
Universiteit Leiden

Opleiding Informatica

DDoS Detection

using time-series analysis

Name: Pavlos Platanias

Date: August 26, 2016

1st supervisor: Dr. Wojtek Kowalczyk
2nd supervisor: Dr. Andre Deutz

MASTER’S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

i

Acknowledgments

I would like to thank my first thesis supervisor Dr. Wojtek Kowalczyk for his constant guidance

during this undertaking. He made himself available for questions and assistance very frequently,

and always provided good insight and perspective on my work. His patient and constructive style

of feedback was invaluable in helping me complete the work.

My sincere thanks also goes to Dr. Andre Deutz for his willingness to co-supervise, advise and

provide feedback on my work on short notice.

I also want to thank my initial internship supervisor Barry Weimes of MSS Department of Fox-IT

for his enthusiastic encouragement and help with the starting phases of my work. He made sure to

put my interests first and mediate between me and the company so that my work could proceed as

planned.

Thanks are also due to my second internship supervisor Edwin van Vliet also of MSS Department

of Fox-IT. His focused perspective on how to bring my thesis to completion was pivotal in helping

me finishing my research.

Lastly, I would like to thank Christian Prickaerts of MSS Department of Fox-IT for being extremely

helpful, offering advice and support during the course of my internship.

ii

Abstract

As more and more people worldwide make use of services provided through the Internet, the

damage caused by attacks aiming to disrupt these services keeps increasing. One such type of

attack is the DoS (Denial of Service) attack, in which an attacker attempts to keep the victim’s

resources such as bandwidth, memory, CPU cycles or number of connections occupied and degrade

the experience of legitimate users communicating with the victim. In this work, we develop a

system to detect such attacks by creating forecast models of network traffic features using time-

series algorithms, and detecting anomalies by tracking outlying values.

iii

Contents

Acknowledgments i

Abstract ii

1 Introduction 1

2 DDoS 3

2.1 Properties of DoS . 4

2.1.1 Strategy . 4

2.1.2 Distribution . 4

2.1.3 Traceability . 4

2.1.4 Reflectivity . 6

2.1.5 Amplification . 6

3 Related work 7

4 Our Approach 10

4.1 Data Preprocessing . 12

4.1.1 Aguri . 13

4.1.1.1 Output types . 13

4.1.1.2 Aggregation . 14

4.2 Features . 15

4.3 Time-series . 18

4.3.1 ARIMA . 18

4.3.2 Seasonal ARIMA . 20

iv

4.3.3 Exponential Smoothing . 20

4.3.4 STL Decomposition . 21

4.3.5 Prediction Intervals . 22

4.3.6 Our Approach . 23

4.4 Anomaly Attack Classification . 24

5 Experiments 27

5.1 Datasets . 27

5.1.1 ICSX-UNB 2012 . 28

5.1.2 GWA . 28

5.1.3 WIDE backbone . 28

5.2 Feature Visualization . 29

5.2.1 Visualizations of ICSX dataset . 29

5.2.2 Visualizations of GWA dataset . 30

5.3 Time-series Accuracy . 31

5.3.1 Experiment setup . 32

5.3.2 Accuracy Metrics . 33

5.3.3 Many-steps ahead . 35

5.3.4 One-step ahead . 36

5.4 Implementation and performance . 36

5.4.1 Implementation . 36

5.4.2 Parameters and thresholds . 37

5.4.2.1 Aguri . 37

5.4.2.2 Preprocessing . 37

5.4.2.3 Model Creation . 37

5.4.2.4 Attack Detection . 37

5.4.3 Performance . 38

5.4.3.1 Aguri batch parsing of PCAP file 38

5.4.3.2 Aguri live parsing . 39

5.4.3.3 parsing of Aguri log files into features 39

v

5.4.3.4 building a weekly model for all features 39

5.4.3.5 outlier detection on incoming data 40

6 Conclusions 42

6.1 Issues . 42

6.1.1 Aggregation . 42

6.1.2 Feature Selection . 43

6.1.3 Dataset Selection . 43

6.2 Future Work . 44

Bibliography 45

A Appendix A 50

vi

List of Figures

2.1 Types of Denial of Service attacks . 5

4.1 Traffic monitoring location in a typical network 11

4.2 DDoS Detection Platform . 12

4.3 Default Aguri output . 14

4.4 Verbose Aguri output . 14

4.5 Patricia Tree storing IP addresses . 16

4.6 Network Traffic from WIDE Dataset . 19

4.7 STL Decomposition of 5 weeks of traffic from WIDE dataset 22

4.8 Weekly forecast of bytes per second using 1 month of historic data. 24

4.9 Accuracy of weekly forecast. 25

4.10 One-step ahead forecast using new values as input. 26

5.1 ICSX - byte and packet traffic. 30

5.2 ICSX - source, destination entropy . 30

5.3 ICSX - TCP and UDP protocols . 31

5.4 ICSX - Well known ports . 31

5.5 GWA - Traffic in bytes and packets . 32

5.6 GWA - Traffic during weekdays . 33

5.7 GWA - Source entropy of various slices of GWA dataset 34

vii

List of Tables

3.1 Features and Methods used in DDoS Detection literature 8

4.1 Typical IP Flow fields . 13

4.2 Taxonomy of ETS models . 21

4.3 ETS models . 21

4.4 Common prediction interval values . 23

5.1 Time-series accuracy metrics for 1-week-ahead forecast of WIDE dataset features. 35

5.2 Time-series accuracy metrics for one-step ahead forecast of WIDE dataset features. 36

5.3 Weekly model generation time . 40

5.4 Outlier detection performance . 41

1

Chapter 1

Introduction

The amount of traffic going through the Internet has been growing steadily over the last decade,

as the capabilities of its infrastructure to generate and deliver large amounts of information expands.

With the percentage of Internet users in the developed world reaching 78% [1], the amount of

services provided through it has also grown. This growth however has made those services an

attractive target for malicious attacks aiming to disrupt them in order to inflict financial damage,

extortion, activism, or simply an outage of the service.

DDoS (Distributed Denial of Service) attacks in particular have been growing in popularity

over the last years. This type of attack aims to disrupt an internet service by flooding it with traffic,

taxing its capabilities to respond and preventing legitimate users from accessing it. Damage by such

attacks [2] is caused by a pause in profit generating services, productivity loss, customer loss and

disaster recovery costs. These damages are surveyed [3] to be on average over $40.000 per hour,

making an average DDoS that lasts 6-24 hours cost over $500.000, without accounting for customer

loss or secondary malware infections.

Detecting such attacks fast is critical in preventing them from doing extended damage to the

targeted services. A DDoS attack will eventually make itself known by achieving its aim of taking

a service down, but it is possible to detect and takes measures against it before this happens during

the ramp up phase of the attack. It is also worth noting that a DDoS attack might not always aim

to completely shut down a service but instead try to deteriorate it by occupying important system

resources. These attacks won’t announce themselves and if left undetected, can continue to cause

damage for an indefinite amount of time. Also, DDoS attacks are often used as a diversion in order

2

to either test a victim’s defences, hide the delivery of other malicious attacks or conceal the theft

of the victim’s data. Such attacks have been surveyed to make up 26% of total DDoS attacks in

2016 [4].

Unfortunately, the amount of data that has to be monitored in order to detect a DDoS attack when

it starts makes manual inspection an impossible task. Tools are necessary to help human analysts

sift through the data, summarize trends and detect attacks automatically. This is not a trivial task,

as neither attacks or normal network traffic always follow the same patterns. Traffic peaks, daily

and weekly patterns, usage changes, all affect the volume and structure of traffic. In addition,

attacks themselves do not remain static as new vulnerabilities and techniques are discovered to

cause damage. An attack detection system should be able to differentiate between those legitimate

changes and malicious attacks. Raw traffic data is unsuitable as input to such a system however.

Data must be preprocessed, structured, metrics and features extracted from it, and the features must

be suitable for classification of attacks. The amount of data also creates problems in storing historic

data and processing new data fast enough for results to be relevant.

Our goal in this thesis is to create a platform for such a system. Our platform takes advantage

of historic traffic data to create a seasonal model of network traffic and detects unusual patterns that

don’t conform to that model. We use network flow data collected by the Aguri traffic aggregator

program [5] and construct relevant features such as bytes per second, traffic per protocol, IP address

distribution entropy that can characterize and differentiate between normal and anomalous traffic.

We then treat the values of those features as time-series and build forecast models for them with

help of available algorithms, in order to identify DDoS attacks. As new traffic arrives, we use it

as input to our pre-calculated weekly model and create new one-point-ahead forecasts, and identify

anomalies according to how many standard deviations they fall away from the predicted mean, for

every feature. We classify malicious traffic based on the anomaly vector across all features.

This thesis is organized as follows. We give an overview of DDoS attacks, their mechanics and

characteristics in chapter 2. In chapter 3, we survey related work in the field of DDoS detection.

In Section 4, we give an general overview of our approach followed by more details for each stage

of detection. In chapter 5 we describe our datasets and experiments while chapter 6 contains our

conclusion.

3

Chapter 2

DDoS

A DoS(Denial of Service) [6] attack is an attack that aims to stop or degrade any services that a

victim provides over a network by consuming resources intended for legitimate users. It typically at-

tacks network entities by saturating the link between the victim and the Internet with non-legitimate

traffic, but it can also target different kinds of resources such as CPU time or amount of connections

by overwhelming a particular network port or application service instead. A DDoS(Distributed De-

nial of Service) is a distributed, more frequently encountered version of the attack in which many

attackers target the same victim simultaneously.

What makes these attacks particularly dangerous is the relative ease of execution, the difficulty

of identifying the attacker and the difficulty of mitigating it. There are simple programs that can be

used to execute a DoS attack against a target without special technical knowledge [7] and malicious

entities offering such attacks as a service online for a typical cost of a few dollars [8]. The nature

of the attack makes identifying the attacker a hard goal as well [9–11], since the IP addresses that

malicious traffic originates from are either unwilling accomplices in the form of infected computers,

or entirely fake. Lastly, mitigating a DoS attack is also a hard task, as it requires both the identifi-

cation of malicious traffic and a scalable way of eliminating it. DDoS mitigation is typically done

at the ISP (Internet Service Provider) or CDN (Content Delivery Network) level, since it requires

resources and information the victim doesn’t usually posses.

