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Abstract

The Dynamic Vehicle Routing Problem (DVRP) is a routing problem
with multiple vehicles which changes routes during the execution of the
problem. With our current technologies such as GPS and mobile inter-
net applications these problems can be put to practice more effective than
before. However, there is a gap between state-of-the-art theory and prac-
tice. Van Veen et al. [24] present an Ant Colony Optimization algorithm
designed to solve a DVRP with time windows. This research is based
around implementing this algorithm to test it and use it in a real-world
application. As test case a security company was used. This security
company has a number of a-priori known jobs and a (smaller) number of
unpredictable incidents. Both need to be visited within a certain time
frame. The requirements were formulated after an interview with a data
analyst. The algorithm with additional requirements was implemented
on an agent communicating with a logistics (delivery) system. Two trials
were conducted testing the algorithm thoroughly. Involved were a num-
ber of drivers with mobile applications. The end results proved positive,
reducing the total driving time with 8.6%. The implementation was not
completely perfect, still some orders were not visited on time, but some
possible future extensions to the algorithm are given to improve its perfor-
mance. The general learned lessons were: Implementing practice means
testing in practice, working iteratively leads to success, communication is
key, people are important.
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1 Introduction

A Vehicle Routing Problem (VRP) is a problem where one or multiple vehicles
have to be assigned to multiple customers or addresses. The Dynamic Vehicle
Routing Problem is one where these routes may change during the execution of
these routes, due to changing information. Pillac et al. [16] discuss the rise of
certain technologies in recent years (such as Intelligent Transport Systems) and
that these technologies have made it possible to implement certain Dynamic
Vehicle Routing applications. The main applications mentioned are: Transport
of goods (changing traffic or changing customers), Transport of persons (taxis
etc.) and services. This last application will be the main focus of this research.

Fu [9] argues that there is a gap between the theoretical research done in
simulation optimization and the software which is actually used in practice. A
lot of optimization algorithms which are being developed and researched per-
form very well on benchmark problems but lack the robustness to be used on
stochastic real-world problems. This results in applications having to use rela-
tively general or relatively simple strategies to accomplish their goals.

Ant Colony Optimization (ACO) is a metaheuristic and can therefore be
applied to a wide variety of problems, including the VRP. It is relatively robust
and usually produces good results in a relatively short amount of time. For in-
stance, Bell et al. [1] present an ACO algorithm which finds solutions within 1%
of the optimal solution for a number of VRPs. Van Veen et al. [24] present an
Ant Colony Optimization algorithm specifically designed for Dynamic Vehicle
Routing Problems. This Multiple Ant Colony System performs very well on the
Solomon benchmark problems [21]. However, it has never been put to practice
in a real-world situation. A stochastic real-world test case might need a more ro-
bust and specific implementation than a controlled simulated environment does.

In this research the algorithm of [24] was implemented so it could be tested
on a real-world problem. This dynamic VRP was based on a security com-
pany with hundreds of customers each day, some planned beforehand and some
scheduled during the day. Two trials were conducted in the Rotterdam area to
test this algorithm. By doing this we will try to answer the following research
questions:

1. How can the algorithm of [24] be successfully put to practice?

2. What should be considered when implementing a (dynamic routing) al-
gorithm for a real-world environment?
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The structure of the remainder of this document will be as follows. First of
all, a problem description is given, discussing the VRP and the business case
of the security company. Then, Ant Colony Optimization will be discussed,
explaining the basic algorithm and some extensions of it. The algorithm of [24]
will also be explained. After this, the research methods will be explained, in-
cluding the implementation process and the details of the practical trials. Then
the results will be presented, followed by the discussion and conclusion. This
document will end with some suggestions on further work. For any variables or
abbreviations, a nomenclature is included.
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2 Problem description

The main intention of this research is to implement a Dynamic Vehicle Routing
Problem into practice using Dynamic Ant Colony Optimization algorithms.
This section will focus on getting a better grip on this problem domain by
first explaining some Vehicle Routing Problem types. For practical testing a
real-world case is needed. This business case will be described in detail. The
relevance of this work will also be discussed.

2.1 Vehicle Routing Problem

The Vehicle Routing Problem (VRP) is one of the most researched problem
types within logistics. According to [23], hundreds of algorithms and other
methods were introduced to solve the VRP since its introduction in 1959. [5]
The problem is widely studied because of its relevance to (cost) efficiency and
its relative complexity, especially when the problem set grows.

2.1.1 Basic Vehicle Routing Problem

Before the relevant VRP variant for this research can be discussed it is impor-
tant that we establish the basics of the most elementary type of the VRP. The
three most important characteristics of the VRP are:

1. The depot, the starting point of all vehicles.

2. r, the number of vehicles. r > 0.

3. n, the number of addresses or customers. n ≥ r.

If r = 1 we are dealing with a Traveling Salesman Problem, (TSP) which is
technically the most basic version of a VRP. For the sake of explaining the VRP
we will assume that most VRPs are complex enough so that r > 1.

The main goal of solving the VRP is to assign routes to the vehicles so
that all customers can be visited as efficiently as possible. Efficient can mean
different things. According to [23] typical objectives are:

• Minimization of the global transportation cost, including total distance
and labor time.

• Minimization of the number of vehicles.

• Balancing the routes, by distributing the work equally among vehicles.
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• Minimization of the penalties associated with partial service of customers,
such as late fines.

It should be noted that some goals are closely related. For instance: when
minimizing the total number of vehicles, this could also lower the total amount
of transportation costs. And, when optimizing route lengths, this could auto-
matically prevent tardiness and thus late fines.

Toth et al. [23] describe the notation of the VRP as follows: A complete
graph G = (V,A) where V = {0, ..., n} corresponds to the depot (0) and the
customers (1, ..., n). A is the arc set. There is a nonnegative cost cij for every
line (i, j) ∈ A. As mentioned before, the usual goal is to minimize these costs
while visiting each customer. In the very basic form of the VRP all customers
are available at all times.

A very common variant of the VRP is the capacitated VRP, or CVRP, where
each vehicle has an equal maximum capacity for packages, or customers it can
serve. However, for the purposes of this research, that is scheduling routes for
a security company without delivery of goods, the CVRP will not need to be
discussed any further.

2.1.2 VRP with Time Windows

In the previous subsection the basic VRP was discussed, where each customer
was always available. However, this is not always the case. Sometimes certain
customers can only open the door at specific hours, or contractual time-frame
obligations have to be adhered. In this case we are speaking of a VRP with
Time Windows, a VRPTW.

Each customer i is given a time window [ai, bi]. Within this time window the
delivery should start. To preemptively calculate the customer sequence there
should be a travel distance (or time) dij between each pair of customers i and
j. dij could possibly replace cij . Each customer i will also have a service time
si, where si ≥ 0. This is the time it takes to visit the customer. After this
time, the vehicle can go on its way to visit the next address.

