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Abstract

In the Broadcasting and Over-The-Top media-service industries, video content which is delivered to the
customer needs to be secured by encrypting or scrambling the content. The content then needs to be
decrypted or unscrambled at the end-users location. A common technique is to use a hardware device
which includes a secret key for the cryptographic operations. Many television providers use a Set-top Box
(STB) which is installed at the end-users home to execute this task. The security of the decryption or
descrambling method is enforced in the Set-top box by a Secure Chipset which resides on a System on
a Chip (SoC) in the Set-top box. In the market of Digital Video Broadcasting (DVB) or HTTP Live
Streaming (HLS) many different chip vendors compete. The vendors develop their own framework and
Application Programming Interface (API) which have to be used by the Conditional Access System (CAS)
and Digital Rights Management (DRM) vendors. The hardware design and implementation decisions are left
with the Silicon Vendor. This leads to fragmentation and the CAS and DRM vendors need to integrate with
many different solutions. Often broadcasting companies have many different Set-top Boxes with different
Chips deployed in the field. Updates for the program which runs on the Secure Chipset therefore have to be
developed and tested for the different chip types. This leads to raising costs as, for each chip type, a different
image has to be produced. Further in the world of Satellite communication it is not possible to unicast an
image to a specific STB. All images are broadcast to all the STBs and the STB itself decides which image to
use. It is not uncommon that six to ten different images have to be broadcast to all the STBs which leads
to a significant increase of bandwidth. In the case of satellite communication this bandwidth usage is very
expensive and undesired. In this thesis we propose a solution to decrease this bandwidth by creating an
abstraction layer between the Secure Chip and the image running on the chip. We created a Virtual Machine
(VM) which can interpret a suitable instruction set. This VM has to be integrated with the different chip
vendors only once during production of the chip. The image which runs then on the VM can be deployed in
later stages. The benefit is that only one image has to be produced and broadcast to the STBs which leads
to decrease of the used bandwidth. In this thesis we analyze the code size and performance penalty of the
VM compared to a native application running on a secure chip.
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Chapter 1

Introduction

In this chapter we provide background information about broadcasting of video content and how it is secured.
Further in Section 1.5 we discuss the problem and the research questions. In the following section the solution
approach is described. In addition we present some related work in the field and compare it to our approach
in Section 1.8.

1.1 Broadcasting Service

Broadcasting describes the distribution of media content such as audio or video to customers in a one to many
model. For the distribution of the content, different communication systems were used over the years. The
first broadcast system used radio transmitter and receivers to transmit content via radio signals over the air.
This kind of broadcasting is also called Over The Air Broadcasting (OTA) or terrestrial transmission. The
signal transmitted thereby was an analog signal. In analog broadcasting, all channels are broadcast at the
same time. The receiver then has to filter the signal to enable the end user to consume the desired channel.
The separation of the different channels is achieved by modulation, either frequency modulation (FM) or
amplitude modulation (AM). For example with frequency modulation, the signal of a channel is encoded into
the radio signal with a dedicated frequency. The receiver then can receive the specific channel by separating
out the signal on the dedicated frequency. Later on cable transmission was introduced which allowed to
broadcast more channels with less interference. Often the cable providers use local satellite stations and
distribute the signal from there over cables to the customers. Another possibility is when the customer has
a satellite receiver and directly connects to the broadcast satellite. This kind of transmission is also called
Direct-broadcast Satellite (DBS). This new broadcasting techniques allowed to enable new business models
where the customers pay for subscription. This in return introduced new requirements on the security of
the broadcast signal. To prevent users without subscription stealing the signal, new security measures had
to be implemented.

1.2 Television Encryption

The access to television services is secured by encrypting the signal. In television this method is often
also called “scrambling”. In the beginning television encryption involved filtering out channels to users
without subscription. With more channels available and more users with subscription, this system became
unmanageable. Newer systems introduced interference signals to channels and users with subscription needed
a set-top box to descramble the signal. But these analog encryption systems were all broken. With the rise
of digital television more sophisticated encryption mechanisms were introduced.
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1.3 Conditional Access Systems

Conditional Access System (CAS) describe a whole system which is used in digital television to protect
content. The system can control subscriber access to services, programmes and events. Generally a CAS
system consist of two subsystems. A scrambling subsystem which scrambles and descrambles the media
content for only subscribed users, and an access control system which determines if descrambling of the
content is allowed. An international standard for conditional access systems (DVB-CA) has been introduced
which includes a Common Scrambling Algorithm (DVB-CSA) and a Common Interface (DVB-CI) for access
control. The content in the standard is secured with a control word key of 128 bits. The encryption algorithm
itself is based on a two block cipher where the first algorithm is a variation of the AES128 cipher called AES’
and the second algorithm is a confidential cipher called eXtended emulation Resistant Cipher (XRC). The
control word itself is derived from another key and changes several times per minute.

1.3.1 Scrambling

Figure 1.1: Scrambling with Control Word

In a Digital Video Broadcasting (DVB) system the clear signal is encrypted with a key in a scrambler.
Usually this happens in a multiplexer or IP Streamer at the head end of the system. The key is defined in
the CAS algorithm as Control Word. The descrambler at the user end has to use the same control word to
be able to decrypt the signal again as shown in Figure 1.1. Usually this is done in the Set-top Box (STB).

The Control Word is chosen by the scrambler. For security reason the Control Word changes several
times per minute between two different Control Words. In the header of the transport stream two bits are
reserved to identify which Control Word is used or if the stream is not encrypted.

Bit values Description

00 No scrambling of transport stream packet payload (MPEG-2 compliant)
01 Reserved for future DVB use
10 Transport stream packet scrambled with Even Key
11 Transport stream packet scrambled with Odd Key

Table 1.1: Control Word in Transport Stream

1.3.2 Transmitting Control World

The Control Word is generated in the scrambler and needs to be sent to the descrambler. This is achieved
with the help of an Entitled Control Word Message (ECM). The ECM again is encrypted in a proprietary
way known to the CAS system vendor and sent over the transport stream.
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Figure 1.2: Transmitting the Control Word

The components which are used to transmit the control word are depicted in Figure 1.2. In the scrambler
module two control words (CW) are generated which are used to scramble the clear media stream. These
control words are then encrypted and send together with the scrambled transport stream to the end user.
Typically the ECM contains two control words, time information and channel identification. The time and
channel information can be used inside the STB to identify if the User is allowed to access a certain channel
during this time. Each Channel has its own ECM. Therefore before the STB can decrypt the signal it needs
to receive the ECM for the channel. This leads to a short latency after the channel is switched on the STB
and until the channel can be descrambled and shown to the customer. To reduce this latency when the
channel is changed the ECMs are repeated every 100ms.

1.3.3 Transmitting Access Information

The access information of the the CA system is needed to determine if the user has the rights to access a
certain channel or not. The DVB system needs to send access information to the STB for example when a
user signs up for a new channel. The messages sent include information such as, allow this user to watch
this channel for the next month or allow this user to watch this movie. This information is sent to the STB
with the help of Entitled Management Messages (EMM). The EMMs are then used by the STB to update
their internal access control database.

Figure 1.3: Transmitting the Access Information

Figure 1.3 shows all components which are used to transmit an EMM. When the subscriber information
is changed in the management system, new EMMs are generated. The EMMs are then inserted into the
transport stream with the help of a multiplexer. In the STB the EMMs are consumed by the access control
system. Together with the information in the ECM (date and channel information) the access control system
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decides if the user is allowed to descramble this content. The content of the EMM is proprietary and differs
by CAS vendor.

1.3.4 Protection of ECM and EMM

The protection of ECM and EMM messages is not defined in the DVB standard and is defined by the CAS
vendor. A common technique is that the EMM messages are encrypted with a root key. This scenario is
shown in Figure 1.4. In the STB, the EMM is decrypted with help of the root key. The EMM then contains
a session key (SK) which is used to decrypt the ECM messages. The decrypted ECM message at the end
contains the Control Word (CW) which is needed to descramble the media content. The root key is a key
which resides in the STB. This can be a key which is implemented on a secure chip. This chip can either be
directly in the STB or inside a smart card which can be connected to the STB.

Figure 1.4: Protection of ECM and EMM messages

1.3.5 Set-top Box Architecture

Set-top Boxes are deployed in the field by television companies to perform the descrambling of the encrypted
television signal. Modern Set-top Boxes are very powerful and real multitask machines. Decryption of the
TV signal thereby is only one part. A STB has to manager user data, record a program so it can be viewed
later on, access services for video on demand, download and display additional data from the internet and so
on. To be able to process this tasks at the hearth of the STB is a powerful Application Central Processing
Unit (ACPU). Usual tasks of this ACPU are:

• Initialize hardware components of the STB

• Fetch updates from the internet

• Monitor and process hardware interrupts

• Store user data and configurations in a database

This allows software developers to quickly respond to market changes and create new tools for the STB.
Although the ACPU is very powerful in general, many tasks are offloaded to special hardware modules.
For example the decryption and decoding of the video signal is very time critical and this functionality is
commonly offloaded to a special MPEG decoder unit. Another problem that occurs is the security of the
ACPU. The security of the chip relies on the software security. Further as this chips have to perform so
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many tasks, they have mostly access to various components such as a database, file system and a network
card. These factors increase the vulnerability and make these units not suitable for secure implementation
of the conditional access system. Therefore, a Secure Central Processing Unit (SCPU) is introduced which
can be accessed from the ACPU with a defined protocol. The separation of the components is depicted in
Figure 1.5. The ACPU is considered to be non secure and has access to all resources. The encoder and the
SCPU are segregated from other resources for security reason.

Figure 1.5: Set-top Box Components

In terms of software we can define two main components in a STB, the operating system and the
conditional access system. The operating system includes the main system including a kernel which is startup
when the STB is powered on. This OS manages different resources, interacts with hardware components like
tv tuner, displays a graphical user interface and processes commands sent via the remote control. At the
moment no standard STB OS exists. Broadcasters and STB manufacturers build their own operating system
which are often based on either Linux or Windows. These systems are generally hard to secure and are not
suitable for the conditional access system. The CA system itself resides on the secure chip which provides
protection against attacks and tampering. The DVB Common Interface (DVB-CI) defines the connection
between the operating system and the CA system. This standard enables the interoperability of STB models
between different CAS vendors. A television company can choose between different STB models and combine
it with the CAS system of choice if they follow the standard.
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Figure 1.6: Set-top Box Architecture [17]

Figure 1.6 shows the different components of a STB and their separation in more details. Tuner, Demul-
tiplexer, Inputs and Outputs are operating in the general non-secure part. The common interface defines
the connection between the general part and the conditional access system. The conditional access system
consists of modules to decrypt additional data such as ECMs and EMMs and the DVB descrambler. The
implementation of these modules rely on the secure chip implementation of the STB vendor. The CAS
vendor therefore has to integrate with multiple STB vendors which are used by the cable company. When a
CAS system is compromised it needs to be updated to restore the confidentiality and security of the system.
Updates to the CAS system are sent over the transport stream which also is used to send video content and
ECM and EMM data. Therefore this stream is already very utilized and any additional data reduces the
throughput of other data. If a CAS system is broken it needs to be updated for all models which support this
CAS system. This leads to several downsides. For each model a different update needs to be generated for
the specific architecture of the secure chip technology. Further because of the architecture of the transport
stream, the specific update can not be unicast to the STB which needs the update, but all updates for all
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models have to be send to all STBs. The STB then needs to pick which update can be installed. It is not
uncommon that a CAS vendor needs to integrate with 6 to 10 different STB models for a customer. This
means that 6 to 10 different updates are broadcast over the transport stream to the STBs.

1.4 Secure Chip Design

Secure Chips provide another level of physical protection to keep keys and encoded content secure. In a
normal processing unit the secret key which is used to decode a content needs to be loaded into the RAM
at a certain moment so it can be used. For this purpose the key is transferred in unencrypted over a bus to
the RAM. An intruder can monitor the bus and get access to the secret key. This problem can be solved
with a Secure Chip. The secure chip has an internal RAM and ROM. In the ROM the initial program and
a root key resides. This information is burned into the chip during manufacturing and can not be changed
afterwards. To prevent that a malicious application running on the Secure Chip accesses the root key, a
secure bootloader which starts the program ensures that only the genuine program has access to the root
key. When the initial program is loaded further secret keys which are protected with the root key can be
decrypted and loaded into the secure RAM. The bus during this operation can not be monitored.

And ideal Secure Chip has the following properties:

• The ROM and RAM cannot be physically accessed

• The buses inside the chip can not be monitored

• Tampering or removing components invalidates the chip

1.5 Problem Description

One of the challenges which occurs nowadays is how to update the software (images) which run on the Secure
Chip. This can be necessary when new encryption techniques for the video streams are required. In the
market of DVB devices many different silicon vendors compete. Each vendor provides their own solution
and compete in performance, security and utilisation of silicon with the other competitors. The above
mentioned battle leads to a fragmentation of different secure-silicon devices where CAS and Digital Rights
Management (DRM) vendors have to integrate with. Often broadcasting companies have many different
Set-top Boxes with different Chips deployed in the field. Updates for the program which runs on the Secure
Chipset therefore have to be developed and tested for the different chip types. This leads to raising costs
as for each chip type a different image has to be produced. Further in the world of Satellite communication
it is not possible to unicast an image to a specific STB. All images are broadcast to all the STBs and the
STB itself decides which image to use. This leads to a significant increase of bandwidth. In the case of
satellite communication this bandwidth usage is very expensive and undesired. The increasing diversity of
secure chips and the resulting increase in needed bandwidth to update devices for broadcasting services is
the problem we want to investigate in this thesis.

1.6 Solution Approach

To try solving the problem of many different secure chip software implementations, we propose to add an
abstraction layer on top of the secure chip. As abstraction layer we propose a Virtual Machine (VM) which
can interpret a suitable instruction set. We define the architecture on which the VM is running as the
host architecture and the architecture which is interpreted by the VM as the guest architecture. Further we
call applications which run on top of the VM images. Images are programmed for the guest architecture
which can be interpreted by the VM. By using an established instruction set architecture as guest archi-
tecture we give more flexibility to developers for changes in the future. A developer can implement code
in the language of choice and compile it to the guest instruction set which can be understood by the VM.
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Further, by using already established instruction sets, common tools can be used to execute these tasks.
As the virtual machine needs to be ported to several different host architectures, we decided to create an
emulation VM written in C. This allows fast porting of the VM by just compiling it to the desired host
architecture. This will cause performance decrease, but the advantage of this solution is the portability of
the VM to other secure chip architectures. Another advantage of the emulation approach is that it allows
to add further security measures. For example we added another encryption of the instructions of the image
which is running on the secure chip. With this approach the image can be loaded over an insecure channel
to the secure chip and only the VM on the secure chip can decrypt and interpret the instructions of the image.

To evaluate the above described solution approach we want to answer the following research questions.

• Is it feasible to create an abstraction layer for Secure Chips to run applications on?

• What guest instruction set is suitable for the abstraction layer?

• How large is the code size overhead of the abstraction layer?

• How large is the execution time overhead of the abstraction layer?