In the following sections we will give an overview of different types of DoS attacks and how

they work.

4

2.1 Properties of DoS

2.1.1 Strategy

One of the main characteristics of a DoS attack is the strategy by which it intends to achieve its

goals. We present some of the common strategies here, while a more thorough taxonomy can be

found in [6].

Volumetric attacks are simple in that they rely on pure numbers to overwhelm the victim. They

generate and send massive amounts of packets to the victim and using up the bandwidth of the net-

work line between it and the Internet. The number of packets also stresses systems such as firewalls,

end-routers, network cards and other parts of the victim infrastructure that need to process individ-

ual packets. Due to their simplicity and effectiveness, volumetric attacks are the most common form

of DoS attack encountered.

Application-Layer attacks try to achieve the same result using less traffic. Instead of relying on

brute force, they waste resources by exploiting weaknesses in protocols. An HTTP Flood attack for

example sends a comparatively small amount of HTTP requests, but each request takes much more

processing power to reply to than processing a network-layer packet of a volumetric attack. Such

attacks that use particularly low volume of packets are often characterized as ’low-rate DoS’.

2.1.2 Distribution

A DDoS attack is a distributed version of a regular DoS attack. In the DoS variant, a single

attacker uses a single device and Internet connection to transmit malicious traffic and the magnitude

of the attack is limited by the attacker’s bandwidth. In the DDoS variant, a single attacker employs

many devices distributed across the Internet which amplifies the magnitude of the attack. Those

devices usually belong to legitimate users but have been compromised by the attacker and are under

his control. Collectively, these clusters of infected devices are called botnets.

2.1.3 Traceability

The traceability of an attack varies depending on its type. A DoS attack from a single attacker

employing IP spoofing to hide his identity is very hard to trace at the victim level. Existing traceback

methods require access to the network infrastructure between the victim and the attacker and are

5

Figure 2.1. Types of Denial of Service attacks

used at the ISP level. To describe the traceability of DDoS attacks, a distinction must be made

between tracing the devices transmitting attacking traffic and tracing the perpetrator of the attack.

Tracing the attacking devices works in the same way as with the DoS variant, but since the attacker

does not own the attacking devices but is only controlling them through a malicious infection tracing

his identity would require access to an infected machine. [12]

6

2.1.4 Reflectivity

An attack can be said to have reflective properties [13] if it employs legitimate third party devices

to send attack traffic to the victim by sending the reflector device a request with the source set to

the victim’s IP address. Each reflector then replies back to the victim, potentially overwhelming it

with responses to requests it didn’t make. Note that reflector devices do not need to be compromised

unlike the devices that make up DDoS’s botnets, and can be used in conjunction with them to further

amplify an attack.

2.1.5 Amplification

In reflective DoS attacks, the amplification ratio is defined as the ratio of the size of each packet

the attacker sends for each packet the victim receives. A greater amplification ratio allows the

attacker to use fewer resources of his own while taking up more of the victim’s. Amplification is

usually achieved by exploiting network protocols whose answers can be larger in size than their

respective request. The amplification ratio of a DNS lookup request can be as big as 50x and 200-

1000x for a CHARGEN request.

7

Chapter 3

Related work

There has been extensive research in using statistical classification, pattern recognition or learn-

ing techniques for the purpose of anomaly detection on network traffic data. In this section, we give

a brief overview of the important literature in the subject.

In [14] Principal Component Analysis is used to separate network traffic into normal and anoma-

lous components. Their method takes advantage of data from multiple network link by finding

correlations in their respective data. In [15] sample entropy is used as a feature describing the distri-

bution of unique source and destination IP addresses, and a clustering algorithm to detect anomalies

such as DoS, DDoS and port-scan attacks. In [16] the benefits of entropy based features are further

investigated, and it is shown that port and address distribution entropy features do not perform well

in scan detection, but are limited to detecting volume anomalies such as DDoS attacks. In [17]

network traffic is modelled as a time-series that displays LRD (Long-Range Dependence) charac-

teristics and compare its autocorrelation and Fourier transform to detect DDoS flood attacks. [18]

also rely on the LRD characteristic of network traffic and use a wavelet analysis to measure the dis-

similarity between incoming traffic patterns to identify DDoS attacks. However, its sliding windows

of 21 or 43 minutes for traffic pattern comparison make this method unsuitable for live detection.

In [19] the DFT (Discrete Fourier Transform) of the number of incoming packets is found to dif-

ferentiate between normal traffic and low-rate DDoS attacks with a response time fast enough to be

used as live detection. In [20] the averaged Hurst parameter of normal traffic, measured as a series

of the size of each incoming packet, is found to significantly differ from that of DDoS attack traf-

fic. In [21], the joint entropy between the number of IP flows and the number of incoming packets

8

Table 3.1. Features and Methods used in DDoS Detection literature

Paper Traffic data used to construct

features

Methods used

[15] source IP, destination IP, source

Port, destination Port

Entropy, Subspace, Clustering

[16] bytes in fixed interval Wavelet Transform

[17] bytes per packet Autocorrelation, Fourier Trans-

form

[14] flow level information Principal Component Analysis,

Subspace

[19] number of packets Fourier Transform

[20] bytes per packet Hurst Parameter

[21] number of packets, number of IP

flows

Joint Entropy Analysis,

[24] bytes per second, router CPU

utilization, packet drop counts,

packet header fields

Entropy, Time-series Forecast-

ing, Rule Based Detection, Clus-

tering

[22] packets per flow Entropy, Time-series Decompo-

sition

for windows of incoming traffi is used to detect both high and low rate DDoS attacks. [22] define

flow connection entropy as the entropy of the distribution of packet arrival probabilities and model

it as a time-series. They then use a decomposition method to separate it into trend, seasonal and

random components and detect anomalies such as DDoS attacks using a sliding window CUMSUM

algorithm on each of those components.

There is also research in the more practical matter of how to handle alerts produced by anomaly

detection systems described previously, or commercial ones already implemented. [23] take the ap-

proach of modelling the alerts themselves as a time-series and focusing on deviations from normal

alert flows as important anomalies. [24] propose a tiered approach to network traffic anomaly detec-

tion and filtering. Their initial detection stage uses time-series forecasting to model normal traffic

and catch outliers, then the focused detection stage relies a thresholding strategy for packet header

information.

The problem of finding anomalies in time-series data is not constrained to network traffic. Algo-

rithmic research has been done by [25] that introduces a new algorithm for finding most dissimilar

subsections of time-series among time-series data. [26] use a kernel matrix alignment method on

9

multivariate time series to detect and characterize pointwise and sub-series anomalies across all the

data flows. [27] work on medical alert time-series data and create a model based on ARIMA (Auto

Regressive Integrated Moving Average) forecasts to detect disease outbreaks.

Our own research uses many types of features of network traffic data discussed above, but our

data is aggregated first and turned into summaries, missing some information in the process but

preserving the overall structure. By combining entropy-based features for source and destination

address distribution with volume-based features such as port and protocol traffic amount, we attempt

to get a more general idea of the shape and structure of traffic and detect DDoS attacks that affect

that structure. We use time-series forecasting techniques to create weekly forecasts of each of our

features during normal traffic then track outliers that fall outside the expected values. By aggregating

the outlier alerts across the forecast models of all features and over time, we attempt to detect DDoS

attacks. While there exist many methods for modelling time series [28], in our paper we use only

elementary methods.

10

Chapter 4

Our Approach

In this thesis, we develop a platform to detect DDoS attacks in network traffic. We briefly

describe its workings in the following paragraphs, then elaborate on each subsystem in the following

sections.

We assume traffic is monitored and logged at an appropriate location in the victim network.

Selecting appropriate points is necessary in order for traffic to be descriptive. Traffic monitored

on a subnet deep inside the victim’s network will only describe the interaction of those particular

hosts with themselves and outside hosts, but traffic monitored very close to the border of the victim

network and the Internet will not be able to inspect encrypted VPN traffic. Choosing an appropriate

location also depends on the structure of the network and the nature of the attack the system is

attempting to detect. For DDoS attack detection, a listening point close to the connection of the

victim network with the outside world, as seen in Figure Figure 4.1, is a good place to monitor

traffic but individual network structure still needs to be taken into account. For this task of traffic

monitoring we use the Aguri [5] software tool which captures incoming traffic and aggregates it into

summaries, more details into which will be given in subsection 4.1.1. The hardware side of traffic

capturing is outside the scope of this thesis.

Our platform initially attempts to create a seasonal time-series model of network traffic features

such as bytes per second, sample entropy of IP addresses or specific protocol traffic. Distinguishing

between normal or anomalous traffic variations is the key idea behind our system, and since normal

traffic is affected by seasonal effects such as workday routine or weekends, those seasonal effects

need to be captured in our forecast models. To create a model that can capture those seasonalities,

11

Figure 4.1. Traffic monitoring location in a typical network

past data spanning multiple seasonal periods is required. In this case, our platform requires at least

2 to 4 weeks of Aguri traffic logs.

Once enough past data is acquired, a time-series model of traffic data can be created. We use

time-series forecasting techniques explained in section 4.3 to create weekly models for all the traffic

features we are monitoring. While the model creation is a fairly time-consuming process and the

resulting forecast is many-steps-ahead, it only needs to be done weekly. Then, accuracy can be

improved by passing new data to the existing models for one-step-ahead forecasting without the

need to recalculate model parameters.

As new traffic is captured, its features are extracted and compared against the model forecast

for that timeslot. Outliers falling outside the prediction intervals of the forecast are flagged and only

traffic falling inside the expected values is used as input to the models for one-step-ahead prediction.

Instead of the outlier values, we use pre-calculated weekly forecast values as input. This makes the

model more accurately follow incoming traffic while avoiding having the model calibrate itself to

12

expect outliers.

Outliers that span different features across multiple time periods are classified by the platform

as anomalies.

