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Abstract 

Melanoma is the most common form of cancer that originates in the skin; decades of intensive 

investigation generated large datasets that are currently provided to the open public. Large public 

datasets such as The Cancer Genome Atlas (referred to as TCGA), reveal that the majority of cases for 

both melanoma and papillary cancer (originating in the thyroid gland) harbor mutations affecting the 

BRAF gene. The most commonly occurring mutation is missense mutation p.Val600Glu (or p.V600E in 

one letter code), this particular mutation is associated to hyper activation of downstream protein 

MAPK1 that causes increased cell proliferation and inhibited apoptosis. Two drugs have been 

developed that specifically inhibit the mutated BRAF protein, thereby restoring the cell growth 

signaling to normal levels and effectively inhibiting tumor growth. It has however been observed that 

tumors can quickly become resistant to these treatment, particularly in colon BRAF mutated cancers. 

We hypothesize that characterizing alternative signaling for specific subsets, for example those 

showing normal MAPK1 activity despite BRAF alteration p.V600E, would reveal alternative regulatory 

mechanisms which could lead to novel targets for drug development. 

A popular choice to classify complex biological data, is the random forest technique, since it is 

nonparametric, interpretable and has high prediction accuracies in biologically relevant settings. 

Using TCGA data we generate four subsets from patients based on MAPK1 activity (high or low 

phosphorylation values) and presence or absence of BRAF mutation p.V600E.  

We classify gene measurements with 10.000 trees, iterate 100 times and use the most important 

(top 10%) measurements to identify signaling routes that by-pass BRAF regulation. We perform 

classification on both melanoma and papillary cancer separately as well as on combined datasets.  

In the comparison of patients with BRAF mutation p.V600E and decreased MAPK1 activity to 

other subsets we identified increased BDKRB2, PCLB1, ITPR2 and NOS3 gene expression, and 

decreased AKT phosphorylation values specifically for this subset. We hypothesize that this is a 

mechanism that activates cell-proliferation independent of BRAF by NOS3 activation through calcium 

second messenger systems. 

Comparison of patients with unaltered BRAF genes and increased MAPK1 activity to other subsets 

was used to identify signaling that is not specifically BRAF-driven. Classification results show gene 

measurements to characterize this subset through gene expression and phosphorylation values of 

PTEN and AKT, MTOR, RPTOR, RBS6KB and EIF4EBP. This suggest circumvention of BRAF regulation 

through mtor signal transduction regardless of AKT inhibition mediated through PTEN activity. 
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Introduction 

Biological background of mapk signaling in cancers 

The molecular dynamics of cancers has been investigated thoroughly over the years, despite 

these efforts reasons explaining uncontrolled cell proliferation in many (types of) cancers remain 

unclear. It is known however that abnormal cell growth exhibited by many cancers requires 

deregulation of protein interaction and signaling networks such as the Mitogen Activated Protein 

Kinase pathway (referred to as mapk pathway). This is a large network that regulates cell 

proliferation, cell differentiation and apoptosis [5], which is frequently deregulated in cancers, 

amongst others papillary thyroid cancers and melanoma.  

Melanoma is a cancerous disease that affects melanocytes; these cells produce pigment, grow 

relatively old and alterations of these cells are frequently observed in skin. Melanocytes are dendritic 

cells found in the lower region of the epidermis. Dendrites connect melanocytes to neighboring cells 

and transport pigment molecules know as melanin. Once arrived melanin umbrella’s the nucleus of 

cells in the upper-layer of the epidermis, a process commonly observed as darkening of the skin after 

exposure to sunlight (see Figure 1). Surgical excision of small melanomas is the primary treatment 

and survival rates for early staged melanoma is 94% over five years [20]. However, patients with 

advanced metastasized melanoma have a very poor prognosis and show over 5 years only 10% 

survival rate for most severe forms of metastatic melanoma [21]. 

 

  

 
 

 
Figure 1: Representation of skin and 
locations of melanocytes. 
From top to bottom; skin is exposed to 
UV-radiation from sunlight, and 
triggers melanocytes to produce 
pigment (melanin). These cells are 
located below epidermis cells, 
neighbouring cells are connected via 
long dendrites. Dendrites transport 
melanin from melanocytes to 
surrounding cells. Hereafter, melanin 
accumulates around the nucleus and 
protects DNA by absorbing UV 
radiation.  
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Deduce mapk functionality through various biological levels. 

It is important to understand that regulation of mapk signaling involves several biological 

processes, among others, gene expression, DNA methylation, and protein activity. Furthermore, 

regulatory elements are influenced by copy number alterations (referred to as CNAs), and therefore 

considered important for mapk signaling characterization (i.e. genes deleted as result of CNAs cannot 

regulate or be regulated). Here we touch on the most important regulatory processes in the context 

of cancer. Firstly, an important factor in pathway regulation is the cell’s ability to express genes and 

synthesize proteins that are required for functional cellular responses. The quantification of gene 

expression is attained through mRNA sequencing that can serve as approximation of protein 

quantities. 

Secondly, CNAs of the gene structure is found to play a crucial role in many cancers, and causes 

deletions or amplifications that are particularly problematic for oncogenes. Exemplified; on the one 

hand, deleting tumor suppressors with inhibitory functions, or on the other hand, amplifying 

oncogenes that stimulates cell growth, results over activity of cell proliferation. 

Thirdly, particular epigenetic changes, such as DNA methylation, have been documented through 

intensive studies and deregulation often occurs in cancers. Methyl groups bound to promoter regions 

of tumor suppressor genes are particularly problematic since this prohibits DNA polymerases to 

move along the genetic sequence. Which, in turn, prevents transcription of genes suppressing cell 

growth and emphasizes on the importance of epigenetic modifications in tumor genesis [8].  

Finally, regulation of mapk signaling (or for signaling transduction cascades in general) involves 

phosphorylation and dephosphorylation of a large variety of proteins. This reversible post-

translational modification adds or removes phosphate groups for phosphorylation and 

dephosphorylation, respectively. Transduction signals are consecutively transferred phosphate 

groups from one protein to another, proteins are considered active and inactive for bound and 

unbound phosphate groups, respectively. 

Initial response of mapk signaling is triggered by binding of extra cellular compounds to receptors 

embedded in the cell’s membrane. One such receptor is Epidermal Growth Factor Receptor (EGFR, 

see Figure 2 left-side), this tyrosine kinase receptor undergoes dimerization after binding of 

epidermal growth factors (EGFs), and is one ‘entrance’ to the mapk pathway [4]. Additionally, 

different intra- or extracellular stimuli can trigger different routes of pathways, and thereby allow 

cells to reach into different transduction cascades, at different parts of the cascade event (not shown 

in Figure 2).  

