
Universiteit Leiden

Opleiding Informatica

Evolving the Structure of Evolution

Strategies using a Genetic Algorithm

Name: Sander van Rijn

Date: 19/02/2016

1st supervisor: Prof. dr. Thomas Bäck
2nd supervisor: Dr. Michael Emmerich

MASTER’S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

LEIDEN UNIVERSITY

Evolving the Structure of Evolution

Strategies using a Genetic Algorithm

Sander van Rijn

M.Sc. Thesis

Natural Computing Group

Leiden Institute of Advanced Computer Science (LIACS)

February 2016

http://www.leidenuniv.nl
mail@svrijn.nl
http://natcomp.liacs.nl
http://www.liacs.nl

Abstract

Evolution strategies are one of the most successful classes of stochastic optimization

algorithms for solving real world problems, which involves discontinuous, discrete or

mixed-integer search space with nonlinear constraints. Since the creation of evolution

strategies back in the 1960s, a variety of improvements and modifications have been

suggested to enhance its performance.

The covariance matrix adaptation evolution strategy (CMA-ES) is the state-of-the-art

development in this category. Many variants have been proposed recently to accelerate

its convergence speed. However, how to choose those variants optimally in practice is

still an open question. In this thesis, based on the well-known No Free Lunch Theorem,

we state that the optimal choice of variants should be related to the type of objective

function landscape. For example, a certain variant favoring uni-modal landscape would

perform worse on a multi-modal landscape.

In order to obtain the optimal variant setting in practice, it is proposed to consider all

the variants as a search space such that 1) many new combinations of variants beyond

the literature can be tested and 2) an optimization algorithm can be used to search for

the optimal ES-structure. An ES framework is presented in this thesis, which allows the

usage of all the possible combinations of ES-variations. In addition, a genetic algorithm

(GA) is exploited to evolve the ES-structure for a given black-box optimization problem

using this framework. An empirical study is also conducted to validate the proposed ap-

proach, in which the GA is shown to converge fast and consistently to the best possible

ES-structure within the framework by comparison with a brute force search. Perfor-

mance of the evolved ES-structures is finally compared to the results of the black-box

optimization benchmark (BBOB) from 2009 by means of the fixed cost error measure.

Parts of this thesis are extracted from a paper by Van Rijn et al. [21].

Acknowledgements

The author would like to extend special thanks to Hao Wang and Thomas Bäck for their

scientific guidance during the research for this thesis.

Contents

Abstract i

Acknowledgements ii

List of Figures v

List of Tables vii

List of Algorithms ix

1 Introduction 1

2 Problem Definition 3

3 Approach 5

3.1 CMA-ES . 5

3.2 ES Variations . 7

3.2.1 Active Update . 8

3.2.2 Elitism . 8

3.2.3 Mirrored Sampling . 8

3.2.4 Orthogonal Sampling . 9

3.2.5 Sequential Selection . 9

3.2.6 Threshold Convergence . 10

3.2.7 Two-Point Step-Size Adaptation (TPA) 11

3.2.8 Pairwise Selection . 11

3.2.9 Recombination Weights . 12

3.2.10 Quasi-Gaussian Sampling . 12

3.2.11 Increasing Population (IPOP) . 13

3.3 Problematic Combinations . 14

3.3.1 Pairwise Selection and Sequential Selection 15

3.3.2 Pairwise Selection and TPA . 15

3.3.3 Pairwise Selection, Sequential Selection and TPA 15

3.4 ES Framework . 15

3.5 Representation . 17

3.6 Genetic Algorithm . 17

4 Experiments 19

5 Results 21

iv Contents

6 Conclusions 33

Bibliography 35

List of Figures

3.1 Examples of Mirrored (left) and Orthogonal (right) sampling. The dashed
arcs represent the fitness landscape of the sphere function. Mutation
vectors are represented by arrows originating from the parent 〈x〉. The
solid line indicates the original random mutation, while the dashed and
dotted lines represent the mirrored and orthogonally sampled mutation
vectors respectively. Note that the mirrored vector’s length is equal to
that of the original, while the orthogonal vector can be of different length. 9

3.2 Quasi-random sequences. 256 points from a 2-dimensional pseudoran-
dom number source (left); compared with the first 256 points from a
2-dimensional Sobol (center) and Halton sequence (right). The Sobol and
Halton sequences cover the space more evenly. (red=1,..,10, blue=11,..,100,
green=101,..,256). Source: [16] . 12

5.1 GA convergence. The above graphs show the rate of convergence during
the optimization of ES-structures by the GA for different BBOB optimiza-
tion functions. All five dimensionalities have been plotted per function,
each line representing the ES-structures that were found to perform best
for that combination during the optimization process. 22

List of Tables

3.1 Overview of the available ES variants studied in this research. For most of
these variants the only required options are off and on, encoded by 0 and
1. For quasi-Gaussian sampling and increasing population, the additional
option is encoded by 2. The default CMA-ES is encoded by choosing 0
for all variants. The entries in row 9, recombination weights, specify the
formula for calculating each weight wi. 17

4.1 List of the five dimensionalities and fourteen BBOB function ID’s that are
used for the experiments. The remaining ten out of twenty-four BBOB
functions are omitted. Each listed function is tested in each of the listed
dimensions, for a total of 70 experiments. 19

5.1 Best ES-structure found by brute force search and GA: F3 – F13. This
table lists the best ES found by brute force search and our GA for each
combination of dimensions and function from BBOB. An ES-structure is
represented by a list of integers as explained in Section 3.2. Underlined
integers in the GA-column indicate a difference between the ES found by
the GA and the brute force search. Fitness values are given for each ES
as the median of fifteen runs. A negative fitness value indicates that the
target value was approached within 10−8. All runs were performed with
an evaluation budget of 103D. 23

5.2 Best ES-structure found by brute force search and GA: F16 – F24. This
table lists the best ES found by brute force search and our GA for each
combination of dimensions and function from BBOB. An ES-structure is
represented by a list of integers as explained in Section 3.2. Underlined
integers in the GA-column indicate a difference between the ES found by
the GA and the brute force search. Fitness values are given for each ES
as the median of fifteen runs. A negative fitness value indicates that the
target value was approached within 10−8. All runs were performed with
an evaluation budget of 103D. 24

5.3 Frequency analysis of the options chosen per variant by both the GA and
brute force search. 25

viii List of Tables

5.4 Expected running time (ERT in number of function evaluations) divided by the best

ERT measured during BBOB-2009 for F3–F24 in 2D space. The ERT and in braces,

as dispersion measure, the half difference between 90 and 10%-ile of bootstrapped run

lengths appear in the second row of each cell, the best ERT in the first. The different

target [Df]-values are shown in the top row. #succ is the number of trials that reached

the (final) target fopt +10−8. The median number of conducted function evaluations is

additionally given in italics, if the target in the last column was never reached. Bold

entries are statistically significantly better (according to the rank-sum test) compared

to the best algorithm in BBOB-2009, with p = 0.05 or p = 10−k when the number

k > 1 is following the ↓ symbol, with Bonferroni correction by the number of functions. 27

5.5 Expected running time (ERT in number of function evaluations) divided by the best

ERT measured during BBOB-2009 for F3–F24 in 3D space. The ERT and in braces,

as dispersion measure, the half difference between 90 and 10%-ile of bootstrapped run

lengths appear in the second row of each cell, the best ERT in the first. The different

target [Df]-values are shown in the top row. #succ is the number of trials that reached

the (final) target fopt +10−8. The median number of conducted function evaluations is

additionally given in italics, if the target in the last column was never reached. Bold

entries are statistically significantly better (according to the rank-sum test) compared

to the best algorithm in BBOB-2009, with p = 0.05 or p = 10−k when the number

k > 1 is following the ↓ symbol, with Bonferroni correction by the number of functions. 28

5.6 Expected running time (ERT in number of function evaluations) divided by the best

ERT measured during BBOB-2009 for F3–F24 in 5D space. The ERT and in braces,

as dispersion measure, the half difference between 90 and 10%-ile of bootstrapped run

lengths appear in the second row of each cell, the best ERT in the first. The different

target [Df]-values are shown in the top row. #succ is the number of trials that reached

the (final) target fopt +10−8. The median number of conducted function evaluations is

additionally given in italics, if the target in the last column was never reached. Bold

entries are statistically significantly better (according to the rank-sum test) compared

to the best algorithm in BBOB-2009, with p = 0.05 or p = 10−k when the number

k > 1 is following the ↓ symbol, with Bonferroni correction by the number of functions. 29

5.7 Expected running time (ERT in number of function evaluations) divided by the best

ERT measured during BBOB-2009 for F3–F24 in 10D space. The ERT and in braces,

as dispersion measure, the half difference between 90 and 10%-ile of bootstrapped run

lengths appear in the second row of each cell, the best ERT in the first. The different

target [Df]-values are shown in the top row. #succ is the number of trials that reached

the (final) target fopt +10−8. The median number of conducted function evaluations is

additionally given in italics, if the target in the last column was never reached. Bold

entries are statistically significantly better (according to the rank-sum test) compared

to the best algorithm in BBOB-2009, with p = 0.05 or p = 10−k when the number

k > 1 is following the ↓ symbol, with Bonferroni correction by the number of functions. 30

5.8 Expected running time (ERT in number of function evaluations) divided by the best

ERT measured during BBOB-2009 for F3–F24 in 20D space. The ERT and in braces,

as dispersion measure, the half difference between 90 and 10%-ile of bootstrapped run

lengths appear in the second row of each cell, the best ERT in the first. The different

target [Df]-values are shown in the top row. #succ is the number of trials that reached

the (final) target fopt +10−8. The median number of conducted function evaluations is

additionally given in italics, if the target in the last column was never reached. Bold

entries are statistically significantly better (according to the rank-sum test) compared

to the best algorithm in BBOB-2009, with p = 0.05 or p = 10−k when the number

k > 1 is following the ↓ symbol, with Bonferroni correction by the number of functions. 31

List of Algorithms

1 Outline of a general (µ, λ) evolution strategy 1

2 Default (µW , λ)-CMA-ES . 7

3 Customizable CMA-ES Framework . 16

4 (1, λ)-self-adaptive GA . 18

Chapter 1

Introduction

Evolution Strategies are popular for solving a large variety of real-valued optimization

problems. Many adaptations of the classic evolution strategy (ES) have been proposed

and tested. Most adaptations still follow the same general structure of an evolution

strategy (see Algorithm 1). None of these can be perfect for all fitness landscapes

because of the No Free Lunch theorem [23]: An increase in performance for some cases

causes a decrease in performance for some other cases. Instead, a realistic goal is to

have an ES that finds a good solution in the least amount of function evaluations for a

specific function or function class.

