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Abstract 
Motivation: Cancer is driven by the accumulation of somatic mutations. Subclones with partly 

overlapping mutations may form inside the tumor over time as part of an evolutionary process. It is 

thought that only a subset of subclones may be involved in acquiring treatment resistance. Thus, 

identifying the mutations of each subclone can benefit research towards developing more effective anti-

cancer therapy. Currently, identifying mutations of subclones is difficult due to technological limitations. 

Typically, tumor samples are a mixture of multiple subclones. When these samples are sequenced, the 

measurements are averaged across the subclones that were present in the sample, complicating the 

reconstruction of subclonal evolution of the tumor. Existing methodology for the reconstruction of 

subclonal evolution are typically limited to identifying only a small number of subclones in a sample. 

Alternative sampling techniques such as microdissections aim to reduce the number of subclones in a 

sample, but require a large number of samples to accurately represent the collection of subclones 

inside a tumor. However, existing methods cannot easily be applied to a large number of samples as 

these methods require data from whole genome or whole exome sequencing, making this type of 

analysis financially impractical. Targeted sequencing is a cheaper alternative to whole genome and 

whole exome sequencing, but no methods have yet been developed that can reconstruct subclonal 

evolution from data acquired with targeted sequencing.    

Results: We present TargetClone, a method to infer the most likely copy numbers, alleles and 

frequency of subclones in multiple tumor samples and their subclonal evolution tree from lesser allele 

frequencies measured with targeted sequencing. We demonstrate that the copy numbers and sample 

frequency can be inferred with accuracies above 90% with low levels of sequencing noise. Furthermore, 

we apply the method to simulation data and reconstruct the subclonal evolution trees for two testicular 

germ cell tumors with resistance to chemotherapy. 

Availability: An implementation of TargetClone is available at:  

                     https://github.com/targetclone/TargetClone               

1 Introduction  

Cancer develops through the accumulation of somatic mutations over time 
1,2. Somatic mutations are unique to the tumor and are not present in cells 

of healthy tissue. Interestingly, not every cell in a tumor bulk contains the 

same set of mutations. Instead, tumors are often highly heterogeneous 

populations of cells which each have unique, but partly overlapping, 

mutation patterns3–5. Every population with the same set of mutations is 

referred to as a subclone2,6. New subclones are formed throughout the 

development of the tumor as part of the process of clonal evolution. New 

subclones inherit the genome from their precursor, but may gain additional 

or lose mutations over time (Fig. 1A)7. Some combinations of mutations 

may be harmful for the subclone, which may result in a decreasing 

frequency of the subclonal cell population7,8. Other combinations may be 

important in the development of the tumor, or in acquiring resistance to 

therapy9,10.  

Somatic mutations are typically classified as either somatic variations or 

copy number variations6. Somatic variants are Single Nucleotide 

Polymorphisms (SNPs) that only occur in the tumor cells, and not in 

healthy cells. A SNP is a polymorphism in the DNA where the nucleotides 

on one or both chromosomes of a pair is different from the nucleotide in a 

reference genome (Fig. 1B). The two nucleotides that vary between 

chromosome pairs and the reference genome are also called SNP alleles. 

When the nucleotides on both chromosome pairs are the same, but differ 

from the reference, the SNP is called homozygous. If the nucleotides differ 

between the two chromosome pairs, the SNP is called heterozygous. We 

will refer to SNP alleles as alleles in the rest of this text. Alleles are 

identified in the genome after aligning the genome to a reference genome. 

The allele that is the same as the allele in the reference is referred to as the 

reference allele. The other allele is referred to as the variant allele. When a 

SNP is not observed on a chromosome pair of a healthy cell, but it is found 

on a chromosome pair of a tumor cell, we refer to the SNP as a somatic 

variant (Fig. 1C). In contrast, a copy number variation is a change in the 

number of chromosomal copies and typically affects more than one 

nucleotide. Copy number variations are characterized by a gain or loss of 

a chromosomal region. A copy number variation can be measured at SNP 

alleles, where an increase or decrease in the number of times an allele is 

present corresponds to a gain or loss of that allele, respectively (Fig. 1D). 

These copy number variations are then referred to as allelic copy number 

variations.  

Characterizing the stages of tumor growth at which certain mutations are 

gained and lost can assist in improving our understanding of how tumors  
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Fig. 1. Illustration of SNPs, somatic variants, copy number variations and how this information is used to characterize tumor heterogeneity. (A) Example of clonal evolution 

within a tumor. The second subclone (grey circle), has somatic mutations compared to the normal cell precursor in other regions of the genome that are not shown in this figure for clarity. 