Figure 4.2. DDoS Detection Platform

4.1 Data Preprocessing

The first consideration in attempting to use network traffic data to detect DDoS is selecting

which parts of the data to actually use. Raw traffic data is comprised of a series of packets made

up of protocol headers and payload, both of which are dynamic and change depending on the type

of packet. While the headers of each protocol have consistent structure and information stored in

set fields, the payload can be anything from a bitstream, a url or a compressed image file. While

useful information for detecting attacks can be found in payloads, creating an algorithm that can

combine payload and header analysis is beyond the scope of this thesis. Information contained in

header fields such as TCP flags can be analysed much faster than payload, and given the primary

characteristic of DDoS attacks to produce enormous amounts of traffic, any DDoS detection system

has to be able to operate very fast on incoming packets otherwise the attack will incapacitate the

detection system as well as the targeted services. For this reason, we focus only on a small number

of packet attributes; its total length in bytes, protocol, source and destination IP addresses, source

13

and destination ports.

Table 4.1. Typical IP Flow fields

Protocol Source IP Destination IP Source Port Destination Port Size

This subset of traffic information seen in 4.1, aggregated over time, is usually referred to as a

network or traffic "flow" [29] and has been used extensively as input in network anomaly detection

schemes.

A second consideration is data aggregation. Network traffic produces an enormous amount of

data that needs to be handled before humans or algorithms can use it. While the network flow format

aggregates packets with matching fields and similar arrival times into the same flow, flow data still

has a significant size. In this thesis, we use the Aguri traffic aggregator program to aggregate flows

even further, into bigger flows from potentially many sources to many destinations; flows from IP’s

close to each other get aggregated into subnet flows, while flows of similar protocols get aggregated

into larger protocol-group flows.

4.1.1 Aguri

Aguri [5] is an flow-based network traffic profiler software that aims to create concise summaries

of network traffic. It reads packets and stores them into entries of 5-tuple format consisting of Source

IP, Destination IP, Source port, Destination port, protocol and size in bytes. If a packet shares all

its fields with an existing flow entry and it was transmitted before a certain timeout threshold, it

is added to the flow and the packet/byte counts are incremented. Aguri aggregates flow entries

according to each of the four identifier fields into larger flows until the collective aggregate traffic

for a flow crosses a certain threshold, producing four separate traffic profiles.

4.1.1.1 Output types

The default output of Aguri consists of IP source — destination flow entries along with absolute

and percentage amounts of bytes and packets corresponding to that flow. Each such flow is then

broken down into IP protocol and Port source — destination subflows along with the percentage of

the parent flow they make up. Flows that do not go over a traffic threshold (by default 1% of bytes

or packets) get aggregated into bigger flows.

14

Figure 4.3. Default Aguri output

Figure 4.4. Verbose Aguri output

The verbose output lists, for each of the four fields of Source IP, destination IP, Source Port,

Destination Port, all the unique entries above the aggregation threshold and the traffic in bytes

and packets they correspond to. Aggregated IP’s form subnets while aggregated ports form port

subgroups.

4.1.1.2 Aggregation

Aguri stores the counts for IP addresses and ports in a Patricia tree [30], a full binary radix tree.

Internal nodes consist of a prefix key, which is the common bits of its two children, and a count. To

update an entry count, the algorithm looks up the entry in the tree by starting from the root node and

15

checking the prefix. If the prefix matches, the next bit of the entry decides which branch to follow.

If the prefix does not match, a new node is created and inserted into the tree. The key is assigned to

the new node together with the count. A new parent branch point is also created with the matching

prefix of the new and one of the existing leaf nodes.

There are two aggregation mechanisms acting on the the tree at the same time. A performance

optimizing one and a summarizing one. The summarizing aggregation goes through each leaf node

in the tree, checks its entry count and aggregates it into its parent, adding its count to that of its

parent if the entry is below a certain threshold. The performance optimization method has the aim

of making the algorithm scalable for larger amounts of traffic by limiting memory usage and tree

traversal time. It forces the tree to have a pre-set, limited number of nodes and replaces nodes

according to an LRU replacement policy. In a high traffic scenario, this can cause nodes to get

aggregated into their parent nodes despite meeting the threshold criteria. There is however a second

much larger threshold that protects nodes that meet it, with the intent to preserve some critical

structure.

An issue with this algorithm is that as branch nodes with common prefixes are created as nec-

essary, aggregation does not happen at uniform intervals. An IP address will get aggregated to the

decision point above it, no matter how many bits it is away from that point. So, as seen in Fig-

ure 4.5, if IP address 110.69.50.99 were to fall under the traffic threshold and be aggregated, its

traffic would go under subnet 128.0.0.0/8 directly, while unique IP address 128.127.256.248 would

get aggregated to subnet 128.127.0.0/16.

4.2 Features

In this research, we select a mix of both volumetric and statistical features to describe network

traffic. Features are extracted from aggregated summaries of traffic of a pre-set length. The length

of these summaries in our research varies from 1 to 5 minutes. The features are the following:

• Bytes: Total number of bytes transferred during the summary time window.

• Packets: Total number of packets transferred during the summary time window.

• TCP Bytes: Percentage of TCP byte traffic to total byte traffic transmitted during the summary

16

Figure 4.5. Patricia Tree storing IP addresses

time window.

• TCP Packets: Percentage of TCP packet traffic to total packet traffic transmitted during the

summary time window.

• UDP Bytes: Percentage of UDP byte traffic to total byte traffic transmitted during the sum-

mary time window.

• UDP Packets: Percentage of UDP packet traffic to total packet traffic transmitted during the

summary time window.

• Ports: This is a collection of dynamically chosen features. We measure traffic originating or

ending at well-known ports in the range of 0 to 1023, and create a feature for each such port

crossing a certain threshold. We restrict ourselves to ports in the 0-1023 range because traffic

in those ports is generated by specific applications and protocols, while ports outside that

17

range are randomly assigned. Traffic on port 80 for example is generated by HTTP traffic.

Since traffic is associated with two ports, the source and destination port, focusing on the

0-1023 range also prevents us from counting traffic twice as associated with both source and

destination port. By choosing these ports dynamically, our system does not depend on manual

identification of which ports had enough traffic to be important during each window. Heavy

talkers are given the required attention, while spikes in ports we are not tracking will still be

reflected as drops in ports we are tracking.

Percentage representations of port and protocol features were chosen in order to make our sys-

tem less sensitive to uniform increases in traffic due to increased legitimate use of a network

service. By using percentages, those features reflect only changes in the underlying structure

of the traffic instead of its volume. We use a log it transform logit(x) = log(x/(1 − x)) to

preprocess and change them from [0 − 1] bounded to [−∞ − +∞] bounded for use in our

forecasting algorithm. This transform used typically used in regression when the input is a

percentage value [31] as the forecasting algorithms can give output over or under the [0 − 1]

bounds.

• Source and Destination IP Address Sample Entropy : Entropy was shown to be a descriptive

feature for detecting attacks in network traffic in [15,16,21,22]. In the case of IP addresses, it

gives information about the distribution of unique IP addresses producing or absorbing traffic.

It is calculated as

H(X) = −
N

∑

i=1

(

ni

S

)

log2

(

ni

S

)

(4.1)

where S is the total number of unique IP addresses observed and ni is the number of packets

from each IP address i.

However, since our features are extracted from traffic summaries instead of complete traf-

fic information, the calculated sample entropy is an approximation. For timeslots contain-

ing a number of unique IPs, the sample entropy is calculated as shown above. However

when a timeslot contains a subnet, e.g. 192.168.1.0/24, we do not know how many ac-

tual unique IP addresses from that subnet contributed to traffic. The upper limit of unique

18

IP addresses is 2address size−prefix size or 256 for the example, and the lower limit would be

traffic of subnet/aggregation threshold. If the example subnet were responsible for 12% of

traffic and the threshold for aggregation was 1%, there were a minimum of 12 unique IP ad-

dresses forming that subnet. If there were fewer, at least one of them would not have been

aggregated.

We select the second strategy and use the least amount of unique IP addresses with traffic

equally distributed among them when calculating entropy values in this thesis.

4.3 Time-series

Each feature, represented as a time-series, extracted from the Aguri traffic summaries is used

by the DDoS Detection Framework as input to a univariate time-series forecast model, with the

objective of creating an expected forecast of a week of future traffic. There are many considerations

here both in regards to choosing the ideal time-series model as well as the granularity of the data.

Most common time-series forecast models are essentially auto-regression models [28]; they forecast

the next value of a variable of interest using a linear combination of past values of the same variable,

making the assumption that past and future values of the variable are correlated. This assumption

can empirically be observed to hold for normal network traffic in a sufficiently large network, an

example of which is shown in Figure 4.6. While each individual network shows its own structural

characteristics, daily usage patterns typically show an increase in traffic during work-hours, fall

during nights and weekends, and periodic port and protocol usage patterns can also be observed. In

the following section, we will look at a number of prevalent time-series models and their properties

in the context of our research, and experiment with different configurations of those models to come

up with one that is more meaningful for our purpose.

4.3.1 ARIMA

The Auto Regressive Integrated Moving Average(ARIMA) network of models is one of the

most frequently used in time-series forecasting. An ARIMA(p,d,q) model, as the name suggests is

a combination of autoregressive and moving average models with differencing included, described

by the parameters p,d,q where:

19

Figure 4.6. Network Traffic from WIDE Dataset

sep 17 sep 22 sep 27 okt 02 okt 07 okt 12

2e
+

08
6e

+
08

1e
+

09

WIDE Dataset Network Traffic

Time

B
yt

es

• p = order of the autoregressive part.

• d = degree of first differencing.

• q = order of the moving average.

The autoregressive part of the model can be written as

yt = c + φ1yt−1 + φ2yt−2 + ... + φpyt−p + et (4.2)

where yt is the value of the variable at time t, c is a constant, et is white noise, yt − n are the

lagged values of the variable y. The parameter p controls the number of past values of the variable

taken into consideration.

The moving average part of the model can be written as

yt = c + et + θ1et−1 + θ2et−2 + ... + θnet−q (4.3)

where c is a constant, et are the unobserved, past forecast error terms and q controls the number

of past error terms to take into account.

Differencing is done in order to turn the time-series stationary, one whose properties do not

depend on the time at which the series is observed. It is applied by replacing each value in a time-

20

series with the difference of that value and the previous one.

y′

t = yt − yt−1 (4.4)

In an ARIMA model, the parameter d controls how many times this differencing is applied.

ARIMA models are useful for modelling forecasts for time-series that do not show any sea-

sonal or trend patterns. Our traffic data however displays both multiple seasonal patterns and trend,

making a simple ARIMA model unsuitable for modelling it.

