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Abstract

Network science is gaining increasingly more attention. It allows us to trans-
form large quantities of flat data into easier and more understandable mod-
els of objects (or nodes) and relationships between these objects (or edges).
Datasets, though, usually suffer from data quality issues. Problems with
“completeness” and “accuracy” are just two of the many issues that are usu-
ally present.

Here we study the effect of these data quality issues on the analysis of
corporate board interlock networks, in which nodes represent companies and
the edges are shared board members.

More accurate and complete information on larger companies, misspelled
names, spurious companies and connections are some of the data quality ar-
tifacts one may encounter working with corporate data. To understand their
impact we stress 6 networks under 15 different data quality artifacts and we
study the changes in some of the most frequently used network measures.

Our results suggest that despite imperfect data quality, the observed net-
works remain very similar to the original ones under most of the artifacts.
We show how community analysis is barely influenced by most data quality
issues and how degree centrality is far more resistant than betweenness and
harmonic centrality. Finally, we conclude that board interlock networks are
resilient enough to still be studied under most data quality issues.
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1 Introduction

The amount of data available to researchers and industries has grown enor-
mously. Given this overabundance, manually inspecting and understanding
data has become a difficult task. The need for a simple and effective model
has pushed researchers and industries towards network science. The advan-
tage in using networks as a model is the ability to transpose very complex
systems and problems into understandable and easy to analyze models of
objects (nodes) and relationships between these objects (called edges). For
this reason network science is very much under the attention of many fields of
studies such as mathematics, physics, computer science and computational
social science. Where the first two concentrate their attention on understand-
ing the mathematical properties, the latter two are usually more attracted to
the combination of network science and big data analytics: modeling large
data sources as networks and deriving empirical conclusions analyzing their
features (see Figure 1).

Figure 1: From data to insights using networks.

Big datasets, though, usually present numerous kinds data quality issues,
such as problems with “consistency”, “relevancy”, “interpretability”, “com-
pleteness” and “accuracy”. Many others are presented in Pipino et al. (2002).
If we translate these large sources of data into networks, how do these data
quality issues effect their derived analysis?

Here we want to answer this question concentrating on corporate board
interlock networks, in which the nodes represent companies and the edges
are based on the board members these companies share. The topological
and structural features of the network representation of such data gives new
insights in the economical and political aspects of the system. But, are they
resilient enough to still be studied when the data quality is poor?
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Retrieving corporate information usually goes through local and global
providers. Fewer global providers retrieve information. Misspelled companies
or spurious connections are indeed often found when working with corporate
data. Furthermore, where other works find a way to identify and add missing
nodes or links (Kim and Leskovec (2011)), our data is too complicated and
rich of information to simply impute it. Attributes such as number of em-
ployees, revenue and geographical position of the companies are just a few of
the numerous attributes that our data has. This work, thus, will be focused
on understanding at which level imperfect data sources really affect the final
analysis of board interlock networks.

We start from the work of Borgatti et al. (2006) and in particular of
Wang et al. (2012) where six definitions of data quality artifacts are given,
namely: node removal, edge removal, node addition, edge addition, node ag-
gregation and node disaggregation. We apply each of these scenarios to six
corporate board interlock networks with the goal to understand how each
scenario influences them. Where all the aforementioned scenarios worked by
randomly selecting nodes or edges, here we will introduce biases both on the
degree and on the revenue of the companies. Most of the times, indeed, the
artifacts present in datasets do not occur uniformly at random, but instead,
they are biased towards some property of the data. More accurate and com-
plete data on larger firms, for instance, is just one of the problems we may
encounter working with corporate datasets.

We proceed by analyzing the changes in many of the most frequently used
network measures in corporate network analysis: degree distribution, dis-
tance distribution, degree centrality, betweenness centrality, harmonic (close-
ness) centrality, density, average distance, assortativity and clustering coef-
ficient. Eventually, we study the changes in community partitions by means
of the variation of information (Meilă, 2007).

We derive empirical conclusions regarding the resilience of the Italian,
Danish, UK, Scandinavian, Spanish and Dutch corporate board interlock
network’s giant components, characterizing each of them using a simple and
effective matrix: the resilience matrix. We define this resilience matrix as
a matrix describing how “different” a perturbed network is from its original
version, when errors are introduced. The concept of “difference” is given by
the changes in the measures listed above. The lower are the changes, the
higher is the resilience. Ideally, a completely resilient network will have the
same features both before and after the artifacts are applied.

We conclude this work reasoning about whether the resilience of the net-
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works is sufficient to guarantee significant studies even under poor data qual-
ity conditions.

This thesis is organized as follows: In Section 2 we present graph theory
and we discuss some synthetic models as generators of real-world networks.
In Section 3 we present related work, both regarding the analysis of corporate
board interlock networks and on the effect of data quality in social networks.
In Section 4 we present the data, while in Section 5 we discuss the artifacts
and the measurements of the error we use in this work. In Section 6 we
present the results of our analysis. In a detailed way first and then by means
of the resilience matrix. In Section 7 we draw conclusions.
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2 Network Science

One of the most common and widespread models to shape interactions be-
tween objects in data are so-called complex networks. These networks can be
seen as graphs in which the nodes represent objects and the edges represent
some kind of interaction between these objects. Modeling small or large-
scale data as networks allow us to examine how objects act and interact with
others, to study direct and indirect interactions, to compute communica-
tional potentials and to detect communities and the most important actors
throughout the system. In the subsections that follows we present networks
(or graphs) in their theoretical aspects. We start by introducing graph theory
and presenting some of the most used network measures. We then proceed
by presenting real-world network properties and we finally discuss whether
synthetic models are feasible as generators of real-world graphs.

2.1 Graph Theory

Let us call G = (V G, EG
) = (V,E) a graph (or network) where V is the set

of vertices (or nodes) and E the set of edges (or links) connecting pairs of
vertices. We define n = |V | as the number of nodes and m = |E| as the
number of edges. Here we always consider an undirected network where if
there exists a link (i, j) from node i to node j, there always exists a link (j, i)
from node j to node i too. We also consider a network without self-loops. No
edges can start and end in the same node. Associating then with every edge
{i, j} 2 E or (i, j) a value w 2 Z+ called the weight, we define a weighted
network. Given a node i, we define its neighbors N(i) as set of nodes incident
to i and ddeg(i) = |N(i)| as its degree. If we also sum the weights of the
edges going from i to all its neighbors, we are defining the strength s(i) of the
node i. We then call a path between any two vertices i and j, a sequence of
edges connecting i and j and we define the distance d(i, j) as the number of
steps in a shortest path between i and j. If we compute the average number
of steps in the shortest paths that connect all possible pairs of nodes, we
are defining the average distance. Eventually, we call the degree distribution
P (k) of a graph G, the distribution of the fraction of nodes with degree
k. If we consider this distribution in a logarithmic scale, we often obtain
approximately a straight line. The slope s of this latter line, in real-world
networks, is usually in the range 2 < s < 3. The distance distribution D(z),
instead, is defined as the fraction of pairs of nodes at distance z.
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Let us now define a subgraph S of a graph G, as a graph whose vertices
and edges are a subset of the vertices and edges of G, and where only edges
connecting nodes in the subset are present. Given an undirected graph G,
we then define the connected components of G as the maximal subgraphs in
which every node is connected to at least another node of the same subgraph
and there is no edge connecting nodes between subgraphs. The connected
component that contains the majority of the nodes is defined as the giant
component SG of the graph.

In the field of social sciences, one of the most studied properties of a
network is the global clustering coefficient, also called transitivity in case of
a directed network. It is based on the concept that if a person i is friend of
a person j and a person j is friend of a person z, there is a high probability
that person i and person z are also friends (Newman, 2003b). Person i, j
and z will then form a “triangle”. Formally, the global clustering coefficient
is defined as follows:

C =

3⇥ number of triangles
number of connected triples

(1)

where with connected triplet we refer to three nodes connected by two edges.
Let us now take one of the most used social networks of these days,

Facebook. It counts millions of users but each one has a relatively low number
of friends compared to the total number of people that (actively or not) use
it. More formally, if we measure the ratio between the actual connections
and the potential connections of a network, we are measuring the density of
the graph. In formula:

d =

m

n(n� 1)/2
(2)

Very large real-world networks such as Facebook, for instance, typically have
really low densities.

Finally, considering Facebook again, one might be interested in comput-
ing the scalar assortativity coefficient : a value r 2 [�1; 1] measuring how
much people with similar degree interact with each other. More formally,
the scalar assortativity coefficient (Newman, 2003a) is defined as the Pear-
son correlation coefficient between the degrees of pairs of connected nodes. It
simply measures the linear correlation between types of degrees. Eventually,
r = �1 implies complete disassortativity, r = 1 complete assortativity and
r = 0 non-assortativity.
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2.2 Centrality Measures

Measures of centrality allow us to find the most central actors in the system.
Naturally, “centrality” can have numerous meanings. Here we present four of
the most used measures of centrality:

• Degree centrality: presented by Freeman (1979), it defines the “com-
munication activity” of each node. Given a node i, its degree centrality
value will be computed as follows:

Cd(i) =
deg(i)

n� 1

(3)

What distinguishes Equation 3 from the basic definition of degree is
that here we have a normalized measure in the range [0, 1].

• Betweenness centrality: also elaborated by Freeman (1977), it is an
important indicator of the nodes that act as bridges. In particular,
where high degree nodes are “important” because the high number of
connections, high betweenness centrality nodes are “important” because
of their strategic position: they lie in between other actors. For this
reason these strategic nodes are also known as the “brokers”. More
generally, betweenness centrality is defined as follows:

Cb(i) =
X

j 6=y 6=i 6=j

�jy(i)

�jy

with i, j, y 2 V (4)

We call �jy(i) the number of shortest paths from node j to node y that
pass through i, while �jy is the total number of shortest paths from j
to y. Dividing then Cb(i) by 1

2(n � 1)(n � 2) we obtain a normalized
measure.

• Closeness centrality: this measure highlights central nodes or, in other
words, it highlights the nodes having lower distance from all the others
(Freeman, 1979). More formally, closeness centrality defines how a node
i is close to all the other nodes in the network:

Cc(i) =
n� 1P
j d(i, j)

with i, j, y 2 V (5)
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• Harmonic centrality: closeness centrality is based on the concept of
distance and it defines how close a node is to all the other nodes in the
network. In its original definition it is not applicable in disconnected
graphs. The distance between any two disconnected nodes is infinite. In
order to avoid this problem a different definition of closeness centrality,
called harmonic centrality, was introduced by Rochat (2009). Harmonic
centrality is formally defined as follows:

Hc(i) =
X

j

1

d(i, j)
with i, j, y 2 V (6)

with d(i, j) the shortest-path distance between i and j in the network.
Now, the distance between any two disconnected nodes will contribute
for 1

1 = 0, instead of infinity. So, the contribution of an unconnected
node to the harmonic centrality value of a node i will now be zero and
not infinite.

2.3 Community detection

As a result of the increased computational power of computers and servers,
important properties of real-world networks have been revealed. Many of
them are small-world networks, meaning that the average path length from
any two nodes is surprisingly low (6.6 in the Microsoft IM studied by Leskovec
and Horvitz (2007)) while their clustering coefficient is relatively high (Watts
and Strogatz, 1998). Another important property is the so-called scale-free
property: in many real-world networks, the degree distribution follows a
power-law (Barabási and Albert, 1999). Finally, a clear community structure
(the actors of the systems are well divided into non-overlapping groups) is
often present (Fortunato (2010)).

In real life, talking about communities (or clusters) we usually refer to
groups of people sharing common interests or, more generally, groups of
people that tend to interact more between themselves than with other people.

In network analysis the concept of communities is similar, namely: in
the system, small or large groups of objects that are more densely connected
internally than externally, are often present. However, the problem of finding
communities, of any size, in real-world graphs, is not an easy task. Here we
present the community detection problem as an optimization problem and
we will present one of the fastest and most used algorithm able to unveil the
community structure of large and very large networks in O(n log n) time.
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2.3.1 Modularity & Louvain method

Looking for a measure able to quantify the quality of their community detec-
tion algorithm, Newman and Girvan (Newman and Girvan, 2004) presented
modularity. This measure is based on the idea that only having few edges
connecting communities is not enough to define a good community structure
(Newman, 2006). Indeed, the role of modularity is to understand whether
the number of edges connecting communities (extra-community links) is fewer
than expected, or, in the same way, whether the number of intra-community
links is more than expected. In other words, modularity is able to quantify
the difference between the number of intra-community edges in a network
and the expected number of edges withing groups in a randomly rewired
network.