(B) Each circle is a cell. The color of a cell indicates that the cell has a unique set of mutations. The red circle is a normal cell, which has two chromosome copies. Each allele is indicated 

with colored bars, where the orange bar corresponds to the reference allele, and the blue bar corresponds to the variant allele. The reference genome is indicated on the grey bar. We see 

that a SNP is present in the normal cell. For illustration purposes, we show 3 additional nucleotides around the SNP. (C) The grey bars now indicate the alleles of a normal, healthy cell. 

Compared to the normal cell, the tumor cell has an additional polymorphism from A to G at the first nucleotide, which is a somatic variant. (D) In this tumor cell, a copy number variation 

has occurred and a variant allele has been gained, which is now present in two copies. (E)  We take four samples (indicated with the dotted lines) from a heterogeneous tumor bulk. At 

time of sampling, not all subclones necessarily need to be present. In this example, the grey subclone has died out over time. In the purple sample, the purple subclone is actually present 4 

times. All the other subclones are sampled once. (F) The variant allele frequency (VAF) is shown for every sample. The samples are the same as in Fig. 1E. In the yellow sample, a 

somatic variant is present on one out of four copies, whereas no somatic variants are present in the purple and red samples. The blue sample has a somatic variant at every copy. (G) 

Expected solutions when we apply somatic variant-based methods to find subclones in the four samples. The arrow points from a sample to the corresponding solution. There is no 

difference between a normal cell and the purple subclone based on somatic variants, so we do not know the purple subclone is present. (H) The sequencing reads of the shown alleles of 

every sample are mapped to a reference genome, which is shown as the grey bar. Somatic variants are omitted from the mapped reads as this information is not used by copy number 

variation-based methods. (I) Based on the mapped reads, the most likely C⃗  and µ⃗  are reported for each sample. ‘X’ indicates that the subclone is not present, and thus has no copy number. 

Again here, as the only difference between the yellow subclone and normal cell is a somatic variant, copy number variation-based methods cannot distinguish between the cells.    
  

 

develop and may respond to treatment1,10,11. However, a couple of 

limitations in the currently available methodology add challenges to the 

reconstruction of subclonal evolution.    

 

Technological limitations complicate the reconstruction of subclonal 

evolution 

In the ideal scenario, it would be possible to isolate every subclone and 

sequence these individually. However, these methods are out of scope of 

current standard research9,12,13. Instead, samples are heterogeneous and  

 

 

typically consist of multiple subclones and normal cell contamination (Fig. 

1E). When such mixed samples are sequenced, the measurements will be  

averaged across the existing subclonal components. As a result, 

information on the subclonal level is lost. Nevertheless, over the past 

couple of years a number of methods have been developed to decompose 

sequencing measurements from these heterogeneous samples into 

subclones and reconstruct their phylogenetic relations14.     

 

Previous work  
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Existing methods for reconstructing (sub)clonal evolution can be 

categorized into three types: somatic variant-based methods, copy number 

variation-based methods, and methods that combine both somatic variants 

and copy number alterations.  

 

Somatic variant-based approaches 

Subclones inherit somatic variants from their precursor (Fig. 1A). A 

commonly made assumption is the infinite sites assumption (ISA)6,9,15. This 

assumption states that a somatic variant will only affect every genomic site 

once due to the large number of other positions it could have affected. 

Second, a somatic variant is assumed to never be lost once gained. These 

assumptions typically restrict the possible number of clonal evolution trees 

enough to find one or more solutions15. However, the assumptions do not 

hold in the presence of copy number variations. For example, a somatic 

variant can disappear in a new subclone when the chromosomal region on 

which it is located is lost. Therefore, most methods restrict their input to 

only somatic variants that are located in copy number neutral regions. 

Examples of methods that apply this restriction are TrAp16 and Clomial9, 

which both try to find the most likely decomposition of heterogeneous 

samples into subclones in the samples based on variant allele frequency 

(VAF) measurements. The variant allele frequency is a ratio of the variant 

allele compared to the reference allele, which is measured at positions 

containing somatic variants (Fig. 1F). TrAp and Clomial use the variant 

allele frequency measurements to infer a matrix containing a 1 or 0 if a 

subclone contains a somatic variant or not, respectively. Using the 

previously named assumptions, the matrix is used to infer the most likely 

subclonal evolution tree. Rec-BTP makes similar assumptions, but instead 

tries to find the most likely binary tree given variant allele frequency 

measurements17. PurBayes makes use of Bayesian mixture models to find 

the most likely clusters of somatic variants in the variant allele frequency 

measurements, where each cluster represents a subclone18. Next to finding 

subclones, all of these methods also try to infer their frequency in the 

samples (Fig. 1G). The frequency of m subclones in a sample is typically 

denoted as  

 

µ⃗ = (µ1,… , µ𝑚)        (1) 

As normal cell contamination is common in tumor samples, the first 

element of µ⃗  will always represent the frequency of the normal cells in the 

sample. The sum of all elements in µ⃗  is 1 by definition.  

