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Abstract 

 

 
Motivation: With the decreasing cost and increasing read length of next-generation sequencing 

technologies, high quality draft genome sequences are being published at an increasingly faster 

rate. With well-established methodologies, larger and more complex genomes are being tackled. 

However, the ploidy of the genome (the copy number of its chromosomes) greatly affects the 

accuracy of the assembly. While genomes with only one (haploid) or two (diploid) copies of each 

chromosome have existing efficient methodologies to assemble them, polyploid (constant ploidy 

higher than two) and aneuploid (variable copy number per chromosome) haplotyping is much 

more challenging to solve. Given the similarity between multiple copies of a basic genome in 

polyploid individuals, the assembly of such data usually results in collapsed contigs that represent 

a variable number of homologous genomic regions. Such collapse is far from ideal, as the 

corresponding lost information leads to inaccurate assemblies and a corresponding lack of 

precision in understanding how haplotypes influence phenotype. Here we address the question of 

how to determine the precise ploidy of a genome, which is the first step for solving a fully detailed 

aneuploid assembly. We do so by integrating a range of current and new features to improve an 

already existing approach: depth of coverage analysis. We also briefly address some probable 

leads to solve polyploid haplotyping. 
 
 
 
Results: We introduce PEDCA (Ploidy Estimation by Dynamic Coverage Analysis), an algorithm 

to improve the quality of short reads aneuploid genomes assembly by estimating the copy number 

of their different contigs. PEDCA infers the ploidy of the fragments by analyzing the coverage 

distribution of the aligned reads and the ratio among its clusters. It simplifies previous methods 

which improves its exportability to a wide spectrum of genomes with different characteristics, and 

adds a set of extra features to improve the ploidy analysis. As a proof of concept, PEDCA is tested 

on simulated as well as real sequencing data from CBS1483 (S.pastorianus yeast). Finally, we 

apply our method to infer the chromosome copy number of Trypanosoma cruzi CL Brener for 

which the copy number is yet unknown. We also briefly explore some ideas for a draft 

complementary method of polyploid haplotyping. This second algorithm, while not completed, 

examines and offers new paths to avoid a very common problem in polyploid phasing: the 

exponential computation of all possible haplotype combinations. 

 

 

 

 

Availability: PEDCA can be downloaded at: https://github.com/AbeelLab/Pedca 
Contact: t.abeel@tudelft.nl 
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1 Presentation 
 

Diploid organisms, for example humans, have two copies of each chromosome. While most of the 

genetic sequence from each haplotype is the same, differences among each copy appear at specific 

loci. Other organisms, like many prokaryotes and certain animals and plants (among them many 

important crop plants like wheat, potatoes, oat or soy), are polyploid  (“The Polyploidy Portal,” n.d.). 

These describe a constant number of chromosomes (but higher than two) for the whole genetic 

content. Following the same logic, an aneuploid genome has an irregular copy number for each of its 

chromosomes, with different levels of heterozygosity. The genomes that this research tries to 

improve are aneuploid but the method can also be applied to polyploid organisms. 

 

The differences among the alternative haplotypes might range from one single nucleotides (SNP’s, 

which are the most frequent type, including deletions or inserts), to very large structural variations 

(duplications, translocations, inversions…). Genotype calling reports the variant sites without 

associating them to a specific allele, while haplotyping or phasing provides the order of the 

variations in each allele. This extra information is crucial for understanding all of the potential 

genetic expressions of the haplotype which affect the metabolism of the organism. Fundamental 

applications rely on this description, from determining the appearance or absence of physiological 

traits, to identifying different susceptibility to diseases or treatments, or understanding recombination 

patterns of genetic inheritance (Wagner, n.d.). 

 

Finding methods that specifically target the detailed sequence analysis of aneuploid genomes is a 

central challenge to understanding these organisms. Many types of yeast, which are used for a large 

number of biological applications like fermentation or bio-fuel and biopolymers production, have 

aneuploid genomes.  

 

To sequence a given genome, multiple copies of its DNA are segmented into a large amount of reads. 

Current algorithms reconstruct the original genome in a single sequence based on the consensus of 

the most represented variations in the overlapping reads. 

 

In this thesis, we assume that at least a draft de novo assembly exists or can be built from the 

available reads. Therefore, we split the problem in to two complementary questions that need to be 

answered in order to solve the detailed sequence of each haplotype. The first one determines the 

number of copies that each chromosome or contig has, which is also known as its ploidy. The second 

one finds the variations among each of the copies and how they cluster within each of the haplotype, 

which is also referred to as phasing or haplotyping. We focus mainly on the first question. We fully 

address ploidy estimation and provide a new algorithm that improves previously existing approaches. 

We test it in simulated and real datasets, some of which could not be solved with previously existing 

methods. We also briefly address the second one (aneuploid phasing), exploring a possible solution 

that avoids a common problem found in polyploid haplotyping, but our line of thought doesn’t 

successfully conclude in an operational software. Nevertheless, we found it important to describe the 

main ideas that were followed and to report the difficulties that we encountered when trying to 

implement them. 
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2 An introduction to ploidy estimation  
 

While parallel regions amongst different copies of a particular chromosome are by definition very 

similar, each copy is likely to have its own specific variations. Averaging intra-chromosomal 

variations therefore results in a flattened homomorphic genome with its consequent loss of 

information.  

 

Aneuploid organisms have a varying chromosome copy number; therefore, in order to describe in 

detail the sequence of each haplotype, we first need to infer the correct number of copies that each 

chromosome has. Copy number variation is often referred to in the literature as the number of times 

that a certain genetic region is repeated within a genome reference. In this sense, copy number 

variation is a concept referring to a structural variation. But in this report, we refer to chromosomal 

copy number variation or ploidy as the number of copies that each contig or chromosome has. We 

infer the chromosome copy number by analyzing the coverage, which is the number of times that a 

very similar chromosome or contig sequence is supported by the reads along the genome. In order to 

infer the number of times that each contig is repeated, we need to know its sequence. We use the 

consensus assembly sequence as a reference.  

 

A consensus assembly describes a fair approximation of a genome where only the most frequent 

variations are represented. When a new assembly is performed, the small differences corresponding 

to the specific individual genetic signature of the specimen will arise, but when reconstructing the 

genome, the small reads have to be merged into longer contiguous sequences called contigs. The 

general approach is to flatten out differences by consensus. The most represented variations will 

determine the consensus assembly with the less represented variations being flattened and 

disappearing. We use the term consensus reference for the sequences obtained using this method. 

 

When no reference genome is available, a draft de novo reference can be built with a de novo 

assembler. There are a number of different de novo assemblers available and they use two main 

approaches to merge the reads into longer contigs sequences: String graphs Overlap-Layout-

Consensus (Myers, 1995) (Myers, 2005) and de Bruijn graphs (Pevzner, Tang, & Waterman, 2001). 

 

(Alkan, Sajjadian, & Eichler, 2011) underline two general problems that limit the quality of the 

assemblers: contamination from other organisms’ DNA and repeat content. Contamination rates are 

difficult to estimate, especially in de novo assemblies; given the irreversible tendency for cheaper and 

faster technology to sequence genomes, the importance of these errors is most likely increasing. But 

it is very difficult to address or even measure the extent of the contamination problem when no 

reference is available. We’ll be encountering much more clearly the problem of repeated regions in 

this research. Using mate pairs reads to resolve repeats has been shown to be effective (Wetzel, 

Kingsford, & Pop, 2011), but very high repeat content in genomes still poses a problem in de novo 

assemblies, especially when very long regions are involved. This particular aspect can affect our 

method for solving both chromosome copy numbers (since our approach is based on coverage 

analysis) and the phasing problem (since the true position of the different variations might be hard to 

define). 

 

The Assemblathon papers (Earl et al., 2011) (Bradnam et al., 2013) describe a set of different 

evaluation methods to assess the performance of assemblers. While the purpose of this paper is not to 

reevaluate different assembly methods, we found it important to become familiarized with some 

commonly used software, to understand how they perform and affect the data that we would be using 
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later. We used the Newbler software package (454 Life Sciences, Branford, CT), for assembling 

Illumina short reads libraries, but there was a large range of choice for this step. We also performed 

assemblies with ALLPATHS and SOAPdenovo and used measures such as the N50 and the number 

of misassemblies to evaluate their results. 

 

We can then start to address the problem of copy number estimation. Correct chromosomal copy 

number knowledge is a prerequisite to understanding a given genome. Knowing the ploidy of a 

sequence helps us to search and identify the number of potential variations present in a segment. 

Those variations might be essential to understanding the phenotypes of the organism.  

 

There are basically two algorithmic approaches to solve the chromosome copy number problem: The 

stochastic model and depth of coverage analysis. 

 

The stochastic approach analyzes variations among reads. It estimates which observations can be 

considered errors and which ones are more likely to be an alternative version of the same 

chromosome; this allows us to infer their copy number. 

 

The depth of coverage analysis infers the number of times a contig occurs in the genome from 

sequenced read depths. The intuition is quite straightforward: assuming that the short reads are 

randomly sampled on the genome, a chromosome will have a number of reads that map to its 

flattened consensus reference proportional to its copy number. The changes in the coverage over the 

genome follow a proportional ratio that allows the inference of the different ploidies (Figure 1). 

 

We propose PEDCA, an improved depth of coverage method, to allow detailed copy number 

estimation per contig in de novo aneuploid assemblies. Our method presents itself as a .jar file that 

works on any operating system with a Java platform. It only requires as an input an alignment file 

(.bam or .sam) of short reads mapped to a draft reference assembly. An optional complementary 

analysis can be obtained if a variant call file (.vcf) is provided. 

 

We demonstrate PEDCA’s performance by inferring the ploidy of a control set of simulated 

chromosomes and by applying it to the genome of the yeast S.pastorianus strain CBS 1483. We use 

two sequencing versions of CBS1483. The first is the same that has already been studied and for 

which we already have some results to compare against ours. The second version could not be solved 

with previous methods and we use it to illustrate the utility of our implementation.  We also apply 

PEDCA on the genome of Trypanosoma cruzi CL Brener, a parasite which causes an infectious 

disease and which so far has unknown ploidy. This organism has a high repetitive genetic content 

that provides a very noisy coverage data set which is very useful for testing the limits of our method. 

 

A PEDCA tutorial with illustrated examples can be found at the end of this document (supplemental 

material 56) and downloaded at: https://github.com/AbeelLab/Pedca/tree/master/Documents 

 

https://github.com/AbeelLab/Pedca/tree/master/Documents
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Figure 1 The intuition behind ploidy estimation by coverage analysis. Regions with similar depth have 

similar read count (top figure). An increase in copy number corresponds to a proportional increment in the 

number of reads that map to the flattened reference of that region. Reads having the same copy number 

cluster together around the same normal distribution. Reasoning in the opposite direction, the ratio between 

the centers of the clusters in the read count distribution allows the inference of the original copy number 

ratios and by extension their estimation (bottom figure). 
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3 Methods: Ploidy estimation 
 

Simulated DNA sequence data. Building a realistic simulated S.pastorianus genome 

 

We know that S.pastorianus is a hybrid of two ancestral parent yeasts, S.cerevisiae and S.eubayanus 

(Libkind et al., 2011). In order to validate our model, we build a simulated aneuploid dataset of five 

different chromosomes with different copy numbers each. Because we want our simulated data set to 

serve as a control genome that we can use to validate our method, we build it to be as similar as 

possible to a real aneuploid genome. While we do not have a full reference assembly for 

S.pastorianus, we do have a fully sequenced genome for one of its ancestor, the S.cerevisiae that we 

can therefore use as a control reference.  

 

We select 5 chromosomes (I, II, III, IV and X) of cerevisiae, all with known copy numbers in the 

pastorianus genome (van den Broek et al., 2015). All simulated chromosomes belong to the S288C 

strain. Out of the five chromosomes, three have a copy number of 3 (Chromosomes I, II and IV) one 

chromosome has 2 copies (Chromosome X) and the last one has 4 (Chromosome III).  Chromosome 

X has also a 10 Kb deletion which will allow us to evaluate our precision in detecting small structural 

variations.  

 

Since the copied reference is flattened, all chromosome copies have the same sequence. But we want 

each different chromosome copy to have its own set of specific variations. In order to introduce 

realistic alternative alleles, we extract the ones that are present in the real sequenced Illumina reads 

(four libraries of different insert sizes) that were used to build the reference assembly CBS1483. 

Before describing how we extract the variations from the real reads and reintroduce them into the 

flattened copies, let us describe the libraries. 

 

The real libraries are the same ones that were used by (van den Broek et al., 2015) to assemble the 

CBS1483 reference. They were obtained by sequencing a CBS1483 genome using an Illumina 

HiSeq2000 sequencer (Illumina, San Diego, CA) at Baseclear (Leiden, The Netherlands). A total of 

four paired libraries with different insert sizes were obtained. Two 100-cycle paired-end libraries 

with insert sizes of 500 and 180 bp and two 50-cycle mate pair libraries with 3- and 8-kb insert sizes 

were sequenced. The combined libraries comprised more than 10⁸ reads, which represent 

approximately 7 Gb, resulting in a genome coverage of +/-270 times (see Supplemental Table 1). 

 

Using bwa-0.7.13, we mapped the four libraries of pastorianus Illumina reads to the cerevisiae 

reference. The resulting .bam files represent only the genetic heritage of the hybrid genome that maps 

to the corresponding cerevisiae chromosomes (Figure 2). 

 

The mapping accepts a certain degree of mismatches per alignment, which is interesting to us 

because it allows us to align those reads with small variations to regions that have lost their 

alternative alleles in the consensus assembly. Whenever a loci has different sequence per haplotype, 

the assembler disregards the minorities and retains the most represented one. We recover the 

diversity present in the original reads by performing variant calling with Pilon (Walker et al., 2014),   

mapping the pastorianus reads to the cerevisiae reference (see statistics on Supplemental Table 2). 

All of the variations (about 3% of the genome’s positions) are reported in their corresponding .vcf 

files.  Plotting the distribution of the allele frequencies stored in the .vcf file confirms Magnolya’s 

copy number prediction (Supplemental Figure 4). 
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We introduce the detected variations at the precise loci of the reference where they were reported by 

Pilon. Because we don’t know the correct haplotype to which each variation belongs, they are 

randomly distributed among all of the possible copies of each chromosome, but always at the exact 

position where the .vcf file reports them (Figure 3). This results in different sequences for each 

chromosome copy. The copies have the same exact variations as the one detected by Pilon in the real 

pastorianus genome, and at the same exact loci. If the copies are flattened by consensus, they result 

in the same sequence as the real S288C reference. The only significant difference between our 

simulated and the real pastorianus data is that the variations are differently phased. We can therefore 

compare the results of our method to a sample control set that is identical in all practical aspects to a 

significant portion of the real data set that we will be trying to solve. 

 

Once the sequence of the different copies of each simulated chromosome was defined, we simulated 

sequenced reads from them. The goal was to test our method on these simulated reads to see if we 

could predict the ploidy of our simulated genome. Following (Escalona, Rocha, & Posada, 2016) 

read simulators comparison and evaluation, we chose to generate our simulated reads with ART 

(Huang, Li, Myers, & Marth, 2012), an open source software that can generate synthetic Illumina 

paired end reads with substitution errors and built-in quality score profiles measured by previous 

studies. We ran ART with the HS20 platform profile that is provided with the simulator for paired-

end reads. ART requires three parameters to generate paired-end reads: the coverage of each 

haplotype, the mean insert length, and the standard deviation of insert length. We measured these 

 
Figure 2 The hybrid nature of S.pastorianus allows us to reconstruct a reliable simulated genome based on the 

ancestral genetic heritage of the cerevisiae chromosomes. Aligning S.pastorianus reads to a S.cerevisiae 

reference allows us to obtain the real variations currently present in the real pastorianus genome. The result 

of the base calling reflects the alternative alleles at the heterozygous positions of the haplotypes which are 

stored in the corresponding .vcf file, to be used later in the construction of the simulated data. 
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parameters in our CBS1483 libraries and recreated the simulated reads with similar values (for 

details on how we obtained these parameters see Supplemental Figure 1). 

 

 
Real DNA sequence data 

 

We use two other datasets to test our method, both of the S.pastorianus strain CB1483. The first is 

the same one that we had used as a base to build the simulated dataset described above. It consists of 

four libraries of sequenced Illumina paired end reads with different insert sizes from CBS1483.  

We’ll refer to this sequencing as the BaseClear CBS1483. 

 

We also have a version of the CBS1483 strain sequenced by the company Novogene that was 

previously unused because it did not work well with Magnolya (van den Broek et al., 2015). We’ll 

use this data set to illustrate the improvements provided by our method. We’ll refer to this reference 

as the Novogene CBS1483. 

 

Finally, we’ll also describe the results of PEDCA applied to Illumina reads of Trypanosoma cruzi CL 

Brener, a genome for which an advanced assembly does not exist and where ploidy is unknown. 

 

Consensus draft reference genome 

 

In order to analyze the ploidy of a contig, we need an initial sequence that we can use as a reference.  

That initial assembly is the result of inferring the right order of a set of sequenced reads by aligning it 

to a previously existing reference or, if none is available, by performing a de novo assembly. There is 

a wide offer of different de novo assemblers available and they use one of the two main approaches 

to merge the reads into longer contigs sequences: String graphs Overlap-Layout-Consensus (Myers, 

1995) (Myers, 2005) and de Bruijn graphs (Pevzner et al., 2001). 

 

 
Figure 3 Introducing measured variations into simulated alleles. For every variation position detected, the same 

proportion of bases is reintroduced into our simulated haplotypes. Before, we only had an identical sequence 

repeated a certain number of times for each contig. After reintroducing the variations stored in the .vcf file, we 

have haplotypes that are different from each other. For example, the first position reports a variation of 

approximately 1/3 of C’s, 1/3 of G’s and 1/3 of T’s, each of which are randomly assigned to any of the three 

copies of that contig. The second position reports a different ratio of approximately 2/3 C’s and 1/3 of G’s. Our 

final simulation contains the same degree of allele frequencies as the original, and at the same exact loci, but 

distributed randomly among the possible haplotypes. 
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We assembled our simulated dataset using three different de novo assemblers: Newbler, 

SOAPdenovo and ALLPATHS. Newbler is a standard 454 Illumina assembler which is based on the 

overlap-layout-consensus algorithm. ALLPATHS is specially designed to assemble Illumina GA 

short reads and is based on a de Bruijn graph approach (Butler et al., 2008). According to its authors, 

ALLPATHS is suitable for large genomes up to human size. SOAPdenovo (R. Li et al., n.d.) also 

works using a de Bruijn graph using pre-set thresholds for k-mer frequencies. 