For comparison we choose two guest instruction sets which can be intepreted by the VM. We decided to
use two established Reduced Instruction Set Computing (RISC) architectures which allow us to use available
tools to create the images for the VM.

• MIPS (Microprocessor without Interlocked Pipeline Stages)

• ARM (Advanced RISC Machine)

1.7 Thesis Contribution

In this thesis we developed and run a virtual machine on top of a secure chip. We proved that it is possible
to run a virtual machine, as an abstraction layer, on a secure chip. To evaluate the execution time slowdown
we used the two platforms, Arduino and ST. Additionally we compared two different instruction sets, ARM
and MIPS, from which the ARM instruction set proved to be more suitable. During the analysis of the
code size overhead, we discovered that the image size of ARM images are substantially smaller than native
images, which would lead to a drastic decrease of bandwidth usage. For example if a broadcaster uses the
ARM VM instead of four native applications, up to 80% of bandwidth usage for an application update can
be saved.

1.8 Related Work

In this section, we present related work in the field of media protection and virtual machines.

1.8.1 Self Protecting Digital Content

Self-Protecting Digital Content [8] was an architecture developed to secure digital content on optical discs and
led to Blue-Ray Digital Right Management system BD+. In the time when optical drives were most popular
for content distribution, protecting and securing the content faced several problems. One of the problems
was the long live time of the devices and mediums and that the security measures which were for example
implemented for DVD were in the hardware and not updatable. When the security was compromised it was
not possible to just easy install a new security measure. Another problem was that the device manufacturers
were not merely interested in creating the most secure devices as if the content was compromised it did not
lead to less revenue for the device manufacturer but alone for the content provider. Moreover, less secure
devices which were able to play DVD disregarding of the country code were more attractive for customers
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to buy than more restrictive one. The content provider should have taken control to develop a secure
architecture. The above mentioned not ideal condition led to the not very successful DRM system for DVDs
called Content Scramble System (CSS). The system was introduced in 1996 and was first compromised
in 1999. CSS was implemented in the player with a fixed security policy for all content. With a valid
key all media could be decrypted. To achieve this, the keys were preloaded in the device. One of the
design flaws in CSS was that a proprietary cryptographic algorithm was used which proved to be trivial to
break. But even though if a strong unbreakable known cryptographic algorithm would have been used often
poorly implemented key management allowed attackers to extract the keys without the need of breaking the
cryptographic algorithm.

After the failure of CSS, a study proposed the solution of Self-Protecting Digital Content [8]. The idea
is to include the security in the content itself and not implement it in the device. This would allow content
providers to react to new threats. If a security system is compromised it would be only compromised for the
specific content. New content could include updated security measures without updating the player.

Figure 1.7: DVD protection [8]

The proposed implementation consist of a virtual machine, as seen in Figure 1.7, which has access to
cryptographic modules with keys. Further the virtual machine has an interface to the control unit and can
control how the content is decrypted and played to the output of the system. The code which determines
how the video content is decrypted is also on the disc and loaded in advance in a secure way to the ROM
of the VM. This decrypting code resides on the VM and loads the content, decrypts it and sends it to the
output of the device.

Even though this technology was developed for content on optical discs which are a little bit outdated
nowadays, similar techniques can be adopted to the over the top content distribution. A VM on a device or
in a software player can preload descramble information which is included in the content which is send to
the customer. The preloaded code includes the security measures which allow the user to see the content.
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This technology also provided a virtual machine with many special system calls which allowed the de-
velopers of the DRM software to access other components of the STB. The developed virtual machine was
designed for a special chip and was not designed for portability. The main goal was not to emulate a different
instruction set but to offer a platform to content providers to secure their content.

The goal of our VM on the other hand is to emulate a guest instruction set and to allow the VM to be
ported to different hosts architectures easily.

1.8.2 Terra Trusted Virtual Machine

Terra [6] is a trusted virtual machine which solved the problem of how applications are secured on a modern
operating system. Operating systems usually contain millions of lines of code and applications built on top
have to rely on the security of the operating system. Further applications running on these systems are
often not securely isolated from each other. Another problem addressed by Terra is how applications can
be authenticated to verify the identity of the program. At the heart of Terra is a Trusted Virtual Machine
Monitor (TVMM), which partitions a single tamper-resistant, general-purpose platform in multiple isolated
virtual machines. Terra provides the property to authenticate the software running in the VM to remote
parties, hence the name trusted virtual machine monitor.

Figure 1.8: Terra [6]

As shown in the figure the TVMM runs directly on the hardware and each application can run on his own
operating system. This offers much freedom to the developers. The applications are then authenticated by
the TVMM and can communicated to other applications running on the TVMM in a secure way. Although
this approach offers interesting security features, the concept relies on powerful hardware and seems not to
be an appropriate solution to run on secure chipsets.

1.8.3 Virtual Machine for Microcontrollers

Virtual machines were also considered for microcontrollers [5]. To find a suitable virtual machine for micro-
contollers is not that trivial though. Therefore several small virtual machines were evaluated for this task.
Microcontrollers have very small capacities, usually about 128-256K of flash memory and 128K of RAM.
Therefore a virtual machine which performs well on a microcontroller would also be a good candidate as a
virtual machine for secure chips. In the paper several VMs are evaluated.
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Virtual Machine Estimated Code Footprint

Java SE 6 68 MB
Java SE Embedded 29.5 MB
Java J2ME—CDLC 128 KB
Java Card 256 KB
.NET Compact Framework 5.5 MB
.NET CLI (Mono) 4 MB
.NET Micro Framework 200 KB
Squawk (Java derivative) 149 KB
Dis (Inferno) 311 KB
Parrot 322 KB
LLVM 1,336 KB
LUA 109 KB
eLUA 219 KB
Squirrel 106 KB
PICOBIT 15.6 KB
P-Code (Standard Pascal) 28 KB
M-Code (Modula-2) 16 KB

Table 1.2: Virtual Machines for Microcontrollers

From the virtual machines listed in the Table 1.2, all larger VMs were excluded and seen as no good fit
for microcontrollers. Further it was stated that all Java VMs included only a subset of the Java standard and
preprocessing of the images running on the VM is often required. All VMs for dynamic scripting languages
were also excluded from their consideration. Dynamic scripting languages are not considered suitable for
microcontrollers as the programs running on the controller depend on precise CPU cycles. This led at the
end only to Modula-2 and Pascal variants as candidates. Modula-2 was eliminated because of unpopular-
ity of the language and the lack of tools available. At the end they choose to use the Pascal P5 VM (P-Code).

In the first step they ported the VM to the microcontroller architecture. This involved several steps and
modifications of the C code of the VM where necessary. In later steps they also included optimization of
the VM which improved the speed. Before the improvement the VM on the microcontroller was 275 times
slower compared to the native implementation of the applications. After the optimization the program was
able to spend only 7.4 times more than the native application.

The VM considered in this paper has a very small footprint and could also be interesting for secure chips.
For our approach, Pascal was not considered as a suitable language to develop applications for the secure
chip though. Further the process of porting the Pascal VM seems very complicated and not straight forward.
The goal of our VM is easy portability.

1.8.4 Tiny Virtual Machine for Sensor Networks

Maté [9] is a VM designed for small wireless sensor devices. It runs on top of a small operating system called
TinyOS. The main goal of Maté is to reduce the size of the applications running on the device. This allows
to reduce the energy cost when new programs have to be transmitted to the devices. To achieve this Maté
understands only 24 instructions which are tailored to the needs of applications in sensor networks. This
allows to create complex programs with sizes under 100 bytes.

Although this concept is very good for applications in sensor network, it is very limited in the field and
offers not enough diversity. Further, applications have to be written with the instructions understood by
Maté and can not be written in C and then compiled.
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1.8.5 ARM TrustZone

ARM defined an approach how security can be implemented on a System on a Chip (SoC). ARM TrustZone
is part of version 8 of the ARM instruction set and provides a Trusted Execution Environment (TEE). TEE
is discussed in Section 2.4. SoC vendors and OEMs can implement the framework according to a reference
implementation which is provided open source by ARM.

The concept of TrustZone is to have a secure and a non-secure world where the hardware is isolated from
each other. A software runs either on the secure world or in the non-secure world and they can communicate
with each other over a secure monitor. With hardware isolation not only CPU is isolated but also memory,
bus and peripheral interfaces. Typical applications of the TrustZone are DRM implementations, secure key
storage, mobile payment and authentication mechanisms. Applications which run in the trusted zone (secure
world) are called Trusted Apps and are considered to be secure against software and hardware attacks.

Figure 1.9: ARM TrustZone [11]

Compared to external hardware security modules such as smart cards, the TrustZone offers a more flexible
solution. External hardware security modules are very secure but offer only limited functionality. A smart
card has only access to assets on the smartcard itself and can not directly interact with other components
of the system. For example, it is not possible to directly secure user interfaces. Another disadvantage of the
smartcard solution is the low processing performance available. The specifications of such devices are in the
region of 5-20 Mhz with only limited amount of memory. This characteristics limit the range of applications.

Internal hardware modules are located on the SoC itself and consist of isolated components to the gen-
eral purpose processing engine. It is also possible that the same general purpose components are used for
the security module including a hardware logic component which prevents unauthorized access to sensitive
resources. This systems have a big performance and cost advantage compared to the smart card solution.
But still due to the isolation they often offer only a limited amount of functionality, like key management
and some basic cryptographic operations.

In TrustZone the secure and non-secure world reside on the same processing units. Each processor has a
secure and a non-secure part. For example a SoC with 4 processors has 4 non-secure and 4 secure worlds.
A monitor software distributes then the resources.

The concept of TrustZone is very flexible but due to this flexibility exposes also many attack vectors.
TrustZone implementations of Qualcomm have been proven to be vulnerable [13]. Qualcomm is used by many
Android phone manufacturers and vulnerabilities in those chips offer the possibilities to attack millions of
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phones.
A further problem of the Qualcomm solution was that the images for the secure world are not encrypted.

This allowed researchers to reverse engineer the code and find attack vectors in the code.

ARM TrustZone is an interesting concept for secure applications but are limited to ARM Architecture
chips. In the world of STBs many different chip vendors are present. The CAS vendor would rely that each
chip vendor implements ARM TrustZone. Our solution on the other hand tries exactly to cicrumvent this
problem. Moreover, our virtual machine could be used as abstraction layer on top of the ARM Trustzone.
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Chapter 2

Background

For the abstraction layer between the secure chip and the application running on the chip we will create a
virtual machine. The concept of virtual machines is closer discussed in this chapter. Further we discuss the
instruction sets we considered for our virtual machine. Additionally, we also give some detailed information
about Trusted Execution Environment (TEE). Some secure chip manufacturers, for example ST, implement
the TEE standard to provide an interface between unsecure applications and secure applications running on
the secure chip.

2.1 Virtual Machines

In early stages of computer development, the hardware was designed first and the software was later devel-
oped specifically for the hardware. These programs where quite simple but could not be interchanged to
other hardware architectures. Quickly, it became evident that software compatibility and portability is very
important. To accomplish this, the Instruction Set Architecture (ISA) was introduced. The ISA defined the
interface between hardware and software precisely and allowed to run programs on different hardware if the
same architecture was supported. This was already a big improvement. The problem still existed though
that different ISAs emerged and programs compiled for one ISA could not be run on hardware of another
architecture. In addition, operating systems were developed which manage the hardware resources and allow
simplification of writing applications which run on top of the operating system. The operating system there-
fore exposes interfaces to the application developers. This added another problem that programs written for
one operating system can not be used on a different operating system. This limitation can be circumvented
with the help of a Virtual Machine (VM) [14]. The VM adds another layer between the underlying platform
and the software to be executed. The VM thereby appears to the software as the platform required to run
the program. This can either be a specific ISA or a full operating system.

In Figure 2.1 such a layer is shown between the hardware and the operating system and application. We
shall name this layer virtualizing software or Virtual Machine Monitor (VMM). As shown in the figure the
application which needs to be executed either uses the Application Binary Interface (ABI) interface of the
operating system or an privileged instructions to access hardware resources. The VMM intercepts privileged
instructions to manage shared access to hardware resources. For the guest application it seems a direct call
to the hardware resource was performed. Additionally the VMM virtualizes the ISA which is expected by
the operating system and the application. We define the platform on which the VMM runs the host platform
which provides the host ISA. The operating system or application which runs on top of the VMM we define
as the guest system. Guest applications therefore expect the guest ISA.
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Figure 2.1: Virtual Machine Composition [14]

Virtualisation is only one application of virtual machines. The four major task of VMs are:

• Emulating: The Host system has a different ISA or ABI than the guest system. The Virtual Machine
can either emulate the Guest architecture on top of the Host system or translate the Guest architecture
to the Host architecture.

• Optimizing: The Virtual Machine interprets the Guest software and can include optimization on
various kind of vectors like decrease the memory footprint or reduce the amount of executed instructions
by taking implementation specific information into consideration.

• Replication: Given a single Host platform, a Virtual Machine can allow to run multiple Guest systems
at the same time. Through virtualisation of resources each Guest system can be decoupled of the other
Guest system. But also sharing of resources to several Guest systems is a possibility.

• Composing: By combining the various types of Virtual Machine we can provide execution platforms
to flexible systems.

For our solution we mainly focus on the emulation part of the virtual machine. In this case the instructions
of the secure applications are interpreted by the virtual machine and executed on the host chip architecture.

2.1.1 Process And System VMs

In terms of virtual machines, we also make the distinction between process and system virtual machines.
The two different concepts are shown in Figure 2.2. A process VM is only executed to support the process
and terminated when the process is finished. An example is the Java VM, which is able to execute Java
binary code in an individual process. The most common tasks for a process VM are replication, emulation
and optimization. In a process VM, the virtualizion software is also called runtime.
System VMs, on the other hand, provide a complete environment in which many processes can coexist. This
allows to run multiple guest operating systems simultaneously on a single host. The main task for system
VMs is replication. In a system VM the virtualization software is also called Virtual Machine Monitor
(VMM).
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Figure 2.2: Process VM (a) and System VM (b) [14]

Our VM falls in the category of the process VM. The VM will be used to execute an application image
and it is not intended to run several images at the same time.

2.2 Instruction Sets

The ISA is the interface between software and hardware. It is the visible part of the processor to the devel-
oper. A programmer can either implement a program for the processor by using the instructions or compile
a program to the specific ISA. The instructions are then executed by the processor. Our VM is going to emu-
late a processor and therefore has to perform the same task as a real processor which executes the instructions.

To explain how instructions are executed we want to describe the most important parts which are used
to execute an instruction:

• Central Processing Unit: Is the processor in a computer which performs the instructions. The three
main components are the Arithmetic Logic Unit (ALU) to perform arithmetic and logic operations,
registers to store results from the ALU and a control unit which is in charge of fetching and executing
instructions.

• Arithmetic Logic Unit: Is the part in a Central Processing Unit (CPU) which performs arithmetic
and logic operations such as add two numbers or bitwise AND two numbers. The result is either stored
in the register or in the memory.