One common problem that all methods based on solely somatic variants 

run into is that not all subclones in a sample necessarily need to contain 

somatic variants. For example, as we can see in Fig. 1F, the purple subclone 

has no somatic variants and a variant allele frequency of 0, and only 

contains a copy number variation. As no somatic variants are present in this 

subclone, the purple subclone is the same as a normal cell for somatic-

variant based methods. Therefore, only a normal cell will be inferred with 

a frequency of 1 in the sample. As a result, copy number variation-based 

methods have been designed to be applied to the scenarios where somatic 

variants are not enough to correctly infer subclones. 

 

Copy number variation-based approaches 

In certain cancers, the existing somatic variants can mostly be passengers, 

whereas instead copy number alterations are thought to be the driving force 

behind tumor growth2. Therefore, some methods have been developed 

which focus on reconstructing subclonal evolution from copy number 

variations instead.  ThetA19 and TITAN11 are examples of methods where 

read depth information from sequencing is used to find the decomposition 

of a mapped reads into subclones with the highest likelihood. For all 

samples, these methods map reads from the alleles of subclones in the 

sample to a reference genome (Fig. 1H). From these reads, the methods try 

to find the most likely combination of the copy numbers of the subclones 

and their frequency µ⃗  in the samples (Fig. 1I). The copy numbers of the m 

subclones are typically represented in a matrix, here called C⃗ . In the 

example of Fig. 1I, only one chromosomal region is shown. In a typical 

study, multiple (n) chromosomal regions can be measured. Matrix C⃗  thus 

consists of an indication of the most likely chromosomal copy number of 

subclone j at chromosomal region i:     

 

𝐶  =  (𝐶𝑖,𝑗) 𝜖 ℕ
𝑛 × 𝑚   (2) 

Similar to µ⃗ , the first column of C⃗  will always represent the copy numbers 

of the normal cells in the sample, which is assumed to be 2. Every other 

copy number k is restricted on the interval [kmin, kmax]: 

 

C⃗ = {𝐶∗,1 = (2, 2, … ,2)𝑇, 𝐶𝑖,𝑗 = {(𝑘𝑚𝑖𝑛, 𝑘𝑚𝑖𝑛 + 1,… , 𝑘𝑚𝑎𝑥)} 

 

From Fig. 1I, we see that the yellow sample will be predicted to only 

contain normal cells. The reason behind this solution is that since copy 

number variation-based methods do not include somatic variants in their 

subclonal reconstruction process, no difference will be observed between 

the yellow subclone and a normal cell. As both somatic-variant based 

methods and copy number variation-based methods have the same problem 

that sometimes no clear difference can be found between subclones if these 

lack either somatic variants or copy number variations, efforts have been 

made to combine the two to increase subclonal reconstruction accuracy.  

 

Approaches combining somatic variants and copy numbers 

In some cancers, it may initially be unclear what the driving force behind 

tumor growth is. To overcome this challenge, recently another method 

called CloneHD2 has been developed which integrates somatic variants 

with allele frequencies and copy number information measured across the 

entire genome and tries to find a decomposition into subclones that is 

consistent across all data layers using Hidden Markov Models. 

Another benefit of combining copy number information with somatic 

variants is that it can help to overcome the restriction of existing methods 

to copy number neutral regions. The assumption that all somatic variants 

are located in copy number neutral regions is common for somatic variant-

based methods. The reason why this assumption is made is that it can help 

resolve ambiguities in how many somatic variants are present. For 

example, with a variant allele frequency of 0.5, the somatic variant can be 

present on one out of two copies, but also on two out of four copies. 

However, knowledge on the number of copies containing a somatic variant 

is essential in placing a subclone in the correct position in a subclonal 

evolution tree. It may very well be that a subclone with four chromosome 

copies is formed later during evolution than a subclone with two 

chromosome copies, as a subclone with one somatic variant on two copies 

can potentially be generated directly from a healthy cell. However, if these 

ambiguities cannot be resolved properly, it is difficult to reconstruct 

accurate trees of subclonal evolution. Thus, methods typically assume that 

somatic variants only occur in copy number neutral regions, and in 

combination with the infinite sites assumption only occur on one of the two 

chromosome copies. The combination of somatic variants with copy 

number variations is successfully applied by PhyloWGS6, PhyloSub15, 

PyClone20, SciClone5 and EXPANDS10.   

Despite having been reported to produce good results in reconstructing 

subclonal evolution, most existing methods are restricted to 2 subclones 

per sample2, or lose accuracy as the number of subclones increases6.  
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Fig. 2. (A) Example of laser microdissections of a GCNIS component (left) and TE 

component (right) of a testicular germ cell tumor. The arrows indicate the (circled) regions 

of interest which will be extracted using a laser. Empty regions of interest indicate that the 

region has already been extracted.  (B) Schematic overview of the development of type 2 

TGCT.  Starting from normal embryonic stem cells (ESC), primordial germ cells (PGC) are 

formed. When blocked in proper differentiation, the genome of primordial germ cells can be 

duplicated, forming pre-GCNIS, which further develops into GCNIS after accumulating 

somatic mutations. GCNIS can develop into seminoma (SE) and non-seminoma (NS). Non-

seminomatous tumors are assumed to initially form from a pluripotent embryonal carcinoma 

(EC), which can further differentiate into chroriocarcinoma (CH), yolk sac tumor (YS) and 

teratoma (TE).  Somatic mutations and copy number variations (CNA) accumulate over 

time.  