Extensive whole-exome (sequencing all exonic regions) and RNA sequencing studies reveal a 

specific mapk activating mutation in the oncogene BRAF causing melanoma cells to develop hyper 

active mapk signaling and drug resistance. This mutation is found at the 600th amino acid of the 

protein chain (in the most common isoform) and causes the substitution of valine (one letter code V) 

to glutamic acid (one letter code E) and therefore named p.V600E (Figure 2). Previous work shows 

such mutations involve regulatory changes of cell proliferation, cell differentiation and can inhibit 

apoptosis through mapk signaling [6][7].  

To date only two types of targeted treatment have been approved by the Administration of Drug 

and Food regarding melanoma [9] and both target BRAF [7]. These treatments show promising initial 

response, however, metastatic melanoma cells develops drug resistance after prolonged exposure to 

the treatment [15]. In cases of melanoma a number of pathways are known to play part in the 

regulation of cancerous development, among others, mapk, mtor, pi3k and the cell cycle (see Figure 
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2 right-side). Literature provides a core set of genes that are used for current targeted drug 

development that constructs our initial gene selection. 

 

 

Figure 2: Simplified representation of mapk and pi3k pathway signaling. Membrane protein 
EGFR (entrance to mapk pathway at the left-hand side) activates GRB2 and SOS, which in turn 
activates membrane protein RAS, to finally signal through BRAF, MEK and MAPK1. At the 
right-side, PI3K stimulating PIP3, and activates AKT, that leads to four signaling routes.  

Data access and availability – The Cancer Genome Atlas 

Previous work collected significant amounts of data in The Cancer Genome Atlas (TCGA), among 

others, aimed to investigate melanoma. This enormous collection contains a maximum of 11 data 

types [14] (from here on referred to as gene measurements) such as: DNA copy-number data, mRNA 

and microRNA expression data, non-synonymous mutations, protein-levels, DNA methylation data, 

limited clinical data related to survival, and at the point of writing >66 TB in volume [11]. It contains 

both raw and processed data, and is structured in 4 levels; raw, processed, interpreted and summary, 

for levels 1 to 4 respectively. Level 3 data contains a normalized data aggregation [12], that is used in 

our analysis. Data present in TCGA is available through cbioportal [22] (an online web-based interface) 

that allows access by specified querying per patient, gene and cancer type. 

In silico analyses – Inactive MAPK1 functionality and acquired BRAF alteration p.V600E 

We assess a number of popular in silico methods for analyzing TCGA data, namely; random forest, 

principle component analysis and hierarchical clustering. These are representatives for both 

supervised and unsupervised learning, allows for introducing prior knowledge to classifications and 

investigate numerical intrinsic trends, respectively. Random forest biggest advantage is the ability to 

guide classification instead of extracting general intrinsic trends and aims to find data trends that 



6 
Master thesis Bioinformatics – Leiden University of Advanced Computer Science (LIACS) 
Hubrecht institute supervisor – Joep de Ligt 

specifically separates biologically relevant subsets. This technique performs well even for small-

sample sizes and unknown data distributions, that typically describes biological datasets. 

On the one hand mapk hyper activation is commonly observed in cases of cancer and associated 

to altered BRAF, on the other hand various patients suffering melanoma show low or normal activity 

of the downstream effecter MAPK1 under BRAF altered conditions. From this we deduce mapk 

signaling that circumvents BRAF-controlled MAPK1 stimulation and gene measurements from this 

subset might indicate mechanisms regulating development of drug resistance (i.e. resistance to BRAF 

inhibitors). To investigate signaling routes that increases MAPK1 activity other than stimulated 

through BRAF, we focus on differentiated gene and protein measurements that particularly 

characterizes patients with active MAPK1 functionality despite absence of BRAF alteration. 

Alternative signaling that characterizes this subset might reveal routes that increases mapk signaling, 

that in turn, may provide potential drug targets.  

The Cancer Genomics.nl (CGC) is an initiative of seven cancer research groups in The Netherlands, 

with united forces they aim to understand genetic alterations in individual tumors to increase 

development of personal medicine. The flagship project aims to measure and understand the rapid 

drug resistance to targeted BRAF treatment in colon tumors by studying a tumor derived cell line. 

They were willing to provide the available measurements for our genes of interest. This data includes 

mRNA, protein and phosphorylation measurements under control, BRAF inhibitor and EGFR inhibitor 

conditions.  

Methods 

For a complete visualization of our implementation please find a diagram representation on the page 10. 

Selecting resources, gene set and corresponding nomenclature 

We retrieve cancer study statistics through cbioportal and select data resources based on volume 

and presence of recorded BRAF alteration. We initially selected a set of 30 genes that are often 

altered in cases of melanoma and are targets for drug development in current studies. The gene 

selection covers; 3 genes from the mapk pathway, 5 genes from the cell cycle pathway, 12 genes 

from the mtor pathway, 6 genes from the pi3k pathway and finally 4 genes that are tyrosine kinase 

receptors and potential entrances of the mapk pathway. This selection contains the major elements 

of signal transduction under natural conditions, however, picking-up alternative signaling requires 

larger gene selections since one signaling route easily contains over a dozen different proteins. 

Therefore we expand our gene selection using parameter ‘optimized gene-interconnectivity’, 

through geneMania [23], a score that is based on physical interactions, co-expression, co-localization, 

protein domain similarity, genetic interactions, participate in identical pathways and predicted 

interactions (for specific details on gene selection see supplementary methods – gene selection). 

Data acquisition, data types and normalization 

To query TCGA data a basic collection of functions is provided through R package CGDS-R package, 

that is part of the R platform for statistical computing [24] and Cbioportal provides hands-on 

descriptions to implement functions. To retrieve and post-process data both platforms R and Ipython 

notebook [25] are used. Our setup requires various parameters to download data from Cbioportal; 1) 

online resource directory, 2) integer value that indicates cancer studies, 3) list of genes and 4) 
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specification of desired gene measurements. For papillary thyroid cancer and melanoma studies five 

gene measurements are available, mRNA expression, methylation, copy number alteration, 

phosphorylation and mutation data.  

Within-sample normalized gene expression values represent Z-scores that describe the number of 

standard deviations that the value is distanced from the average mRNA expression value across all 

patients per gene for a particular type of cancer. 

Next, normalized methylation data is expressed through values between zero and one, zero 

indicating hypo-methylation of genes, meaning no methyl-groups bound to promoter regions, and 

one indicating hyper-methylation that resembles heavily silenced genes. 

TCGA provides CNA values in a per-gene fashion, values 2, 1 ,0 ,-1 and -2 indicate nullizygosity, 

hemizygosity, unchanged, gain or heavily amplified, respectively. This indicates homozygous 

deletions, loss of single alleles, normal state (two copies), one extra copy or multiple copies of the 

allele, respectively. TCGA is able to putatively approximate these copy number alterations due to the 

purity and known ploidy of samples and additionally provides CNA values in log scale that are used in 

our analysis. 