Let us take a weighted network W with n nodes and adjacency matrix
A where each element Aij represents the weight of the edge {i, j}. We then
define m =

1
2

P
ij Aij as the sum of all the weights of the links. Given now a

partition vector ~C of size n, we can express the modularity as follows (Blondel
et al., 2008):

Q(

~C) =

1

2m

X

i,j

h
Aij �

kikj
2m

i
�(ci, cj) (7)

where kikj
2m is the expected number of edges from node i to node j if they were

placed at random according to the vertex strength (Chung and Lu, 2002),
and �(ci, cj) is the Dirac delta function which gives 1 if ci = cj (meaning i
and j are in the same community) and 0 otherwise.

The optimization of the modularity function is at the basis of many
community detection methods, that, since the optimization problem is NP-
complete (Brandes et al., 2008), have as goal finding good approximations.
One of the most commonly used methods present in literature is the well-
known Louvain method.

The Louvain method (Blondel et al., 2008) is known for finding high
quality communities in large networks with very low computation time. It
is divided into two different phases iteratively repeated. At the beginning
of the first phase each node represents a community on its own. Then the
algorithm proceeds by considering each node and computing the modular-
ity value of the community structure obtained by placing the considered
node i in the same community as j (with j 2 N(i)). If by placing i in the
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same community as one of its neighbors the modularity value (positively)
increases, i is considered part of that community, otherwise it stays in its
original community. Intuitively, i will be placed in the community together
with the neighbor for which the modularity value is maximized. This phase
ends when all nodes have been analyzed and no improvements can be ob-
tained. In the second phase each community found in the previous phase is
condensed in a single node. Intra-community edges are now represented by
self-loops and any two nodes of this new network will be connected with an
edge having a weight equal to the sum of the weights of the nodes that are
part of those two communities. When this phase is also completed, the next
iteration starts, considering the condensed network as the “starting” network.
The final community structure is obtained when no more improvements, in
terms of modularity value, can be made.

2.4 Real-world and Synthetic Networks

Where here, given the abundance of data, we decide to use real-world corpo-
rate data, mathematicians and theoretical network scientists are working to
build always more precise synthetic examples (Van der Hofstad, 2016) that
resemble all the real-world networks features. The researchers’ goal is indeed
to understand the fundamental characteristics a synthetic model should have
in order to faithfully reproduce real-world networks features.

In order to give a more technical flavor to the interested reader, in the
subsections that follow we present some of those models and we will discuss
their feasibility as generators of networks that resemble real-world ones.

2.4.1 Erdős-Rényi Random Graph

One of the first and simplest examples of random graphs is the Erdős-Rényi
random graph (ER) (Erdős and Rényi, 1959). The procedure is straightfor-
ward: we start with a complete network, consisting of n vertices, in which
each pair of vertices is connected by an edge. We then decide to retain each
edge with probability p 2 (0, 1), or remove it with probability 1 � p. De-
spite its simple construction method, it has very interesting mathematical
properties. In particular, we know that for n ! 1 its degree distribution
resembles a Poisson distribution (for any value of p) with the mean on the
average degree. This implies that most of the nodes will have an average
degree, and that is it difficult to find nodes both with really low and with

9



really high (greatly exceeding the average) degree. The latter nodes are more
formally defined as hubs. Given these properties, both not true for real-world
networks (given their power-law degree distribution), the Erdős-Rényi ran-
dom graph is not suitable for constructing synthetic networks that reflect the
properties of real-world networks.

2.4.2 Configuration Model

Another well-known class of random graph models is the configuration model.
The main idea behind it, is to give as parameter to the model the observed
degree sequence of an empirical network and then, in its simplest form, to
create graphs compatible with that degree sequence (randomly connecting
vertices). We can see the configuration model as a null-model, which gen-
erates graphs compatible with a given degree sequence, whose intent is to
provide a benchmark to compare an empirical network to. In this way, if
our empirical network has some properties in common with the synthetic
graphs realized by the configuration null-model, one can conclude that those
properties are only due to the degree distribution. Whether we notice dif-
ferent properties with respect to the null-model, possible interesting results
and conclusions are worth to be investigated. In other words, if the density
of the empirical network, for instance, is way different from the density of
the null-model generated starting from the observed degree sequence, then a
particular trend (or interesting phenomena to study) in the network might
be present.

Here we look in detail at one of the most commonly used configuration
models: the Chung-Lu model (Chung and Lu, 2002). It generates a canoni-
cal ensemble of graphs (all possible realizations of a network model) meaning
that the constraints on the degree sequence (in this particular case) are soft.
This implies that not all the graphs generated will have the exact same degree
sequence of our empirical network, but, that the average of all the realiza-
tions of the networks will. With this important property we can, in most
cases, reduce biases and simplify the study of these ensembles. Finally, all
the ensembles in which the constraints are hard (not imposed on the average
but on each single realization) are called microcanonical ensembles.

Given the expected degree sequence of an empirical network having m
edges, the Chung-Lu model will draw an edge from node i to node j with
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the following probability:
qij =

kikj
2m

(8)

where ki is the degree of node i and kj the degree of node j of our empirical
network. This model generates all possible graphs (with n nodes) with a
certain probability, the distribution of which is specified by all the qij. Nat-
urally, the graphs having a completely different degree sequence, from the
empirical one, will be very unlikely. Locally, connections between nodes of
high degree are highly probable, and connections between nodes with low
degree are less probable.

Two important remarks are necessary when using the Chung-Lu model.
The first remark is about self-loops. For simplicity let us start by putting all
qij in a matrix that we define as Q, in which Qij = qij. Now, when generating
an ensemble, we usually want to obtain a collection of undirected graphs that
will have no self-loops (as most of the real-world networks do). In this case, it
is important to notice that if no specification on the fact that the elements in
the diagonal of Q (that are normally equal to k2i

2m , and so different from zero)
must be 0, the Chung-Lu model will produce graphs with self-loops. Despite
producing graphs with self-loops does not exactly resemble the topological
properties of most real-world networks, this does not influence the results
(see remark in Subsection 2.4.4). Note, indeed, how even in the modularity
formula (Equation 7), no such specification on avoiding self-loops is made.

The second remark is about the feasibility of the model. Let us now re-
member how each value of qij (being a probability) has to be in the range [0, 1]
for all possible i, j. If we then want to ensure this constraint, we only have
to consider degree sequences in which all the nodes have degree ki 

p
2m.

Considering a node i with degree ki =
p
2m, we have qii = 1. For this reason,

ki =
p
2m is the last upper-bound in order to still have all the qij  1. Unfor-

tunately, this constraint violates most of the power-law degree distributions
of real-world networks.

2.4.3 Preferential Attachment

Where the configuration model and the ER random graph model do no take
explicit hypotheses on how the network organizes itself, the preferential at-
tachment model starts from the idea that most real-world networks grow
over time (e.g., Facebook or the WWW) and popular (high degree) users
or web pages will likely become even more popular. This model, also called
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Barabási-Albert model (Barabási and Albert, 1999), is known for its “the
rich get richer” behavior. In particular, knowing that real-world networks
are usually scale-free (have a power-law degree distribution), the Barabási-
Albert model is able to create scale-free networks following the convention
for which the higher the degree of a node is, the higher will be the probability
that new nodes inserted in the network will be attached to it.

Despite that this model is able to generate scale-free networks with small
average path length, it fails to reproduce the relatively high clustering coef-
ficient usually present in real-world networks (Zafarani et al., 2014).

2.4.4 Stochastic Blockmodels

Another well-known random graph model is the Stochastic Blockmodel (Hol-
land et al., 1983). In its simplest form, given a certain number of nodes n and
a function that assigns to each vertex a value of membership in one of the
possible K different communities (or blocks), this model places edges between
vertices with probabilities given by the described membership assignment. In
particular, vertices inside the same community will be connected with higher
probability than two vertices belonging to two different communities.

One of the main applications of stochastic blockmodels is community de-
tection (a posteriori block-modeling). If we define g as a vector of size n in
which gi denotes the group to which vertex i belongs and !rs as the expected
value of the adjacency matrix Aij of an undirected multi-graph in which ver-
tex i belongs to group r and vertex j belongs to group s, we can maximize
the probability P (G|!, g) with respect to the unknown model parameters g
and !. This then becomes the (log-)likelihood maximization problem well
described by Karrer and Newman (2011).

Unfortunately, this simplest version of the stochastic blockmodel does
not generate networks with structures reflecting the ones found in real-world
networks.

2.4.5 Degree-Corrected Stochastic Blockmodel

For the aforementioned reason, Karrer and Newman (2011) present a more
elaborate version of the stochastic blockmodel, called the Degree-Corrected
Stochastic Blockmodel. In this model the probability distribution over the
networks (undirected multigraphs with self-loops) depends both on parame-
ters g and !, but also on a vector ✓, in which ✓i contains the expected degree
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of vertex i. As in its simplest version, also in the degree-corrected version
of this model, the number of edges between any two nodes (multi-graph) is
drawn following a Poisson distribution with mean � = ✓i✓j!gigj . From the
latter statement, we notice how the expected value of Aij will be equal to
✓i✓j!gigj . The a posteriori block-modeling problem now, again, becomes a
(log-)likelihood maximization problem, in which the P (G|✓,!, g) has to be
maximized.

This model, taking in consideration the expected degree sequence, seems
to outperform the standard stochastic blockmodel in generating networks
having properties that best resemble the real-world ones. While both the
Chung-Lu model and the simplest version of the Stochastic blockmodel can-
not generate networks having a power-law degree distribution (despite in
the latter the networks have a clear community structure), using the Degree-
Corrected version, we have both the desired power-law and a clear community
structure.

2.4.6 Synthetic vs Real-world networks

In this work, as previously mentioned, we decide to not use synthetic net-
works. The main reason for this choice is the inability of these synthetic
models to reproduce the node attributes board interlock networks may have.
Names, revenues, geographical locations of the companies, number of em-
ployees are all not reproducible by a synthetic model.

Eventually, synthetic models, even if important in studying how network
features arise, are still imperfect in reproducing the set of features a complex
real-world network has. Despite this, we strongly believe that more theoret-
ical studies on the influence of data quality in network analysis by means of
synthetic toy models, will give the mathematical and theoretical perspective
on the problem that is still missing. Where empirical studies are meant to
understand how data quality artifacts impact certain networks, mathemati-
cians can contribute with theorems and proof of what must happen when
an artifact is present. Starting by constructing synthetic toy models, math-
ematicians may then analyze the impact of missing nodes, edges, spurious
nodes and edges, as well as other data artifacts, in networks with different
properties, in a more theoretical and precise way.
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3 Corporate Network Analysis & Data quality

In this section we present the corporate board networks obtained by inter-
locking directorates. An interlocking directorate occurs when a member of
the board of an organization sits on the board of directors of another or-
ganization (Mizruchi, 1996). The original structure of the corporate system
we are interested in, can be represented by a bipartite graph where the set
of nodes is divided into two disjoint subsets: the directors subset and the
boards subset (Caldarelli and Catanzaro, 2004). Every edge of the bipartite
graph connects a director to a board, and vice-versa. If a director di sits on
the board of a certain company cj, an undirected edge from di to cj will be
present. Internal connections between nodes in the subsets are not allowed.
This network can then easily be projected into two different one-mode net-
works: the director network where nodes are directors and weighted edges
between them represent the companies they control. Second, the corporate
board interlock network, which is the one we will focus on here. As previously
mentioned, a corporate board interlock network can be defined as a network
in which the nodes represent companies and the edges represent the board
members these companies share.

We continue the rest of this section by discussing some of the most impor-
tant work on corporate board network analysis and the study of centrality
measures and community detection results. We then discuss data quality
issues by referencing to some of the most important works regarding data
quality and social network analysis.

3.1 Corporate Board Networks

Corporate board networks properties have been studied for several years.
Battiston and Catanzaro in 2004 show how the majority of the corpo-

rate networks are small world, have high average clustering coefficient, are
assortative and they describe how the giant component covers most of the
network.

In Windolf (2014) a study of seven German corporate networks from 1896

until 2010 was made. It focuses on the changes in density, position of the
banks and intrasectoral networks, comparing the structure of the German
corporate network with that of the United States. It finally shows how the
density and the centrality of the banks tend to decrease over time, and for
this, how an always stronger resemblance of the German network’s structure
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to that of the United States, can be observed.
Rinaldi and Vasta (2014) study the longitudinal behavior of the Italian

corporate network. They take samples of the top 250 companies and their
directors of the years 1913 to 2001, interpreting the evolution of the Italian
corporate network of those years.

Croci and Grassi (2014) analyze the correlation between firm value and
centrality measures, finding that degree and eigenvector centrality are nega-
tively correlated with the revenue values. Grassi (2010) studies the topolog-
ical structure of the Italian Stock Exchange corporate network and discusses
the role of degree, betweenness and flow betweenness centrality in the net-
work. It is suggested that usually hubs have a high degree, betweenness and
flow-betweenness centrality. Companies having low degree and high between-
ness usually aspire to be strategically connected in the network, while low
degree and high flow-betweenness usually distinguishes banks.