An all-round optimization method such as the covariance matrix adaptation ES (CMA-

ES) by Hansen et al. [14] can be immediately used for new problems with decent

expected results. This comes at the cost of more function evaluations to reach a similar

solution, when compared to an optimization method tailored to the problem. Choosing

an ES that is tailored to the problem results in faster convergence, but analysis of the

fitness landscape is often required before such a choice can be made. For many black-box

optimization problems, this is not feasible. Automated parameter tuning can provide

some improvement in these cases, but is limited in effectiveness.

Algorithm 1 Outline of a general (µ, λ) evolution strategy

1: Initialization of µ parents for the first generation
2: repeat
3: The µ parents recombine their information to create λ offspring
4: Each offspring obtains random mutations
5: All individuals are evaluated
6: The µ best (fittest) individuals are selected as parents for the next generation
7: until Termination criterion fulfilled

2 Chapter 1 – Introduction

Instead, we view the task of determining the structure of the fastest converging method

as an optimization problem itself. We consider methods based on the CMA-ES, as

they are the focus of many recent publications. A number of CMA-ES variants recently

described in literature including active update [15], increasing population (IPOP) [2] and

several others, are described in [5].

This research aims at finding an ES whose structure is determined by combining one or

more of these variants into the CMA-ES. A slightly similar approach has been taken by

Bäck [4], by using an evolutionary algorithm to optimize parameters and the operator

for selection and crossover of a simple genetic algorithm (GA). In more recent research,

Martin et al. [18] used Genetic Programming to create tree-based structures of GAs.

We choose not to use a tree-based structure, because more components in which the

ES can vary are examined other than selection or recombination, and any parameters

values are excluded in our optimization. This results in a representation by means of a

list of integers, so a GA is chosen here for the optimization.

A complete definition of the problem can be found in chapter 2. Our approach is

explained in more detail in chapter 3. Section 3.2 lists all used variants of the CMA-ES,

followed in Section 3.3 by the problems given by some combinations and our solutions

for them. We give an overview of the ES-framework created and the GA that uses

it in Section 3.4 and Section 3.6, respectively. The experimental setup is discussed in

chapter 4. The results of these experiments are listed in chapter 5. Finally, conclusions

from these results and suggestions for future work are discussed in chapter 6.

Chapter 2

Problem Definition

We examine the set of real-valued minimization problems F = {f : Rn → R} in n

dimensions. The goal of an optimization method is to find some xopt ∈ Rn such that

∀x ∈ Rn : f(xopt) ≤ f(x).

Although optimization methods have the goal of finding the true optimum f(xopt), it can

only be approximated. Assuming that all algorithms can reach a certain threshold value

f ′ > f(xopt), the key difference between methods is the number of function evaluations

f(x) they require to reach that threshold. This is the idea behind the expected runtime

(ERT) measure for comparing optimization methods with respect to a fixed (black-

box) optimization problem: Set a target threshold f ′ and run each method until this

target has been reached. The method that uses the least function evaluations to reach

the target must have converged faster, and is therefore better suited to that particular

fitness landscape. The aim of this research is to find, for a given optimization problem,

the ES-structure that achieves the highest convergence speed.

A threshold value f ′ must be reached before a comparison can be made when using

the ERT measure for comparing convergence speed of different optimization methods.

An upper limit of the allowed number of function evaluations ensures that optimization

methods which are highly unsuited for the given optimization problem will terminate.

The difference in required number of function evaluations will be very large in these

cases. However, an indication of convergence speed can already be obtained before the

threshold is reached. When one method converges faster than another, there will be

a difference in the lowest value found after both methods have been allowed the same

number of function evaluations. Comparing the best found values within a relatively low

4 Chapter 2 – Problem Definition

and fixed evaluation budget, also known as the fixed-cost error (FCE) measure, can be

used to approximate the convergence speed of an optimization method to some extent.

The major advantage of using the FCE measure is that the less runtime is required

before a comparison can be made. A drawback of using FCE is that information on

the performace of the optimization method in a later stadium is lost. There may exist

methods that initially converge slower, but speed up at a later point in the optimization

process. Such methods will be at a disadvantage when the allowed budget does not

reach into the second stage of their optimization progress. It is impossible to detect

when such a case occurs without allowing more function evaluations.

Chapter 3

Approach

The CMA-ES [14] and its variants are the preferred optimization method for many real-

valued black-box problems. All these variants form a search space. Therefore, it is

worth conducting structural optimization for CMA-ES. Many of these variations have

been separately discussed in the literature, but only few combinations have been tested.

This leaves a large part of the potential search space for CMA-ES-like optimization

methods undiscovered. We search this space using a Genetic Algorithm (GA).

In Section 3.1 the default CMA-ES used in this research is defined. Section 3.2 lists and

discusses all variants of the CMA-ES included in our experiments. Most combinations

of these variants work without any major problems, but some require extra attention in

order to work. The problems encountered and our solutions are discussed in Section 3.3.

An overview of the ES-framework we implemented, and the representation that is used

to define an ES-structure in this framework are given in Sections 3.4 and 3.5 respectively.

Finally, the GA used for the optimization process is discussed in Section 3.6.

3.1 CMA-ES

The presented framework is built on a default (µW , λ)-CMA-ES from [5] (see Algo-

rithm 2). This implementation follows the general structure of an ES as outlined in

Algorithm 1.

Lines 1 – 5 are the initialization phase of the algorithm. The initial parent 〈x〉 is

determined in line 1, while the evolution paths pc and pσ are initialized as zero vectors

0n in lines 2 and 3. The covariance matrix C ∈ Rn×n is initially set to the identity

matrix In×n (line 4), and the generation counter is started at 0 (line 5).

6 Chapter 3 – Approach

Mutation is performed in lines 8 – 12. First the eigendecomposition of C is stored in B

and D (line 8). For all λ individuals, a new random vector zi is drawn from the normal

distribution (line 10), and is then used to create a new mutation vector yi that is adapted

according to the covariance matrix by multiplication with BD (line 11). Addition of

the parent 〈x〉 to the mutation vector yi scaled by the step-size σ results in the new

individual xi (line 12). This individual is then evaluated in line 13.

Selection is implicit before line 15, as the mutation vectors yi are sorted according to

fitness value fi of the corresponding individual xi. Finally, weighted recombination of

the mutation vectors is performed in line 15, where the weights wi are defined by

wi = log(µ+
1

2
)− log(i)∑

j wj
. (3.1)

This combined mutation vector 〈y〉 is then used to update the parent 〈x〉 in preparation

for the next generation.

The remaining lines 17 – 21 describe the adaptation of the strategy parameters. Evolu-

tion paths pc and pσ are first updated (lines 17 – 18) using the recombined mutation

vector. An additional parameter hσ prevents the addition of information from this

generation when ‖pσ‖ becomes too large. It is defined as

hσ =

 1 if ‖pσ‖√
1−(1−cσ)2(t+1)

< (7
5 + 2

n+1)E ‖N(0, I)‖

0 otherwise
(3.2)

where

E ‖N(0, I)‖ ≈
√
n

(
1− 1

4n
+

1

21n2

)
.

The step-size σ is updated next, using the information of the evolution path pσ. Finally,

the covariance matrix C is updated in lines 20–21. The first term in line 21 denotes

the contribution of the current covariance matrix. Next is the rank-one-update, which

uses the information from the evolution path pc. The rank-µ-update applies Z, which

contains information of the most successful mutations.

Default settings for the exogeneous parameters are used from [10]:

λ = 4 + b3 lnnc

µ =

⌊
λ

2

⌋
µeff =

(
µ∑
i=1

w2
i

)−1

3.2 ES Variations 7

cσ =
µeff + 2

µeff + n+ 5

dσ = 1 + 2 max(0,

√
µeff − 1

n+ 1
)

cc =
4 + µeff/n

n+ 4 + 2µeff/n

c1 =
2

(n+ 1.3)2 + µeff

cµ = min

(
1− c1, αµ

µeff − 2 + 1/µeff

(n+ 2)2 + αµµeff/2

)
with αµ = 2

Algorithm 2 Default (µW , λ)-CMA-ES

1: initialize 〈x〉
2: pc ← 0
3: pσ ← 0
4: C← I
5: t← 0
6: repeat
7: t← t+ 1
8: B,D← eigendecomposition of C
9: for i = 1 to λ do

10: zi ← N(0, I)
11: yi ← BDzi
12: xi ← 〈x〉+ σyi
13: fi ← f(xi)
14: end for
15: 〈y〉 ←

∑µ
i=1 yi:λwi

16: 〈x〉 ← 〈x〉+ σ〈y〉
17: pσ ← (1− cs)pσ +

√
cs(2− cs)µeffBD−1BT 〈y〉

18: pc ← (1− cc)pc + hσ
√
cc(2− cc)µeff〈y〉

19: σ ← σ · exp
(
cσ
dσ

(
‖pσ‖

E‖N(0,I)‖ − 1
))

20: Z←
∑µ

i=1wiyi:λy
T
i:λ

21: C← (1− c1 − cµ)C + c1(pc,p
T
c + (1− hσ)cc(2− cc)C) + cµZ

22: until termination criterion fulfilled

3.2 ES Variations

Every ES we consider can be described as a sequence of discrete building blocks, each

originally introduced as a separate ES-variant. Eleven variants are considered in total,

nine of which have two available choices, and the remaining two have three choices.