2.1.3 Dynamic VRP

The final extension to the VRP which will be introduced in this problem descrip-
tion is the Dynamic VRP, or DVRP. The main characteristic of this extension
is that not all customers are known beforehand. During the execution of the
initial solution of the VRP, more customers will be added to the problem set.
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n will grow and thus G will grow. A portion D of the customers will not be
available initially and will be introduced one by one at a given time ti. The
remaining fraction of customers will be known a-priori. ((1 −D) ∗ number of
customers) D is the dynamicity of the problem and can be expressed as either
a fraction or a percentage. Introducing new customers will make the problem
more complex and it also requires a certain amount of slack-time within the
initial calculations at t = 0, allowing for growth. Sometimes, an estimation of
D is known a-priori, which can be used to determine the amount of (initial)
slack. However, in practice the exact value of D is almost never known a-priori.

Psaraftis [17] informs us that the possibilities for applications of the DVRP
have grown with the advancement of location-based technologies such as GPS
and GIS (Geographical Information Systems). These technologies can, in com-
bination with today’s communication possibilities, be utilized to effectively refer
vehicles to new, unexpected customers. Therefore, researching the DVRP has
become very relevant, as well as the DVRP variant with time window con-
straints: the DVRPTW.

2.2 Business case

2.2.1 Case study

To put the theory into practice, we need a real-life problem, a business case. A
business case was derived from a business where a DVRP with Time Windows
was present. Consider a security company. Every day this security company
has between 300 and 400 planned jobs in the Rotterdam area. These planned
jobs include surveillance, security checks and the opening or closing of build-
ings, among others. There are clear contracts about the time windows and tasks
which are included in such a job. Also, the average service time for each job
is known. The deviation, along with a typical minimum and maximum service
time are also well-known. This is based on historic data. Each day, there is an
average of about 45 incidents (or alarms) in this same region. However, this
amount can vary from 30 to 110 incidents. These incidents can for instance
be fire alarms, burglary alarms or technical problems. They appear during the
day and cannot be predicted. Some predictions can be made, i.e. most alarms
occur in the evening and on industrial terrains, but we do not know their exact
times and other properties beforehand. Therefore this business case is perfect
to implement a DVRPTW. This DVRPTW has an average dynamicity of 11.6%.

To translate this case into a VRP we need an objective function to be
optimized. Multiple objectives were considered. Cost minimization could be
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performed on (for instance) fuel cost, total distance, labor time or the number
of fines. Fines will originate from contract violations such as visits outside of
time window constraints. The ideal minimization would consider all of these
factors and minimize the total costs. However, this would make the problem a
lot more complex. Of course, there is a big correlation between total distance,
fuel, and time. So by minimizing one of these factors we can expect to obtain
approximately optimal values for the other factors. Also, a time window al-
gorithm will always try to work within the given time windows, automatically
minimizing fines. Most costs originate from total labor time, given the fact that
the contract violation fines do not exceed the savings on labor cost. Therefore
the main goal should be minimizing the labor time. An important constraint
is that a work shift usually should take 3 to 8 hours. Between 8 to 10 hours
overtime is paid. Less than 3 hours or more than 10 hours is not allowed. Using
as less vehicles as possible is also desirable.

2.2.2 Current solution

At the moment there is almost no dynamicity implemented in the baseline al-
gorithm used in the business case. All jobs which are known a-priori, the static
jobs, are scheduled by a state-of-the-art static VRPTW algorithm. The exact
algorithm is unknown to us, as it is confidential. Also, a number of vehicles
is always on stand-by. Their job is solely to react to any incoming incidents.
Incidents are assigned by a (human) coordinator. In most cases an incident will
go to the closest stand-by vehicle. In very rare cases, an incident will be picked
up by a static job vehicle. The coordinator might need to do some manual
rescheduling in this case.

This approach has some drawbacks:

• The response to incidents might be too late if all incident vehicles are
busy at the same time.

• It takes time for the coordinator to plan all the incidents. Especially when
multiple incidents come in at once and routes need to be rescheduled.

• On a quiet day (a day with less than average incidents), the incident
vehicles will be idle most of the time. This results in unnecessary labor
time and bored employees.

Possible upsides of such an approach are:

• Static job vehicle drivers know exactly what they have to do all day. This
can make them more efficient and/or confident.
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• Incident vehicle drivers can specialize themselves in handling incidents.
Training costs could be cheaper as apposed to a dynamic solution where
all employees should be able to respond to any type of customer.

2.2.3 Case concepts

Each customer (or job) i has the following properties:

• A location. This is an address. The travel time, cost or distance dij
between two jobs i and j can be calculated by a navigation (web)service,
such as Google Maps.

• A service time si. The time it takes to complete the job. The service time
is not always known a-priori. Sometimes a job takes unexpectedly long
or short. I.e. when a burglary alarm turns out to be a false alarm.

• A time window [ai, bi]. The security company is contractually obliged
to visit within this time frame. Most time windows have an interval of
multiple hours, some less than an hour. An incident time window is either
30 or 45 minutes.

• A priority p, ranging from 1 to 4. 1 and 2 for incidents, 3 and 4 for static
jobs, 1 being the highest priority. Some customers have more expensive
fees for tardiness and thus have a higher priority.

• An availability time or occurrence time. All static jobs are available at t =
0. Incidents will become available during the day. The availability time
of an incident is equal to its time window start time ai, because incidents
can always be visited as soon as they become available, in contrast to
static jobs.

The jobs which are known a-priori will be referred to as static jobs. Static
jobs have an average service time of 25 minutes, ranging from 1 minute for a
short check to 8 hours for a surveillance. The dynamic jobs are referred to
as incidents. Incidents have an average service time of 16 and a half minute,
ranging from only a few seconds (false alarm) up to multiple hours in case of a
burglary arrest. However, usually an incident takes 10 to 30 minutes. Locations
are usually clustered due to business areas.

2.3 Relevance of this work

Pillac et al. [16] give us a non-exhaustive list of applications for vehicle rout-
ing problems where there usually is a dynamic component. These applications
include but are not limited to: delivery of petroleum or gases, courier services,
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inter modal services, combined pickup and delivery services and management of
containers. Usually the current solution is one or multiple human coordinators
or a clear separation between a-priori known jobs and dynamic jobs. (As in
our business case.) An effective implementation of a DVRP solver could bring
a great deal of efficiency in some businesses.

This research will also try to contribute to closing the gap between the large
number of theoretical optimization algorithms and the practical implementation
of these algorithms, as is also discussed in [9]. We will give some advice on
implementing theoretical (dynamic routing) problems to use in a real-world
situation.
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3 Ant Colony Optimization

The Ant Colony Optimization (ACO) algorithm was introduced by [6], then
called the ant system. ACO is a metaheuristic, which means it can be applied
to a large variations of problems and across various domains. ACO is inspired
by the way ants gather food. This process is shown in Figure 1. One or multi-
ple ants will walk a relatively random path from their nest (N) towards a food
source (F ) and back. An ant will leave pheromones. Other ants will smell these
pheromones, which will give them a higher probability to choose the same path.
If there is more pheromone on a path, the probability that an ant will choose
it will be higher. However the probability will never be 0, so ants can diverge
from the pheromone-intensive paths, allowing for exploration. Eventually, the
shortest path will be traversed the greatest number of times, since it takes the
least amount of time to complete, thus making the pheromone count on that
path higher. (As shown in Figure 1.3.)