 

Nevertheless, alternative approaches have been developed that aim to 

overcome the problems introduced by heterogeneous samples by reducing 

heterogeneity on the level of sampling.  

 

Laser microdissections are useful in obtaining less heterogeneous 

samples   

 An alternative method to reduce heterogeneity in samples is through the 

use of laser microdissections. With this technique, it is possible to stain 

specific regions of interest in the tumor, which can then be very precisely 

cut out using a laser (Fig. 2A). The added precision allows for minimization 

of heterogeneity and normal cell contamination in samples21,22. Rather than 

requiring the deconvolution of heterogeneous tumor samples back into 

subclones, microdissections can be used to obtain a diverse subset of 

samples from multiple regions of the tumor in which heterogeneity is 

aimed to be reduced. However, even with microdissections it has been 

shown to be difficult to always obtain low levels of normal cell 

contamination22. Therefore, it is still desirable to obtain estimates of the 

ploidy of the tumor component and the purity of each sample.   

 

Targeted sequencing is a cheaper alternative to WGS and WES 

The currently existing methods are not suitable for the task of estimating 

tumor ploidy and purity for a large number of samples. Estimates of copy 

numbers are required to apply both the methods that include copy number 

variations in their model and the methods that require knowledge of which  

regions are copy number neutral. To obtain high-quality copy number 

estimates, the methods rely on measurements from either SNP arrays, 

whole exome sequencing (WES) or whole genome sequencing (WGS)14. 

These types of analysis become financially impractical in studies with a 

large set of samples, as is typically the case when using microdissections. 

An alternative sequencing method is targeted sequencing, which only 

measures read depth at preselected regions of interest and thereby reduces 

cost and time of the sequencing process23. The idea of being able to 

reconstruct subclonal tumor evolution from data generated by cheaper 

sequencing methods is highly interesting. However, cheaper sequencing 

also comes at the cost of the quality of data that is obtained, which will be 

explained in the following24.  

 

Targeted sequencing introduces new challenges 

Importantly, it is difficult to obtain accurate copy number estimates from 

targeted sequencing data. The reason is that measurements are typically 

distributed in low densities across the genome, meaning that typically not 

every genomic region is covered. As a result, variation in the read depth 

due to biases cannot accurately be corrected for through the utilization of 

the measurements in adjacent regions25.  

The most relevant bias is caused by the varying amounts of PCR cycli 

required for the typically different amounts of input DNA that are isolated 

per sample25. To correct the variations in read depth resulting from the 

targeted sequencing process, many (~100) reference samples are required 

to accurately estimate the variation, which is a costly process. 

Consequently, targeted sequencing methods usually only result in accurate 

measurements of the allele frequency at SNP alleles, which is defined as 

the ratio of reference to variant alleles.  

As a result of the loss of correlation between measurements, it becomes 

difficult to accurately define a phasing of parental alleles. Therefore, it is 

typical to convert allele frequency measurements to lesser allele 

frequencies (LAF). The lesser allele frequency is the ratio of the least 

frequent allele at a SNP position. Let  𝐴𝑐
⃗⃗⃗⃗  and 𝐵𝑐

⃗⃗⃗⃗   be matrices of size n × m 

containing the number of reference (A) and variant (B) alleles at each 

genomic region in each subclone in a sample (Fig. 3A). Then the lesser 

allele frequency in that sample at region i can be computed as (Fig. 3B) 

 

          𝐿𝐴𝐹𝑖 = 
𝑚𝑖𝑛 (∑𝐴𝑐𝑖

⃗⃗⃗⃗⃗⃗ ×µ⃗⃗ ,   ∑𝐵𝑐𝑖⃗⃗ ⃗⃗ ⃗⃗ ×µ⃗⃗ )

∑𝐴𝑐𝑖
⃗⃗⃗⃗⃗⃗ ×µ⃗⃗  + ∑𝐵𝑐𝑖⃗⃗ ⃗⃗ ⃗⃗ ×µ⃗⃗ 

     (3) 

The lesser allele frequency is usually only measured at positions where 

the SNP is heterozygous in the normal sample. The reason for this is that it 

includes the identification of loss of heterozygosity (LOH). LOH is a 

scenario in which the tumor cell has lost one or more alleles and becomes 

homozygous, so we measure a lesser allele frequency of 0 (Fig. 3C, third 

sample), whereas the lesser allele frequency is 1/2 in the normal sample. If 

the normal cell is also homozygous (so a lesser allele frequency of 0), it 

would not be possible to observe that the tumor has lost an allele as the 

lesser allele frequency remains 0 compared to the normal cell.   