For each variant, a brief description is given below. This results in a search space of

29 · 32 = 4,608 different ES-structures.

8 Chapter 3 – Approach

3.2.1 Active Update

The update of covariance matrix C is normally only done by taking the most successful

mutations into account. With Active Update as introduced by Jastrebski et al. [15], an

additional negative factor based on the µ least successful individuals is added. This is

done by replacing line 20 of Algorithm 2 with

Z =

µ∑
k=1

wiyk:λy
T
k:λ −

λ∑
k=λ−µ+1

wiyk:λy
T
k:λ. (3.3)

Following [5], the parameter cc is modified to

cc =
2

(n+
√

2)2
. (3.4)

When λ < 2µ, there will be an overlap between the µ most and least successful individu-

als. The mutations of these overlapping individuals will cancel out in Eq. 3.3, effectively

reducing the number of individuals that affect the covariance matrix C. Because of this,

we only allow the application of this variant when λ ≥ 2µ.

3.2.2 Elitism

CMA-ES uses a (µ, λ)-strategy by default, whereby the selection of individuals is only

done using the current generation of offspring. When elitism is active, the parent indi-

viduals are also considered during selection. This is denoted as a (µ+ λ)-strategy.

3.2.3 Mirrored Sampling

A technique to ensure more evenly spaced sampling of the search space is Mirrored

Sampling by Auger et al. [8]. Half of the mutation vectors are still sampled from the

normal distribution, but every other mutation vector is the mirror image of the previous

random vector. An example of this can be seen in Fig. 3.1a.

zi ←

{
N(0, I) i is odd

−zi−1 i is even
(3.5)

Mirroring the previously generated random vector may even cross generations when λ

is odd. In such cases zt+1
1 ← −ztλ.

3.2 ES Variations 9

〈x〉

(a) Mirrored Sampling

〈x〉

(b) Orthogonal Sampling

Figure 3.1: Examples of Mirrored (left) and Orthogonal (right) sampling. The dashed
arcs represent the fitness landscape of the sphere function. Mutation vectors are repre-
sented by arrows originating from the parent 〈x〉. The solid line indicates the original
random mutation, while the dashed and dotted lines represent the mirrored and orthog-
onally sampled mutation vectors respectively. Note that the mirrored vector’s length
is equal to that of the original, while the orthogonal vector can be of different length.

3.2.4 Orthogonal Sampling

Wang et al. [22] later proposed Mirrored Orthogonal Sampling as an improvement to

Mirrored Sampling in an attempt to further ensure more evenly spaced sampling by

using mutation vectors that are orthogonal to each other. In this research, Orthogonal

Sampling is considered separately from Mirrored Sampling. However, when both are

active simultaneously, the initial mutation vectors are sampled using this method and

mirrored afterwards.

For Orthogonal Sampling, the desired number of samples λ′ is first drawn from the

normal distribution. The Gram-Schmidt process [6] is used to orthonormalize the set of

vectors. If this number λ′ is greater than the dimensionality n of the problem, only n

vectors are orthonormalized because only n orthogonal vectors can exist in n-dimensional

space. The remaining vectors sampled from the normal distribution are maintained as

they are. Finally, the now orthonormalized vectors are restored to their original lenghts.

Fig. 3.1b shows a possible result from this procedure.

3.2.5 Sequential Selection

The runtime duration of optimization by an ES depends on the function evaluation

budget that is set beforehand. Every individual is evaluated in order before selection is

performed using all λ individuals. Not all of the λ individuals will be an improvement

10 Chapter 3 – Approach

over the best result found up to that point in time, resulting in unnecessary function

evaluations and therefore lost optimization time.

Sequential Selection, proposed by Auger et al. [8] for (1+, λ)-selection, compares the

function value of each individual to the best found so far immediately after it has been

evaluated. The current generation is cut off to prevent further evaluations from occurring

when an improvement has been found. The resulting evolution process is able to find

more improving mutations because more generations are created.

For this method to work with (µ, λ)-strategies, the required number of individuals for

other calculations in the algorithm has to be taken into account. Allowing a cut-off after

less than µ individuals causes issues with the recombination and update of the covariance

matrix. A delay in the cut-off is introduced to ensure that at least µ individuals are

evaluated when µ > 1, preventing these issues. This represents a more robust solution

than accepting less than µ individuals and adapting all following calculations.

3.2.6 Threshold Convergence

Getting stuck in a local optimum is a common issue when using an ES for solving

multi-modal optimization problems. Piad et al. propose Threshold Convergence [19] for

the standard (µ, λ)-ES as a method of forcing the evolution to stay in an exploratory

phase for longer, by imposing a minimum length threshold T for mutation vectors. This

threshold decays during the optimization process to transition the search from a global

to local search.

A mutation vector z with length ‖z‖ < T is mirrored with respect to T by

z← z + 2 · (T − ‖z‖) · z. (3.6)

This threshold is calculated using

Ti = αTC · d ·
(
n− i
n

)γ
, (3.7)

where α is the initial threshold, d is the diagonal of the search space, n is the total

evaluation budget, i is the number of evaluations used so far and parameter γ controls

the decay rate. Initial values of αTC = 0.2, d =
√

102n and γ = 0.995 are chosen,

assuming a standard search space of [−5, 5]n

In the original paper by Piad et al., Threshold Convergence is used in a regular (µ, λ)-

ES. The threshold is applied to the mutation vector after it has been scaled by the

step size σ. If this method is equally applied to a CMA-ES, any shape implied by the

3.2 ES Variations 11

covariance matrix C is lost, because the threshold is a scaled (hyperdimensional) unit

circle. Instead, the threshold is applied to the randomly sampled vector from line 10

in Algorithm 2, before it is used in any further calculations. This forces the mutation

vector to have a minimal length, without losing the benefits obtained by scaling with

the covariance matrix C.

3.2.7 Two-Point Step-Size Adaptation (TPA)

The step-size σ of the CMA-ES using cumulative step size adaptation (CSA) is adapted

after every generation according to the evolution path, which incorporates the latest

successful individuals. In order to alleviate issues of CSA, Hansen et al. propose TPA

[11], which reserves two individuals from the λ offspring. These are used to evaluate two

additional individuals after selection and recombination has taken place:

f+ = f(m + α′TPAσ〈y〉) (3.8)

f− = f(m− α′TPAσ〈y〉) (3.9)

where m is the mean value after recombination and y is the weighted mutation vector

of the previous generation. The step-size should decrease if f− is better than f+, and

increase otherwise. To do so, a multiplication factor αTPA, s is calculated by

αTPA, s ← αTPA, s + cα(αTPA, act − αTPA, s) (3.10)

where

αTPA, act ←

{
−α f− < f+

α f− ≥ f+

(3.11)

The step-size σ is finally updated using

σ ← σ · exp(αTPA, s). (3.12)

Default values for the parameters are α′TPA = 0.5, αTPA = 0.5 and cα = 0.3.

3.2.8 Pairwise Selection

Use of Mirrored Sampling in an ES with µ > 1 can cause a bias in the length of mutation

vectors, as two mirrored vectors will (partially) cancel each other out in recombination.

Pairwise Selection is introduced in a later paper by Auger et al. [1] to prevent this.

During the Mirrored Sampling, mirrored pairs of individuals are created, and passed in

paired order to the selection function. Instead of immediately sorting by fitness, the

12 Chapter 3 – Approach

(a) Pseudorandom sequence (b) Sobol sequence (c) Halton sequence

Figure 3.2: Quasi-random sequences. 256 points from a 2-dimensional pseudorandom
number source (left); compared with the first 256 points from a 2-dimensional Sobol
(center) and Halton sequence (right). The Sobol and Halton sequences cover the space
more evenly. (red=1,..,10, blue=11,..,100, green=101,..,256). Source: [16]

lowest fitness of each mirrored pair i is first selected by

xmin,i = arg min(f(x2i), f(x2i+1)). (3.13)

Only then are the selected individuals used by the regular selection method.

Although this selection scheme was devised specifically for use with Mirrored Sampling,

there is no fundamental problem with using it when mutations are used according to

the non-mirrored sampling methods. Therefore both are allowed to be activated inde-

pendently and no dependency between this Pairwise Selection and Mirrored Sampling

is enforced.

3.2.9 Recombination Weights

In the standard (µ/µW + /, λ)-CMA-ES, weighted recombination is performed with the

following weights vector w:

wi = log(µ+
1

2
)− log(i)∑

j wj
. (3.14)

Alternative weights that were used in the original introduction of the CMA-ES are the

arithmetic mean

wi =
1

µ
. (3.15)

3.2.10 Quasi-Gaussian Sampling

Samples are not necessarily drawn uniformly from the normal distribution. Alterna-

tively, the random mutation vectors can be drawn from a quasi-random uniform sequence

3.2 ES Variations 13

as proposed in [3]. Two such sequences are the Sobol [20] and Halton [7] sequences.

Fig. 3.2 shows the distribution of points by a uniform pseudorandom number generator

and the Sobol and Halton sequences.

As numbers generated by these sequences are uniformly distributed, a transformation

must be applied before they can be used as uniform samples from the normal distribution.

This transformation is performed with the inverse of the cumulative distribution function

for normal distribution, also known as the percent point function

zi ← ppf(zi). (3.16)

3.2.11 Increasing Population (IPOP)

Initiating a local restart of an ES can be done when the optimization process no longer

seems to progress. The criteria listed below check multiple parameters and function

values of the ES for degeneration or stagnation. Once such a check fails, the ES is

stopped and restarted. All following criteria, including their default values, are used as

proposed in [2, 12].

