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Abstract

For the game of Jungle Checkers, we compute the seven-piece endgame table-
base, with a parallel variation of Retrograde Analysis. In order to do so, we
create an efficient ranking algorithm, that takes into account mirrored positions
and the prevention of invalid positions, which results in a maximum usage of
64GB main memory. We apply Proof Number Search to Jungle Checkers to
compute the game theoretical game of the start position and we encounter the
Graph History Interaction (GHI) problem when used with a Transposition Ta-
ble. Instead of using solutions for the GHI problem because they are not perfect,
we prevented the GHI problem from happening. Unfortunately, this hampers
the usage of the Transposition Table and as a result the search space becomes
too big to traverse. We present an idea to compute the eight-piece endgame
tablebase, in order to solve the game.
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Chapter 1

Introduction

Jungle Checkers [29] is a two player zero-sum board game. Both players have
each four pieces of different strength under control. The goal of the game is to
reach the opponent’s den with one of the pieces. The game has similarities with
Stratego and checkers, but with fewer pieces.

We are interested in what would be the outcome of the game, if two players
are playing perfectly. Perfect play means a player does not make mistakes and
will do moves that lead to the best outcome of the game that is possible. It does
not mean a perfect player will always win, because it is possible the opponent
forces the player to do a non-winning move, because there are no better alter-
natives. When we know the outcome, we say the game of Jungle Checkers is
weakly solved.

Good human players can see several moves ahead and can reason the best
move, while in theory, computers can see many steps ahead and simulate all
possible games, and find the perfect move. In practice, this is difficult because
we do not have unlimited space and time.

Retrograde Analysis (RA) and Proof Number Search (PNS) are techniques
that will minimize the run time of solving the game. These techniques will pre-
vent doing duplicate calculations and will find an efficient order of calculations.

This thesis is written for the Master of Computer Science at Leiden Univer-
sity, supervised by Aske Plaat and Walter Kosters.

Problem Statement

The goal is to weakly solve the game. We use Proof Number Search to traverse
the search tree and to look several moves ahead in order to determine a perfect
move. To reduce the depth of the search tree, we calculate with Retrograde
Analysis in advance the outcomes of the games with only seven pieces left on the
board. This brings us to the problem statement: Can we solve Jungle Checkers
with the seven-piece endgame tablebase and Proof Number Search?
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1.1 Research questions

We have the following research questions:

What is an efficient ranking algorithm?

To answer the main research question, we need to enumerate all positions and
have an efficient function that can map numbers to positions and visa versa.
Trivial algorithms do not take into account transpositions, mirrored positions
and prevention of invalid position.

How to generate the seven-piece endgame tablebase?

We solve all positions with seven-pieces on the board and store the game theo-
retical values in a tablebase. We use a parallel variation of Retrograde Analysis
to speed up the computation and one bit per position to save memory.

How to apply Proof Number Search and resolve the Graph
History Interaction problem?

While using Proof Number Search to solve the start position of the game, we
encountered the Graph History Interaction (GHI) problem. The GHI problem
arises when the game theoretical value of a position is stored in a transposition
table and the value is incorrectly reused, because the history to the position
is not taken into account. Our solution is a workaround and prevents the GHI
from happening.

1.2 Contributions

We made the following contributions:

• a new ranking algorithm,

• the seven-piece endgame tablebase,

• a workaround for the Graph History Interaction problem,

• an idea for generating the eight-piece tablebase on a computer cluster.

1.3 Thesis overview

Chapter 2 describes the rules of the game and Chapter 3 the related work. In
Chapter 4 a game rule is changed in order to get a binary objective. Chapter 5
describes the ranking algorithm which is used in the next two chapters, Chap-
ter 6 the backward search with Retrograde Analysis and Chapter 7 the forward
search with Proof Number Search. We conclude in Chapter 8 and give several
pointers to future research.
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Chapter 2

Game Rules

The game is played by two players, player white and player black. They control
several pieces placed on a board. The objective of the game for a player is to
win the game by entering the den of the opponent or capture all the pieces of
the opponent.

2.1 Board

The board has seven rows and seven columns, dividing it into 49 cells. Each
column has a letter assigned from a to g, from left to right. Each row has an
index assigned from 1 to 7, from bottom to top. The label of the cell is the
combination of the letter of the column and the index of the row, as can be seen
in Figure 2.1.
There are two special cells. Cell d1 is the white den and cell d7 is the black den.
They are denoted with a #.

7 . r . # . e .

6 . . t . d . .

5 . . . . . . .

4 . . . . . . .

3 . . . . . . .

2 . . D . T . .

1 . E . # . R .

a b c d e f g

Figure 2.1: Start position with all pieces.
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2.2 Pieces

There are four kinds of pieces and they differ in strength. The pieces are (in
order of strength from lowest to highest) rat (r), dog (d), tiger (t) and elephant
(e). Both players have one of each, so in total there are eight pieces. The color
of the pieces denotes the owner of the piece. An upper case character means the
owner of the piece is white and a lower case character means the owner of the
piece is black. See Figure 2.1 for the board with the start locations of the pieces.

2.3 Moves

A player can move one of his pieces to a horizontally or vertically adjacent
cell. If the cell is already occupied by a piece of the opponent the piece will be
captured. This is only possible if the strength of the piece of the player is equal
to or higher than the strength of the piece of the opponent, or if the rat captures
the elephant. A captured piece is removed from the board.
It is not possible to capture a piece of your own, enter your own den or skip a
turn. The white player does the first move.

2.4 Draw

If the player to move does not have any possible moves, the game ends in a
draw. With perfect play, stalemate never occurs [4]. A position is a repetition,
if the position was already visited before during the game. We say a repetition
is a draw, because there is no development in the game.
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Chapter 3

Related Work

In 2013 Van Rijn and Vis [18, 19] wrote about the creation of an endgame
tablebase for the game of Jungle Chess, as first step towards solving the game.
They succeeded in generating an endgame tablebase for four pieces, where they
found some interesting patterns, but solving the game was out of reach.