• General Purpose Register: Is a special part in the CPU to store information such as results from
the ALU or pointers to regions in the memory. The general purpose register is usually used by ALU
instructions for the parameters and the return value. The access of these internal registers is much
faster than access of the memory which is outside of the CPU.

• Special Purpose Register: Other registers in the CPU have predefined tasks. For example the
Program Counter (PC) keeps the address of the current instruction in the memory. The stack pointer
(SP) points to the top of the stack. Other special registers may be used for overflow flags etc.
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• Stack: Is a special region in the memory which is used to keep information about subroutines. For
example when a function is called the parameters of the function and the return address, from where
the function is called are pushed to the stack. The subroutine can then read the parameters from the
stack and when it is finished use the return address to go back from the caller. As the name indicates
the stack uses LIFO (last in first out) data structure. Usually the stack is initialized by the operating
system and has a limit. A stack overflow happens when the stack limit is exceeded, for example when
too many subroutines are called.

• Heap: Is a region in the memory which can be used by a program but is not structured. To use
memory in the heap the program needs to allocate memory and free it when it is not used anymore.
A memory leak is the situation when a program forgets to free the unused memory and therefore the
region will not be available for other programs. These can lead that the whole memory is exceeded
and the computer may crash.

The main tasks of the processor are fetching an instruction from the memory, decoding the instruction
and executing the instruction. To perform all these tasks the registers, the ALU and the stack are utilized.
Our VM emulates a processor and therefore has to perform the same tasks with a virtual register and stack.
Where the input operands have to be stored to execute an ALU instruction is defined by the ISA type. Over
time different versions where developed which used different components for calculations. The three most
common types are:

• Stack ISA: The operands for the ALU are implicitly pushed to the stack. The ALU then performs
the operations directly with the values from the stack.

• Accumulator ISA: Uses a special register, the accumulator, in the CPU to store one operand implicit.
The ALU then can use this accumulator and another input value to perform operations.

• General Purpose Register ISA: All operands are mentioned in the instruction explicitly. They are
stored either in the memory or on the register beforehand. The CPU offers for this several general
purpose register which can be used. An architecture which allows that the operand is in memory or
register is also called register memory architecture. An architecture which only allows operands to be
in register is called register register architecture.

From the three above mentioned architectures the general purpose register architecture is the most
successful one and is used almost exclusively in modern computers. Beside of differences where the operands
are stored for the ALU, architectures also differ by instruction design. Two main architectures with different
instruction designs are known today.

• Complex Instruction Set Computing (CISC): Is a processor design where a single instruction
can execute several low level instructions at the same time. The design principle was to reduce the
amount of instructions which the processor has to perform and support higher level programming
constructs directly on instruction level. This has the advantage that less instructions are needed and
the resulting program is smaller. These type of instructions sets have a large amount of instructions
whereby instructions are added over time and have variable length. Further complex instructions
can use several clock cycles in this architecture. This makes it difficult to optimize the order of the
execution of instructions.

• Reduced Instruction Set Computing (RISC): Follows a different design principle than CISC. It
was suggested that a smaller instruction set, where each instruction uses only one clock cycle, can easier
be optimized and at the end achieves a better performance than a processor with CISC architecture.
Therefore, the reduced instruction set was developed, whereby ”reduced” does not refer to lesser
instructions but the amount of work a processor has to perform compared to complex instructions.
Another feature is that commonly RISC instructions have a fixed length which simplifies fetch, decode
and execution logic on the processor. This allows to produce processors with less transistors compared
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to CISC but more registers and increase internal parallelism. One drawback of the RISC architecture
is that usually more instructions are needed to complete the same task as one complex instruction
which results in larger application sizes.

As RISC instructions are in general smaller and simpler to decode, we decided to use this architecture
for our VM. This will also help to keep the VM implementation small enough for our target processor.

2.2.1 MIPS Instruction Set

MIPS stands for Microprocessor without Interlocked Pipeline Stages and is a reduced instruction set com-
puter architecture (RISC) originally developed by researchers from the Stanford University which later on
founded the company MIPS Technologies. MIPS is a register-register architecture in which operands have
to be stored explicitly in the registers before they can be used by the ALU. To access the memory, load and
store operations are needed. Over the years several versions were developed from MIPS I until MIPS V and
later on MIPS 32 and MIPS 64. The original MIPS ISA I to V has been extended in a backward compatible
fashion. That means all MIPS I instructions where also valid in MIPS II to V. This had the advantage that
programs which run on a MIPS I processor, run also on a MIPS V processor. 64-bit integers and addresses
were added in MIPS III. MIPS was first intended for computer like environments but later on had more
success in the embedded market. Embedded systems have different requirements in regard to memory usage
and performance. MIPS 32 and MIPS 64 are intended to address this needs. MIPS 32 was then based on
MIPS II, which did not support any 64 bit instructions, and MIPS 64 on MIPS V.

For simplicity reasons we decided to implement MIPS I ISA in our VM which consists of 61 instructions.
For this reason when a program for the VM is compiled, we have to specify that only MIPS I instructions
are allowed. The MIPS I instructions are defined in the reference manual [7] from MIPS. All instructions
which are included in MIPS I and are implemented in the MIPS VM are listed in appendix A.

MIPS Registers

MIPS has 32 registers. The registers are used by the current executed instruction to store parameters and
return values, but also to store pointers to the stack etc.

Number Name Usage

0 $zero constant value 0
1 $at reserved for the assembler
2-3 $v0-$v1 values for results and expressions
4-7 $a0-$a3 arguments (procedures / functions)
8-15 $t0-$t7 temporaries
76-23 $s0-$s7 saved
24-25 $t8-$t9 more temporaries
26-27 $k0-$k1 reserved for the operating system
28 $gp global pointer
29 $sp stack pointer
30 $fp frame pointer
31 $ra return address

Table 2.1: MIPS registers

The registers and their usage are listed in Table 2.1. Register 4-7 (a0−a3) are used to pass the first
four function parameters. All subsequent parameters of the function call are passed through the stack. The
return values of the function are stored in register 2-3 (v0−v1). For 32 bit values only register 2 is used. For

22



64 bit return values, both return registers are used. The stack pointer is set to the top of the stack at the
beginning of a program and grows down when values are added to the stack.

MIPS Instructions

MIPS I includes 61 instructions which we can be divided in four categories. Load and store instructions,
arithmetic and logic operations, jump and branch instructions and miscellaneous instructions.

Load and Store instructions: In a CPU the access to a register is much faster than the access to
memory. Therefore operational instructions only use parameters in the register. To prepare the data in the
registers for the operational instructions, load instructions are used. To store the results from the operational
instruction back to the memory, store instructions are used. An example of a load instructions is the load
binary (LB) instruction as shown in Table 2.2. The parameters of the instruction are used to calculate the
address in the memory where the data has to be loaded from. For the LB instruction the base address and
an offset are added together to calculate the address. The byte in the memory at the calculated address
is then stored in the target register, which is another parameter of the instruction. After the instruction
finishes successfully, the program counter (PC) is advanced by four. During the next cycle of the CPU the
next instruction will be read where the new PC points to. Load and store instructions are available for
different data types. The instructions which load a byte (8 bits), a halfword (16 bits) or a word (32 bits)
are listed in Table A.1. For double words (64 bits) two instructions are needed which load the left and the
right part separately. They are listed in Table A.2.

Instruction LB rt, offset(base)

Parameters rt: target register to store the byte from the memory
offset: from base address
base: base address in memory

Operation REG[rt] = MEM[base + offset]

Advance PC 4

Table 2.2: MIPS load binary instruction

ALU instructions: Arithmetic and logical instructions can operate on operands stored in the registers or
use immediate constant operands. An example of an ALU instruction is the add word instruction (ADD),
shown in Table 2.3. The instruction has three registers as parameters where two registers are used as the
summands and the third register is used to store the addition. The program counter is advanced by four
after the operation. Instructions which use an immediate operand are listed in Table A.3. Instructions for
which all operands are in the register are listed in Table A.4. In Table A.5 all shift instructions are listed
and in Table A.6 all multiply and divide instructions.

Instruction ADD rd, rs, rt

Parameters rs: register of the first summand
rt: register of the second summand
rd: register to store the result of the addition

Operation REG[rd] = REG[rs] + REG[rt]

Advance PC 4

Table 2.3: MIPS add word instruction

Jump and Branch instructions: Jump and Branch instructions change the program counter to a new
address of the program and can depend on conditions. An example of a branch instruction is given in
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li $v0, 1 // load identifier to register V0

li $a0, 2 // set first parameter to 2

li $a1, 4 // set second parameter to 4

syscall // system call to vm

Listing 2.1: MIPS system call instructions

Table 2.4. The branch on equal instruction (BEQ) has two register and an offset as parameters. The offset is
used to calculate the target address. The new target address is the program counter of the instruction after
the branch instruction, also called delay slot, plus the shifted offset. The instruction in the delay slot is first
executed before the program branches to the calculated target address. All jump and branch instructions
are listed in Table A.7.

Instruction BEQ rs, rt, offset

Parameters rs: first register for comparison
rt: second register for comparison
offset: offset to calculate the target address

Operation if REG[rs] == REG[rt] then PC = PC + (offset << 2)

Table 2.4: MIPS branch on equal instruction

Miscellaneous instructions: Miscellaneous instructions include only the NOP and system call instruc-
tion, as shown in Table A.8. NOP instructions do not perform any action and are used in MIPS I to delay
instructions. This is needed because in a MIPS I processor after a value has been loaded into the register,
it can not be accessed immediately with the next instruction. A delay has to be added to between loading
and accessing the value.

MIPS system call The system call instruction is a special trap instruction which allows to access
services from underlying hardware or for example from the kernel. For our VM we use system calls to enable
access to hardware modules such as cryptographic operations. All system calls have a predefined number
or identifier and can use various amounts of parameters. In MIPS the system call instruction is called
syscall and does not include any parameters. Before the syscall instruction is called, the identifier and
the arguments of the system call have to be stored in the registers so they can be used by the service which
is called. An example is given in Listing 3.5. First the identifier 1 is stored in the register $v0. Afterwards
two arguments are stored in registers $a0 and $a1. Only then the syscall instruction is called. In our case
the call is then handled by the VM which expects the identifier and arguments in the correct registers. The
system call handler in the VM then executes the call according to the identifier in register $v0.

MIPS Instruction Encoding

The encoding of instructions defines how the processor decodes the 32 bit values to the correct instruction.
All MIPS I instructions are 32 bit long in which some of the bits define the instruction type. The remaining
bits are used for parameters which can be used by the instruction itself. The 6 most right bits are called
opcode. The opcode alone sometimes already defines the exact instruction. If the opcode is 000000 the
instruction belongs to the SPECIAL instruction class. For this instruction class bits 5 to 0 are used to
identify the unique instruction. If the opcode is 000001 the instruction belongs to the REGIMM class.
Instructions of this class are uniquely identified by the bits 20 to 16. In Table 2.5 an example is given for
an instruction which can be identified with just the opcode. The branch on equal (BEQ) instruction has
opcode 000100. Bits 25 to 21 are used for the rs parameter, bits 20 to 16 for the rt parameter and the
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offset is defined by bits 15 to 0. All instructions which are uniquely identifiable with the opcode are listed
in Table B.1.

bits 31 . . . 26 25 . . . 21 20 . . . 16 15 . . . 0
name opcode rs rt offset
values 000100 . . . . . . . . .

Table 2.5: MIPS BEQ instruction encoding

A SPECIAL instruction is shown in Table 2.6. The ADD instruction has bits 5 to 0 set to 100000. Bits 25
to 21 are used for the rs parameter, bits 20 to 16 for the rt parameter and bits 15 to 11 for the rd parameter.
Bits 10 to 6 are not used in this encoding. The instructions in Table B.2 show all SPECIAL instructions
where the opcode is 000000.

bits 31 . . . 26 25 . . . 21 20 . . . 16 15 . . . 11 10 . . . 6 5 . . . 0
name SPECIAL rs rt rd function code
values 000000 . . . . . . . . . 00000 100000

Table 2.6: MIPS SPECIAL ADD instruction encoding

The branch on greater than or equal to zero (BGEZ) instruction belongs to the REGIMM instruction
class. The encoding of this instruction is shown in Table 2.7. The bits 20 to 16 are 00001 and bits 25 to 21
are used for the rs parameter and bits 15 to 0 for the offset. The remaining REGIMM instruction are listed
in Table B.3.

bits 31 . . . 26 25 . . . 21 20 . . . 16 15 . . . 0
name REGIMM rs function code offset
values 000001 . . . 00001 . . .

Table 2.7: MIPS REGIMM BGEZ instruction encoding

2.2.2 ARM Instruction Set

Advanced RISC Machine (ARM) is a family of RISC architectures for processors developed by the company
ARM Holdings. The company license the architecture to other manufacturers who design their own products.
Chips with the ARM architecture were especially successful in the embedded market and are the most used
chips in smartphones currently. The ARM architecture evolved over time and after version 7 three different
architecture profiles were created.

• A-Profile: Application profile, implemented by Cortex-A chips for high performance.

• R-Profile: Real-time profile implemented by Cortex-R chips for real-time and safety critical applica-
tions.

• M-Profile: Microprocessor profile implemented by the Cortex-M chips for microcontroller and space
critical applications.

Even though the segregation of the profile was introduced only after version 7, a special version ARMv6-M
was introduced which only included a subset of the instructions of version 7. This allowed the manufacturing
of even smaller processors with the name Cortex-M0. In ARMv6-M most instructions are 16 bit instruc-
tions, which are called thumb instructions. This allows to reduce the code sizes of an ARM program. All
ARMv6-M instructions are explained in detail in the reference manual [10].
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We choose to implement the ARMv6-M instruction set for our VM which will allow to create smaller
images. For simplicity reasons our VM will support the same instructions as the Cortex-M0 chip. All ARM
instructions which are implemented in our VM are listed in Appendix C.

ARM Register

ARMv6-M uses 16 registers of which some are used for a special purpose and some are general purpose
registers. The registers are depicted in Table 2.8.

Number Name Usage

0-2 a1-a3 Function Arguments
3 a4 Function Return Value
4-8 v1-v5 Variable Register
9 v6/ SB Platform Register
10 v7 Variable Register
11 v8 / FP Frame Pointer
12 IP Intra-Procedure-call scratch Register
13 SP Stack Pointer
14 LR Link Register
15 PC Program Counter

Table 2.8: ARM Registers

Registers 0-2 (a1-a3) are used for the first three function arguments. Any further arguments are passed
through the stack. The return value of the function is stored in register 3 (a4). The variable registers (v1-v7)
can be used for storing values which then are accessible for other instructions like add or sub. Register 9
and 11 can either be used as variable register or as a platform register for register 9 or as a frame pointer
for register 11. The platform register requires that the value held is persistent across all calls. The frame
pointer is used to point to local variables on the stack across function calls. Register 12 is normally used
to store values between subroutines. The stack pointer points to the stack position and changes for each
subroutine. The link register holds the link to the caller position and the program counter hold the current
position.