• Equalfunvalhist : Stop if the range of the best objective function values of the last

10 + d30n/λe generations is zero.

• Tolfun= 10−12: Stop if the range of the best objective function values of the last

10 + d30n/λe generations and all function values of the recent generation is below

Tolfun.

• TolX = 10−12σ0: Stop if the standard deviation of the normal distribution is

smaller than TolX in all coordinates and σtpc is smaller than TolX in all com-

ponents.

• NoEffectAxis: Stop if adding a 0.1-standard deviation vector in a principal axis

direction of Ct does not change 〈x〉t.

• NoEffectCoord : Stop if adding 0:2-standard deviation in each coordinate does

change 〈x〉t.

• MaxIter = 100 + 50(n+ 3)2/
√
λ: the maximal number of iterations in each run of

CMA-ES

• EqualFunVals: in more than 1/3rd of the last n iterations the objective function

value of the best and the k-th best solution are identical, that is f(x1:λ) = f(xk:λ),

where k = 1 + d0.1 + λ/4e.

14 Chapter 3 – Approach

• TolUpX = 1012: all components of ptc and all square roots of diagonal components

of Ct, multiplied by σt/σ0, are smaller than TolUpX.

• TolUpSigma = 1020: σt/σ0 > TolUpSigma
√
lt, where lt is the largest eigenvalue

of Ct, indicates a mismatch between increase and decrease of all eigenvalues in C.

In this, rather untypical, case the progression of the strategy is usually very low

and a restart is indicated.

• Stagnation: the median of the 20 newest values is not smaller than the median

of the 20 oldest values, respectively, in the two arrays containg the best function

values and the median function values of the last 0.2t+ 120 + 30n/λ iterations.

• ConditionCov : the condition number of Ct exceeds 1014.

Auger et al. proposed an increasing population scheme IPOP [2] to use the remaining

function evaluations more effectively after a restart. The population size λ is increased

with a constant factor between 1.5 and 5 after every restart, where 2 is chosen by default.

Later, Hansen et al. introduced the bi-population (BIPOP) [12] variation in which two

interlaced regimes are started. Population size is increased by the same factor of two as

with IPOP after every restart of the first regime. A small population size is used in the

second regime, where λ is set according to

λs =

⌊
λdef

(
1

2

λl
λdef

)U [0,1]2
⌋
. (3.17)

U [0, 1] denotes a number sampled uniformly from the range [0, 1]. The initial step-size

for this small regime is set to σ0 = 2 · 10−2U [0,1], and a maximum budget of half that of

the recent budget for the first regime is enforced.

3.3 Problematic Combinations

Our aim is to allow for combining any of the ES-variations listed in Section 3.2 such that

the resulting ES will run with minimal need of checking dependences between variants,

and without causing errors. Selection variations can cause problems when they require

more than µ individuals for the selection process. Descriptions of the encountered issues

and our solutions are given below.

3.4 ES Framework 15

3.3.1 Pairwise Selection and Sequential Selection

For pairwise selection to return µ individuals, a selection must be made from at least

2µ individuals. This causes a problem when sequential selection is allowed to stop the

generation after µ individuals, leaving only µ/2 pairs. To solve this, the cut-off point for

sequential selection is artificially increased to 2µ. If λ < 2µ, λ is also increased to 2µ.

3.3.2 Pairwise Selection and TPA

TPA reserves two individuals from the λ offspring, preventing them from being used for

selection and recombination. This leaves the ES with λeff = λ − 2 individuals. When

pairwise selection is used and λ = 2µ, we are one pair short of being able to select µ

individuals. In this case, µ is set to λeff/2.

3.3.3 Pairwise Selection, Sequential Selection and TPA

When pairwise selection, sequential selection and TPA are all active, both of the issues

mentioned above will occur. To remedy this, the cut-off point for sequential selection is

based on λeff.

3.4 ES Framework

To easily allow the combination of all ES-variations listed in Section 3.2, we created a

generic framework based on the CMA-ES (see Algorithm 3). It is designed such that an

ES-variation can be activated, by replacing a function or passing an additional boolean

variable. Any endogenous variables of the CMA-ES and its variations are abstracted into

a single global parameters (see line 26) object that is accessible from all other functions.

Only the structural variations of the CMA-ES are considered in this research, each using

their own parameters. These parameter values are not included in the optimization. In-

stead, the default values and formulas were used directly from literature where required.

The variable functions are the mutation (line 7), selection, recombination (lines 18–19)

and parameter update (line 26). Here, the variability is shown by the added variables

such as sampler and threshold for mutation. The sampler is a special case that merges

three variations: Quasi-Gaussian sampling replaces the regular Gaussian sampling that

is used as base-sampler. If orthogonal sampling is selected, it will use the previously

16 Chapter 3 – Approach

Algorithm 3 Customizable CMA-ES Framework

1: t← 0
2: fopt ← inf
3: x̄← randomly generated individual
4: while not terminate do
5: canBreak ← False
6: for i = 1 to λ do . Mutation and evaluation
7: xi ← mutate(x̄, sampler, threshold)
8: fi ← evaluate(xi)
9: if fi < fopt then

10: fopt ← fi
11: xopt ← xi
12: canBreak ← True
13: end if
14: if SeqSel and i ≥ seq-cutoff and canBreak then . Sequential selection
15: break for
16: end if
17: end for
18: P (t+1) ← select({~x1:λ, . . . , ~xµ:λ}, elitist, pairwise)
19: x̄← recombine(P (t+1), weights)
20: if TPA then
21: stepSizeChange ← performTPA()
22: end if
23: if IPOP or BIPOP then
24: λ← updateLambda(IPOP, BIPOP)
25: end if
26: parameters.update(stepSizeChange, active)
27: t← t+ 1
28: end while

selected base-sampler as source for vectors to orthonormalize. Mirrored sampling is the

last option to be added to the sampler.

Sequential selection (lines 12, 14–16), TPA (lines 20–22) and (B)IPOP (lines 23–25)

cannot be passed as parameters to the variable functions as they change the core struc-

ture of the main loop in an ES. Instead, these methods are added as separate if-guarded

blocks of code.

Each ES-variant can be activated independently of all others. This allows an ES to be

represented as a simple list of discrete choices that can be mutated without any need

for checking dependencies or validity. Furthermore, functions can be replaced, and new

variations can be added without rewriting the entire algorithm.

3.5 Representation 17

3.5 Representation

Variant name 0 (default) 1 2

1 Active off on -

2 Elitism off on -

3 Mirrored Sampling off on -

4 Orthogonal Sampling off on -

5 Sequential Selection off on -

6 Threshold Convergence off on -

7 TPA off on -

8 Pairwise Selection off on -

9 Recombination Weights log(µ+ 1
2)− log(i)∑

j wj
1
µ -

10 Quasi-Gaussian Sampling off Sobol Halton

11 Increasing Population off IPOP BIPOP

Table 3.1: Overview of the available ES variants studied in this research. For most
of these variants the only required options are off and on, encoded by 0 and 1. For
quasi-Gaussian sampling and increasing population, the additional option is encoded
by 2. The default CMA-ES is encoded by choosing 0 for all variants. The entries in
row 9, recombination weights, specify the formula for calculating each weight wi.

Table 3.1 provides a summarized overview of the ES variants considered in this research

in the same order as introduced in Section 3.2. By choosing options for each variant and

listing them in the specified order, an ES can be represented as a list of integers. The re-

sulting representations range from 00000000000 = default CMA-ES, to 11111111122

= CMA-ES with all variations activated.

Decoding a given representation ~r = {r1, r2, . . . , r11} can be done as follows: For each

integer ri in the representation ~r, find the ES variation i in Table 3.1, and use the

option indicated by ri. For example: The representation ~r = 01100000100 represents

the non-default option for ES-variations 2, 3 and 9: Elitism, mirrored sampling and

pairwise selection. In other words: A (µ+λ) mirrored-CMA-ES with pairwise selection.

3.6 Genetic Algorithm

A mutation only, self-adaptive GA according to Kruisselbrink et al. [17] is used as

optimizer for the ES-structure (see Algorithm Algorithm 4). Crossover is omitted to

18 Chapter 3 – Approach

Algorithm 4 (1, λ)-self-adaptive GA

1: t← 0
2: P (0) ← generate individual ~I, randomly
3: while not terminate do
4: for i = 1 to λ do . Create λ offspring
5: (~ri, pm,i) = ~Ii ← copy(P (t))
6: pm,i ← mutateRate(pm,i) . Update mutation rate
7: ~ri ← mutate(~ri, pm,i) . Update ES structure with mutation rate pm,i

8: fi ← evaluate(~ri)
9: end for

10: P (t+1) ← ~I1:λ, select single best from λ
11: t← t+ 1
12: end while

reduce the number of exogenous parameters of our GA. An individual in the GA consists

of an ES-structure ~r (previously described in Section 3.2) and the self-adaptive mutation

rate pm. This algorithm was picked because of its fast and reliable convergence, as shown

in [17].

We define the fitness of an ES with respect to a certain optimization problem as follows:

An ES will produce a solution vector ~x with its corresponding fitness value f(~x), which

may be different for each run because optimization by an ES is a stochastic process.

Using the value of a single run, or the best of several runs can therefore be heavily

influenced by outliers. Instead, the median value of fifteen runs is used.

Chapter 4

Experiments

We use a (1,12) GA with a budget of 250 evaluations of ES-structures for these experi-

ments. This choice is partially based on the length of the representation for an ES, and

partially on the desire for fast convergence using parallel computing. Every ES is given

a budget of 103n function evaluations.

