layer seems to consist of important features which
determine the network’s performance. Likewise, there is a considerable decline in accuracy when
transferring four layers, compared to transferring the first three layers.
The results in figure 6.1 generally follow the findings of the study by Yosinski et al. [74]. As we
transfer more and more features (layers) from the source task, the accuracy initially goes up
but then decreases. This can be attributed to feature specificity with regards to the source task.
However, we observe a second positive spike in the accuracy at layer l = 5 in nearly all of our
experiments. This result is quite surprising since the features have become substantially specific
to the source, and yet generalize well to the new task. Evidently, the transferred features from the
source task in this layer hold the same, or even superior, representational power compared to the
features solely learned from a target data set. Furthermore, our results for Tiny-ImageNet with
regards to condition base and FTall, seem to be consistent with [9] where the authors observed
that with fewer samples per class, the effect of transfer learning has more effect. However, we do
not find this effect for MiniPlaces2. This indicates that the transferred weights were initialized,
such that further training let them converge to sub-optimal local minima.
All these results can be summarized into a fairly straightforward heuristic. For the first n in-
stances of a new class, freeze the first l layers of the network. Once you have obtained more than
n instances for new class, training can simply affect all layers. Obviously the values for n and
l depend on the data and task at hand, in our experiments freezing the first 3 layers until 300
(Tiny-ImageNet) and respectively 900 (MiniPlaces2) instances per class gave the best results.
Our study could have benefited from having more samples per data point, by running repeated
experiments. Since the initialization of the parameters happens at random, the parameters might
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converge at different local minima each time the model is run. This could effect the accuracy
score in the test phase. Our results still indicate that transferring features from a larger source
data set to a smaller target data set adds value by reducing the risk of overfitting, and improves
performance.

7.1 Future work

Future research directions might include more investigation into developing metrics for quanti-
fying the transferability of parameters in CNNs. Another direction might be to research whether
features in other deep ANN are transferable. There has been work done to investigate transfer
learning in reinforcement learning models. In [51], the researchers transfer features learned from
one Atari Arcade game to a different Atari game. It would be interesting to see to what extent
transfer learning can be applied to RNNs, similar to [68]. Moreover, one might find a differ-
ence in transferability of features depending on the model or domain, such as image captioning
and video analysis. One more direction could involve, applying the pre-trained networks and
measuring their performance on the original source task.
A final direction might be to research which filters are best suited to be transferred in each
layer. In our experiments we simply take all features per layer of the network and transfer them.
However, it may be worthwhile to select m candidate filters from the K filters in a layer of
a CNN. Only these m get transferred to the new network. In [38] there are K = 96 filters in
the first layer. A strategy could be to randomly, or via a cluster algorithm, take m = 72 filters
from the source model, and transfer those to the target network. Thus, the target network will
keep 96 - 72 = 24 filters of its own which can be randomly initialized. Selecting only m filters
from the source might help improve generalizability. This will hold especially true in the deeper
layers of the network, where features become more task specific. This strategy might prevent
co-adaptation of neurons in these deeper layers.
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Chapter 8

Conclusion

In this thesis we reviewed feedforward neural networks, convolutional neural networks and re-
current neural networks. In the main experiment we investigated the effect of data set size on the
generalizability of features in deep convolutional neural networks. To this end, we transferred
features from a pre-trained network to a new network. We systematically reduced the size of the
target training set and trained our new network on these splits with the pre-initialized features.
In support for a general rule of thumb heuristic, we found empirical evidence that freezing the
first two to three layers of features results in a significant performance boost over the baseline
score, especially for smaller target set sizes under a thousand instances per class. Finally, we
provided potential future research directions related to transfer learning in deep neural networks.
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Appendix A