A step further into understanding the role of the centrality measures in
corporate networks has recently been done by Takes and Heemskerk (2016).
In their work they provide a complete overview of the centrality measures
investigating the global board interlock network consisting of circa 400, 000
companies connected by more than 1,500,000 shared board members. They
then present centrality persistence and the centrality ranking dominance,
where the first is able to quantify the persistence within the global network
of the order of the most central firms of a single country, while the latter is
able to compare rankings based on a partition and rankings based on the full
global network.

In Piccardi et al. (2010) the analysis of the community structure of both
the Italian board network and the Italian ownership network is presented.
They show how an important division in communities on both networks is
present. They then proceed by comparing the different community struc-
tures of the two networks by means of three set similarity measures: the
rand index, the (normalized) van Dongen distance and the Variation of In-
formation. Even though the two networks are technically distinct, all the set
measures indicate a significant overlap between their partitions. Pyramidal
groups (companies organized in layers) and strongly overlapping boards sig-
nificantly contribute to the important (and similar) community structure of
both networks.

Vitali and Battiston (2014) analyze the community structure of the global
ownership network, built considering only transnational corporations (com-
panies having the headquarter in one certain country and that operate in
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at least one other foreign country). They start by unveiling the community
structure of their global corporate network by means of the Louvain algo-
rithm, to which they compare the community structure of rewired networks
built from the same degree sequence and weights. The latter comparison
highlights how the community structure of the empirical network is signifi-
cantly different from the one of the rewired networks: the degree sequence
and the weights are not enough to justify the community structure of their
global ownership network. Vitali and Battiston then continue by investigat-
ing the existence of geographical and sectoral patterns in the largest eight
communities of the giant component. They discover how geography plays
an important role in the communities: the latter significantly reflect the
geographical location of the companies. The sectors, instead, play only a
secondary (and very marginal) role.

Finally, Heemskerk and Takes (2016) analyze the community structure
of the global corporate interlock network built considering only “large and
very large firms” which are “active” at this moment. Also, they merge all the
firms of a country in one single node, focusing on the transnational inter-
locks. They show how running the Louvain community detection algorithm
with resolution equal to 2 the Asian community immediately unveils. Asian
counties are strongly connected within themselves and weakly connected with
the rest of the world. Decreasing the resolution to 1.7 then (looking for sub-
communities), they show how the Nordic and Baltic community appears.
Lowering again the resolution to 1.5 and to 1.0, a Latin-American cluster
and a western cluster (USA, Western Europe and the UK and Common-
wealth) appear.

3.2 Data quality in networks

Costenbader and Valente (2003) analyze how eleven different centrality mea-
sures perform when random samples of directed networks (from 80% up to
10%) are taken. Networks of about 150 nodes are considered. Their results
indicate that the in-degree centrality is, apart from the eigenvector central-
ity, the measure with higher correlation with the original network. They
also show how the out-degree centrality decreases more rapidly, followed by
the closeness and then betweenness centrality. Their results suggest that is
possible to study networks generated from missing data.

One of the most well-known works on the topic is by Borgatti et al. (2006).
Borgatti et al. present an extension of the work of Costenbader and Valente,

16



analyzing the robustness of degree, betweenness, eigenvector and closeness
centrality under four types of error: node removal, edge removal, node ad-
dition and edge addition. In their work they show how all four centrality
measures react surprisingly similar given a certain kind of error, and, for
this reason, they suggest that an actual distinction between local and global
centrality measures is not present — differently from what was previously
thought. Unfortunately, despite the precious insights on the problem that
the aforementioned works give, they both analyze very small sized networks.
Networks of about 150 nodes and generated by an Erdős-Rényi random model
(in Borgatti’s case) do not resemble real-world networks features.

An important step to overcome these two problems has recently been
done by Wang et al. In their paper Wang et al. (2012) analyze degree cen-
trality, clustering coefficient, network constraint (see Burt (2009)) and degree
centrality in six random error scenarios — the four presented by Borgatti et
al. plus node splitting and merging — in two real-world networks with about
70, 000 nodes and 300, 000 edges. Their study suggests how in networks with
positively-skewed degree distributions and high average clustering coefficients
the four aforementioned network measures tend to be less resistant to errors.
They also argue against the claim for which global measures are less resis-
tant, but instead they suggest that the resistance of a certain measure to
error scenarios can be associated with how it is actually computed.
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4 Data

We extract samples of Italian, Danish, UK, Dutch, Spanish and Scandinavian
companies from a 2013 snapshot of the Orbis — Bureau van Dijk dataset (Or-
bis — Bureau van Dijk, 2016). Each of the six samples (one for each country)
will contain companies registered as “large” or “very large” and as “active”.
Also, only companies for which information about the senior directors was
available, were selected. Then, interlocking the directorates in each of the
six samples, we generate our corporate board interlock networks.

Even though we do not have a precise idea of how accurate and complete
data in a certain country is, we believe that the selected countries, and in
general most of the European ones, are more complete and accurate than the
others.

The nature of the edges of corporate board interlock networks is typically
weighted, where the weight represents the number of board members two
companies share. For the sake of simplicity and following most of the litera-
ture in the field, here we will consider their unweighted (or binary) version.
Eventually, we only analyze the giant components. The largest connected
component, indeed, contains most of the information. Outside usually only
lie a high number of small sized clusters of firms, of which the largest is much
smaller than the giant component.

Finally, even though corporate datasets are particularly rich of informa-
tion (such as the number of employees, revenue of companies, their geograph-
ical position and sector), here we will only take into consideration the revenue
as a node attribute. In Figure 2, the Top 100 companies belonging to the
Italian network’s giant component are presented. Nodes are partitioned by
their geographical location attribute. Eventually, from the two-mode net-
work we remove all the edges (board members) whose positions are different
from “board of directors”, “executive board”, “supervisory board” or “senior
management”.
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BUZZI UNICEM S.P.A.

MOSSI & GHISOLFI SPA

AURELIA SRL

INDESIT COMPANY S.P.A.

ITALCEMENTI S.P.A.
UNIONE DI BANCHE ITA...

HERA SPA

HERA COMM SRL

HERA TRADING SRL

A2A S.P.A.

SARAS S.P.A. - RAFFI...

ARCOLA PETROLIFERA S...

SOCIETA' EUROPEA VEI...

UNICOOP FIRENZE SOCI...
LUCCHINI S.P.A.

PIRELLI & C. S.P.A.
ITALMOBILIARE S.P.A.

IMPREGILO SPA

TECNIMONT S.P.A.

SAIPEM SPA

MEDIOLANUM VITA SPA

PIRELLI TYRE SPA

EDISON INTERNATIONAL...
EDISON ENERGIA SPA

MEDIASET S.P.A.

PRADA SPA

LUXOTTICA GROUP SPA

VERSALIS SPA

ANGELO MORATTI SAPA ...

ILVA SPA

MEDIOLANUM SPA

TELECOM ITALIA S.P.A.

EDISON TRADING SPA

SNAM S.P.A.

A2A TRADING SRL

EDISON S.P.A.

TRANSALPINA DI ENERG...

PRYSMIAN S.P.A.

COFIDE - GRUPPO DE B...

CIR S.P.A. - COMPAGN...

INTEK GROUP S.P.A.

FERRARISOCIETA PER A...
CREMONINI SOCIETA PE...

BANCA POPOLARE DELL'...

CREMOFIN SRL

DE AGOSTINI S.P.A.

AUTOGRILL S.P.A. PARMALAT SPA

IREN S.P.A.

FINMECCANICA S.P.A.

INA ASSITALIA SPA

RETI TELEVISIVE ITAL...

ENEL SPA

ENI SPA

RETE FERROVIARIA ITA...

FINANZIARIA D INVEST...

TRENITALIA S.P.A.

WIND TELECOMUNICAZIO...

ENEL PRODUZIONE SPA

GESTORE DEI SERVIZI ...

ENEL DISTRIBUZIONE SPA

ACQUIRENTE UNICO SPA...

ENEL TRADE SPA

FINELDO SPA

GESTORE DEI MERCATI ...

FERROVIE DELLO STATO...

ATLANTIA S.P.A.

AUTOSTRADE PER L ITA...

MAIRE TECNIMONT S.P.A.
GLV CAPITAL S.P.A.

CASSA DEPOSITI E PRE...

GTECH S.P.A.

ENEL ENERGIA SPA

ENI TRADING & SHIPPI...

ENEL SERVIZIO ELETTR...

ENEL GREEN POWER SPA

ALITALIA COMPAGNIA A...

BANCA MONTE DEI PASC...

FIAT S.P.A.

FONDIARIA - SAI SPA

EXOR SPA
FIMEDI SPA

CASE NEW HOLLAND ITA...

GIOVANNI AGNELLI E C...

CARLO DE BENEDETTI &...

FIAT GROUP AUTOMOBIL...

FIAT POWERTRAIN TECH...

INTESA SANPAOLO

INTESA SANPAOLO VITA...

FPT INDUSTRIAL SPA O...

AVIO SPA

SUD POLO VITA IVECO S.P.A.

ALLEANZA TORO SPA

FIAT INDUSTRIAL S.P.A.

GENERALI ASSICURAZIO...

ALLIANZ SPA

BENETTON GROUP SPA

EDIZIONE SRL

BURGO GROUP S.P.A.

Figure 2: Top 100 nodes in the Italian network’s giant component. Node
size is proportional to betweenness centrality. In blue we represent
companies in the north, in red central companies while in green we

represent companies located in the south.
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5 Methods

In the subsections that follow we present the fifteen data quality artifacts
we use to stress our networks, in both a network science and a corporate
network analytics context. We then proceed by discussing some details of
the implementation and we finally conclude the section by presenting some
of the measurements of the error we use to assess the effect of the artifacts.
A general overview of the entire process in present in Figure 3.

Figure 3: Overview of the process

5.1 Error scenarios

In order to reproduce some of the possible artifacts that one may encounter
in a network, here we their test the resilience under fifteen different error
scenarios. We start with the six scenarios defined in Wang et al. (2012),
namely: node removal, edge removal, node addition, edge addition, node ag-
gregation and eventually, node splitting. The procedures we use to replicate
these errors, and their abbreviated names, are taken from the work by Wang
et al. (2012). In order to follow their notation, from now on we will refer to
these six error scenarios as follows:

• False negative nodes random,

• False negative edges random,
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• False positive nodes random,

• False negative edges random,

• False aggregation random,

• False disaggregation random.

For the sake of clarity we decide to add the suffix “random” to the name of
the scenarios. The reason behind this choice is the need for an easy and clear
way to distinguish random and biased errors.

With the aim to let users and readers with a less technical background
more easily understand our work, in Table 1 we present the artifacts we
study in the simplest way possible. Throughout this work we will refer to
the original network as G and to the “corrupted” (or “disrupted”) one as H.

Random Bias

False

Negative

Nodes

We remove nodes. We simulate studying networks
generated from datasets with missing companies.

Nodes with lower degree will be removed with higher
probability. Usually, indeed, small companies are also
the ones for which datasets have less information.

False

Negative

Edges

We remove board member’s ties. We simulate a net-
work built from a dataset in which board member’s
connections were missing.

Here we study what one sees when the missing ties
connect mostly important (high degree) companies.

False

Positive

Nodes

We insert new nodes and we connect them with other
ones already present. We assume to take a snapshot
of the network in a point in time in which some per-
centages of companies, that should have been deleted,
were not yet.

Here we simulate the situation in which (incorrect)
shared board members ties are more likely to be
present between spurious companies and other (al-
ready present) companies which have high degree.

False

Positive

Edges

We introduce new board member’s ties to simulate
studying a network in which shared board members
that should have been removed, were not.

Here analyze the situation in which the network
presents spurious shared board members ties, between
at least one important (high degree) company over the
two.

False

Aggrega-

tion

Nodes merging. We simulate studying an old snapshot
of a network in which companies that have split into
two, are still present as a single company.

Here we assume that important companies are more
likely to divide themselves into two companies. We
reproduce this pattern aggregating with higher prob-
abilities companies having high degrees.

False

Disag-

grega-

tion

Nodes splitting. We simulate the name of a company
being spelled differently overall the dataset.

Companies for which the name is misspelled in the
dataset are more likely to be having high degrees.

Table 1: The data quality artifacts.

In Chu and Davis (2011) and Heemskerk et al. (2016) examples of false
negative nodes, false negative edges and false positive edges are presented.
For an actual example of false disaggregation we instead refer to Chu and
Davis (2015). More general considerations about quality of the data in the
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Orbis dataset are presented in Heemskerk and Takes (2016).
Having to choose a measure on which we base our bias, we decide to use

degree centrality. The reason behind this choice is that the degree is both an
easily understandable measure in terms of corporate control (power) and it
still resembles realistic biases that one may find in corporate datasets.