 

The PEDCA algorithm: an enhanced depth of coverage algorithm. 

 

PEDCA is built on the same principle as Magnolya, but with a few significant modifications. 

PEDCA presents itself as an executable .jar file which allows it to run on any operating system with a 

Java platform. It requires only one input: the bam/sam files of the contigs aligned to the draft 

reference genome. For our simulation and tests, we mapped our simulated reads against the simulated 

reference genome used to generate them, obtaining the corresponding .bam file.  

 

Because the coverage analysis is based on a very straightforward logic, we want to find a way to 

improve its reliability and allow the method to work for a large spectrum of different genomes. We 

implement different features to do so, such as: 

 

 removing extreme values,  

 adding a sliding window to sample depth of coverage over the genome,  

 a simplified naïve smoother to fit the read count distribution and find the cluster centers,  

 a self-adjustable window length and  

 an allele frequencies distribution plot to disambiguate ploidy estimations. 

 

Removing extreme values  

 

First we integrate a solution to deal with the non-significant data that over-extends the read count 

distribution range of the x-axis (see results of Magnolya on our simulated dataset in Figure 12 and 

Supplemental Table 3). These are data points that for some reason (such as highly repeated 

segments, sequencing and alignment errors…) have unusually high coverage values that bias the 

depth analysis. When all of the significant data is compressed in a short segment of the x axis, it is 

difficult for the algorithm to identify the peaks of the clusters that correspond with the different copy 

numbers. By using only 99% of the bottom values coverage data, the abscissa gets reframed into the 

significant portion of the reads that carry the information we’re interested in, and we get rid of 

potential extreme values without affecting the rest of the analysis. The data could be preprocessed 

and cleaned with this intention, but we implemented this step into our algorithm so that it would 

automatically perform an x-axis rearrangement whenever a very small portion of the data happened 

to have outliers. By reframing the x-axis, we enhance the portion of the data that has the clusters that 

define the copy numbers, making them more clearly identifiable and measurable. 99% is the default 

value but the user can change the parameters to fit different data sets. 

 

The Sliding window 

 

The second idea that characterizes PEDCA is that it measures the coverage over each contig with a 

sliding window that is considerably smaller than the contig length. While Magnolya evaluates the 

average coverage over the whole contig, PEDCA measures the depth at numerous points with a 

smaller sliding window of length wl that steps through the totality of the genome, each time 
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recording the number of reads that start at any of the positions within the window and averaging the 

count over the bin. This provides extra information about the composition of the assembly, allowing 

the detection of copy number changes and structural variations inside a single contig. 

 

A parser browses the .sam/.bam file to recover the starting positions of each of the reads that has 

been aligned to the reference. PEDCA then runs a sliding window of length wl over the extent of 

each contig, stepping each time over wl /2 bp of the reference genome, and measuring how many 

reads start over each step. The read count    of all reads starting at each position i within each step is 

averaged over the window length wl so that for every window, its average read count is given by: 

 

   
   

    
 

  
 

 

By default, wl is set to 500 bp but the value can be parameterized for tuning over different contig 

sizes. We demonstrate the utility of this feature in the results section.  

 

The resulting points are used for two purposes. First, by plotting the distribution of all possible read 

counts, we can observe the clusters that reflect the different copy numbers (Figure 1 bottom). 

Second, by plotting the coverage depth for each contig over the totality of the genome positions, we 

get a cloud of points         (Figure 4). Each point represents the average number of reads starting 

at that particular window step, and the mean value of the main clustered cloud reflects the ploidy/-ies 

of the sequence.   

 

Inferring the read count cluster means by fitting a mixture of Gaussians 

 

We first implement these improvements by following a very similar methodology to the one 

described by Van der Broek et al. 2015. We use JMEF (Garcia & Nielsen, n.d.), a Java cross-

platform library who allows creating and managing mixture of exponential families. The code was 

adapted to work on bivariate data. We fit a mixture of Gaussians to the read count distribution with 

an Estimation Maximization algorithm to obtain the parameters of the mixture and, more specifically, 

the means of the clusters.  

 

The sum of reads starting at each step, divided by the bin’s length, gives us the average read count rc 

of each window w. The average number of read counts in a region with a constant copy number 

depends on the number of reads, the length of the region and the length of the sliding window wl. 

The number of reads in such regions is approximately distributed according to Poisson, Po(λ), (Nter 

Klambauer et al., n.d.) where the mean number of reads per window is λ, given by: 

 

  
    

 
 

 

with N being the total number of reads over that region, G the size of the region and wl << G. 

Following (Xie & Tammi, 2009) we use the Gaussian distribution                (instead of 

Magnolya’s Poisson) to approximate the Poisson distribution with mean and variance λ = μ =   . 

This approximation is reported by Xie to work well when the mean number of reads per window is 

greater than 10.  
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The read count distribution contains all the contigs with different copy numbers which together can 

be modeled as a mixture of M Gaussian components. Then, the probability of a certain read count    

having a copy number of i can be expressed as: 

 

                  

 

   

       

 

The mixture coefficients, or weights of each Gaussian element is given by    and the Gaussian 

parameters      is given by the mean λ = μ which we estimate by Expectation-Maximization (EM). 

We tried setting the value of μ = σ2, as previously explained, and found that the result didn’t 

significantly change when σ2 is instead estimated as an extra parameter in the EM, since the 

objective of the fitting is to obtain the values of the means. We used the JMEF java library for 

managing mixtures of exponential families to implement the EM. 

 

EM is a method to find the maximum likelihood estimate of a set of parameters   of a probability 

distribution, in this case                .  It consists of two steps; an expectation (E) step, which 

creates a function for the expectation of the log-likelihood evaluated using the current estimate for 

the parameters  ; and a maximization (M) step, which computes parameters maximizing the 

 
Figure 4 PEDCA outputs two different overlapped plots for each input contig. The first is a cloud of points (red) 

showing the coverage of each window sliding over the different positions of the reference genome. While the 

coverage tends to remain constant along the contig, some variations happen notably around areas with repeats or 

other coverage irregularities, often at the beginning and the end of the contigs (the telomeres usually have a high 

repeat content). It also happens that some reference genomes have fragments that have a different copy number 

from the rest of the genome as a result of scaffolding together different chromosomes; this can also easily be 

visualized in the contig coverage plot. The ploidy estimation corresponding to the coverage cloud overlaps in 

blue. 
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expected log-likelihood found on the E step. The new   are then used to determine the distribution of 

the variables in the next E step. The process is iterated until the maximum likelihood of the model 

does not improve beyond a certain threshold. The first set of parameter values are initialized with a 

K-means algorithm which clusters the read counts in k different initial clusters. 

 

This approach present some challenges. The maximum copy number that PEDCA is able to detect is 

Max_Ploidy =10. It is relatively easy to determine the correct number of clusters present in the 

genome by visual inspection of the read count distribution, but we desire a process that is as 

automated as possible. We also want the algorithm to work with very diverse genomes. While it is 

easy to fix most of the parameters to properly identify the correct number of fits on our simulated 

data or any other particular single data set, we need to find ways to tune the settings to broaden the 

applicability of our method.  

 

One of these parameters is the sampling rate of the read count distribution which affects the quality 

of the fit. More data points have higher standard variation and the algorithm tends to fit extra 

mixtures to try to reduce whatever error measure is used (Figure 15). In order to fix this step, it is 

necessary to find the right sampling rate; however, the correct sampling varies with the number of 

final mixtures (which we don’t know in advance).  

 

Another important challenge is finding an appropriate measure to fit the correct number of Gaussian 

mixtures.  

 

A Naïve read count distribution smoother  

 

One of the main reasons why the estimation maximization Gaussian fit failed to adapt to different 

data sets is that EM is not guaranteed to converge to a local minimum. It is only guaranteed to 

converge to a point with zero gradient of the likelihood function, which means that eventually it can 

get stuck in a saddle point. There are also many parameters involved into making the algorithm work 

correctly, such as the rate at which the read count is sampled; the range over which the read count 

number extends (the x-axis); the initialization of the Gaussians mixtures parameters in the EM 

algorithm; the measure to fit the right number of mixtures… All of these affect how the distribution 

is shaped and how easily its clusters can be identified. While it is relatively easy to set the parameters 

to solve a particular data set, it is more complicated to adapt the algorithm to work with a larger 

spectrum of genomes. 

 

The final implementation of PEDCA opts for a simpler approach by skipping the fitting of the 

mixture Gaussian model. Instead, the read count distribution is smoothed in a naive way by a 

histogram of a fixed number of bins, converting the means of the clusters into the peak values of the 

function. Usually, even if the read count distribution can be described by a mixture of Gaussians, the 

real function is not a smooth curve but a sawed continuity of values that follows a certain local 

tendency. By applying a smoother, the only remaining maxima are the values at the peak of the 

clusters. When the function is smoothed in this way, detecting those points provides the means of the 

clusters. Those values have the same ratio among them as the chromosomal copy number, which we 

can then estimate. 
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First we detect the limits of the x-values and decide whether or not it is necessary to reject the 1% 

that are outliers. This helps to delimit the region where the informative reads are, which allows the 

shape of the distribution to be more clearly defined and adapted to the fixed number of bins, and 

make the clusters easier to be identified.  

 

We then proceed to plot the distribution as a histogram with cleaner tendencies. We divide the space 

of the abscissa in bins where some of them are turning points that we define as     , where 

                        Since we need at least 3 bins to identify a     , the bin width β 

depends on the histogram’s domain and is inversely proportional to 3*          , so that it is defined 

by 

 

         
        

            
 

 

 
Figure 5 The original blue distribution with irregular values is smoothed by segmenting the function into 

bins and averaging the internal values. The result is shown in the red histogram. The red frames indicate the 

bins with maxima value. Searching back in the original distribution for the maxima value within those 

windows identifies the centers of each cluster (red dot lines at 156, 233, 312). In this example, the PURC 

(green dotted line) is identified around the value 78 and the existing copy numbers cluster around the ratios 

of 2x, 3x and 4x that value which, in turn, are the copy numbers found in this sample. 
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with          being the maximum value in the x-axis. In most cases though, the different       

won’t correspond to both edges of the ploidy domain (1 and 10) at the same time. This means that 

most of the time we will need less than 30 bins. Therefore the default value is set to 2.5 with the 

possibility to be tuned by the user. We apply a naïve smoother by setting all of the values inside each 

bin to its average, resulting in a histogram of the read counts. Within each      the highest value of 

the original distribution is then retained as the mean of that cluster. This results in n means µ which 

are all approximative multiples of the Ploidy Unit Read Count (PURC) and have a ratio among them 

that can range between 1 and          . The PURC is the inferred read count of the basic cluster 

that serves as unit to all the others and is defined as the greatest common denominator of all µ 

(Figure 5). 

 

The ratio model score 

 

In order to infer the optimal PURC, a score is given to each of the ratios that could explain the 

ensemble of observed read count peak values as defined previously by R={  ,    ,    ,…    }. We can 

also define the ploidy read count unit as the hypothetical       that better explains all the members 

of R. The final ploidy estimation will be the ensemble P={  ,   ,    …     } defined by 

 

   
  

 
, 

  

 
…

  

 
 }      

 

Of course, we don’t know   beforehand, but we know that it is a fraction      with ranges 

between              . Since PEDCA deals with            = 10, it is computationally 

feasible to calculate all possible values of   . The ensemble    of theoretical potential clusters given 

by a candidate    is 

 

                       

 

Not all of the possible clusters of    exist: only those that can be mapped to the actual peaks 

observed in R are retained. The values   ∈    that minimize the distance between themselves and the 

theoretical multiples of    give us the model explained by the candidate    

 

  
                        

 

Each model   
  has a score    which is given by the total distances between the observed clusters and 

the candidate model. The distances are normalized by the length of the contig c 

 

     
    

     

 
 

 

At the end, the model with the smallest score    is retained and the corresponding     assigned as the 

PURC. 
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A dynamic window length  

 

Often, when analyzing several contigs of different lengths, the size of the sliding window is not 

adapted to the smallest contigs. This leaves some of them without enough coverage information to 

allow a copy number inference. This motivates us to implement a feature that allows the size of the 

sliding window to automatically adapt itself to the length of the smallest unsolved contigs in order to 

get enough data points and intent a new ploidy estimation round that adds extra results to the original 

round. 

 

We’ve described how PEDCA runs a sliding window of length wl over the length of each contig to 

measure the depth of coverage at each step. A bigger wl provides a smoother averaged value of the 

read count for each window, resulting in a plot with less variations and more clearly distinct clusters. 

This might be very helpful when identifying the ratio between the clusters and the PURC.  

 

On the other hand, a very high wl value provides fewer points to define the coverage of a contig. 

Some contigs might be even shorter than a certain window length that would otherwise work on the 

rest of the genome, which would mean that we wouldn’t have any coverage points at all with which 

to estimate those minority contigs ploidy. 

 

Thus, an adaptable window size allows examining the data from different angles, providing more 

accurate information at different levels of the analysis. This feature also enables to tune the algorithm 

to better cope with different genome characteristics like different contig sizes, repetitive content or 

coverage standard variation. 

 

To address this, PEDCA runs a first round with the initial window length provided by the user or the 

default value, preferably a large value (depending on the size of the contigs it might be between 500 

bp to 10 Kbp). If necessary, wl is dynamically adapted to solve the remaining contigs in a second 

round with a smaller size.  

 

In its current implementation, the new window length is computed by keeping track of all contigs 

that could not be solved with the initial size, then running a second round with a new window based 

on the size of the smallest unsolved contig        . The new window length is given by: 
 

    
  

           
  (1) 

 

Where   is a parameter that insures that the ploidy estimation points are constant over a certain 

number of windows. This parameter z will be described in detail later (page 18). z is multiplied by 

the constant 3 to ensure that the new window length provides at least three times more than the 

minimum required coverage points to estimate a ploidy on the smallest contig. The smallest new 

window length accepted is 16 bp. 

 

While the current version of PEDCA runs by default with minimum with two wl, the quality of the 

obtained information can greatly improve by multiple runs with different lengths. An additional 

multirun option launches PEDCA with a preselected set of five window sizes 

{500,750,1000,2000,3000} providing a range of results that can be compared against eachother. 
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Solving ambiguous copy numbers: The allele frequencies distribution plot  

 

The ensemble of different chromosome copy numbers that a genome display (or ploidy) can be 

described by an ensemble of integers P={  ,   ,    …   }  Because our method is based on an 

analysis of the proportion of different depths along the contigs, every multiple of the basic ensemble 

describing P could describe the same read count distribution. The read count distribution clusters 

around Gaussian like bells. We define the ensemble of its read count cluster centers by 

R={  ,   ,   ,…    }. For instance, read counts clustered around   {30,90} can be described by the 

corresponding basic proportion of ploidies    {1,3}, but also by {2,6} or {3,9} and any other of its 

multiples. PEDCA only considers the smallest integer proportion of ploidies possible, so only the 

basic explanation    {1,3},  would be retained. The PURC is the number of read counts     
corresponding to the basic cluster center that best explains the ploidy        (Figure 5). 

 

The precision of the ploidy estimations depends on the shape of the read count distribution and, more 

precisely, on how distinct its clusters are and how much deviation they contain. For diverse reasons 

that will be described later, the ratios among the clusters centers can sometimes be measured with 

some imprecision, which might lead to a wrong estimation of the PURC by a fixed ratio. When this 

ambiguity arises, the wrong estimation differs usually by a ½ f the real ratio, but it can also be  
   and 

theoretically up to ¼.  When necessary, PEDCA outputs a distribution of the allele frequencies 

contained within the first two clusters in order to allow an analysis and solve the ambiguities.  

 

The window size might also affect the smoothness of the read count distribution. When the function 

is too irregular or spiky, the smoother might wrongly classify some peaks as a separate cluster.  

 

A similar complication might arise with clusters of high ploidy. Each cluster builds around a multiple 

of the PURC, and follows a Gaussian distribution. The sums of Gaussian distributions have the 

property that each time they add up, their mean and standard deviation also adds up. A cluster of µ=5 

and σ=2 will result in a twofold multiple of µ=10 and σ=4. This has more effect on the clusters with 

high copy numbers. The standard deviation of their distribution might overlap their tails, potentially 

displacing their centers to each other, and taking them out of alignment with the corresponding 

theoretical multiple of the PURC. This might result in a wrong estimation of the PURC and therefore 

in an erroneous ploidy estimation (Figure 6). The added variation reflects also on the coverage plots, 

with depth point clouds being more dispersed as the ploidy increases (Figure 7). 

 

In order to disambiguate these difficult ploidy estimations, we added an extra feature. If provided 

with an input variant call file (.vcf), PEDCA measures the proportion of the allele frequencies in 

those contigs with ploidy corresponding to the first cluster. Those contigs have the smallest ploidy 

possible (    of the whole genome and are assumed to be         . The shape of this distribution 

provides additional information about the ploidy of these contigs (Figure 8). A diploid contig will 

have only one peak, since most variations will have only two alleles, the shape of the proportion will 

cluster around ½. A triploid will show most proportions around the 0.33 and 0.66 values (1/3 and 

2/3). Tetraploids will show three peaks around 0.25, 0.5 and 0.75 values. 
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In order to do this, PEDCA stores all contigs that have an estimated copy number corresponding to 

the first identified cluster. Because some contigs might be aligned to chromosomes that have 

structural variations within them with different copy number, only those contigs with contiguous 

ploidy estimation are stored. This leads to less noise in the base call distribution plot.  

 

 
Before plotting, PEDCA removes the base calls above 90% and below 10% to ease the read of the 

shape. We consider that all first clusters will have a ploidy between 1 and 4, and therefore those 

variations are considered errors or non representative. 