Application Program Status Register

ARM uses also special status register called Application Program Status Register. The register is 32 bit long
but only 4 bits are used. The reserved 28 bits are allocated for system features of future extensions. The 4
used bits are used as flags which are validated in some instructions if certain conditions are met.

Bit Name Usage

31 N Negative Condition Flag
30 Z Zero Condition Flag
29 C Carry Condition Flag
28 V Overflow Condition Flag

Table 2.9: ARM Application Program Status Register

The Negative Condition Flag is set when the result, for example of a subtraction, is negative. Otherwise
it is set to zero. The Zero Condition Flag is set when the result is zero and set to 0 otherwise. A result
of zero indicated often the result of a comparison. The Carry Condition Flag is set to 1 if the instruction
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results in a carry condition, for example an unsigned overflow on an addition. The Overflow Condition Flag
is set to 1 if the instruction results in an overflow condition, for example a signed overflow on an addition.

ARM Instructions

The Cortex-M0 chip supports 78 instructions which are devided in five categories, branch instructions, data-
processing instructions, status register access instructions, load and store instructions and miscellaneous
instructions.

Branch Instructions: These instructions are used to change the program counter to a new address. The
branch instruction (B), shown in Table 2.10 is an example. The instruction has as parameter an immediate
value which is used to calculate the target address. The operation of the instruction includes to add the
immediate value to the current program counter. All branch instructions are listed in Table C.1.

Instruction B imm

Parameters imm: immediate value to calculate target address
Operation PC = PC + imm

Table 2.10: ARM branch instruction

Data-processing instructions: In ARM data-processing instructions include arithmetic and logic in-
structions which in general have a destination register where the result of the instruction is stored. The
operands for the instruction thereby can be immediate, where the operand is a constant, or in a register.
An example where the operands are in the registers is shown in Table 2.11. The ADD instruction has three
parameters where two are used for the summands and one is used for the target register where the results is
stored. In ARM during the ADD instruction also the Applicatoin Program Status Register (APRS) flags are
set accordingly. These flags may be used by a following branch instruction. All data-processing instructions
are listed in Table C.2.

Instruction ADD rd, rn, rm

Parameters rd: destination register to store the result
rn: register with the first summand
rm: register with the second summand

Operation REG[rd] = REG[rn] + REG[rm]

set APSR Flags

Table 2.11: ARM ADD instruction

Status register access instructions: The instructions listed in Table C.3 move the contents of the APRS
to or from the general purpose register. An example is the move to register from special register (MRS)
instruction shown in Table 2.12. The instruction has two parameters, the destination register and the special
register value. The special register value has a special encoding which allows to access the APRS register
but also other special registers. All status register access instructions are shown in Table C.3.

Instruction MRS rd, sr

Parameters rd: destination register to store the result
sr: special register to read

Operation REG[rd] = read special register (sr)

Table 2.12: ARM MRS instruction
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MOVS a1, #2 // set first argument to 2

MOVS a2, #4 // set second argument to 4

SVC #1 // system call to vm with identifier 1

Listing 2.2: ARM system call instructions

Load and store instructions: Load and store instructions are used to load data from the memory to the
register which then can be used by data-processing instructions and to store the result back to the memory.
Single load instructions, which only load data from one address, are listed in Table C.4. Instructions which
load and store multiple rows, are listed in Table C.5. An example is the load register (LDR) instruction
which has two parameters, the target register and an immediate value as shown in Table 2.13. The address
from where the data has to be loaded is calculated with help of the value in register 13 and the immediate
value. Then the data at the calculated address is read and stored in the target register. Other examples
of load and store instructions are the PUSH and POP instructions. These instructions are used during
branching to push the current registers to the stack and pop the information back to the registers when the
branch ends.

Instruction LDR rt, imm

Parameters rt: target register to store the value
imm: immediate value to calculate the load address

Operation address = REG[13] + ( imm << 2)

REG[rt] = MEM[address]

Table 2.13: ARM LDR instruction

Miscellaneous instructions: Miscellaneous instructions include special instructions such as supervisor
calls, which are the system call of ARM. Many of the instructions are hardware related, such as WFE and
are not implemented by our VM. All miscellaneous instructions are listed in Table C.6. The instructions
which are not implemented are marked with (not supported).

ARM system call The system call instruction in ARM is called SVC. In contrast to the MIPS system
call instruction, this instruction has one argument which is the identifier of the system call. The arguments
of the system call need to be stored in registers a1 to a3. If the system call needs more arguments the
stack has to be utilized. After the arguments are stored in the register, the system call instruction with the
identifier can be called as shown in Listing 2.2.

ARM Instruction Encoding

The encoding of the instructions in ARM is quite special as it supports two different lengths of instructions,
32-bit and 16-bit instructions. The Cortex-M0 chip supports five 32-bit instructions. All other instructions
are 16-bit. Further compared to the MIPS instruction encoding the encoding of the 16-bit instruction is a
little bit more complicated and the opcode alone does not uniquely identify the instruction. Other bits have
to be additionally considered to identify the instruction. In ARM the encoding is separated in six different
encoding groups. The groups are identifiable by the bits 15 to 10.

The instructions where the bits 15 and 14 are 00 belong to the shift, add, subtract and compare instruction
group. For these instructions the second opcode is defined by the bits 13 to 9 and is used to identify the
unique instruction. An example is the ADD instruction encoding as shown in Table 2.14. Bits 13 to 9 are
defined as 01110 for this instruction. Bits 8 to 0 are then used for the parameters of the instruction. All
encoding if instructions of these group are listed in Table D.1.
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bits 15, 14 13 . . . 9 8 . . . 6 5 . . . 3 2 . . . 0
name opcode1 opcode2 imm rn rd
values 00 01110 . . . . . . . . .

Table 2.14: ARM ADD instruction encoding

Data processing instructions have an opcode of 010000. In this group bits 9 to 6 are used to further
identify the instruction. For the bitwise AND instruction, the second opcode is 0000 for example. The
instructions of this group are shown in table D.2.

bits 15 . . . 10 9 . . . 6 5 . . . 3 2 . . . 0
name opcode1 opcode2 rm rdn
values 010000 0000 . . . . . .

Table 2.15: ARM AND instruction encoding

For the special data processing and branch instruction group the opcode is 010001. The second opcode
which uses bits 9 to 6, can also be used for this group to find the correct instruction. If this second opcode
is 0101, we know that it is a compare (CMP) instruction as shown in Table 2.16. All instruction encodings
for this group are shown in Table D.3.

bits 15 . . . 10 9 . . . 6 5 . . . 3 2 . . . 0
name opcode1 opcode2 rm rn
values 010001 0101 . . . . . .

Table 2.16: ARM CMP instruction encoding

Load and store instructions do not have a common opcode. Instead they use bits 15 to 9 for their
encoding. For the load register (LDR) instruction, this opcode is 0101100. All other bits are used for the
parameters as shown in Table 2.17. The instructions where bits 15 to 9 are used for identification, are listed
in Table D.4.

bits 15 . . . 9 8 . . . 6 5 . . . 3 2 . . . 0
name opcode rm rn rt
values 0101100 . . . . . . . . .

Table 2.17: ARM LDR instruction encoding

Miscellaneous instructions have an opcode (bits 15 to 12) of 1011. Additionally they use bits 11 to 5
for identification. For the PUSH instruction already bits 11 to 9 are enough and bits 7 to 0 are used as
parameters. All miscellaneous instruction encodings are listed in Table D.5.

bits 15 . . . 12 11 . . . 9 8 7 . . . 0
name opcode1 opcode2 M reg list
values 1011 010 . . . . . .

Table 2.18: ARM PUSH instruction encoding

The last encoding group for 16-bit instructions only includes two instructions. The supervisor call (SVC)
and the branch instruction (B). Both instructions share the opcode (bits 15 to 12) of 1101. The SVC
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instruction additionally has the bits of the second opcode (bits 11 to 8) set to 1111, as shown in Table 2.19.
The encoding of both instructions are shown in Table D.6.

bits 15 . . . 12 11 . . . 8 7 . . . 0
name opcode1 opcode2 imm
values 1101 1111 . . .

Table 2.19: ARM SVC instruction encoding

Cortex-M0 also supports five 32-bit instructions. For their encoding bits 15 to 11 of the first part of the
instruction are set to 11110. In this case the VM takes the following 16-bit instruction and concatenates the
first 16-bit with the second 16-bit to create a 32-bit instruction. An example is the MRS instruction shown
in Table 2.20. After the bits 15 to 11 of the first 16 bits indicate the 32-bit instruction, the following 16 bits
have to be used for this instruction as well. In the case of the MRS instruction, the remaining bits of the
first 16 bits and bits 15 to 12 of the second part are used to identify the instruction. The remaining bits
from the second part are used for the parameters. The encodings of the 32-bit instructions are described in
Table D.7 and Table D.8.

first 16-bit second 16-bit
bits 15 . . . 11 10 . . . 0 15 . . . 12 11 . . . 7 6 . . . 0
name opcode1 opcode2 rd sysm
values 11110 011111011111000 . . . . . .

Table 2.20: ARM MRS instruction encoding

2.3 Comparison between MIPS and ARM Instruction Sets

MIPS I ARMv6-M (Cortex-M0)

Number of general purpose register 32 16
Number of instructions 61 78
Instruction size 32 bit 16 bit, 5 instructions are 32 bit

Table 2.21: Comparison MIPS I and ARMv6-M

One of the biggest difference between the instruction sets are the instruction sizes. MIPS I only supports 32
bit instructions where ARM supports 16 bit instructions. This will allow to create much smaller images as
in ARM, similar instructions use only half of the size compared to MIPS instructions.
Further compared to MIPS I, ARMv6-M offers more instructions. In Chapter 5 we show that for the same
program more MIPS instructions are needed compared to the ARM program.
Another difference is the way system calls are handled. In MIPS the system call identifier has to be put in
the register explicitly. In ARM the identifier is a parameter of the instruction itself.

2.4 Security of Embedded Systems

Security in embedded systems is a topic that has received an increasing amount of attention [12]. Embedded
devices are deployed in large variety of applications and are vulnerable to a range of abuses. Example of
vulnerabilities in embedded systems are:

• Energy draining
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• Physical intrusion

• Network intrusion

• Information theft

• Introduction of forged information

• Reprogramming of the system for other purposes

To prevent such vulnerabilites, the Trusted Execution Environment (TEE) was developed to help devel-
opers to create secure applications. An implementation of the TEE from ARM with the name TrustZone is
exlained in Section 1.8.5.The rising need for security on mobile devices lead to new developed frameworks
how to secure assets and services. Global Platform is a non-profit association which defined a standard for
TEE [1]. A TEE is a secure area of the main processor which can be used to store key material and run
processes in a secure way.

Mobile devices evolved from simple phones to multitask devices. They are more and more integrated in
our life and used for payments, transport documents, photos, mobile office etc. Theft and Fraud therefore
became very lucrative for such devices and ever-present. Security on these devices is needed to not only
protect the user and his assets from theft but also secure content protected material to be stolen by the user.

The TEE standard offers a good compromise between security and flexibility for mobile devices. A
specialised chip would offer more security but would add more complexity for the developers to integrate
with. A secure application in TEE is called Trusted Application (TA). The security of the TA is enforced
through confidentiality, integrity and access rights to the resources and data belonging to the TA. When a
TA is started it is authenticated and isolated from the rest of the operating system. The TA then can only
access its resources and communicate with the rest of the OS over a secure channel. Each TA can not access
information of any other TA. The TEE defines special resources which can be accessed by a TA such as key
injection and management, cryptography, secure storage, secure clock, Trusted UI, Trusted keyboard etc.
The resources are made available to the TA over the TEE internal API.
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Figure 2.3: TEE architecture [1]

The components of a TEE are shown in Figure 2.3. The system defines three main components:

• Rich OS: A high-level operating system which allows users to download and run applications. Exam-
ples are Android, Linux, Windows or iOS.

• Trusted Execution Environment: A separate execution environment which runs alongside the Rich
OS. The TEE offers services to the rich operating system and isolates hardware and software security
resources from the Rich OS.

• Secure Element: An element which is tamper proof and offers secure services which can be consumed
by the trusted application. Examples are, secure chips, removable memory card or smart cards.

Applications running on the RichOS can use the TEE Client API. The TEE Client API offers a low level
communication interface to access and exchange data with TAs in the Trusted Execution Environment. For
this the Trusted Applications need to be installed in the TEE beforehand. The TA on the other side can
access hardware and software security resources and isolates them from the RichOS.

The communication between the client and the TA is defined by the TEE client API. The relationship
between the RichOS and the TA is outlined in Figure 2.4.
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Figure 2.4: TEE Client API System Architecture [1]

A Shared Memory block is a region of memory allocated in the context of the Client Application memory
space that can be used to transfer data between that Client Application and a Trusted Application.

To be able to communicate with a TA the TEE client has to initialize the TEE context, open a session,
prepare a shared memory which can be used to pass parameters to the TA and to receive the result back
from the TA, invoke the command on the TA, and at the end close the session and the TEE context. The
allocation of shared memory is optional. The parameters which are passed to the TA are passed by a
structure. Each parameter in the structure has to be defined as input or output parameter. It is possible
for example to define two input and two output parameters. The TA then can use the output parameters
to return the result back to the client. The parameters thereby can be either value parameters or memory
references. If the parameters which need to be sent to the TA are small, value parameters can be used.
If the input data is large, shared memory has to be allocated and the reference to this memory has to be
used in the parameter structure. For the tasks of the client the following functions are defined by the TEE
standard.

• TEEC_InitializeContext

• TEEC_OpenSession

• TEEC_RegisterSharedMemory

• TEEC_InvokeCommand

• TEEC_CloseSession

• TEEC_FinalizeContext

The TA on the other side has to register itself with the TEE environment. For this the following functions
have to be implemented by the TA:
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• TA_CreateEntryPoint

• TA_DestroyEntryPoint

• TA_OpenSessionEntryPoint

• TA_CloseSessionEntryPoint

• TA_InvokeCommandEntryPoint

The create and destroy entry point functions are used by the TEE environment to register and destroy the
TA when the TEE is start up or when it is shutdown. Usually these functions are used to prepare memory
and objects which are used by the TA. The open and close session functions are invoked when the session is
opened by the TEE client. These functions are typically used to prepare session related data and to clean
them up when the session is closed. The invoke command function is called when the function is triggered
by the client. The parameters for the invoke function thereby are the command id and the parameters which
are sent by the client.

As shown later, the ST platform implements the TEE standard to make the secure area of the chip
available to the developers. The developer therefore has to implement a trusted application according to the
standard and upload it to the ST development board. The ST board picks up the TA and activates it so it
can be used by a client which will run on the host chip. To use the TA, the developer then has to implement
as well a TEE client which can invoke the functions of the TA. For our case study we had to implement a
trusted application which runs the VM in the secure are of the chip. Further we implemented a TEE client
which calls this TA. The TA then measures the execution time on the secure chip and returns the elapsed
time back to the client.
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Chapter 3

Design and Implementation

The proposed solution consists of two components. The Virtual Machine (VM) which runs on the secure
chip and emulates the desired instruction set, and the application image which implements the application
program which runs on the VM. In this chapter we explain the details of the components of the VM, the
process steps of the VM and how the application image is structured. Further we show by means of examples
how the ARM VM and the MIPS VM work.