The formula we use to assign the probability p 2 [0, 1] of a node v to be
selected from a vector ~b of length n, biased towards the degree, is presented
in Equation 9:

~b(v) = (1� ↵)
1

n
+ ↵

ks
vPn

i=1 k
s
i

(9)

where s is the slope of the degree distribution considered in logarithmic scale.
In order to balance the bias more or less towards the degree, we introduce a
constant parameter ↵ 2 [0, 1]. With ↵ = 0 the bias will not be present —
the nodes will be selected uniformly at random — with ↵ = 1, nodes with
higher degree will have higher probabilities in the ~b vector. Eventually, given
that in real-world networks the degree distribution follows a power law, and
that in logarithmic scale this resembles a descending line with a certain slope
coefficient s, here we decide to raise the degrees to the power of that coeffi-
cient. Doing this when building the ~b vector, we are taking into account the
fact that nodes with low degree are much higher in number with respect to
nodes with high degree and so their probability should also be much lower.
Naturally, with s = 1, the assignment of the probabilities will be linear and
plotting the degree distribution of the selected nodes we will have a power-
law shape instead of the desired (almost) linear shape.

In order to better understand this, let us take the power-law degree distri-
bution with slope s = 2.5 present in Figure 4 and let us plot the probability
assigned to each degree in the case of s = 1 (see Figure 5a) and s = 2.5 (see
Figure 5b).
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Figure 4: Power-law degree distribution in logarithmic scale

(a) (b)

Figure 5: Probabilities over degrees in case of s = 1 (a) and s = 2.5 (b)

As expected the probabilities in Figure 5a are distributed linearly, while
the ones present in Figure 5b non-linearly, with an important increase in the
right-most side of the plot. Selecting now 500 nodes with repetition following
the two different probability laws, one can see how the degree distribution
of the selected nodes changes. In particular, looking at Figure 6a we see
how nodes with medium-high degree will never be selected, while if we also
consider the slope of the curve in the computation of the probabilities, the
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latter ones will be selected almost as often as medium-low degree nodes (see
Figure 6b).

(a) (b)

Figure 6: Degree distributions of the selected 500 nodes at random in cases
of s = 1 (a) and s = 2.5 (b)

In addition to the previous twelve artifacts we also want to study the con-
sequences of artifacts biased towards one of the most typical firm properties:
the revenue. We apply biased artifacts towards the revenue to all the error
scenarios (see Table 2) apart from “false positive nodes”, “false disaggrega-
tion” and “false aggregation”. “False positive nodes” and “false disaggrega-
tion” expect the addition of spurious nodes for which the revenue would be
impossible to estimate, while in false aggregation one should find a correct
way to decide what revenue a new node, given the merging process of two
other nodes, should have. Eventually, to asses the probability of each node
to be selected with a bias towards the revenue, here we use the same formula
in Equation 9, with ↵ = 0.6 and s = 1.

Random Revenue

False

Negative

Nodes

We remove nodes. We simulate studying networks
generated from datasets with missing companies.

The probability that a node has to be selected is in-
versely proportional to its revenue. Negative revenues
will be considered as zeros.

False

Negative

Edges

We remove board member’s ties. We simulate a net-
work built from a dataset in which board member’s
connections were missing.

Here we study what one sees if we remove with higher
probability links between at least one wealthy com-
pany.

False

Positive

Edges

We introduce new board member’s ties to simulate
studying a network in which shared board members
that should have been removed, were not.

Here we want to understand what do we see if we in-
troduce with higher probability ties connecting at least
one wealthy company (of the couple).

Table 2: The data quality artifacts biased towards the revenue.
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5.2 Methodology

Here we explain the methodological details behind the artifacts we study.
For each of the fitness experiments we will have twelve iterations of exper-

iments. At each iteration we start from the original network and we increase
the error by 5%, eventually going from 5% in the first iteration to 60% in the
last. The results of each iteration will then be averaged over ten runs, for a
total of 15⇥ 12⇥ 10 = 1800 runs. An important difference from the work of
Wang et al. (2012) is that here we stop at an error rate of 60% — and not
95%. We believe, that an error of 95% percent is rather unrealistic, at least
in modern corporate network datasets.

In the list that follows we present, for each artifact, the methodological
procedure and its technicalities:

• False Negative Nodes

- Random: We start each iteration by computing the number of
nodes we need to remove. Let us call this number q. We then
continue selecting q nodes at random, all together and without
repetitions, and we remove them one at a time.

- Degree/Revenue: We select the right number of nodes we need
to keep, with a bias towards high degree (or wealthy) nodes. We
then obtain the nodes to remove as the set difference between the
entire list of the nodes and ones to keep.

• False Negative Edges

- Random: We select a target node at random. If its degree is
zero, we pick again. We then select at random one neighbor of
the target node and we remove the edge that connects them. We
continue until we have removed the desired number of edges.

- Degree/Revenue: Here the target node and its neighbor are
picked with a bias towards the degree (or the revenue).

• False Positive Nodes

- Random: We start by adding the right percentage p of spurious
disconnected nodes to the original graph. We then select at ran-
dom p nodes, where the spurious ones are not included. We then
start from the first random node, we compute its degree d and we
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eventually connect one edge from the first spurious node to other d
random ones. We continue until each disconnected spurious node
has been connected.

- Degree: We add p spurious disconnected nodes. We then select
at random p nodes. The spurious ones are not included. We then
start from the first random node, we compute its degree d and we
eventually connect one edge from the first spurious node to other
d selected with a bias towards high degree ones.

• False Positive Edges

- Random: We start by selecting two random nodes. If they are
already connected, we pick another couple, otherwise we connect
them with an edge.

- Degree/Revenue: We start by selecting a node v1 with a bias
towards the degree (or the revenue). We then select another node
v2, this time uniformly at random, with v1 and v2 not connected
and we proceed by connecting them.

• False Aggregation

- Random: We start by selecting two different random nodes. The
first node v1 will be the node to maintain while the second node
v2 will be the one that will be merged into the first. We then
proceed by attaching the neighbors of v2 to v1 and by deleting v2.
We continue until the right number of nodes have been merged.

- Biased: We select the right percentage p of nodes we need to keep,
with bias towards the degree. We continue by selecting other p
nodes with bias, which will be the ones to remove. We then merge
the nodes as before, but this time, considering one node couple of
nodes at time: one node to keep and one to remove.

• False Disaggregation

- Random: We start by randomly selecting one node to split at
a time. After having selected the node, we list its neighbors and
we create a new spurious disconnected node. We then proceed by
attaching, at random, 50% of the edges of the node to split to
the new spurious node, as presented in Wang et al. (2012). We
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continue this process until the right number of nodes have been
split.

- Biased: We select one node to split at time, with biases towards
the degree. After having selected the node, we list its neighbors
and we create a new spurious disconnected node. We then proceed
by attaching at random 50% of the edges of the first node (the
one to split) to the new spurious node.

5.3 Implementation

The code is run on a server with 16 Intel Xeon E5-2630v3 CPUs @ 2.40GHz
(32 threads) and 1.5TB of RAM. It has been entirely written in Python
using the graph-tool library (Peixoto, 2014), whose core data structures and
algorithms are implemented in C++. The reason behind this choice are both
the higher readability Python has with respect to Java and C++ and the
extremely optimized and parallelized functions that the graph-tool library
guarantees.

To have better performance, in the implementation of each error scenario
we decide to store the twelve graphs in a compressed format and to then
execute the Louvain algorithm and the variation of information in parallel
using one graph for each core.

5.4 Measurements of the error

In order to understand how H differs from G, we study the changes in some
of the most important network metrics and distributions. The metrics we
study are presented in the list that follows:

• Degree distribution

• Distance distribution

• Average neighbor correlation

• Percentage of nodes and edges in the giant component

• Density

• Global clustering coefficient
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• Average distance (on the network’s giant component)

• Scalar assortativity coefficient

Apart from the aforementioned metrics and distributions, we are also inter-
ested in studying how degree centrality, betweenness centrality and closeness
(harmonic) centrality results change when increasing the error rate. To do
so we follow the work of Wang et al. (2012): we start from our original graph
G and we introduce the desired error percentage, obtaining the “corrupted”
graph H. We then take the set of companies that G and H have in com-
mon and we call this set of nodes C = V G \ V H . Eventually, for each node
v 2 C we compute its degree centrality, betweenness centrality and harmonic
centrality for both graphs G and H. We save the result of company v for
graph G in ~z and the result of company v for H in ~z0. Finally, once all the
results for each company in C have been stored, we compute the Spearman’s
⇢ ranking correlation coefficient between ~z and ~z0.

5.4.1 Spearman’s rho vs Kendall’s tau

When measuring the relation between different rankings of the same (or dif-
ferent) variable, the following two ranking coefficients are most frequently
used: Spearman’s rank correlation (⇢) and Kendall’s rank correlation (⌧).
The general idea is simple: in both measures, if the two rankings are equal,
the value of both correlation coefficients will be 1. In case the rankings are
completely different the correlation coefficient will be 0. In case one ranking
is the exact reverse of the other, both correlation coefficients will be �1. For
more information we refer the reader to Langville and Meyer (2012).

The substantial difference between these two coefficients is in the different
importance they give to sequential swaps in the rankings. More specifically,
Kendall’s ⌧ gives the same importance (penalty) to both small and big drops
(or gain) in the ranking while Spearman’s ⇢ gives higher penalties to the
latter ones. In other words, when comparing rankings one should use Spear-
man’s ⇢ if the number of positions a certain value has lost (or gained) in
the ranking is of importance. If only the number of concordant and non-
concordant pairs matters than the Kendall’s ⌧ is the one to use.

Given that we are particularly interested in penalizing the leaps (number
of positions lost or gained) that companies make in the “importance” ranking
when artifacts in the network are applied, the Spearman’s ⇢ correlation coef-
ficient is the most appropriate measure for us to use. Indeed, we are not only
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interested in understanding if a company in G has, for instance, different de-
gree centrality than in graph H, but we are also interested in understanding
(and penalizing) the number of positions it has lost or gained.

Rank Ranking in G Ranking in H
1st A H
2nd B B
3rd C C
4th D D
5th E E
6th F F
7th G G
8th H A

Table 3: Ranking in the original graph G versus the ranking in the
“corrupted” graph H

Let us take for instance the two rankings in Table 3. One can see how the
only difference in the two rankings is the inverted position of the first and last
company. In this case Kendall’s ⌧ gives a 0.071 correlation value (meaning
that the two rankings are different), Spearman’s ⇢ gives a correlation value
of �0.166. The latter value, even in this very simple example, has greater
tendency to indicate the two rankings as inverted. The number of positions
company A has lost, and the number of positions company H has gained,
has been penalized more in the latter correlation coefficient. To understand
how the structure of H has changed with respect to G, penalizing big leaps
is of extreme importance.

5.4.2 Variation of information

To understand how the community structure changes, we compute the vari-
ation of information (Meilă, 2007) on Louvain’s partitions. In particular, for
each node v 2 G\H, we take its community number and we store it in vec-
tors ~V and ~V 0, respectively. Finally, we compute the variation of information
between vectors ~V and ~V 0.

The variation of information is a metric in the space of partitions, elab-
orated by Meilă (2007). It lies in the range [0, log n], thus we can simply
normalize it in the range [0, 1] dividing it by log n.
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The variation of information will be maximal when the two partitions
are completely different, namely: X tells nothing about Y and vice-versa,
and so the mutual information between X and Y is zero. In the same way,
the variation of information will be zero when the two partitions are exactly
equal. Also, it is a true metric on the space of clusterings (see Meilă (2007)),
meaning that is non-negative, symmetric and it satisfies the triangle inequal-
ity. For this reason, and following other related work, such as Piccardi et al.
(2010) and Vitali and Battiston (2014), we decide to adopt this measure over
other indexes of comparison.

5.4.3 Kolmogorov-Smirnoff Two Sample Test

To measure the differences between the degree and distance distributions
of the graph G with those of the perturbed graphs H, here we use the
Kolmogorov-Smirnoff (KS ) two sample test. This is a two-sided test meant
to assesses whether two independent samples are drawn from the same dis-
tribution. Hence, given two distributions one can test for a null hypothesis,
i.e., the two samples are drawn from the same distribution, inferring on the
so called D-statistic and p-value. The general idea is the following: if the
p-value is small and the D-Statistic relatively high one can state that the two
populations were sampled from different distributions.

Despite its main goal, here we decide to do not use the KS test to assess
whether two independent samples are drawn from the same distribution, but
only as a measure of difference: the maximal difference between the two cu-
mulative probability distributions of the two populations. The reason behind
this choice is the nature of our degree and distance distributions, which are
discrete. The assumption behind the KS test, indeed, is that the two distri-
butions compared are continuous and so, without ties. If used on discrete
distributions the result might be misleading.