 

The plots analysis provides an extra element of information to the ploidy inference. The base call of a 

contig with   =1, doesn’t have a particularly recognizable shape because only a small set of random 

variations or errors will be registered in the .vcf file. For this reason, we output also the second 

cluster distribution   , which will always be    ≥ 2 

 

 

 
Figure 8 Allele frequencies have typical recognizable shapes that reflect the ploidy of their contigs. Diploid (left 

figure) are built around 0.5 value; triploid (center figure) around 0.33 and 0.66 values; and tetraploids, (right 

figure) around 0.25, 0.5 and 0.75. 

 
Figure 6 The curve resulting from adding two 

Gaussians with overlapping tails might offset the 

center of their means. Instead of   =7 (blue normal) 

and   =8 (magenta normal), the peak of the sum of 

Gaussians (black) is offset towards +/-    7.2 and 

   7.8 This ends up potentially affecting the 

inference of the ratio unit (PURC). 

 

 
 

 
Figure 7 The standard variation doubles each time that 

the basic Gaussian distribution is added. This effect can 

also be visualized in the coverage plot: from p=1 to p= 

5 the coverage data points get much more scattered 

around their mean. This is a limit of any depth of 

coverage approach, which cannot correctly identify 

high copy numbers. 
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The output 

 

PEDCA outputs two overlaid plots for every input contig. The first is a cloud of points showing the 

coverage of each window sliding over the different positions of the reference genome. While the 

coverage tends to remain constant along the contig, some variations might happen, especially around 

areas with repeat content. It also happens that some reference genomes have sections that have a 

different copy number from the rest of the genome; this can also be easily visualized in the contig 

coverage plot (Figure 9).  

 

The second plot that PEDCA outputs for those contigs which have sufficient coverage data, is the 

corresponding copy number estimation over the coverage cloud. Each ploidy estimation point pi is 

computed by rounding the ratio of its corresponding coverage read count point ri over the PURC. 

 

All plots and charts are produced using JFreeChart 1.0.19 (David Gilbert, n.d.). 

The ploidy estimation plot reflects the same irregularities that the coverage plots might have. To help 

understand the sense of the dataset we need to smooth the variation in the ploidy estimation points. 

The ploidy estimation of a segment is given by a continuity of coverage points divided by the PURC, 

resulting in an integer. Because of the variation in depth along the genome, there might be 

oscillations between different values, resulting in copy number jumps (Figure 9 top).  

 

Among the seemingly random population of points, we are looking to retain those that appear 

consistently around some average. But simply averaging them over k different positions doesn’t 

always work because the average might be a point that doesn’t reflect any real ploidy present in the 

genome. For instance, a contig with copy number fragments of 2 and 4 copies might average 

erroneously to 3 over some regions.  

 
Figure 9 Computing the mode over different k contiguous ploidy estimation points. If k is too small, it might 

lead to fragmented ploidy estimation in regions with noisy coverage (top). The continuity is smoothed with the 

right k value (bottom k=50). The correct length of k depends on the required precision, and can be 

parameterized. If k is too big, it might lead to the non detection of regions with different ploidies (i.e. large 

structural variations found in hybrid genomes). 



Mel Carbajo Martínez   22 

 

Instead, we choose the mode of the ploidy over k contiguous windows, with k being a parametric 

value that defaults to 50 windows. There is a tradeoff between eliminating small variations to reduce 

noise in the interpretation of the ploidy and being able to identify fragments with real copy number 

jumps. For the estimation report, it is important to know the size of the fragments with different copy 

number that PEDCA is able to detect.  

 

If we are retaining only the mode value over k points, then the minimal number of occurrences that 

the mode can have is k divided by all possible values of the ploidy (=          ). Fragments with 

fewer occurrences will not be detected and this information is reported in the results file. Another 

way of explaining this is that the worst precision γ of the ploidy estimation that can be measured 

occurs when the dispersion over the k points is the highest. If no ploidy is dominant along the bin, we 

can assume that the mode is supported by at most 1/         data points. Since each data point is 

taken every window length wl/2 : 
 

   
    

            
  (2) 

 

It is important to underline that this theoretical worst case precision relies on the accuracy of the 

coverage data. But the quality of the coverage data can also be affected by other factors. When the 

window length is too small, the coverage reported by the alignment in regions with a higher repeat 

content will have a sudden increase in their coverage. Small window sizes will result in more data 

points defining a given region. Other regions with high variation rate might overrun the capacity of 

the aligner to map the reads to the appropriate draft reference, resulting in improper reporting of 

coverage rates. In those cases, even if the mode reflects a ploidy estimation value, it will not 

correspond to a real copy number change. This is why   can also be given by the user and adapted to 

the specificities of the genome. 

 

PEDCA outputs a .txt file describing in detail the different regions of each contig that have different 

ploidy estimation. We still might face some noise due to non continuity within some contigs. Before 

deciding that a given fragment really has a change in its ploidy, PEDCA makes sure that at least a 

certain number of continuous data points bear the same copy number estimation. This intends to 

avoid erroneous oscillating estimations in inconsistent data sets. If the data does not ensure enough 

continuity, PEDCA breaks the contig into fragments and outputs an estimation only for the segments 

for which it has enough evidence. By default, that number is z=20 coverage points, but can also be 

defined by the user. Only fragments with continuous ploidy over more than φ bp will be reported.  

 

  
    

 
  (3) 
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4 Assembly tests and Ploidy Results 
 

We mapped the results of our assemblies of simulated reads to their known references, analyzed the 

errors with Quast (Gurevich, Saveliev, Vyahhi, & Tesler, 2013) and visualized with Contiguator 

(Galardini, Biondi, Bazzicalupo, & Mengoni, 2011). 

 

ALLPATHS managed to obtain 61 contigs with a total of an N50 of 133 Kbp. Newbler’s assembly 

resulted in 558 contigs, almost 10 times more scatter than ALLPATHS’. Its contigs were 

considerably smaller in average with an N50 of 10.8 Kbp, but with a remarkable absence of any 

assembly’s errors (relocations, translocations and inversions, Figure 10). A SOAPdenovo assembly 

was also performed with less satisfying results. 

 

Since our simulated dataset is very close to the real pastorianus genome that we intend to solve, we 

prefer the Newbler assembly with zero misassemblies over ALLPATHS. Even if ALLAPATHS 

manages to map 5% supplemental sequence, it does so with assembly errors that we prefer to avoid. 

We prefer this choice because PEDCA is able to identify fragmented ploidies over the extent of the 

contigs. If the provided reference is wrongly scaffolded, ploidies from different chromosomes might 

appear together in the same contig leading to false structural variations assumptions.  
 

 
 

 
Figure 10 A visual comparison between ALLPATHS and Newbler assemblies of our simulated chromosome 

4. The top horizontal sequence of each diagram represents the reference genome; the bottom line shows the 

contigs; red lines map the contigs to the correct position in the reference (visualization with Contiguator) It 

shows that ALLPATHS have clearly longer contigs (bottom horizontal line) and a slightly more dense 

coverage of the reference genome (top), but Newbler doesn’t have  misassemblies. The table describes the 

results over all chromosomes combined. It is worth underlying that, while the N50 is much lower with 

Newbler, the mapped reference genome is only slightly affected while the misassemblies drop drastically to 

zero. 
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With Quast, we measured the optimal parameters on the Newbler assembly to minimize the different 

errors and amount of unmapped contigs (Supplemental Figure 3). Comparing the different 

assemblies from the three programs revealed common unmapped areas, regardless of the software 

used. We found that the optimal parameters, confirm the settings used by (van den Broek et al., 

2015). Nevertheless, it is important to underline that these tests were performed to get to know our 

data better. Our method is completely independent from any particular assembler.  

 

The quality of the input draft reference genome affects the quality of the ploidy estimation in 

different ways. Error-free contigs with a perfect alignment of the reads to its reference would yield 

the best ploidy estimations with minimum false ploidy fragmentation, while low quality assemblies 

might merge sequences coming from different chromosomes that will lead to sudden jumps in ploidy 

estimation that do not reflect the real structure of the chromosomes. The quality of the input draft 

reference is therefore the user’s responsibility. 

 

 

Ploidy Estimation Results on simulated data 

 

We run ConPADE with 4 simulated library sizes, and we measure the likelihood for plausible 

ploidies from 1 to 4. ConPADE correctly predicted 4 out of 5 chromosomes in our simulated dataset. 

Their predictions were constant; the estimation for each chromosome was always the same regardless 

of the library used. For chromosome 10, it misestimated a copy number of 4 instead of the correct 2. 

We also noted that the estimated likelihood for different ploidies were often very close to one 

another, which could easily lead to potential estimation errors (Figure 11). ConPADE considers, at 

most, only two possible alleles at any given position. 

 

While the underlying principle of Magnolya is quite solid, when the software is run on our simulated 

data set it is unable to detect the right chromosome copy numbers. Apparently, the three peaks that 

are supposed to be identified are in the read count distribution (Figure 12), but the x-axis is so 

stretched that only the biggest central peak is recognized while the two others, being too close 

together, are discarded. Magnolya seems to have a problem when the x-axis spreads over a large 

range, but most of the values are concentrated in only a small portion of that range.  

 

We also estimate the ploidy of our simulated data by fitting a mixture of Gaussians to the read count 

distribution. We fix the sample rate to 40 points, which results in an appropriate sampling for our 

data set. We then run 10 fitting rounds, starting with 1 Gaussian and increasing each time the number 

of mixtures. We then compare all of them and try to determine the point where adding an extra 

Gaussian no longer adds significant information to the distribution curve.  

 

We compare different methods to determine the right number of mixtures to be fitted. The right 

measure should improve its score while the right number of clusters has not yet been reached (in this 

case, 3), but should stop improving with subsequent added Gaussians.  
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Figure 12 Magnolya’s fit of Poisson mixtures to the simulated dataset. Only the main peak (yellow) is 

identified, consequently, a copy number of 1 is wrongly identified for the whole dataset. The range of the x-

axis is too large and all the clusters of the read count distribution are compressed in a relatively small portion 

of the plot which doesn’t allow Magnolya to correctly fit the right number of Poisson mixtures. 

 
Figure 11 ConPADE ploidy estimation results on simulated data. On different library sizes the results were 

similar. For each chromosome, the right copy number is indicated in parenthesis. In red, the lowest log 

likelihood (ConPADE’s prediction) for different possible copy numbers (1-4). Chromosomes 1-4 were 

correctly estimated. Chromosome 10 was predicted to have 4 instead of 2 copies. 
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While the Sum of Squares due to Error (SSE), the R-square (R-Sq),the adjusted R-square (adj R-Sq) 

and the degrees of freedom in the error (DF) are good measures for the fitness of the mixture to the 

data, they don’t serve our cause well enough since they don’t always halt the addition of new 

mixtures to detect the right number of clusters (Figure 13). The algorithm keeps fitting mixtures 

beyond the main number clusters and reducing the measured error to the existing points. 

Unfortunately the extra mixtures add nonexistent centers that prevent finding the correct ratio among 

the real ones. These measures were discarded as they failed to fit the correct number of mixtures 

(i=3) in our simulated data set in more than half of the time. 

 

 
 

(Nijkamp et al., 2012) use the Bayesian Information Criterion (BIC) to estimate the right number of 

fits because it penalizes each extra parameter and tends to avoid over-fitting the distribution. We 

measured how well the BIC worked on our simulated genome. With the EM approach we fit 10 

different models to the read count distribution, each of them with different number of Gaussians 1-

10. The model with lowest BIC is then selected. We run our algorithm 1000 times, which correctly 

predicted the copy number of the genome 82% of the time. This gives a better result than any of the 

error measures previously described. Because the initialization of some of the EM parameters is 

random (the original µ’s are initialized with k-means), we might have slightly different results each 

time that the algorithm is run (Figure 14).  

 
Figure 13 A comparative study of different measures to fit the number of Gaussian mixtures. When 

fitting a curve to our simulated dataset (which should stop at 3 clusters – vertical red dotted line-), most 

of the measures show an important improvement at the expected number, but all of them better explain 

the model by overfitting an extra fourth mixture. 
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We decided to average the results of several runs 

(100) in order to reduce the impact of the occasional 

wrong predictions. With this method PEDCA was 

able to accurately predict the copy number of our 

simulated dataset in 97.2% of the cases. Unfortunately 

the results dropped to 64.1% when real data was used.  

 

We also noted that the sampling rate had an impact on 

the performance of the fit. When too many points are 

sampled, the method tends to fit extra mixtures to 

reduce the error of data points that were not covered 

by the main mixtures. This complicates the task of 

identifying the right number of clusters (Figure 15).  

 

PEDCA results on the simulated genome 

 

After aligning all of the simulated reads to the 

simulated genome (the first copy of each chromosome 

is used as reference) with bwa-0.7.13, we obtain the 

.bam file that we use as input. PEDCA’s results on 

our simulated genome are very promising. PEDCA correctly predicts the ploidy of each chromosome 

with the default window length. The read count distribution has clearly distinct clusters over a very 

large range of different window sizes, including very large and very short windows (Figure 16).  

 

The naïve smoother successfully fits and identifies the different clusters even with very large wl’s. 

Because of repeated regions and other coverage irregularities over the sequence, a small window 

length sometimes leads to breaks in the continuity of the coverage data points, leaving the 

corresponding ploidy estimation points blank. PEDCA reports only those segments for which it has 

information, reporting their starting and end points, even if this leads to a more fragmented report.  
 

 
Figure 14 Gaussian mixture fit of the simulated genome 

read count distribution. The blue curve fits the red read 

counts histogram with the BIC measuring when to stop 

adding mixtures. The result is not constant, fitting in some 

rare cases up to 8 mixtures (instead of 3), making the 

method unreliable to detect the clusters centers. 

 

 
Figure 15 Small sampling in the read count 

distribution leads to a function which is easier to 

fit. But finding the right sampling in advance 

might be a challenge. 40 points offer sufficient 

sampling when only 3 mixtures must be fit (top 

figure), but it doesn’t provide enough numbers for 

a high number of different ploidies. On the other 

hand, when too many points with a large variation 

exist, the EM algorithm might fit extra mixtures 

that don’t explain new clusters but include 

unexplained points. In some runs with 400 points 

(bottom figure), three mixtures were used to fit 

two big clusters. Means derived from such a fit 

cannot be used to infer the centers. 

 

 

 

 

 



Mel Carbajo Martínez   28 

We evaluate the precision of the ploidy 

estimation by measuring the proportion 

of the genome (3.6 Mbp) that is correctly 

estimated and the total area that has any 

estimation output at all (correct or not). 

We are interested in how the main 

parameter -the window length- affects 

the performance (Figure 17). The blue 

histogram shows that there can be 

minimal variations in results from very 

small window sizes (50 bp) to very large 

ones (100 Kb) and that the vast majority 

of the genome’s ploidy is correctly 

predicted. All of the lengths correctly 

predict more than 99.5% of the genome: 

and the best results are obtained with a window length of 600 bp which correctly predicts 99.98%. 

Let us remember that a small Structural Variation (SV) of 10 Kb was introduced in Chromosome 3, 

giving a different copy number to one of the alleles. This is the 0.27 % of the genome that remains 

unrecognized with window sizes bigger than the threshold   calculated with  =
    

 
. 

 

 
 

 
Figure 17 Percentage of all of the simulated genome with ploidy estimation and percentage correctly 

predicted under different window lengths (note that the y-axis starts at 99.2%). More than 99.98 of 

the genome had an output estimation (red) regardless of its accuracy. All window lengths detected at 

least 99.52% of the genomes ploidy correctly (blue). With sizes beyond the threshold that can detect 

the 10 Kbp deletion introduced in Chromosome 3, the percentage of correctly predicted genome 

remains constant since the SV is no longer recognized. 

 
Figure 16 With our simulated genome, very distinct clusters are 

obtained even with a very small window size of 50 bp. 
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Because some regions contain coverage data that is difficult to analyze or contain no data at all, they 

might not contain an estimation over certain areas. Therefore, we are also interested in evaluating the 

ratio of each chromosome that is covered by a ploidy estimation, whether it is a correct or erroneous 

one. The red histogram in Figure 17 shows that with windows larger than the deletion (10.000 bp), 

all the genome is covered despite the region of the structural variation being unrecognized. With 

shorter windows, only a small amount of fragments (+/- 0.02%) are not covered by the estimation. 

The difference between the covered region (red) and the correct prediction (blue) corresponds to the 

segments that are wrongly predicted. This value ranges between 0.48% with the smallest wl=50 bp, 

and ≈0% with the optimal wl=750 bp. The constant 0.27% difference after the φ threshold 

corresponds exactly to the SV which means that, except for that deletion, the rest of the genome is 

correctly predicted. 

 

It is also interesting to measure the sensibility of the ploidy estimation by fragments. The simulated 

Chromosome 3 was built with a copy number of 4 but with a small SV in one of its haplotypes 

consisting of a 10kb deletion (from 306 Kbp to 316 Kbp) a few base pairs before the end of the 

sequence (Supplemental Figure 2).  

 

We measure how much of that segment is correctly detected and estimated. The theoretical precision 

of the ploidy estimation by fragments depends on the window length, as defined in the Methods 

section. But the practical precision depends also on the reliability of the coverage. The fluctuation in 

coverage can be the result of something other than a change in copy number. They might reflect a 

segment that is highly repeated over the genome and show higher or lower depth than the reference 

fragment really has. This is often the case in the 

regions at the beginning and end of the 

chromosomes. Otherwise, it might also reflect 

less coverage than the one expected, for 

instance, if the region has more variations that 

the one that can be recognized by the alignment 

tool that generated the .bam file.  

 

We measured the effectiveness of different 

window lengths detecting the SV introduced at 

the end of Chromosome 3 of our simulated data, 

which is a region very prone to coverage 

irregularities (Figure 18).  

 

The results shows that window lengths smaller 

than 1.000bp are able to detect from 42% up to 

92.5% of the deletion fragment, depending on 

which window length is used. The best result is 

obtained with wl=750 bp, which correctly 

identifies 9.250 bp of the deletion without 

missing any parts of the total fragment. A very 

small window length of 50 bp gives too many 

data points with too much standard deviation, 

which leads to an irregular ploidy estimation 

that only detects 42% of the fragment. With 

windows higher than 1.000 bp, the deletion is 

 
Figure 18 Percentage of the introduced Structural 

Variation introduced in Chromosome III that went 

undetected by Pedca (red) or had a wrong estimation 

under different window lengths (blue). Under the 

threshold that allows the detection, wl= 750 bp has most 

of the deletion correctly identified. Very small wl’s 

wrongly predict the ploidy of the SV, mostly because 

the coverage is highly fragmented. The smallest window 

provides too many points with an important amount of 

dispersion that increases the fragmentation of the ploidy 

estimation. A wl= 750 bp smoothes the dispersion by 

averaging the coverage over larger segments. Above 

wl=1000 bp the SV is not detected. 
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beyond the φ threshold that allows it to be 

identified. 