3.1 VM Software Design

We structured the VM in several subcomponents and a data model which is used by the components. The
different components and the data model are shown in Figure 3.1. The data model holds the information
which is used by all components such as registers, image and stack. The VM then uses the loader to load
the image. The Encoder is used to decode the instruction and returns the function pointer. Additionally
if the encryption of instructions is enabled, the Encoder first decrypts the instruction before it is decoded.
The Emulator implements all instructions and is used to execute the instruction.

Figure 3.1: Virtual Machine Software Design
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3.1.1 VM Data Model

The Data Model is implemented by means of a struct, as presented in Listing 3.1, which holds the information
which are used by the VM and all subcomponents. The model is initialized once at the beginning and a
pointer to the model is passed to the different subcomponents. The application image and the stack use the
same array. The size of this array is statically initialized and needs to be adjusted so that the whole image
fits in the array and that enough space is free for the stack. When the stack is filled, it is checked that it
does not overflow in the application image space. If this happens an error is raised and the application VM
exits with an error. For our VM we used an array of 4096 bytes which was big enough for our experiments.
The amount of registers depends on the Instruction Set Architecture (ISA). For ARM only 16 registers are
allocated and for MIPS 20 registers.

typedef union

{

uint8_t bytes [MEMSIZEBYTES];

uint16_t hwords[MEMSIZEHWORDS];

uint32_t words [MEMSIZEWORDS];

} memory_t;

typedef struct {

/* vm data model */

uint32_t insn; /* current instruction */

uint32_t REG [MAXREG]; /* registers */

uint32_t PC; /* program counter */

memory_t img; /* image data and stack */

/* image information */

uint32_t code_entry;

uint32_t code_end;

uint32_t data_end;

uint32_t img_size;

} context_t;

Listing 3.1: VM Data Model Structure

3.1.2 VM Image Loader

The Loader is responsible for loading the application image into the data model and initializing the registers
and program counter. For our experiments, the loader includes a header file which holds an array with the
application image. From the application image the first three bytes hold the information where the code
section section ends, where the data section ends and where the first instruction is found. This information
is stored in the data model. After the offset is read from the image, the rest of the image is loaded into the
image array of the data model. Afterwards the registers are prepared and the program counter is set to the
entry point. And excerpt of the code is shown in Listing 3.2. Depending on which instruction set is used,
different registers have to be set.

/* pointer to data model */

context_t *ctx;

/* example application image from header file */

int img_size = 512;

static const unsigned char img[512] = {0x30,0x00,0x00,...,0x01};

/* read offsets */
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memcpy (&ctx->code_end, img[0], 4);

memcpy (&ctx->img_size, img[4], 4);

memcpy (&ctx->code_entry, img[8], 4);

/* load image after offsets */

memcpy (&ctx->img.bytes[0], &img[12], img_size - 12);

/* set registers (stack pointer, frame pointer, program counter) */

ctx->REG[SP] = sizeof(ctx->img.bytes);

ctx->REG[FP] = sizeof(ctx->img.bytes);

ctx->PC = ctx->code_entry;

Listing 3.2: VM Loader Excerpt

3.1.3 VM Encoder

The Encoder takes as input the data model. The VM has to make sure that in the data model the current
instruction is stored in the insn variable of the data model. If encryption of instructions is enabled, the
encoder then first decrypts the instruction with a hardcoded key. After decryption the Encoder uses a lookup
table to check which instruction has to executed by the Emulator. The lookup table has pointers to functions
which are implemented in the Emulator. For ARM the lookup table uses bits 15 to 6 of the instruction to get
the correct instruction. If the Encoder can not find a function in the lookup table for the current instruction,
the current instruction uses more bits than 15 to 6 for the encoding. For example the NOP instruction needs
all 16 bits for full identification. Therefore if the Encoder can not identify the instruction with help of the
lookup table, a small switch block is used to identify the remaining instructions. As shown in Listing 3.3,
the Loader returns the function pointer which is used by the VM to execute the correct instruction.

/* pointer to data model */

context_t *ctx;

/* lookup table with pointers to functions */

typedef int (*insn_func)(context_t *);

insn_func table[1024] = {[0x0000]=&arm_movs_reg,[0x0001]=&arm_lsls_imm,

..,[0x039f]=&arm_b_t2};

/* use bits 15 to 6 and check in lookup table */

uint16_t bits15_6 = ctx->insn >> 6;

insn_func f = table[bits15_6];

if(f != NULL){

return

}

/* if not in lookup table check here */

switch((uint16_t)ctx->insn){

case ARM_NOP:

return &arm_nop(ctx);

...

}

Listing 3.3: VM Encoder Excerpt

37



3.1.4 VM Emulator

The Emulator component implements all instructions of the instruction set. The input for each instruction
is the data model. With help of the data model, the instruction implementation can access the registers
and the memory. The memory includes the data section of the application image and the stack. Depending
on the instruction the parameters are read from the registers or the memory. An example of an instruction
implementation is given in Listing 3.4. The instruction in the example needs to extract the parameters from
the encoded instruction. The destination register Rd is defined by bits 10 to 8 and bits 7 to 0 are used for
the immediate value which has to be moved to the destination register. At the end the program counter is
moved forward by two. In the MIPS emulator the program counter is moved by 4. In branch instructions
the program counter is moved to the calculated address. When the instruction finishes successfully, a zero
is returned.

int arm_movs_imm (context_t *ctx)

{

uint32_t Rd = (ctx->insn >> 7) & 0x00000007; /* bits 10 to 8 */

uint32_t imm8 = ctx->insn & 0x0000007F; /* bits 7 to 0 */

ctx->REG[Rd] = imm8;

ctx->PC += 2;

return 0;

}

Listing 3.4: VM Emulator Example

3.1.5 System Calls

To access hardware resources and special modules, the virtual machine offers special system calls. The
system calls are defined by an identifier. An application which runs on top of the virtual machine can then
use this predefined system calls to access, for example a cryptologic module, on the secure chip. Two libraries
for the ARM VM and for the MIPS VM are implemented, as system calls are slightly different for the two
architectures. How an application uses the system call library is shown in Figure 3.2.

Figure 3.2: Virtual Machine System Calls

For MIPS, an application which runs on the VM can execute a system call with the syscall instruction
as shown in Listing 3.5. The parameters *key and len are stored in the registers A0 and A1. Before the
syscall instruction can be called, the identifier has to be stored in the register V0. This is done with help of
the ori instruction.
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void aes_init (const uint8_t *key, int len)

{

asm volatile ("ori $v0, $zero, 3\n"

"syscall");

}

Listing 3.5: MIPS system call

When the emulator encounters the system call instruction, the system call library is called. The system call
library reads first the identifier in the V0 register and executes the corresponding procedure. The system
call library thereby may access hardware resources or other modules. An extract of the system call library
for MIPS is shown in Listing 3.6.

int nr = ctx->REG[V0]; // read identifier

...

switch (nr) {

case 3 : // aes_init

{

int key = (int)(ctx->REG[A0]);

int len = (int)(ctx->REG[A1]);

memcpy(aes_key, (char*)(&ctx->img.bytes[key]), len);

return 0;

}

...

Listing 3.6: MIPS system call library

3.2 Additional Instruction Sets

In the future additional instruction set architectures may be added to the framework. For each new in-
struction set a new data model (ctx.h), encoder (encoder.c), emulator (isa.c) and a new system call library
(syscall.c) need to be implemented. The new data model is needed as registers may differ depending on
the architecture. The encoder and emulator is needed as each architecture defines different instructions
with different encodings. The new system call library is used to support the system calls from the added
instruction set architecture. Additionally the Makefile needs to be modified, as shown in Listing 3.7, so that
when the new architecture is chosen during compiling, the correct objects are used.

ifeq ($(ARCH),new)

DEFINES= -D__VCPU__ -D__NEWVM__

OBJECTS += ./new/isa.o ./new/encoder.o ./new/syscall.o

INCLUDES += -I./new

endif

Listing 3.7: Makefile example for new ISA

3.3 Virtual Machine Runtime

The main component of our solution is the virtual machine runtime. The most important steps are shown
in Figure 3.3. The runtime uses the components explained in Section 3.1 to execute this tasks. First the
monitor loads the image and stores the data into a reserved space in the memory with help of the loader. The
loader also reads the three offset values and stores the values in the data model. The offsets are used later to
validate when an instruction is read that the program counter points to a region in the code block.The code
start value is used to set the program counter where the first instruction of the program is located. Then
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the encoder is used to fetch and decode the instruction where the program counter points to. The encoder
also decrypts the instruction before encoding, if encryption of instruction is enabled. The encoder returns
the function of the emulator which the runtime has to execute. The runtime then executes the instruction
and checks after if the program is finished. If the program is not finished, the next instruction is fetched,
encoded and executed until the last instruction is reached.

Figure 3.3: Virtual Machine Runtime Flow

3.3.1 MIPS Virtual Machine Runtime

In this section, we show with the help of an example instruction how the MIPS runtime loads an image and
executes an instruction. For this the MIPS runtime follows the steps described in Section 3.3. First the
memory is allocated to hold the registers, the application image and the stack. The registers are statically
allocated first. Below the registers, memory is allocated for the image and the stack. This size is also
allocated statically. If the allocated memory is not big enough for the application image or the stack is
growing bigger than the allocated memory during running the application, the VM will fail and the memory
size has to be adjusted. After the memory allocation, the application image is read and stored in the memory.
Then the first three bytes are read which hold the offset information where the data part of the images starts,
how big the image is and where the first instruction is located in the image. These values are stored for later
use. Then the register values are updated. The most important registers are the stack pointer, the frame
pointer, the return address and the program counter. The stack pointer is set to the bottom of the stack.
The stack grows from bottom to top during the usage. The frame pointer is also set to the bottom of the
stack. The return value is set to a special value (0xdeadbeef) which is used to identify when the program is
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finished. The program counter is set to the first instruction of the application which has to be executed. The
first instruction does not need to be on the top of the image. Table 3.1 shows an example how the memory
may look like after the image is loaded. The image section thereby includes all n instructions, the program
counter points to the first instruction of the image and the frame and stack pointer point to the bottom of
the stack.

name value

re
g
is

te
r

zero 0
...

...
ra 0xdeadbeef
pc 0x01
sp 0xff
fp 0xff

im
a
g
e

0x01 ins 1
0x02 ins 2

...
...

0xa0 ins n

st
ac

k

0xa1 0
0xa2 0

...
...

0xff 0

Table 3.1: MIPS memory allocation

After the image has been loaded, the first instruction is read where the program counter is pointing at.
The 32 bit value at the address is the encoded instruction. The encoder first has to evaluate the opcode to
identify the instruction. The opcodes of the different instructions are described in Section 2.2.1. When the
correct instruction is identified, the rest of the instruction can be decoded including the parameters which
are used for the instruction. For example, if the program counter points to position 0x01 and we read the
value 0x24440518 the runtime will first check the opcode (bits 31 to 26) to identify the instruction. The bit
representation of this example instruction is shown in Table 3.2.

bits 31 . . . 26 25 . . . 21 20 . . . 16 15 . . . 0
name opcode rs rt immediate
values 001001 00010 00100 0000010100011000

Table 3.2: MIPS ADDIU instruction encoding

From the opcode the runtime can identify the ADDIU instruction for which bits 25 to 21 are used for
the source register, bits 20 to 16 are used for the target register and the remaining bits are the immediate
value which is added to the value read from the register. Listing 3.8 shows the simplified code block which
is used to execute the ADDIU instruction in the MIPS runtime. First the parameters are read from the
encoded instruction. In the example the source register is set to two, the target register is set to four and
the immediate value is 1304. Then the immediate value is added to the value in register number two and
the result saved in register number four. At the end the program counter is advanced by four.

// ins = 0x24440518;

rs = (ins & 0x3E00000) >> 21; // rs = 2

rt = (ins & 0x1F0000) >> 16; // rt = 4

imm = (ins & 0xFFFF); // imm = 1304
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reg[rt] = reg[rs] + imm;

pc += 4;

Listing 3.8: MIPS ADDIU instruction

After this instruction was successfully encoded and executed, the next instruction at the program counter
is read and executed. This is done until the program tries to jump to the address 0xdeadbeef which indicates
that the program is finished.

3.3.2 ARM Virtual Machine Runtime

The ARM runtime is very similar to the MIPS runtime. The loading of the image and memory allocation
are the same. Only the registers look a little bit different for ARM. ARM uses a link register (LR) which
works similar to the return address (ra) register in MIPS. The link register holds the return address to which
the program returns after a function call. Equivalent to the MIPS runtime in the ARM runtime the link
register value is set to a special value (0xdeadbeef). When the main function ends the runtime will read this
value to know when the program is finished. As for MIPS the program counter is set to the first instruction
of the program and the stack pointer to the end of the stack.

name value

re
gi

st
er

a1 0
...

...
LR 0xdeadbeef
PC 0x01
SP 0xff

im
ag

e

0x01 ins 1
0x02 ins 2

...
...

0xa0 ins n

st
ac

k

0xa1 0
0xa2 0

...
...

0xff 0

Table 3.3: ARM memory allocation

Also the ARM runtime reads first the instruction where the program counter points at. Then the
instruction has first to be identified by means of the encoding. The encoding of the ARM instructions is
closer described in Section 2.2.2. The encodings of ARM are divided into six subgroups and the length of
the opcode varies by group. For example if the instruction read at the position where the program counter
points at is 0x1D54, the decoder can identify with bits 15 to 9 the add immediate instruction. In this
instruction, bits 8 to 6 are used for the immediate value, bits 5 to 3 for the source register and bits 2 to 0
for the destination register as shown in table 3.4.

bits 15 . . . 9 8 . . . 6 5 . . . 3 2 . . . 0
name opcode immediate rn rd
values 0001110 101 010 100

Table 3.4: ARM ADDS instruction encoding

Listing 3.9 shows the simplified code of the ARM ADDS instruction. First the parameters are decoded
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from the instruction. In our example the immediate value is five, the source register (rn) is 2 and the
destination register (rd) is 4. Then the value from the source register is read, the immediate value is added
and the result is stored back in the register four. At the end of the instruction the program counter is
advanced by 2.

// ins = 0x1D54;

imm = (ins & 0x1C0) >> 6; // imm = 5

rn = (ins & 0x38) >> 3; // rn = 2

rd = (ins & 0x3); // rd = 4

reg[rd] = reg[rn] + imm;

pc += 2;

Listing 3.9: ARM ADDS instruction

After the instruction is successfully completed, the next instruction is read and executed at the position
where the program counter points at. This process is continued until the program tries to return to the
address 0xdeadbeef which indicates the end of the main function.

3.4 Application Image

The application image which runs on the VM consists of a code block and a data block. The code block
contains the instructions of the program. For security reasons, each instruction is encrypted. This makes
it more difficult to reverse engineer an application image. The data section is used for static data which
is used in the program. The first three bytes of the image indicate the code offset, the image size and the
code starting point. The code end value defines the offset where the data block starts in the image. The
image size value defines the endpoint of the data block and the code start value is the starting point in the
program. The program counter in the VM is set to the code start position at the beginning.