In 2014 Van Boven continued their work on endgame tablebases for his bach-
elor thesis [4], but focused on the simplified version of the game called Jungle
Checkers. He succeeded in generating a 5-piece endgame tablebase, but visiting
300 billion nodes in the search tree was not sufficient to find the game-theoretical
value. Generating the 6-piece endgame tablebase fell outside the scope of his re-
search project, due to time and memory constraints.

In 2015 we generated the 6-piece endgame tablebase. The tablebase was
generated in multiple parts, which required less main memory during the com-
putation. In order to do so, a better ranking algorithm was used and several
implementation improvements were achieved.

The following sections describe several essential algorithms and give pointers
to more related work.

3.1 Ranking

For Retrograde Analysis (RA) and Proof Number Search (PNS) we need a bijec-
tive function that maps a position to a number. Zobrist [31] hashes a position to
a number, but cannot do the inverse and is non-injective. A ranking [21] function
maps a permutation or combination to a rank and an unranking function maps
a rank to a permutation or combination. For Jungle Checkers a position is a
permutation of locations where the pieces are on the board, given the pieces that
are on the board and the player to move. Other terminologies include encod-
ing and decoding, numbering permutations, enumeration schemes and integer
representations.

In [3], the authors calculate the rank of a position for the game of Backgam-
mon. A slow method is enumerating all position until the specific position is
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matched. The number of non-matched positions so far equals the rank of the
matched position. A fast method is calculating the number of combinations of
checkers of the previous positions by using binomial coefficients. This works
for Backgammon, because all checkers are equal and the permutation of the
checkers on a point (the so called triangles on the board) does not matter.

The Canton pairing functions can combine two non-negative numbers into
one. Using this function recursively it is possible to combine multiple numbers
into a rank. The inverse is also possible. A disadvantage is that the function
needs multiple math operators, with the square root operator being relatively
slow.

Myrvold et al. [15] made a linear time algorithm, which recursively swaps
values of a permutation. The disadvantage is that the permutations are not in
lexicographic order.

The Gödel function is used by Thompson [28] for Chess and by Bal [2] for
Awari.

The Lehmer code uses the factorial number system. A decimal number can
be encoded to a factorial, which can be encoded to a permutation. We use this
for the (un)ranking function of Jungle Checkers and it will be explained in detail
in Chapter 5.

3.2 Retrograde Analysis

Retrograde Analysis (RA) [28] is a technique to find the game-theoretical value
of the initial position by reasoning backwards from all terminal positions to the
initial position of a game.

There are three phases:

1. All positions with black to move and black is mated, are marked as win
for white.

2. For each position marked in phase 3 of the previous iteration, or phase 1
if this is the first time, mark the parent as a win for white.

3. For each position marked in phase 2, if all siblings are wins for white, mark
the parent as a win for white.

Repeat phase 2 and 3 until no more positions are marked. The positions not
marked as win for white are illegal, loss for white or draws. The game-theoretical
values of all positions are now known.

3.3 Proof Number Search

Proof Number Search [1] is a search algorithm for proving or disproving trees.
By definition, a tree is proven when white is the winner, disproven if white
it is not the winner and unproven when the winner it not known yet. These
three definitions are also applicable to a node in the tree. Every node has two
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numbers: proof and disproof. These values contain the amount of nodes that
must be (dis)proven in order to (dis)proof the node. Initially they are both 1,
because optimistically in order to (dis)proof the node, only the node itself must
be (dis)proven. A proven node has proof number 0 and disproof number ∞. A
disproof node has disproof number 0 and proof number ∞. A node where white
is to move is called an OR node and where black is to move an AND node.

A1 2

B1 1 C1 1

A1 2

B2 1 C1 1

D1 1 E1 1

A0 ∞

B2 1 C0 ∞

D1 1 E1 1 F0 ∞

(a) Root node A is
expanded.

(b) The (dis)proof
numbers of node B and C
are equal in (a). Ties are
arbitrary chosen, we select

B as MPN.

(c) Node C is the MPN, because
the proof number of C (1) is less
than B’s (2) in (b). Node F is a

terminal position.

Figure 3.1: The first three iterations of an example search with PNS.

Initially the tree consists only of the root node. There are three phases in
an iteration:

selecting The Most Proving (or Promising [14]) Node (MPN) is selected. From the
root a child is selected and this child selects a new child. This is repeated
until a terminal1 node is reached. An OR node selects a child with the
smallest proof number and an AND node selects a child with the smallest
disproof number.

expanding For the selected node, all child nodes are generated. Each child is evalu-
ated. If a child’s position is terminal and thus its node is (dis)proven, the
(dis)proof numbers are set.

updating When the selected node is expanded, the (dis)proof numbers of the node
and all its ancestors until the root must be updated. For an OR node,
the proof number equals the minimal proof number of its children and the
disproof number equals the sum of the disproof numbers of its children. For
an AND node, the proof number equals the sum of the disproof numbers of
its children and the disproof number equals the minimal disproof number
of its children.

1A terminal node is a node without children. A terminal position is a position where the
game is ended and the value is known. We use this definition also for positions with less than
eight pieces, because thoses values are known for Jungle Checkers.
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These three phases are repeated until the root has a (dis)proof number of
zero. An advantage of this search algorithm is that it does not need an evaluation
function.

We give an example of PNS, illustrated with Figure 3.1. In the first iteration
the root node A is selected as MPN and is expanded. It has disproof number
two, because in order to disprove node A, at least two other nodes (nodes B and
C) must be disproven. In the second iteration node B is selected as MPN. It has
proof number two, because in order to proof node B, at least two other nodes
(nodes D and E) most be proven. In the third iteration node C is selected as
MPN. The only child of C is node F, which is a terminal position and a proven
node by game rules. The (dis)proof numbers of the ancestors are updated and
the algorithm stops, because the root’s proof number is zero.