Figure 1: The creation of an ant colony path using pheromones. [7].

This food gathering method inspired the ACO algorithm, which uses the
same pheromone based techniques to solve various problems, for instance rout-
ing problems. This section will describe how it can be used in a VRP and a
DVRPTW.

3.1 Canonical ACO algorithm

The canonical ACO pseudo algorithm can be seen in Algorithm 1. Each line
within a graph will have a pheromone level τ ≥ 0. One by one, each ant within
the colony will find its target by taking one step at a time. For each step

12



the ant will look at the pheromones of the available nodes, which are usually
neighboring nodes which the ant has not visited yet. It will choose its next
step based on these pheromones, i.e. by roulette wheel selection [13]. When all
ants have done this, the old pheromones will decrease in value (evaporation),
whereas popular paths increase their τ . Eventually, the best found solution will
get better with time.

Algorithm 1 The canonical ACO algorithm

1: Initialize pheromones
2: while not terminate do
3: for every ant do
4: while ant has not found goal do
5: for each available neighbor node do
6: Calculate probability for node based of pheromones
7: end for
8: Take pseudo-random step towards a node
9: end while

10: Evaluate and save route
11: end for
12: Save best route T ∗

13: Evaporate old pheromones
14: Update pheromones
15: end while

3.2 ACO in VRP

Being a metaheuristic, ACO can be used to solve a variety of problems. Mostly
it is used to solve graph-like discrete problems, like the VRP.

Bell et al. [1] describe how a VRP can be solved using ACO. To apply ACO
to a VRP, the vehicles will need to be simulated as follows. An ant will start
at the depot and select its first step by choosing a customer i, based on the
pheromone levels between the available customers and the depot. After this the
ant will select the new customer j in the same manner. Available customers
can be all customers which have not been visited yet, or an arbitrary number
of nearby customers, as seen from the ant’s position. An ant continues con-
structing a tour until the moment that visiting a new customer would always
violate a capacity constraint, or in our case a time window constraint. Then
a new vehicle will be simulated. The ant will go back to the depot and start
constructing routes by visiting the remaining customers within V . This will con-
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tinue until all vehicles are used or all customers in V are visited. Pheromones
can be distributed locally after each ant and globally after each colony, based
on the best found solutions. In some ACO variants each ant represents a vehicle.

3.3 ACO in DVRPTW

Van Veen et al. [24] describe an ACO algorithm designed for a DVRPTW.
This algorithm is an extension of the ant algorithm described in [10], which
performs very well on Solomon’s VRPTW benchmark problems [21] according
to [24]. The DVRPTW of [24] will be summarized briefly.

Figure 2: Examples of 2-opt edge replacements. Squares represent depots,
circles represent nodes. (a) demonstrates a move with edges from different
tours. (b) is an example of a move within a single tour. (c) shows the process
of cross exchange. [24]
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The algorithm is a MACS-DVRPTW algorithm. (Multiple Ant Colony Sys-
tem DVRPTW.) It uses two ant colonies to approach an optimal solution. The
ACS-VEI colony searches for a solution with less vehicles than the best cur-
rent solution (T ∗). ACS-TIME searches for a solution with less total driving
time/distance than T ∗, while not changing the amount of vehicles. ACS-VEI
works with infeasible routes, working towards a feasible route with less cars
than T ∗. ACS-TIME does not work with infeasible routes. Both colonies are
started by a supervising system, referred to as the controller. The governing
principle of the controller is running the colonies and processing any solutions
from those colonies. “A solution with less vehicles is always preferred over
a solution with a smaller distance.” ACS-TIME also uses a technique called
cross-exchange, which is presented in [22]. This local search method is used to
optimize the routes further locally. It can be seen in Figure 2.

Algorithm 2 The controller of the MACS-DVRPTW algorithm in [24].

1: Set time t = 0
2: T ∗ ← NearestNeighbor
3: while still time steps left do
4: Start ACS-TIME with r = rT∗
5: Start ACS-VEI with r = rT∗ − 1
6: while colonies are active and time step is not over do
7: Wait until a better solution T is found
8: if If rT < rT∗ then
9: Stop colonies

10: end if
11: T ∗ ← T
12: end while
13: if time-step is over then
14: Stop colonies
15: Update available nodes (incidents)
16: end if
17: end while

The pseudo code of the basic outlines of the MACS-DVRPTW algorithm
can be seen in Algorithm 2. To find initial solutions, the nearest neighbor
heuristic [8] is used. This heuristic starts and continues expanding a route with
the nearest available customer which isn’t visited yet, until it reaches a con-
straint. Because this nearest neighbor heuristic also has a limit to the number
of vehicles, it can give infeasible solutions. However, this is not necessarily an
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unwelcome outcome, since this solution is only used as a base solution to im-
prove upon by the ant colonies.

Using the nearest neighbor solution to initialize pheromones, both colonies
are started and will start looking for a solution. ACS-TIME will look for a
time-efficient solution with the current amount of vehicles, ACS-VEI will start
looking for a solution with one less vehicle than the current solution. The
dynamic customers are introduced at certain time-steps. (Where t > 0.) Each
time a new customer is introduced, the colonies are stopped and started again
including the new customer. When ACS-VEI finds a solution with less vehicles
(rT ), both colonies are restarted also. (Line 8 of Algorithm 2.) Eventually, the
controller will continue improving the routes while constantly receiving new
orders at certain time steps. These new orders will then also be incorporated
in the routes.

3.4 Other related work

More relevant research has been done on the topic of dynamic vehicle routing
problems in combination with ACO. Some relevant works will be listed here.

Rizzoli et al. [18] discuss two real-world problems being solved with ACO: a
VRPTW and a VRP with pickup and delivery. The ACO algorithms performed
well on both VRP cases. DVRP was discussed in this paper, but not put to
practice.

Pillac et al. [16] explain a number of algorithms designed to solve a DVRP,
which can give useful insights when solving a DVRP. [16] includes an ACO al-
gorithm which uses time slices. The problem execution is divided in a number
of periods, or slices. The algorithm only recalculates the routes at the end of
each slice.

Finally, the authors of the MACS-VRPTW algorithm [10] have published a
paper on the successful implementation of two applications of ACO in a VRP.
[11] One is based on the MACS-VRPTW algorithm, the other has a prototype
element for DVRP handling, which has promising results so far. The algorithms
are described in [11], but no sufficient details of the actual implementation are
discussed.
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4 Research Methods

This section will explain the methods used to conduct the research. First of
all, Section 4.1 will explain the global ideas of our implementation and analysis
processes, without going into too much details. After that, the details of our
methods will be discussed step by step in Section 4.2.