Figure 3.4: Application Image Structure
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Chapter 4

Case Studies And Experimental Setup

This Chapter discusses the two applications which have been used to conduct the experiments. Further we
describe the systems we used to perform the experiments. In Section 4.3 we describe tools, which we offer
to easily create images for the virtual machine and to compile the virtual machine for different platforms.
We used two applications which resemble applications which can be found in a conditional access system to
decrypt information. The applications are simplified and not real applications as they are proprietary.

4.1 Experimental Applications

The experiment applications were used in the experiments to compare the size and execution time overhead
of the virtual machine compared to the native application. For this reason the applications were compiled for
the virtual machine and also directly for the native chip for comparison. We used two example applications
which resemble real applications. Because the real applications are proprietary and would reveal secure
processes we can not use them during this experiments. In the first application we assumed that an external
cryptologic module is available for heavy cryptologic operations which allows the application which runs on
the virtual machine to outsource the expensive operations. We will refer to this application as Application
1. The second applications includes the cryptologic implementation in the application itself and thus the
heavy cryptologic operations run on the VM and are not outsourced. This application will be referred to as
Application 2.

4.1.1 Application with Hardware Crypto Module

The first application makes the assumption that a cryptographic module is available on the SoC. This allows
to use hardware implementation of cryptographic processes. The application itself for example can load a
key into the cryptologic module and then decrypt the messages with this key. The design of the application
is depicted in Figure 4.1.
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Figure 4.1: Application with Cryptologic Module

In this case the virtual machine is aware of the cryptologic module and offers special system calls which
can be used by the application image running on top of the virtual machine to access this cryptologic module.
For our Virtual Machine (VM) we defined special system calls with identifiers 3-5 for the operations of loading
a key, encrypting and decrypting. The system calls for ARM (Section 2.2.2) are a little bit different handled
than for MIPS (Section 2.2.2). An example of how the guest application executes the ARM system call to
store the key in the cryptologic module is given in Listing 4.1. When the function aes_init is called, the
parameters *key and len are stored in the register A0 and A1. Then the function calls the ARM assembly
instruction SVC with the identifier 3. The virtual machine knows with the help of the identifier which
operation to call on the cryptographic module and what parameters are stored in the registers.

void aes_init (const uint8_t *key, int len)

{

asm volatile ("SVC #0x3");

}

Listing 4.1: ARM system call cryptologic module

4.1.2 Application with Software Crypto

In some set-top boxes the cryptologic module is not available or the desired encryption is not implemented
in the module. In such cases it is necessary that the encryption has to be implemented in the software of the
application. For our second application we made the assumption that the AES implementation has to be
done in the application itself. In this case no system calls to a cryptologic module are needed. But because
the encryption itself is done in the application which runs on top of the virtual machine, the performance is
expected to be much worse than in the application which utilizes the cryptologic module. The design if the
second application is shown in Figure 4.2.
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Figure 4.2: Application with Software Cryptologic

Also for Application 2 we created a version which runs directly on the secure chip. In Section 5 we then
validate the execution time overhead of the application which runs on top of the virtual machine.

4.2 Experimental Platforms

Many development platforms for set-top boxes include proprietary implementations and each developer who
works with the platform has to sign a non disclosure agreement (NDA). This circumstances make it difficult
to work on real platforms. To perform the experiments, we used two different platforms. A low powered
Arduino platform [2] which does not resemble a Set-top Box but can be used for analyzes as the performance
of this platform is much lower than of a real platform. The second platform used for the experiments is a
Set-top Box development board from ST [15] which resembles a real Set-top Box.

4.2.1 Arduino Platform

Arduino is a development platform for embedded systems. The hardware and software are open source which
allows other companies to produce Arduino boards with low costs, although under a different name. The
platform is mainly based on AVR microcontrollers and offers many digital and analog inputs and outputs.
Further the controller offers a serial connection over the USB cable which allows to receive and send data.

The Arduino board uses a very low-powered microcontroller which runs a different architecture than
MIPS or ARM which we used for our virtual machine. Further this microcontroller is much less powerful
than the secure processors we can find on a STB. The performance of the Arduino platform therefore, can
also not be considered as representative for an STB. We used this platform to evaluate the lower bound
of the VM. The Arduino platform can be used to demonstrate a wide variety of low powered embedded
systems.

For our experiments we used the Arduino Mega platform. The main specification are listed here:

• Atmel ATmega128 Microcontroller

• 8-bit AVR Instruction Set

• 16 MHz Max Frequency

• 128 KB of flash storage

• 8 KB of RAM

When a program is loaded on the Arduino board, the image is loaded into the flash storage. This allows us
to run images up to the size of around 126 KB. This is because the Arduino contains also a bootloader which
uses around 2 KB of the flash storage. The bootloader is responsible for loading and starting the application
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image. During loading of the image, global variables etc. are stored in the memory of the Arduino. In case
of our VM, the application image which is run by the VM, is stored in a global array. This would indicate
that we can only run application images up to 8 KB. As the memory is also needed for other variables during
execution, the real available space for the application image would be even smaller. For our experiments,
the second application for the MIPS VM has already a size of 11 KB. For this problem, Arduino allows us
to store data, which does not change, in the flash memory. As shown in Section 3.4, our application image
consists of a code section and a data section. The code section contains all the instructions which need to
be executed by the VM. This data does not change and can safely be stored in the flash memory. The data
section, on the other hand, is an area which might be changed during execution of the application image and
needs to be stored in RAM. Additionally, the lookup table, which is used by the VM Encoder as explained
in Section 3.1.3, is also quite big but consist of constant data. This allows us to store the lookup table as
well in the flash memory. With these methods we are able to run guest applications which are bigger than
8 KB on the Arduino.

Figure 4.3: Arduino Platform

The experimental setup with the Arduino board is shown in Figure 4.3. For the setup the application
which runs on the Arduino is compiled with the AVR compiler on the development computer. The image
is then uploaded to the Arduino Mega platform over a USB cable. The application itself measures the
execution time in milliseconds and returns the result to the computer over the serial interface.

Compile and Run Application for Arduino

To measure the execution time of the program running on the Arduino, we use a specical library which offers
a function millis(). This function returns the milliseconds elapsed since the program is running on the
Arduino. Another library offers another implementation of the printf function which sends the information
back over the serial port to the computer connected to the Arduino. This libraries allow to measure the
execution time of the progam and to send the result back.

To compile a program for the Arduino the AVR compiler avr-gcc has to be used. Further the paramters for
the specific Arduino board have to be provided. After the libraries and the main program are compiled and
merged to one binary (in the example it is called app.bin), the binary has to be translated into hex format
so it can be uploaded to the Arduino board. The following steps show all compiling steps needed:

avr-gcc -Os -DF_CPU=16000000UL -mmcu=atmega2560 -c clock.c -o clock.o

avr-gcc -Os -DF_CPU=16000000UL -mmcu=atmega2560 -c print.c -o print.o

avr-gcc -Os -DF_CPU=16000000UL -mmcu=atmega2560 -c app.c -o app.o

avr-gcc -Os -DF_CPU=16000000UL -mmcu=atmega2560 -s -o app.bin -o app.o

avr-objcopy -O ihex -R .eeprom app.bin app.hex
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For simplicity the Makefile as described in Section 4.3.1 and 4.3.2 can be used to perform the compile
tasks as described above.
After the compilation step the program can be uploaded to Arduino board with the program avrdude.

avrdude -cwiring -pm2560 -P/dev/ttyACM0 -b115200 -D -U flash:w:app.hex

Last but not least to retrieve the message which is sent back by the Arduino program over the serial
port, we need the following commands. The first command sets the settings for the terminal and the seconds
shows the information which is retrieved.

stty -F /dev/ttyACM0 cs8 9600 ignbrk -brkint -imaxbel \

-opost -onlcr -isig -icanon -iexten -echo -echoe \

-echok -echoctl -echoke noflsh -ixon -crtscts

tail -f /dev/ttyACM0

The Arduino board will execute the application as soon as the image is uploaded and send the execution
time over the serial interface back to the computer.

4.2.2 ST Platform

As second platform we used a development board for the ST set-top box platform STiH407. This platform is
a functional set-top Box with video decoders, periphery connections, secure processor etc. Figure 4.4 shows
all components which are included in the platform.

Figure 4.4: ST Platform [15]

The core components of the board are the following modules:

• Dual core SMP ARM Cortex-A9 1.5 Ghz

• ST231 CPU

• Secure Processor

• Video Decoder
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The ST231 CPU and the secure processor are both processors of the ST200 family. The ST200 family are
processor for the Very Long Instruction Word (VLIW) architecture.

To utilize the secure processor, ST offers an implementation of the Trusted Execution Environment
(TEE) standard. This way a client has to be implemented which runs on the host ST231 CPU and a
Trusted Application (TA) which can be loaded on the secure processor. The client can then call and run the
TA application. The communication thereby is defined by the TEE standard as described in Section 2.4.

Compile and Run Trusted Application for ST

To be able to run the VM on ST, we need to create a trusted application and a client which calls the TA
which runs on the secure chip. For the TA we have to compile the VM with the ST compiler. This can
be done with the Makefile and the target ST as described in Section 4.3.2. The output of the Makefile is
a library which then can be integrated with the TA. The TA implements the functions according to the
TEE standard as described in Section 2.4. In the invoke command function the TA then runs the VM and
measures the execution time. The elapsed time is then sent back to the client. We offer a Makefile to create
the TA which takes VM library as parameter.

make ta VMLIB=vm.a

Additionally we have to create a firmware file which dynamically links the TA. The firmware file is used
by the ST platform to run the TA. This file again can be created with the Makefile.

make fw

Last we also have to create the client which will call the TA. The client has to create the session and
invoke the function of the TA as described in the Section 2.4. The client is compiled with the Makefile as
follow:

make ca

The output of the three Makefile commands are three files which have to be uploaded to the ST platform.
The ST platform runs a special Linux version which takes care of running the trusted applications. To install
the TA we just have to copy it to the correct location on the platform.

# copy the trusted application

cp ddccbbaa-4624-4897-80dd91cce44c9c57.ta /lib/optee_st231

# copy the firmware

cd tee_firmware-stih407_gp0.elf /lib/firmware

# copy the client

cp tee_apptest /opt/local/bin

After this steps, we can run the client which runs the TA and receives the execution time back from the
TA. The execution time is measured with a library offered by the ST platform which measures the time in
clicks. The client outputs then the elapsed time on the console.

tee_apptest

4.3 Create Application Image and Virtual Machine

In this section we describe how the application image for the virtual machine can be created and how the
virtual machine can be compiled for different platforms. We have developed tools to simplify this process.

49



4.3.1 Compile and Link Application Image

The process of creating an application image for the VM consists of two steps. First the application has to be
compiled and linked to create a binary image with the instructions in the format which the VM understands.
In the second step optionally all instructions are encrypted with the skipjack cipher.

The virtual machine offers special system calls which allow the application image to access special hard-
ware and software modules. For example if the secure chip offers hardware implementations of cryptographic
algorithms. Each system call has a special number. System Calls are differently handled for MIPS and ARM.
Therefore, we offer two different system call libraries for the different architectures. For system calls in MIPS
the system call number has to be stored in the argument register V0 before the instruction syscall is called.
In ARM, system calls are handled with supervisor calls. The supervisor call SVC includes the system call
identifier number and therefore this number is included in the instruction itself and does not need to be
stored in the argument register

Figure 4.5: Workflow Create Image

The steps which are needed to create a application image are depicted in Figure 4.5. We have developed
a Makefile for the first step and a small encryption tool for the second step. To be able to use the Makefile
to compile the program for the different environments, cross compilers for ARM and MIPS as well compilers
for Arduino and the ST platform need to be installed. The Makefile then can compile the code for the
specified instruction set and uses the according system call library (mips/syscall.o or arm/syscall.o). System
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calls are differently handled for ARM and MIPS and therefore needs different libraries. Further we also offer
a AES library with a software AES implementation which can be used by the application program. The
AES library can be added with a parameter when running the Makefile. The Makefile can also be used to
generate the native executables for x86 systems, Arduino Mega or the ST platform. Examples of how to use
the Makefile are as follow:

# build app for ARM VM

make ARCH=arm app.bin

# build app for MIPS VM

make ARCH=mips app.bin

# build app for Arduino Mega

make ARCH=mega app.bin

# build app for ST platform

make ARCH=st app.bin

# build app for x86 system

make ARCH=x86 app.bin

# build app including AES library

make ARCH=arm LIB=aes app.bin

Optionally the instructions in the images for the VM can also be encrypted for additional security. For
the native images this step is not needed. To be able to use the encrypted images with the VM, the VM
needs to enable encryption mode. During the experiments we evaluated if the encryption of the instructions
adds significant overhead. For the encryption we have developed a tool vm-tool-enc.

# encrypt instructoins of app

vm-tool-enc -i app.bin -o app_enc.img

The images, encrypted or not, can not yet directly be used by our VM. For simplicity, the images are
directly integrated together with the VM. That allows us to create executables of the VM which include the
images already. This way the execution of the VM on the Arduino or ST platform is much simpler. We just
have to run the executable which includes the VM and the application image. To be able to integrate the
application image with the VM we have to create a header file which includes an array with the data of the
application image. For this we created a tool vm-tool-header. The resulting header files can be used when
the VM is compiled.

# create header file from application image

vm-tool-header -i app.bin -o app.h

# create header file from encrypted application image

vm-tool-header -i app_end.img -o app_enc.h

4.3.2 Compile Virtual Machine

After the image is compiled for the VM, we can compiler the VM which will include the images. For this
step we also developed a Makefile. Again this Makefile can be used to compile the VM for the Arduino,
for the ST platform, or an x86 system. Also here we need the necessary compilers pre installed. For the
Makefile we need to specify which architecture the image uses, MIPS or ARM, if the image is encrypted or
not, and for which target platform the VM needs to be compiled. Different examples are shown here:

# create ARM VM for ST with application image

make ARCH=arm ENC=0 TARGET=st IMG=app.h

# create ARM VM for Arduino with application image

make ARCH=arm ENC=0 TARGET=mega IMG=app.h

# create ARM VM for x86 with application image
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make ARCH=arm ENC=0 TARGET=x86 IMG=app.h

# create MIPS VM for ST with application image

make ARCH=mips ENC=0 TARGET=x86 IMG=app.h

# create MIPS VM for ST with encypted application image

make ARCH=mips ENC=1 TARGET=x86 IMG=app.h

The output of the Makefile with x86 target is an executable which can be run on the computer. For the
Arduino target, the output is a hex file which can be uploaded to the Arduino board. For ST, the output
is a library which has to be integrated with a trusted application which runs on the ST platform. How the
Arduino file is uploaded and executed is described in Section 4.2.1. How the ST library is used with the ST
platform is described in Section 4.2.2.
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Chapter 5

Experiments and Results

In this chapter, we discuss the experiments and the results. In the first experiment we evaluate the code size
overhead which the virtual machine adds compared to the native application. In the second experiment, we
compare the execution time slowdown of running the application natively on the secure chip or on top of
the virtual machine.