Phosphorylation measurements are collected using fluorescent labels using custom designed 

antibodies that target phosphorylation sites. Nearly a couple of hundred antibodies are carefully 

selected and used for testing. Phosphorylation data is both within-gene and within-sample 

normalized. 

And finally, mutations are collected through second-generation whole exome sequencing, and 

TCGA provides mutations per gene, per patient and per cancer study. Moreover, TCGA provides 

effects for several kinds of mutations through a suffix, such as; ‘*’, ‘fs’ or ’_splice’ at the end of 

mutation names that we use for mutation discretization. (For specific details on normalization of 

gene measurements see supplementary methods – gene measurement normalization) 

Data discretization, subsets and merging cancer studies 

A large variety of mutations is observed for different genes from different patients, to direct our 

classification towards p.V600E we label every mutation based on their effect. Initially, mutations are 

provided through 5 events; 1) not available (NA), 2) nonsense, 3) frame-shift, 4) splice site and 5) 

missense mutations. Since frame shift, splice site and nonsense mutations all result in different 

transcripts they are identically labeled. Additionally we check for p.V600E mutations that are labeled 

‘hotspot’ and finally, any other mutation is regarded missense. 

Since activation of genes through phosphorylation is not standardized we take phosphorylation, in 

conceptual terms, to indicate on/off states, that is ‘on’ for increased and ‘off’ for decreased 

phosphorylation values. We recapitulate the on/off state by thresholding phosphorylation values 

with an upper and lower boundary, and take values to indicate active (on) and inactive (off) states for 

values above and below thresholds, respectively. Thresholds are defined by calculating maxima and 

minima of phosphorylation values per protein across all patients, subtracting minima from maxima 

results the total range in which phosphorylation values vary in a per-gene fashion. We set thresholds 

in percentage and use equal values for upper and lower boundaries, exemplified; for upper and 

lower thresholds = 0.2 we label proteins ‘active’ with phosphorylation values that range in the upper 

20% of the total phosphorylation range per protein, and values in the lower 20% are labeled 

‘inactive’. 
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We generate different gene selection subsets to provide complete signaling routes or add genes 

that potentially play part in alternative signaling, gene selection mainly relies on interconnectivity 

between our gene selection and available data. That follows the rational; genes involving regulation 

of multiple processes are most potent in offering alternative routes that provide escapes from BRAF-

controlled MAPK1 regulation. Furthermore, we subset patients with similar properties to indentify 

particular signalings that might characterizes subsets. Exemplified; we cluster subsets that contain 

patients with elevated BRAF CNA (CNA >= 2) in order to find gene measurements involving hyper 

activation of MAPK1 (for specific details on subsets see supplementary methods). Finally, to perform 

random forest classification on merged cancer studies we intersect gene measurements of complete 

case datasets from individual cancers. Gene measurements that are present exclusively in either one 

of the cancer studies are excluded from the merged dataset. 

Implementation of principle component analysis and agglomerative hierarchical clustering 

– unsupervised clustering 

To evaluate the spread of our data we designed a principle component analysis implementation 

using R statistics. We remove all gene measurements that contain ‘NA’ values, and parse the set of 

complete cases to the princom function with default settings. We evaluate eigenvector loadings that 

indicate data spread captured for every principle component separately and visualize their 

directions.  

Additionally we parse the complete-case data set to the hierarchical clustering function, we 

define two parameters; 1) clustering method and 2) distance metric. We can generate a tree that 

connects data points together either starting from one big cluster separating one data point after 

another, or starting with all data points separately clustering them together one by one. The later is 

referred to as agglomerative clustering and is set through the first parameter. This method measures 

distances between data points in multidimensional space using Euclidian distance metric, that 

describes a space in which a straight line is the shortest distance between x and y, and is set with the 

second parameter. 

Random forest classification – supervised clustering 

Random forest is functionally related to its name and generates large numbers of random 

decision trees (i.e. a forest), the nodes of every tree are split based on optimization using a set of 

randomly chosen measurements. We set our random forest implementation to generate 10.000 

trees and classify based on MAPK1 activity (high or low phosphorylation values) and present or 

absent BRAF mutation p.V600E 

The main principle behind this algorithm is perform ‘strong’ classification taken together the sum 

of ‘weak-classifiers’ (single trees). However this requires balanced class distributions to avoid bias 

towards over represented classes, hence we inspect distributions for imbalances. Since datasets are 

relatively small phosphorylation threshold values are set to 0.5 and quantifies most balanced class 

distributions. (For specific details on class distributions see supplementary methods – class 

distributions ). 

The solution offered by random forest represents the highest ranking tree among all randomly 

generates trees. Our random forest provides two ways to assess the importance of measurements 

for node splitting. Firstly, the score for ‘meanDecreaseAccuracy’ indicates whether accuracies drop if 
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measurements are left out during classification. Returning high and low values that indicate the 

importance of measurements regarding low and high error-rates, respectively. Secondly, the ‘Gini’ 

score indicates whether measurements generate pure nodes, resulting high and low values indicate 

measurements generate pure nodes or cause node impurity, respectively. Here, measurement 

importance is expressed through Gini scores. 

Furthermore, for learning purposes random forest requires a training set that is used to generate 

all random decision trees and contains randomly chosen gene measurements from complete case 

datasets. Simultaneously resulting a randomly generated dataset (i.e. the measurements that were 

not selected for learning) that we use for testing. This Out Of Bag (OOB) method mimics commonly 

known train/ test-set procedures that are currently used in most classification algorithms 

Define top-10% measurements in dynamic results due to randomness and data complexity 

We focus on top-10% measurements as indicators for class separation, rather than to optimize 

correct classification of patients to their corresponding class. This method ranks measurements 

based on their importance in generating node purity, even for high complexity biological data sets. 

High complexity data results in rather low classification performance and causes varying results 

regarding measurement importance indicated by random forest. This means Gini score results vary 

for every classification run, however, the strongest separators will rank higher more frequently 

compared to others. Therefore we iterate our procedure 100 times and rank Gini score means to 

generate the top-10% separating measurements (for specific details on error-rates en Gini score 

rankings see supplementary methods). 

Adequate data acquisition and post-processing 

To conjugate platforms such as R statistics and Python we design a shell script (i.e. ‘wrapper’) that 

embeds a set of command-line utilities, and allows post-processing data in an fast and adequate 

fashion. The wrapper directs data acquisition through R statistics and invokes custom made python 

code for basic post-processing and requires four parameters; 1) result folder directory, 2-3) invoking 

both R statistics and Python scripts, and 4) a text file that denotes all genes in a gene-per-line format. 