Some examples of the lesser allele frequency are given in Fig. 3C. The 

first two samples and the last two samples reveal that it is possible for 

different combinations of alleles and copy numbers in the tumor cell to 

result in the same lesser allele frequency. For example, a lesser allele 

frequency of 1/2 could potentially correspond to having 1 reference and 1 

variant allele, but also having 2 reference and 2 variant alleles (Fig. 3C, last 

two samples). Thus, lesser allele frequencies can correspond to multiple 

possible copy numbers, which we will refer to as copy number ambiguities. 

These ambiguities make it difficult to correctly estimate copy number 

information using lesser allele frequency measurements alone. As a result, 

it becomes impossible to use existing methods that require copy number 

information.  
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Fig. 3. Computation of the lesser allele frequency (LAF). (A) Example of a sample (dotted line) with two cells, one normal cell with two chromosome copies and one tumor cell with 

three chromosome copies. The normal cell has one copy of the reference allele A and one copy of the variant allele B, whereas the tumor cell has gained one copy of the reference allele A. 

(B) Formula to compute the lesser allele frequency in a sample using the components shown in Fig. 3A. Formally, the LAF is computed at a chromosomal region i (Eq. 3). As this figure 

focuses on only one region, we omit the region indicator from the figure. (C) Example of lesser allele frequency for five samples computed using the formula in Fig. 3B.  In each of the 

samples shown, the tumor cell has a different number of alleles. 

 

 

Methods that use somatic variants in copy number neutral regions can also 

not be applied: as a lesser allele frequency of 1/2 can correspond to having 

2 or 4 copies and the read depth information is not reliable, there is no way 

of telling if a somatic variant is located in a copy number neutral region or 

not from lesser allele frequency measurements alone. However, following 

the work presented in MEDICC26, we make use of the assumption of the 

existence of a minimum number of changes made to the genomes of 

subclones over time to resolve copy number ambiguities. This is further 

described in the next section. 

 

Evolutionary relations between samples is assumed to help to resolve 

copy number ambiguities 

All subclones in a tumor are assumed to share evolutionary relations. 

Mutations are inherited from a precursor and new mutations are gained and 

lost. We assume that introducing changes into the genome can potentially  

be harmful for cells as these may occur in essential coding regions7,8. 

Therefore, subclones in which harmful mutations have occurred are 

expected to show a quick decrease in frequency and are not expected to 

give rise to new subclones. As such, the existing subclones in a tumor are 

assumed to not have highly dissimilar genomes, as introducing more 

mutations increase the chance of the subclonal population dying out. 

Following this expectation, we assume that the number of somatic 

mutations that are gained and lost over time is minimal26. This assumption 

is expected to be useful in obtaining better estimates of the copy numbers 

of subclones as follows. Even if there exist copy number ambiguities at a  

 

 

chromosomal region in one sample, the copy numbers in the other samples 

may help us resolve such ambiguities. For example, if we measure a lesser  

allele frequency of 1/2 in sample 1, then that chromosomal region in the 

tumor subclone could have a copy number of 0, 2 and 4, if we set the 

maximum allowed copy number to 8. However, we may find substantial 

evidence that the copy number is 1 for the tumor subclones in the other 

samples. Therefore, due to the assumption that the number of changes to 

the genome between subclones is minimal, it is a lot more likely that the 

tumor subclone in sample 1 also has a copy number of either 0 or 2. 

However, as a copy number of 0 corresponds to a homozygous deletion 

where all alleles are lost, which are uncommon as cells can typically not 

go without most parts of their genome, we can conclude that the most likely 

copy number of sample 1 in this region is 2. We show in this text what the 

benefit of the minimum event distance assumption is to reconstruct 

subclonal evolution from lesser allele frequencies.   

 

Contributions 

As explained above, it is very difficult to obtain accurate estimates of copy 

numbers that would allow the application of existing methods to 

reconstruct the subclonal evolution in tumors from samples that have been 

subjected to targeted sequencing. However, as targeted sequencing is 

cheaper than whole genome or whole exome sequencing, it would be ideal 

if it were possible to reconstruct subclonal evolution from targeted 

sequencing data with equal, or higher, accuracy as with whole genome or 

whole exome sequencing. In this article, we present TargetClone, a novel   
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method which infers the most likely copy numbers and alleles of subclones 

and their sample frequency from lesser allele frequencies measured in 

multiple samples using targeted sequencing. Furthermore, a subclonal 

evolution tree is reconstructed for the inferred subclones. The samples are 

each assumed to consist of no more than 1 tumor subclone. The inferred 

ploidy or alleles are optionally combined with measured somatic variants 

to infer the subclonal evolution tree. Rather than taking as input the 

measurements of one sample, we demonstrate that our approach of utilizing 

information across all samples results in a higher accuracy. Furthermore, 

we apply the method to the case of chemotherapy-resistant type 2 testicular 

germ cell tumors (TGCT). Type 2 TGCT is a type of germ cell tumors, 

which are classified into 5 different types27. Here, we will focus on only 

type 2 TGCT.  