4.1 Research approach

4.1.1 Implementation theory

The implementation of the algorithm on a logistics platform was achieved in
an iterative process. A number of changing requirements was expected, as well
as the rise of some unexpected complications during the development. Brod-
ley et al. [2] present a model, based on the classic waterfall model from [19].
However, this model is more suitable for iterative processes compared to the
waterfall model. The model in [2] is made for applying classification algorithms
in practice, but is general enough to apply it to a VRP algorithm. It can be
seen in Figure 3. Key in this model is the feedback coming from stages 3 and
4, testing and usage, respectively.

Figure 3: The application development process according to [2].

Also Hevner [12] presents a model for design and development within a
scientific context. In Figure 4 we see his design science research cycles. In con-
trast to Figure 3 we can see that these cycles are based around certain domains.
(Environment, Design Science Research, Knowledge Base.) The environment
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of our research is the business case from Section 2.2 and the real-world testing.
The knowledge base is existing and newly derived scientific knowledge and ex-
perience with respect to the ACO algorithm and the VRP. It also includes any
newly scientific results and conclusions. The Design Science Research is every-
thing in between. The three cycles links these three domains together and can
be partly linked towards the arrows in Figure 3. During the implementation of
the algorithm it was always helpful to consider what cycle the implementation
was going through at a certain moment. This way there was a clear separation
between theoretical analysis and real-world validation.

Figure 4: The Design Science Research Cycles from [12].

4.1.2 Global Research Processes

In this subsection the global processes of the research will be explained. With
this we mean the overall strategies and concepts used to produce the more de-
tailed techniques of the research.

Consider the development process of Figure 3. It shows us that the first
stage is the analysis of domain-specific factors. First of all, data was gathered
so the case of Section 2.2 could be made. An interview with the company’s
data analyst was conducted and customer data (job times, locations etc.) was
gathered. This was done to gather initial requirements and get a grip on the
situation. (The Relevance Cycle.)

After the first analysis, the actual design and implementation started. An
initial set-up for the algorithm was designed and implemented. We would go
back and forth between implementing and re-designing. (stage 2 and 3 of Figure
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3 and the Design Cycle of Figure 4.) The real-world testing is considered as the
Operational Use stage, this is the ’Field testing’ part of the Relevance Cycle.
Any unexpected trial data derived from the real-world tests could be used to
contribute to the Knowledge base. (The Rigor Cycle.) For more detail on the
implementations and real-world testing, see Section 4.2.

4.2 Implementation and trial set-up

This subsection will explain the details of the research. First the test case
which was used for the trials will be discussed. Then the method of the initial
implementation is explained. The execution of both real-world trials will be
discussed, including the intermediate revisions. Finally, the surveys held after
the trials will be shortly discussed.

4.2.1 Test case

To use our business case as a practical real-world testing case for a DVRPTW
algorithm, the case needed to be scaled down. For 400 incidents a few dozens
of vehicles would be needed. A trial of this size would be outside of our scope,
because of finances, time and complexity. Therefore, a testing case of 5 vehi-
cles was created. 4 static job vehicles from the same depot and day and with
similar addresses were selected. These 4 vehicles have a total of 48 jobs. Also,
one incident vehicle from the same area and day was selected, containing 9
incidents. This gives us a dynamicity of 15.8%, (9/(48 + 9)) which is relatively
high compared to the average of 11.6% in the business case in Section 2.2. This
was done on purpose to give a challenging test case. The 57 orders were made
anonymous by selecting an address zero up to two streets away from the initial
address. This was done to keep the customers anonymous, while still maintain-
ing a good test case. The time windows of the jobs within the test case all took
place within a 6 hour time-frame, in the evening. To get a general view of the
addresses in the test case, the map with all customers can be seen in Figure 5.

4.2.2 Initial implementation

To successfully implement a DVRP it is key to know the location of the vehicles’
location and status at the moment of occurrence of a new job. To achieve this,
the DEAL platform [14] was used. This platform is made for logistic solutions
such as the efficient delivery of packages. All drivers can use a mobile applica-
tion to update their status and GPS location. The DEAL mobile application
also shows the sequence of jobs and its addresses to the drivers and to the
coordinators. The ACO algorithm was implemented on an external algorithm
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Figure 5: All test case jobs on the map. Blue = static jobs. Red = incidents.

agent which could get an overview of the available jobs and the vehicles. When
triggered, this algorithm agent used ACO to rearrange the routes of the vehicles.

The first step was to implement the MACS-VRPTW of [24] for the agent
so it could find efficient routes when given a set of jobs. Apart from this algo-
rithm, some more features were necessary to fit the business case problem. One
by one these additional requirements were added and tested. The service time
(si) and priorities (pi) were the first functionalities to be completed and tested.
Most functionality testing was performed on a small number of real-world jobs,
enough to fill the time of 2 or 3 cars, because testing on the full test case made
the tests too complex and time consuming. Initially there was no dynamicity
implemented, since the ACO algorithm had to function properly before advanc-
ing to this stage, to avoid unnecessary complexity. When the ACO algorithm
for the a-priori calculations was verified, an extra trigger method was created
so the agent could be called each time a new incident became available.

The following features were implemented during the initial implementation,
in the following order:

1. A regular ACO metaheuristic.

2. The extension of the ACO algorithm to fit a VRPTW, including the
MACS controller.
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3. A service time constraint si for each job.

4. Job priorities pi. A job with a higher priority has a higher chance to be
included into a solution provided by an ant colony.

5. A method to include a new job (incident) utilizing local search, including
cross-exchange. This method could be triggered as an event as soon as
an incident became available.

1, 2, 3, and 5 could be taken almost directly from the algorithm of [24], although
the original algorithm did not need a trigger to add an incident. A trigger was
more practical for our real-world situation, because a coordinator can activate
it manually.

4.2.3 Trial 1

To test how well the algorithm performed in practice, two trials were conducted.
The first trial consisted of two teams with 5 drivers each. As Section 4.2.1 dis-
cussed, our test case was made for 5 vehicles. Team A tested the performance
of our algorithm. Team B worked according to the solution of the baseline al-
gorithm provided by the security company: here 4 cars were assigned to static
orders in a predetermined schedule, while one car visited all the incidents. Team
B was used as a control group for baseline comparison. This way it was possible
to see if there actually were improvements.

All drivers were students or recently graduated students. The advantage of
working with these people was that they were accepting to contribute to the
project for a relative low salary and their recruitment was relatively easy due
to the university setting of the project. Also, students proved to have flexible
working hours. A survey was conducted inquiring the amount of experience of
the drivers. Four out of ten drivers had experience with delivery by car and
six had more than 4 years of driving experience. Each driver drove regularly.
(Ranging from 3 times a month to every day.) The most experienced drivers
were distributed over both teams. The relevant experience of the drivers can
be viewed in Table 1.