4.3.2 Seasonal ARIMA

A seasonal ARIMA model can be used to model seasonal data by adding additional seasonal

terms to the original model

ARIMA(p, d, q)(P, D, Q)m (4.5)

where P, D, Q are the autoregressive, differencing and moving average parameters of the sea-

sonal part, and m is the number of periods per season, 12 for monthly data for example.

Seasonal ARIMA models can forecast a wider range of time-series data such as monthly, quar-

terly reports, daily usage patterns. However, they cannot accommodate multiple overlapping sea-

sonal patterns in the data. Since our traffic data shows both daily and weekly seasonal patterns, we

cannot use a seasonal ARIMA model to model it.

4.3.3 Exponential Smoothing

Exponential smoothing family models are forecasts that assign to future observations the

weighted averages of past observations. Different models exist that accommodate simple time-

series, series with trends, seasonal patterns or both. They can be classified [32] as shown in Tables

4.2, 4.3.

Simple exponential smoothing uses a smoothing parameter α to assign larger weights to newer

observations making them more relevant to the future forecast. It can be written as:

yT +1 = αyT + α(1 − α)yT −1 + α(1 − α)2yT −2 + ... (4.6)

21

Table 4.2. Taxonomy of ETS models

Seasonal Component

Trend

Component
None Additive Multiplicative

None (N,N) (N,A) (N,M)

Additive (A,N) (A,A) (A,M)

Additive (damped) (Ad,N) (Ad,A) (Ad,M)

Multiplicative (M,N) (M,A) (M,M)

Multiplicative

(damped)
(Md,N) (Md,A) (Md,M)

Table 4.3. ETS models

(N,N) simple exponential smoothing

(A,N) Holts linear method

(M,N) Exponential trend method

(Ad,N) additive damped trend method

(Md,N) multiplicative damped trend method

(A,A) additive Holt-Winters method

(A,M) multiplicative Holt-Winters method

(Ad,M) Holt-Winters damped method

Holt’s linear trend method [33] adds a trend component, and the Holt-Winters method [34] adds

a seasonal component as well.

4.3.4 STL Decomposition

STL Decomposition (Seasonal and Trend Decomposition using Loess) [35] is not a forecasting

model, but can be used as an analysis tool or as a preprocessing technique. It splits a time-series

into seasonal, trend and remainder components, uncovering seasonal patterns and trends from the

data and showing to what extent they are responsible for the value of each data point. Then, the

separate coefficients can be forecast individually, or the seasonal component can be assumed to

remain stationary and only the remainder component be forecast.

22

Figure 4.7. STL Decomposition of 5 weeks of traffic from WIDE dataset

2.5e+08

5.0e+08

7.5e+08

1.0e+09

−4e+08

−2e+08

0e+00

2e+08

4e+08

5.0e+08

5.5e+08

6.0e+08

6.5e+08

7.0e+08

−4e+08

−2e+08

0e+00

2e+08

4e+08

da
ta

se
as

on
al

tr
en

d
re

m
ai

nd
er

1 2 3 4 5
Time

4.3.5 Prediction Intervals

When a forecast estimates future values of a random variable, it generates a range of possible

values the variable can take with high probability, with the value in the middle of the range having

the highest probability. That range of values is called the prediction interval of the forecast, and

is associated with the probability it has of containing the actual future value. Typically, forecasts

generate prediction intervals for 80% and 95% probabilities, but other values can be used.

Prediction intervals are generated using formula

yi ± kσ (4.7)

where σ is the standard deviation of the residuals (the error of the forecast on the values used

to generate it), and k is a multiplier that determines the percentage level of the prediction interval

and represents the number of standard deviations away from the mean necessary to capture an area

percentage of a normal curve equal to that prediction interval. For a 95% interval that number is

1.96, while other common values for the multiplier are given in Table 4.4.

23

Table 4.4. Common prediction interval values

Prediction Interval Multiplier

70 1.04

80 1.28

95 1.96

99 2.58

However, prediction intervals widen the more a forecast extends into the future. Prediction

intervals for a forecast 1 unit into the future are calculated as shown, but each subsequent future

forecast that does not rely on new data inherits the errors of the previous forecast, widening the

prediction intervals as well.

Moreover, in practice prediction intervals have been observed to be too narrow [36] because of

the tendency of forecast models to ignore sources of uncertainty such as parameter estimates, choice

of model and the future changes in the process that generated the historical data (DGP uncertainty).

Still, we use these values as they provide a useful metric of how uncertainty is associated with

each forecasted value.

4.3.6 Our Approach

We tested the above forecast models and techniques on our data and arrived at the the conclusion

that they were incapable of modelling both the daily and weekly seasonalities of our data and doing

so fast enough to process series spanning many thousands of data points.

To cope with this issue, we chose a method that combines STL Decomposition with Exponential

Smoothing forecasting. The data is decomposed into trend, seasonal and remainder components, an

ETS model is then built for the remainder component and the forecast is re-seasonalized using the

past data seasonal component. An example of the results produced by such forecast for one of our

features on a part of our dataset can be seen in Figure 4.8 and Figure 4.9.

We create a weekly model of each traffic feature using this method. This model is considered a

many-steps ahead model because its forecast horizon, the number of data-points it forecasts without

access to new data, is one week. However, because the error associated with each predictions carries

over to the next, the prediction intervals grow to an unreasonable width. This makes the forecast less

useful for prediction because even if we get a good estimation for the mean value, wide prediction

24

Figure 4.8. Weekly forecast of bytes per second using 1 month of historic data.

−1e+11

−5e+10

0e+00

5e+10

1e+11

2 4 6
Time

y

level

80

95

99

Forecasts from STL + ETS(A,N,N)

intervals mean we can expect big deviations from that mean.

To rectify this issue, we augment our approach with sequential one-step ahead forecasts for each

feature. After generating the weekly models, we use new traffic feature values arriving during the

forecasted week as input to the model and forecast each individual data-point. This prevents the

prediction intervals from widening and increases the accuracy of the forecast. We also introduce a

filter that makes new values ineligible as input to the model, if they fall outside the 99% prediction

interval of the forecast for that value. This is done in order to prevent the forecast from being

affected by outliers. The results of this technique can be seen in Figure 4.10.

4.4 Anomaly Attack Classification

When incoming traffic features fall outside the expected ranges of values given by our forecast

models, we flag an anomaly for that specific feature time-series and timeslot. These anomalies are

found frequently even in normal traffic, so we only classify an attack if there are outliers across the

majority of the feature time-series that persist for multiple timeslots. We use different thresholds

25

Figure 4.9. Accuracy of weekly forecast.
One−Week Ahead Weekly Forecast

1 2 3 4 5 6

−
1e

+
11

0e
+

00
1e

+
11

0e
+

00
1e

+
10

2e
+

10
3e

+
10

Forecast mean

by
te

s

actual
predicted

0.
0e

+
00

1.
0e

+
10

2.
0e

+
10

Predicted − Actual

by
te

s

for the number of timeslots, number of features required for a series of anomalies to be recognized

as an attack, and the number of standard deviations values need differ from forecasts in order to be

characterized as anomalies. However, we are unable to test the accuracy of those thresholds due to

our lack of labelled DDoS dataset of proper length to run detection on.

26

Figure 4.10. One-step ahead forecast using new values as input.

0 500 1000 1500 2000

0e
+

00
2e

+
10

4e
+

10

One−Step Ahead Weekly Forecast

pr
ed

A
[1

:2
01

6]

0e
+

00
1e

+
10

2e
+

10
3e

+
10

Forecast mean

by
te

s

actual
predicted

−
1e

+
10

1e
+

10
2e

+
10

Predicted − Actual

by
te

s

27

Chapter 5

Experiments

In this section, we perform experiments testing various aspects of our DDoS Detection Platform.

We will first describe the datasets we use, then describe the experiments we undertook.

5.1 Datasets

A serious issue impeding research in network traffic anomaly detection is the lack of commonly

adopted, good datasets to test algorithms on. The most common dataset in intrusion detection,

KDD’99 [37], dates back to 1999 and the attacks it contains are less relevant today. It has also been

criticized for having skewed distributions of attack and normal traffic [38] and proposed A corrected

version, NSL-KDD [39] fixes some of these problems but still does not describe real world or mod-

ern attacks. This problem is made worse by the fact that traffic data often contains sensitive, private

information, often belonging to 3rd parties. Commercial companies avoid releasing their data for

research purposes for those reasons, and even research institutions need to first anonymize traffic

prior to releasing it. Anonymization does not guarantee safety of sensitive data as deanonymiza-

tion techniques can often reverse the process [40, 41], and there is no single commonly adopted

anonymization scheme. Lastly, traffic datasets are rarely labelled. The amount of data involved

makes a manual labelling by human analysts a very long process, and labels are not definitive in

real world data, as an attack might escape notice or legitimate traffic might get misclassified. Arti-

ficial datasets and methods to generate them have been proposed [42, 43] that solve some of those

problems at the cost of realism. In this thesis, we use a selection of both artificial and real datasets,

28

labelled and unlabelled for different purposes. We test the accuracy of our forecast model on a real,

unlabelled dataset since labels are not necessary to forecast mixed traffic while a labelled dataset is

used to evaluate if our selected features and metric capture DDoS attack occurrences.

5.1.1 ICSX-UNB 2012

This dataset created by [42] consists of artificial network traffic created with the use of profiles

containing descriptions of attacks and abstract distribution models of common applications or net-

work protocols. Profiles were created by analysing real traffic and abstracting real user behaviour.

Agents are then programmed to execute those profiles to create legitimate user activity. Attacks of

various kinds were then executed in real time from physical devices. The benefits of this technique

are that it allows complete capture of packets without any privacy issue, and that it offers complete

labelling information for all traffic.

The traffic data spans a period of 7 days. There are 3 days containing only normal traffic and

days containing the following attacks: Inside Infiltration, HTTP DoS, DDoS, Brute Force SSH. Of

these, the DoS and DDOS attacks are of interest.

There were 12 timeslots of 1 minute each missing from the data. We interpolate their values

using for each their two neighbouring timeslots.

5.1.2 GWA

The GWA dataset consists of anonymized traffic collected from Fox-IT’s guest wireless net-

work. It contains unlabelled, real world traffic for a period of 1 month, from February 29th to April

1st 2016 . As it is not known if there are any anomalies in the data, it was used to test the model

forecasts of normal traffic.