Van den Herik and Winands [9] review several enhancements and variants
of PNS, for example Depth-First PNS [16].

3.4 Transposition Table

In a search tree, a node is a transposition node of another node, if they are
both related to the same position. The moves (or perhaps the ordering) leading
to these nodes are different. To prevent solving the transposition of an already
solved node, values of solved nodes are stored in a hash table. Before solving a
node, the transposition table is checked to see if the node is not already solved
and if it is, its value is used. Zobrist [31] is a popular hashing function for game
positions and ranking functions are also suitable. Collisions are possible with
non-injective hashing functions and can be solved by using a chained hash table
or replacement strategies.

3.5 Graph History Interaction problem

In the game of chess, there is a rule called the threefold repetition rule. If a
position occurs for the third time in a game, a player can call a draw. This
means not only the position is needed to decide whether it is terminal and who
the winner is, but also the previous positions before.

When a search algorithm is combined with a transposition table for a game
where the history leading to a position is important, the Graph History Interac-
tion (GHI) problem [17] can arise. Positions affected by repetitions are possibly
wrongly stored in the transposition table and the values are wrongly reused in
different places in the search tree where the position causing the repetition is
not in the path.

3.5.1 An example

An example of the GHI problem is illustrated in Figure 3.2, taken from Kishi-
moto [10], which is a search graph for a checkmating puzzle. Suppose position
E is visited during the search, with the path leading to E is A → B → E → H
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→ E. Position E is a repetition and a loss is stored (in the transposition table)
for position H, because in H, the only move does not lead to a checkmate. Next,
position B is visited and a loss is stored, because child D is a terminal loss po-
sition and the value (loss) of child E is retrieved from the transposition table.
At last, position F is visited and since H is stored as a loss, F is also stored as
a loss, which in turn results in a loss for C. Position A is now considered a loss
for A, because both children are losses. This is wrong, because the path A →
C → F → H → E → G yields a win. This example shows, values stored in the
transposition table cannot be blindly trusted, when the history can affect the
value of a position.

A

B C

D

loss

E F

G

win

H

Figure 3.2: A graph where the GHI problem can occure.

3.5.2 Solutions

Kishimoto et al [11] made an overview of PNS algorithms and solutions to the
GHI problem.

Campbell [7] describes two cases where the GHI problem can arise. Three
relevant conclusions of his paper are:

1. He has a solution for the Draw-First case and not for the Draw-Last case.

2. He says “GHI does not appear to occur relatively infrequently.”

3. The key in avoiding most occurrences of GHI appears to be iterative deep-
ening.

For Jungle Checkers, a solution for the Draw-last case is required. In order to
prove all positions, all “relatively infrequently” GHI problems must be solved
and cannot be ignored. Seo [27] made an iterative deepening depth-first proof
number search algorithm.

Breuker [6] made the Base Twin Algorithm and compared it to the algorithm
of Schijf [26]. In the experiment both algorithms did not solve all chessmate
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problems, mainly because Breuker limited the search. The limit was used to
restrict the computation time, like in tournaments, and to restrict the memory
usage, which was near the hardware limit.

Kishimoto [10] notes an issue with BTA. It does not work for the “current-
player-loss scenario”. Kishimoto stores for his algorithm the history of a position
in the transposition table. The algorithm is compared to Nagai’s solution [16].
Again, not all problems are solved.

In this research area, a “solution” to the GHI problem, does not mean that
the algorithm can solve all problems or positions. For solving a game, the un-
solved positions are most interesting and problematic. For computer players
(bots), the solutions are useful, because perfect moves are not necessary. Some
programs are ignoring the GHI problem and are using the computing power for
searching for more positions instead of calculating correct values.
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Chapter 4

Binary Value

In most zero-sum two player games the first player or the second player can
win and some games can also end in a draw. In some cases it is desired to only
have two possible outcomes, i.e., the game can only end in a win for black or
white and not in a draw. In chessmate puzzles a player is only interested in
being able to win and thus solve the puzzle. Some search algorithms can only
prove and disprove trees [5]. Three outcomes can be stored in two bits and two
outcomes can be stored in one bit. A value with only two possible outcomes
is called a binary (game theoretical) value. Other terminologies are bounded
value, worst(best)-case scenario, at-least-draw [13], binary question [25] and
binary objective.

In order to make the outcome of a game binary in Jungle Checkers, the
rules must change. There are two variations of the game. The first variant lets
white win when the value in the original game would be a draw, white has the
advantage. The second variant has the same logic, except white and black are
interchanged. See Table 4.1 for an overview.

When white wins, even when white has the disadvantage, white would also
win in the original game. When white wins with the advantage, the original
game could end in a win for white or a draw. When the last case happens, the
search must be repeated, but now with the advantage for black. If white now
loses, the original game would be a draw and if white would win, the original
would also be a win for white.

Losing with the advantage and winning with the disadvantage is impossible.

Advantage
White Black

Value
White Draw or White White
Black Black Draw or Black
Value with advantage Value without advantage

Table 4.1: The values with and without advantage.
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In this thesis, white has the advantage.
Lincke [13] also used one bit to store the value, but works differently. One

bit is stored in memory with the value as a win or an unknown. Two bits were
stored on disk to store the value as win, loss, draw or unknown. The bits on the
disks were only accessed when the value was not a win.
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Chapter 5

Ranking Positions

For the algorithms in the following chapters, we need a function that maps a
position to a number and visa versa. This function will be used many times and
it is therefore important to be efficient. What is an efficient ranking algorithm?

5.1 Introduction

In the game tree, traversed by the search algorithm, every node is a position.
When we need to compare nodes with each other, the rank is used as identifier.
For Retrograde Analysis (RA), a tablebase is used to store the values of all the
positions. The rank of a position is used as index, so we know which bits in
the tablebase belongs to which positions. We can iterate over all positions by
iterating over all ranks and use the unranking function to map the rank to a
position.