TGCT is the predominant cancer in young men, accounting for 60% of 

all malignant tumors in Caucasian men between the age of 25 and 45 

years27,28. In general, these tumors have high cure rates. Nevertheless, 

treatment resistance is observed in at most 5% of patients29,30. The 

mechanisms of resistance are poorly understood, which is further 

elaborated in the following.  

 

A brief introduction to TGCT   

The formation of TGCT is initiated at early stages of embryonic 

development28,29,31. During development of the embryo, embryonic stem 

cells (ESC) are formed. A subset of ESC differentiates into organs, such as 

the skin and brain. Another, smaller subset of ESC is committed to the 

germ line32. These precursors of the germ cell lineage are referred to as 

primordial germ cells (PGC) and will further differentiate into 

spermatogonia in males28,30. This differentiation is an essential process, as 

a correct differentiation allows for the inheritance of genetic information 

in the next generation. However, in some cases, PCGs can be blocked in 

their differentiation, leading to the formation of TGCT30,32. The 

involvement of the germ line in heritability of genetic information is 

thought to contribute to the high cure rates observed for TGCT, but the 

exact mechanics are poorly understood33.  

In the first step of the development of TGCT, a precursor lesion (pre-

GCNIS) is formed through polyploidization (Fig. 2B)30. Pre-GCNIS 

further accumulates copy number alterations and develops into GCNIS 

(also known as CIS). To be consistent with existing literature, we will use 

the abbreviation CIS in the rest of this text. CIS cells are initially dormant 

until puberty. It takes around 10-20 years after puberty for the CIS cells to 

further differentiate, accumulate somatic mutations and become invasive30.    

CIS cells can further develop into two subtypes of TGCT, seminoma and 

non-seminoma. Seminoma are homogeneous tumors and resemble PGC27. 

Non-seminoma are typically highly heterogeneous tumors and can 

differentiate into multiple types of tissue27.   

 

Non-seminomatous type 2 TGCT are heterogeneous tumors   

Non-seminoma can consist of multiple differentiations (also called 

subtypes), including embryonal carcinoma (EC), teratoma (TE), yolk sac 

tumor (YST) and choriocarcinoma (CH)27,28. EC are pluripotent cells which 

are formed through an (epi)genetic reprogramming of CIS cells30–32. EC are 

able to further differentiate into TE, YST and CH28,30–32. In addition, 

embryoid bodies (EB) may form in the tumor, which resemble early 

embryonic structures32. Eventually, metastases can be formed. Throughout 

the development of the tumor, copy number alterations and somatic 

mutations accumulate. However, which mutations and alterations occur at 

which steps of the development of the tumor is poorly understood. It is 

currently not well defined which changes to the genomic constitution are 

required for tumor development, growth and the acquisition of resistance 

to (chemo)therapy. Using the method presented here, we aim to reveal a 

subclonal evolution tree for 2 cases of non-seminomatous TGCT with 

intrinsic resistance to treatment.       

In the following, we describe of the model of TargetClone, the simulated 

data and TGCT datasets used to validate the method. Results on a simulated 

dataset and the TGCT data are shown in Section 3. Section 4 concludes the 

article with a discussion and an overview of future work. 

2 Methods 

In this section, we present the TargetClone method for inferring subclones 

and frequencies from targeted sequencing data. Before proposing the 

model, some basic definitions are introduced. 

2.1 Basic definitions 

First, we assume that tumors consist of multiple subclones with unique 

genotypes. We further assume that several regions of a tumor have been 

sampled, where each sample is a mixture of one tumor subclone and is 

potentially contaminated with normal cells. The frequency of the subclone 

and normal cells in the sample are denoted as µ⃗  as defined in Eq. 1. As 

samples are assumed to at most consist of two components, m is fixed at 2. 

Thus, μ1 indicates the ratio of normal cells in the same, and μ2 indicates the 

ratio of tumor cells.  

Second, we assume that the genomes of each of the samples have been 

segmented. A segment is defined as a chromosomal region across which 

the copy number and ratio of the parental alleles is the same, thus having 

the same lesser allele frequency at all measurement positions within the 

region (Fig. 4A). In Fig 4A, we show sample 1 and sample 4 from Fig. 3. 