The initial routes for team A were calculated beforehand by the ACO agent.
Team B’s routes were the same as the security company’s predetermined routes.
Both teams got their jobs assigned to them through the DEAL mobile appli-
cation, to get a fair comparison between teams. However, team B’s incident
driver got a text message each time he was assigned to a new incident, just like
in the original case. Team A’s drivers were instructed to be aware of changing
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Driver

#

Trial

1

team

Trial

2

team

Driving

experience

(years)

Driving

frequency

(days per

week)

Navigation

through

Rotterdam

frequency

(days per

week)

Delivery

experience

(by car)

1 A C > 8 1-2 1-2 Yes

2 A - 5-8 6-7 < 1 Yes

3 A - 4-5 3-4 1-2 -

4 A C 3-4 6-7 3-4 Yes

5 A - 2-3 3-4 1-2 -

6 B C 5-8 3-4 < 1 -

7 B - 5-8 6-7 1-2 Yes

8 B C 4-5 3-4 3-4 -

9 B - 2-3 6-7 6-7 -

10 B - 2-3 < 1 < 1 -

11 - C 4-5 1-2 < 1 Yes

Table 1: The relevant experience of each driver.

routes at all times. Each time an incident became available, the agent was
triggered to change team A’s routes, this was done on-the-fly.

Team B started at predetermined times, determined by the time it would
take them to reach their first address on time, according to the security com-
pany’s planning. Team A’s vehicles all were available from the start, since there
was a possibility one of them was assigned to an incident.

4.2.4 Revisions

The conclusions drawn from the first trial (discussed in detail in Section 5)
were used to improve the implementation of the algorithm. A list was made of
each required improvement and these were implemented iteratively. The most
important revisions were:

• Balancing of the vehicles. During the trial some vehicles were very busy,
while others had hardly any work. (I.e. 25 and 2 jobs respectively.) This
can be seen in the results section, (Section 5) where Figure 6 shows a
vehicle with a significantly high amount of vehicles during the entire trial.
This fact resulted in the busy vehicles being late. Balancing also helps to
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give some buffer time, in case an incident has to be handled. Balancing
was achieved by giving the vehicles a maximum amount of orders during
the nearest neighbor algorithm. This maximum equals: n/(r − 1).

• When a driver is already performing a job or driving towards a job, he/she
should not be interrupted. I.e. this job should not be reassigned to
another driver.

• At the moment of recalculating the routes, it is important to keep track
of the current time and the current position of the vehicles to check if
any vehicles will be late. It might be necessary to reschedule to prevent
tardiness.

• The vehicle speed used in planning was assumed too high initially, since
most of the trial took place in a urban area. It was reduced from 80 km/h
to 30 km/h.

4.2.5 Trial 2

The second trial consisted of only 5 drivers, referred to as team C. For practical
reasons another control group was not included. The first control group results
proved very consistent and there was no strong need to test these results again,
since the situation was very similar. Both trials were conducted on a Friday,
during the same time period, with no large weather differences, etc. This choice
also allowed us to focus more on the algorithm’s results and cope with any al-
gorithm problems during the trial.

Much like team A of Trial 1, the 5 cars of team C were sent out to visit their
dynamic routes, which were determined on-the-fly by the (improved) algorithm
agent. This time, there was a bigger focus on the minimization of labor hours,
therefore not all cars started at the beginning of the trial. Two cars started
driving at the start of the trial, two were given a custom starting time, based on
the start of the time window of their first planned job, accounting for driving
time to get there at the start of the time window. The remaining car was on
stand-by, in case the two active cars did not have enough buffer time to pick
up an incident.

Some decisions were human made during this trial, but could theoretically
be adopted into the algorithm. For instance, the start times of the vehicles
were not conceived by the algorithm. This was not the only human interven-
tion during the trial. When the algorithm saw a route as infeasible, it could
drop one or more jobs to get a feasible solution. This happened with 5 orders.
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However, 3 of these orders later became feasible again and were assigned to a
driver manually. This intervention was necessary because the algorithm was
not designed to pick up unassigned orders again.

During this trial the drivers took some forms with them so they could take
notes about their jobs, including arrival times and stress-levels. This was done
to gather any interesting insights in the human factor of the implementation.
An example of these forms can be found in the appendix.

4.2.6 Surveys

As can be seen in the first case study of [18], sometimes a problem solution
may seem very efficient, but doesn’t work or isn’t ideal because of the people
involved. Therefore it is important to also inquire the participant’s experiences.
At the end of both trials all drivers did a survey to rate their experience. This
survey inquired about factors such as stress and certainty, but was also made
to identify any problems during the trials. The same survey was used for both
trials. All qualitative results of this survey were processed using grounded theory
coding, as shortly described in [4]. This process goes roughly as follows:

1. Open coding. Labels are created based on the rough data. Labels should
summarize the most important discussions of the test subjects, in this
case the drivers. Labels are then grouped together based on subject.

2. Axial coding. Connections between the open codes are identified. Labels
are grouped together more formally.

3. Selective coding. Based on the axial codes, the most important conclusion
or conclusions should be drawn. The data will be examined again, while
looking for more examples which can strengthen these conclusions.
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5 Results

This section contains all results of both conducted trials. First of all, the timing
of the vehicles’ routes will be discussed. An important factor is the exact timing
of all job executions. After that, the human factor will be addressed, such as the
survey results. Finally, the new and final implementation of the ACO algorithm
will be discussed since this can be viewed as an important final result as well.

5.1 Timing performance

The MACS-DVRPTW algorithm was implemented and tested as described ear-
lier. The DEAL platform [14] allowed us to record the relevant data to draw
conclusions from these trials. After both trials it was possible to see when jobs
were started and finished. This gave good insight to the timing of the algorithm.

Static jobs

Control
group

Trial 1 Trial 2

Not visited (#) 0 16 2
Not visited (% of total) 0 33.33 4.17

Late (#) 0 6 5∗

Late (% of finished) 0 18.75 10.87∗

Late (minutes) 0 106 50∗

Too early (#) 1 0 1
Too early (minutes) 8 0 3

* 3/5 were caused by a traffic jam, causing 44/50 late minutes.

Table 2: The timeliness of the 48 static jobs for both trials.

Incidents

Control
group

Trial 1 Trial 2

Not visited (#) 0 4 0
Not visited (% of total) 0 44.44 0

Late (#) 0 1 1
Late (% of finished) 0 20 11.11
Late (minutes) 0 57 2

Table 3: The timeliness of the 9 incidents for both trials.
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For our algorithm to perform well on the business case it is important that
there are as little contract violations as possible. Therefore, it is important
to look at the timeliness of drivers, since they could arrive too late. It is also
possible that a job is not visited at all, either because the driver was running
too late or because the algorithm saw this as infeasible. In a very rare occasion
(twice) the job was started before the time window, this is (in our case) due to
human error.

In Table 2 these results regarding the static jobs are shown. The incident
results can be seen in Table 3. These results show us that the control group
performed relatively well and stable. No control group driver arrived too late
for either a static event nor for an incident.

Figure 6: The total amount of jobs during Trial 1 in the vehicles’ schedules, for
each incident availability time.