 

Results on the CBS Baseclear genome. 

 

Our simulated genome results serve only as 

proof of concept. The simulated data is much 

cleaner than a real data set. Such neatness is 

rarely present in a real genome, but we can be 

confident that the principles on which PEDCA 

operates are sound.  

 

We then apply our method to two real data 

sets of S.pastorianus CBS1483: the Baseclear 

CBS1483 assembly and Novogene CBS1483 

(that could not work with Magnolya and we 

expect to be a very noisy assembly). The 

S.pastorianus  CBS1483 genome that is used 

as reference in both cases consists of 59 

scaffolded contigs with a total length of 22.3 

Mbp (van den Broek et al., 2015). While all of 

the contigs are bigger than 500 bp, the average 

size is 378.8 Kbp with the largest being 

1,464.6 Kbp and the smallest 526 bp. The N50 

is 750.1 Kbp  

 

On the Baseclear sequencing, windows 

smaller than 500 bp lead to very ambiguous 

groups in the read count distribution, where 

only two clusters can be recognized once the 

histogram has smoothed the tendencies. The 

smaller windows lead to less distinct clusters 

with a bigger amount of overlapping tails. Yet, 

PEDCA can operate if it correctly identifies at 

least the first two clusters of this sequencing 

P={1, 2}. Once the PURC is correctly 

inferred, the rest of the process can estimate 

all contig copy numbers by computing its ratio 

relative to the coverage (Figure 19 top).  

 

Using the window size that best worked on 

our simulation (wl=750 bp), we obtain a read 

count distribution that displays 3 clusters 

(Figure 19 center) but they are less clearly 

distinct in the Baseclear sequencing than in 

our simulations. The reported ploidies are 

P={1, 2, 3}. The groups join their tails, 

especially the second and the third ones, 

 
Figure 19 Different read count distributions with different 

window lengths on the Baseclear sequencing. From top to 

bottom: wl=100, 750, 3.500 bp and 40 Kbp. The shortest 

windows have too much standard deviation, joining clusters 

with different copy number to the point where they cannot 

be recognized anymore. As the window size increases, the 

clusters become more subtly defined and recognizable 
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which indicates that a certain amount of regions will have ambiguous coverage. The last clear cluster 

has what falsely appears to be a long tail on its right side. The 43 contigs solved in the first round 

report 63 fragments of different ploidy estimations. This is one of the least fragmented reports (77 

fragments), which is very close to the best one (wl=500bp; 71 fragments).  

 

Here, the adaptable window feature proves to be very helpful since the second round solves 8 

additional contigs with 14 extra fragments: this results in 51/59 contigs ending up with a copy 

number estimation. The 8 unsolved contigs are explained by the low quality of the coverage 

information that they have: very few points with a high degree of depth variation (contigs 41, 51, 52, 

54, 53 and 58) or no coverage information at all (contigs 46 and 48 – supplemental material 72). 
 

With wl ≥ 3.500bp, what seemed to be a long tail in the third cluster, starts to reveal two small 

clusters corresponding to a small percentage of the reads with higher copy number regions (Figure 

19 bottom). The ploidies now reported are P={1, 2, 3, 4, 5}. There are two exceptions to this that 

happen with very large window sizes. In the first exception, the bias in the deviation of the clusters 

(due the sum of the Gaussians effect described previously) provides a report of ploidies P={2, 4, 6, 

9} with wl=20 Kbp. In the second exception, an extremely big size of wl=75 Kbp also results in a 

very irregular read count distribution that recognizes false peaks, resulting in a report of P={2, 4, 5, 

6}. In both cases, the basic ploidy is twice as big as the one reported in the rest of the estimations. 

When this happens, the error score of the fitting is significantly higher, which triggers the allele 

frequencies analysis.  

With the mentioned window lengths, PEDCA runs an analysis on the contigs having continuous 

ploidy estimation equal to the two first clusters in the read count distribution. For instance, if the first 

 
Figure 20 Allele frequency analysis (top figures) for Baseclear CBS1483 shows the base call percentages of 

the variations found in reads from the first and second clusters of the read count distribution (bottom). Here 

we have a good example of the utility of plotting the second cluster, since the first plot (bottom left) 

corresponds to   =1, the shape is not distinct enough to be recognizable and could easily be mistaken for 

   =2 except that it has considerably less variations. The second cluster (bottom right) can never have    =1, 

and it is more clearly shaped around the 50% bin, indicating a    =2. Results are similar on Novogene 

CBS1483. 
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cluster corresponded to an estimation of    =2, and the second one to    =4, we’ll measure the 

variation of all contigs having a unique contiguous ploidy = 2 or 4, because the reads that map to 

those contigs are the ones that form the first two clusters. In the case of CBS483, the allele 

frequencies plot determines that the second cluster has       and therefore the first one      , 

which validates the most reported estimation P={1, 2, 3, 4, 5} (Figure 20) 

 

We run PEDCA with a large range of different window sizes and find that the peaks were correctly 

fitted and recognized even with lengths as large as wl=75 Kbp (supplemental material 70Results of the 

naive fit with very large window sizes.). The wl=6.0 Kbp detects a false peak in the read count distribution that 

prevents PEDCA from finding a logical ratio explanation. When this happens, PEDCA stops running 

and issues a message in the main output file to warn the user about the situation and prompts him to 

run the program with a different window size.  

 

The current implementation runs a first estimation with an initial wl then runs a second one with a 

new size adapted to the smallest contig. This feature helps to estimate eight extra contigs on the 

Baseclear sequencing. As previously explained, the first round with a large wl helps sampling the 

read count distribution with more smoothed values. This results in more distinct clusters and a higher 

reliability of the inferred PURC. A second round solves the remaining contigs with a smaller wl. 

 

Yet, there is another limitation to the size of the first window length. When a contig is not sampled 

with enough coverage points in the first round, it is left to be solved in the second one. The second 

window length is adapted to the smallest contig; thus, when very long contigs are left, a short 

sampling bin will provide far too many points with too much standard deviation in the coverage 

cloud which leads to a very fragmented and less reliable copy number estimation. This is particularly 

the case when the contig lengths of the reference sequence have a big standard deviation and PEDCA 

has to deal with both very large and very small contigs at the same time. The solution to this problem 

is to provide a window size for the first run adapted to as many large contigs as possible. There is a 

range of values for optimizing the fragmentation problem. 

 

Figure 21 shows the fragmentation in the first and second rounds with a range of initial window 

lengths going from very small (50bp) to very large (75 Kbp). The details of the plot are also available 

in a table format in the supplemental section (Supplemental Table 4). The less fragmented 

estimations are obtained with sampling bins in the range of 400 bp to 3.500 bp. With original wl’s < 

400bp, the breaks in the contigs of the first round are higher than those in the second. The few 

contigs that are left for a second round have a small size and can be easily be estimated with the 

small wl. But as the original wl is set higher, and especially above 5.000 bp, bigger contigs cannot be 

solved in the first round. When sampled with the second wl, (which is too small for them), their 

coverage variation is too high leading to very fragmented and unreliable ploidy estimations. As the 

original wl increases, so does the second run number of breaks. The plot shows that the region where 

the breaks from the first and the second round cross each other corresponds to the range of ideal 

window sizes that lead to the less fragmented estimations. The final copy number inference for the 

Baseclear sequencing will combine estimations made with wl=400, 500, 750 and 1000 bp 

(supplemental material 73) 
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Results on the S.pastorianus CBS1483 Novogene 

 

Overall, the results on the Novogene sequencing don’t differ much from the Baseclear, which is to be 

expected as it is the same organism in both sequencings. However, it is a surprisingly good result 

given that this dataset was not able to run using previous methods (Magnolya) with more clear 

estimations than its Baseclear equivalent.  

 

Results from Novogene show ploidy estimation for up to 52/59 contigs, one more than the Baseclear 

version. Curiously, a ploidy of p=3 is estimated for Scaffold 55 (741 bp) whose data wasn’t 

continuous enough in the Baseclear sequencing to allow a copy number output.  

 

By looking at its fragmentation per window length plot (Figure 22), we can see that the data set is 

more prone to cluster detection errors, failing to infer a proper ratio with wl= 75, 100 and 20.000 bp. 

As for the Baseclear sequencing, the copy numbers more often reported are P={1, 2, 3, 4, 5}, (where 

      and       ) but with the Novogene set of reads, we have a more frequent report of a basic 

ploidy twice as big (      and       ), each time with large window sizes ( 9, 30, 40, 50 and  75 

Kbp). This only occurred twice with the Baseclear dataset. The allele frequency analysis could 

disambiguate the ploidy with the same result as in the Baseclear sequencing, giving similar plots to 

those shown in Figure 20. 

 

We obtain the same plot showing more fragmented reports with small and big window sizes, but the 

optimal range is a bit larger than in the Baseclear sequencing. This means a higher resistance to 

extreme window lengths (especially the shortest ones) in terms of fragmentation, which is a first sign 

suggesting that the Novogene data has less standard variation than the Baseclear. 

 
Figure 21 Ploidy estimation fragmentation by window length for Baseclear CBS1483. The figure 

shows that the optimal size range for getting the most continuous estimations are between wl=400 bp 

and wl=3.500 bp. Ploest could not run with wl=6Kbp, and two bins estimated a ploidy twice as big as 

all the others (wl= 20 Kbp and 75 Kbp) 
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A comparison of the coverage and ploidy plots between the two datasets (supplemental material 80) 

confirms this analysis, which is quite surprising. Due to the incompatibility of Novogene CBS1483 

with previous methods, we expected it to be a noisier dataset with more standard variation than its 

Baseclear counterpart. Instead, the Novogene data set is more compact and clean, which also 

explains why it is possible to infer the copy number of Contig 55 with this data set (as well as other 

small extra fragments from different scaffolds). 

 

If we output a selection of the less fragmented estimations with different sampling sizes and we 

compare it with the Baseclear estimations, we notice some minor differences. Some additional 

fragments that were not estimated previously are identified here. A small sequence in Contig 35, 

from position 224 Kbp to 229.5 Kbp (+/- 1.225bp) is estimated with p=4 where no ploidy was 

previously estimated. Another unidentified segment at the end of contig 43 is identified with p= 5. 

Contig 50 displays constant p=1 with Novogene, but a dubious small change is detected with 

Baseclear of p=2. This could also be explained by the difference between both data sets’ standard 

variations. 

 

Much more spectacular and clear is a divergence in Contig 24. This scaffold is 652 Kbp long and its 

size excludes the possibility of such a difference being explained by standard variation. While the 

Baseclear genome has a clear p=1, the Novogene outputs a solid estimation of p=2 over the whole 

extent of the scaffold. This intriguing scaffold maps to Chromosome X of S.Pastorianus and seems 

to correspond to a recent mutation in the strain sequenced by Novogene (Figure 23).   
 

 
Figure 22 Ploidy estimation fragmentation by window length for Novogene CBS1483. Best sizes for getting 

the most continuous estimations are similar to those for Baseclear. PEDCA could not run with wl=75bp, 100 

bp and 20 Kbp, and five bins estimated a ploidy twice as big as all the others (9, 30, 40, 50 and75 Kbp). 
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We also obtained a 2017 actualized assembly version of CBS1483 from the Delft’s Department of 

Biotechnology that corresponds to the estimation obtained by Van den Broek in 2015. This version 

has integrated it own mapping to the ancestors’ making it easier to compare our chromosome 

structures against the 2015 results.  

 

Using the 2017 reference yielded identical estimations by PEDCA when using the Baseclear or the 

Novogene library, except for chromosome ‘Seub10-Sc10’ which confirms the difference already 

reported in ‘scaffold 24’ (Figure 23) with the 2015 reference. Since our Baseclear library is the same 

one used by Van den Broek, we can compare the results with both programs when mapped on the 

two references. Table 1 displays comparative results between PEDCA and Magnolya.  

 

We refer the primary ploidy to the largest fragment estimated with a given copy number on a contig. 

The second largest fragment with different copy number will be the secondary ploidy and so on. A 

small secondary ploidy corresponding to a structural variation in ‘Seub6’ is detected by PEDCA but 

not by Magnolya. PEDCA also detects a secondary ploidy in ‘Sc15Sc11’ that appears to be detected 

by Magnolya but not reported in the final visual representation of the chromosome structures in the 

2015 paper. 

 

Inversely, Magnolya reports 3 secondary ploidies that are not detected by PEDCA: ‘Sc10-Seub10’ 

      ‘Seub1’     ; and ‘Seub12’     . Magnolya’s estimation of ‘Seub10-Sc10’ corresponds 

with PEDCA only with the Baseclear sequencing. 

Results on the Trypanosoma cruzi CL Brenger genome 

 

Trypanosoma cruzi, a triatomine parasite (also known as a "kissing bug") is the infecting agent of the 

commonly known Chagas disease. Symptoms of the infection can include fever, flu-like symptoms, a 

rash or swollen eyelid. Early symptoms usually go away, but the infection can cause serious 

intestinal and heart problems if left untreated,  (Ley, Andrews, Robbins, & Nussenzweig, n.d.) 

 

The American Center for Disease Control considers it as one of the five neglected parasitic infections 

and, as such it has been targeted for public health action (CDC, 2011). 

 
Figure 23 Baseclear (left) and Novogene (right) CBS1483 reads aligned to the scaffold 24 (652 Kbp) clearly 

displaying a different ploidy of 1 and 2 respectively. It is the only whole contig for which the two sequencings 

differ. 
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T.cruzi’s genome is not well known. One strain, 

the T.cruzi CL  (TcVI lineage), is also the result 

of a hybridation of two related ancestors: the TcII 

and TcIII lineages. A Sanger reference genome 

was published in 2005, generated by whole 

genome shotgun with Sanger reads (El-Sayed N. 

et al., 2005).  

 

The genome has a high repetitive content of 

about 50% of its size. Its ploidy is currently 

unknown and about 1/3 of the assembly consists 

of unassigned contigs (~36 Mbp) that have yet to 

be mapped to any of the ancestors’ haplotypes. It 

is an extremely noisy data set on which we can 

test the limits of our method. 

 

We first map Illumina paired end reads (2 x 

150bp) to the respective 40 pseudo chromosomes 

references of the two ancestors known as Esmo-

like (TcII) ~35 Mb and Non-Esmo like (TcIII) 

~32.5M bp scaffolded by (Genomics, Weatherly, 

Boehlke, & Tarleton, n.d.) in 2009. The highly 

repetitive content makes the ploidy estimation 

very difficult, and even if we can identify some 

areas with defined and continuous coverage, the 

results remain very fragmented and ambiguous 

(Figure 24). 

 

 
Table 1 Chromosome structures obtained mapping 

sequenced reads from Baseclear to different references of 

S.pastorianus. First two columns display the results using 

PEDCA against a 2017 reference of CBS1483. ‘Pedca P1’ 

is the main ploidy reported and ‘Pedca P2’ the secondary. 

The two last columns are the results reported by (van den 

Broek et al., 2015) using Magnolya and the Baseclear 

libraries with ‘Mag P1’ being the main ploidy and ‘Mag 

P2’ the secondary. PEDCA results are identical with 

Baseclear (Bc) and Novogene (Ng) sequencings except for 

chromosome Seub10-Sc10. Magnolya results are based on 

Baseclear reads only. Differences between Magnolya and 

PEDCA are highlighted in yellow. 

 

 

 

 
Figure 24 T.cruzi Illumina library mapped to TcIII-like 

(Chromosome 15) wl=750 bp. While some areas 

contain coverage information clear enough to allow 

ploidy estimation, big segments with very high 

coverage variability due to repeated sequences, make 

the estimation very unreliable. Larger window sizes are 

less sensitive to repeats because small repetitive 

regions are more frequent than big ones, but this 

genome remains quite noisy even with large bins. 
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The read count distribution of the separate ancestors is very similar. Both have two similar clusters 

that were commonly identified as ploidy 2 and 3 (Figure 26 top).  

 

We also map the same Illumina reads to the BroadTcVIPacBio reference. The assembly consists of a 

very large number of contigs (2.697).The mean length is 32 Kbp with a contig N50 of 83.077 bp and 

a N90 of 12.236 bp. We decided to run our tests only on the 50 longest contigs. 

 

The BroadTcVIPacBio reference allows the identification of a third cluster corresponding to   =1 

(Figure 26 bottom). It is interesting that this ploidy don’t appear when mapping the data to any of 

the ancestors. The estimations per contig confirm this result. While most of the scaffolds are diploid, 

a considerable number seem to be triploid and some of them are haploid. The ploidy estimation that 

results from using this reference is significantly better than from using the ancestor’s genomes. The 

estimations are much less fragmented and longer regions are estimated, which reflects a closer 

proximity of the real genome to the BroadTcPacBio assembly than to the mere sum of its two 

ancestors. (supplemental material 88) 

 

It is worth underlying the utility of the adaptable widow size in the analysis of the different contigs 

which allows comparing results from different sampling sizes. Contig 16’s coverage in the 

BroadTcVIPacBio alignment shows higher variability than its fellow contigs and with wl=1000 bp it 

is still difficult to determine the overall ploidy (Figure 25). By switching to a higher wl=7000 bp, 

with data points averaged over a longer length, the estimation becomes more clearly defined as p=3.  

 

 
Figure 26 Read count distribution for T. cruzi. Similar to 

the TcIII strain, the Esmo-like alignment (top figure) 

results in two clusters that are usually recognized as 

ploidies 2 and 3. The same reads aligned to the 

BroadTcVIPacBio assembly (bottom figure) reveal a 

third cluster corresponding to p=1. 

 

 
Figure 25 Running the algorithm with a range of 

different window lengths is useful for tuning the ploidy 

estimation. The analysis of Contig 16 of 

BroadTcVIPacBio with wl=1.000 bp (top) is more 

ambiguous than with wl= 7.000 bp (bottom) 
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Table 3 displays PEDCA results on T.cruzi run with different window sizes (2, 3, 5 and 7Kbp) and 

selecting the neatest estimations. Overall the estimations are relatively continuous; this is partially 

due to the use of long window sizes. Contigs 5, 15, 26, 43 and 44 have important areas that remain 

unsolved, but usually less than half of the length of the contig.  