Identify pathways involving best separating measurement and potential signaling routes 

We inspect top-10% measurements and focus on characterizing alternative signaling for either 

BRAF mutation p.V600E under inactive mapk conditions or absent BRAF mutation p.V600E and 

MAPK1 activity. We identify pathways containing signaling routes that provide escapes for BRAF-

controlled MAPK1 regulation, involving our best separating measurements for aforementioned 

classes. Pathways and signaling routes are collected from online databases, such as; wikipathways, 

KEGG and GeneCards [26][27][28]. Hereafter, we collect measurements for genes that construct 

potential alternative signaling routes and inspect biological relevance of our random forest 

prediction. 
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Gene selection, data acquisition, post-processing and random forest classification represented in a 

diagram. Separate steps are indicated through blue backgrounds (dark blue describing the wrapper ) 
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Results 

Data resource and acquisition 

Datasets from both Melanoma and Thyroid cancer studies are collected from TCGA, cbioportal 

reveals four and two available datasets, respectively. We retrieve TCGA provisional Melanoma data 

that shows >50% of 278 patients attained BRAF alterations during cancer development (Table 1 and 

Figure 3) [10]. And for data homogeneity purposes we collect TCGA provisional Thyroid cancer data 

that indicates >60% of 399 patients either have mutations, amplifications, deletions or multiple 

alteration (Figure 3 and Table 1). Both Thyroid cancer and Melanoma TCGA Provisional datasets 

provide five different measurements; mRNA expression, CNA, phosphorylation, methylation and 

mutations. 

 

 

 Figure 3: Data sets provided by TCGA for melanoma 
and papillary thyroid cancer. Datasets are 
represented in decreasing order of BRAF alteration 
frequency (in percentage), and primarily reveals 
alteration of gene structure (in light blue). 
 
 
 
 
 
 
 
Table 1: Statistics of available TCGA resources 

 
ID cancer study cases BRAF mutation 

M1 Melanoma 121 62.8% 

M2 Melanoma 278 51.4% 

M3 Melanoma 25 48.0% 

M4 Melanoma 91 37.4% 

T1 Thyroid 399 61.9% 

T2 Thyroid 399 60.4% 
 

 

We grow the core gene selection with 100 interconnected genes (see supplementary methods – 

gene selection), retrieve 601 gene measurements, and merge them to a measurement-per-gene 

format per cancer study. Hereafter, we inspect and remove gene measurements that contain missing 

values generating complete case datasets per cancer study. We request clinical data, for both 

melanoma and papillary thyroid cancer, and find tissues at stages from m0 to m1-a,b and c, and from 

n0 to n3. M stages indicate distant metastasis, the abbreviations m1 and m0 stand for observed or 

absent distant metastasis, respectively, with suffix denoting metastatic locations. N stage melanomas 

indicate spread to surrounding lymph nodes, and number of affected lymph nodes is indicated with 

an integer suffix. Cbioportal indicates control samples of melanoma and thyroid cancer are partially 

publicly available, however, package CGDS-R only allows data retrieval of cancerous tissues. 

  



12 
Master thesis Bioinformatics – Leiden University of Advanced Computer Science (LIACS) 
Hubrecht institute supervisor – Joep de Ligt 

Data set statistics 

Post-processed Melanoma and thyroid cancer datasets count 158 and 207 patients, 515 and 497 

measurements, respectively (Table 2). Phosphorylation values are available for only a few genes 

compared to mRNA expression values (nearly all genes have mRNA expression data). Merging cancer 

studies slightly lowers patient count and gene measurements, however, intersecting both cancer 

studies results particularly decreased phosphorylation measurements. 

Table 2: Summary statistics of melanoma papillary thyroid cancer and merged studies with core gene 

selection and 100 additional genes. 

 
Melanoma Thyroid Total 

Description  TCGA Filtered TCGA Filtered Filtered 

Patient count 278 158 397 207 365 

Measurement count 616 515 601 497 491 

genes with RPPA values 123 32 120 24 20 

 

Class labels used for classification (Table 3), the second class indicates subsets that might reveal 

alternative signaling used to stimulate the cell cycle for low MAPK1 activity. The third class label 

indicates alternative signaling not specifically driven by BRAF alterations. First and last class labels 

indicate BRAF alteration and hyper active mapk signaling, and patients that developed melanoma 

despite intact mapk regulation (no BRAF mutation and normal MAPK1 activity). 

Table 3: Class label description 

 Prediction classes Melanoma Thyroid Total 

1 + BRAF mutation p.V600E & 
+ MAPK1 activity 

22 5 27 

2 + BRAF mutation p.V600E & 
- MAPK1 activity 

45 112 157 

3 - BRAF mutation p.V600E & 
+ MAPK1 activity 

44 7 51 

4 - BRAF mutation p.V600E & 
- MAPK1 activity 

47 83 130 

 

Post-processing melanoma datasets generates equally balanced data distributions for class labels 

2 and 3 (Table 3), in contrast to class distributions of thyroid cancer data that shows bias towards 

inactive MAPK1 (Table 3, class labels 2 and 4). Merging melanoma and papillary thyroid cancer 

complete case data sets results the sum of class distribution of individual cancer studies. 

Traditional classification methods and complex biological data (unsupervised classification) 

Classical methods, such as principle component analysis and hierarchical clustering, are used to 

indicate spread and similarity of data sets, respectively. In order to describe data spread, for merged 

cancer datasets, PCA requires all principle components that indicates high complexity. Hierarchical 

clustering shows small separate clusters of patients with BRAF mutation p.V600E and inactive MAPK1 

values, however noise levels cause interpretation of gene measurements importance to be 

problematic. 
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Difficulties of traditional classification arise due to a number of reasons; our extended gene 

selection is likely to describe signaling routes incompletely, genes from multiple signaling routes and 

other biological events are mixed in our dataset and clutters classification results. Additionally, 

signaling routes are described through a multitude of measurements increasing data complexity, and 

finally, these methods lack the ability to facilitate classifications with prior knowledge. Therefore 

results are not directed towards answering our biological question, but rather indicates most 

profound spread or similarities of our dataset in general. (for specific details on traditional 

classification see supplementary methods) 

Random forest classification for merged datasets with extended gene selection 

Inspecting a number of the top-10% measurements reveals random forest finds measurements 

that separates distinct types of cancer. The five best results are mRNA expressions of ERBB3, ELF3 

and MET and methylation values of EIF4G1 and MAP3K1 (see Figure 4).  

 

 
 

Figure 4: A, indicates gene expression of ERBB2 and ERBB3, dot shapes indicate cancer studies, circles and 
triangles indicate melanoma and thyroid cancer cases, respectively. Here we observe decreased ERBB3 
gene expression in addition to hyper methylation. B, separable power of ELF3 gene expression results from 
tight regulation compared to increased values for melanoma and papillary thyroid cancer, respectively. C, 
hypo methylation of MAP3K1 shows separable power towards cancer studies. 