The first algorithm trial experienced some problems. The most important
problems are mentioned in Section 4.2.4, since they were used to improve the
implementation before Trial 2. The problems in Trial 1 caused a significant
amount of jobs to fail or at least be late. This can be seen in both Table 2 and
3. More than one third of the jobs were not finished in Trial 1. This is not
acceptable for the business case. An important cause of this tardiness was the
fact that one vehicle was scheduled to have more jobs than it could handle. In
Figure 6 it is visible that vehicle 2 was given a lot more orders than the other
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vehicles. This problem remained during the entire trial, even though vehicle 3
was already finished with its jobs by the time the fifth incident occurred. This
vehicle could have taken on some of the excess jobs from vehicle 2.

After making the improvements of Section 4.2.4, Trial 2 was conducted. A
great improvement since Trial 1 can be observed. In Figure 7 it is visible that
the total amount of jobs is more evenly distributed between vehicles and that
these total amounts have a downwards slope as time progresses.

Figure 7: The total amount of jobs during Trial 2 in the vehicles’ schedules, for
each incident availability time.

Partly because of this even distribution, the timeliness of Trial 2 was a lot
more acceptable. Only 2 (static) jobs remained unvisited. 5 jobs were too late
with a total late time of 50 minutes. However, halfway through the trial, one
of the drivers got stuck in a traffic jam which was not at all present during the
control group trial. 2 jobs were in the middle of this traffic jam, both with an
arrival time relatively close to the planned arrival times of the control group.
(Within the same hour.) So it is safe to say that the control group would also
could have experienced some delay. Or at the very least we could say that the
Trial 2 driver would have experienced less or no delay if the traffic jam would
have not been present. Therefore, if the traffic jam wouldn’t have been there,
Trial 2 would have had only 2 late orders, with a total of 6 late-minutes, making
these results a lot more positive. However, there is no way of knowing this with
complete certainty.
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As mentioned in Section 2.2.1 the most important metric is the total labor
time. These results are presented in Table 4. The total labor time needed
would be the accumulated driving times of all cars, including driving from and
towards the depot. The driving-times without depots are also shown to give
an impression of the performance excluding the startup and completion of the
trials. The total time of Trial 1 seems to be the shortest, but this is because so
many jobs were left unfinished. For Trial 2 we see an increment in total labor
time of 8.6%.

Total driving time in hours

Control
group

Trial 1 Trial 2

Excluding depot 25:59 19:57 22:57

Including depot 27:26 21:33 25:05

Table 4: The total driving times, or labor hours, for both trials.

5.2 Driver experience survey results

5.2.1 Trial 1

The most important outcomes of the survey of Trial 1 were:

1. The changing of routes was experienced as ‘confusing’ by some drivers.

2. Some jobs disappeared while a driver was executing it. This raised un-
certainty.

3. A driver felt ‘a bit useless’ since he had to drive back and forth from one
side of the city to another side and back again. Even though this might
be the most efficient route, a driver might not experience it as such.

4. Most stress was experienced when a driver was running late.

5. Most users felt more certain because they got a clear explanation before-
hand and because they could contact a coordinator at all times.

6. There were some user interface problems, i.e. some users marked a job as
started by accident and this could not be reversed by the user.

7. Most drivers felt the planning was tight, but not too tight or stressful.

These last outcomes (4, 5, 6, 7) were also found in the surveys of the control
group drivers. Outcomes 1, 2 and 3 were only relevant for the drivers that
tested the dynamic ACO algorithm. (Team A.)
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5.2.2 Trial 2

From the survey of Trial 2, the same outcomes as number 4, 5, 6 and 7 of Trial
1 were found. Furthermore, the following results came out of the survey:

• Two drivers found that a more frequent refresh of the job list would be
helpful. A forced refresh each time a route is changed might even be more
effective.

• One driver experienced quite some stress during a traffic jam.

• Four drivers already participated in the first trial, and experienced the
second went much smoother. This was accounted mostly towards the
relative absence of problems, such as disappearing jobs.

5.3 Forms

As mentioned in Section 4.2.5, the drivers of Trial 2 were given a form to write
down their arrival times and also their stress and confidence or certainty level,
ranging from 1 to 5, were 1 is ’(almost) none’ en 5 is ’a lot’. They rated their
stress and confidence when arriving at a job.

At most times (42/55) stress was 1 and confidence was 5. When stress went
up, that usually meant that the driver’s confidence was low. (7/12) The drivers
experienced stress in the following occasions:

• The driver was running late.

• The driver got stuck in traffic.

• The driver took a wrong turn, delaying his route.

• The driver was not sure if finishing a job outside of the time window also
counted as being late.

5.4 Final implementation

One of our most important results is the actual final implementation of the al-
gorithm. The theoretical algorithm from Section 3.3 was adjusted so it could be
used in a real-world situation. This version of the algorithm will be described
in this section.
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The controller of the implemented algorithm is very globally displayed in
Algorithm 3. The adjustments to this controller are:

• The algorithm is not constantly searching for better routes. This is be-
cause the amount of changes to driver schedules should be minimized to
avoid confusing the drivers. The cost of a small change would possibly be
greater than its gain. Line 16 in Algorithm 3 shows that the algorithm
is not actively calculating after updating the schedules and before a new
incident is introduced.

• The number of iterations used by the ant colonies was set to 5000. (Line
26 in Algorithm 3.) This number was found to produce acceptable results
within a minute. A short total calculation time was necessary to update
routes as quickly as possible after an incident occurred. Note that this
number might need to be changed when the test case is scaled up or down.

• The first job of a vehicle will always be locked on the first position of its
route, as is seen in line 17 of Algorithm 3. This is so the driver never loses
a job he/she is already performing. Also, when a driver started driving
towards a customer, this customer should not be rescheduled to another
driver.

Other important adjustments to the algorithm were:

• If the colony is trying to add missing nodes to an infeasible route, the
highest priorities will be added first, if possible. The missing nodes from
line 18 of Algorithm 3 are sorted by priority.

• Feasibility of a route is based on the current location of the vehicles, which
can be viewed as starting positions or depots when introducing an inci-
dent. Feasibility is also based on the time at the moment of calculation.
Therefore, past time windows will not be considered anymore. By con-
sidering time and vehicle locations, more accurate schedules can be made
when introducing a new incident while vehicles are driving towards a job.
The feasibility check on line 23 of Algorithm 3 is based on the time and
location which are retrieved on line 22.

• Driving speed is by default 30km/h, which is a good average for urban
areas, allowing for some buffer time.

• The nearest neighbor heuristic on line 2 of Algorithm 3 intents to dis-
tribute the customers relatively evenly over the vehicles. This will give a
balanced initial solution for the ACO pheromone initialization. This even
distribution within the nearest neighbor algorithm is achieved by giving
each vehicle a maximum of n/(r − 1) customers.
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Algorithm 3 The controller of the final implementation of the MACS-
DVRPTW algorithm.