For RA it is important to minimize the size of the tablebase, so it can fit
into main memory. Solving only the positions that must be kept together in
main memory for the algorithm to work can reduce the memory consumption.
For example, in order to solve a position with n pieces, the positions with more
than n pieces and less than n− 1 are not required. We can divide the tablebase
into subtablebases and generate the ones that are dependent of each other in
sequential order and the ones that are independent of each other in parallel.

In Chapter 6 the generation of the subtablebases is described. This chapter
describes how the ranking function works and how it is adapted to divide the
subtablebases.

5.1.1 Divisions

The following divisions where made by Lake for checkers [12] and by Thompson
for chess [28].
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Number of pieces The (n− 1)-piece tablebase can be generated before the
n-piece tablebase. When all (n − 1)-piece tablebases are generated, all n-piece
tablebases can be generated in parallel.

For checkers it is possible to create more divisions. The tablebases can be
divided by:

1. The number of black and white pieces, because it is not possible to un-
capture a piece.

2. The number of kings and checkers. Checkers can only promote to kings
and kings cannot degrade to checkers.

3. The leading (most advanced) checker, for each player. Checkers can only
move forwards. Generating the subtablebase with all positions with the
most leading checkers on row r can only begin when the subtablebase with
all positions with the most leading checker on r−1 is completed. This idea
can also applied to the second until nth most leading checker.

Symmetry In chess there are positions that are equal by symmetry. When
the value of a position is calculated, it is not necessary to compute the values
of positions that are symmetric to this one. There are two kinds of symmetry:

1. There is vertical symmetry. If the first column of the board is swapped
with the last column and the second column with the second-last, etc.,
until all columns are swapped. The value of this position would not be
different from the position before the swapping. We call such positions,
mirrored positions.

2. There is symmetry by color. Swapping the colors of the pieces and the
rows with the same method as above. with the columns and changing the
player to move will result in a symmetrically equal position. We call this
duplicate positions.

For Jungle Checkers we use the divisions by number of pieces and by both
symmetries. Unfortunately, in Jungle Checkers moving backwards is not for-
bidden and the division by leading checker is not possible. Wu [30] has more
divisions specific for chinese chess.

5.2 Method

This subsection describes the mapping from a rank to a position and visa versa.
Let n be the number of pieces and r ∈ {0, 1, . . . , k!/((k − n)! − 1)}, where

k is the number of different locations a piece can be placed on the board. For
Jungle Checkers, k equals 47, because seven rows multiplied by seven columns,
minus the two dens produces 47 locations. Positions with a piece on the den
are not needed to be enumerated, List pieces contains the pieces that are on
the board, sorted in strength from low to high and within a strength by color,
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with white first. List loc contains the locations of the pieces. The labeling of
the locations is shown in Table 5.1 and the list with these locations is denoted
by L = (0, 1, . . . , k − 1). It holds that loci ∈ L for i ∈ {0, 1, . . . , n − 1} and
loci 6= locj if i 6= j.

5.2.1 Unranking

We start with describing the unranking function, which is divided into two
parts. First, we convert the rank to a temporal list loc index and secondly we
convert the loc index to the desired loc list. The Python function in Listing 1
receives a rank and returns the list loc index. It holds that loc indexi ∈
{0, 1, . . . , k− i−1}. If we use loc index as the location list, multiple pieces can
be placed on one location and piece i cannot be placed on a location from the
set {k − i, k − 1 + 1, . . . , k − 1}. This is not what we want and this problem is
solved by converting loc index to loc in Listing 2. In fact, loc index is the
factorial number representation of loc.

Let Ai be the set of locations of the pieces already placed on the board
beforing placing piece i, so Ai = {loc0, loc1, . . . , loci−1}, and let Fi be the list
of locations with the locations of Ai omitted, denoted by L\Ai, and let Fi[j] be
the j-th location of Fi. Now, loci = Fi[loc indexi].

7 0 7 14 # 26 33 40
6 1 8 15 21 27 34 41
5 2 9 16 22 28 35 42
4 3 10 17 23 29 36 43
3 4 11 18 24 30 37 44
2 5 12 19 25 31 38 45
1 6 13 20 # 32 39 46

a b c d e f g

Table 5.1: Order of locations.

Listing 1 rank to index

1 def rank_to_index(n, k, rank):

2 remainder = rank

3 loc_index = [0]*n # list of length n with zero values

4 for p in range(0, n):

5 loc_index[p] = remainder % (k-p)

6 remainder = remainder / (k-p)

7 return loc_index
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6 . . . . . . .

5 R . . . . . .

4 r . . . . . .

3 . T . . . . .

2 . . . . . . .

1 . . . # . . .

a b c d e f g

Figure 5.1: The lists belonging to this position with rank 19554 are pieces =
(R, r, T), loc = (2, 3, 11) and loc index = (2, 2, 9).

5.2.2 Ranking

The functions in Listing 1 and Listing 2 are respectively the inverse of the
functions in Listing 3 and Listing 4.

This paragraph gives an example to clarify how the (un)ranking function
works. Suppose we have the position given in Figure 5.1. When using function
rank to index with rank 19554 we get loc index = (2, 2, 9). A value v of
loc indexi means that the location of piece i is the v-th free location, accounting
for the order of Table 5.1 and considering the previous pieces are already placed
on the board. For the zeroth piece it means that loc0 = loc index0 = 2. For the
first piece, loc index1 equals 2, which means we must place the first piece on the
second free location. Location 0 and 1 are free, but location 2 is already occupied
by the zeroth piece, so the second free location is 3, hence loc1 equals 3. The
third piece has index 9 and the 9th free location is location 11, because location
2 and 3 are already occupied by piece zero and one. The result is the loc list
(2, 3, 11). The function loc to index does the inverse. The rank is the decimal
representation of the factorial number representation and is calculated with the
loc index list as follows: rank = 2 · 47!/47! + 2 · 47!/46! + 9 · 47!/45! = 19554.