 

Visualization of ERBB2 and ERBB3 mRNA expression reveals values of both melanoma and 

papillary thyroid cancer patients, that emphasizes on tight epigenetic regulation of ERBB3 gene 

expression for patients suffering papillary thyroid cancer (Figure 4A). These results explain separable 

power gained from gene expression of ERBB3 facilitates separating cancer types. ERBB3 is a unit of 

heterodimer ERBB2-ERBB3 (with downstream protein ELF3) that is embedded in the cell membrane 

and phosphorylates protein from both pi3k and mapk pathways. Homodimer formation of ERBB2 is 

previously observed under decreases ERBB3 gene expression conditions and is described as cancer 

driving mechanism in diseases such as, papillary thyroid cancer and breast cancer [1][2][3].  
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Additionally, we observe similar results for gene expression of ELF3 and methylation values of 

EIF4G1 (Figure 4B,C,D and E). Gene expression of ELF3, in cases of melanoma, rarely deviates from 

the mean indicating tight regulation, in addition to low methylation values of EIF4G1 across all 

patients. In contrast to melanoma, patients suffering from papillary thyroid cancer show ELF3 mRNA 

expression ranging from -1 to 4 standard deviations, rarely accumulate around the mean and are 

characterized by high methylation values of EIF4G1 across all patients. And finally, separable power 

of MET gene expression and MAP3K1 methylation values is most profound between presence and 

absence of BRAF mutation p.V600E and inactive MAPK1 (Figure 4G and I). Gene expression values of 

MET range from -1 to 3 standard deviations from the mean for patients without BRAF mutation 

p.V600E and inactive MAPK1 (Figure 4G), this contrasts to patients without BRAF mutation p.V600E 

and activated MAPK1 that typically shows expression values below zero (Figure 4I). From this we 

take profound differences (e.g. ERBB2 homodimer formation) to overshadow separation towards 

minority subsets. Hence, we continue in a per-cancer-study fashion by focusing on melanoma cases 

to lower data complexity. 

Alternative signaling possibly involving drug resistance – BRAF mutation p.V600E and 

inactive MAPK1 

The top-10% of our random forest results for patients with altered BRAF and low MAPK1 activities 

identified increased gene expression and CNA values for genes BDKRB2 and NOS3, respectively.  

BDKRB2 is a membrane protein that associates with G proteins stimulating calcium second 

messenger systems (Figure 5) and increases cytosolic calcium concentrations [19]. BDKRB2 gene 

expression appears particularly increased compared to other subsets (Figure 6A). The mean of 

BDKRB2 gene expression is zero standard deviations that indicates expression levels are similar 

compared to BDKRB2 expression levels across all patients in the unfiltered the TCGA dataset. These 

differences reveal separation originates from decreased BDKRB2 gene expression values of other 

subsets. 

NOS3 is a member of the pi3k pathway and is known to activate under elevated calcium 

concentrations [18]. This effect is previously observed in human melanomas and for human NOS3 

gene transfer in mice, that showed mapk inhibiting effects that corresponds to the characteristics of 

this particular subset [16][17]. The separable characteristics picked-up by our classification indicate 

>77% of BRAF mutated patients have at least one extra copy of the NOS3 gene, in contrast to cases 

of unaltered BRAF that count <48% patients with elevated NOS3 CNAs. 

We investigate available measurements of both genes in addition to genes that construct the 

alternative signaling route (i.e. genes from the pi3k and calcium signaling pathways). Visualizing gene 

expressions of BDKRB2 and NOS3 reveals the widest spread of these two genes specific for patients 

with BRAF mutation p.V600E and inactive MAPK1 (Figure 6C) 
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Figure 5: simplified representation of alternative signaling route through second messenger system 
and nos3. At the right-hand side mapk signaling under normal conditions. On the left-hand side signaling 
routes regulated through AKT. In the middle section, activation of NOS3 through calcium increase 
activated by BDKRB2, that stimulates, GNA and PLCB1 and cause ITPR2 to release calcium from the ER to 
the cytosol activating NOS3. 

From the pi3k pathway we find decreased phosphorylation values of NOS3 upstream activators 

AKT1 and AKT2 (Figure 6A), that indicates NOS3 is not stimulated via AKT. However elevated gene 

expression levels for PLCB1 and ITPR2 suggests activation of second messenger systems that releases 

calcium from the endoplasmic reticulum into the cytosol activating NOS3 (Figure 5 middle section 

and Figure 6A). This would allow cells to escape BRAF-controlled mapk regulation and stimulates 

proliferation under BRAF inhibited conditions.  

The comparison of read count medians across all patients from the filtered dataset reveals 

median = 51, 120 and 222 for BDKRB2, PLCB1 and NOS3 gene expression, respectively, to read count 

medians of this subset (median = 103, 231 and 334 for BDKRB2, PLCB1 and NOS3, respectively) 

reveals a nearly two-fold increase. Albeit read count medians of these genes are specifically 

increased for this subset they indicate relatively low expression compared to the read count median 

across all genes (median = 1473 reads across all genes in our dataset). 
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Figure 6: gene expression and phosphorylation values of alternative signaling route. A, From left to right; 

gene expression values of BDKRB2, PLCB1, ITPR2 and NOS3, indicating increased levels specific for the class 

indicated in green. Furthermore, phosphorylation values of AKT1 and AKT2 appear low, indicating NOS3 is 

not stimulated via AKT. B, gene expression of NOS3 and BDKRB2, including MAPK1 activity that acts as 

intermediate quality controle visualizing separation of active and inactive MAPK1. 

 

Alternative routes regulating proliferation - other than BRAF driven mapk signaling 

After inspecting the top-10% measurements of the extended gene selection no biologically 

relevant signaling routes were identified. Therefore we extended the gene set with another 100 

genes and re-execute the random forest classification. After data acquisition and post-processing the 

dataset counts 147 patients and 1096 measurements among which protein activity data for 52 genes. 

These top-10% measurements reveals PTEN functionality is particularly active for those showing 

MAPK1 activity despite absence of BRAF mutation p.V600E (Figure 8A). PTEN is a tumor suppressor 

gene from the pi3k pathway and its protein product inhibits PIP3, that in turn stimulates AKT (Figure 

7). However, despite high inhibiting activity of PTEN phosphorylation means of AKT1, AKT2 and ATK3 

are increased for this subset (Figure 8B). Since AKT stimulates various other protein we check activity 

of various AKT regulated signaling routes by inspecting FOXO, BAD, BCL2, P53 and MTOR 

phosphorylation values and gene expression (Figure 7). 
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Figure 7: Alternative signaling route through MTOR signaling. Four signaling routes are inspected 

downstream of AKT, FOXO, BAD and MDM2 appear inactive on both gene expression and 

phosphorylation levels. Furthermore, increased AKT phosphorylation indicates inhibition of 

downstream activator TSC2, that is in complex with TSC1 and inhibits RHEB. RHEB activates MTOR and 

RPTOR that signals further down the mtor pathway.  