1: Set time t = 0
2: T ∗ ← NearestNeighbor
3: while not terminate initial calculation do
4: Start ACS-TIME with r = rT∗
5: Start ACS-VEI with r = rT∗ − 1
6: Wait until a solution T is found
7: if If rT < rT∗ then
8: Stop colonies
9: end if

10: T ∗ ← T
11: end while
12: Stop colonies
13: Update routes
14: Start execution of problem solution
15: while execution of DVRPTW is not over do
16: Wait for new incident
17: Lock current task of each vehicle
18: for each missing node do
19: Calculate cost of each possible insertion in each route in T∗
20: Insert node were cost is lowest
21: end for
22: Get current time and vehicle locations
23: if routes are infeasible then
24: Start ACS-TIME with r = rT∗
25: Start ACS-VEI with r = rT∗ − 1
26: while stop condition is not reached do
27: Wait until a solution T is found
28: if If rT < rT∗ then
29: Stop colonies
30: end if
31: T ∗ ← T
32: end while
33: Stop colonies
34: end if
35: Update routes
36: end while
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6 Discussion and Conclusion

6.1 Discussion

This section will first discuss the performance of the algorithm in practice,
mainly looking at the second trial. We consider what scaling up the test case
could do for these results and the findings during the implementation will be
briefly considered. The end users, mostly the drivers, will also be discussed.

6.1.1 Performance of the implementation

To discuss the performance of the implementation of the MACS-DVRPTW al-
gorithm, the timing results of Section 5.1 are an important factor. As can be
observed, the results of the first trial are unacceptable when compared to the
control group’s results. However, we are most interested in the performance of
the final implementation, therefore the results of Trial 2 are much more relevant.

Firstly, it is visible that the result for the incidents are very acceptable.
Only one incident was late, only 2 minutes. This is a relatively small constraint
violation and might even be overlooked in practice. The results for the static
jobs, however, are not near those of the control group. Two jobs did not get
finished at all, which should not happen when we know it is theoretically pos-
sible to visit all of them. (As the control group did.) 5 jobs were late with
a total of 50 late-minutes. In comparison with the control group this might
look like a significant deterioration. However, if the traffic jam (which was also
mentioned in Section 5.1) is taken into account, Trial 2 would have had only 2
minutes and 6 late-minutes. In practice such small delays might be overlooked.
However, we cannot be completely sure it would have happened like this if the
traffic jam had not occurred.

Our main target was to minimize the total labor time. The total driving
times of Team A of Trial 1 can be disregarded. Trial 1 has the lowest total
amount of driving time, however this is not a realistic value, since 33% of the
static jobs and 44% of all incidents were not visited. The total driving time
of Trial 2 is 2 hours and 21 minutes less than the driving time of the control
group. This is most probably a lot more than needed to visit the two missing
jobs, which have a total execution time of only 19 minutes. Therefore it can
be said that the algorithm could reduce the total amount of labor hours by a
significant amount of hours.

These results should be observed critically. Although the improvement in
labor time seems significant, it is only a single test case. The test case was
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made as representative as possible, but with just these results we cannot be
completely sure it will always shorten the total labor time. However, if further
improvements are made towards the algorithm (see Section 7.1) it might be
possible to avoid any failed or late orders.

6.1.2 Scaling up the test case

Our test case was based on the data of 4 static job cars and 1 car handling
incidents. We could consider what happens when this test case is scaled up.
A possibility would be to use all the cars within the Rotterdam area to test
the MACS-DVRPTW algorithm. In our 5 vehicle test case, we would usually
have 1 to 3 vehicles nearby when an incident became available. But when there
are around 20 vehicles in this area, the number of available nearby vehicles will
grow, as will the possibilities to rearrange any routes when the incident delays
a vehicle. This can make the overall performance (measured in labor time and
fines) better, i.e. because less stand-by vehicles are needed and planning can be
tighter. It can also decrease the tardiness, making the algorithm more robust.

6.1.3 Implementation findings

Some difficulties were faced during the implementation process of the algorithm.
Out of these difficulties it is possible to draw conclusions for any further research
within the field. This can also be said for things that went well.

Most problems occurred within the Relevance Cycle. (Of Figure 4.) We
found that it is hard to test a practical implementation without the actual re-
sources. I.e. the algorithm had to be tested throughout the implementation
period before the first trial. It was not completely clear what to test and how
to test it before running the first trial. This is mainly why the results of this
trial were unacceptable and a second trial was needed.

Since expertise was divided across project team members, the communica-
tion sometimes was a challenge. Especially when the algorithm agent had to
connect to the DEAL platform in a correct manner, a combination of expertises
was needed. Therefore it was important to establish clear roles.

6.1.4 Driver findings

When implementing a real-world application it is important to consider the
people involved, mostly the end-users. In this case the end-users involved were
the drivers. The most important finding regarding the driver experiences came
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from the survey results. (Section 5.2.)

Most stress was experienced when a driver was running late. One of the
algorithm’s tasks is to prevent this, so this stress-factor will decrease once the
algorithm will improve.

Another important factor was uncertainty. The changing of routes was
found confusing by some drivers. This element can of course not be changed
within a DVRP. However, a valid approach is keeping the amount of changes
to a minimum. It is also important to make the changes clear by giving a good
overview of finished and future jobs. It is important that the driver knows
what is expected of him/her. Therefore it is also important that it is made
clear when a driver’s route changes. These things can be achieved through the
user interface on their mobile device. Another important factor contributing to
certainty is a clear briefing.

Another interesting finding was about the usefulness the users experienced.
Driving back and forth between city sections might seem the most efficient
for an algorithm, but a driver might perceive it as unnecessary. This could
be fixed by preventing such situations in the algorithm, or giving the driver
a clear indication of his/her usefulness, i.e. by being transparent about any
routing choices, for instance by clearly displaying the time windows or even by
explaining unconventional strategies.

6.2 Conclusion

6.2.1 Research question 1

The first research question was: How can the algorithm of [24] be successfully
put to practice? In this document, the process of the implementation of the
algorithm was described. In Section 5.4 we can also see the adjusted algorithm
for practical use, our end result.

As discussed in the discussion, our implementation gave relatively good
results on our (second) real-world trial. The total labor time was improved
significantly, with good promise for more improvements. A small number of jobs
failed or were started too late, but we expect this can be fixed after some minor
adjustments to the implementation. (See Section 7.1.) Therefore it can be
concluded that we have described a good basis for the practical implementation
of the MACS-DVRPTW algorithm of [24].
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6.2.2 Research question 2

The second research question is more focused on the general concept of putting
theory into practice. The question was: What should be considered when im-
plementing a (dynamic routing) algorithm for a real-world environment? A
number of general lessons learned and new insights can be compiled to answer
this question:

• Implementing practice means testing in practice. When working with
real-world cases and data, one cannot simply implement something and
only test in theoretically. Multiple real-world tests are often required to
identify the real-world problems of an implemented algorithm.

• Working iteratively leads to success. It is impossible to know all the
functionality of the algorithm implementation beforehand. Therefore it is
important to keep in mind that requirements might change. Especially a
real-world test can give a clearer look on the elements needed. This does
however not mean that it is not a good idea to get a good head-start on
the requirements. Starting with a thorough analysis of the business case
can give a good indication of what might need the most attention.