 

Often, some contigs (6, 9, 17, 19, 23, 26, 35 and 41) have fragmented estimations that are less clearly 

defined, making it difficult to decide whether the breaks are due to a real ploidy change or just a 

fluctuation in the coverage (Figure 25 top). Incrementing the window size sometimes helps to 

disambiguate these situations, but not always. Some cases are very difficult to solve when the data is 

dispersed along the area between two ploidy values, and it is impossible to determine whether the 

coverage reflects under-mapping or over-mapping of reads to that region.  

 

In other cases, the estimation is not fragmented but raises doubts as to whether the continuity is due 

to a real unique copy number or simply the result of averaging over a long window length (Contigs 3, 

14, 16, 18, 20, and 39). This raises a legitimate warning against using very long window sizes that 

could result in very few averaged points with low reliability of the estimation, especially with highly 

dispersed coverage data (Figure 25 bottom). 

 

Contig 48 remains completely unsolved with discontinuous coverage values scattered across the 

extent of the sequence.  

 

Still, we have supported full length estimations for 30/50 contigs plus partial or draft estimations for 

some additional 19 sequences, which is a relatively good result for this particularly noisy genome 

with highly repetitive content.   

 

PEDCA’s time performance 

 

We run PEDCA in a personal laptop Intel(R) Core(TM) i5-4200M CPU 2.50 GHz with 8.00 GB of 

RAM. We run tests on our simulated dataset, the two S.Pastorianus sequencings (Baseclear and 

Novogene CBS1483) and in T.cruzi strains II and VI. We measure PEDCA performance with 

different wl’s. We also compare the times with and without the allele frequencies analysis (Table 2) 

 

 
 

 
Table 2 PEDCA’s time performance (in seconds) for the simulated data set, both CBS1483 sequencings 

(Baseclear and Novogene) and T.cruzi II and VI. When only the .bam file is provided, the size of the file 

affects the speed of the algorithm but it generally runs quite quickly (between 25’’ and 174’’). When an allele 

frequency analysis is requested, the variant call parser seems to be quite sensitive to the length of the .vcf file, 

having runtimes of almost up to two hours in the case of T.cruzi II. 
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Overall results show that PEDCA performs quite quickly when only the default analysis is 

performed. Even with the largest .bam files (T.cruzi, 6.7 Gb), run times remain under three minutes. 

Run times remain under a minute with smaller files such as those from both versions of 

S.Pastorianus.  

 

The allele frequencies analysis generally adds two or three extra minutes of processing, but 

something strange occurs with the TcII assembly which suddenly extends the analysis of the ploidy 

to 1½ hours (sometimes almost 2 hours). The slight increment in the size of TcII .vcf file (4.22 Gb) 

in comparison to the rest of the assemblies (0.52, 2.66, 3.07 and 3.13 Gb) doesn’t justify such a 

difference. The algorithm to perform allele frequency is quite straightforward and consists of a .vcf 

parser and a graphic interface to plot the histogram, which makes the time complexity of the process 

linear. We could not find a reasonable explanation for this behavior, but it might be related to the 

very highly repetitive content of the genome. 

 

Ploidy discussion, limits and perspectives 

 

We’ve developed PEDCA, a method that runs fast ploidy estimations and is easily exportable to any 

operating system with a Java platform. It only requires a .bam or .sam file as input and provides an 

optional supplementary analysis if a .vcf file is provided. PEDCA output depends mainly on one 

single parameter: the window length. This makes it easy to operate while allowing for fine tuning 

with a set of secondary parameters for more precise usage.  

 

We’ve built a sophisticated simulated genome from real sequenced data to obtain a reference with 

characteristics as similar as possible to the real S.Pastorianus. We’ve provided a solid proof of 

concept validation of PEDCA by testing it in our simulated dataset. Our results on real data show that 

the method works by comparing it with previously solved data (Baseclear CBS1483) and also works 

with datasets that previous methods could not solve (Novogene CBS1483).  

 

The different features that characterize PEDCA were essential to identify ploidy differences (a few 

small and one quite large) amongst the two versions of the CBS1483 strain. This analysis reflects that 

genome copy number in this particular brewing yeast is highly dynamic.  

 

We’ve also extended this study to obtain the previously unknown ploidy of Trypanosoma cruzi TcVI 

(a very noisy genome with highly repetitive content) that is very different from S.Pastorianus; and 

we’ve proven that, with only some small tuning in the window length, the method responds well to a 

significantly different genomic profile. 

 

We’ve proven the utility of the dynamic window length feature by implementing a second round of 

coverage sampling. We’ve also provided evidence of the utility of incorporating an allele frequencies 

plot to facilitate analysis of the PURC. This feature is run by default if a .vcf file is provided and can 

help disambiguate the basic ploidy estimations amongst all of the potential solutions.  

 

But PEDCA’s performance is affected by the following factors: 

 

 PEDCA estimation relies on the alignment of a set of reads to a given reference. Low quality 

references and/or bad alignment of the reads might result in chaotic or erroneous coverage 

data sets with incorrect ploidy estimations.  
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 High repetitive content, as we’ve seen, leads to over-reported coverage, especially when the 

reads length is shorter than the repetitive regions. The alignment tool might also fail to 

correctly map reads from a different haplotype when too much heterozygosity is present. This 

can lead to under-reported coverage in some segments. Generally speaking, any factor 

affecting the continuity of the coverage makes the ploidy harder to evaluate. 

 

 Another limit is that high ploidy becomes harder to identify. In some contigs of CBS1483, we 

were able to detect segments with copy numbers of eight. We estimate that the ploidies that 

PEDCA can detect are those below ten, but the reliability of the analysis depends on the 

quality of the coverage information and its variation. 

 

We’ve tried to palliate these problems with different features. We tried to average values and insure 

continuity of coverage with diverse parameters before estimating the copy number of a contig; but 

ultimately, high standard variation and discontinuity of the data are two major drawbacks in the 

depth of coverage analysis. 

 

There are a few ways in which PEDCA could be improved in the future. 

 

Among the possible improvements that could be implemented, one that follows the natural evolution 

of PEDCA would be a method that increases the flexibility of the window length and automatically 

customizes it to each contig size. In the current version of the tool, the wl only changes between the 

first and the second run; finding the optimal length per contig could significantly increase the quality 

and reliability of the estimations. 

 

Sometimes a wl is on the threshold of allowing a contig to be solved on the 1st run. When long 

contigs are just a little too small to be solved in the first run and the window is adjusted to solve the 

shorter ones in the second run, the estimation of the longest contigs that make it to the second run 

have too much data and variation to be solved properly. This would also be solved by a more 

adaptable window. 

 

For contigs smaller than 1000 bp, having a sliding window might not be so useful. In such cases, it is 

probably a good idea to implement a feature that averages the coverage over the whole contig when 

this happens. The irregularities over the sequence would be smoothed; it would maximize the 

probability of having enough data to provide a estimation; and the risk of losing fragments with 

changes in ploidy should be acceptable for such a small size. 

 

A measurement is needed to score each estimation in order to compare results from different window 

lengths. This measurement has to take into account different elements: the standard deviation of the 

coverage cloud around each different ploidy estimation; the different estimations within a single 

contig (fragmented ploidies); and the proportion of the contig that is estimated in relation to the total 

length of the sequence. The score should also somehow take the density of the data points/sampling 

into consideration. With such a measurement, it would be easy to compare the output from different 

window lengths for the same contig and choose the best result.  The algorithm could then run without 

requiring any other input beyond the .bam file, simply by running a spectrum of adapted or 

preselected window lengths and choosing the best customized ploidy estimation for each contig 

among all of the available contigs (see example of Figure 25) . This would be an alternative to the 

customized wl and could be relatively easy to implement in the next version of PEDCA. 
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Another useful feature to implement in a subsequent version would be an automatic recognition of 

the frequency allele distribution by recognizing the specific shapes proper to each copy number. The 

feature could launch a second run automatically when it detects a wrong coverage to ploidy ratio. 

The second run would force the PURC inferred by the allele frequencies analysis. 

 

 



 

 
Table 3 Ploidy estimations using PEDCA on Illumina reads from Trypanosoma cruzi VI mapped over the 50 

longer contigs of the BroadTcVIPacBio assembly. 4 different window lengths (wl) were used: 2.000, 3.000, 5.000 

and 7.000 bp.  Three possible copy numbers estimations (order by length) are shown in columns ‘Ploidy 1’, 

‘Ploidy 2’ and ‘Ploidy 3’. Only 10 contigs have fragments with two different ploidies, and only two of them have 

three different ploidy fragments. The columns ‘from’ and ‘to’ indicate the beginning and end of the fragment with 

such a copy number. 
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5 Phasing 
 

Intro to phasing  

 

We created a new depth of coverage algorithm to estimate the copy number of contigs, but inferring 

chromosome copy numbers alone doesn’t provide information on the variations along the draft 

reference genome. Two further steps are required in order to obtain the full detailed sequence of each 

parallel sequence: detecting the variations in our reads when aligned to our consensus reference and 

phasing them.  

  

We can detect the differences between the haplotypes with a variant caller like Pilon (Walker et al., 

2014) which detects heterogenic variance along the draft reference genome, but having the list of 

variations relative to a draft consensus genome doesn’t describe the detailed haplotypes of each 

chromosome copy.  

 

In order to determine which combination of variations describes a haplotype, we need to assign each 

variation to the allele to which it belongs. For that, we need to have sufficiently large reads to span 

the longest distance that separates variation positions, and then cluster those that are consistently 

found in the same copy. The scope of this research is limited to solutions that work with short reads. 

Paired end reads provide an extra advantage to the problem since they have insert sizes that partially 

palliate the short length of the reads; however, the insert sizes have relatively fixed lengths. They 

have some standard variation that provides some, but not enough, flexibility to cope with the 

unpredictability of the possible distance among variation positions that we need to solve.  

 

Here we describe some steps taken towards a new approach on polyploid phasing that tries to group 

SNP’s together in their respective strain by cleaning the variant information obtained from the 

alignment and discriminating sequencing and alignment errors from real allele variants.  

 

Haplotyping methods 

 

Here we describe some steps taken towards a new approach on polyploid phasing that optimizes the 

variant information obtained from the alignment by grouping SNP’s together in their respective 

haplotype. 

 

In this paper, we define a haplotype as the nucleotide sequence along a single copy of a chromosome. 

Because the chromosome might have more than just one copy, each haplotype will have a very 

similar sequence of nucleotides, but with its own specific variations at certain loci.  

 

Phasing or haplotyping is the process of clustering together the variations that belong to the same 

haplotype, which defines the correct nucleotide sequence for each chromosome copy. 

 

(Motazedi, Finkers, Maliepaard, & de Ridder, 2016) evaluated the performance of three state-of-the-

art haplotype estimation algorithms for polyploids:  HapCompass (Aguiar & Istrail, 2012), HapTree 

(Berger, Yorukoglu, Peng, & Berger, 2014) and SDhaP (Das et al., 2015), with different levels of 

sequencing depth, ploidy levels and genomic diversity, using tetraploid potato as the model. They 

conclude that sequencing depth is the major determinant of phasing reconstruction quality and that 
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1kb PacBio CCS reads and Illumina reads with large insert-sizes are competitive; however all of the 

exiting methods fail to produce good haplotypes with increase in ploidy.  

 

They also signal a particular challenge of haplotyping polyploid genomes. Diploid phasing is 

different from polyploids because the alternative variant in diploids is always present in the other 

allele, which eliminates the need to calculate possible combinations. However, having to compute the 

combinations of the potential positions of the different alleles leads to a computational problem of 

exponential complexity when the ploidy increases. 

 

When representing different haplotypes of a same chromosome, we can ignore the homozygous 

regions and only consider the variant sites. For a chromosome with k variants, we can represent its 

haplotype as a string from the set {‘A’,’C’,’G’,’T’}. Even though the possibility of tetra-allelic loci 

exists, it is often assumed that variants are bi-allelic. We accept multi-allelic sites in our method. 

 

The objective behind our approach is to tackle the polyploid haplotyping problem in order to avoid 

having to compute all possible combinations of SNP’s as that is computationally very expensive. 

Most methods don’t avoid the exponential approach. Instead, they find ways to reduce the 

computational complexity with coding strategies, mostly with dynamic programming. 

 

The exponential problem arises when, in order to separate the reads with errors from those which 

really describe the different haplotypes, all possible variant combinations are computed and then the 

likelihood of each combination is computed, with the most likely combinations being retained and 

the others discarded.  

 

Here, we explore the possibility of avoiding computing all combinations by removing the error 

variations before clustering the remaining ones in the correct number of haplotypes. Thanks to 

PEDCA, we have the advantage that we can infer the exact number of copies per contig that we are 

looking for beforehand. The idea is to only consider the error-free variants that are supported with 

enough coverage and to cluster them in the number of haplotypes given by PEDCA.  

 

Our exploration uses as input a .sam/.bam file with all of the reads aligned to the reference genome, 

and the .vcf files with all the variants of the reads aligned to their references. The .vcf file reports all 

variations relative to the provided reference found in the available libraries. The reads might contain 

sequencing and alignment errors; our objective is to discard both of them.  

 

The basis of our approach is to first identify all positions where variations are detected. A .vcf file 

stores the percentages of different alleles present per position with respect to a draft reference. 

Because we know the expected number of haplotypes p per contig, we can discard the variations that 

don’t reach a certain safe threshold of presence 1/2p (half of the contig copy proportion 1/p). This 

means that the remaining detected variations have enough coverage to represent at least one copy of 

the reference. We end up with a list of positions where enough variations are detected to discard 

errors. We also keep track of the actual SNP’s that can be observed (Figure 27). We can define an 

observation by the pairing of a position (or loci) l with the variation v observed at that position. We 

can then represent all of the observations as a vector of pairs 

 

O= {                           . 
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The sequence of the observations is composed of a string from the set that includes the four bases 

and the deletion {‘A’,’C’,’G’,’T’,’-‘}. In our toy example (Figure 27), we observe three alleles at 

position 16: ‘AACC’, ‘A-‘ (‘A’ followed by a deletion of AAC in respect to the padded sequence), 

and ‘G’. Three observations will be considered and stored as ‘16AACC’,’16A-‘and ‘16G’. 

 

Since we have different libraries of paired ends with diverse insert sizes, the possibility of 

connections between distant variation loci is bigger, but not big enough to insure coverage for all 

possible combinations. Our situation becomes an optimization problem.  
 

 

The next step is to store the information of the reads that support such variations at those particular 

positions. We want to know which reads support each of the possible variations at the concerned loci, 

but we are also interested in knowing all of the variations that are simultaneously covered by the 

same read. Except for exceptional hybrid errors, each read reflects a singular haplotype so co-

observed variations belong to the same chromosome copy. 

 

We create a matrix H of dimensions n x n with all observations        in the rows and        in the 

columns. We store the reads that support their simultaneous co-observation at each intersection     .  

 

The read being aligned to a reference may have inserts or deletions that are not present in the 

reference, making it difficult to identify the relative position of one towards the other. The CIGAR 

string is a sequence of base lengths and the associated description of the read alignment to the padded 

reference (H. Li et al., 2009). They carry information such as which bases align (either as a match or 

a mismatch), which bases are deleted, and/or which are insertions that are not in the reference. In 

order to precisely define the loci where an observation maps to the reference, we need to reverse the 

way in which the read was aligned, then compare the sequence at the precise loci and store it.  

 
Figure 27 When the reads are mapped to the reference, the variations, their rates and their positions are stored 

in a .vcf file. Beforehand, we had estimated the ploidy for each contig, (p=3 in this toy example) so that we can 

reject the variations rate that are below a certain threshold (here = 1/2p = 0.165). In this example, position 16 

has three possible alleles: ‘AACC’, ‘A-‘(‘A’ followed by a deletion ‘-‘ ), and ‘G’. But the variation ‘G’ (in red) 

is represented 1/10 of the time, which is below the threshold and therefore considered as an error. Same goes 

for variation ‘T’ at position 32 and ‘G’ at position 56. With enough coverage, the retained variations reflect the 

proportions present in the haplotypes. 
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We use the CIGAR of the .bam file to fill the different intersections of the matrix. If an observation 

in a read doesn’t match any of the identified paired loci/variation, that segment of the read is 

considered a sequencing or alignment error and is rejected. When a position in the read describes an 

alternative present in the matrix, the read has a match in the corresponding column of H. We then 

record the read identifier in every row of every other co-observed variation. 

 

We can look at the result as an adjacency matrix of a graph of localized variations, in which the 

nodes describe the alleles and the edges, the co-observation of two variations in the same read. The 

number of reads recorded at each intersection     is the weight that supports a connection between 

two variants. The intuition of the graph is described with a toy example in Figure 28. 

 

The phased solution is a color graph with a number of different colors equal to the expected ploidy 

(we define each color by an integer). The challenge is to find a way to color the graph in an 

optimized way. There are a few particular properties of our graph that can help us to solve the 

problem. 

 

First, some observations will be exclusive to one color/haplotype. This is certain for diploids and 

triploids; we also assume that there will always be some exclusive observations in higher polyploids 

if the sequences are long enough.  

 

A second interesting property derives from the first one: if a variation is exclusive, then all the reads 

that traverse it belong to the same haplotype. Therefore, all the interjections with other positions in 

the matrix traversed by that read have at least that color. If we can identify those exclusive variations, 

we could have colored nodes that we can use as starting points to extend the colors along the rows 

and columns of the adjacency matrix. 

 

   

  
Figure 28 Assuming that we knew the correct observation sequence of each haplotype (top left table), we 

could represent the haplotypes as a colored graph with nodes representing the observed variations and the 

edges indicating existing connections between adjacent positions/variations (left graph). In reality, we do not 

have the color information but we do know which observed alleles are connected by examining the reads 

(right graph). Not only can we tell which connections exists among adjacent observations, but also among 

observations across the genome (since a read can span multiple variations) which results in a more complex 

graph. The challenge is to simplify the graph, extracting the connection information and coloring the nodes 

so that we reconstruct the left graph from the right graph. 
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Figure 29 

 

We start by identifying the 

observations in each read. 