Both gene expression and phosphorylation values of FOXO reflect low activity (with means around 

-0.5 standard deviations and activity 0, respectively) that indicates this particular signaling route is 

inhibited by AKT and appears inactive. 

The means of BAD and BCL2 gene expression are -0.5 and 0 standard deviations, respectively. 

Since AKT inhibits BAD, which in turn inhibits BCL2, increased AKT activity suggest BCL2 activation. It 

has been observed however that the majority of patients in this subset have inactive BCL2 suggesting 

no particular signaling further downstream of BCL2. Gene expression values of P53 appear stable 

amongst all four subsets (with means slightly below 0 standard deviations) and a phosphorylation 

mean around -0.5, that reveals inhibition of MDM2, that in turn, is stimulated by AKT and inactivates 

this signaling route. 

Low phosphorylation values and gene expression of TSC1 (with means -1 and -1 standard 

deviations, respectively) agree on the inhibitory function of AKT. TSC2 is specifically increased for this 

subset (gene expression mean = 0 standard deviations compared to mean = -0.5 standard deviations 

for other subsets) and phosphorylation values reveal activated TSC2 (mean = 0.5 compared to mean 

= -0.5 for inactive MAPK1). The comparison of present or absent BRAF mutation p.V600E (in cases of 

active MAPK1) shows increased MTOR gene expression and phosphorylation (Figure 8C) that is 

characterizing for MAPK1 activity without BRAF mutation p.V600E and found even more explicit for 
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RPTOR gene expression and phosphorylation data (Figure 8D). MTOR and RPTOR form a complex 

that goes on to activate RPS6KB and inhibit EIF4EBP indicated by increased and decreased 

phosphorylation (Figure 8E and F). 

Recapitulating these findings; typically increased PTEN activity with consecutive downstream 

signaling through MTOR, RPTOR and RPS6BK is characterizing for those with active MAPK1 signaling 

without BRAF mutation p.V600E in TCGA melanoma datasets. 

 

 

Figure 8: Gene measurement characterizing alternative signaling under PTEN inhibiting and AKT 
active conditions. From left to right; A, increased PTEN phosphorylation and gene expression 
values, that indicates increased PTEN activity. B, three units of AKT are in complex and reveal 
increased phosphorylation values, indicating activity despite PTEN inhibition. C, MTOR gene 
expression and activity values, show slightly increased. D, particularly gene expression increase is 
observed for RPTOR. E and F, highest and lowest phosphorylation values for downstream 
proteins of MTOR, activation of RPS6KB is associated to transcription and proliferation.  
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Comparing Random forest classification results to preliminary results CGC flagship project 

Figure 9 panel A, C and D represents control samples (in grey) of PLCB1, ITPR2 and NOS3, 

respectively, that are stimulated with EGFs and measured over 48 hours with t0 measured before 

stimulation. Red and blue indicate BRAF inhibitor Vemurafenib and EGFR inhibitor Gefitinib, 

respectively.  

 

 

Figure 9: normalized gene expression count of genes of interest under different conditions over 
time. Control samples in grey are stimulated with EGF, in red cells stimulated with EGF and BRAF 
inhibitor Vemurafenib, in blue EGFR inhibition through Gefitinib and in purple an inhibition 
combination of these A, measurements for ITPR2 under stimulation of EGF, B explicit increase of 
ITPR2 gene expression through mapk activation. C, Control shows remarkable low gene expression 
of NOS3 D, E and F that is unresponsive to any kind of inhibition. 

 

Regardless of inhibition normalized gene counts of both NOS3 and BDKRB2 are remarkably low 

(Figure 9C, D, E and F), specifically BDKRB2 expression is decreased beyond meaningful visualization 

and therefore not shown. Hence both TCGA data (for cases of melanoma) and cell line samples 

derived from colon tumors show no evidence of either BDKRB2 or NOS3 gene expression. 

Interestingly, decreased expression of ITPR2 is observed under EGF stimulation and suggests low 

expression for MAPK1 active conditions (Figure 9A). Decreasing mapk signaling through BRAF 

inhibition causes ITPR2 expression to increase nearly three-fold compared to original levels in colon 

cancers (Figure 9B). This is similarly observed in cases of melanoma and might indicate why patients 

with inactive MAPK1 show increased expression of this calcium channel subunit in TCGA data. 
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Figure 10: Colon cancers samples stimulated with 
EGF with measurements of AKT2, PTEN, MTOR, 
RPTOR, RPS6KB and EIF4EBP. A, increasing AKT2 
phosphorylation under activation of MAPK1. B, 
Increased PTEN gene expression while stimulating 
mapk signaling. C, increasing MTOR gene 
expression in response to mapk activation. D, 
RPTOR stays stable for many hours, however at 
time = 48 RPTOR activity sharply increases. E and 
F, decreasing and increasing RPS6KB and EIF4EBP 
activity, respectively  

 

 

Activating MAPK1 in colon tumor cells, by exposure to EGF, indicates to increase phosphorylation of 

AKT2 and RPTOR in addition to increased gene expression of PTEN and MTOR (Figure 10A, B, C and 

D). Thereby showing initial response of mtor signaling that is caused by mapk stimulation. However, 

inspecting downstream signaling of MTOR and RPTOR in colon cancers indicates decreased and 

increased RPS6KB and EIF4EBP phosphorylation, respectively (Figure 10E and F). RPS6KB gene 

expression reveals a strong initial response to EGF stimulation that gradually decreases over time 

resulting expression below levels observed before stimulation. Inhibition of RPS6KB while MTOR and 

RPTOR are activated indicates no further downstream signaling and suggests an inhibition 

mechanism that is specifically responsive to EGF stimulation in colon cancers. Furthermore the 

differently increased and decreased RPS6KB phosphorylation between cancer types indicate 

activation of protein synthesis and cell growth through mtor signaling may be specific for MAPK1 

active cases of melanoma. 
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Conclusion and discussion 

Our methods is a quick and intuitive approach to identify most important processes separating 

cancer types from large datasets such as TCGA. Classification of melanoma and papillary thyroid 

cancers shows to pick-up differences directly from patient data (e.g. differences between epigenetic 

regulation of MAP3K1 and EIF4G1 in addition to expression differences of ERBB2, ERBB3 and ELF3). 

Here we consider patients without BRAF mutation p.V600E and active MAPK1 phosphorylation 

most prune to reveal alternative routes that increase MAPK1 activity independent of BRAF 

stimulation. Hence, during classification of melanoma patients we focus on those showing 

aforementioned requirements and find increased PTEN activity and evidence of downstream 

signaling thourgh MTOR, RPTOR and RPS6KB. Comparing melanoma gene expression and 

phosphorylation to CGC flagship provided of colon cancer samples shows comparable trends for AKT 

and RPTOR phosphorylation, however downstream signaling through EIF4EBP seems particular for 

cases of melanoma. 