Listing 2 index to location

1 def index_to_location(n, location_index):

2 loc = loc_index

3 for p in range(0, n):

4 for q in reversed(range(0, p)): # from the previous

5 # to the first

6 if loc_index[q] <= loc[p]

7 loc[p] += 1

8 return loc
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5.2.3 Implementation

This subsection describes several implementations details.

Mirror

A board with the first piece on column e, f or g, is called a mirrored board.
See Figure 5.2 for the mirrored board of the starting position (Figure 2.1).
The theoretical game values of the original and the mirrored board are always
equal, so it is unnecessary to calculate the values for both. When encountering
a mirrored board, we mirror the board and continue with this board. This
symmetry saves us the cost of calculating and storing nearly 45% of all positions.
When enumerating all positions which are not mirrors, the first piece can only
be put on the 26 locations, which are on a column on the left side of the board
or on the center column.

If the first piece is in the middle column, we can apply the same procedure
again, but now with the second piece. The idea works until the sixth piece,
because there are only five locations between the two dens. The savings are
decreasing and do not outweigh the disadvantage of slower computation, so we
only use it for the first piece.

7 . e . # . r .

6 . . d . t . .

5 . . . . . . .

4 . . . . . . .

3 . . . . . . .

2 . . T . D . .

1 . R . # . E .

a b c d e f g

Figure 5.2: Mirror of the start position.

Duplicate

There are more positions which do not need to be calculated, since they can be
derived from other positions. If a board of a position is vertically flipped, the
ownership of all pieces are given to its opponent (black pieces become white,

Listing 3 index to rank

1 def index_to_rank(n, k, loc_index):

2 rank = 0

3 for p in range(0, n):

4 rank += loc_index[p] * factorial(k) / factorial(k-p)
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white pieces become black) and the player to move is changed. The value of the
new duplicate position is different from the original position before the changes.
The answer of the question “Would the opponent win if he was in my situation?”
is equal to the answer of the question “Can I win?”.

A position is duplicate if black has less pieces or pieces lower in strength.
When a duplicate position is encountered, the original position is retrieved and
its rank is used. In Figure 5.3 the board of the duplicate of the start position is
shown.

7 . R . # . E .

6 . . T . D . .

5 . . . . . . .

4 . . . . . . .

3 . . . . . . .

2 . . d . t . .

1 . e . # . r .

a b c d e f g

Figure 5.3: Duplicate board of the starting position.

Factorial

When n = 7, the function index to rank in Listing 3 uses 630 multiplications
and divisions to rank only one position. Calculating 47!/(47−p)! is rather ineffi-

cient and can be rewritten as
∏p−1

i=0 (47− i), which results in 21 multiplications.
The answers of the production function can be precalculated, stored and

reused. In the implementation the whole function now uses n − 1 additions, n
multiplications and n lookups.

Increment rank

When enumerating all positions, the next position can be calculated by incre-
menting the rank and then using the unranking function. The time complexity

Listing 4 location to index

1 def location_to_index(n, location):

2 loc_index = loc

3

4 for p in reversed(range(0, n)): # from the last to the first

5 for q in reversed(range(0, p)): # from the previous

6 # to the first

7 if loc[p] >= loc[q]:

8 loc_index[p] -= 1
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is O(n2), because of the complexity of the unranking function.
Another way, the one we have implemented, is to increment the loc index

list and use the index to location (Listing 2) function, which is O(n). The
procedure (Listing 5) looks similar as binary addition with carrying bits.

Listing 5 increment index

1 def increment_index(n, k, loc_index):

2 loc_index[0] += 1

3 p = 1

4 while p < n and loc_index[p] == k-p:

5 loc_index[p] = 0

6 p += 1

5.3 Result

The algorithms in the next chapters spend most of their run time on using the
ranking and unranking function. An efficient algorithm is critical. The ranking
algorithm is efficient, because:

1. The complexity is dependent on the number of pieces on the board and
not on the number of different positions.

2. Values of positions that can be derived from others and invalid positions
are taken into account.

3. In combination with RA, subtablebases can be generated in parallel.

4. The implementation uses only n multiplications for ranking.
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Chapter 6

Backward Search

With the (un)ranking algorithm from Chapter 5 explained, the generation of the
seven-piece endgame tablebase can begin. When finished, the forward search can
consult the endgame tablebase at the moment a piece is captured in order to save
time by retrieving the theoretical game value, instead of expanding the search
tree. This chapter will elaborate on how to generate the seven-piece endgame
tablebase.

6.1 Introduction

When using forward search we start at the initial position of the game and
try to find a sequence of perfect moves to a terminal position to get the game
theoretical value. With backward search we start from all terminal positions
(their values are determined by game rules), and calculate the values of the
positions after undoing a move. This procedure can be repeated for the new
valued positions and is known as Retrograde Analysis (RA).

The result of RA is an endgame tablebase, because in previous research these
database were made for positions with a few pieces left on the board where the
game is nearly finished.

In this chapter we show how to generate the seven-piece endgame tablebase.
Besides the endgames, it also contains the positions in the middle games and
all positions with one piece captured.

There are eight ways to select seven pieces out of eight pieces, which re-
sults in eight different sets of pieces, which we call material configurations. For
each material configuration a seven-piece endgame subtablebase can be gen-
erated and the subtablebases can be generated in parallel, with the condition
that the six-piece endgame tablebase is already generated. Four of the eight
subtablebases contain duplicate positions and are not needed. The four relevant
material configurations are RrDdTtE, RrDdTEe, RrDTtEe and RDdTtEe.
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6.2 Method

Let positions be a list of size n containing all positions of a given material
configuration and changed a Boolean which is set to true if at least one value is
changed (and is initially set to true). The initial value of all positions is win for
WHITE. At the start of each iteration (line 6), the Boolean changed is set to false.
The unranking function is used to enumerate over all positions. When a value
is changed to BLACK, it cannot change back and therefore positions with BLACK

values are skipped. Positions with WHITE values are checked every iteration if
the value can change to BLACK. This is not time-efficient, but it is space-efficient,
because we save for each position a Boolean that indicates if a position is valued
or not. There are two ways a value can change to BLACK:

1. It is black’s turn and black can do a move to a position with a BLACK value
where it is white’s turn.

2. It is white’s turn and white cannot do a move to a position with a WHITE

value where it is black’s turn.