Every read has its identifier. 

We fill the adjacency matrix 

with the read identifiers at 

the intersection of the co-

observed variations. 

We then identify all of the 

exclusive variations and 

assign them each a color 

(starting in the toy example 

with ‘17C/red’). Since the 

observation is exclusive, all 

of the reads on it belong to 

the same color; we can 

therefore attribute a color to 

all the reads in that column 

and row. 

 

In the next step, we can 

extend the information of 

each colored read to all of 

its occurrences along the 

entire matrix, solving con-

flicts when they arise and 

coloring new whole col-

umns and rows when new 

exclusive observations are 

found. 
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Third, the same principle of extending the color of exclusive observations through the matrix’s rows 

and columns can be inverted. In the adjacency matrix, each read unique identifier is stored at the 

corresponding intersections. Once the color of one read has been defined, we can also extend its 

color to all of the intersections where its ID is found, which might in turn define new colors to new 

exclusive variations, and so on… Figure 29 

 

The main problem is finding a reliable way to identify exclusive variations. A priori it could be 

possible to use the depth information to infer which observations have a number of reads 

proportional to the total coverage of their position which is equal to or sufficiently similar to 

1/ploidy. Unfortunately, the coverage is not a constant parameter and its standard variation over the 

genome can easily overcome the minimum precision needed to identify exclusive variations, even 

with low copy numbers. Even when enough coverage is available, this approach can only work until 

the coverage variation becomes higher than 

our safe threshold. This approach becomes 

unreliable with higher ploidy because, as 

we’ve seen, the coverage standard variation 

increases proportionally with the ploidy. 

 

Another idea would be to look at the degree of 

connectivity of the edges. On average, the 

exclusive variations are less connected than 

non-exclusives, since the exclusive 

observations can only have two edges with the 

immediate neighboring positions (one 

incoming and one outgoing), and only one 

connection with each other position (each 

position might have multiple variations but 

exclusive paths will only connect with one 

variation per loci). Unfortunately, in some 

cases, non-exclusive nodes can also be 

connected by two neighbor edges and 

traversed by multiple haplotypes that locally 

share the same alleles (Figure 31). This 

possibility decreases exponentially over 

lengths with higher numbers of observations. 

It is less likely to observe two haplotypes 

sharing the same variations over many 

contiguous positions than over just a few, but 

there will be segments where the reads will 

span only 2 variations, especially since we are 

dealing with short reads. In those cases, it is 

very likely that several haplotypes share two 

adjacent variations. But generally speaking, 

among all possible paths connecting an 

exclusive variation position and any other 

position, the connectivity of the exclusive 

observation will always have the minimal 

possible value. 

 
Figure 30 Weighted connectivity table for toy example. 

In the top table we have the real 3 haplotypes with their 

observations. Assuming that we have reads 100 bp long, 

all positions are connected if they belong to the same 

color. Starting at 16, for each variation we compute their 

connection weighted by the number of alternatives per 

position with the other edges. At the end, we add the 

weights of all connections per examined edge and we 

normalize them by the total of all of their positions. The 

identified exclusive variations are highlighted. 
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In order to identify exclusive variations, we try to run the algorithm using an alternative measure of 

connectivity that weights the number of alternative alleles existing per position. For instance, in our 

toy example (Figure 28 Top Table) we can examine the connection of the two possible alleles in 

position 16: ‘16/AACC’ and ‘16/A-‘. Each of them could potentially be connected with three 

variations of position 17 (‘17/C’, ‘17/A’ plus the deletion ‘17/-‘) and with two in position 32 

(‘32/CCA’ and ‘32C’). We apply a different weight to the edges with position 17 nodes (which has 3 

variations), than with those in position 32 (that only has 2). Node ‘16/AACC’ connects with 2/3 

nodes in position 17, but only with ½ of alleles in position 32. We do the same for all nodes 

connected by a read to any of the two alleles in position 16.  Finally, for each node we add all of their 

weighted connections and we normalize by the sum of all weights per position, resulting in 0.63 for 

‘16/AACC’ and 0.37 for ‘16/A’ which identifies the last one as being exclusive (Figure 30) since it 

has the minimum possible measure. 

 

The intuition behind this measure is that connections with nodes in positions where two variations 

are possible should have a heavier weight than connections where three alternatives exist. A 

connection with an edge in a position where only two alternatives exist brings less information about 

the exclusiveness than edges connecting to a position where three alternatives exist. Those vertex 

with minimal scores are more likely to be exclusive. 

 

Once the exclusive nodes are identified, we give each of them a color and extend following the 

principles 2 and 3 explained above. When an extension meets an edge which is already colored, the 

new edge and all its extensions take the color of the edge being extended, reducing at each step the 

number of colors present in the graph and the number of breaks in the final phasing estimation.  

 

 

Phasing results 

 

We tried our method using a 10 Kbp section of simulated chromosome I of S.Pastorianus. We tried 

to reconstruct the haplotypes using only the Illumina (2 x 100 bp) pair end reads with one library 

having 20bp overlaps (resulting in 180 bp pseudo-reads) and another one with 500 bp insert size, 

which limits the phasing output to contiguous variations that are separated by less than 698 bp. Some 

variation positions in our sample are separated by more than that distance so we were expecting some 

breaks in our haplotyping.   

 

The analyzed section counts 161 variation positions. Since the contig is triploid, each position always 

contains one exclusive allele, so there are also 161 exclusive variations to be potentially identified;  

however, we are still limited by the size of the reads and the available libraries that we are using. 

 

We only explored our method for phasing up to the exclusive edge coloring step. The method 

correctly identified 135/161 isolated variations and attributed a different color to each of them. We 

also implemented the color extending step along the rows and columns of the matrix, matching the 

colors of the interconnected isolated nodes to have the same value. The three longest unbroken 

haplotypes that were correctly reconstructed contained 80 variations, and they were found at the 

beginning of the sequence, after which the phasing broke. The first 29 exclusive variations (covering 

974 bp) were correctly colored and extended and the first phasing break that creates a supplementary 

color occurs at position 980 bp. The rest of the genome, while having breaks in the color attribution, 

correctly clustered together 128/161 observations. Instead of the ideal three unbroken haplotypes, 17 



Mel Carbajo Martínez   50 

breaks (different colors) were found. We stopped this line of investigation because our method to 

detect isolated nodes was incorrect. 

 

 
The results of our method to identify exclusive variations with weighted connections work only on 

diploid and triploid contigs that have many positions connected within the span of a read, but is not 

guaranteed to always work otherwise. For instance, when more than one haplotype have the same 

local variations over a certain sequence, their edges will have the same weighted connectivity as 

those from a single haplotype traversing an exclusive set of variations.(Figure 31) The possibility of 

those segments existing is more likely to happen in regions where variations are very distanced from 

one another, therefore reducing the number of variation positions covered by the available reads.  

 

 
 

Besides, the approach becomes increasingly unreliable with higher ploidy. Thus, we cannot 

consistently identify the isolated alleles with the weighted connectivity approach. At the very best we 

could develop a probabilistic approach that computes the likelihood of a given segment being 

exclusive. 

 

 
Figure 31 Two examples where the weighted connectivity of the nodes fails to detect the isolated variations. 

Both cases A and B reflect a segment with 4 haplotypes/colors traversing 3 positions 16, 17 and 32, each 

having 2 possible alleles. Case A has 3 colors traversing the same contiguous alleles in one path with the same 

connectivity weighted per position as the path with only one color (green). Both end up with the same 

minimum possible score of 0.5. Segment B also fails to identify the exclusive alleles. In this case, both paths 

have two colors traversing them, and both have the minimum possible score for those paths of 0.5. 

Length of the simulated genome 10.000 bp 

Number of Haplotypes 3 

Total variation positions 161 

Exclusive variations 161 

Identified exclusive variations 135/161 

Correctly identified exclusive variations 135/135 

Correctly Colored exclusive variations ( with breaks) 128 

Correctly Colored exclusive variations (without breaks and in the top 3 bigger clusters) 80 

Longest length correctly colored 974 bp 

Final number of different colors (breaks) 17 

Isolated variations (unique to have its color) 5 

Erroneously clustered variations 7 

Table 4 Phasing results on simulated genome of 10Kbp with three haplotypes. Exclusive observations were found 

with the weighted connectivity measure which doesn’t work with higher ploidy and is not guaranteed to always 

find all exclusive nodes even in triploids. 
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It was misleading to use only a small sample for our tests with a single ploidy case of p=3. Because 

we didn’t consider a wider range of cases, we failed to predict the limits of the actual implementation 

of the connectivity weighted by position method. But despite this error, the approach has the 

potential to be explored further. With a copy number of three, many isolated nodes were identified, 

and almost half of them were correctly colored together and without a break.  

 

Phasing Discussion & Conclusion 

 

Haplotyping with short reads remains by its intrinsic nature an optimization problem. Most likely, 

with the development of more accurate long read sequencing technologies, the problem will sooner 

or later be able to be solved with a de novo assembly. But even with the current available sequencing 

capacity of PacBio and Nanopore reads, this approach can probably be explored further. Finding a 

more reliable method to find the exclusive variations is a necessary first step in this direction. One of 

the conclusions learned from this exploration is the importance of doing extensive tests with higher 

ploidy from the beginning of the research. As we saw in both parts of this study, the complexity of 

polyploid genomes increases with the copy number. 

 

But failing to find a proper methodology to identify exclusive nodes was not the only reason why the 

haplotyping wasn’t completed. Nothing in our research concludes the possibility or impossibility of 

finding a reliable way to do this, and the errors reported for our method are a normal part of the 

creative and often frustrating process of any research. We had to abandon the lead and, at the same 

time, the possibility of finding a new approach to the aneuploid phasing, not so much because of this 

error but due to the time constraints of the research program and the practical problems involved in 

extending it.  

 

There were, nevertheless, other challenges ahead. For our method to work, we need to have 

eliminated all errors in the reads. We managed to get rid of the sequencing errors by rejecting 

underrepresented variations with the help of the a priori information of the contig ploidy. But there 

are also alignment errors among the reads. Some of them are recurrent because sometimes a similar 

sequence can be aligned to a reference in multiple ways. For those that are constantly reported, the 

coverage filter becomes inefficient. Luckily, most of them are eliminated when compared against the 

variant calling, because they don’t have any representation in the .vcf file and therefore get rejected. 

But some of them bypass both filters, especially when a false local alignment coincides with an 

existing alternative allele of another haplotype. These cases constitute a minority but when they 

happen, they cause color attribution conflicts that are hard to identify and that break the continuity in 

the extending color step.  

 

At this current stage of the research, it is difficult to tell which of these problems are just temporary 

challenges that have solutions, and which ones are unsolvable obstacles that disqualify the whole 

approach. It seems that the adjacency matrix is a very useful way of storing and organizing the 

available read information and just a few steps away from the real solution. But solving haplotyping 

is a very complex problem, especially when the ploidy increases. Furthermore, with only short reads 

available, it can only be tackled as an optimization problem. For all those reasons, we decided instead 

to focus on improving PEDCA and finalizing it to deliver a ready-to-use tool, and simply reporting 

the efforts made in haplotyping.  
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6 A quick general conclusion with some personal reflections 
 

Polyploid assembly remains a very wide challenge, even more so with short reads. We started this 

research by briefly comparing some available de novo assemblers. This step alone opens up its own 

field of study that is so broad that is often overtaken by the speed at which new sequencing 

technologies develop. It is most likely that long reads will provide many answers to some of the yet 

unsolved problems, especially the one of repetitive regions. Yet, at the present moment, the 

complexity of some aneuploid genomes still resists many of our approaches. We’ve seen how our 

data, mostly due to the coverage’s standard deviation, becomes harder to analyze with depth of 

coverage analysis as the ploidy increases. Hybridization events, genomic content adaptations (like 

rapid gain and loss of heterozygosity), and small- and large-scale genome shifts and structural 

variations are also some of the assembly challenges that increase in complexity with an increase in 

copy number. 

 

We have examined new alleys for haplotyping and described our results and failures. But the focus of 

this research was put on providing an improved tool for copy number estimation. The result is 

PEDCA, a fast depth of coverage analysis tool that not only examines the number of alignments to 

the reference genome but can also take into account the allele variations to provide supplemental 

analysis. It is easy to operate because it only requires either a .bam or a .sam file, but it outputs 

additional analysis if an optional .vcf file is provided. It works on any operational system that has a 

Java platform. It outputs a detailed estimation of each contig’s ploidy and can detect fragments with 

copy number jumps within contigs. 

 

The tool provides extra insight into intra contig ploidy composition thanks its allowing detailed 

estimation by fragments. This knowledge can be very helpful for better understanding not only 

phenotype expression but also the evolutionary history of hybridization events and the complex 

structural combinations that arise in that context. The tool also has the potential to study cancer cell 

biology since copy number mutations is a common trait that appears in tumor cells. In the cancer 

framework, identifying ploidy segments can be very helpful for detecting specific mutated regions of 

the genome that diverge from diploidy. 

 

In order to achieve this work, many skills – both general and others that are much more specific to 

this particular research - had to be acquired. Computational biology has a very sharp learning curve 

and there are many challenges that students with no biological background have to face during their 

first years in the field.  

 

For this particular research, it was important to deeply comprehend the details and the technicalities 

surrounding the processes of assembling, scaffolding, aligning, and variant calling. This also 

involved becoming familiarized very quickly with shell operated programs and the cohort of 

bioinformatics tools that goes with them. It was necessary to acquire vast quantities of high level 

multidisciplinary knowledge (genetics, mathematics, statistics and machine learning) and understand 

complex algorithms with enough detail to be able to implement and adapt them to the particular 

setting of the problem (EM algorithm, mixture of Gaussians fits, k-means…). 

   

But this research has been much more than an academic journey. Behind the technical challenges and 

results hides a personal adventure with its own set of challenges and accomplishments of a very 

different nature. Coming from a very different and non-scientific background (holding a Master in 
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Social Communication and a Conservatory Degree in Theatre) and switching to the multidisciplinary 

field of Bioinformatics requires considerable effort, particularly for someone who is twenty years 

older than the average Master’s student. Working internationally for over 15 years in cultural related 

fields, in Human Rights and International Cooperation can shape the habits, methodologies and ways 

of thinking and relating to the world in ways that are very different from the scientific paradigm. 

Having to also manage everyday practical needs (for example finances, social and personal life) 

requires supplemental efforts that cannot be properly evaluated solely from the academic perspective. 

 

During this study, it was very satisfactory to see  the impressive work of the people at the 

Bioinformatics Laboratory of Delft applying very complex techniques to solve problems that can 

have such a tremendous impact on society. Computational biology has been driving the knowledge 

revolution for the last 20 years, bringing fast dramatic changes and profound implications as we 

increase our understanding of genetics’ complexity. The simplest developed tools have the potential 

to help biologists make advances that before would have taken them years to solve with pure wet lab 

labor. Inevitably, these applications will often be guided and influenced by the needs of other areas, 

very often with intentions that have no scientific interest and no benefits for society as a whole, but 

provide benefits only to private interests. 

 

It is the author’s opinion that great care must be taken when choosing the direction in which of all 

this power is applied. The Trypanosoma cruzi genome provided a meaningful context for the 

application of PEDCA. While not having a strong personal preference for or against modifying a 

yeast genome so that a industrial beer producer can reduce its costs, this particular author feels much 

more personal satisfaction knowing that the fruit of such efforts can instead bring insights that can 

potentially lead to prevention, treatments and cures for diseases that affect thousands of people 

around the world. 

 

It is in this direction that hopefully he will advance and deepen in his future steps in bioinformatics.  
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9 PEDCA Tutorial (Ploidy Estimation by Dynamic Coverage Analysis)  
 

 
PEDCA is a ploidy estimation algorithm that infers copy number of the contigs submitted as input based on the 

read coverage that aligns to them. It only requires as an input an alignment file in .bam or .sam format of a library 

or set of libraries aligned to a reference file of the contigs that will be estimated.  

 

Pre-processing the data (5 steps) 

We need to align the reads against a reference.  

 

Step 1. Index your reference. 

Example using bwa (all command in one single line): 

<path_to_bwa_aligner>/bwa index -a bwtsw   <path_to_reference_file/your_reference.fasta> 

 

Step 2. Align your reads to your reference 

Example using bwa and paired end reads (all command in one single line): 

 

<bwa_aligner_path>/bwa  mem  <path_reference_file/your_reference.fasta>   

<readsPath/readsPairEnd1.fasta>    < readsPath /readsPairEnd2.fasta>     >  <destination_folder 

/example.sam> 

 

Step 3. You might want to transform your .sam file into a .bam format  

Example using samTools (all command in one single line): 

 

<samToolsPath> /samtools view -Sb <destination_folder /example.sam>  > <destination_folder /example.bam> 

 

PEDCA just accepts one input file.  If you have several libraries you can put all your .bam files in a folder (or 

create a folder with symbolic links to all files you want to merge) and then:  

 

<samToolsPath>/samtools merge <bam_destination_folder/finalBamFile.bam>  *.bam 
 

Step 4. Sort the .bam/.sam  file  

Example sorting a .bam file using samTools (all command in one single line): 

 

<samToolsPath> /samtools  sort  -o  <destination_folder /sorted_example.bam>  -O .bam -T 

<temp_folderPath/tempName>   <destination_folder /example.bam> 

 

Step 5. Index the sorted .bam/.sam  file  

Example indexing a sorted .bam file using samTools (all command in one single line): 

 

<samToolsPath> /samtools  index <destination_folder /sorted_example.bam>   
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Using PEDCA 

 

PEDCA has been designed to require minimal parameterization. It works by running a sliding window 

over the genome and measuring the average depth of coverage inside each bin. Most of its parameters 

are dependent on the window length and have default values that allow PEDCA to function on contigs > 

500 bp and < 2.000 Kbp. Nevertheless, because each genome has its own particular characteristics, it is 

possible to tune in the rest of the parameters. Here is a list of those options and how they influence the 

output. 

 

At any moment you can obtain the following guide using:  java –jar PEDCA.jar -help 

(You can also use  ‘–h’ or  ‘help’) 
+++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

PEDCA -help: 

 

USAGE:    java –jar PEDCA.jar  -p <project name> -i < input sam/bam File> -o <output 

Folder> <<OPTIONAL PARAMETERS>>  

 

REQUIRED PARAMETERS: 

-p (project name)          – (String)  Prefix used to generate the results file. 