From previous work it is known that BRAF mutation p.V600E result in increased MAPK1 

phosphorylation values, that is referred to as hyper-activity and characterizes a state that is separate 

from MAPK1 activity under natural conditions. Hence we directed our on/off state labeling method 

to uses upper and lower boundaries of 20, 30, and 40%, however, this quickly leads to class 

imbalances. Furthermore, this methodology results one extra MAPK1 state (in between ‘on’ and ‘off’ 

states) compared to our current on/off concept, the addition of an extra class introduces yet another 

layer of complexity that influences classification negatively (for specific details on class distribution 

see supplementary methods). Hence, standardized phosphorylation values (either disease specific or 

under natural conditions) would circumvents this issue. 

Alternative routes that constructs signaling cascades are specifically defined through 

phosphorylation events. However, our dataset contains phosphorylation values for only 10% to 20% 

of selected genes, therefore we expect our dataset to represent partial signaling routes (at least at 

the level of phosphorylation) that complicates classification. To indicate the impact of absent 

phosphorylation values we generate two datasets constructed from our core gene selection and 

expanded with 20 genes (that we use for explanatory purpose). Phosphorylation values are removed 

from one of the datasets and both datasets are clustered with hierarchical clustering, hereafter we 

compare dendrograms by randomly shuffling and repetitively verifying if their entanglement was 

lowered. This reveals increased clustering results for datasets including phosphorylation values and 

emphasizes on the importance of available protein activity data (for specific details on comparing 

dendrograms and entanglement see supplementary methods).  

Datasets generated from the core gene selection expanded by 100 genes contain 16 patients that 

acquired either BRAF mutation p.V600K or p.V600R. Hyper activation of mapk signaling is associated 

to BRAF mutation p.V600E, however, lysine (one letter code K) and arginine (one letter code R) are 

labeled ‘hotspot’ since they have similar molecule structures compared to glutamic acid. 

Although random forest is able to highlight genes and gene measurements that characterize our 

two main classes of interest, reasons explaining elevated activity of the second messenger system or 

mtor signaling under AKT inhibiting and PTEN active conditions remain unclear. Here we use a semi-

automated gene selection using geneMania, however our results indicate specific signaling routes to 

characterize subsets. Since PTEN phosphorylation levels is the strongest characterizer, we propose a 

more targeted approach to generate gene selection. Investigating proteins that stimulate AKT and 

possibly overrule PTEN inhibition, in addition to proteins activating mtor signaling under AKT 
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activated conditions is particularly interesting. This follow-up study leads to better understanding of 

specific pi3k-akt regulation that can explain our contradicting results regarding mtor activation 

despite PTEN activity. Furthermore, targeted gene selection might reveal the feedback loop between 

PTEN and MAPK1 activity, that is currently not picked-up. 

TCGA contains control sample data, which are partially protected from open public and therefore 

not available through CGDS-R, hence control data are not part of our analyses. Control data could 

strengthen findings of class specific deregulation (by comparing gene measurements under normal 

and cancerous circumstances) and might offer a solution to standardizing phosphorylation values 

that facilitates labeling of our on/off concept. 

Interestingly, retrieving data from cbioportal requires an integer specification of requested cancer 

study (78 for melanoma). However, during our analysis the parameter indicating melanoma changes 

from 76 to 78, indicating two new studies are added to the TCGA. Warranting manual inspection of 

data acquisition parameters to accurately specify cancer studies. 
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supplementary method 

Gene selection 

We retrieve the expanded core gene selection from geneMania by downloading a list in csv 

format, removing gene descriptions and check data availability in TCGA. Both Cbioporatal and 

geneMania require HGNC nomenclature, and both interfaces offer innate converters that provide 

alternative suggestions for unrecognized gene names. The majority of our selection is recognized or 

converted correctly, however in some rare cases both resources are unable to properly convert the 

gene names. For these cases we alter our trajectory to an online approachable ‘Multi-symbol 

Checker’ that is part of the HGNC community and provides summary statistics on the provided gene 

selection. It indicates accepted or converted gene names, in addition to genes that are withdraw 

from the results, gene withdrawn from the results are removed from the analysis. 

Gene measurement normalization 

TCGA provides mRNA expression values (coming from second-generation sequencing) either 

through molecule count per patient per gene or using within-sample normalized values. Both values 

are calculated using RNA-seq by Expectation-Maximization (better known as RSEM). Read counts are 

calculated by aligning reads to the reference genome, reads that are mapped to multiple locations 

are ought to divide their score (every reads gets score = 1) over these locations resulting fractional 

values. Within-sample normalization values represent Z-scores that describe the number of standard 

deviations that the value is distanced from the average mRNA expression value across all patients per 

gene for a particular type of cancer.  

Normalized methylation data is calculated through a Beta-Mixture Quantile dilation algorithm and 

expresses values between zero and one. Zero indicating hypo-methylation of genes meaning no 

methyl-groups bound to promoter regions, and one indicating hyper-methylation resembling heavily 

silenced genes. Methylation is measured using ChipSeq technology (HM450) that contains over 

450.000 CpG islands, that span over 95% of all CpG islands and covers >99% of all the genes collected 

in the RefSeq database.  

TCGA provides CNA values in a discrete fashion and are estimated using the GISTIC algorithm, a 

gene can either have values -2, -1, 0, 1 or 2, indicating nullizygosity, hemizygosity, unchanged, gain or 

heavily amplified, respectively. And indicate homozygous deletions, loss of single alleles, normal 

state (two copies), one extra copy or multiple copies of the allele, respectively. TCGA is able to 

putatively approximate these copy number alterations due to the purity and known ploidy of 

samples and additionally provides CNA values in log scale that are used in our analysis.  

Phosphorylation measurements are collected using fluorescent labels, known as reverse phase 

protein array (RPPA). This test requires prior knowledge on the protein and custom designed 

antibodies that target phosphorylation sites, and nearly a couple of hundred antibodies are carefully 

selected and used for testing. Phosphorylation data is both within-gene and within-sample 

normalized using four steps; 1) calculate the median of each gene across all samples, 2) subtract the 

median from all samples per gene, 3) calculate median of each sample across all genes, and 4) 

subtract the median from all genes per sample.  

Mutations are collected through second-generation whole exome sequencing, and the TCGA 

provides these mutations per gene per patient per cancer study. Mutations are coded similar to 

V600E (see introduction - Deduce MAPK functionality through various biological levels). Moreover, 
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TCGA provides effects for several kinds of mutations through a suffix, such as; ‘*’, ‘fs’ or ’_splice’ at 

the end of mutation names. Asterisk indicates nonsense mutations, ‘fs’ stands for frameshift and 

‘_splice’ for splice site, that we use for data discretization. 