5.1 Code Size Overhead of VM

For the size overhead analysis we compiled the example applications, described in Section 4, for different
platforms. Further we compiled the application once for the ARM virtual machine and once for the MIPS
virtual machine. Also, we distinguished between encryption mode on and off in the VM. Encryption mode
means that each instruction of the application running on the VM is encrypted with a hardcoded key in
the VM. Before the VM can execute the instruction it needs to decrypt the instruction. This adds another
layer of security but also increases the VM size as the decryption algorithm needs to be included in the VM.
For the size overhead we used four different platforms. Arduino [2], ST [15], R2 [4] and Neotion [3]. R2
and Neotion are another Set-top Box (STB) platforms for which we had the compilers available but not the
execution platform.

5.1.1 Application 1

First, we compare the code size overhead of the first application for the different platforms. The results for
each platform are shown in Table 5.1 to 5.4. The numbers shown in the table are the sizes in bytes. The
native application has no VM layer and therefore only has the image size itself. For the VMs we show the
image sizes of the guest images running on the VM and the size of the VM including the guest application.
This is because for our experiments we included the guest application directly into the VM. The overhead
column shows the overhead of the VM including the guest application compared to the native application.
For the Arduino platform the output file is a hex file which can be uploaded to the Arduino board. For the
other platforms we created library files with the archive tool (ar) of the specific platform. The results show
that the VM size for MIPS is smaller than for ARM for all platforms. Further, we do not see a big difference
in the VM size with encryption mode enabled or not.
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ISA Encryption Image Size VM + Image Size Overhead

Native no 8,024 - 0
ARM VM no 592 60,666 7.56
ARM VM yes 592 66,324 8.27
MIPS VM no 2,044 39,332 4.90
MIPS VM yes 2,044 39,512 4.92

Table 5.1: Arduino Application 1 Size Overhead. Sizes are in bytes.

ISA Encryption Image Size VM + Image Size Overhead

Native no 5,318 - 0
ARM VM no 592 66,560 12.51
ARM VM yes 592 70,648 13.28
MIPS VM no 2,044 42,450 7.98
MIPS VM yes 2,044 42,774 8.04

Table 5.2: ST Application 1 Size Overhead. Sizes are in bytes.

ISA Encryption Image Size VM + Image Size Overhead

Native no 4,062 - 0
ARM VM no 592 41,506 10.22
ARM VM yes 592 43,550 10.72
MIPS VM no 2,044 28,836 7.099
MIPS VM yes 2,044 28,968 7.13

Table 5.3: R2 Application 1 Size Overhead. Sizes are in bytes.

ISA Encryption Image Size VM + Image Size Overhead

Native no 4,342 - 0
ARM VM no 592 42,822 9.86
ARM VM yes 592 44,778 10.312
MIPS VM no 2,044 24,968 5.75
MIPS VM yes 2,044 25,176 5.80

Table 5.4: Neotion Application 1 Size Overhead. Sizes are in bytes.

Figure 5.1 shows the code size overhead for all platforms for Application 1. In the figure we show only
the results when encryption is disabled. The differences of the results when encryption is enabled are similar
though. The ARM VM is larger for all platforms compared to the MIPS VM. This is because the ARM VM
supports more instructions than the MIPS VM. On the other hand the image size of the ARM image (592
bytes) is smaller than the MIPS image (2,044 bytes). But both images are smaller compared to the native
images which range from 4,062 bytes to 8,024 bytes. The images which we compile for our VM use a custom
layout which is responsible for the smaller image sizes.
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Figure 5.1: VM Size Overhead Application 1

5.1.2 Application 2

The code size overhead of the second application, compiled for the different platforms, are shown in Table 5.5
to 5.8. Again we show the size of the native image, the sizes of the images for MIPS and ARM and the sizes
of the VMs which include the images in bytes. Also for this application the output files for the Arduino
board are hex files and for the other platforms are library files.

ISA Encryption Image Size VM + Image Size Overhead

Native no 15,248 - 0
ARM VM no 2,675 66,348 4.35
ARM VM yes 2,675 66,524 4.36
MIPS VM no 11,596 66,197 4.34
MIPS VM yes 11,596 66,377 4.35

Table 5.5: Arduino Application 2 Size Overhead. Sizes are in bytes.

ISA Encryption Image Size VM + Image Size Overhead

Native no 19,572 -
ARM VM no 2,675 68,668 3.51
ARM VM yes 2,675 72,756 3.72
MIPS VM no 11,596 52,038 2.66
MIPS VM yes 11,596 52,362 2.67

Table 5.6: ST Application 2 Size Overhead. Sizes are in bytes.
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ISA Encryption Image Size VM + Image Size Overhead

Native no 12,688 -
ARM VM no 2,675 44,174 3.48
ARM VM yes 2,675 46,218 3.64
MIPS VM no 11,596 32,984 2.60
MIPS VM yes 11,596 33,116 2.61

Table 5.7: R2 Application 2 Sizes in Overhead. Sizes are in bytes.

ISA Encryption Image Size VM + Image Size Overhead

Native no 12,576 -
ARM VM no 2,675 45,490 3.61
ARM VM yes 2,675 47,446 3.77
MIPS VM no 11,596 29,116 2.32
MIPS VM yes 11,596 29,324 2.33

Table 5.8: Neotion Application 2 Size Overhead. Sizes are in bytes.

In Figure 5.2 the code size overhead of the second application for all platforms is shown. In the figure only
the results are shown where encryption of instructions is disabled. The results when encryption is enabled
are similar. For the second application the code size overhead is in general smaller compared to the code
size overhead of the first application. This is because the native Application 2 is much larger compared to
the native Application 1. For example for ST, Application 1 is 5,318 bytes where Application 2 is 19,572
bytes, which is a difference of 14,254 bytes. The image sizes for the VMs on the other hand do not differ
that much. The image of application 1 for the ARM VM is 592 bytes and the image for application 2 is
2,675 bytes, which is a difference of 2,083 bytes. This means the VMs including the application images are
not that much bigger compared to Application 1.
Also for the second application, the MIPS VM results in a smaller code size overhead compared to the ARM
VM. Again we assume that the larger instruction set of ARM, and thus the larger code base, is responsible
for this difference. The image sizes of both VMs are also smaller than all native images (12,576 bytes to
19,572 bytes), but the ARM image (2,675 bytes) is even smaller than the MIPS image (11,596 bytes) also
for Application 2. The MIPS image for Application 2 is much bigger compared to the ARM image. This can
have two different causes. First, the sizes of the individual instructions are smaller for ARM than for MIPS.
Second, in Section 5.3 we also show that ARM executes less instructions than MIPS. We assume that the
ARM instructions set is much better suited for this Application and does need less instructions than MIPS.
Again we assume that the application images for the VM are smaller because they do not include any
platform related libraries. The platform related libraries are included in the executable of the VM but not
in the ARM or MIPS images.
The smaller sizes of the VM images compared to the native images would further reduce the bandwidth
usage. For example if a broadcaster has to update application 2 for the 4 platforms (Arduino, ST, R2,
Neotion), a total of 60,084 bytes have to be sent to the different devices. In comparison if an ARM VM is
installed on this devices, the update size would be only 2,675 bytes, or 4.45% of the original update size.
For the MIPS VM the update size would be 11,596 bytes, or 19.3% of the original update size.
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Figure 5.2: VM Size Overhead Application 2

5.2 Execution Time Slowdown

In this section we analyze the execution time slowdown of the application execution on the VM compared to
the native application execution. For this we used the Arduino and ST platforms as described in Section 4.2.

5.2.1 Application 1

First we evaluated the execution time slowdown of the first application. The results are shown in Table 5.9
and 5.10. The measurement thereby for Arduino is done in milliseconds and for the ST platform in clock
ticks. Again we evaluated as well the difference between the application with instruction encryption disabled
and enabled. During the code size overhead analysis no big difference was discovered if encryption mode is
enabled or not. During the execution time analysis though a big impact was discovered. This is because
before an instruction can be decoded and executed by the VM, the instruction needs to be decrypted when
it is read from the image. The impact of the encrypted images is also larger on the MIPS VM compared to
the ARM VM. This is because for the MIPS application more instructions are executed and therefore more
instructions need to be decrypted. Further, as we use a 32 byte encryption algorithm, for the ARM VM two
16 byte instructions can be decrypted at the same time. The second instruction which is not immediately
used by the VM, is put in a cache. The ARM VM then checks the cache first if the current instruction at
the program counter was already decrypted before. This reduces the amount of decryption operations for
the ARM application compared to the MIPS application further.

ISA Encryption Execution Time (ms) Slowdown

Native no 19 0
ARM VM no 85 4.47
ARM VM yes 1,197 63
MIPS VM no 153 8.05
MIPS VM yes 3,532 185.90

Table 5.9: Execution Time Slowdown Arduino Application 1

57



ISA Encryption Execution Time (ticks) Slowdown

Native no 67 0
ARM VM no 218 3.25
ARM VM yes 1,473 21.99
MIPS VM no 499 6.96
MIPS VM yes 3,702 55.25

Table 5.10: Execution Time Slowdown ST Application 1

Figure 5.3 shows the execution time slowdown of the Application 1 for the ST and Arduino platform
with encryption mode disabled. The execution time slowdown when encryption is enabled is considered too
large and is not further evaluated. On both platforms the ARM VM shows a better performance and was
only 4.47 times slower on the Ardiuno platform and 3.25 times slower on the ST platform compared to the
the native application. As shown in Section 5.3, the MIPS image executes twice as many instructions as the
ARM image. This explains why the MIPS VM is around twice slower than the ARM VM when executing
Application 1.
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Figure 5.3: Execution Time Slowdown Application 1

5.2.2 Application 2

The measured execution times for the second application are shown in Table 5.11 and 5.12. Also here the
elapsed time for the Arduino are measured in milliseconds and for the ST platform in clock ticks. For
Application 2, the execution time slowdown was much bigger compared to the first application. Further,
with encryption of instructions enabled, the time of execution increases a manifold. This is because the
second application executes many more instructions compared to Application 1.
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ISA Encryption Execution Time (ms) Slowdown

Native no 75 0
ARM VM no 19,727 263.03
ARM VM yes 494,631 6595.08
MIPS VM no 69,751 950.01
MIPS VM yes 3,729,843 49,731.24

Table 5.11: Execution Time Slowdown Arduino Application 2

ISA Encryption Execution Time (ticks) Slowdown

Native no 688 0
ARM VM no 91,407 132.86
ARM VM yes 665,755 970.57
MIPS VM no 457,036 664.30
MIPS VM yes 3,958,214 5753.22

Table 5.12: Execution Time Slowdown ST Application 2

In Figure 5.4 the execution time slowdown for the Arduino and ST platform are shown. Only the
slowdown for the VMs without encryption are included in the figure. Compared to the first application the
execution time slowdown was much bigger compared to the native application. For the Arduino platform the
ARM VM was 263 times and the MIPS VM 950 times slower compared to the native application. For the ST
platform the slowdown was 132 times for the ARM VM and 664 times for the MIPS VM. The ARM VM also
outperformed the MIPS VM for Application 2 on both platforms. The MIPS image for Application 2 executes
2,396,074 instructions where the ARM images executes 547,150 instructions, as shown in Section 5.3. Thus
the MIPS VM executes more than 4 times as many instructions as the ARM VM when running Application
2. This explains why the MIPS VM is around 3 to 5 times slower compared to the ARM VM.
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Figure 5.4: Execution Time Slowdown Application 2
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5.3 Executed Instructions Analysis

During the execution time slowdown analysis we discovered that the ARM VM is faster than the MIPS VM
and that the slowdown of the simpler application was much smaller compared to the second application. In
this section we give some explanations what the reasons for this are. For this we compare the amount of
guest instructions which are executed for each application for the different VMs.

Application Virtual Machine Number of Guest Instructions

Application 1 ARM 1,032
Application 1 MIPS 2,211
Application 2 ARM 547,150
Application 2 MIPS 2,396,074

Table 5.13: Number of Guest Instructions

From Table 5.13 we can see that the ARM image executes less instructions than the MIPS image for
both applications. This could be as for the ARM VM more instructions are available and less instructions
are needed for the same tasks. Also the MIPS compiler might optimize the code differently compared to the
ARM compiler. The amount of guest instructions executed for the different VMs, explains the difference
of the execution time between the VMs. The MIPS VM performs around 4 times more instructions and
is around 3 to 5 times slower compared to the ARM VM. Further performance difference can be explained
with the different complexities of instructions.
Unfortunately it is very difficult to inspect the number of host instructions which are executed on the differ-
ent platforms. Of course we can evaluate the assembly code of the native applications, but it is not easy to
extract the information of how many host instructions are executed eventually. This inspection is necessary
to get better insights why the VM performs so much slower than the native application. We assume different
reasons for the slower performance of the VM.
First, unfortunately we were not able to compile the VM applications with compile options for speed opti-
mization. We suspect that these options make use of features in the instruction set which are not implemented
by our VM. Applications which were compiled with this options did not run successfully on our VM. Further
investigation and improvement could enabled the VM to run speed optimized applications. On the other
hand, the native applications and the VM as well, were compiled with speed optimization 02.
Further, we can conclude that the native application runs less instructions than the ARM or MIPS applica-
tions on the VM. From the ST231 instruction set manual [16], we see that the ST231 includes 170 instructions
which is more than the instruction sets we implemented. This means it is quite possible that the native ST
application is able to use less instructions than the VM applications. This would already make a difference
of the amount of instructions which are used by the application.
Additionally, the second application relies heavily on mathematic calculations for the software AES imple-
mentation. We suspect that the ST compiler is able to create optimizations which allow the native application
to perform such operations much faster than our VM.
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Chapter 6

Conclusion

In this thesis we created a very small virtual machine which can be used for secure processors in the field of
media security. We have proven that it is possible to run the VM on a secure chip and to run applications
on top of it. Further we were even able to use the VM on a much less powerful microcontroller. This VM
enables Conditional Access System (CAS) and Digital Rights Management (DRM) vendors to create a single
application image for different STBs with different secure chips.
The size analysis showed that the size overhead of the VM including the application image is between 2.32
to 13.28 times larger than the native application. The size of the VMs thereby ranged from 39 KB to 66 KB
for the Arduino board which was small enough to run the VM on Arduino. For the ST platform the VM
size ranged from 42 KB to 72 KB, which is a feasible size for running on secure chips. No other VM which
supports MIPS or ARM was discovered which allows such small sizes.
Also compared to the native image, the images for the ARM and MIPS VM are smaller. That means further
bandwidth can be saved by not only reducing the amount of images which have to be sent to the STBs but
also the images size itself. The image for the ARM VM for the second application is only 2.7 KB where the
native images are between 12 KB and 20 KB. This is about 5 times smaller compared to the native images.
For example if a broadcaster has four different STBs deployed in the field, similar to the platforms we used
in our analysis, four native images have to be broadcast. In our example of Application 2 this would use
60 KB of data to update the application on the platforms. If ARM VMs are deployed on this STBs only
one image of 2.7 KB has to be sent which is less than 20% of the original data size. In general even more
different platforms are deployed in the field, which would allow to save even more bandwidth.
The analysis of the execution time overhead showed that encryption of each instruction introduced a big
performance impact and other security measures should be considered. For a simple application, which
relies on hardware implementation of cryptographic algorithms, the execution time overhead was between
4 and 8 times slower for the Arduino board and 3 to 7 times slower for the ST platform, compared to a
native application. This considered the instructions of the applications are not encrypted. This performance
lies in the acceptable range. Applications like this could be run on top of a VM in production. For more
complicated applications, which use software implementations of cryptographic algorithms, the execution
time overhead was much bigger. For the Arduino platform the slowdown was between 263 and 950 times and
the ST platform needed 132 to 664 times longer compared to the native application. These results render
the VM solution, without further optimization, not feasible for more complicated applications.
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Chapter 7