However, now two additional chromosomal regions (the first two), or 

segments, are added to the cells. Furthermore, it is required that the 

segmentation is the same for all samples of the tumor. Thus, if the 

introduction of a new segment is only required in one sample, we will treat 

the region as two segments in other samples as well, even if this 

segmentation may not be necessary in the other samples. We further 

assume that a new segment always begins at the start of a chromosome. 

Every segment may contain p lesser allele frequency measurements.  

We define the sample ploidy as C⃗  as in Eq. 2, where every chromosomal 

region i is a segment.  

 

The measurements on segments can be handled in different ways 

Each segment i may contain multiple lesser allele frequency 

measurements. As we assume that the segmentation has been performed 

such that every segment corresponds to one uniform copy number, it is 

possible to take the mean or median of all lesser allele frequency 

measurements on a segment to reduce computational time. Taking the 

mean or median of a segment can reduce the influence of artifacts 

introduced by the presence of noise in the measurements. However, taking 

the mean or median may also reduce resolution. Therefore, we also allow 

the method to find the best C⃗  and µ⃗⃗  based on all measurements on a 

segment. From our simulations (Section 2.3) we concluded that using the 

median results in the overall highest accuracy. For all results presented in 

the main paper, the median was used to obtain one measurement per 

segment. Details on the accuracies obtained for the other two metrics can 

be found in Section B.3 of the Supplementary Data. 

2.2 TargetClone model 
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Fig. 4. Illustration of the methodology of TargetClone. All panels are discussed in the main text. 

 

 

The aim of TargetClone is to find a combination of C⃗  and µ⃗  per tumor 

sample that maximizes the probability of observing the lesser allele 

frequency measurements of that sample (which is defined as 𝐿𝐴𝐹⃗⃗⃗⃗⃗⃗⃗⃗ ):  
 

        𝑎𝑟𝑔 𝑚𝑎𝑥
𝐶 , µ⃗⃗  ⃗

ℙ (𝐶 , µ⃗ |𝐿𝐴𝐹⃗⃗⃗⃗⃗⃗⃗⃗ )       (4) 

We assume that ℙ(𝐿𝐴𝐹⃗⃗⃗⃗⃗⃗⃗⃗ ) is only affected by sequencing noise and is 

therefore fixed. Using Bayes rule, we can rewrite Eq. 4 as (for the full 

derivation see Section A of the Supplementary data) 

 

      𝑎𝑟𝑔 𝑚𝑎𝑥
𝐶 , µ⃗⃗  ⃗

ℙ (𝐶 , µ⃗ |𝐿𝐴𝐹⃗⃗⃗⃗⃗⃗⃗⃗ ) =  ℙ (𝐿𝐴𝐹⃗⃗⃗⃗⃗⃗⃗⃗ |𝐶 , µ⃗  ) ℙ(𝐶 )     (5) 

First, we will describe how ℙ (𝐿𝐴𝐹⃗⃗⃗⃗⃗⃗⃗⃗ |𝐶 , µ⃗  ) is computed. Then, we explain 

the computation of ℙ(𝐶 ). Third, we give a description of how Eq. 5 is 

maximized. Fourth, as an additional step, we explain how we infer the most 

likely alleles of the tumor subclone given C⃗  and µ⃗ . Finally, we end with 

how the subclonal evolution trees are reconstructed for the tumor samples.  

 

2.2.1 Computing ℙ (𝐋𝐀𝐅⃗⃗⃗⃗⃗⃗ ⃗⃗ |𝐂 , µ⃗  ) 

To compute the probability of observing lesser allele frequency 

measurements in a sample given any combination of C⃗  and µ⃗ , we first 

assume that all segments are independent. This assumption is reasonable 

as we have defined a segment as a chromosomal region with the same copy 

number and ratio of parental alleles. Therefore, the copy number of one 

segment does not depend on the copy number of another segment. 

Per segment i, we can thus aim to infer a copy number for the tumor 

subclone at 𝐶 𝑖,2 that together with µ⃗  maximizes ℙ (𝐿𝐴𝐹𝑖|𝐶 𝑖, µ⃗  ). As  

 

 

discussed previously in the Introduction, inferring the most likely copy 

number for the tumor subclone is not easy as some lesser allele frequencies  

can be explained by multiple copy numbers. We there made the assumption 

that such copy number ambiguities can potentially be resolved by 

incorporating information about the possible copy numbers of other 

samples. As tumors develop as part of an evolutionary process, the number 

of genomic changes that occurred between all subclones in the tumor is 

assumed to be minimal. Thus, if a set of lesser allele frequency 

measurements on a segment can be explained by multiple 𝐶 𝑖, the likelihood 

of observing that set of lesser allele frequency measurements is expected 

to be higher for a 𝐶 𝑖 for which the number of changes that need to be made 

to obtain the copy numbers at the same segment in the other tumor 

subclones is small than for a 𝐶 𝑖 for which this number of changes is large.    