Daylight Savings Time went into effect Sunday March 27, which made clocks turn forward

1 hour that day. Having a 23 hour day would skew our prediction model, so we correct this by

repeating the previous hour a second time.

5.1.3 WIDE backbone

Collected by the MAWI Working Group of the WIDE project, this traffic data [44] is collected

from the transit link of WIDE to their upstream ISP. It has been in operation since 2006. We

29

collected a one year period of traffic data for the year 2015 in Aguri format.

There were 33 missing timeslots of 5 minutes each missing from the data. We interpolate their

values using for each their two neighbouring timeslots.

Due to the way the dataset is being made available and its size, we were only able to get an

Aguri parsed version of it, with 5 minute long timeslots and non-verbose output. As mentioned in

subsubsection 4.1.1.1, the same features can be extracted from either output but the non-verbose

data have more error than the verbose, when compared to unaggregated data.

5.2 Feature Visualization

Visualization is an important part of any detection system meant to help human analysts identify

issues as well as automatically detect them itself. Human readable output of not just the results but

inner parts of the process help detect errors in the system, calibrate it and discover new information

that the system was not programmed to look for. For this reason, together with our models we

produce visualizations showing both the evolution of raw features over time as well as their forecast

models. Using these visualization we, as developers, were able to examine and evaluate aspects

of our system and understand the responsiveness of our selected features. In the same way, users

of our platform can use these visualizations in parallel with the detection features to get a better

understanding of the underlying data and its structure.

In this section, we will go through a number of visualizations of the evolution of various features

on our datasets in order to showcase how information can be gained from it. We do not show a

complete listing of visualization of all our features for all datasets, but focus instead on parts that

contain interesting information.

5.2.1 Visualizations of ICSX dataset

First we examine packet and byte graphs for the ICSX dataset. We can see from Figure 5.1

that the DDoS attack on day 5 which was labelled on the dataset, denoted by vertical red lines, is

clearly visible. However the smaller HTTP DoS attacks on day 4 do not cause any visible increase

in traffic, and other traffic spikes are related to normal traffic instead of attacks.

We then examine the source/destination IP address distribution entropy feature over time. We

30

Figure 5.1. ICSX - byte and packet traffic.

06:00:00 12:00:00 18:00:00 00:00:00 06:00:00 12:00:00 18:00:00 00:00:00
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

By
te

s

1e8

06:00:00 12:00:00 18:00:00 00:00:00 06:00:00 12:00:00 18:00:00 00:00:00
0

50000

100000

150000

200000

250000

Pa
ck

et
s

ICSX, 2 days containing DDoS Attacks

see from Figure 5.2 that the sample entropy measure is responsive to the DDoS attack, however

its values during the attack are not larger in magnitude than during other times. What makes the

attack noticeable is that the entropy remains visibly stable and unchanging during the attack, the

distribution of source/destination IPs is much more static compared to normal periods. The HTTP

DoS attacks however remain invisible.

Figure 5.2. ICSX - source, destination entropy

06:00:00 12:00:00 18:00:00 00:00:00 06:00:00 12:00:00 18:00:00 00:00:00
0.0
0.1
0.2
0.3
0.4
0.5
0.6

SR
C

En
tr

op
y

06:00:00 12:00:00 18:00:00 00:00:00 06:00:00 12:00:00 18:00:00 00:00:00
0.0
0.1
0.2
0.3
0.4
0.5
0.6

DS
T

En
tr

op
y

ICSX 2 days - entropy

We also plot TCP and UDP protocols in Figure 5.3 as well as the highest traffic well-known

ports Figure 5.4, found dynamically, but they do not show signs of the attacks.

5.2.2 Visualizations of GWA dataset

The GWA dataset does not contain any DDoS attacks to the knowledge of its providers, but it

does contain some interesting information about protocol/port usage and daily/weekly seasonality.

The strong weekly seasonality can be observed in Figure 5.5 while a less strong daily seasonality

can be seen in Figure 5.6. We see that while daily traffic falls strongly inside a time window of

31

Figure 5.3. ICSX - TCP and UDP protocols

06:00:00 12:00:00 18:00:00 00:00:00 06:00:00 12:00:00 18:00:00 00:00:00
0.0
0.2
0.4
0.6
0.8
1.0

TC
P

06:00:00 12:00:00 18:00:00 00:00:00 06:00:00 12:00:00 18:00:00 00:00:00
0.0
0.2
0.4
0.6
0.8
1.0

UD
P

06:00:00 12:00:00 18:00:00 00:00:00 06:00:00 12:00:00 18:00:00 00:00:00
0.0
0.2
0.4
0.6
0.8
1.0

Ot
he

r P
ro

to
co

ls

ICSX TCP and UDP protocols

Figure 5.4. ICSX - Well known ports

06:00:00 12:00:00 18:00:00 00:00:00 06:00:00 12:00:00 18:00:00 00:00:00
0.0
0.2
0.4
0.6
0.8
1.0

Po
rt

 5
3

06:00:00 12:00:00 18:00:00 00:00:00 06:00:00 12:00:00 18:00:00 00:00:00
0.0
0.2
0.4
0.6
0.8
1.0

Po
rt

 8
0

06:00:00 12:00:00 18:00:00 00:00:00 06:00:00 12:00:00 18:00:00 00:00:00
0.0
0.2
0.4
0.6
0.8
1.0

Po
rt

 1
10

06:00:00 12:00:00 18:00:00 00:00:00 06:00:00 12:00:00 18:00:00 00:00:00
0.0
0.2
0.4
0.6
0.8
1.0

Po
rt

 1
39

06:00:00 12:00:00 18:00:00 00:00:00 06:00:00 12:00:00 18:00:00 00:00:00
0.0
0.2
0.4
0.6
0.8
1.0

Po
rt

 4
43

ICSX Highest Traffic Ports

06:00 to 19:00, traffic inside that window does not display any visible patterns.

We can also see in Figure 5.7 that entropy shows a much stronger seasonality in this dataset than

ICSX, with weekdays showing a very clear pattern.

5.3 Time-series Accuracy

In this experiment, we test the accuracy of our forecast models on our traffic features. While

forecast accuracy is not enough to detect attacks, it is important for the models to accurately portray

32

Figure 5.5. GWA - Traffic in bytes and packets

mrt 02 2016 mrt 09 2016 mrt 16 2016 mrt 23 2016 mrt 30 2016
0.0

0.2

0.4

0.6

0.8

1.0

By
te

s

1e8

mrt 02 2016 mrt 09 2016 mrt 16 2016 mrt 23 2016 mrt 30 2016
0

20000
40000
60000
80000

100000
120000
140000
160000
180000

Pa
ck

et
s

GWA Byte/Packet Traffic

normal traffic, so that incoming normal traffic won’t deviate from the model and appear anomalous.

We first test the accuracy of the weekly forecast in a many-steps-ahead fashion, predicting the

values of an entire week ahead without using any new values as input. Then, we test the same

models with our one-step-ahead forecasting technique explained in subsection 4.3.6, using each

newly arrived value as input to the weekly model for predicting the next one. However, we only

accept values that fall inside the weekly models 99% prediction intervals as one-step-ahead input,

otherwise we replace them with the weekly model’s forecasted mean. Without this adjustment, the

models would follow actual incoming traffic too closely for any outliers to occur.

5.3.1 Experiment setup

For this test we use the WIDE dataset, as its length allows us to do a rolling-origin window

validation. We select 4 weeks of data, create forecast models for week 5 and calculate their accuracy

by comparing it week 5’s ground truth data. We then slide the window forward by 1 week and repeat

the process. In this fashion, we test forecasts 40 times and calculate the averages of all accuracy

metrics we track.

Due to the way we detect active ports and only use choose ports with heavy traffic as features,

we note that not all sets of training and test data contain the same ports. Results for ports only

include slices where those particular ports were active.

33

Figure 5.6. GWA - Traffic during weekdays

00:00:00 03:00:00 06:00:00 09:00:00 12:00:00 15:00:00 18:00:00 21:00:00
0
1
2
3
4
5
6
7
8
9

By
te

s

1e7

00:00:00 03:00:00 06:00:00 09:00:00 12:00:00 15:00:00 18:00:00 21:00:00
0
1
2
3
4
5
6
7
8

By
te

s

1e7

00:00:00 03:00:00 06:00:00 09:00:00 12:00:00 15:00:00 18:00:00 21:00:00
0
1
2
3
4
5
6
7
8

By
te

s

1e7

00:00:00 03:00:00 06:00:00 09:00:00 12:00:00 15:00:00 18:00:00 21:00:00
0
1
2
3
4
5
6
7
8
9

By
te

s

1e7

00:00:00 03:00:00 06:00:00 09:00:00 12:00:00 15:00:00 18:00:00 21:00:00
0
1
2
3
4
5
6
7
8
9

By
te

s

1e7

weekday traffic

5.3.2 Accuracy Metrics

We first define our accuracy metrics.

• Mean Error(ME). Defined as

ME =
1

n

n
∑

i=1

(Ŷi − Yi) (5.1)

It is a scale-dependent error metric. For features with high magnitude such as bytes and

packets, it is hard to interpret.

34

Figure 5.7. GWA - Source entropy of various slices of GWA dataset

mrt 02 2016 mrt 09 2016 mrt 16 2016 mrt 23 2016 mrt 30 2016
0.0

0.2

0.4

0.6

0.8

1.0 SRC Entropy of entire GWA dataset

mrt 07 2016 mrt 08 2016 mrt 09 2016 mrt 10 2016 mrt 11 2016 mrt 12 2016 mrt 13 2016
0.0

0.2

0.4

0.6

0.8

1.0 SRC Entropy of week 2

mrt 14 2016 mrt 15 2016 mrt 16 2016 mrt 17 2016 mrt 18 2016 mrt 19 2016 mrt 20 2016
0.0

0.2

0.4

0.6

0.8

1.0 SRC Entropy of week 3

GWA - Entropy

• Real Mean Squared Error(RMSE). Defined as

RMSE =

√

√

√

√

1

n

n
∑

i=1

(Ŷi − Yi)2 (5.2)

Another scale-dependent metric, it is useful for comparing multiple models of a single vari-

able, but not suited for comparison across our different features.