After enumerating all positions, the iteration is finished. If no values have
changed, the algorithm is finished and the values of all positions are known.
Otherwise, the next iteration is started. The Python code of this method is
shown in Listing 6.

Listing 6 retrograde analysis

1 # n: number of positions

2 # value of positions are WHITE by default

3 def retrograde_analysis(n, positions):

4 changed = True

5 while changed:

6 changed = False

7 for rank in range(0, n):

8 p = positions[rank]

9 if p.value == WHITE:

10 if p.turn == BLACK:

11 if has_winning_move(p):

12 p.value = BLACK

13 changed = True

14 else p.turn == WHITE:

15 if not has_winning_move(p):

16 p.value = BLACK

17 changed = True
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6.2.1 Parallelization

RA spends most of its computing time on ranking and unranking positions,
which happens inside the has winning move function use in Listing 6. The pro-
cedure to rank a position is not dependent of other positions, which gives us a
possibility to use parallelization, which could reduce the runtime.

In the for loop in line 7, all positions are enumerated, in sequential order.
One way to use parallelization is to divide the positions and let each core, work
on a division. We used the Intelr Xeonr Processor E5-2630 v3 [8], which has
8 physical cores and 8 virtual HyperThreading cores. Core c ∈ {0, 1, . . . , 15}
works on division c which contains the positions with the rank in the range
{c · n

16 , c ·
n
16 + 1, . . . , (c + 1) · n

16 − 1}. When the work of all divisions is done,
the original for loop is finished and the iteration is ended.

For Jungle Checkers, this parallelization resulted in a reduction of the total
run time, but in the worst-case scenario the algorithm could end in n (number
of positions) iterations. To analyze the run time behaviour when scaling up
from the sequential algorithm to the parallel version, first consider the case
where only one core is used. Suppose every value is still WHITE, except the first
position, which has value BLACK. The first iteration is started. The value of the
first position is already BLACK and is skipped. Suppose the value of the p-th
position becomes BLACK, because of the (p− 1)-th position, until position n− 1.
The first iteration is finished and the second iteration does not change a value,
because all positions are already BLACK. The algorithm finishes in two iterations.

In the next case, instead of using one core, we use parallelization to try to
reduce the run time, by using n cores. In the worst-case scenario, the order of
the cores finishing their work is from core n− 1 to core 0, every iteration. This
time, in the first iteration, only the value of the second position is changed.
In every iteration i, only the value of position i + 1 is changed, until iteration
n−1. In this case, using parallelization did not result in a reduction of run time,
because the sequential algorithm is finished in two iterations and the parallel
version in n iterations.

6.3 Results

If a value of a position is changed (to BLACK) in iteration i with Retrograde
Analysis, it means there is a position that needs i moves to reach a terminal
position or a position with n − 1 pieces, with a BLACK value. Figure 6.1 shows
the percentage of positions that have a BLACK value, for each iterations, for
each material configuration, where white had the advantage. For material con-
figuration RrDdTEe, the algorithm is finished after 32 iterations, while material
configuration RrDTtEe needs 44 iterations. After 10 iterations, the percentages
are nearly converged and are close to their percentages of the last iteration, but
there are still values changing and the algorithm must continue. The higher the
strength of the (black) piece not on the board, the lower the percentage of po-
sitions with BLACK values. Although white has the advantage and a piece more,
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the proportion between the positions with BLACK and WHITE values are not that
different.
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Figure 6.1: Percentage of postions with a BLACK value.

The complete seven-piece tablebase, together take more than 175GB, which
is exported to disk and is generated within 65 hours. The size is calculated as
follows. There are 47·46·45·44·43·42·41 = 47!/(47−7)! ≈ 3.2·1011 possible ways
to put seven pieces on a board. Due to vertical symmetry, we can ignore the
positions with the first piece on the last three columns (or the last 21 locations),
which makes 3.2 · 1011 · 47−21

47 ≈ 1.8 · 1011. This number must be multiplied by
two, because we want to know the value of the positions when it is white’s turn,
but also for black’s turn. For every position one bit is reserved for the value,
which is why we need almost 44GB main memory and another 16GB to load
the complete six-piece endgame tablebase. This fits nicely in the 64GB main
memory of a normal computing node from the so-called DAS-5 cluster. There
are four material configuration, which makes 4 ·44GB ≈ 175GB, the size of the
complete seven-piece tablebase.
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Chapter 7

Forward Search

RA is a backward approach which starts at the terminal positions and undoes
moves until all positions are solved. In this chapter we start from the start posi-
tion and do forward moves to promising positions that can solve the start posi-
tion. Using the ranking algorithm from Section 5 and the seven-piece endgame
tablebase from Section 6 we can speed up the search tree algorithm. In this
chapter we apply the Proof Number Search (PNS) algorithm to Jungle Checker
and we encounter the Graph History Interaction (GHI) problem.

7.1 Introduction

In a game search tree every node represents a position and every edge a move.
Nodes are expanded in a certain order and the value is computed based on
the values of their children. Initially, only the values of the terminal nodes are
known, but during the search more and more values are being computed. When
the value of the root is computed, the game is ultra weakly solved. For Jungle
Checkers the values of positions with a piece captured are already computed
and stored in the seven-piece endgame tablebase. The ranking algorithm is used
to retrieve the related value of such positions.