Tiny-ImageNet classes

Classes Tiny-ImageNet

goldfish bison dumbbell sombrero
European fire salamander bighorn flagpole space heater
bullfrog gazelle fountain spider web
tailed frog Arabian camel freight car sports car
American alligator orangutan frying pan steel arch bridge
boa constrictor chimpanzee fur coat stopwatch
trilobite baboon gasmask sunglasses
scorpion African elephant go-kart suspension bridge
black widow lesser panda gondola swimming trunks
tarantula abacus hourglass syringe
centipede academic gown iPod teapot
goose altar jinrikisha teddy
koala apron kimono thatch
jellyfish backpack lampshade torch
brain coral bannister lawn mower tractor
snail barbershop lifeboat triumphal arch
slug barn limousine trolleybus
sea slug barrel magnetic compass turnstile
American lobster basketball maypole umbrella
spiny lobster bathtub military uniform vestment
black stork beach wagon miniskirt viaduct
king penguin beacon moving van volleyball
albatross beaker nail water jug
dugong beer bottle neck brace water tower
Chihuahua bikini obelisk wok
Yorkshire terrier binoculars oboe wooden spoon
golden retriever birdhouse organ comic book
Labrador retriever bow tie parking meter plate
German shepherd brass pay-phone guacamole
standard poodle broom picket fence ice cream
tabby bucket pill bottle ice lolly
Persian cat bullet train plunger pretzel
Egyptian cat butcher shop pole mashed potato
cougar candle police van cauliflower
lion cannon poncho bell pepper
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brown bear cardigan pop bottle mushroom
ladybug cash machine potter’s wheel orange
fly CD player projectile lemon
bee chain punching bag banana
grasshopper chest reel pomegranate
walking stick Christmas stocking refrigerator meat loaf
cockroach cliff dwelling remote control pizza
mantis computer keyboard rocking chair potpie
dragonfly confectionery rugby ball espresso
monarch convertible sandal alp
sulphur butterfly crane school bus cliff
sea cucumber dam scoreboard coral reef
guinea pig desk sewing machine lakeside
hog dining table snorkel seashore
ox drumstick sock acorn

Table A.1: 200 classes sampled from the ImageNet data set.
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Appendix B

MiniPlaces2 classes

Classes MiniPlaces2

abbey bus interior gas station racecourse
airport terminal butchers shop golf course railroad track
amphitheater campsite harbor rainforest
amusement park candy store highway restaurant
aquarium canyon hospital room river
aqueduct cemetery hot spring rock arch
art gallery chalet ice skating rink outdoor runway
assembly line church outdoor iceberg shed
auditorium classroom kindergarden classroom shower
badlands clothing store kitchen ski slope
bakery shop coast laundromat skyscraper
ballroom cockpit lighthouse slum
bamboo forest coffee shop living room stadium football
banquet hall conference room lobby stage indoor
bar construction site locker room staircase
baseball field corn field market outdoor subway station platform
bathroom corridor martial arts gym supermarket
beauty salon courtyard monastery outdoor swamp
bedroom dam mountain swimming pool outdoor
boat deck desert sand museum indoor temple east asia
bookstore dining room office track outdoor
botanical garden driveway palace trench
bowling alley fire station parking lot valley
boxing ring food court phone booth volcano
bridge fountain playground yard

Table B.1: 100 classes sampled from the Places2 data set.
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Appendix C

Backpropagation derivation

In this section we provide the derivation of the backpropagation algorithm for a single training
example (xi, yi), where ∂

∂θlij
J(θ) represents the partial derivative of the cost function J(θ) with

respect to weight θlij . Similarly, equation C.2 shows the calculation of the gradient for the bias

term bli.

∂

∂θlij
J(θ) =

1

n

n∑
k=1

∂

∂W l
ij

J(θ;xi, yi) (C.1)

∂

∂bli
Jθ) =

1

n

n∑
k=1

∂

∂bli
J(θ;xi, yi) (C.2)

We can rewrite the expressions C.1 and C.2 as follows:

∂

∂θlij
J(θ) =

∂J(θ)

∂zl+1
i

∂zl+1
i

∂θlij
(C.3)

∂

∂bli
J(θ) =

∂J(θ)

∂zl+1
i

(C.4)

The second term in C.3 can simply be equated to the activation of node i in layer l:

∂zl+1
i

∂θlij
= ali (C.5)

The key of the backpropagation algorithm is the computation of the “error” or delta term δli.
This can be equated to the first term in equation C.3:

δli =
∂J(θ)

∂zli
(C.6)

To compute δli we must we apply the chain rule. We first decompose δli as follows:

δli =
∂J(θ)

∂ali

∂ali
∂zli

=
∂J(θ)

∂ali
f ′(zli) (C.7)

The computation for the delta term is different for the nodes in the output layer than for the
nodes in the hidden layers. With respect to the output layer l = nl, we compute δoli for any
output node i as follows:
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δoli =
∂J(θ)

∂aoli

∂ali
∂zli

= (yi − aoli )f ′(zoli ) (C.8)

For the hidden nodes we first compute a weighted average of the error terms that use ali (these
are the nodes in layer l = l + 1). Thus we set the first term in equation C.7 to:

∂J(θ)

∂ali
=

sl+1∑
j=1

∂J(θ)

∂zl+1
j

∂zl+1
j

∂ali
=

sl+1∑
j=1

δl+1
j W l

ji. (C.9)

This gives the following computation for δli:

δli =

sl+1∑
j=1

δl+1
j W l

jif
′(zli) (C.10)

The equations to compute the gradient then become:

∂

∂θlij
J(θ) = δlia

l
i (C.11)

∂

∂bli
J(θ) = δli (C.12)
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Appendix D

Vanishing and exploding gradients

In this section we will explain the vanishing and exploding gradient problem which occurs in
RNNs as described in [53].

The partial derivative of the cost function E with respect to parameters θ over S time steps is
expressed by:

∂E

∂θ
=

S∑
t=1

∂Et
∂θ

(D.1)

The computation of the gradient for the cost term Et with respect to θ can be decomposed as
follows:

∂Et
∂θ

=
t∑

k=1

∂Et
∂yt

∂yt
∂ht

∂ht
∂hk

∂hk
∂θ

(D.2)

The term ∂ht
∂hk

is in itself a chain rule, concretely it is a products of Jacobian terms:

∂ht
∂hk

=
t∏

i=k+1

∂hi
∂hi−1

=
t∏

i=k+1

θTdiag[φ′(hi−1] (D.3)

The upper bound of the derivative of the activation function is denoted by γφ, and γθ denotes
the l2-norm of

∥∥θT∥∥ which corresponds to the largest eigenvalue.

∥∥∥∥ ∂hi
∂hi−1

∥∥∥∥ ≤ ∥∥θT∥∥∥∥diag[φ′((hi−1)]
∥∥ ≤ γθγφ (D.4)

The norm of the Jacobian matrix
∥∥∥ ∂ht∂hk

∥∥∥, is denoted by (γθγφ)t−k. However, if this term is smaller

than one, it goes to zero due to the exponent. Likewise, if it larger than one, the gradient will
blow up.

∥∥∥∥ ∂ht∂hk

∥∥∥∥ ≤ (γθγφ)t−k (D.5)
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Appendix E

Backpropagation in CNNs

The computation for the delta term in a fully connected layer l is identical to the computation
in feedforward networks (see C.10, C.11, C.12).

In the convolutional and pooling layer we have to upsample the delta terms δlk in every kth filter.
Similar to C.10 the term f ′(zlk) denotes the derivative of the activation function (equation E.1
shows a vectorized implementation, where • represents the Hadamard product):

δlk = upsample
(

(W l
k)
T δl+1

k

)
• f ′(zlk) (E.1)

To compute the partial derivatives for the filter maps, we must “flip” the delta matrix obtained
from E.1, as per the mathematical definition of convolution. Where ∇W l

k
denotes the gradient

of weight W and ∇blk represents the gradient of bias term b in layer l respectively. The term al

denotes the activation of layer l:

∇W l
k
J(θ) =

m∑
i=1

(ali) ∗ rot90(δl+1
k , 2) (E.2)

∇blkJ(θ) =
∑
a,b

(δ
(l+1)
k )a,b. (E.3)
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