Another usable measure would have been the so-called Chi-Square Good-
ness of Fit Test. Despite being able to work with discrete distributions, the
Chi-Square Goodness of Fit Test it is still not suitable in our case: the ex-
pected number of observations in each level of the variable must be at least
five and the number of bins must be equal. Given the power-law degree dis-
tributions we encounter, both prerequisites are at least difficult to satisfy.

Even though some non-parametric tests meant for continuous distribu-
tions have also been adapted for discrete distributions, as mentioned in
Arnold and Emerson (2011), here we decide to avoid this path, but instead
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we simply prefer to use the D-statistic as a metric. Finally, even though
the Chi-Square Goodness of Fit Test, with some adjustments, might have
been (theoretically) usable for the distance distributions, given the number
of samples in each bin and the simplicity of the KS test, we decide to adopt
the latter test for both distributions.
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6 Experiments

In this section we present the impact of imperfect data in real-world corpo-
rate networks and we propose a simple and effective way to visualize and
understand how resilient a network is.

In Section 6.1 we present detailed results for the Italian corporate net-
work’s giant component while in Section 6.2 we discuss the results of the
Italian, Danish, Great Britain, Dutch, Spanish and Scandinavian network’s
giant components by means of what we called a resilience matrix.

For reasons of space and comprehensibility in all the subsections that
follow we only present the most significant figures.

6.1 The Italian corporate network’s giant component

Here we study the resilience of the Italian corporate network’s giant compo-
nent, stressing the network with the error scenarios presented in Table 1 and
Table 2. In Section 6.1.1 we first present the topological properties of the
network under study.

6.1.1 Network properties

The visualization of the Italian corporate board interlock network’s giant
component is presented in Figure 7. The number of cliques and high density
clusters is relatively low with respect to the overall size of the network, which
has 4, 483 nodes and 12, 517 edges, letting us believe that the quality of the
data is at least sufficient for the study.
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Figure 7: Visualization of the Italian corporate board interlock network’s
giant component. Visualized using Gephi (Bastian et al., 2009) and
ForceAltas 2 layout with “Stronger Gravity” enabled and “Scaling”

coefficient set to 30.

We proceed by looking at its degree distribution, distance distribution
and its average neighbor correlation, presented in Figures 8a, 8b and 8c,
respectively.
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(a) Degree distribution (b) Distance distribution

(c) Average neighbor correlation

Figure 8: Degree distribution, distance distribution and average neighbor
correlation of the Italian corporate network’s giant component.

The density, global clustering coefficient, average distance and assorta-
tivity coefficient are finally presented in Table 4.

Measure Value

Density 0.0012
Global clustering coeff. 0.524

Avg distance 7.569
Assortativity coeff. 0.296

Table 4: Topological properties of the network. The colors on the left of
each measure represent the relative colors we will use in the plots that will

follow.

Looking at the measures and distributions present, we see how the Italian
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network’s giant component characteristics reflects the ones found in most real
world ones: the degree distribution follows a power-law and it is a small-world
network. In the subsections below we now present the detailed changes of all
the measures under the 15 error scenarios.

6.1.2 False negative nodes - Random

The global measures never change significantly. In particular, the density
remains stable with only negligible fluctuations. The same happens to the
global clustering coefficient and to the average distance. The latter can also
be observed looking at the distance distribution changes in Figure 9b, where
the vertical axis (frequency) decrease homogeneously. Eventually, the assor-
tativity coefficient is the only one that stays pretty stable up to the 45% of
error, point where we register a single fluctuation of about 10%. From then
on it restores and keeps is initial value.

The situation seems to be clear: removing nodes at random, the proba-
bility that the selected nodes have low degrees is much higher than having
selected nodes with high degrees. To prove it we do the following: knowing
the number of nodes and edges of graph G (to which we will refer as n and
m) and the number of nodes and edges of the perturbed graphs H (n0 and
m0, respectively), we can easily compute the average degree of the removed
nodes (average number of connections), doing

m�m0

n� n0

which is around 4 at each error rate. This clearly happens because of the
power-law degree distribution: the number of nodes with low degrees is much
higher than the number of nodes with high degrees. Now, having in mind
that removing nodes also implies removing edges and so reducing the degrees
of the neighbors of the removed nodes, here we see a “scale reduction” effect.

The density considered on the giant component of the perturbed networks
increases. This is due to the continuous reduction of the giant component size
in which mostly medium-low degree nodes have been removed. This entails
that the remaining nodes in the giant component will likely have relatively
high degree, although they will only be a few in number.

The global clustering coefficient stays almost untouched, likely due to the
fact that low degree nodes do not participate in any triangle, or at least in
relatively few over the total number. The higher the degree, the higher is
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the probability that you are part of one or more triangles.
These ideas are also confirmed by looking at how the degree distribution

changes over time (Figure 9a). We see a natural decrease in the vertical
axis (frequency) but just a slight difference in the horizontal axis (degree),
indicating that the likelihood that, even after removing 60% of the nodes at
random, the high degree nodes in G will still have relatively high degree in
H is significant.

Eventually, the Spearman correlation on the three centrality measures
(see Figure 10), we notice a good robustness.

Of the three measures considered, degree centrality seems to be most sta-
ble, followed by betweenness and then by harmonic centrality. We attribute
this behavior to the nature of the three different measures. Each time a
random node is removed from the network, the degree of all its neighbors
decreases just by one. Moreover, since nodes with lower degrees have higher
chances to be removed at random, this only influences a relatively small
number of other nodes (neighbors of the selected one). This means that only
relatively few nodes, each time one of their neighbors is removed, will see
their degree centrality lowered. Also, each time a node is removed, the de-
gree of its neighbor can be lowered at most by one. These considerations let
us think that degree centrality it is actually a pretty robust measure in itself
under this data quality artifact.

When removing random nodes the shortest paths can only become longer
or untouched, but not shorter. Imagine having two paths of different length
from one node v1 to another node v2. Now, if we select a node in the shortest
path between v1 and v2, the length of the path will be enlarged (what before
was the longest path is now the shortest) while if we remove a node in the
longest path we are actually leaving the shortest one of the same size. In the
worst case the longest path will be infinite, meaning that there will no longer
be edges from v1 to v2.

In general, nodes with degree one will have a betweenness centrality value
of zero, while the same is not true for harmonic centrality. Unconnected nodes
will have zero betweenness centrality as well as zero harmonic centrality. One
of the reasons behind the results presented in Figure 10 might be that re-
moving nodes at random carries a heavy disconnection of the graph. This
will entail an always higher number of nodes with betweenness centrality zero
and harmonic centrality zero, which will negatively influence the results of
the Spearman correlation. The main reason for which betweenness centrality
(for this network, error type and apart from the aforementioned problem)
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maintains a better ranking correlation than harmonic centrality will be ex-
plained in Section 6.1.3, after the results for the false negative nodes biased
have been presented.

6.1.3 False negative nodes - Degree bias

Until now we have remarked how “false negative nodes” is in some sense
biased towards low degree nodes, due to the power-law degree distribution.
But how biased is it? What if we stress the bias? And how the network react
to a stronger bias? In order to answer these questions we introduce “false
negative nodes biased”. The results suggest that the “scale reduction” effect
we obtain in the previous error scenario here disappears. Setting an ↵ = 0.7
in Equation 9 we see how this biased version behaves more aggressively on
the graph. In particular, looking at Figure 11 we notice a significant increase
of the density up to 140% (from 0.012 to 0.030), an increase of the global
clustering coefficient and the assortativity coefficient up to almost 18% and
50% respectively. We clearly see how removing high numbers of low degree
nodes, the average degree increases. The number of links does not decrease
as fast as the number of nodes (increasing the density). The number of tri-
angles decreases less rapidly than the number of connected triplets of nodes
(increasing the global clustering coefficient). The number of low degree nodes
dramatically decreases but only partially diminishing the degree of the rest of
the nodes (increasing the assortativity coefficient) and the perturbed graphs
are much less disconnected than in the uniformly random case (see Table 7).
Given all of this, we finally notice a decrease in the average distance.

Another interesting result is the different behavior of the giant compo-
nent with respect to “false negative nodes at random”. Looking at Table 6
we see how the density of the giant component in the aforementioned error
scenario increases more than the density in the case of biased artifact. If in
the latter error scenario the giant component at 60% error has about 1, 200
nodes with more than 4, 000 edges, in the random case the giant component
has a comprehensively smaller size (about 500 node and 1000 edges). In gen-
eral the more a (real-world) network increases in number of nodes the more
difficult it will be for the density to increase (see the Facebook example in
Section 2.1).

For what concerns the three centrality measures we also obtain interest-
ing results: the degree and harmonic centrality behave practically the same,
reaching a correlation of almost 0.9, while betweenness centrality decreases
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(a) Degree distribution

(b) Distance distribution

Figure 9: Degree distribution, distance distribution and average neighbor
correlation of the Italian corporate network’s giant component in false

negative nodes for each error percentage.

up to 0.78. The different behavior of harmonic centrality, with respect to the
random error may be explained by the lower number of disconnected com-
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Figure 10: Spearman correlation of degree centrality, betweenness centrality
and harmonic centrality for false negative nodes at random.

ponents. In particular, for 60% error here we obtain 26 different components
with respect to the 60 we obtained in the random case. One may try to
attribute the different behavior of the harmonic and betweenness centrality
to the different topology of the perturbed graphs under the two different
types of errors. In particular, looking at Table 5 one can see how the random
error disconnects the graph in more homogeneous (in size) connected compo-
nents, while the biased error maintains a large giant component surrounded
by many components of smaller sizes. This result lets us imagine why har-
monic centrality in one case (random, see Figure 10) descends rapidly and
more than betweenness centrality, while in the second case it remains almost
always stable up to 0.9. More concretely: computing harmonic centrality in
the biased case does not alter the ranking much, since the majority of the
nodes will see their rankings lowered by the same number of zeros (given by
the disconnected nodes). The same does not happen in the random error sce-
nario where, given the more homogeneous disruption of the network, many
of the nodes in all of the components will see their ranking change.
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Nodes Edges Nodes Gc Edges Gc # of components

FNN 1794 1986 575 (32%) 1059 (53%) 26
FNNB 1794 4836 1254 (69%) 4278 (88%) 60

Table 5: Size of the perturbed networks under false negative nodes random
and biased at 60% of error. The percentages reported are relative to the

first and second column of the table.

Figure 11: Measure changes under false negative nodes biased for each error
rate.

6.1.4 False negative nodes - Revenue bias

Here nodes are removed inversely proportional to their revenue, with the
parameter ↵ = 0.6. Knowing that there is usually a weak correlation from
revenue to degree in corporate networks, we expect a “trade-off” error between
“false negative nodes at random” and “false negative nodes biased towards
the degree”. Looking at the results of the global measures we see how the
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assortativity coefficient, apart from some initial swings, tends to remain the
same. The density raises up to +35%, the clustering coefficient decreases up
to �25% with a 60% error. The same happens to the average distance. With
respect to the previous two errors, here the network reacts more or less as
expected, and no particular peaks or changes are observed.

The same happens to the Spearman correlation: the values and the ten-
dencies of the curves are in the middle of the ones seen in “false negative
bias” and in its “random case”. The degree centrality decreases up to about
0.83, while betweenness centrality and harmonic centrality decrease up to
0.75. Eventually, also the number of components and the density of the gi-
ant component values (see Table 7 and Table 6) are typically in the middle
between the random and biased cases.

5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60%

FNNR 0.0013 0.0014 0.0016 0.0017 0.0019 0.0021 0.0023 0.0026 0.0030 0.0034 0.0040 0.0046
FPER 0.0013 0.0014 0.0014 0.0015 0.0016 0.0016 0.0017 0.0017 0.0018 0.0019 0.0019 0.0020
FNER 0.0013 0.0013 0.0013 0.0014 0.0015 0.0015 0.0017 0.0018 0.0019 0.0021 0.0023 0.0026
FNN 0.0014 0.0015 0.0016 0.0018 0.0020 0.0023 0.0026 0.0029 0.0036 0.0040 0.0051 0.0068
FPN 0.0012 0.0012 0.0012 0.0013 0.0012 0.0012 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013
FNE 0.0013 0.0013 0.0014 0.0015 0.0016 0.0017 0.0018 0.0021 0.0022 0.0024 0.0027 0.0031
FPE 0.0013 0.0014 0.0014 0.0015 0.0016 0.0016 0.0017 0.0017 0.0018 0.0019 0.0019 0.0020
FA 0.0014 0.0015 0.0017 0.0019 0.0022 0.0025 0.0029 0.0034 0.0041 0.0049 0.0061 0.0077
FD 0.0012 0.0012 0.0011 0.0011 0.0011 0.0011 0.0011 0.0010 0.0010 0.0010 0.0010 0.0010
FNNB 0.0014 0.0015 0.0017 0.0018 0.0020 0.0023 0.0026 0.0030 0.0034 0.0039 0.0046 0.0054
FPNB 0.0012 0.0012 0.0012 0.0012 0.0012 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013
FNEB 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0013 0.0013 0.0014
FPEB 0.0013 0.0014 0.0014 0.0015 0.0016 0.0016 0.0017 0.0017 0.0018 0.0019 0.0019 0.0020
FAB 0.0014 0.0015 0.0017 0.0019 0.0022 0.0025 0.0029 0.0034 0.0041 0.0050 0.0061 0.0077
FDB 0.0012 0.0012 0.0011 0.0011 0.0010 0.0010 0.0010 0.0009 0.0009 0.0009 0.0009 0.0008

Table 6: Density values in the giant component of the network for every
artifact and error rate.