Our algorithm breeding framework is tested using the black-box optimization benchmark

(BBOB) suite [13]. Use of the BBOB suite allows us to use the distance to target

values as absolute fitness of an ES. Fourteen of the more difficult noiseless functions

out of the available twenty-four are selected for experiments beforehand. The remaining

ten noiseless functions in BBOB are omitted because any variation on the CMA-ES is

expected to perform well in these simple, unimodal fitness landscapes. This means that

no difference is expected between any ES-structures in terms of the FCE measure. Five

dimensionality settings are used for each of the fourteen functions. Table 4.1 lists the

functions and dimensionalities that are tested.

To evaluate the convergence of the search towards the optimal ES possible within the

framework, a brute force search over all possible ES-structures is also performed. Again,

each ES-structure is evaluated by the median result of fifteen runs.

Our framework is written in Python using the mpi4py package [9] and the experiments

are performed on a cluster, allowing the parallelization of both the twelve individuals per

Dimensions 2, 3, 5, 10, 20

Function IDs 3, 4, 7, 9, 10, 12, 13, 16, 17, 19, 20, 21, 23, 24

Table 4.1: List of the five dimensionalities and fourteen BBOB function ID’s that are
used for the experiments. The remaining ten out of twenty-four BBOB functions are
omitted. Each listed function is tested in each of the listed dimensions, for a total of
70 experiments.

20 Chapter 4 – Experiments

generation of the GA and the fifteen runs per ES, resulting in 180-fold parallelization.

During the brute force search, sixteen ES-structures were evaluated simultaneously for

a total of 240-fold parallelization.

Chapter 5

Results

A GA can effectively evolve improving ES structures using our framework. Fig. 5.1

shows this as all GA runs converge in their budget of 250 evaluations, or 21 generations.

Most of these runs lasted around 10–11 minutes, with the longest run lasting up to 17

minutes.

Looking at these graphs, a few different cases can be distinguished. For functions F9,

F10, F12, F13, F17 and F21, an ES that reaches the BBOB default threshold of 10−8

to the optimum value is found in the first few generations of the GA. This is also the

expected behavior for the functions that were left out for being too simple. Traditional

convergence is seen in the graphs for functions F3, F4, F7, F16, F19, F23 and F24,

more so for the optimizations in higher dimensions. However, the GA seems unable to

improve significantly for the remaining function F20.

The graphs in Fig. 5.1 show a clear ordering between the obtained fitness values for

different dimensionalities. Only rarely does the 20-dimensional run converge faster than

in any experiment in less dimensions.

Even at 240-fold parallelization, each brute force search lasted between 150 and 210

minutes, meaning the computations for all 70 experiments lasted for nine days in total,

compared to the twelve hours in total for all optimizations by the GA.

Tables 5.1 and 5.2 lists the optimal ES structures for each function and number of

dimensions that were found by the GA and compare them with the result found by brute

force search (i.e., complete enumeration of all possible combinations). As the absolute

target values of all BBOB optimization functions are known, no negative fitness values

are expeted. The occurrence of values such as −8.27e−16 is therefore due to the precision

limit of Python/NumPy. It is then also likely that more than one ES-structure reached

22 Chapter 5 – Results

0 5 10 15 20
Generation

5

0

5

10

15

20

25

D
is

ta
n
ce

 t
o
 T

a
rg

e
t

V
a
lu

e

F3

2-dim

3-dim

5-dim

10-dim

20-dim

0 5 10 15 20
Generation

10

0

10

20

30

40

50

60

70

D
is

ta
n
ce

 t
o
 T

a
rg

e
t

V
a
lu

e

F4

2-dim

3-dim

5-dim

10-dim

20-dim

0 5 10 15 20
Generation

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
is

ta
n
ce

 t
o
 T

a
rg

e
t

V
a
lu

e

F7

2-dim

3-dim

5-dim

10-dim

20-dim

0 5 10 15 20
Generation

2

1

0

1

2

3

4

5

6

7

D
is

ta
n
ce

 t
o
 T

a
rg

e
t

V
a
lu

e

1e 8 F9

2-dim

3-dim

5-dim

10-dim

20-dim

0 5 10 15 20
Generation

10

0

10

20

30

40

50

D
is

ta
n
ce

 t
o
 T

a
rg

e
t

V
a
lu

e

F10

2-dim

3-dim

5-dim

10-dim

20-dim

0 5 10 15 20
Generation

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
is

ta
n
ce

 t
o
 T

a
rg

e
t

V
a
lu

e

F12

2-dim

3-dim

5-dim

10-dim

20-dim

0 5 10 15 20
Generation

2

0

2

4

6

8

10

12

D
is

ta
n
ce

 t
o
 T

a
rg

e
t

V
a
lu

e

F13

2-dim

3-dim

5-dim

10-dim

20-dim

0 5 10 15 20
Generation

0.2

0.0

0.2

0.4

0.6

0.8

1.0

D
is

ta
n
ce

 t
o
 T

a
rg

e
t

V
a
lu

e

F16

2-dim

3-dim

5-dim

10-dim

20-dim

0 5 10 15 20
Generation

0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

D
is

ta
n
ce

 t
o
 T

a
rg

e
t

V
a
lu

e

F17

2-dim

3-dim

5-dim

10-dim

20-dim

0 5 10 15 20
Generation

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
is

ta
n
ce

 t
o
 T

a
rg

e
t

V
a
lu

e

F19

2-dim

3-dim

5-dim

10-dim

20-dim

0 5 10 15 20
Generation

0.5

0.0

0.5

1.0

1.5

2.0

D
is

ta
n
ce

 t
o
 T

a
rg

e
t

V
a
lu

e

F20

2-dim

3-dim

5-dim

10-dim

20-dim

0 5 10 15 20
Generation

0.5

0.0

0.5

1.0

1.5

2.0

D
is

ta
n
ce

 t
o
 T

a
rg

e
t

V
a
lu

e

F21

2-dim

3-dim

5-dim

10-dim

20-dim

0 5 10 15 20
Generation

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
is

ta
n
ce

 t
o
 T

a
rg

e
t

V
a
lu

e

F23

2-dim

3-dim

5-dim

10-dim

20-dim

0 5 10 15 20
Generation

0

10

20

30

40

50

60

D
is

ta
n
ce

 t
o
 T

a
rg

e
t

V
a
lu

e

F24

2-dim

3-dim

5-dim

10-dim

20-dim

Figure 5.1: GA convergence. The above graphs show the rate of convergence during
the optimization of ES-structures by the GA for different BBOB optimization functions.
All five dimensionalities have been plotted per function, each line representing the ES-
structures that were found to perform best for that combination during the optimization
process.

23

F-ID N Brute force Fitness GA Fitness

F3 2 00000000021 -8.27e-16 01001001011 -8.27e-16

F3 3 00101000011 0.782 10100000001 0.995

F3 5 10100000121 1.15 10110001022 0.995

F3 10 00000000012 3.98 00110000001 4.97

F3 20 00100000002 14.9 00110000011 12.9

F4 2 01111001021 6.28e-15 11011101011 2.58e-11

F4 3 11001001002 1.99 00110000012 1.99

F4 5 00001000012 3 00100000011 4.97

F4 10 00101001022 9.95 00111000002 9.95

F4 20 00100001101 23.9 00110001002 23.9

F7 2 00000000002 -8.27e-16 10100000020 -8.27e-16

F7 3 00000000001 -8.27e-16 00100010021 -8.27e-16

F7 5 00000000012 -8.27e-16 11000111122 -8.27e-16

F7 10 00000110001 -8.27e-16 00100110001 -8.27e-16

F7 20 00100001022 0.453 00000110011 0.403

F9 2 00000000000 -8.27e-16 11011001011 -8.27e-16

F9 3 00000000000 -8.27e-16 01011001001 -8.27e-16

F9 5 00000000000 -8.27e-16 00001001000 -8.27e-16

F9 10 00000000000 -8.27e-16 00001001010 -8.27e-16

F9 20 00110000010 -8.27e-16 00110001010 -8.27e-16

F10 2 00000000000 -8.27e-16 01010110011 -8.27e-16

F10 3 00000000000 -8.27e-16 01010010102 -8.27e-16

F10 5 00000000000 -8.27e-16 01101010122 -8.27e-16

F10 10 00000000000 -8.27e-16 01010000100 -8.27e-16

F10 20 00000000010 -8.27e-16 01100000110 6.28e-15

F12 2 00000000000 -8.27e-16 11110111101 -8.27e-16

F12 3 00000000000 -8.27e-16 01100001011 -8.27e-16

F12 5 00000000010 -8.27e-16 01100000120 -8.27e-16

F12 10 00110001010 -8.27e-16 00100000012 2.19e-13

F12 20 00001000011 7.31e-11 00010000011 1.39e-08

F13 2 00001001020 -8.27e-16 01100000120 -8.27e-16

F13 3 10111001000 7.17e-15 01100000110 6.28e-15

F13 5 01000000110 1.06e-13 10111001020 1.06e-13

F13 10 00011001020 4.7e-10 01101001101 2.67e-08

F13 20 00000000000 0.0012 10100001012 0.00753

Table 5.1: Best ES-structure found by brute force search and GA: F3 – F13. This
table lists the best ES found by brute force search and our GA for each combination
of dimensions and function from BBOB. An ES-structure is represented by a list of
integers as explained in Section 3.2. Underlined integers in the GA-column indicate a
difference between the ES found by the GA and the brute force search. Fitness values
are given for each ES as the median of fifteen runs. A negative fitness value indicates
that the target value was approached within 10−8. All runs were performed with an
evaluation budget of 103D.