Future Work

Our work proved that it is possible to create a very small VM which can be used for less powerful processors
and microcontrollers. The execution time slowdown though is a big issue and could make this solution not
practical for applications with many instructions.
One of the biggest challenges, which we were not able to solve, is to make the VM work for speed optimized
images. Guest images which are compiled with speed optimization will use less instructions and will increase
the speed. Especially for the more complicated second application we assume that with optimization the
difference will be significant.
Further analysis and profiling of the VM is also needed to detect other areas where the execution time could
be improved.
In our experiments the MIPS images used more space than the ARM images. As image size is crucial to save
bandwidth to update STB images, the compressed MIPS instruction set MicroMIPS could be considered for
the MIPS VM. This would allow to use 16 bit instructions, comparable to the thumb instructions in ARM.
We expect that MicroMIPS would allow similar image sizes as the ARM images.
The VM we implemented always emulates the guest instruction set. In our case MIPS and ARM. It is
also possible though that the host hardware even supports the guest instructions or a subset of the guest
instructions. For example if a secure chip is based on the ARM architecture. In this case ARM instructions
which are available on the host platform can directly be performed on the host platform. Further, most
guest architectures have similar instructions as the host architecture which have the same intended effect.
In this case the guest instruction can be translated into the host instruction with help of binary translation.
The combination of direct instruction execution and binary translation is expected to result in much better
performance compared to the only emulated approach.
One of the big advantages of our VM is the size of the VM. This makes it possible to run the VM on
embedded systems or microcontrollers with only limited resources. In this thesis the ST platform and the
Arduino microcontroller are evaluated. Many different platforms can be evaluated and for example used to
run ARM or MIPS applications.
A nice feature of the emulation of the instruction set architecture in our VM, is that it allows to inspect
different areas of the virtual process during execution of the application image. For example during the
execution of an instruction of the application image, the registers and the stack can be inspected. This can
be useful to debug and inspect ARM or MIPS images. It could be considered to integrate the VM with an
user interface which allows to stop the execution of the application image and is able to display the registers
and stack.
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Appendix A

MIPS 1 Instructions

Instruction Description

lb <Rt>, #offset(<Rs>) Load byte
lbu <Rt>,#offset(base) Load Byte Unsigned
sb <Rt>, #offset(<Rs>) Store byte
lh <Rt>, #offset(base) Load Halfword
lhu <Rt>,#offset(base) Load Halfword Unsigned
sh <Rt>,#offset(<Rs>) Store Half Word
lw <Rt>, #offset(<Rs>) Load word
sw <Rt>,#offset(<Rs>) Store word

Table A.1: Normal Load/Store Instructions

Instruction Description

lwl <Rt>,#offset(<Rt>) Load Word Left
lwr <Rt>,#offset(<Rs>) Load Word Right
swl <Rt>,#offset(<Rs>) Store Word Left
swr <Rt>,#offset(<Rs>) Store Word Right

Table A.2: Unaligned Load/Store Instructions

Instruction Description

addi <Rt>, <Rs>, #imm Add immediate with overflow.
addiu <Rt>,<Rs> #imm Add immediate unsigned.
slti <Rt>,<Rs>,#imm Set on less than immediate (signed)
sltiu <Rt>,<Rs>,#imm Set on less than immediate unsigned
andi <Rt>,<Rs>,#imm Bitwise and immediate
ori <Rt>,<Rs>,#imm Bitwise or immediate
xori <Rt>,<Rs>,#imm Bitwise exclusive or immediate
lui <Rt>, #imm Load upper immediate

Table A.3: ALU instructions With an Immediate Operand
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Instruction Description

add <Rd>,<Rs>, <Rt> Add with overflow.
addu <Rd>,<Rs>,<Rt> Add unsigned (no overflow)
sub <Rd>,<Rs>,<Rt> Subtract
subu <Rd>,<Rs>,<Rt> Subtract unsigned
slt <Rd>,<Rs>,<Rt> Set on less than (signed)
sltu <Rd>,<Rs>,<Rt> Set on less than unsigned
and <Rd>,<Rs>,<Rt> Bitwise and
or <Rd>,<Rs>,<Rt> Bitwise or
xor <Rd>,<Rs>,<Rt> Bitwise exclusive or
nor <Rd>,<Rs>,<Rt> Bitwise exclusive nor

Table A.4: ALU instructions With 3 Operands

Instruction Description

sll <Rd>,<Rt>, #h Shift left logical
srl <Rd>,<Rt>,#h Shift right logical
sra <Rd>,<Rt>,#h Shift right arithmetic
sllv <Rd>,<Rt>,<Rs> Shift left logical variable
srlv <Rd>,<Rt>,<Rs> Shift right logical variable
srav <Rd>,<Rt>,<Rs> Shift Word Right Arithmetic Variable.

Table A.5: Shift instructions

Instruction Description

mult <Rs>,<Rt> Multiply
multu <Rs> ,<Rt> Multiply unsigned
div <Rs>,<Rt> Divide
divu <Rs>,<Rt> Divide unsigned
mfhi <Rd> Move from HI
mthi <Rs> Move To HI Register
mflo <Rd> Move from LO
mtlo <Rs> Move To LO Register

Table A.6: Multiply and Divide instructions
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Instruction Description

j #target Jump
jal #target Jump and link
jr <Rs> Jump register
jalr #target Jump And Link Register
beq <Rs>,<Rt>,#offset Branch on equal
bne <Rs>,<Rt>, #offset Branch on not equal
blez <Rs>, #offset Branch on less than or equal to zero
bgtz <Rs>, #offset Branch on greater than zero
bltz <Rs>, #offset Branch on less than zero
bgez <Rs>, #offset Branch on greater than or equal to zero
bltzal <Rs>, #offset Branch on less than zero and link
bgezal <Rs>, #offset Branch on greater than or equal to zero and link

Table A.7: Jump and Branch instructions

Instruction Description

noop No operation
syscall System call

Table A.8: Miscellaneous instructions
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Appendix B

MIPS 1 Encoding

opcode (31-26) Instruction

001000 ADDI
001001 ADDIU
001100 ANDI
000100 BEQ
000101 BNE
000010 J
000011 JAL
100000 LB
100100 LBU
100001 LH
100101 LHU
100011 LW
100010 LWL
100110 LWR
001101 ORI
101000 SB
101001 SH
001010 SLTI
001011 SLTIU
101011 SW
101010 SWL
101110 SWR
001110 XORI
000111 BGTZ
000110 BLEZ
001111 LUI

Table B.1: Instructions with unique opcode

68



bits (5-0) Instruction

100000 ADD
100001 ADDU
100100 AND
001101 BREAK
011010 DIV
011011 DIVU
001001 JALR
001000 JR
010000 MFHI
010010 MFLO
010001 MTHI
010011 MTLO
011000 MULT
011001 MULTU
100111 NOR
100101 OR
101010 SLT
101011 SLTU
000011 SRA
000111 SRAV
000010 SRL
000110 SRLV
100010 SUB
100011 SUBU
001100 SYSCALL
100110 XOR
000000 SLL bits(25-21) = 00000
000000 SLLV bits(10-6) = 00000

Table B.2: SPECIAL Instructions encoding (bits 31 to 26 are 00000

bits (5-0) Instruction

00001 BGEZ
10001 BGEZAL
10011 BGEZALL
00000 BLTZ
10000 BLTAL
10010 BLTALL
00010 BLTZL

Table B.3: REGIMM Instructions encoding
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Appendix C

ARMv6 Cortex-M0 Instructions

Instruction Description

B <label> branch to target address
BL <label> branch and link
BX <Rm> branch and exchange
BLX <Rm> branch with link exchange

Table C.1: ARM Branch instructions
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Instruction Description

ADDS <Rd>,<Rn>,#<imm3> add immediate
ADDS <Rdn>,#<imm8> add immediate
ADDS <Rd>,<Rn>,<Rm> add shifted register
ADD <Rdn>,<Rm> add register
ADCS <Rdn>,<Rm> add with carry register
ADD <Rd>,SP,#<imm8> add immediate value to SP and write to register
ADD SP,SP,#<imm7> add immediate value to SP and write to register
ADD <Rdm>, SP, <Rdm> add register value to sp value and write result to dest reg
ADD SP, <Rm> add register value to sp value and write result to dest reg
ADR <Rd>,<label> address to register with immediate
ANDS <Rdn>,<Rm> bitwise AND of register values
BICS <Rdn>,<Rm> bitwise and of register value and complement of register value
CMP <Rn>,#<imm8> compare subtract immediate value from register value
CMP <Rn>,<Rm> compare subtract register value from register value
CMP <Rn>,<Rm> compare subtract register value from register value
CMN <Rn>,<Rm> compare negative register value
EORS <Rdn>,<Rm> exclusive or of two register values
MOVS <Rd>,#<imm8> Moves immediate value to register
MOV <Rd>,<Rm> move register value to other register
MOVS <Rd>,<Rm> move value from register to other register
MVNS <Rd>,<Rm> bitwise not
ORRS <Rdn>,<Rm> bitwise inclusive or of two register values
RSBS <Rd>,<Rn>,#0 subtract register value from immediate value
SUBS <Rd>,<Rn>,#<imm3> subtract immediate value from register value
SUBS <Rdn>,#<imm8> subtract immediate value from register value
SUBS <Rd>,<Rn>,<Rm> subtract shifted register value from register value
SUB SP, #<const> subtracts immediate from SP and write result to SP
TST <Rn>,<Rm> test bitwise and
ASRS <Rd>,<Rm>,#<imm5> arithmetic shift right by immediate value
ASRS <Rd>,<Rn>,<Rm> arithmetic shift right by register value
LSLS <Rd>,<Rm>,#<imm5> logical shift by immediate value
LSLS <Rdn>,<Rm> logical shift by register value
LSRS <Rd>,<Rm>,#<imm5> logical shift right by immediate value
LSRS <Rdn>,<Rm> logical shift right by register value
RORS <Rdn>,<Rm> rotate right
MULS <Rdm>,<Rn>,<Rdm> multiply two register values

Table C.2: ARM standard data processing instructions

Instruction Description

MRS <Rd>,<spec_reg> move from special register to general purpose register
MSR <spec_reg>,<Rn> move from general purpose register to special register

Table C.3: ARM status register access instructions
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Instruction Description

LDR <Rt>, <Rn>, #imm5 load word from memory to register
LDR <Rt>, <SP>, #<imm8> load word from memory to register
LDR <Rt>,<label> loads word from memory and stores to register (literal)
LDR <Rt>,<label> loads word from memory and stores to register (register)
LDRH <Rt>,<Rn>,#<imm5> load register halfword
LDRH <Rt>,<Rn>,<Rm> load register halfword
LDRSH <Rt>,<Rn>,<Rm> load register signed halfword
LDRB <Rt>,<Rn>#<imm5> load register byte
LDRB <Rt>,<Rn>,<Rm> load byte
LDRSB <Rt>,<Rn>,<Rm> load register signed byte
STR <Rt>, <Rn>, #imm5 store register value to memory
STR <Rt>, SP, #imm8 store register value to memory
STR <Rt>,<Rn>,<Rm> store value
STRH <Rt>,<Rn>,#<imm5> store half word
STRH <Rt>,<Rn>,<Rm> store half word
STRB <Rt>,<Rn>,#<imm5> store byte
STRB <Rt>,<Rn>,<Rm> store byte

Table C.4: ARM load and store instructions

Instruction Description

LDM <Rn>, <registers> load multiple register
STM <Rn>,<registers> store multiple register
POP <registers> pop multiple register from stack
PUSH <registers> push multiple registers to stack

Table C.5: ARM load and store multiple instructions

Instruction Description

DMB #<option> data memory barrier acts as a memory barrier (not supported)
DSB #<option> data synchronization barrier (not supported)
NOP no operation
SEV send event as hint instruction (not supported)
SVC #<imm8> supervisor call
WFE wait for event (not supported)
WFI wait for interrupt (not supported)
YIELD yield (not supported)
BKPT #<imm8> breakpoint causes a hard fault (not supported)

Table C.6: ARM miscellaneous instructions
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Appendix D

ARM Encoding

bits (13-9) Instruction

000xx LSL
001xx LSR
010xx ASR
01100 ADD
01101 SUB
01110 ADD
01111 SUB
100xx MOV
101xx CMP
110xx ADD
111xx SUB

Table D.1: ARM shift, add, subtract, move and compare instruction encodings
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bits (9-6) Instruction

0000 AND
0001 EOR
0010 LSL
0011 LSR
0100 ASR
0101 ADC
0110 SBC
0111 ROR
1000 TST
1001 RSB
1010 CMP
1011 CMN
1100 ORR
1101 MUL
1110 BIC
1111 MVN

Table D.2: ARM data processing instruction encoding

bits (9-6) Instruction

00xx ADD
0101 CMP
011x CMP
10xx MOV
110x BX
111x BLX

Table D.3: ARM branch instruction encoding
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bits (15-9) Instruction

0101 000 STR
0101 001 STRH
0101 010 STRB
0101 011 LDRSB
0101 100 LDR
0101 101 LDRH
0101 110 LDRB
0101 111 LDRSH
0110 0xx STR
0110 1xx LDR
0111 0xx STRB
0111 1xx LDRB
1000 0xx STRH
1000 1xx LDRH
1001 0xx STR
1001 1xx LDR

Table D.4: ARM load and store instruction encoding

bits (11-5) Instruction

00000xx ADD (SP plus immediate)
00001xx SUB (SP plus immediate)
010xxxx PUSH
110xxxx POP
1110xxx BKPT

Table D.5: ARM miscellaneous instruction encoding

bits (11-8) Instruction

1111 SVC
not 111x B

Table D.6: ARM conditional branch and supervisor call instruction encoding

bits (10-4) of first part bits (15-12) of second part Instruction

011100x 10x0 MSR
011111x 10x0 MRS
xxxxxxx 11x1 BL

Table D.7: ARM 32-bit branch and special-register instruction encoding
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bits (7-4) of second part Instruction

0100 DSB
0101 DMB

Table D.8: ARM 32-bit miscellaneous instruction encoding
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