-i (input file)            - (Pathway to .bam/.sam file)   Pathway to the input file 

containing the alignment file. Must be a .bam or .sam file 

-o (output Folder)         - (String)   Pathway to the auto-generated output folder 

that will contain the results 

 

OPTIONAL PARAMETERS: 

-m (multi Run)            - (no parameters) Runs a preselected set of default window 

lengths {500,750,1000,2000,3000} 

-w (windows length)       - (int)      Length of the sliding window, to measure the 

coverage inside  contig. Default 500 bp 

-c (coverage rate)        - (int)    Rate factor for the coverage sampling in the 

Read count distribution. Default 100. The smaller it is, the less bins are sampled 

-k (mode smoother window) - (int)     Number of points over which the ploidy 

estimation is smoothed. The mode over k numbers of windows is used to average the 

values of the bin. Default=49  

-s (significant min)      - (double) Threshold to consider a cluster peak in the 

read count to be significant. Default 0.1 

-b (fitter bin factor)      - (double)  Affects the number of bins used to FIT the 

read count distribution. Default 2.5; Recommended between min=2.0 and max=4.0 

-v (allele frequencies)   - (Pathway to .vcf file)  Pathway to the file containing 

the variant calling. Must be a .vcf file 

-d (coverage data to use)    - (double) Fraction of coverage data that is used in 

the read count distribution to infer the different ploidies and their ratio. Values 

between 0 and 1. Default 0.97 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 

 

Downloading PEDCA            https://github.com/AbeelLab/Pedca  

https://github.com/AbeelLab/Pedca
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REQUIRED PARAMETERS: 

 

The first three arguments are required for PEDCA to function: 
 

 -p <project name> -i < input sam/bam File> -o <output Folder> 

 

PEDCA creates a folder named by the concatenation of the project name and the size of the window 

length at the output pathway indicated by the user. The output has the following structure: 

 

./<OutputFolderPath> 

./BaseCall 

  . BaseCallHistogramCluster_1.jpg 

. BaseCallHistogramCluster_2.jpg 

. Matrix1stCluster.vcf 

. Matrix2ndCluster.vcf 

./<Project Name<wl>> 

  ./Ploidy_Estimation_Charts 

  .PEDCA<Project Name<wl>>PloidyEstimation.txt 

  .PEDCA<Project Name<wl>>PloidyEstimation_2nd_Round_.txt 

  . readsDistribution.jpg 

  .readsDistributionFittedFINALRESULT.jpg 

 

 

 
OPTIONAL PARAMETERS: 

 
-w <window length> 

 

It is worth noting that the window length (wl), despite being the main parameter in PEDCA, is not a 

mandatory field. If no other preference is indicated, PEDCA runs with the default value of wl=500 bp. 

Even if the parameter is not required, the advantage of using PEDCA is to have a customizable window 

length; therefore it is strongly recommended to use it with different values and compare the results. 

 

A short wl provides more coverage data points to estimate the ploidy; you may want to shorten the wl if 

your ploidy estimation plot is too discontinuous or if it doesn’t have much coverage information to 

support a reliable estimation (Tutorial Figure 1). On the other hand, you may want a larger wl if your 

coverage/estimation plot looks overcrowded with too much variation in the coverage data, which leads to 

a fragmented discontinuous copy number estimation (Tutorial Figure 1). The minimum size of the 

window is 16 bp.  

 

The wl also affects the sampling in the read count distribution. If it is too big, it will lead to an irregular 

sampling with unrecognizable clusters and false cluster ratios (Tutorial Figure 1). If it is too small, the 

read count distribution will have its clusters merged together with long and thick tails that might hide 

undetected peaks (Tutorial Figure 1). 
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-v <Pathway to .vcf file>  

 

If this option is selected and a .vcf file submitted, a folder named BaseCall is also created at the same 

address, containing the allele frequencies plots and a matrix with the positions and frequencies of each 

base (order A,C,G,T).  

 

  

 

 

 
Tutorial Figure 1 Too short wl (50 bp; top figures), too long (30 Kbp bottom figure) and within optimal range 

(3 Kbp center figure) 
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-k <mode smoother window> 
 

The coverage data has a certain degree of variation that we don’t want to see reflected in the copy 

number estimation. In order to avoid undesired jumps in the ploidy plot, the points are averaged by the 

mode value over a bin of length k. If k is too small, it might lead to fragmented ploidy estimation in 

regions with noisy coverage (Tutorial Figure 2 top). The continuity is smoothed with the default k 

value of 50 bp (Tutorial Figure 2 bottom). The correct length of k depends on the required precision 

and can be parameterized. If k is too big, it might lead to the non detection of regions with different 

ploidies (i.e. large structural variations found in hybrid genomes) 

 
 

 
 
-m  <multiple window lengths run> 

            

This parameter enables multirun mode. Instead of running PEDCA with one single wl value, it 

automatically runs it five times with the preset values {500, 750, 1000, 2000, 3000} and outputs the 

respective results to the output folder. These values work well for contigs larger than 500 bp and up to 

2.000 Kbp. 

 
Tutorial Figure 2 k=20 top and k=50 bottom 
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-d <coverage portion of data to use (lower values)>     

 

In order for PEDCA to correctly fit and identify the read count clusters, it is important to select the 

correct domain of the plot. By default, PEDCA keeps 0.97 of the data and rejects the top values, which 

doesn’t affect the fitting of the read count PDF.  Nevertheless, some highly noisy data sets might have 

long tails on their last cluster with no significant ploidy information. This long tail might compress the 

significant clusters to a very small region of the domain, making it difficult to differentiate them and find 

their correct ratio. In those cases it can be very helpful to lower the fraction of data to use (and therefore 

narrow the domain). Values can range from 0 to 1 (Tutorial Figure 3). 

 

  

 

 
Tutorial Figure 3 The top plot uses a fraction 0.99 of the total data which makes 

its clusters hard to be identified. The bottom plot reframes the domain by using 

0.85 creating the necessary space among the clusters to identify them. Notice that 

this modification might affect also the range values potentially needing a tuning 

in the significant_min parameter (-s) 
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-c <coverage rate>  

 

The coverage rate is the definition with which the read count distribution is drawn. It affects the number 

of bins in the plot. The default value is 100. In some cases, when the plot is too irregular and sawed, it 

can be convenient to reduce this rate to have a fit that doesn’t identify false peaks (Tutorial Figure 4) . 

The bins might merge clusters if the sampling rate is too low, so it’s recommended to use this option 

with caution.  

 

 

 
  

 

 
Tutorial Figure 4 Two read count distribution of the same data set where only the 

coverage rate changes. Left c=250, right c=15 
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-s <significant min> 

 

When the read count is fitted, only peaks detected above a certain threshold are taken into account; 

otherwise insignificant oscillation peaks could be considered as clusters. The default value is preset to s= 

0.1 % of the normalized number of windows for a given read count. For some genomes, this value might 

be too big and real clusters could be missed with a potential misinterpretation of the correct cluster ratio. 

On the other hand, if the distribution has a long tail with isolated values that are not considered clusters, 

it is important to raise the threshold to ignore false peaks in that region that would also jeopardize 

finding the appropriate cluster ratio.  

 

In the example in Tutorial Figure 5, many micro peaks are detected in the long tail of the distribution. 

With a 0.2 significant minimum, all peaks below the red line are discarded. If the default value was used 

instead, an error message would be displayed because the peaks’ ratio would not make sense:  

 
 +++++++++++  bestScore.candidateUnit: No CN mixture was able to satisfy the constraints. Result == null 
 

 

  

 
Tutorial Figure 5 The red dots line indicates the significant min value (here 0.2%) below which peaks will 

not be taken into consideration 
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-b <number of fit bins>       

 

With the default value (2.5) PEDCA fits the read count distribution with 25 bins, that is 2.5 x the 

maximum number of ploidies that PEDCA can detect. That number is adapted to detect a few clusters 

that are not very spread out over the x-axis of the read count distribution. If the clusters are far away 

from each other, a higher number might better fit the distribution. It is recommended to remain between 

the values min=2.0 and max=4.0 
 

 
  

 
Tutorial Figure 6 Two read count distribution fits where only the fit bin factor rate changes. 

Top b=2.0, bottom b=4.0 

 

 

 

 

 



 

10 Supplement material                  

 

11 S.Pastorianus CBS1483 Illumina & Simulated Data stats 
 

 
 

Libraries used to obtain the CBS1483 S.Pastorianus reference used in this study are the same than 

those used by (van den Broek et al., 2015). The same libraries were used to obtain the variations that 

were introduced into our five simulated chromosomes and their respective haplotypes.  We also used 

the libraries statistics to build our simulated reads with the same values (length, number of reads, 

insert size and insert size distribution) 

12 Estimating insert size and insert size standard deviation from the 
S.Pastorianus CBS1483 libraries to recreate simulated reads of same 
characteristics  
 

 
 

Method used to estimate insert size of our simulated reads. 

 

1) Both ends of BaseclearCBS1483 paired-end data is aligned against the CBS1483 reference 

genome (providing both fastq files to the bwa-0.7.13 aligner). 

 
Supplemental Figure 1 Insert size mean and standard deviation of 3kb library. After fitting a Gaussian 

distribution to the insert sizes of the library with Matlab, we obtain the mean and its standard deviation. 

The first cluster at the left side of the insert size distribution is ignored, considered to be error reads. 

 
Supplemental Table 1 S.pastorianus CBS1483 Sequenced 

data statistics. 
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2) The information from the SAM/BAM files (TLEN field=fragment size) is extracted selecting only 

the number in the .bam’s 9th column of those paired-end read pairs that are uniquely aligned against 

the genome.  

3) The mean of the distribution of TLEN numbers generated in step 2 is computed. ie: mean 

fragment size(data)=3364    

4) The length of the sequenced end pair read (2x50 bp or 2x100 bp) is substracted from the mean 

fragment size to get the insert size.    ie:    3364-(2x50)=3264    µ(data)=3264   std(data)= 9.78% of µ 

 
Composition of Simulated chromosomes 

 
 

 
Supplemental Figure 2 Composition of the Five simulated chromosomes and composition comparison 

of base content between the real S.cerevisiae chromosomes and the simulated ones 

# Positions 3637706 100% 

# Passes 3313517 91.03% 

# No Passes (Variations) 326272 8.96% 

   # Amb (SNP’s) 16429 0.45% 

# Del 92814 2.55% 

# Low Coverage 206209 5.67% 

   # Del/LowCov 8336 0.23% 

# Del/Amb 2371 0.07% 

# Amb/LowCov 104 0.3% 

# Del/Amb/LowCov 9 ... 

Supplemental Table 2 Variant calling statistics on pastorianus reads 

over cerevisiae reference (chromosomes1-4 &10) 



13 Optimizing the Newbler assembly 
 

We run Newbler on our five simulated CBS1483 chromosomes with the default parameters. Without 

scaffolding, our assembly resulted in 825 contigs, many of them being shorter than 1.000bp. We 

want to retain the optimal amount of that assembly rejecting the shortest contigs. We measured the 

optimal minimal contig length to consider in order to minimize the number of assembly errors 

(contiguous regions that cannot be mapped together to the reference) and maximize the amount of 

contigs that can be aligned to the reference. Contigs shorter than the minimal contig length are then 

rejected. 

 

Supplemental Figure 3 top right shows that keeping only contigs > 500bp results in zero assembly 

errors. It also shows (Supplemental Figure 3 top left) that it minimizes the amount of total assembly 

that cannot be mapped to the reference (difference between the length of the input assembly and the 

amount that actually maps to the reference) in. This assembly retains 507/558 contigs. The optimal 

minimum contig length, corresponds with the shortest contig of CBS1483 assembly by (van den 

Broek et al., 2015), which was also assembled with Newbler. 

 

We reduced the number of contigs to 286 scaffolds with SSPACE, but we could not scaffold without 

any assembly errors.  

  

 
Supplemental Figure 3 Top left figure shows the difference between the total amount of Newbler’s 

assembly’s sequence (input bp –magenta-) and the amount of those contigs that maps to the control 

reference of our simulated data (mapped bp –green-). The minimum distance between them 

corresponds to the assembly that most reduces its unmapped regions (at min contig length = 500bp). 

Top right figure shows that the same value reduces the number of assembly errors to zero (magenta) 

while minimizes the % the assembly that remains unmapped (blue). Results were obtained using 

Quast (Gurevich et al., 2013) 
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Magnolya result on our 5 simulated chromosomes (Extract from Magnolya output). 

 

 
 

 

  

 
Supplemental Table 3 Our simulated dataset contained contigs with copy number raging from 2 to 4. 

Magnolya estimated a copy number of 1 for all contigs.  
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14 Using the allele frequencies to disambiguate the ploidy ratio. 
 

Aligning the available libraries against a given reference allows measuring the variations that were 

lost in the consensus assembly. The shape of the allele frequencies  distribution can help identify the 

copy number of each contig. A plot with bell shape centered around the 0.5 value, reflects that all 

bases are around the 50% chance of being in any of two alternative alleles, indicating a copy number 

of two for that chromosome (like chromosome 10 in Supplemental Figure 4) A plot with two peaks 

around 0.33 and 0.66, indicates base call present in either the 1/3 or 2/3 ratios, indicating a copy 

number of 3 (chromosomes 1,2 and4). When besides these two peaks an extra one appears at value 

0.5, some base are also present at the half/half ratio, which indicates a copy number of 4 (like 

chromosome 3) 

 

 
Supplemental Figure 4 After aligning CBS1483 S. pastorianus reads to the S288C cerevisiae reference 

genome, base calling is performed with Pilon.  Plotting the distribution of the Base Calls percentages stored in 

the .vcf file, seems to confirm Magnolya’s copy number prediction. A plot with bell shape centered on the 0.5 

value indicates a copy number of two for chromosome 10 (most right figure).  A plot with two peaks around 

0.33 and 0.66, indicates a copy number of 3 for chromosomes 1, 2 and 4 (first, second and fourth plots).  

Peaks around 0.33 , 0.66 and 0.5 values suggests a copy number of 4 for chromosome 3 (center figure) 

 

Applying the same principle we can infer the copy numbers from the different clusters in the read 

count distribution. outputted by PEDCA Supplemental Figure 5. Applied to the first and second 

clusters of our simulated CBS1483 data set we obtain a typical p=2 shape for the first cluster and p=3 

for the second one 

 

 

 

 

 

 

 

 

 

  

 
Supplemental Figure 5 Simulated CBS1483 allele feequencies from 1

st
 and 2

nd
 read count distribution clusters. 
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15 Results of the naive fit with very large window sizes. 
 

Simulated data 

Even with a very large window size (here, up to 100 Kbp) PEDCA fits correctly the main clusters of 

the read distribution. It is important to take into consideration that the original distribution of the 

simulated data has very clearly distinct clusters. 

 
Supplemental Figure 6 Naïve smoother fit to Simulated genome with wl=100 Kbp 
 

Base Clear Genome 

The following plot shows the fit with a wl=75 Kbp.  wl=100Kb is too big for any of the contigs in 

this genome to be run with PEDCA, so we explored and reached the upper limit of the window size 

parameter successfully, even with a real dataset. 

 

 
Supplemental Figure 7 Naïve smoother fit to CBS1483 Baseclear genome with wl=75 Kbp 
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16 Ploidy estimation fragmentation per round for different window sizes. 
 

 

  P1 # solved BC Total Nb Breaks 1st round 2nd round 

40 2 52 1 6769 6706 63 

50 1 51 0 1402 1315 85 

75 1 51 0 1062 1002 60 

100 1 51 0 425 417 8 

250 1 51 0 155 147 8 

400 1 51 0 77 69 8 

500 1 51 0 71 64 7 

750 1 51 1 77 63 14 

1000 1 51 0 73 54 19 

1500 1 51 0 88 50 38 

2000 1 51 0 102 48 54 

2500 1 51 0 97 46 51 

3000 1 51 0 93 47 46 

3500 1 51 0 89 35 54 

5000 1 51 0 167 44 123 

5500 1 51 1 187 41 146 

6000 … … … … … ... 

7500 1 51 0 448 39 409 

9000 1 51 1 299 37 262 

10000 1 51 1 320 35 285 

15000 1 51 1 636 30 606 

20000 2 51 1 758 27 731 

30000 1 51 1 1510 22 1488 

40000 1 50 1 4079 15 4064 

50000 1 50 1 6028 4 6024 

75000 2 47 1 6956 1 6955 
Supplemental Table 4 Ploidy estimation fragmentation per round for different window sizes. Running PEDCA 

on the Baseclear1483 sequencing shows different amounts of ploidy estimation fragmentation depending of 

the initial window size. If the initial wl is too small, the majority of the contigs will have too many coverage 

data points with so much noise than the estimation might be compromised. Since the second wl will be 

adapted to the smallest contig unsolved, (and only the small ones will be likely to have been solved) the 

second run will be better fit to solve the big contigs with less fragmentation. In the other hand a very big wl 

will not solve many of contigs, certainly not the smallest ones, the second wl adapted to the smallest unsolved 

contig which will not contribute much to provide continuous estimations for the rest of the genome. There is a 

range of ideal initial wl in between the two extremes (in this case from 400 bp to 3.500bp). 
 