Class distributions 

Varying phosphorylation threshold values between 0.5 and 0.3 results different class distributions 

that, for values 0.3 and 0.4 results in a rather large group with ‘intermediate’ phosphorylation state. 

It is important to understand decreased error rates for smaller phosphorylation threshold values are 

due to misclassification of almost all patients. Since the groups with label ‘intermediate’ is large, our 

classification simply suggests to classify all patients as the largest group, and since patients that are 

assigned class ID’s 1 until 4 are low in numbers (for threshold value = 0.3), the error rate appears low. 

However this classification is not targeted towards separating the five groups, hence not biologically 

relevant. Using phosphorylation threshold value 0.5 results exactly four classes and no patients are 

considered intermediate, although this results the highest classification error rates, resulting gene 

measurements indicate trends that separate either of the four classes in a biologically relevant 

setting.  

Table S1: Class distributions and corresponding error rates of phosphorylation threshold values 

Phosphorylation 

threshold values 
0.3 0.4 0.5 

    

Class ID Patient count 

1 1 5 22 

2 11 23 45 

3 8 20 44 

4 9 25 47 

Intermediate class 129 85 0 

Error rates (%) 18,35 46,2 62,66 

 

Unsupervised learning – PCA and hierarchical clustering 

We visualize data spread using principle component analysis and reveal loadings of every 

component separately and observe loadings continuous decrease indicating high complexity or noisy 

data (see Figure S1 panel A). Top ranking gene measurements are angled towards multiple 

directions, indicating data is widely spread (see Figure S1 panel B), and most importantly, no prior 

knowledge is provided that facilitates principle component analysis. Therefore, directing 

classification towards biologically relevant groups, such as, patients simulating drug resistance, 

requires specific subset procedures for classes separately.  

Additionally, since dataset volumes are relatively small classification difficulties arise due to 

increased gene selections. Principle component analysis classifies every patient based on the 

measurements that are provided, however increasing the number of measurements for small sets of 

patients results empty multidimensional space that limits separable power. Hence, for ideal principle 

component analysis data sets contain larger numbers of patients compared to gene measurements. 

Although similar results are obtained for larger subsets of our data, for explanatory purposes we use 

our core gene selection to visualize principle component analysis results.  
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Figure S1, panel A: data spread captured with principle component analysis, every eigenvalue is 
plotted and indicates all eigenvalues are used to describe the spread of the data. Panel B: 
Directions of gene measurements as a result of PCA, here we observe gene measurement data is 
spread in many directions, making it difficult to find characterizing trends of gene measurements 
for particular subsets. 

 

Clustering our core gene selection increased with 100 genes results difficult to interpret clusters 

and hierarchical trees. We cluster data sets with hierarchical clustering, using Euclidean space 

distance metric, and define clusters using dynamic tree cutting. This algorithm cuts dendrograms and 

stabilizes through iterating adaptive protocols of cluster decomposition. Without subsets patients 

that with BRAF mutation p.V600E appear scattered across the leafs (see Figure S2 panel A, p.V600E in 

red, other mutation types in blue, no BRAF alteration in grey), and gene measurements clustering 

appears noisy.  

Furthermore, clustering patients without BRAF alteration or mutations other than p.V00E reveals 

noisy gene measurement clustering and patients appear clustered in multiple small groups. This 

indicates data similarities does not characterizes this subset profoundly (see Figure S2 panel B). 

Additionally, we subset patients with active MAPK1 despite absence of BRAF mutation p.V600E, 

however, we observe a similar patient clustering of smaller groups and noisy gene measurements 

(see Figure S2 panel C patients are labeled red, and the dendrogram reveals many small groups). This 

indicates patient-specific characterization through hierarchical clustering requires specific subsets to 

narrow down noise and mixed-in signals that are present in our dataset. Finally, we have performed 

clustering using a variety of discretization methods, that included CNA values in discrete fashion, 

mRNA expression values in molecule counts and several threshold values for our on/off state 

concept, however, none of these discretization methods seemed to improve patient or gene 

measurement clustering, or any other of our classifications methods.  
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Figure S2, panel A: clustering of complete melanoma data set, colors at left hand side indicate 
patients without BRAF mutation (grey), BRAF mutation p.V600E (red) and missense mutations 
(blue). Panel B: clustering of subset from patients with mutations other than p.V600E or no 
mutation. Panel C: clustering of subset from patients with BRAF mutation p.V600E exclusively (all 
patients are labeled red) 

Importance of phosphorylation in signal transduction classification 

Phosphorylation is a key player in signaling transduction, nonetheless, values represent a minority 

measurement in our dataset, we are therefore interested to inspect the impact of absent 

phosphorylation values. Although similar results are obtained for larger gene selections, for the sake 

of simplicity, we use our core gene selection plus 20 additional genes for melanoma cases. We post-

process data as described in the method section and generate data sets that include and exclude 

phosphorylation values (we remove phosphorylation values of 19 genes). Hereafter we perform 

hierarchical clustering on both data sets separately and cut clusters dynamically. To compare 

clustering results we use R package ‘dendextendRcpp’, that provides a set of functions to compare 

dendrograms by shuffling parts of the dendrogram randomly until researching an optimal 

‘untanglement’ state, that maximally resolves dendrogram entanglement. 
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Clustering and dynamic cutting of data that includes phosphorylation values results three clusters 

and one outlier (see Figure S3 left-side in different shades of green, and one patient at the bottom 

representing a single cluster). Additionally, labeling patients with BRAF mutation p.V600E reveals 

three distinct clusters for datasets including phosphorylation values (see Figure S3 left-hand side 

vertical bars in red represents clusters of patients with BRAF mutation p.V600E), that contrast to 

clustering defined by dynamic cutting. The dataset excluding phosphorylation values results a 

different clustering, although dynamic cutting results the same number of clusters (three clusters 

and one outlier at the bottom), the dendrogram is structured differently. Untanglement score = 0.23, 

that is expressed on a scale from zero to one (zero indicating completely untangled and one indicates 

high entanglement) indicates rather resolved dendrograms. Furthermore, BRAF mutation clusters 

observed previously appear scattered for absent phosphorylation values, and indicates a negative 

impact on clustering. Taken together decreased clustering capacity through absence of activity 

measurements and difficulties around tree cutting indicate the problematic setup for biological data, 

that we circumvent with random forest. 

 

 
Figure S3: Untanglement of datasets with and without phosphorylation values, at the 
left hand side three distinct clusters are observed, that are lost when removing 
phosphorylation values. Untanglement = 0.23 reveals a nearly resolved comparison of 
both clustering trees. 

 