5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60%

FNN 7 13 22 26 33 36 46 43 57 54 58 61
FNNB 3 5 8 11 13 17 19 20 23 25 22 27
FNNR 5 12 12 18 22 31 32 35 39 40 41 42
FNE 13 33 47 62 84 105 127 145 169 192 210 236
FNEB 5 14 18 26 37 46 52 63 77 85 99 120
FNER 9 21 36 49 66 83 103 123 144 163 182 213
FD 14 30 45 64 77 96 113 129 145 169 179 199
FDB 12 24 38 48 64 78 92 106 119 130 141 152

Table 7: Number of connected components in the perturbed networks at
each error rate.
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6.1.5 False negative edges - Random

Let us start by pointing out that where removing nodes uniformly at ran-
dom means, in some senses, that we have a bias towards low degree nodes,
removing edges at random we have a different bias. In particular, when we
remove nodes at random we have higher probability to have selected a low
degree node, while if we select an edge at random we have a high probability
to have selected an edge belonging to at least a node (of the pair) with high
degree.

Looking at Figure 12 we notice how the properties of the graph change
with respect to “false negative nodes”. If the number of nodes remains con-
stant, the number of edges (and so the density in the perturbed graphs H)
drops proportionally to the error rate. The clustering coefficient decreases
as expected, while the average distance very slowly descends from 7.57 at
0% to 6.64 at 60% of error. If one would expect the average distance (of the
giant component) to increase given the removal of edges from high degree
nodes, here we witness the opposite behavior. Eventually the assortativity
coefficient increases by a negligible 14%, going from 0.30 up to 0.34 at 60%

of error.
Apart from degree centrality that decreases up to 0.8, the harmonic and

betweenness centrality are significantly less stable than before, reaching cor-
relations of 0.55 and circa 0.43, respectively, at 60% of error (see Figure 13a).
The surprising result here is that, even though the perturbed networks H
count a much higher number of disconnected components with respect to
“false negative nodes at random” (see Table 7), harmonic centrality seems to
be more stable than betweenness centrality (the opposite happened removing
nodes at random).

The degree and distance distributions, as well as the average neighbor cor-
relation, do not undergo surprising changes, or at least noteworthy, changes.
In general though, “false negative nodes at random” seems to be much less
stressful for the network compared to “false negative edges at random” (see
Table 8).

6.1.6 False negative edges - Degree bias

Reminding that “false negative edges at random” is biased towards high de-
gree nodes, here we want two answer the same two questions we asked before,
namely: “how much biased is it?” And “what if we stress the bias?” In order
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Figure 12: Measure changes under false negative edges at random for each
error rate.

to answer these questions here we analyze the results of “false negative nodes
biased towards high degree nodes”.

Starting from Figure 13b we see how the betweenness and closeness rank-
ing correlations are close to each other. Despite this, the situations for the
global measures happens to be a bit different. In particular, looking at Fig-
ure 15, if the density and the global clustering coefficient descend almost
as much as in the random case, the average distance and the assortativity
coefficient completely change trend. The average distance (in the giant com-
ponent) increases up to a remarkable 70%, going from 7.57 to 12.59 at 60%

of error. With respect to Figure 12 where a descend in the average distance
was present, here the ascent naturally makes more sense: removing edges
mostly from very high degree nodes, a high number of shortest paths will
likely be cut from the network, and reaching two non-adjacent vertices (fol-
lowing shortest paths) will naturally take more steps. Now, the difference of
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(a) Spearman correlations for false

negative edges at random.

(b) Spearman correlations for false

negative edges biased.

Figure 13: Spearman correlation of degree centrality, betweenness centrality
and harmonic centrality for false negative edges at random and false

negative edges biased.

the average distance in the two error scenarios might be understood by look-
ing at the densities and the sizes of the giant components (for convenience
at 60% of error), presented in Table 9. If for the random case the perturbed
network has almost 40% of the nodes and almost all the edges left in the
graph (with a density of 0.0031), in the biased error we have almost 50% of
edges with 70% of the nodes left. The density is equal to 0.0014, which is
almost the half. In other words, the number of possible shortest paths in the
perturbed network under “false negative edges at random” is much higher
than the number of possible shortest paths of the perturbed network under
the “false negative edges biased” error scenario. A better view of this phe-
nomenon can be observed by looking at Figure 14a and Figure 14b where one
can see how in the random scenario the horizontal axis (distance) decreases
when increasing the error rate, while in the biased scenario the distances
increases.

Another significant change is the decrease of the assortativity coefficient
from an error rate of circa 35 � 40%. When the error rate reaches 60% the
assortativity coefficient decreases by almost the 35%, going from 0.30 to 0.19.
The network is becoming increasingly more non-assortative. A better view
of this phenomenon can be seen by looking at Figure 16 where the line is
becoming more horizontal. There is less correlation between the degree of a
node and the degree of its neighbors.
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Deg.
Centr.

Betw.
Centr.

Harm.
Centr.

Density
(%)

Global
c.c.
(%)

Avg.
Dist.
(%)

Assort.
coeff.
(%)

Var.
Info.

KS Deg KS Dist Nodes
GC

Edges
GC

FNNR 0.83 0.74 0.77 0.0017
(37.67%)

0.4008
(-23.52%)

5.89
(-22.24%)

0.28
(-4.88%)

0.30 0.27 0.28 970
(21.64%)

2174
(17.37%)

FPER 0.89 0.48 0.31 0.0020
(60.00%)

0.1110
(-78.82%)

3.56
(-53.01%)

-0.04
(-112.00%)

0.35 0.23 0.82 4483
(100.00%)

20027
(160.00%)

FNER 0.72 0.38 0.39 0.0005
(-60.00%)

0.5246
(0.09%)

9.09
(20.12%)

0.57
(91.98%)

0.38 0.44 0.23 1708
(38.10%)

3834
(30.63%)

FNN 0.79 0.67 0.46 0.0012
(-1.18%)

0.5264
(0.43%)

7.44
(-1.68%)

0.33
(10.19%)

0.32 0.36 0.11 542
(12.09%)

1002
(8.01%)

FPN 0.83 0.46 0.51 0.0013
(3.31%)

0.1648
(-68.55%)

4.29
(-43.31%)

0.18
(-38.92%)

0.47 0.39 0.75 7172
(159.98%)

33098
(264.42%)

FNE 0.80 0.44 0.55 0.0005
(-60.00%)

0.4149
(-20.83%)

6.64
(-12.28%)

0.34
(14.03%)

0.39 0.50 0.14 1675
(37.36%)

4320
(34.51%)

FPE 0.86 0.52 0.59 0.0020
(60.00%)

0.2815
(-46.29%)

4.34
(-42.71%)

0.28
(-5.01%)

0.42 0.38 0.74 4483
(100.00%)

20027
(160.00%)

FA 0.46 0.34 0.27 0.0077
(516.60%)

0.2164
(-58.71%)

3.26
(-56.99%)

0.05
(-83.01%)

0.69 0.35 0.87 1794
(40.02%)

12355
(98.71%)

FD 0.95 0.83 0.89 0.0005
(-60.93%)

0.4608
(-12.08%)

7.94
(4.96%)

0.28
(-6.48%)

0.13 0.29 0.05 5009
(111.73%)

12294
(98.22%)

FNNB 0.92 0.77 0.90 0.0030
(140.03%)

0.6130
(16.96%)

5.77
(-23.79%)

0.44
(48.05%)

0.23 0.12 0.31 1258
(28.06%)

4257
(34.01%)

FPNB 0.94 0.60 0.54 0.0013
(3.45%)

0.0935
(-82.15%)

3.95
(-47.87%)

0.03
(-90.22%)

0.40 0.18 0.76 7172
(159.98%)

33144
(264.79%)

FNEB 0.74 0.50 0.45 0.0005
(-60.00%)

0.2982
(-43.10%)

12.59
(66.34%)

0.19
(-34.40%)

0.33 0.32 0.56 2226
(49.65%)

3502
(27.98%)

FPEB 0.95 0.62 0.53 0.0020
(60.00%)

0.1678
(-67.98%)

3.97
(-47.57%)

0.10
(-66.38%)

0.32 0.17 0.75 4483
(100.00%)

20027
(160.00%)

FAB 0.14 0.10 0.07 0.0077
(519.04%)

0.2396
(-54.27%)

3.30
(-56.36%)

0.12
(-59.06%)

0.78 0.41 0.86 1794
(40.02%)

12404
(99.10%)

FDB 0.95 0.81 0.88 0.0005
(-60.93%)

0.3914
(-25.32%)

8.50
(12.34%)

0.23
(-23.71%)

0.16 0.25 0.14 5403
(120.52%)

12156
(97.12%)

Table 8: Behavior of the Italian giant component at 60% error.

Nodes Edges Nodes Gc Edges Gc Density

FNE 4,483 5,007 1,675 (37.3%) 4,320 (86.3%) 0.0031
FNEB 4,483 5,007 2,226 (49.6%) 3,502 (69.9%) 0.0014

Table 9: Size of the perturbed networks under false negative edges random
and biased at 60% of error rate. The percentages reported are relative to

the first and second column of the table.

6.1.7 False negative edges - Revenue bias

The result of the assortativity coefficient here is remarkable: we obtain a
growth of almost 100%, going from a weak assortativity of 0.30 up to an
assortativity of 0.57. The growth process can easily be seen from the plots in
Figure 17, where the increasingly growing linearity in the relation between
the source degrees and the target degrees. Also, the vertical axis remains
surprisingly stable at the same value while the horizontal axis naturally di-
minishes. Eventually, there seem to be only clear changes in the curve from
degrees of 25 on, while in the most left part the assortativity remains almost
equal throughout each error rate. Knowing that there is non-assortativity in
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(a) Distance distribution for false negative edges at random at each error rate.

(b) Distance distribution for false negative edges biased at each error rate.

Figure 14: Distance distributions for false negative edges random and
biased at each error rate.

the revenue of the nodes, since the correlation is equal to 0.1, an explanation
of this phenomenon might be found, again, looking in Figure 17. It is plau-
sible that the nodes with degree higher than 25 were those most affected by
the removal of links. One can see how the neighbors of the nodes with degree
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Figure 15: Measure changes under false negative edges biased for each error
rate.

around 25 � 35 fade as we increase the error and how the hubs diminish in
size.

There are not noteworthy results regarding the centrality correlations.

6.1.8 False positive nodes - Random

We immediately see how the density remains pretty stable to its original
value, as in “false negative nodes at random” — meaning that for graphs
large enough the ratio m

n2 with m number of edges and n number of nodes,
remains equal — while the assortativity coefficient decreases up to 40%.

Looking at Figure 19 another interesting result is the more than linear
decrease of the average distance, which lowered from the initial value of 7.57
to 4.29 at 60% of error. The changes in the average distance can be better
understood from the distance distribution plots in Figure 20a, while they

47



Figure 16: Average neighbor correlation under false negative edges biased
towards the degree.

Figure 17: Average neighbor correlation under false negative edges biased
towards the revenue.

may be explained by looking at the behavior of the degree distributions in
Figure 20b. From the degree distributions we see how the power-law starts
to become like a Poisson distribution. The reason for this is the increasing
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Figure 18: Spearman correlation of degree centrality, betweenness centrality
and harmonic centrality for false negative edges biased towards the revenue.

average degree. We recall how for each disconnected node introduced we
select a random node and we take its degree (k), which will likely be low.
We then connect an edge from the spurious node to other k random nodes
(which will also likely have low degree), that will in turn see their degree rise.
This procedure eventually helps the average distance to diminish given the
more shortest paths that are now possible to follow. On the contrary, adding
nodes with average degree equal to 1 would have increased the number of
peripheral nodes and consequently the average distance of the network.

For what concerns the Spearman correlation results (see Figure 21a) we
see a significant drop of the betweenness and harmonic centrality at 5%

of error which decrease from 1 to 0.78 and 0.83 respectively. The degree
centrality remains the most stable of the three (reaching a correlation of 0.82
at 60%), while betweenness and harmonic centrality behave very similar with
only negligible differences, reaching values of 0.46 and 0.5.
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Figure 19: Measure changes under false positive nodes random for each
error rate.