• Mean Absolute Error(MAE). Defined as

MAE =
1

n

n
∑

i=1

|Ŷi − Yi|
2 (5.3)

Same issues with RMSE apply here.

• Mean Percentage Error(MPE). Defined as

MPE =
1

n

n
∑

i=1

Ŷi − Yi

Ŷi

(5.4)

35

A scale-free metric. It is useful for comparing errors across features. However, it tends to

over-penalize negative errors, and is undefined for zero values.

• Mean Absolute Percentage Error(MAPE). Defined as

MPE =
1

n

n
∑

i=1

∣

∣

∣

∣

∣

Ŷi − Yi

Ŷi

∣

∣

∣

∣

∣

(5.5)

Same issues as MPE.

5.3.3 Many-steps ahead

Our results for the many-step ahead forecasting of all our features can be seen in Table 5.1. We

can see quite a large amount of error on all features. This is partly to be expected then a forecast

predicts values so far in the future, but the results of the protocol and port features show that those

features might not contain enough information or be stable enough for predictive models to be

created with them.

Table 5.1. Time-series accuracy metrics for 1-week-ahead forecast of WIDE dataset features.

ME RMSE MAE MPE MAPE

bytes 6.478204e+07 5.149509e+09 3.953088e+09 -5.65847 24.03471

packets 5.774606e+02 1.428433e+06 1.119224e+06 -6.01010 24.08023

srcEntropy 1.132000e-02 4.241000e-01 3.361000e-01 -3.48622 17.33201

dstEntropy 7.070000e-03 3.278200e-01 2.525200e-01 -3.95811 18.13831

TCPBytes -1.100000e-03 6.092500e-01 4.853500e-01 -38.89398 188.08438

TCPPackets -1.088930e+00 1.726330e+00 1.560470e+00 -46.89845 80.53729

UDPBytes 1.561900e-01 3.313560e+00 2.734310e+00 -41.14296 147.03575

UDPPackets -2.800300e-01 8.171930e+00 6.761390e+00 -50.19298 859.61572

OtherBytes -1.259000e-02 8.696300e-01 6.861900e-01 -4.12633 24.24322

OtherPackets -9.856800e-01 3.260640e+00 2.663540e+00 -13.61616 74.52146

X80 -1.040550e+00 2.375950e+00 1.862620e+00 -167.12435 273.48359

X22 3.111100e-01 1.984730e+00 1.636350e+00 -26.28551 94.64175

X123 -1.650400e-01 7.882410e+00 6.418860e+00 79.89595 1182.22840

X443 -6.131000e-02 3.532310e+00 2.563950e+00 11667.08834 12782.62391

X873 4.272100e-01 4.072720e+00 3.188720e+00 -325.52906 716.24140

36

5.3.4 One-step ahead

Our results for one-step ahead forecasting can be found in Table 5.2. The percentage errors are

much lower for bytes, packets and the entropy metrics. However the protocol and port forecasts

have not improved.

Table 5.2. Time-series accuracy metrics for one-step ahead forecast of WIDE dataset features.

ME RMSE MAE MPE MAPE

bytes 1.541472e+08 3.810846e+09 2.454939e+09 -2.22783 13.96944

packets 1.186215e+05 1.262325e+06 8.711053e+05 -2.46941 18.03999

srcEntropy -3.778000e-02 2.802500e-01 1.882700e-01 0.12692 9.40822

dstEntropy -1.960000e-02 2.343200e-01 1.460000e-01 -1.03414 10.20197

TCPBytes -2.243000e-02 4.199000e-01 2.755900e-01 -41.17326 121.70299

TCPPackets -6.548300e-01 1.213400e+00 9.492000e-01 -40.43020 67.29986

UDPBytes -9.441000e-02 2.621400e+00 1.731770e+00 -14.40646 66.72570

UDPPackets -3.929400e-01 6.884240e+00 4.702110e+00 30.86631 527.28850

OtherBytes 3.820000e-02 6.262800e-01 4.286000e-01 -3.24164 14.21264

OtherPackets -3.935800e-01 2.303650e+00 1.488090e+00 -4.31687 56.68770

X80 -6.138300e-01 1.777320e+00 9.166700e-01 -144.20281 247.43745

X22 3.466800e-01 1.556820e+00 9.289400e-01 -21.55513 63.78604

X123 -3.395200e-01 6.659390e+00 4.406540e+00 -6.86401 899.26725

X443 2.093900e-01 2.817260e+00 1.551610e+00 918.70793 1304.70170

X873 -3.848300e-01 2.964210e+00 1.741770e+00 -73.35555 205.75969

5.4 Implementation and performance

5.4.1 Implementation

In this section, we describe the implementation details of our platform.

Packet inspection and log assembly are handled by the Aguri software as detailed in a previous

section. Log parsing, data preprocessing and sanitization are done by scripts written in the Python

2.7 programming language [45] with the help of the Pandas library [46]. Time-series forecasts are

created using the R programming language [47] and the Forecast package [48,49]. Communication

between the 2 languages is handled by the RPY2 python interface [50].

37

5.4.2 Parameters and thresholds

In this section, we list all values we chose for parameters and thresholds on all levels of our

platform.

5.4.2.1 Aguri

We use Aguri version 2.0. The aggregation threshold was set to the default value, 0.1% of

traffic, while the span of the summary windows was 1 minute for the ICSX and GWA datasets and

5 minutes for the WIDE dataset. We use verbose output when available and fall back to concise

output for the ICSX dataset. Those outputs offer the same data in different format, and our features

can be reconstructed from either.

5.4.2.2 Preprocessing

During the preprocessing step, we detect frequently appearing ports in the 0-1023 range and use

them as traffic features. Our threshold for considering those ports is if it appears, unaggregated by

Aguri on 30% of the traffic summaries we build our model on.

5.4.2.3 Model Creation

Parameters for our forecasting model are estimated automatically during model creation by the

R forecast package. For the STL Decomposition, the time window parameter is set to 7, as this

number offered better AIC (Akaike information criterion) scores . For the ETS forecast, different

model types are tested such as simple exponential smoothing, Holt’s linear method, Exponential

trend method or multiplicative damped trend method, then the best performing model according to

AIC is used.

5.4.2.4 Attack Detection

Our thresholds for attack detection are at a testing stage since we were not able to test our

platform on real DDoS attack datasets. We consider as an attack traffic that was outside the 99%

forecast prediction intervals for all features simultaneously, for at least 3 consecutive time-windows.

38

5.4.3 Performance

An important characteristic of a detection system is how fast it is able to perform its intended

purpose. Choice of algorithm, specific workflow, implementation tradeoffs, speed of necessary 3rd

party applications and the amount of items to be analysed all affect how fast a system can detect

attacks. For a detection system to be able to work online, act on incoming data as it arrives instead

of batch data, it needs to be able to analyse each unit of data before the next one arrives. In this

section, we will give some performance metrics for our DDoS detection platform. Those metrics

were measured on a workstation with an Intel Core i7-3630QM CPU and 8GB RAM, running an

Ubuntu 12.04LTS Virtual Machine on a Windows 7 64-bit operating system.

For benchmarking purposes, we use two small DDoS traces contain DDoS traffic exclusively,

provided by [51], in addition to our regular datasets. Trace 1 has an average bitrate of 325 Mbps and

average packet rate of 43 kpps over 295 seconds. Trace 2 has an average of 225 Mbps and average

packet rate of 32 kpps over 281 seconds.

5.4.3.1 Aguri batch parsing of PCAP file

Aguri can either run in live mode intercepting and analysing traffic as it arrives, or it can process

existing data in PCAP format [52]. We measure the following times for extracting features from

datasets in PCAP format.

• Trace 1 took a total of 374 seconds of real time. This is a longer timespan than the duration

of the pcap file.

• Trace 2 took a total of 244 seconds of real time.

• We also test a single day of the ICSX dataset. Aguri required a total of 570 seconds of real

time to process this 86.400 second long dataset.

This shows that Aguri is capable of handling traffic in real time during normal network be-

haviour. However, its performance on the DDoS traces indicates that during heavy DDoS attacks,

Aguri running on our current hardware implementation will be incapable of processing traffic in real

time. It is possible that a dedicated hardware platform running Aguri will have better performance,

but we did not test such a configuration.

39

5.4.3.2 Aguri live parsing

We were unable to play back the pcap files at the same rate they were recorded at, so we were

not able to measure if Aguri could handle that specific rate of bits and packets. The highest recorded

playback rate we could produce was 149.14 Mbps and 21 Kpps, which Aguri was able to process

as it arrived.

5.4.3.3 parsing of Aguri log files into features

One of the benefits of Aguri’s aggregation is that the generated logs are all roughly the same

size, so we do not expect a performance difference between high and low traffic, other than the one

Aguri itself introduces. What matters is the number of timeslots to be parsed, or the size of the log

file in bytes.

• It took 29 seconds for our platform to extract and preprocess features from the entire ICSX

dataset in Aguri format, spanning 10078 timeslots of 1 minute each or 7 days of traffic and

83.3 Mb in size.

• We also test feature extraction on the WIDE dataset, spanning 104828 timeslots of 5 minutes

each or roughly a year of traffic and 273.3 Mb in size. Our platform took 219 seconds to

extract and preprocess features.

These results show that our platform can easily convert aguri logs into our chosen traffic features

in real time. These times include preprocessing tasks such as handling missing data and fixing

timezone DST errors.

5.4.3.4 building a weekly model for all features

Building a weekly model of feature traffic is one of the main tasks of our DDoS Detection

Platform. Once created, the model is used for a week then replaced with the next one, so this

process does not need to be repeated for every timeslot of incoming traffic and does not have a strict

performance constraint to meet. Despite that, we measure the time necessary to create those models.

We use the GWA and WIDE datasets for this measurement since ICSX spans less than a week

of traffic, not enough for a weekly model to be built on. We initially tested model creation on

40

Table 5.3. Weekly model generation time

Dataset Real-time Length Timeslots Model Build Time

WIDE 4 weeks 8064 4.19 seconds

WIDE 5 weeks 10055 5 seconds

WIDE 6 weeks 12071 5.74 seconds

WIDE 7 weeks 14087 6.4 seconds

WIDE 8 weeks 16103 7.15 seconds

GWA 4 weeks 44704 18 seconds

WIDE ∼52 weeks 140790 43 seconds

a manufactured repeating version of ICSX as well, one that spanned the required weeks to build

models on, but the similarity of the measurements led to a model with extremely narrow prediction

intervals that couldn’t be used in practice.