17 Coverage/ploidy plots for the 8 common unsolved contigs in Baseclear CBS1483 

 
Contig 51 (989 Kbp) Contig41 (73 Kbp) and  both have a very irregular coverage information to make a reliable estimation 

 
Contig 46 (3291 bp) and Contig 48 (2346 bp) don’t have any reads mapping to them (is probably mitochondrial DNA) 

 
Contig 52 (953 bp) and Contig 54 (762 bp) both have a very irregular coverage information to make a reliable estimation 

  
Contig 53 (943 bp) and Contig 58 (621 bp) both have a very irregular coverage information to make a reliable estimation  
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18 Ploidy estimation for Baseclear CBS1483 from window sizes (2 Kb < wl < 16bp) 

 
Contig 4 (1460Kbp) wl=2.000 bp, with continuous p=3 and Contig 10 (1262Kbp) wl=2.000 bp, with constant copy number p=1 

 
Contig 2 (1038Kbp) wl=2.000  p={4,3,4} and Contig 1 (979 Kbp) wl=2.000  p=1 

 
Contig 12 (923 Kbp) wl=2.000 bp,  p={2,4} and Contig 3 (890 Kbp) wl=2.000 bp, p={1,5} 

 
Contig 7 (847 Kbp) wl=2.000 bp, p={2} and Contig 21 (823 Kbp) wl=2.000 bp,  with fragmented copy numbers P={3,1,3}  
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Ploidy estimation for Baseclear CBS1483 

 
Contig 16 (801 Kbp) wl=2.000 bp,  p=1 and Contig 5 (777 Kbp) wl=2.000 bp,  with p=3 

 
Contig18 (755 Kbp) wl=2.000 bp, P={3,2} and Contig 14 (747 Kbp) wl=2.000 bp,  with p=2 

 
Contig 6 (745 Kbp) p=1 wl=2.000  and Contig 15 (742 Kbp) wl=2.000  with p=2 

 
Contig 8 (741 Kbp) wl=2.000 bp, p=2 and Contig 24 (652 Kbp) wl=2.000 bp, with p=1 
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Ploidy estimation for Baseclear CBS1483 

 
Contig 9 (649 Kbp) wl=2.000 bp, p=2 and Contig 11 (637 Kbp) wl=2.000 bp,  with p=2 

 
Contig 30 (570 Kbp) wl=2.000 bp, p=3 and Contig 17 (556 Kbp) wl=2.000 bp,  with p=2 

 
Contig 13 (543 Kbp) wl=2.000 bp, p=2 and Contig 19 (463 Kbp) wl=2.000 bp,  with P={2,3} 

 
Contig 28 (463 Kbp) wl=2.000 bp,  p=2 and Contig 22 (452 Kbp) wl=2.000 bp,  with p=2  
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Ploidy estimation for Baseclear CBS1483 

 
Contig 23 (443 Kbp) wl=2.000 bp, p=2 and Contig 20 (398 Kbp) wl=2.000 bp, with p=3 

 
Contig 26 (463 Kbp) wl=2.000 bp,  p=2 and Contig 25 (398 Kbp) wl=2.000 bp,  with p=1 

 
Contig 27 (292 Kbp) wl=2.000 bp,  P={4} and Contig 34 (252 Kbp) wl=1.000 bp, with p=1 

 
Contig 29 (251 Kbp) wl=1.000 bp,  P={3,4} and Contig 31 (208 Kbp) wl=1.000 bp, with p=3  
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Ploidy estimation for Baseclear CBS1483 

 
Contig 37 (173 Kbp) wl=750 bp, p=2; and Contig 32 (149 Kbp) wl=750 bp,   with p=2    

 
Contig 33 (147 Kbp) wl=500 bp,   P={2,3,4}  and Contig 35 (117 Kbp) wl=500 bp,   with p=2 

 
Contig 36 (112 Kbp) wl=1.000 bp,   p=5 and Contig 40 (105 Kbp) wl=1.000 bp,   with p=2   

 
Contig 38 (90 Kbp) wl=750 bp,   p=4 and Contig 39 (77 Kbp) wl=750 bp,   with p=4,  
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 Ploidy estimation for Baseclear CBS1483 

 
Contig 42 (28.7 Kbp) wl=750 bp,   with p=2; and Contig 43 (28.7 Kbp) p=4, wl=500 

 
Contig 44 (19.6 Kbp) with p=1, wl=400 and Contig 45 (12.5 Kbp) p=4, wl=400 

 
Contig 47 (2.407 bp) wl=20  with p=2, and Contig 49 (1.686 bp) wl=20,  p=1,  

 
Contig 50 (1.644 bp) wl=20,  with P={2?,1?} and Contig 54 (762 bp) wl=20,   p=1 
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Ploidy estimation for Baseclear CBS1483 

 
Contig 56 (710 bp) wl=16,   with p=1 and Contig 57 (657 bp) wl=16,   p=1 

 
Contig 59 (526 bp) wl=16,   p=2 
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19 Ploidy estimation for Novogene CBS1483 from selected wl’s (2 Kb- 16bp) 

 
Contig 4 (1460Kbp) wl=2.000 bp, with continuous p=3 and Contig 10 (1262Kbp) wl=2.000 bp, with constant copy number p=1 

 
Contig 2 (1038Kbp) wl=2.000  p={4,3} and Contig 1 (979 Kbp) wl=2.000  p=1 

 
Contig 12 (923 Kbp) wl=2.000 bp,  p={2,4} and Contig 3 (890 Kbp) wl=2.000 bp, p={1,5} 

 
Contig 7 (847 Kbp) wl=2.000 bp, p={2} and Contig 21 (823 Kbp) wl=2.000 bp,  with fragmented copy numbers P={3,1,3}  
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Complete ploidy estimation for Novogene CBS1483 

 
Contig 16 (801 Kbp) wl=2.000 bp,  p=1 and Contig 5 (777 Kbp) wl=2.000 bp,  with p=3 

 
Contig18 (755 Kbp) wl=2.000 bp, P={3,2} and Contig 14 (747 Kbp) wl=2.000 bp,  with p=2 

 
Contig 6 (745 Kbp) p=1 wl=2.000  and Contig 15 (742 Kbp) wl=2.000  with p=2 

 
Contig 8 (741 Kbp) wl=2.000 bp, p=2 and Contig 24 (652 Kbp) wl=2.000 bp, with p=2!!  
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Complete ploidy estimation for Novogene CBS1483 

 
Contig 9 (649 Kbp) wl=2.000 bp, p=2 and Contig 11 (637 Kbp) wl=2.000 bp,  with p=2 

 
Contig 30 (570 Kbp) wl=2.000 bp, p=3 and Contig 17 (556 Kbp) wl=2.000 bp,  with p=2 

 
Contig 13 (543 Kbp) wl=2.000 bp, p=2 and Contig 19 (463 Kbp) wl=2.000 bp,  with P={2,3} 

 
Contig 28 (463 Kbp) wl=2.000 bp,  p=2 and Contig 22 (452 Kbp) wl=2.000 bp,  with p=2  
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Complete ploidy estimation for Novogene CBS1483 

 
Contig 23 (443 Kbp) wl=2.000 bp, p=2 and Contig 20 (398 Kbp) wl=2.000 bp, with p=3 

 
Contig 26 (463 Kbp) wl=2.000 bp,  p=2 and Contig 25 (398 Kbp) wl=2.000 bp,  with p=1 

 
Contig 27 (292 Kbp) wl=2.000 bp,  P={} and Contig 34 (252 Kbp) wl=1.000 bp, with p=1 

 
Contig 29 (251 Kbp) wl=1.000 bp,  P={3,4} and Contig 31 (208 Kbp) wl=1.000 bp, with p=3  
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Complete ploidy estimation for Novogene CBS1483 

 
Contig 37 (173 Kbp) wl=750 bp, p=2; and Contig 32 (149 Kbp) wl=750 bp,   with p=2    

 
Contig 33 (147 Kbp) wl=500 bp,   P={2,3,4}  and Contig 35 (117 Kbp) wl=100 bp,   with p={2,4} 

 
Contig 36 (112 Kbp) wl=1.000 bp,   p=5 and Contig 40 (105 Kbp) wl=1.000 bp,   with p=2   

 
Contig 38 (90 Kbp) wl=750 bp,   p=4 and Contig 39 (77 Kbp) wl=750 bp,   with p=4,   
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Complete ploidy estimation for Novogene CBS1483 

 
Contig 42 (28.7 Kbp) wl=750 bp,   with p=2; and Contig 43 (28.7 Kbp) p=4, wl=500 

 
Contig 44 (19.6 Kbp) with p=1, wl=400 and Contig 45 (12.5 Kbp) p=4, wl=400 

 
Contig 47 (2.407 bp) wl=50  with p=2, and Contig 49 (1.686 bp) wl=20,  p=1,  

 
Contig 50 (1.644 bp) wl=20,  with P={1} and Contig 54 (762 bp) wl=20,   p=1 
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Complete ploidy estimation for Novogene CBS1483 

 
Contig 56 (710 bp) wl=16,   with p=1 and Contig 57 (657 bp) wl=16,   p=1 

 
Contig 59 (526 bp) wl=16,   p=2  and Contig 55 (741 bp) wl=20,  p=3 

 

 

 

 

 

 

 



20 Mapping of CBS1483 Scaffold, to S.cerevisiae S288 and S.eubayanus FM1318. 
In order to evaluate our results we map the 59 contigs of the scaffold produced by (van den Broek et al., 2015) to S. pastorianus ancestors genomes. Sometimes, each 

scaffold maps to more than one ancestor chromosomes. We look at mappings in which at least 50% of the query scaffold aligns to at least 10% of the target ancestor 

chromosome. The following table shows the results. Headers: Percentage of the query scaffold mapped (‘%Query’) the name of the mapped scaffold (‘VdB 2015 
scaffold #’) its size (‘Q size’). Information from the target ancestor genome: percentage mapped (%Target) name of the reference chromosome and size. The last 7 

columns display the ploidy estimations from the different methods. When a chromosome is  fragmented with different ploidies, the estimations are order by 

decreasing length with p1 being the longest: ‘VdB p1-p3’ are the copy numbers estimated by Van den Broek et al. ; ‘PEDCA Bc’, is the result of PEDCA applied to 

the Baseclear sequencing. ‘PEDCA Ng!=’ signals only the estimation divergences between Baseclear and Novogene, both using PEDCA (‘!=’ different main ploidy 

from Baseclear, ‘+’additional fragment to Baseclear) 
%Query 
mapped 

VdB 2015 
scaffold # 

Q size 
(Kb ) 

%Target 
mapped 

Target 
Reference 

Reference 
size (Kbp) VdB p1 VdB p2 VdB p3 

PEDCA 
Bc_p1 

PEDCA 
Bc_p2 

PEDCA 
Bc_p3 

PEDCA 
Ng != 

99 1 979.75 98.74 SeubIV 982.54 1 2   1     !=1 
82 2 1038.13 80.5 SeubVII 1051.73 3     3 4     
18 2 1038.13 17.14 ScerVII 1090.94 1 4   3 4     
56 3 890.82 45.56 ScerVII 1090.94 1 4   1 5     
44 3 890.82 69.08 ScerVIII 562.64 5     1 5     
99 4 1460.99 94.57 ScerIV 1531.93 3 3   3       

100 5 777.50 95.49 ScerII 813.18 3     3       
98 6 745.80 98.53 SeubXV 741.89 1 2   1       
99 7 847.66 90.43 ScerXIII 924.43 2 4   2       
99 8 741.10 81.84 SeubXVI 896.11 2     2       
97 9 649.13 99.66 SeubXI 632.88 2     2       
98 10 1262.41 96.77 SeubII 1274.80 1 2 3 1       
99 11 637.73 94.77 ScerXI 666.82 2 3   2       
91 12 923.77 88.56 SeubXIII 953.69 2     2 4     
99 13 543.76 91.11 SeubV 588.91 2     2       
39 14 747.09 39.24 SeubX 747.93 1 2   2       
57 14 747.09 57.14 ScerX 745.75 2 1   2       
99 15 742.08 77.6 ScerXVI 948.07 2 4   2       
97 16 801.80 95.63 SeubVIII 813.83 1 2   1       
99 17 556.22 71.62 SeubXIV 768.02 2     2       
98 18 755.75 94.08 ScerXIV 784.33 2 3   2 3     
75 19 463.27 32.15 ScerXII 1078.18 2     2 3     
24 19 463.27 48.92 ScerI 230.22 3 4   2 3     

100 20 398.15 90.58 ScerIX 439.89 3     3       
98 21 823.16 73.82 ScerXV 1091.29 3     3 1     
99 22 452.43 43.17 SeubXII 1033.98 2 4   2       
99 23 443.17 40.6 ScerXII 1078.18 2     2       
64 24 652.26 55.43 SeubX 747.93 1 2   1     !=2 
35 24 652.26 30.98 ScerX 745.75 2 1   1     !=2 
98 25 347.59 31.31 ScerVII 1090.94 1 4   1       

100 26 392.54 97.34 SeubIX 401.36 2     2       
65 27 292.64 61.83 SeubIII 305.62 4             
35 27 292.64 32.17 ScerIII 316.62 4 3           
95 28 463.10 42.75 SeubXII 1033.98 2 4   2       
93 29 251.35 88.58 SeubVI 264.76 3     3 4     
95 30 570.60 93.97 ScerV 576.87 3     3       
94 31 208.41 17.89 ScerXV 1091.29 3     3       
99 32 149.73 84.69 SeubI 175.44 2 1   2       
56 33 147.91 7.64 ScerXII 1078.18 2     2 4 3   
40 33 147.91 25.78 ScerI 230.22 3 4   2 4 3   
89 34 259.47 85.75 ScerVI 270.16 1             

100 35 117.96 11.41 SeubXII 1033.98 2 4   2     +4 
99 36 112.95 19.88 ScerVIII 562.64 5     5       
96 37 173.01 21.7 SeubXIV 768.02 2     2       
91 38 90.52 8.69 ScerXVI 948.07 2 4   4       
71 39 77.90 6.17 SeubXVI 896.11 2     4       
95 40 105.97 9.33 ScerXII 1078.18 2     2       
48 41 73.25 54.55 SeubMito 64.00       *       
99 42 28.80 3.73 SeubXIV 768.02 2     2       
56 43 28.77 2.74 SeubV 588.91 2     4     +5 
91 44 19.65 10.17 SeubI 175.44 2 1   1       
63 45 12.55 1.35 SeubV 588.91 2     4       

100 47 2.41 0.22 ScerXII 1078.18 2     2     +1 
100 49 1.69 0.16 SeubXII 1033.98 2 4   1       

77 50 1.64 0.08 ScerIV 1531.93 3     2 1     
93 51 0.99 0.06 ScerIV 1531.93 3     *       
91 52 0.95 0.06 ScerIV 1531.93 3             

100 53 0.94 0.21 ScerIX 439.89 3             
100 54 0.76 0.05 ScerIV 1531.93 3     1       
100 55 0.74 0.1 ScerX 745.75 2 1           
100 56 0.71 0.05 ScerIV 1531.93 3     1       
100 57 0.66 0.28 ScerI 230.22 3 4   1       

96 58 0.62 0.93 SeubMito 64.00               
 95 59  0.59  0.95 ScerMito 85.00       2       

 



21 Ploidy estimation for Trypanosoma cruzi VI alignment (wl=1500bp, 2000bp) 

 
Chromosome1 p=2 wl=7.700 bp ;         Chromosome2 p=3 wl=7.700 bp ; 

 
Chromosome3 p=3  wl=7.700 bp ;          Chromosome4 p=2 wl=2.000 bp ; 

 
Chromosome5 p=2   wl=2.000 bp ;         Chromosome6 p={1,2,3?} wl=2.000 bp ;  

 
Chromosome7 p=2  wl=7.700 bp ;          Chromosome8 p= wl=2.000 bp ;  
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Ploidy estimation for Trypanosoma cruzi BroadTcVICLBrener alignment (wl=1500bp, 2000bp) 

 
Chromosome9 p={2,1} wl=2.000 bp ;         Chromosome10 p=2 wl=2.000 bp ; 

 
Chromosome11 p=2 wl=2.000 bp ;         Chromosome12 p=2 wl=2.000 bp ; 

 
Chromosome13 p=2 wl=2.000 bp ;        Chromosome14 p={2,3?}  wl=2.000 bp ; 

 
Chromosome15 p=2  wl=2.000 bp ;       Chromosome16 p=3 wl=7.700 bp;  
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Ploidy estimation for Trypanosoma cruzi BroadTcVICLBrener alignment (wl=1500bp, 2000bp) 

 
Chromosome17 p={2,3?} wl=2.000 bp ;        Chromosome18 p=3 wl=2.000 bp ; 

 
Chromosome19 p=2  wl=2.000 bp ;        Chromosome20 p=2  wl=2.000 bp ; 

 
Chromosome21 p=3 wl=2.000 bp ;         Chromosome22 p=2 wl=2.000 bp ; 

 
Chromosome23 p={1,2}  wl=2.000 bp ;         Chromosome24 p=2 wl=2.000 bp ;  
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Ploidy estimation for Trypanosoma cruzi BroadTcVICLBrener alignment (wl=1500bp, 2000bp) 

 
Chromosome25 p=2 wl=1.500 bp ;           Chromosome26 p={2,3} 

 
Chromosome27 p=2 wl=1.500 bp ;          Chromosome28 p=2 wl=1.500 bp ; 

 
Chromosome29 p={3,2} wl=1.500 bp ;          Chromosome30 p={2,3} wl= 

 
Chromosome31 p=2 wl=1.500 bp ;         Chromosome32 p=2 wl=1.500 bp ;  
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Ploidy estimation for Trypanosoma cruzi BroadTcVICLBrener alignment (wl=1500bp, 2000bp) 

 
Chromosome33 p=2 wl=1.500 bp ;         Chromosome34 p= 2 wl=1.500 bp ; 

 
Chromosome35 p={2,1}  wl=1.500 bp ;         Chromosome36 p={3,4?}  wl=500bp 

 
Chromosome37 p=2 wl=1.500 bp ;          Chromosome38 p=2  wl=1.500 bp ; 

 
Chromosome39 p=3  wl=1.500 bp ;         Chromosome40 p=2  wl=1.500 bp ;  
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Ploidy estimation for Trypanosoma cruzi BroadTcVICLBrener alignment (wl=1500bp, 2000bp) 

 
Chromosome41 p={2,1} wl=1.500 bp ;           Chromosome42 p=2 wl=1.500 bp ; 

 
Chromosome43 p=3 wl=8.000 bp ;           Chromosome44 p=2 wl=1.500 bp ; 

 
Chromosome45 p={2,1}   wl=1.500 bp ;         Chromosome46 p={3,4} wl=1.500 bp ; 

 
Chromosome47 p={2,1}  wl=1.500 bp ;        Chromosome48 p= 3 wl=1.500 bp ;   
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Ploidy estimation for Trypanosoma cruzi BroadTcVICLBrener alignment (wl=1500bp, 2000bp) 

 
Chromosome49 p=3 wl=1.500 bp ;          Chromosome50 p=2 wl=1.500 bp ; 
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