• Communication is key. Implementing an algorithm in a real-world envi-
ronment is not a one-man-job. In our case we needed at least an algorithm,
a logistics system (DEAL) and a business case. These elements had to be
brought together by combining these expertises.

• People are important. The end-users should play an important role in the
development of the end result. After all, they will be using it and if they
don’t understand the product that might influence the performance of the
algorithm negatively. We found that a clear briefing and description of
tasks and expectations contributed to the confidence of the drivers. Also,
the changing of routes should be presented as transparent as possible
so the employee comprehends the logic of his route to a certain extend,
i.e. does not doubt the efficiency of the schedule. It is also important
to consider that an employee needs to feel useful and needs to have the
feeling that he/she is treated fairly.
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7 Future work

The implementation of the MACS-DVRPTW algorithm is not entirely ready
to use yet. For instance, some orders were dropped by the algorithm while
this is not acceptable in our business case. Some minor adjustments still have
to be made for it to work reliably on the work-floor. Some extensions to the
algorithm will be introduced which should make it work outside of our controlled
test environment by making it more flexible, automatic and robust.

7.1 Algorithm extensions

7.1.1 Soft time windows

The MACS-DVRPTW is designed to fit all jobs within their respective (strict)
time windows. If this is not possible, it will come with a solution which does
not include all jobs. However, in a lot of real-world cases, these time windows
are not that strict. The same goes for certain (low priority) customers in the
business case of Section 2.2. Calvete et al. [3] discuss a method to work with
soft time windows. This will give a penalty to being a few minutes late or early,
without completely dismissing the job. In our trials it was visible that giving a
small amount of slack would have made the results more acceptable. I.e. being
2 minutes late on a job is much better than not visiting the customer at all,
because not showing up will give a much higher fine. Soft time windows will
give the algorithm more robustness.

7.1.2 Picking up jobs

In the current implementation of the algorithm sometimes a job got dropped
out of the solution because of infeasibility. Once a job was dropped, the algo-
rithm did not include it in the problem set anymore. It had to be added again
manually. If these dropped orders were considered into the problem set again
each time the algorithm recalculated a route, this would make the algorithm
more automatic, thus it would need less human assistance.

7.1.3 Automatic incidents

In our business case, incidents will come in automatically via the customers. Af-
ter this, the coordinator assigns them to a vehicle. In the case of the algorithm,
the coordinator makes an incident job and passes it through to the algorithm.
A system to pass incoming incidents directly trough to the algorithm agent
would greatly improve the efficiency.
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7.1.4 Long idle times

Our tests proved that in most cases the planning will be quite tight. However,
sometimes a driver will have to wait some time before he can start to perform
his job, because he arrived before the start of the time window. Say a driver
arrives an hour before his next job’s time window. He/she should be able to
use this time to visit an incident. With the current implementation, his/her
first job in line is always locked, so the driver won’t be free to do this. In this
very rare case this should not happen.

7.1.5 Surveillance

Some jobs in our business case (not in the test case) were 6 hour surveillance
jobs. When a driver is performing this job, an incident might come up very
nearby. The algorithm should be able to see that this 6 hour surveillance could
possibly be interrupted for a moment to send this vehicle to the incident.

A method to solve this was thought of during the initial implementation
phase. However, we chose not to use it in our final tests since it proved too
complex and made for an un-representative test-case. The implementation
would have taken a lot of time, while the total fragment of surveillance jobs
longer than one hour was relatively small. (1.9% of static jobs.) Say we have
a multiple-hour splittable surveillance job with a time window [ai, bi] and a
nearby incident. (Nearby can be determined by an arbitrary distance.) The
surveillance job was spit up into two separate jobs i and j. The new time win-
dows are [ai, bi] and [aj , bj ], where bi and aj are set to the current time. The
ACO algorithm will decide automatically if it is necessary for the surveillance
vehicle to interrupt its current job.

7.1.6 Predict incidents

If the algorithm could somehow predict upcoming incidents, it could anticipate
them. For instance: some patterns could be recognized. In Figure 5 we see
clusters of customers. There’s a higher probability that an alarm will go off
in that area. It is also not uncommon for an alarm to go off twice at the
same customer. These basic patterns could be used to anticipate incidents to
create a larger buffer in a vehicle’s planning. Solomon [20] uses expert systems
and artificial intelligence to anticipate dynamic data. Timeweaver from Weiss
et al. [25] or a similar method could also be considered to predict incidents.
Gambardella et al. [11] use job prediction in combination with an ACO DVRP
algorithm.
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7.1.7 Predict traffic

Most time windows in our business case are around the morning and evening
rush hours. This is probably also the case for some other businesses which
could use a DVRPTW algorithm. Therefore it can be very relevant to recognize
certain patterns in the traffic flow either to predict travel time or to avoid traffic
jams or other unnecessary delays. For this purpose the algorithm could be given
current traffic information. (I.e. from a (web)service.) Or predictions could be
made beforehand, as is done in [15]. This could possibly have decreased the
delays in Trial 2.

7.2 Other

7.2.1 User Interface

As was clear in Section 5.2 there were still some comments about the user
interface. This could be investigated a bit more, to make the execution of the
dynamic routes as effortless as possible.

7.2.2 Real-world testing

The algorithm was mainly tested on our test case. Although this is a relatively
representative test case, the algorithm might perform differently on other cases.
The implementation of the algorithm is not complete until it is tested on a
variety of realistic test cases, using real employees in stead of hired students.
Only then one can know if the implementation was a success and if the algorithm
is robust enough to perform on a variety of problems.

38



Nomenclature

Abbreviations

VRP Vehicle Routing Problem
TSP Traveling Salesman Problem
CVRP Capacitated Vehicle Routing Problem
DVRP Dynamic Vehicle Routing Problem
VRPTW Vehicle Routing Problem With Time Windows
DVRPTW Dynamic Vehicle Routing Problem with Time Windows
ACO Ant Colony Optimization
ACS Ant Colony System
MACS Multiple Ant Colony System

Concepts

Job A customer or address which needs to be visited
Static job A job which is known a-priori
Incident A job which cannot be predicted and will become available during the

execution of the DVRP
Dynamicity The fraction of the DVRP customers which are not available at t = 0
Service time The time it takes to finish a job while on-site
Availability time The time an incident occurs and becomes available to the algorithm.
ACS-TIME The ACS to minimize the driving time
ACS-VEI The ACS to minimize the total amount of vehicles

Mathematical symbols and variables

r The total number of vehicles
n The total number of customers
cij The nonnegative cost for going from customer i to customer j
dij The nonnegative travel distance (or time) between customers i and j
[ai, bi] The time window of customer i
si The non-negative service time of customer i
V A graph with all the VRP customers. V = 0, ..., n
G The complete graph where G = (V,A), where A is the arc set
D The dynamicity of a DVRP. 0 ≤ D ≤ 1
p The priority of a job
t The time variable of the DVRP
T∗ The best found solution by the MACS algorithm
τ The pheromone level of a graph line
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Appendix: Driver form

Figure 8: The form which was given to the drivers during Trial 2.
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