We test model generation on parts of the WIDE dataset and the GWA dataset, our results can

be seen in Table 5.3. We observe that model generation time, once the required data is loaded

in memory and already preprocessed, is actually quite low and linearly related to the number of

timeslots in the data. WIDE uses less timeslots per week because its timeslot resolution is 5 minutes

instead of 1 minute for GWA.

The short build time for the weekly model, while not needed for our current configuration,

leaves open the option of creating these models for each new data point available in real time, as

opposed to a weekly process.

5.4.3.5 outlier detection on incoming data

The outlier detection part of our platform is responsible for a number of tasks. For every times-

lot, it compares its incoming features against the prediction intervals generated by that feature’s

weekly model, and detects how many intervals away from the expected mean they are. Once it does

so, and if the the feature value was not an outlier, it also feeds those features as input to the weekly

model and gets new prediction intervals for the next timeslot.

We test 1 week worth of data on the WIDE and GWA datasets to determine how demanding this

process is. However, we note our tests were run in batch mode with the incoming features already

loaded into memory, which eliminates possible inefficiencies and overhead from our timings and

does not include time necessary for extracting those features (which was measured in a previous

41

Table 5.4. Outlier detection performance

Dataset Timeslots Real Time Time Taken

WIDE 2016 1 week 90 seconds

GWA 4354 3 days 172 seconds

test). Our findings can be seen in Table 5.4. The time required for a single timeslot is less than 0.05

seconds, making this process able to run on real time data.

42

Chapter 6

Conclusions

In this thesis, we have implemented a DDoS Detection Platform using Aguri aggregate traffic

summaries as input, extracting various time-series features of the traffic and creating forecast mod-

els of the features then detecting anomalies when incoming traffic falls outside model prediction

intervals for a number of features, over time. The system also has mechanisms for visualizing data,

helping users get a better understanding of the data, and how our traffic features behave during nor-

mal traffic operations. Unfortunately, we were not able to validate the system on a realistic DDoS

dataset, therefore we suggest this system be in a real environment as an aid to users in the task of

DDoS detection who would then calibrate the system on DDoS attacks as they happen.

In the following section, we will present our conclusions as well as issues we identified in all

stages of our approach.

6.1 Issues

6.1.1 Aggregation

One of the main decisions of this thesis was to use lossy traffic summaries instead of full traffic

information as raw data, with the goal of exploring if summaries can be descriptive enough to use

as DDoS detection input. However, the specific mechanics of Aguri’s aggregation proved to have

a damaging effect on our features. Since IPs and ports were aggregated based on hard thresholds,

Aguri’s output would show drastic changes at areas near the threshold, making distribution-related

features such as entropy very volatile. The number of IPs and subnets can drastically re-arrange

43

itself with very small changes in traffic. In addition to that, our performance tests in subsection 5.4.3

showed that one of the expected benefits of aggregation, increased robustness of the listener software

during DDoS attacks, failed to materialize. Aguri, using our hardware, could not handle a high-

rate 300 Mbps attack in real time. This forces us to re-examine the usefulness of Aguri’s traffic

aggregation for DDoS detection. Offline detection however is feasible using Aguri, as the necessary

processing time of even high-rate DDoS attacks remained at a level above, but close to the actual

duration of the DDoS attack.

6.1.2 Feature Selection

Our features were chosen with the goal of describing the structure of traffic as well as the amount

of it. The simple byte and packet features proved to be informative as well as able to generate

accurate models of future traffic. The sample entropy feature however suffered from a significant

loss of accuracy without the knowledge of how many IPs comprised each subnet appearing in the

data. While attacks could still be identified using it, this was due to the volume of the attack

dominating traffic and stabilizing the IP distributions to exactly the parameters of the DDoS attack.

Low-rate attacks that altered the distributions in a less obvious way were not captured.

The protocol and port features were more informative than entropy and retained the seasonal

characteristics of traffic, which made their forecast models more accurate.

6.1.3 Dataset Selection

Our method of choice for detecting attacks, traffic forecast models and structural features,

proved to be restrictive in the type of dataset require to test it on. Our attempt to exploit the daily

and weekly seasonalities of traffic required a significant amount of past data to calibrate the forecast

models on and publicly available DDoS datasets such as ICSX were significantly smaller. Also,

injecting or artificially creating DDoS attacks on normal traffic of appropriate length like the WIDE

or GWA datasets would not capture the expected interactions of DDoS traffic with the victim net-

work’s normal traffic. The stifling effect of DDoS attacks would not be shown in the dataset. As

such, we were unable to conduct accuracy testing on our attack detection method.

44

6.2 Future Work

In the process of creating this thesis, we had the opportunity to research many aspects of network

traffic attack detection.

In the area of time-series analysis of network traffic features, we believe that the accuracy of

our forecasts can be increased by using an ARIMA model supplied with Fourier terms as external

regressors. Such a model will preserve the dual seasonality forecasting capabilities of our current

model while also able to model holiday effects such as Easter or Christmas. Also, another possible

improvement we wish to explore is generating weekly models more often during our procedure,

from weekly to hourly or even real time, as our performance tests showed that this is feasible.

As for the general subject of DDoS detection, we believe that while automatic anomaly detection

systems are attractive in theory, there is a significant progress to be made in the area of support

tooling helping human analysts conduct detection. Traffic data is extremely varied, large in size,

hard to label and usually confidential, which makes automated detection methods hard to calibrate.

However, supportive tasks such as interfaces for dynamic aggregation and visualization were shown

to be useful in identifying possible anomalies and understanding the underlying structure of traffic.

In the future, we will examine ways to create varied summaries and visualizations of more

complete traffic data, including header information and payload. Another goal of visualization is to

provide a ’teaching material’ for security experts to learn how network traffic features behave under

’normal’ conditions, and use that knowledge to further calibrate attack detection systems.

45

Bibliography

[1] B. Sanou, “The world in 2015: Ict facts and figures,” International Telecommunications Union,

2015.

[2] T. Dubendorfer, A. Wagner, and B. Plattner, “An economic damage model for large-scale in-

ternet attacks,” in Enabling Technologies: Infrastructure for Collaborative Enterprises, 2004.

WET ICE 2004. 13th IEEE International Workshops on. IEEE, 2004, pp. 223–228.

[3] T. Matthews, “Incapsula survey: what ddos attacks really cost businesses,” 2014.

[4] D. McPherson, R. Dobbins, M. Hollyman, C. Labovitzh, and J. Nazario, “Worldwide infras-

tructure security report, volume v, arbor networks,” 2016.

[5] K. Cho, R. Kaizaki, and A. Kato, “Aguri: An aggregation-based traffic profiler,” in Interna-

tional Workshop on Quality of Future Internet Services. Springer, 2001, pp. 222–242.

[6] J. Mirkovic and P. Reiher, “A taxonomy of ddos attack and ddos defense mechanisms,” ACM

SIGCOMM Computer Communication Review, vol. 34, no. 2, pp. 39–53, 2004.

[7] S. M. Specht and R. B. Lee, “Distributed denial of service: Taxonomies of attacks, tools, and

countermeasures.” in ISCA PDCS, 2004, pp. 543–550.

[8] S. Kandula, D. Katabi, M. Jacob, and A. Berger, “Botz-4-sale: Surviving organized ddos

attacks that mimic flash crowds,” in Proceedings of the 2nd conference on Symposium on

Networked Systems Design & Implementation-Volume 2. USENIX Association, 2005, pp.

287–300.

46

[9] I. Hamadeh and G. Kesidis, “Performance of ip address fragmentation strategies for ddos

traceback,” in IP Operations & Management, 2003.(IPOM 2003). 3rd IEEE Workshop on.

IEEE, 2003, pp. 1–7.

[10] T. K. Law, J. C. Lui, and D. K. Yau, “You can run, but you can’t hide: an effective statistical

methodology to trace back ddos attackers,” IEEE Transactions on Parallel and Distributed

Systems, vol. 16, no. 9, pp. 799–813, 2005.

[11] S. Yu, W. Zhou, R. Doss, and W. Jia, “Traceback of ddos attacks using entropy variations,”

IEEE Transactions on Parallel and Distributed Systems, vol. 22, no. 3, pp. 412–425, 2011.

[12] L. Spitzner, Honeypots: tracking hackers. Addison-Wesley Reading, 2003, vol. 1.

[13] V. Paxson, “An analysis of using reflectors for distributed denial-of-service attacks,” ACM

SIGCOMM Computer Communication Review, vol. 31, no. 3, pp. 38–47, 2001.

[14] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide traffic anomalies,” in ACM

SIGCOMM Computer Communication Review, vol. 34, no. 4. ACM, 2004, pp. 219–230.

[15] A. Lakhina, M. Crovela, and C. Diot, “Mining anomalies using traffic feature distributions,”

in ACM SIGCOMM Computer Communication Review, vol. 35, no. 4. ACM, 2005, pp.

217–228.

[16] G. Nychis, V. Sekar, D. G. Andersen, H. Kim, and H. Zhang, “An empirical evaluation of

entropy-based traffic anomaly detection,” in Proceedings of the 8th ACM SIGCOMM confer-

ence on Internet measurement. ACM, 2008, pp. 151–156.

[17] M. Li, “An approach to reliably identifying signs of ddos flood attacks based on lrd traffic

pattern recognition,” Computers & Security, vol. 23, no. 7, pp. 549–558, 2004.

[18] L. Li and G. Lee, “Ddos attack detection and wavelets,” Telecommunication Systems, vol. 28,

no. 3-4, pp. 435–451, 2005.

[19] Y. Chen, K. Hwang, and Y.-K. Kwok, “Filtering of shrew ddos attacks in frequency domain,”

in The IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05) l. IEEE,

2005, pp. 8–pp.

47

[20] M. Li, “Change trend of averaged hurst parameter of traffic under ddos flood attacks,” Com-

puters & security, vol. 25, no. 3, pp. 213–220, 2006.

[21] H. Rahmani, N. Sahli, and F. Kammoun, “Joint entropy analysis model for ddos attack de-

tection,” in Information Assurance and Security, 2009. IAS’09. Fifth International Conference

on, vol. 2. IEEE, 2009, pp. 267–271.