24 Chapter 5 – Results

F-ID N Brute force Fitness GA Fitness

F16 2 00000000001 -8.27e-16 00001000121 -8.27e-16

F16 3 00000000000 -8.27e-16 10000000011 -8.27e-16

F16 5 00000001022 -8.27e-16 00000000012 -8.27e-16

F16 10 00100001012 0.00586 00110001002 0.000969

F16 20 00100001011 0.0566 00110001012 0.0394

F17 2 00100001020 -8.27e-16 11001001110 -8.27e-16

F17 3 00001000020 -8.27e-16 10111001010 -8.27e-16

F17 5 00111000011 5.31e-13 00001000021 6.14e-13

F17 10 00110000001 1.69e-06 00110001011 7.74e-06

F17 20 00110001001 7.84e-05 00110001012 3.89e-05

F19 2 11111001102 6.08e-17 11001000012 1.84e-15

F19 3 10100000012 0.0393 10100000022 0.0472

F19 5 00110000101 0.107 00110000110 0.157

F19 10 00110000112 0.178 00111010001 0.292

F19 20 00100000110 0.312 00100000112 0.337

F20 2 11100010021 -8.27e-16 11001001022 -8.27e-16

F20 3 01010111012 0.214 11010111101 0.395

F20 5 01110111021 0.671 01000110021 0.711

F20 10 01101011001 1.18 01010110022 1.13

F20 20 01101010002 1.44 00000010021 1.37

F21 2 00011000002 -7.93e-15 11100100021 -7.93e-15

F21 3 00110001012 -7.93e-15 01001100022 -7.93e-15

F21 5 10000001012 -7.93e-15 11100111121 6.08e-17

F21 10 00111000001 6.08e-17 00110001022 6.08e-17

F21 20 01101000101 2.05e-14 01101001002 1.06e-13

F23 2 00011000000 6.28e-15 10110001000 6.28e-15

F23 3 00100000020 4.18e-13 00000000010 2.3e-11

F23 5 10111000022 0.0939 10110000022 0.118

F23 10 00111000021 0.0882 00111001021 0.0619

F23 20 00100000001 0.0491 00100000002 0.0474

F24 2 11110010011 0.709 10110101110 1.29

F24 3 10000010011 3.15 00000010011 3.41

F24 5 10000011012 5.9 10110000021 6

F24 10 00110010001 13.6 00110000111 14

F24 20 00100010002 32 00110000102 31.3

Table 5.2: Best ES-structure found by brute force search and GA: F16 – F24. This
table lists the best ES found by brute force search and our GA for each combination
of dimensions and function from BBOB. An ES-structure is represented by a list of
integers as explained in Section 3.2. Underlined integers in the GA-column indicate a
difference between the ES found by the GA and the brute force search. Fitness values
are given for each ES as the median of fifteen runs. A negative fitness value indicates
that the target value was approached within 10−8. All runs were performed with an
evaluation budget of 103D.

25

GA Brute Force

0 1 2 0 1 2

1 48 22 - 59 11 -

2 44 26 - 59 11 -

3 26 44 - 35 35 -

4 37 33 - 49 21 -

5 50 20 - 50 20 -

6 57 13 - 67 3 -

7 55 15 - 59 11 -

8 41 29 - 49 21 -

9 51 19 - 62 8 -

10 18 30 22 33 22 15

11 16 30 24 25 24 21

Table 5.3: Frequency analysis of the options chosen per variant by both the GA and
brute force search.

this value, but if two ES-structures reach this same value, they are indistinguishable due

to our use of the FCE measure.

There is no exact match between the best found ES-structures according to the brute

force search and the GA search, as there is always a difference in one or more of the

active variants. Despite these differences in the ES-structures, the GA is able to match

the fitness of the best performing ES as found by the brute force search.

Note that in some cases, the fitness value for the GA-found ES-structure is actually

lower than the value for the value found by brute force search. Examples of this are F3

in 5D and 20D, F7 in 20D, F16 in 10D, F17 in 20D, F20 in 10D and 20D, F21 in 5D,

F23 in 10D and 20D and F24 in 20D.

The ES-structure represented by 00000000000 is reported surprisingly often as best-

performing structure by the brute force search for F9, F10 and F12. This confirms

the results shown by Fig. 5.1: Any ES-structure is good enough to reach the practical

optimization limit. The default CMA-ES is then only selected because in the order of

evaluation, it is the first structure to reach this limit.

By examining the frequency of the integers in each position of the ES-representation

(Table 5.3), it can be seen that all choices are relatively equally distributed. The default

CMA-ES seems to be more prevalent in the results found by brute force search than by

the GA, as indicated by the higher frequency of the 0 option. Overall trends are similar

in both sets of results: Mirrored Sampling, Quasi-Gaussian Sampling and Increasing

Population are the most activated options.

26 Chapter 5 – Results

Finally, Tables 5.4 to 5.8 shows the estimated running time (ERT) measure as calculated

by the BBOB suite for the ES-structures found by the GA. For these results, fifteen runs

were performed with a larger evaluation budget of 104n. Note that in these tables, a

comparison is made to the best performing optimization method from BBOB-2009,

which is often not an ES-variation.

27

∆f 1e+1 1e+0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f3 15 271 445 446 450 454 464 15/15

3.9(3) 5.0(4) 7.9(10) 8.1(8) 8.2(11) 8.6(11) 8.7(10) 15/15

f4 22 344 459 496 523 544 566 15/15

5.2(3) 14(27) 27(15) 26(26) 25(37) 28(21) 49(97) 7/15

f7 3.2 21 60 193 217 217 241 15/15

5.8(6) 11(16) 13(12) 5.9(5) 5.9(4) 5.9(7) 5.3(8) 15/15

f9 1 18 30 44 68 81 92 15/15

49(44) 10(13) 11(11) 10(10) 6.8(4) 6.5(5) 6.3(2) 15/15

f10 30 46 54 61 68 82 98 15/15

4.6(4) 4.1(2) 4.5(3) 4.8(2) 4.8(1) 4.8(0.3) 4.8(0.8)15/15

f12 35 46 75 94 105 153 195 15/15

8.5(12) 12(18) 11(16) 13(13) 25(95) 24(41) 24(30) 13/15

f13 23 35 46 60 71 95 122 15/15

5.8(5) 7.7(10) 7.9(5) 7.6(5) 7.1(3) 6.4(3) 6.0(2) 15/15

f16 9.1 50 174 326 358 409 538 15/15

11(34) 7.6(11) 10(3) 6.4(2) 6.1(3) 5.5(7) 4.5(7) 15/15

f17 2.7 61 133 275 396 1086 1657 15/15

3.2(3) 7.2(0.9) 6.8(21) 6.3(21) 5.6(7) 6.4(6) 4.3(3) 13/15

f19 1 1 26 216 227 252 276 15/15

6.1(5) 31(28) 7.5(5) 29(37) 27(25) 25(67) 23(17) 14/15

f20 3.7 61 365 366 366 370 375 15/15

3.9(2) 23(35) 8.9(6) 9.1(11) 9.3(9) 9.4(10) 10(10) 15/15

f21 1.7 51 174 276 290 324 330 15/15

1.2(0.8) 1.2(0.5) 1.0(0.7) 1.0(0.8) 1.3(0.6) 1.7(1) 2.2(0.7)15/15

f23 7.8 193 234 263 299 348 379 15/15

1.7(0.7) 5.8(9) 30(67) 32(21) 28(68) 25(29) 23(53) 11/15

f24 18 857 8515 23399 24113 24721 24721 5/15

2.1(1) 16(16) 10(13) 3.5(4) 3.4(8) 3.3(2) 3.3(4) 3/15

Table 5.4: Expected running time (ERT in number of function evaluations) divided by the
best ERT measured during BBOB-2009 for F3–F24 in 2D space. The ERT and in braces, as
dispersion measure, the half difference between 90 and 10%-ile of bootstrapped run lengths
appear in the second row of each cell, the best ERT in the first. The different target [Df]-
values are shown in the top row. #succ is the number of trials that reached the (final) target
fopt + 10−8. The median number of conducted function evaluations is additionally given
in italics, if the target in the last column was never reached. Bold entries are statistically
significantly better (according to the rank-sum test) compared to the best algorithm in BBOB-
2009, with p = 0.05 or p = 10−k when the number k > 1 is following the ↓ symbol, with
Bonferroni correction by the number of functions.

28 Chapter 5 – Results

∆f 1e+1 1e+0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f3 38 822 830 835 842 847 853 15/15

7.1(5) 2.2(4) 13(18) 13(21) 13(12) 14(2) 14(15) 12/15

f4 40 808 866 921 952 1015 1044 15/15

6.3(3) 33(50) 161(233) 151(249) 146(99) 138(154) 135(206) 3/15

f7 11 65 342 464 482 482 535 15/15

4.2(2) 2.2(4) 2.1(0.8) 1.9(1) 2.5(2) 2.5(1) 2.3(2) 15/15

f9 21 65 127 149 159 169 178 15/15

12(3) 13(12) 8.7(7) 8.6(5) 8.6(6) 8.8(5) 8.8(6) 15/15

f10 114 152 168 180 194 218 242 15/15

4.2(2) 3.9(1) 4.1(1.0) 4.3(1) 4.3(1) 4.2(1) 4.1(0.8) 15/15

f12 65 168 338 401 445 696 790 15/15

7.6(8) 4.8(7) 4.2(3) 4.3(4) 4.5(4) 3.7(3) 3.8(3) 15/15

f13 49 85 108 136 215 281 365 15/15

4.5(5) 5.1(4) 5.4(2) 5.0(1) 3.6(1) 3.6(1) 3.3(0.5) 15/15

f16 41 319 582 789 1864 3204 3361 15/15

1.4(3) 2.5(3) 1.6(2) 1.5(1) 0.71(0.6) 0.45(0.3)
↓2 0.46(0.3)

↓215/15

f17 3.6 78 282 491 1134 2347 3469 15/15

189(699) 11(33) 7.8(51) 5.2(15) 2.3(0.1) 15(19) 10(15) 7/15

f19 1 1 109 6764 7367 7399 7441 15/15

12(10) 260(134) 49(44) 5.4(4) 6.7(9) 7.9(6) 7.9(9) 6/15

f20 8.3 385 2291 2398 2481 2573 2776 15/15

1.9(1) 5.7(2) 10(10) 10(16) 10(23) 9.5(13) 9.0(10) 10/15

f21 5.9 184 425 439 458 469 482 14/15

1.4(0.6) 3.7(4) 4.0(7) 4.8(6) 4.8(6) 5.8(4) 6.5(4) 15/15

f23 2.6 407 906 1215 2214 2293 2393 15/15

3.9(4) 23(37) 67(66) 50(62) 28(31) 27(33) 26(35) 5/15

f24 97 10391 1.0e5 3.6e5 3.6e5 3.6e5 3.6e5 2/15

2.7(4) 19(30) ∞ ∞ ∞ ∞ ∞3.0e4 0/15

Table 5.5: Expected running time (ERT in number of function evaluations) divided by the
best ERT measured during BBOB-2009 for F3–F24 in 3D space. The ERT and in braces, as
dispersion measure, the half difference between 90 and 10%-ile of bootstrapped run lengths
appear in the second row of each cell, the best ERT in the first. The different target [Df]-
values are shown in the top row. #succ is the number of trials that reached the (final) target
fopt + 10−8. The median number of conducted function evaluations is additionally given
in italics, if the target in the last column was never reached. Bold entries are statistically
significantly better (according to the rank-sum test) compared to the best algorithm in BBOB-
2009, with p = 0.05 or p = 10−k when the number k > 1 is following the ↓ symbol, with
Bonferroni correction by the number of functions.