6.1.9 False positive nodes - Degree bias

From the global measures we notice a similarity with Figure 19. The den-
sity remains stable (with only negligible changes) throughout all experiments.
The clustering coefficient decreases while the average distance decreases from
7.57 to 3.94. We see major differences in the assortativity coefficient: the
perturbed graphs H become more non-assortative with respect to the per-
turbed graphs in the random case.

The results regarding the ranking correlations (see Figure 21a) remain
very similar to the ones presented in Figure 21b. The only differences here
are the 10% improvement of all correlations with respect to the previous error
scenario and the swap in the ranking of betweenness and harmonic centrality.
Finally, from Figure 22 we see how the degree distributions do not resemble
Poisson distributions anymore.
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(a) Distance distribution for false positive nodes random at each error rate.

(b) Degree distribution for false positive nodes random at each error rate.

Figure 20: Distance distributions and degree distribution for false positive
nodes random at each error rate.

6.1.10 False positive edges - Random

The density increases proportionally to the error rate, as expected. The
average distance naturally decreases, while the global clustering coefficient
surprisingly drops almost proportionally to the error rate (about �50% at
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(a) Spearman correlations for false

positive nodes at random.

(b) Spearman correlations for false

positive nodes biased.

Figure 21: Spearman correlation of degree centrality, betweenness centrality
and harmonic centrality for false positive nodes at random and false

positive nodes biased.

Figure 22: Degree distribution for false positive nodes biased at each error
rate.

60% of error). If one would expect an increase of the clustering coefficient
due to the enclosure of the connected triples that will consequently become
triangles, the results suggest that the opposite is actually happening. Namely,
selecting two unconnected nodes at random the probability to chose nodes
having at least a neighbor in common is lower than the probability to find
two completely unrelated nodes.
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Eventually, also the degree distribution obtained is pretty much identical
to the one we obtain in “false positive nodes at random”. A more Poisson-like
degree distribution is indeed present.

6.1.11 False positive edges - Degree and Revenue biases

The perturbed graphs become non-assortative (�70% and �120% respec-
tively) and the average distance, as well as the clustering coefficient, decrease
by 60� 70%.

Regarding the Spearman correlation results in Figure 23a and Figure 23b,
degree centrality behaves very similar in both biased cases. Betweenness and
harmonic centrality are more stable when the bias is applied towards high
degree companies instead of high revenue ones. In particular, in the first
case (see Figure 23a) they both behave very similarly (apart from negligible
differences), while in the latter (see Figure 23b) harmonic centrality is more
unstable than betweenness centrality.

(a) Spearman correlations for false

positive edges with bias towards high

degree nodes.

(b) Spearman correlations for false

positive edges with bias towards high

revenue companies.

Figure 23: Spearman correlation of degree centrality, betweenness centrality
and harmonic centrality for false positive edges biased towards high degree

nodes (a) and high revenue nodes (b).

6.1.12 False aggregation - Random

We forthwith notice how the density increases by a remarkable 500% (see
Figure 24). The reason for this is given by the nature of the error scenario:
we select two different nodes (one to maintain and one to remove) and we
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then connect all the neighbors of the node to remove to the one to keep,
avoiding self-loops. At the end we delete all possible parallel edges.

Let us explain the change in density with an example. Let us start from
the Italian giant component, which has 4, 483 nodes and 12, 517 edges. Imag-
ine then to aggregate the 60% of the nodes, which will let the number of nodes
decrease by 60%, going from 4, 483 to 1, 794. Now, in the best case scenario
we will leave the number of edges unchanged at 12, 517. Computing then
the density one can easily see how this has grown from 0.0012 to 0.00778,
reporting an increase of about 548%. Deleting parallel edges at the end of
the process, we generally cut off a few edges, lowering the density from its
maximum possible value.

Looking now at the global clustering coefficient changes we see how it de-
creases proportionally to the error rates. This means that at each error rate
we remove the relative percentage of triangles in the network, leaving the
numbers of connected triples unchanged. Eventually, the average distance
decreases as expected.

6.1.13 False aggregation - Degree bias

The behavior of the global measures in this biased case is very similar to the
random one, but the differences end there. Looking at the results for the
Spearman correlation reported in Figure 25a and Figure 25b, we see how the
ranking of the three errors decrease almost linearly. There is no correlation
between the rankings in the original network and in the perturbed network
at 60% of error.

6.1.14 False disaggregation - Random

Looking at the results in Figure 26 and Figure 27a, we see how this error sce-
nario is definitely the one that leaves the perturbed network more similar to
the original. We register only negligible changes in the clustering coefficient,
average distance and assortativity coefficient. Almost perfect Spearman cor-
relations are present.

6.1.15 False disaggregation - Degree bias

Introducing a bias towards high degree companies, the situation does not
change much. We see an almost linear decrease in the density from 0.0012
to 0.005, the global clustering coefficient decreases up to �25% at 60% of
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Figure 24: Measure changes under false aggregation at random.

error, the average distance increases up to 12% and the assortativity coef-
ficient remains pretty stable apart from some negligible changes. The same
holds for the Spearman correlation results in Figure 27b, which, apart from
only negligible differences are identical to the ones obtained in the previous
random error scenario.

Nodes Edges Nodes Gc Edges Gc # of components

FD 7,172 12,517 5,009 (69.84%) 12,294 (98.2%) 199
FDB 7,172 12,517 5,403 (75.33%) 12,156 (97.11%) 152

Table 10: Size of the perturbed networks under false disaggregation random
and biased at 60% of error. The percentages reported are relative to the

first and second column of the table.
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(a) Spearman correlations for false

aggregation at random.

(b) Spearman correlations for false

aggregation with bias towards high

degree nodes

Figure 25: Spearman correlation of degree centrality, betweenness centrality
and harmonic centrality for false aggregation at random (a) and biased

towards high degree nodes (b).

6.1.16 Community structure results

Here we present the variation of information results computed on the com-
munity structure of G and H, as explained in Section 5.4.2.

Looking at the values presented in Table 11 we see how for the majority of
the error scenarios the values are distributed following a logarithmic curve.
The results are very much consistent with the ones found in Section 6.1,
namely: false aggregation disrupts G very aggressively, making G and H
look almost completely different. Node addition, edge addition and edge re-
moval act on G in a generally fair way. Node removal and node splitting
maintain all the properties of G pretty much throughout all the error rates.

This trend is indeed maintained in Table 11: the variation of information
computed under the false aggregation error scenarios at 60% of error present
values of 0.69 and 0.78. The two community structures are almost completely
different. Despite this, all the other results computed at 60% of error have
values in the range 0.13� 0.47. For this network, its community structure is
generally preserved even under poor data quality conditions.
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Figure 26: Measure changes under false disaggregation at random.

5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60%

FNNR 0.09 0.12 0.14 0.17 0.19 0.21 0.23 0.24 0.26 0.27 0.28 0.30
FPER 0.10 0.16 0.20 0.22 0.24 0.26 0.28 0.30 0.30 0.32 0.33 0.35
FNER 0.09 0.12 0.16 0.19 0.23 0.25 0.29 0.30 0.32 0.34 0.36 0.38
FNN 0.10 0.14 0.17 0.20 0.23 0.24 0.26 0.27 0.29 0.30 0.32 0.32
FPN 0.18 0.25 0.30 0.32 0.36 0.38 0.40 0.43 0.43 0.45 0.46 0.47
FNE 0.10 0.14 0.17 0.21 0.24 0.26 0.29 0.32 0.34 0.35 0.38 0.39
FPE 0.15 0.22 0.27 0.31 0.32 0.35 0.36 0.38 0.39 0.40 0.41 0.42
FA 0.22 0.32 0.38 0.43 0.48 0.52 0.58 0.61 0.63 0.65 0.68 0.69
FD 0.03 0.06 0.07 0.08 0.10 0.10 0.10 0.12 0.12 0.12 0.13 0.13
FNNB 0.07 0.09 0.11 0.12 0.14 0.16 0.17 0.19 0.19 0.20 0.21 0.23
FPNB 0.11 0.17 0.21 0.23 0.25 0.30 0.31 0.32 0.35 0.36 0.38 0.40
FNEB 0.09 0.12 0.14 0.17 0.20 0.22 0.23 0.25 0.27 0.28 0.31 0.33
FPEB 0.10 0.14 0.17 0.19 0.21 0.23 0.26 0.27 0.29 0.29 0.30 0.32
FAB 0.25 0.36 0.43 0.50 0.55 0.63 0.64 0.70 0.72 0.74 0.76 0.78
FDB 0.04 0.07 0.08 0.09 0.10 0.11 0.12 0.12 0.13 0.14 0.14 0.16

Table 11: Variation of information results normalized to [0, 1] for
communities in the Italian network’s giant component.
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(a) Spearman correlations for false

disaggregation at random.

(b) Spearman correlations for false

disaggregation with bias towards high

degree nodes.

Figure 27: Spearman correlation of degree centrality, betweenness centrality
and harmonic centrality for false disaggregation at random and biased

towards high degree nodes.

6.2 Country resilience

Where as for the Italian giant component we presented a detailed analysis
of the results obtained, from this point on we will abstract away. Here we
propose an easily and effective way to visualize and understand how resilient
a certain network is under the data quality artifacts. Indeed, we will present
the results of the Italian, Danish, UK, Scandinavian, Dutch and Spanish
corporate network’s giant components by means of what we called a resilience
matrix. Before entering in the details of such a matrix, in Table 12, Figure 28
and Figure 29 we present some of the topological features of the networks we
analyze. Eventually, the names of the networks have been encoded by means
of the ISO 3166-1 alpha-2 codes as follows:

• IT: Italian network

• DK: Danish network

• UK: United Kingdom network

• NL: Dutch network

• ES: Spanish networks
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We will refer to the Scandinavian network — consisting of Denmark, Norway,
Sweden, Finland and Iceland together — with the symbol “SCA”.

IT DK UK NL ES SCA

Nodes 4,483 4,517 32,962 6,083 11,102 25,765
Edges 12,517 23,381 366,381 50,107 87,907 146,166

Density 0.0012 0.0022 0.00067 0.0027 0.0014 0.0004
Global c.c. 0.524 0.089 0.14 0.13 0.14 0.109
Avg. Dist 7.56 5.61 6.62 7.61 6.29 6.66

Assort. coeff. 0.29 0.40 0.87 0.78 0.87 0.63

Table 12: Topological features of the Italian, Danish, UK, Dutch, Spanish
and Scandinavian networks.
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(a) Degree distribution of the IT

network

(b) Degree distribution of the DK

network

(c) Degree distribution of the UK

network

(d) Degree distribution of the NL

network

(e) Degree distribution of the ES

network

(f) Degree distribution of the SCA

network

Figure 28: Degree distributions of the network’s giant components analyzed.
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(a) Distance distribution of the IT

network

(b) Distance distribution of the DK

network

(c) Distance distribution of the UK

network

(d) Distance distribution of the NL

network

(e) Distance distribution of the ES

network

(f) Distance distribution of the SCA

network

Figure 29: Distance distributions of the networks analyzed.
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To understand whether and how these features play a role in the resilience,
to study what error scenarios are more (or less) aggressive and to finally
understand whether the networks still maintain their integrity under poor
data quality, in Table 13 and Table 14 we present the resilience matrix of
the networks.

We define the resilience matrix as a matrix describing how “different” a
perturbed network H is from its original version G when 60% of error is
introduced.