We use PNS as search algorithm due to three reasons:

1. It does not need a knowledge based heuristic to guide the search [22]. A
good heuristic function for Jungle Checkers is difficult to design, because
we only need it when there are still eight piece on the board and with eight
pieces on the board no player has an advantage based on the number
or strength of pieces. Also, we are no expert players and it is hard to
implement domain knowledge in an heuristic function.

2. It is a best-first search algorithm [9], where the search is guided by the
structure of the tree, in order to traverse small subtrees first. In this way
the root position is solved faster than when breadth-first or depth-first
search is used.
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3. Checkers was solved using Depth-First PNS [24] (DF-PNS). Instead of
DF-PNS, we use the standard PNS, because DF-PNS suffers more from
the GHI problem [9].

As discussed in Chapter 3, the known solutions for the GHI problem are not
perfect and are not useful for solving games. Instead of solving the GHI problem,
we detect when the GHI problem can arise and then choose to not use the
Transposition Table (TT).

7.2 Method

The original PNS [11] algorithm is used in combination with a TT. A node
(or position) is proven when the value is WHITE and disproven when the value
is BLACK. The values of positions with a captured piece are retrieved from the
seven-piece endgame tablebase, which were computed with backward search.
Winning moves to terminal positions are preferred above moves to repeated
positions, but not if it takes multiple moves to a terminal position and it only
takes one move to a repeated position. The next subsections describe how and
when the positions with computed values are stored into and retrieved from the
transposition table.

Preventing the GHI problem

The GHI problem arises when the history of a position affects the value of a
position and the value is wrongly stored into the TT. When the affected value
is used for computing other values, those values are corrupted and also affected.

We prevent the GHI problem from happening by not storing values that are
determined by the history of moves, i.e. the values of positions that are proven
due to repetition are not stored. Repeated positions are draws and we remark
that draws are winning for white, when white has the advantage, as described
in Chapter 4. When a position is (dis)proven, but not by repetition, the value is
stored in the TT, with the sequence of moves to reach the leaf node (a terminal
position or a position with a captured piece). When a node is visited and its
position is already in the TT, the path from the root to the node is compared
with the sequence of moves to the leaf node, in order to check if there is a
repeated position. If the path does not contain a repetition, the value from the
TT is correct and can be used.

The next paragraphs describe in detail how the GHI problem is prevented.

Entry

An entry in the TT has four attributes: rank, value, perfect move and next entry.
Since there are more positions than the size of the TT, collisions are possible.
To still be able to save all positions, a chained hash table is used for the TT to
deal with collisions and the attribute next points to the next entry if it exist.
The attribute perfect move points to the entry with the position after the move,
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unless the perfect move will lead to a terminal position, in which case it will
be a null pointer. This will create a chain of moves, from a position to the leaf
node. Not the history is stored, but the future.

There is also another kind of collision. There are entries with the same rank
and hence the same index. However they have different perfect moves, resulting
in different paths to a leaf node. If one entry cannot be used, because it will
result in a repetition and thus a corrupted value, it could be that there is another
entry, but with another path to a leaf node, without repetition.

Retrieving values

Nodes are evaluated as follows:

1. If the position is a terminal node, the value is determined by game rules.

2. If the position has a captured piece, the value is retrieved from the seven-
piece endgame tablebase.

3. The rank is calculated and it is checked if there is an entry with the same
index:

(a) If the entry has the same rank.

i. If there is no repetition in the path from the root via the node
to a leaf node, by following the entries of the perfect moves, the
value of the node is set with the value of the entry.

ii. If there is a repetition, the next entry is checked.

(b) If the entry has a different rank, the next entry is checked.

4. Otherwise, the value is still not determined or retrieved, the value stays
unknown and the algorithm continues, with (dis)proof number 1 for this
node.

Storing values

Suppose node m is proven, because it has no disproven children. When one of
its children is proven due to repetition, it does not only affect the value of this
child, but also the value of its parent, node m. Storing the value of m into the
TT would result in corrupted values for other positions. Nodes with such values
are called affected. This also applies when one of the children is proven due to
an affected child. It also applies when proven and disproven are interchanged in
the above description.

When a value is determined, it is only stored into the TT if the following
conditions are met.

1. An entry with the same rank, value and perfect move does not exist.

2. The value of the position is not determined by a repetition.

3. The node is not affected by repetition.
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When a node is (dis)proved, the children are removed from the tree, because
they are not needed anymore and the allocated memory is released.

7.3 Results

For three pieces we computed the values of all positions and compared it with
the values retrieved from the three-piece endgame tablebase. There were no
differences found and we conclude the prevention of the GHI problem works.

Unfortunately, the search algorithm could not finish in our setup and the
game theoretical value of the root position is still not known. The search could
not continue, because the tree could not be expanded any further due to memory
constraints on the current hardware.

Prior to termination there were approximately 109 nodes in the tree and
105 entries in the transposition table, with a negligible number of collisions. We
expected a higher number of entries in the transposition table. It could be our
prevention of the GHI problem, prevents the usage of the transposition table,
because a lot of positions are affected by repetition.

Since there was a node found at depth 20 and the branching factor is 16, the
number of different leaf nodes could in theory be 1620 ≈ 1024. Even with the
seven-piece endgame tablebase the search space is not reduced enough and we
searched only a very small portion of the search space.

The ratio of the proof and disproof numbers gives an indication that the
game theoretical value of the root will be a win for white, but there is no
guarantee the ratio will not change. The development of the two numbers can
be seen in Figure 7.1.
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Figure 7.1: The development of the proof and disproof number of the root.
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Chapter 8

Conclusion

Unfortunately, we did not succeeded in solving the game, but we made progress
and are very close to reaching the goal. In the process we created a new efficient
ranking algorithm, the seven-piece endgame tablebase and prevented the GHI
problem from happening. In the next sections the research questions are listed
and answered. We conclude with the problem statement and at last we give
three ideas to solve the game for future research.