[22] H. Liu and M. S. Kim, “Real-time detection of stealthy ddos attacks using time-series decom-

position,” in Communications (ICC), 2010 IEEE International Conference on. IEEE, 2010,

pp. 1–6.

[23] J. Viinikka, H. Debar, L. Mé, and R. Séguier, “Time series modeling for ids alert management,”

in Proceedings of the 2006 ACM Symposium on Information, computer and communications

security. ACM, 2006, pp. 102–113.

[24] V. Sekar, N. G. Duffield, O. Spatscheck, J. E. van der Merwe, and H. Zhang, “Lads: Large-

scale automated ddos detection system.” in USENIX Annual Technical Conference, General

Track, 2006, pp. 171–184.

[25] E. Keogh, J. Lin, and A. Fu, “Hot sax: Efficiently finding the most unusual time series subse-

quence,” in Fifth IEEE International Conference on Data Mining (ICDM’05). IEEE, 2005,

pp. 8–pp.

[26] H. Cheng, P.-N. Tan, C. Potter, and S. A. Klooster, “Detection and characterization of anoma-

lies in multivariate time series.” in SDM, vol. 9. SIAM, 2009, pp. 413–424.

[27] B. Y. Reis and K. D. Mandl, “Time series modeling for syndromic surveillance,” BMC Medical

Informatics and Decision Making, vol. 3, no. 1, p. 1, 2003.

[28] R. J. Hyndman and G. Athanasopoulos, Forecasting: principles and practice. OTexts, 2014.

[29] B. Claise, B. Trammell, and P. Aitken, “Specification of the ip flow information export (ipfix)

protocol for the exchange of flow information,” 2013.

[30] D. R. Morrison, “Patricia: practical algorithm to retrieve information coded in alphanumeric,”

Journal of the ACM (JACM), vol. 15, no. 4, pp. 514–534, 1968.

48

[31] R. Kieschnick and B. D. McCullough, “Regression analysis of variates observed on (0, 1):

percentages, proportions and fractions,” Statistical modelling, vol. 3, no. 3, pp. 193–213, 2003.

[32] J. W. Taylor, “Exponential smoothing with a damped multiplicative trend,” International jour-

nal of Forecasting, vol. 19, no. 4, pp. 715–725, 2003.

[33] C. Holt, “Forecasting trends and seasonals by exponential weighted averages,” ONR Memo-

randum, vol. 52, p. 1957, 1957.

[34] P. R. Winters, “Forecasting sales by exponentially weighted moving averages,” Management

Science, vol. 6, no. 3, pp. 324–342, 1960.

[35] R. B. Cleveland, W. S. Cleveland, J. E. McRae, and I. Terpenning, “Stl: A seasonal-trend

decomposition procedure based on loess,” Journal of Official Statistics, vol. 6, no. 1, pp. 3–73,

1990.

[36] R. J. Hyndman, A. B. Koehler, R. D. Snyder, and S. Grose, “A state space framework for

automatic forecasting using exponential smoothing methods,” International Journal of Fore-

casting, vol. 18, no. 3, pp. 439–454, 2002.

[37] C. Elkan, “Results of the kdd’99 classifier learning,” ACM SIGKDD Explorations Newsletter,

vol. 1, no. 2, pp. 63–64, 2000.

[38] M. Tavallaee, E. Bagheri, W. Lu, and A.-A. Ghorbani, “A detailed analysis of the kdd cup 99

data set,” in Proceedings of the Second IEEE Symposium on Computational Intelligence for

Security and Defence Applications 2009, 2009.

[39] “Nsl-kdd data set for network-based intrusion detection systems,” http://nsl.cs.unb.ca/KDD/

NSL-KDD.html, accessed: 2016-08-15.

[40] S. E. Coull, C. V. Wright, F. Monrose, M. P. Collins, M. K. Reiter et al., “Playing devil’s

advocate: Inferring sensitive information from anonymized network traces.” in NDSS, vol. 7,

2007, pp. 35–47.

[41] D. Koukis, S. Antonatos, and K. G. Anagnostakis, “On the privacy risks of publishing

anonymized ip network traces,” in IFIP International Conference on Communications and

Multimedia Security. Springer, 2006, pp. 22–32.

http://nsl.cs.unb.ca/KDD/NSL-KDD.html
http://nsl.cs.unb.ca/KDD/NSL-KDD.html

49

[42] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward developing a systematic ap-

proach to generate benchmark datasets for intrusion detection,” Computers & Security, vol. 31,

no. 3, pp. 357–374, 2012.

[43] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Towards generating real-life datasets

for network intrusion detection,” Int. J. Netw. Secur, vol. 17, no. 6, pp. 675–693, 2015.

[44] A. Kato, J. Murai, S. Katsuno, and T. Asami, “An internet traffic data repository: The archi-

tecture and the design policy,” in INETâĂŹ99 Proceedings, 1999.

[45] G. Van Rossum et al., “Python programming language.” in USENIX Annual Technical Confer-

ence, vol. 41, 2007.

[46] W. McKinney et al., “Data structures for statistical computing in python,” in Proceedings of

the 9th Python in Science Conference, vol. 445, 2010, pp. 51–56.

[47] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for

Statistical Computing, Vienna, Austria, 2013. [Online]. Available: http://www.R-project.org/

[48] R. J. Hyndman, forecast: Forecasting functions for time series and linear models, 2016, r

package version 7.1. [Online]. Available: http://github.com/robjhyndman/forecast

[49] R. J. Hyndman and Y. Khandakar, “Automatic time series forecasting: the forecast package

for R,” Journal of Statistical Software, vol. 26, no. 3, pp. 1–22, 2008. [Online]. Available:

http://www.jstatsoft.org/article/view/v027i03

[50] “rpy2 - r in python.” http://rpy2.bitbucket.org/, accessed: 2016-08-24.

[51] J. Santanna, R. van Rijswijk-Deij, R. Hofstede, A. Sperotto, M. Wierbosch, L. Zam-

benedetti Granville, and A. Pras, “Booters - an analysis of ddos-as-a-service attacks,” in

IFIP/IEEE International Symposium on Integrated Network Management (IM), May 2015,

pp. 243–251.

[52] V. Jacobson, C. Leres, and S. McCanne, “pcap-packet capture library,” UNIX man page, 2001.

http://www.R-project.org/
http://github.com/robjhyndman/forecast
http://www.jstatsoft.org/article/view/v027i03
http://rpy2.bitbucket.org/

50

Appendix A

Appendix A

Graphic visualizations of all features of the ICSX database can be found here.

51

jun 12 2010jun 13 2010jun 14 2010jun 15 2010jun 16 2010jun 17 2010jun 18 2010
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6 1e8 bytes

jun 12 2010jun 13 2010jun 14 2010jun 15 2010jun 16 2010jun 17 2010jun 18 2010
0

50000

100000

150000

200000

250000 packets

(a) bytes (b) packets

jun 12 2010jun 13 2010jun 14 2010jun 15 2010jun 16 2010jun 17 2010jun 18 2010
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 srcEntropy

jun 12 2010jun 13 2010jun 14 2010jun 15 2010jun 16 2010jun 17 2010jun 18 2010
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 dstEntropy

(c) source entropy (d) destination entropy

jun 12 2010jun 13 2010jun 14 2010jun 15 2010jun 16 2010jun 17 2010jun 18 2010
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6 1e8 TCPBytes

jun 12 2010jun 13 2010jun 14 2010jun 15 2010jun 16 2010jun 17 2010jun 18 2010
0

50000

100000

150000

200000

250000 TCPPackets

(e) TCP bytes (f) TCP packets

52

jun 12 2010jun 13 2010jun 14 2010jun 15 2010jun 16 2010jun 17 2010jun 18 2010
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 1e7 UDPBytes

jun 12 2010jun 13 2010jun 14 2010jun 15 2010jun 16 2010jun 17 2010jun 18 2010
0

2000

4000

6000

8000

10000

12000

14000

16000 UDPPackets

(a) UDP bytes (b) UDP packets

jun 12 2010jun 13 2010jun 14 2010jun 15 2010jun 16 2010jun 17 2010jun 18 2010
0

500

1000

1500

2000

2500

3000 53

jun 12 2010jun 13 2010jun 14 2010jun 15 2010jun 16 2010jun 17 2010jun 18 2010
0

50000

100000

150000

200000

250000 80

(c) Port 53 (d) Port 80

jun 12 2010jun 13 2010jun 14 2010jun 15 2010jun 16 2010jun 17 2010jun 18 2010
0

2000

4000

6000

8000

10000 110

jun 12 2010jun 13 2010jun 14 2010jun 15 2010jun 16 2010jun 17 2010jun 18 2010
0

20

40

60

80

100

120

140

160

180 139

(e) Port 110 (f) Port 139

jun 12 2010jun 13 2010jun 14 2010jun 15 2010jun 16 2010jun 17 2010jun 18 2010
0

2000

4000

6000

8000

10000

12000

14000 443

(e) Port 443

	Acknowledgments
	Abstract
	Introduction
	DDoS
	Properties of DoS
	Strategy
	Distribution
	Traceability
	Reflectivity
	Amplification

	Related work
	Our Approach
	Data Preprocessing
	Aguri
	Output types
	Aggregation

	Features
	Time-series
	ARIMA
	Seasonal ARIMA
	Exponential Smoothing
	STL Decomposition
	Prediction Intervals
	Our Approach

	Anomaly Attack Classification

	Experiments
	Datasets
	ICSX-UNB 2012
	GWA
	WIDE backbone

	Feature Visualization
	Visualizations of ICSX dataset
	Visualizations of GWA dataset

	Time-series Accuracy
	Experiment setup
	Accuracy Metrics
	Many-steps ahead
	One-step ahead

	Implementation and performance
	Implementation
	Parameters and thresholds
	Aguri
	Preprocessing
	Model Creation
	Attack Detection

	Performance
	Aguri batch parsing of PCAP file
	Aguri live parsing
	parsing of Aguri log files into features
	building a weekly model for all features
	outlier detection on incoming data

	Conclusions
	Issues
	Aggregation
	Feature Selection
	Dataset Selection

	Future Work

	Bibliography
	Appendix A