The concept of “difference” is given by the measures used before: Spear-
man correlation values for the degree, betweenness and harmonic centrality,
KS test on the distributions, variation of information on the community
structures and finally the density, global clustering coefficient, average dis-
tance and assortativity coefficient percentages increase/decrease. For sake of
clarity and simplicity we represent their respective values using the following
notation:

• Spearman correlation

• ! (0.66; 1]

• ! (0.33; 0.66]

• ! [0; 0.33]

• VI & KS 2 sample test

• ! [0; 0.33]

• ! (0.33; 0.66]

• ! (0.66; 1]

• Percentages increase

N ! Increase in [0%� 33%]
N ! Increase in (33%� 66%]
N ! Increase in (66%� 100%]
N ! Increase more than +100%

• Percentages decrease

H ! Decrease in [0%� 33%]
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H ! Decrease in (33%� 66%]
H ! Decrease in (66%� 100%]
H ! Decrease more than 100%
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Network Deg.
Centr

Betw.
Centr

Harm.
Centr

VI KS
Deg

KS
Dist

Density
(%)

Global
c.c.
(%)

Avg.
Dist.
(%)

Assort.
coeff.
(%)

FNNR
IT

• • • • • • N H H H
DK

• • • • • • H N N N
UK

• • • • • • N N N N

FPER
IT

• • • • • • N H H H
DK

• • • • • • N H H H
UK

• • • • • • N H H H

FNER
IT

• • • • • • H N N N
DK

• • • • • • H H H H
UK

• • • • • • H H N H

FNN
IT

• • • • • • H N H N
DK

• • • • • • H H N N
UK

• • • • • • H H N H

FPN
IT

• • • • • • N H H H
DK

• • • • • • N H H H
UK

• • • • • • N H H H

FNE
IT

• • • • • • H H H N
DK

• • • • • • H H H H
UK

• • • • • • H H N N

FPE
IT

• • • • • • N H H H
DK

• • • • • • N H H H
UK

• • • • • • N H H H

FA
IT

• • • • • • N H H H
DK

• • • • • • N H H H
UK

• • • • • • N H H H

FD
IT

• • • • • • H H N H
DK

• • • • • • H H N H
UK

• • • • • • H H N H

FNNB
IT

• • • • • • N N H N
DK

• • • • • • N N H N
UK

• • • • • • N N H N

FPNB
IT

• • • • • • N H H H
DK

• • • • • • N H H H
UK

• • • • • • N H H H

FNEB
IT

• • • • • • H H N H
DK

• • • • • • H H N H
UK

• • • • • • H H N H

FPEB
IT

• • • • • • N H H H
DK

• • • • • • N H H H
UK

• • • • • • N H H H

FAB
IT

• • • • • • N H H H
DK

• • • • • • N H H H
UK

• • • • • • N H H H

FDB
IT

• • • • • • H H N H
DK

• • • • • • H H N H
UK

• • • • • • H H N H

Table 13: Resilience matrix for the Italian, Danish and UK network’s giant
components.



Network Deg.
Centr

Betw.
Centr

Harm.
Centr

Var.
Info.

KS
Deg

KS
Dist

Density
(%)

Global
c.c.
(%)

Avg.
Dist.
(%)

Assort.
coeff.
(%)

FNNR
NL

• • • • • • N N N H
ES

• • • • • • N N N H
SCA

• • • • • • N N N N

FPER
NL

• • • • • • N H H H
ES

• • • • • • N H H H
SCA

• • • • • • N H H H

FNER
NL

• • • • • • H H N H
ES

• • • • • • H H H H
SCA

• • • • • • H H H N

FNN
NL

• • • • • • H H N H
ES

• • • • • • H H N H
SCA

• • • • • • H H N N

FPN
NL

• • • • • • N H H H
ES

• • • • • • N H H H
SCA

• • • • • • N H H H

FNE
NL

• • • • • • H H H H
ES

• • • • • • H H H H
SCA

• • • • • • H H H H

FPE
NL

• • • • • • N H H H
ES

• • • • • • N H H H
SCA

• • • • • • N H H H

FA
NL

• • • • • • N H H H
ES

• • • • • • N H H H
SCA

• • • • • • N H H H

FD
NL

• • • • • • H H N H
ES

• • • • • • H H N H
SCA

• • • • • • H H N H

FNNB
NL

• • • • • • N N N H
ES

• • • • • • N N H H
SCA

• • • • • • N N H N

FPNB
NL

• • • • • • N H H H
ES

• • • • • • N H H H
SCA

• • • • • • N H H H

FNEB
NL

• • • • • • H H N H
ES

• • • • • • H H N H
SCA

• • • • • • H H N H

FPEB
NL

• • • • • • N H H H
ES

• • • • • • N H H H
SCA

• • • • • • N H H H

FAB
NL

• • • • • • N H H H
ES

• • • • • • N H H H
SCA

• • • • • • N H H H

FDB
NL

• • • • • • H H N H
ES

• • • • • • H H N H
SCA

• • • • • • H H N H

Table 14: Resilience matrix for the Dutch, Spanish and Scandinavian
network’s giant components.



Even though the set of networks used is pretty heterogeneous (in terms
of network’s properties), in Table 13 and Table 14 a strong heterogeneity in
the results is not present. All of them reacted mostly the same, given an
error scenario. Namely, given a certain error scenario is very difficult to see
different networks reacting in opposite ways.

In order to better understand which scenarios disrupt the networks the
most, from the latter two tables we decide to generate Table 15 obtained by
summing the results of every network under each artifact.

Deg.
Centr

Betw.
Centr

Harm.
Centr

Var.
Info.

KS
Deg

KS
Dist

Density
(%)

Global
c.c. (%)

Avg.
Dist. (%)

Assort.
coeff.
(%)

FNNR 6• 6• 3•3• 4•2• 4•2• 3•3• 4N1H1N 5N1H 3N2N1H 3N3H
FNN 6• 6• 3•3• 3•3• 3•3• 3•3• 6H 5H1N 4N1H1N 3N3N
FNNB 6• 6• 6• 6• 6• 6• 6N 6N 5H1N 3N2H1N
FPER 6• 4•2• 3•2•1• 5•1• 5•1• 6• 6N 5H1H 6H 5H1H
FPE 6• 5•1• 4•2• 5•1• 6• 5•1• 6N 5H1H 6H 6H
FPEB 6• 4•1•1• 4•1•1• 6• 6• 6• 6N 3H3H 6H 4H2H
FNER 6• 3•3• 5•1• 5•1• 3•3• 6• 6H 5H1N 3N3H 4H1N1N
FNE 6• 3•3• 4•1•1• 5•1• 3•3• 6• 6H 6H 5H1N 4H2N
FNEB 6• 6• 4•2• 5•1• 6• 4•2• 6H 6H 4N1N1N 3H3H
FPN 6• 5•1• 6• 5•1• 6• 6• 6N 3H3H 6H 6H
FPNB 6• 5•1• 5•1• 4•2• 6• 6• 6N 6H 6H 4H2H
FA 6• 4•2• 4•2• 4•2• 3•3• 5•1• 6N 6H 6H 4H2H
FAB 6• 6• 6• 5•1• 5•1• 6• 6N 6H 6H 5H1H
FD 6• 6• 6• 6• 6• 6• 5H1H 5H1H 6N 6H
FDB 6• 6• 6• 6• 6• 6• 5H1H 6H 6N 6H

Table 15: Resilience matrix visualization obtained by clustering the results
of all the six networks together.

From Table 15 some trends seem to be present. In particular, all the
“false negative nodes” artifacts at 60% only bear minor changes to H: the
difference between G and H is very subtle. The same happens under the
“false disaggregation" artifacts, where the networks maintain almost all their
properties perfectly intact.

Biased artifacts are a bit less aggressive on G than the revenue biased
and the random ones, even if the differences are very minor.

“False positive edges”, “false negative edges” and “false positive nodes”
are pretty much identically aggressive. Even though the way in which they
disrupt the networks is diverse, they all do not preserve the features of the
original graph G as much as the aforementioned two. Notice that the density
changes in “false positive edges”, “false negative edges” are trivial: removing
60% of the edges, the density decreases of 60%.

The community structure, as well as most of the other network measures,
under “false positive edges”, “false negative edges” and “false positive nodes”,
might look slightly different from the original one. Under the three afore-



Deg.
Centr

Betw.
Centr

Harm.
Centr

Var.
Info.

KS
Deg

KS
Dist

Density
(%)

Global
c.c. (%)

Avg.
Dist. (%)

Assort.
coeff.
(%)

Total 78•
6•
6•

37•
31•
22•

40•
35•
15•

43•
40•
7•

48•
36•
6•

42•
40•
8•

28H 19N
18N 16N
8H 1H

35 H 29 H
13 N 13 H

42H 27N
15H 5N 1N

39H 22H
12N 11H
4N 1N 1H

Table 16: Number of green, orange, red and black dots or triangles per
measure.

mentioned scenarios the variation of information is most of the times in the
range of (0.33, 0.66]. The degree biased case, instead, at least for “false posi-
tive edges” and “false negative edges”, preserves the community structure of
G almost perfectly.

Our results finally suggest that “false aggregation at random” alters G
more than other error scenarios but still much less than its biased version,
which makes the original network G almost unrecognizable.

Focusing now on the resilience of network measures, looking at Table 16
we see how degree centrality is far more resistant than betweenness and
harmonic centrality. This results is based on the fact that measures like
betweenness and harmonic, for how they are defined, are more sensitive to
changes. In particular, whereas degree centrality of a node will change if
neighbors will be removed or added, his betweenness and harmonic central-
ity will suffers from less local changes. The latter are pretty dependent on
the error scenario: none of the two is significantly more resistant than the
other.

6.3 Discussion

We observe less robustness on “false negative edges” scenarios with respect
to other “false negative nodes”. As explained by Wang et al. (2012) removing
nodes at random implies removing low-degree nodes while removing edges
at random one removes edges belonging to high-degree nodes. Knowing that
these latter usually represent the core of the structure of the network, de-
creasing their degree can significantly compromise the whole system.

Where both Wang et al. (2012) and Borgatti et al. (2006) suggest a sim-
ilar robustness of the centrality measures to the artifacts, our results show
that this is not the case. Where betweenness and harmonic react almost
completely equally, degree centrality is much more robust. Whereas degree
centrality only suffers from local changes, betweenness and harmonic central-
ity of a node may be affected even if very distant changes in the network are

67



reported.
The same happens to most of the global measures. Their behavior is

in some sense predictable. Looking at Table 15, we see how the density,
global clustering coefficient and average distance increase (or decrease) sim-
ilarly, given the same artifact. Knowing the error scenario, thus, it should
be possible to a-priori predict their range of increase/decrease. Eventually,
notice how some of the density changes are trivial: removing 60% of edges,
for instance, always lowers the density of 60%. An increase of 60% is instead
expected when 60% of edges is added.

Where in Wang et al. (2012), “false aggregation” the results were between
“false negative nodes” and “false positive edges” results, here is not the case.
Even though “false aggregation” involves removing a node A and attaching
A’s edges to another node B, its results are worse than “false negative nodes”
and “false positive edges”. We attribute this behavior to the combined effect
of both artifacts. In the long term, they tend to line up the degree distribu-
tion replacing medium-low (or medium-high in the biased case) degree nodes
with high degree ones.

“False disaggregation”, which involves removing a certain number of edges
from A to attach them to a new node B, happens to be the least disruptive
of all. The whole structure of the graph is maintained, as supported by the
more global measures in Table 15. This was not the case in Wang et al.
(2012), where there results were between “false negative edges” and “false
positive nodes” results.

6.4 Advice for corporate networks researchers

Studying corporate board networks involves making decisions. Depending
on the kind of conclusions one wants to derive from the network, both the
selection of the dataset and the network’s measures are fundamental. Let us
imagine a scenario in which more corporate datasets are available and each
of them has different data quality issues. Now, knowing how networks react
to a certain error scenarios gives the possibility to help make the decision of
which dataset and measures is convenient to use. In particular:

• When companies that have split into two are still present as a single
company (“false aggregation”), the analysis may be not reliable;

• A-priori avoid betweenness and harmonic centrality If there are sus-
pects of poor data quality. Whether possible, focus on the degree in-
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stead, which is more robust;

• Community analysis is barely influenced by most of the artifacts. Even
if the data is imperfect, in most of the cases the communities remain
reliable.

• Consider the observed global measures in an interval. For instance, an-
alyzing the density one can simply increase (or decrease) its observed
value by the percentages reported in Table 15, so to have a more precise
measurement. The same holds for global clustering coefficient and av-
erage distance. Let us suppose to study the global clustering coefficient
c in a network generated from a dataset having missing companies. To
a more precise measurement of c, which takes into account the missing
companies, from the resilience matrix in Table 15, one can derive that
considering c in an interval [�33%, c] is safer.

Overall, our results suggest that even if corporate data is imperfect, the
approximation between real and observed values is high enough to guarantee
significant studies. We consider corporate board interlock networks, or at
least the ones considered in this work, resilient enough to still be studied
under most data quality issues.
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7 Conclusion

In this thesis we extended previous work on the impact of imperfect data
in network analysis. We concentrated our efforts on corporate board inter-
lock networks. We tested the robustness of six networks and the changes in
their global metrics, division into communities, distributions and centrality
measures under fifteen artifacts. We proposed an easy and effective way to
describes how different a perturbed network H is from its original version G,
which we called resilience matrix. From this matrix we observed how com-
munity analysis is barely influence by the artifacts and how degree centrality
is more robust than betweenness and harmonic. Furthermore, we have shown
how the matrix help corporate network scientists to a priori determine the
range of increase/decrease of most of the global measures considered in this
work. We concluded this work suggesting that the resilience of corporate
board interlock networks is high enough to still study them even if the data
quality artifacts are present.

7.1 Future work

Progress can be made analyzing the effect of mixed artifacts on networks.
Studying the robustness of several networks under “false negative nodes” com-
bined with “false aggregation”, for instance, might be a further step towards
more realistic artifacts. Finally, in the particular case of corporate board
interlock networks, given their weighted nature (discussed in Section 4), un-
derstanding how weighted networks react to imperfect data may be an im-
portant and interesting future task.
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