8.1 What is an efficient ranking algorithm?

The ranking algorithm for Jungle Checkers is efficient, because it takes into
account mirrored positions, the prevention of invalid positions and it can be
used for generating subtablebases in parallel.

8.2 How to generate the seven-piece endgame
tablebase?

In combination with the ranking algorithm and a parallel variation of Retrograde
Analysis, the seven-piece endgame tablebase is generated with only 64GB of
main memory. One subtablebase is generated in 44 iterations, which means
there is at least one position, that turned out to be a win for black, after 44
moves.

8.3 How to apply Proof Number Search and re-
solve the Graph History Interaction prob-
lem?

The PNS algorithm can be applied to Jungle Checkers when a player has the
advantage, which results in a binary objective. It can be combined with the
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seven-piece endgame tablebase in order to retrieve a value of a position with
a captured piece. Instead of solving the GHI problem, it is prevented by only
storing and using values of position that are not determined or affected by
repeated positions.

Problem Statement

Can we solve Jungle Checkers with the seven-piece endgame tablebase and Proof
Number Search? The answer is no. The prevention of the GHI problem hampers
the full usage of a Transposition Table, which resulted in not enough pruning
of the search tree and prevented the desired reduction of the search space.

There are several reasons it is difficult to solve this game. The main problem,
is that the rules do not forbid to move backwards, which can result in games
with repeated positions, which yields a draw. The branching factor does not
decrease after every move. The history to a position also affects the value of the
position. The division of subtablebases cannot be extended. Solutions to the
GHI problem are not perfect. The 44 iterations of RA for one subtablebase and
the search tree depth of 22 indicate the game is played with slow progression and
needs many moves to reach a terminal position, when both players are playing
perfectly.

8.4 Future research

Since the game is not solved with the seven-piece endgame tablebase and Proof
Number Search, this chapter describes several approaches towards solving Jun-
gle Checkers as future research.

8.4.1 More memory and time

With Retrograde Analysis we succeeded in generating the seven-piece (endgame)
tablebase. With more memory we can also generate the eight-piece tablebase.

For a board with seven pieces already placed, there are 40 locations left
to place the eighth piece. One could think, the required main memory for the
eight-piece tablebase is 40 times the required main memory of the seven-piece
endgame tablebase.

For seven pieces a position is based on (pieces, locations, turn), but for eight
pieces the position is based on (locations), because:

1. Without captured pieces, the eight pieces are known.

2. The turn can determined from the locations of the pieces by The Parity
Problem [4].

The number of different positions can be divided by two. The required main
memory is 26 · 46!/40! · 2 · 40 · 0.5 bits ≈ 877GB.
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Generating a seven-piece subtablebase took approximately 41 times longer
than generating a six-piece subtablebase. If we assume Retrograde Analysis
does not need more iterations for the eighth-piece tablebase than the seven-
piece tablebase, we can extrapolate the run time of generating the eight-piece
tablebase, which will be estimated to be four months.

8.4.2 Changing rules

Changing the rules in such a way a piece cannot move vertically towards its own
den has two advantages:

1. The branching factor decreases and pieces are moving faster towards each
other, which will possibly lead to a less deep search tree before a piece is
captured. The Graph History Interaction problem can still arise, so we are
not sure if this advantage will lead to solving the game.

2. The subtablebases can be divided even further, based on the row of the
piece vertically closest to the opponent’s den, as is done for checkers [23].
This will lead to a much lower memory requirement and will make it pos-
sible to use Retrograde Analysis for generating the eight-piece tablebase.

It must be proven that changing the rule will not change the game theoretical
value of the start position.

8.4.3 Cluster computing

We present an untested algorithm to generate the eight piece tablebase, where
Retrograde Analysis is combined with the Transposition-Driven Scheduling [20]
algorithm.

We use multiple computing nodes from a cluster to combine the memory in
order to store the values of all positions with eight pieces. During the algorithm
non-blocking messages are send and received by the nodes, which means the
communication is only one way and there is no idle time because there is no
need to wait for a response.

Suppose there are W computing nodes called workers and P positions with
eight pieces. Each position has a game theoretical value and a counter. Each
worker wi stores the value and the counter of the positions with a rank in the
set {i · P

W , i · P
W + 1, . . . , (i+ 1) · P

W − 1} and is responsible for these positions.
Suppose position p is the parent of position q, meaning position p is the

result after undoing a specific move from q and position q is the child of p.
When position q is valuated, the worker of q called w(q) can send a message to
w(p) with the rank of p and the value of q. The worker w(p) can receive those
messages.

The algorithm starts with letting the workers count the number of valid
children for each position and store this number in the counter. This number is
in the set {0, 16} for Jungle Checkers and needs 5 bits to be stored.
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Secondly, for all positions with seven pieces and all positions with eight
pieces, where one piece is on one of the two dens, a message will be sent to
their parents with the value retrieved from the seven-piece endgame tablebase
or determined by game rules.

At last, the main part of the algorithm. When a worker receives a message
with the rank of q and a value of p, it is checked if the value of position q can
be determined, as described in Listing 7 and if that is the case, a message will
be sent to all workers of all parents of q. A lot of messages will be sent and
received.

The algorithms finishes when all counters of all positions are zero, but can be
stopped when the value of the start position is determined. When the algorithm
finishes, Jungle Checkers is solved.

Listing 7 Retrograde Analysis with Transposition-Driven Scheduling

1 # rank of position

2 # value of the child

3 def on_receive_message(rank, value):

4 p = position[rank]

5 if p.counter is not 0: # position it not yet valuated

6 if winning(p, value): # child is winning for p

7 p.counter = 0

8 p.value = value

9 send_messages(parents(p), value)

10 else: # child is losing

11 p.counter -= 1

12 if p.counter is 0: # all children are losing

13 p.value = value

14 send_messages(parents(p), value)
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