29

∆f 1e+1 1e+0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f3 716 1622 1637 1642 1646 1650 1654 15/15

1.2(0.6) 14(20) 98(93) 98(99) 98(100) 98(107) 98(189) 4/15

f4 809 1633 1688 1758 1817 1886 1903 15/15

1.1(1) ∞ ∞ ∞ ∞ ∞ ∞5.0e4 0/15

f7 24 324 1171 1451 1572 1572 1597 15/15

3.8(6) 2.9(12) 2.0(1) 2.0(2) 1.9(0.5) 1.9(0.5) 1.9(1) 15/15

f9 35 127 214 263 300 335 369 15/15

14(2) 108(198) 66(234) 55(48) 49(126) 44(113) 41(69) 12/15

f10 349 500 574 607 626 829 880 15/15

2.8(0.9) 2.7(0.3) 2.7(0.3) 2.6(0.3) 2.6(0.3) 2.1(0.3) 2.1(0.3) 15/15

f12 108 268 371 413 461 1303 1494 15/15

5.8(2) 4.3(3) 5.0(2) 5.5(4) 5.5(2) 2.5(2) 2.5(1) 15/15

f13 132 195 250 319 1310 1752 2255 15/15

4.1(0.9) 4.3(1) 4.7(2) 4.6(2) 1.3(0.6) 1.7(2) 1.6(2) 15/15

f16 120 612 2662 10163 10449 11644 12095 15/15

2.0(1) 2.7(2) 1.7(2) 0.98(0.8) 1.2(1) 1.2(0.9) 1.2(0.7) 15/15

f17 5.2 215 899 2861 3669 6351 7934 15/15

5.8(5) 1.6(0.6) 0.54(0.1) 0.24(0.1) 0.64(0.7) 0.89(0.8) 0.99(0.8) 15/15

f19 1 1 242 1.0e5 1.2e5 1.2e5 1.2e5 15/15

33(22) 525(308) 577(518) ∞ ∞ ∞ ∞5.0e4 0/15

f20 16 851 38111 51362 54470 54861 55313 14/15

2.9(2) 11(17) 5.8(5) 4.3(8) 4.1(4) 4.1(8) 4.0(4) 3/15

f21 41 1157 1674 1692 1705 1729 1757 14/15

4.5(8) 8.2(23) 11(18) 11(30) 11(22) 11(10) 11(10) 12/15

f23 3.0 518 14249 27890 31654 33030 34256 15/15

2.0(2) 1.9(0.5) 2.0(3) 1.8(2) 2.6(3) 3.1(6) 3.0(2) 6/15

f24 1622 2.2e5 6.4e6 9.6e6 9.6e6 1.3e7 1.3e7 3/15

1.0(0.9) ∞ ∞ ∞ ∞ ∞ ∞5.0e4 0/15

Table 5.6: Expected running time (ERT in number of function evaluations) divided by the
best ERT measured during BBOB-2009 for F3–F24 in 5D space. The ERT and in braces, as
dispersion measure, the half difference between 90 and 10%-ile of bootstrapped run lengths
appear in the second row of each cell, the best ERT in the first. The different target [Df]-
values are shown in the top row. #succ is the number of trials that reached the (final) target
fopt + 10−8. The median number of conducted function evaluations is additionally given
in italics, if the target in the last column was never reached. Bold entries are statistically
significantly better (according to the rank-sum test) compared to the best algorithm in BBOB-
2009, with p = 0.05 or p = 10−k when the number k > 1 is following the ↓ symbol, with
Bonferroni correction by the number of functions.

30 Chapter 5 – Results

∆f 1e+1 1e+0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f3 1739 3600 3609 3636 3642 3646 3651 15/15

2.6(3) 393(417) ∞ ∞ ∞ ∞ ∞1.0e5 0/15

f4 2234 3626 3660 3695 3707 3744 28767 12/15

12(12) ∞ ∞ ∞ ∞ ∞ ∞1.0e5 0/15

f7 172 1611 4195 5099 5141 5141 5389 15/15

2.0(0.6) 1.7(0.7) 1.1(1) 1.3(0.7) 1.4(0.7) 1.4(0.5) 1.3(0.6) 15/15

f9 200 648 857 993 1065 1138 1185 15/15

5.1(1) 17(0.8) 14(1) 13(0.6) 12(24) 11(0.8) 11(0.8) 14/15

f10 1835 2172 2455 2728 2802 4543 4739 15/15

2.2(0.7) 2.2(1.0) 2.1(0.4) 1.9(0.8) 1.9(0.7) 1.2(0.2) 1.2(0.3) 15/15

f12 515 896 1240 1390 1569 3660 5154 15/15

2.3(0.3) 1.9(0.8) 2.5(1) 2.8(0.6) 3.1(1) 1.8(0.6) 1.5(0.3) 15/15

f13 387 596 797 1014 4587 6208 7779 15/15

5.3(6) 5.8(5) 7.3(4) 6.6(4) 1.8(1) 2.3(2) 2.8(1) 15/15

f16 425 7029 15779 45669 51151 65798 71570 15/15

2.5(0.5) 0.21(0.0)
↓3 0.33(0.5)

↓2 0.42(0.7)
↓ 0.98(1) 1.6(3) 1.5(1) 9/15

f17 26 429 2203 6329 9851 20190 26503 15/15

3.6(3) 1.9(0.3) 0.52(0.1) 0.29(0.0)
↓ 0.35(0.4)

↓3 0.73(0.4) 0.87(0.5) 15/15

f19 1 1 10609 9.8e5 1.4e6 1.4e6 1.4e6 15/15

54(32) 5307(508) 69(71) ∞ ∞ ∞ ∞1.0e5 0/15

f20 32 15426 5.5e5 5.7e5 5.7e5 5.8e5 5.9e5 15/15

3.8(1) 5.7(4) ∞ ∞ ∞ ∞ ∞1.0e5 0/15

f21 130 2236 4392 4487 4618 5074 11329 15/15

13(12) 10(24) 13(24) 13(16) 13(12) 12(45) 5.2(4) 11/15

f23 2.8 915 16425 1.8e5 2.0e5 2.1e5 2.1e5 15/15

1.7(2) 10(6) 0.90(0.6) 2.5(3) 7.2(4) 7.0(7) 6.9(6) 1/15

f24 98761 1.0e6 7.5e7 7.5e7 7.5e7 7.5e7 7.5e7 1/15

15(14) ∞ ∞ ∞ ∞ ∞ ∞1.0e5 0/15

Table 5.7: Expected running time (ERT in number of function evaluations) divided by the
best ERT measured during BBOB-2009 for F3–F24 in 10D space. The ERT and in braces, as
dispersion measure, the half difference between 90 and 10%-ile of bootstrapped run lengths
appear in the second row of each cell, the best ERT in the first. The different target [Df]-
values are shown in the top row. #succ is the number of trials that reached the (final) target
fopt + 10−8. The median number of conducted function evaluations is additionally given
in italics, if the target in the last column was never reached. Bold entries are statistically
significantly better (according to the rank-sum test) compared to the best algorithm in BBOB-
2009, with p = 0.05 or p = 10−k when the number k > 1 is following the ↓ symbol, with
Bonferroni correction by the number of functions.

31

∆f 1e+1 1e+0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f3 5066 7626 7635 7637 7643 7646 7651 15/15

85(80) ∞ ∞ ∞ ∞ ∞ ∞2.0e5 0/15

f4 4722 7628 7666 7686 7700 7758 1.4e5 9/15

∞ ∞ ∞ ∞ ∞ ∞ ∞2.0e5 0/15

f7 1351 4274 9503 16523 16524 16524 16969 15/15

1.3(0.8) 3.3(2) 5.3(5) 7.6(8) 7.7(10) 7.7(12) 7.5(5) 12/15

f9 1716 3102 3277 3379 3455 3594 3727 15/15

4.3(1) 14(32) 14(0.3) 14(30) 14(58) 13(15) 13(27) 13/15

f10 7413 8661 10735 13641 14920 17073 17476 15/15

1.7(0.3) 1.8(0.3) 1.6(0.2) 1.3(0.1) 1.2(0.1) 1.1(0.1) 1.1(0.1) 15/15

f12 1042 1938 2740 3156 4140 12407 13827 15/15

2.4(0.1) 2.5(1) 2.9(2) 3.3(1) 3.1(0.9) 1.4(0.5) 1.5(0.4) 15/15

f13 652 2021 2751 3507 18749 24455 30201 15/15

4.5(0.8) 3.8(2) 7.6(9) 11(15) 3.7(5) 35(24) 45(36) 1/15

f16 1384 27265 77015 1.4e5 1.9e5 2.0e5 2.2e5 15/15

1.5(0.3) 0.16(0.2) 0.42(0.4)
↓2 1.6(1) 2.2(1) ∞ ∞2.0e5 0/15

f17 63 1030 4005 12242 30677 56288 80472 15/15

13(2) 1.3(0.2) 0.52(0.1) 0.60(0.5) 0.55(0.2)
↓3 2.9(3) 11(8) 2/15

f19 1 1 3.4e5 4.7e6 6.2e6 6.7e6 6.7e6 15/15

761(435) 4680(2932) ∞ ∞ ∞ ∞ ∞2.0e5 0/15

f20 82 46150 3.1e6 5.5e6 5.5e6 5.6e6 5.6e6 14/15

8.7(3) ∞ ∞ ∞ ∞ ∞ ∞2.0e5 0/15

f21 561 6541 14103 14318 14643 15567 17589 15/15

3.0(4) 8.1(16) 10(9) 10(9) 10(16) 9.4(13) 8.4(12) 10/15

f23 3.2 1614 67457 3.7e5 4.9e5 8.1e5 8.4e5 15/15

1.5(1) 2.0(0.1) 0.24(0.2)
↓2 8.2(7) ∞ ∞ ∞2.0e5 0/15

f24 1.3e6 7.5e6 5.2e7 5.2e7 5.2e7 5.2e7 5.2e7 3/15

∞ ∞ ∞ ∞ ∞ ∞ ∞2.0e5 0/15

Table 5.8: Expected running time (ERT in number of function evaluations) divided by the
best ERT measured during BBOB-2009 for F3–F24 in 20D space. The ERT and in braces, as
dispersion measure, the half difference between 90 and 10%-ile of bootstrapped run lengths
appear in the second row of each cell, the best ERT in the first. The different target [Df]-
values are shown in the top row. #succ is the number of trials that reached the (final) target
fopt + 10−8. The median number of conducted function evaluations is additionally given
in italics, if the target in the last column was never reached. Bold entries are statistically
significantly better (according to the rank-sum test) compared to the best algorithm in BBOB-
2009, with p = 0.05 or p = 10−k when the number k > 1 is following the ↓ symbol, with
Bonferroni correction by the number of functions.

Chapter 6

Conclusions

By extracting structural features from different CMA-ES variations, a framework for

arbitrarily combining ES-variants into new ES-structures can be created. Varying be-

tween these structures for different optimization problems can be done to a large extent

by using this framework. Furthermore, a GA can be used on top of this framework to

evolve an ES-structure that is optimal for a given optimization problem. The GA is able

to converge fast, and does so consistently for all given problems.

It is crucial to the performance of the GA how the fitness of an ES is evaluated. Using

the median fitness of fifteen independent runs reduces the influence of both positive and

negative outliers, making it a more stable measure of fitness than using a mean or even

just a single run. However, the fitness value of an ES is not completely stable as shown

by the results in Tables 5.1 and 5.2 when the GA finds a better fitness value than the

brute force search. It would be interesting to see if stability of these fitness values can

be increased by using the median of more runs, or by using a different, more rigorous

statistical test.

All implemented ES-variations can be activated independently in our presented frame-

work, with minimal dependency checking required. This approach can be extended to

include other ES variants that have not been considered in this research. Every ES-

variation added will increase the search space significantly. A brute force search lasting

9 days under 240-fold parallelization is already on the edge of practicality, making it

impractical to explore any expansion of the search space using brute force methods.

Although the optimization of the ES-structure is successful, the final results do not

always reach the desired BBOB default threshold of 10−8 distance to the target value, in

both the 103n and 104n experiments. However, these results have always been obtained

by using the default parameter settings for each of the considered variations. As the

34 Chapter 6 – Conclusions

number of parameters add up in the combined ES-structures, it is likely that parameter

tuning can further improve the results. This could be performed by a separate method

after an ES-structure has been determined, or the parameters could be added into the

representation of an ES by using a mixed-integer approach and optimized together with

the structure.

It is interesting to note that Mirrored Sampling, Quasi-Gaussian Sampling and Increas-

ing Population (both IPOP and BIPOP) are the only methods that are selected in more

than 50% of all cases. Although this suggests that the default CMA-ES is better in

the general case, there are always a few variants that have a positive impact on the

convergence speed when activated.

The positive results of this research are a validation of this method for adapting the

structure of an ES, and evolving it using another evolutionary algorithm. Now this

method has been validated, future research can focus on extending this framework and

applying it in practical settings, by optimizing the ES-structure for classes of similar

problems, thereby avoiding the drawback of the No Free Lunch theorem.

Bibliography

[1] A. Auger, D. Brockhoff, and N. Hansen. Mirrored Sampling in Evolution Strategies
with Weighted Recombination. In Proceedings of the 13th Annual Conference on
Genetic and Evolutionary Computation, pages 861–868. ACM, 2011.

[2] A. Auger and N. Hansen. A Restart CMA Evolution Strategy with Increasing
Population Size. In Evolutionary Computation, 2005. The 2005 IEEE Congress on,
volume 2, pages 1769–1776. IEEE, 2005.

[3] A. Auger, M. Jebalia, and O. Teytaud. Algorithms (x, sigma, eta): Quasi-Random
Mutations for Evolution Strategies. In Artificial Evolution, pages 296–307. Springer,
2006.

[4] T. Bäck. Evolutionary Algorithms in Theory and Practice. PhD thesis, Fakultät
für Informatik, Technische Universität Dortmund, Germany, 1995.

[5] T. Bäck, C. Foussette, and P. Krause. Contemporary Evolution Strategies. Natural
Computing Series. Springer Berlin Heidelberg, 2013.

[6] Å. Björck. Numerics of gram-schmidt orthogonalization. Linear Algebra and its
Applications, 197198:297 – 316, 1994.

[7] E. Braaten and G. Weller. An improved low-discrepancy sequence for multidimen-
sional quasi-monte carlo integration. Journal of Computational Physics, 33(2):249
– 258, 1979.

[8] D. Brockhoff, A. Auger, N. Hansen, D. V. Arnold, and T. Hohm. Mirrored sampling
and sequential selection for evolution strategies. In Parallel Problem Solving from
Nature, PPSN XI, pages 11–21. Springer, 2010.

[9] L. Dalcn, R. Paz, and M. Storti. MPI for Python . Journal of Parallel and Dis-
tributed Computing, 65(9):1108 – 1115, 2005.

[10] N. Hansen. The CMA Evolution Strategy: A tutorial. Vu le, 29, 2005. URL:
https://www.lri.fr/~hansen/cmatutorial.pdf.

[11] N. Hansen. CMA-ES with Two-Point Step-Size Adaptation. CoRR, abs/0805.0231,
2008.

[12] N. Hansen. Benchmarking a BI-Population CMA-ES on the BBOB-2009 Function
Testbed. In Proceedings of the 11th Annual Conference Companion on Genetic and
Evolutionary Computation Conference: Late Breaking Papers, pages 2389–2396.
ACM, 2009.

https://www.lri.fr/~hansen/cmatutorial.pdf

36 Bibliography

[13] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-Parameter Black-Box Opti-
mization Benchmarking 2009: Noiseless Functions Definitions. Research Report
RR-6829, INRIA, 2009.

[14] N. Hansen and A. Ostermeier. Adapting Arbitrary Normal Mutation Distributions
in Evolution Strategies: The Covariance Matrix Adaptation. In Evolutionary Com-
putation, 1996., Proceedings of IEEE International Conference on, pages 312–317.
IEEE, 1996.

[15] G. Jastrebski, D. V. Arnold, et al. Improving Evolution Strategies Through Active
Covariance Matrix Adaptation. In Evolutionary Computation, 2006. CEC 2006.
IEEE Congress on, pages 2814–2821. IEEE, 2006.

[16] Jheald. Pseudorandom, Sobol and Halton Sequence Plots, 2011. https://commons.
wikimedia.org/wiki/User:Jheald/diagrams. Visited: 2016-02-16.

[17] J. Kruisselbrink, R. Li, E. Reehuis, J. Eggermont, and T. Bäck. On the Log-Normal
Self-Adaptation of the Mutation Rate in Binary Search Spaces. In GECCO’11,
pages 893–900. ACM, 2011.

[18] M. A. Martin and D. R. Tauritz. Evolving Black-Box Search Algorithms Employing
Genetic Programming. In Proceedings of the 15th Annual Conference Companion
on Genetic and Evolutionary Computation, pages 1497–1504. ACM, 2013.

[19] A. Piad-Morffis, S. Estevez-Velarde, A. Bolufe-Rohler, J. Montgomery, and S. Chen.
Evolution Strategies with Thresheld Convergence. In Evolutionary Computation
(CEC), 2015 IEEE Congress on, pages 2097–2104, May 2015.

[20] I. Sobol. On the distribution of points in a cube and the approximate evaluation of
integrals. USSR Computational Mathematics and Mathematical Physics, 7(4):86 –
112, 1967.

[21] S. van Rijn, H. Wang, and T. Bäck. Evolving Optimal Evolution Strategies. In 2016
IEEE Congress on Evolutionary Computation, CEC 2016, page Under Submission.
IEEE, 2016.

[22] H. Wang, M. Emmerich, and T. Bäck. Mirrored Orthogonal Sampling with Pair-
wise Selection in Evolution Strategies. In Proceedings of the 29th Annual ACM
Symposium on Applied Computing, pages 154–156. ACM, 2014.

[23] D. H. Wolpert and W. G. Macready. No Free Lunch Theorems for Optimization.
Evolutionary Computation, IEEE Transactions on, 1(1):67–82, 1997.

https://commons.wikimedia.org/wiki/User:Jheald/diagrams
https://commons.wikimedia.org/wiki/User:Jheald/diagrams