Furthermore, the assumption of the existence of an evolutionary process 

implies some biological restrictions to the possible copy numbers that a 

tumor subclone can have at a given segment. For example, if the parent of 

a tumor subclone in a sample has a copy number of 0, then the tumor 

subclone itself can never have any other copy number than 0. We can make 

this idea more specific by reasoning on the level of alleles, which is 

discussed in the next section.  

 

Copy number ambiguities may be resolved by using alleles   

Every copy number at a segment in the tumor subclone of the sample can 

potentially have a different combination of alleles. In the left part of Fig. 

4B, we show dotted circles that indicate a sample with one normal cell and 

one tumor subclone where µ⃗  = (1/2, 1/2). Every sample shows the different 

possible combination of alleles that a tumor subclone can have at a single  
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segment, in this particular example for a copy number of 2. This copy 

number can be obtained with the allele combinations AA, BB and AB.  

We define an event as the gain or loss of an allele. Let the event distance 

be a metric that indicates how many alleles have been lost or gained 

between two cells. For example, the event distance at a chromosomal 

region from the normal cell with alleles AB to a tumor subclone with alleles 

BB is 2 (sample 3 in Fig. 4B), corresponding to the loss of allele A and the 

gain of allele B. Note that this event distance is asymmetrical. For example, 

there exists no valid event distance from the normal cell back to the tumor 

subclone. The tumor subclone has lost allele A, which can never be 

regained. Thus, if we knew which subclone is the precursor of the tumor 

subclone in each sample, and if we knew the exact combination of alleles 

at every segment in these other subclones, it would be possible to resolve 

copy number ambiguities by selecting the copy numbers for corresponding 

alleles that minimize the event distance between all subclones. However, 

at this stage of the method we lack this information as we do not have copy 

number information. The only alleles that are known are the alleles of 

normal cells, which are the alleles AB.  

Therefore, we initially aim to resolve copy number ambiguities by 

assigning a higher probability to lesser allele frequency measurements 

when the corresponding alleles for the given copy number have a smaller 

event distance to AB.  

The steps required to compute the probability of observing lesser allele 

frequency measurements in a sample given a C⃗  and µ⃗  are discussed below. 

 

Step 1: computing the possible lesser allele frequencies given 𝐂  and µ⃗  

For a given C⃗  and µ⃗ , we first determine the possible alleles that can be 

present in the tumor subclone given the copy numbers defined in C⃗  per 

segment (Fig 4B, samples). For example, if 𝐶 𝑖 is [2 2], the possible alleles 

in the tumor subclone can be AA, AB or BB. For each possible set of 

alleles, we first compute the lesser allele frequency that the scenario will 

generate using Eq. 3. This computation is repeated for every segment 

independently.   

 

Step 2: similarity between a tumor subclone and the normal 

component 

Following step 1, we compute the similarity between the alleles of a normal 

cell and any possible combination of alleles for the tumor subclone. First, 

the event distance is computed from the normal cell to the tumor subclone 

per allele combination (Fig. 4B). This event distance is increased by one to 

prevent divisions by zero in later computation. Following the computation 

of the event distance, a similarity score is computed as the normalized 

event distance given the event distances of all other possible combinations 

of alleles q that can be made with this 𝐶 𝑖
⃗⃗  ⃗

 and µ⃗ . The similarity score s 

between the normal cell a and the tumor subclone with a specific 

combination of alleles b is thus computed as 

 

            𝑠 =  

1

𝑒𝑣𝑒𝑛𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑎,𝑏)+1

∑
1

𝑒𝑣𝑒𝑛𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑎,𝑙)+1
𝑞
𝑙=1

        (6) 

Formally, similarity scores do not equal probabilities. However, we reason 

that the similarity score can be used as a probability as the score is 

proportional to actual probabilities.  

 

Step 3: computing the probability of measuring lesser allele 

frequencies given 𝐂  and µ⃗  

In the final step, we assign a probability to the measured lesser allele 

frequencies in a sample given C⃗  and µ⃗  by per segment mapping the lesser 

allele frequencies that each possible combination of alleles in the tumor 

subclone can generate to the corresponding similarity scores. For any lesser 

allele frequency that can be measured with multiple combinations, we sum 

the similarity scores of the combinations. The result of this final step is a 

discrete probability distribution of lesser allele frequencies measurements 

that can be obtained with the given C⃗  and µ⃗ . We can read the probability of 

any lesser allele frequency measurement from this distribution. In practice, 

measured lesser allele frequencies will never equal the true values as a 

result of sequencing noise. Therefore, we also add noise to the probability 

distributions. 

 
Adding sequencing noise to the model 

We assume that sequencing noise follows a normal distribution with 

standard deviation σ. We further assume that the noise is the same for every 

lesser allele frequency measurement. The probability density function is 

modeled as a mixture of Gaussians where the number of components 

equals the number of unique lesser allele frequencies that can be measured 

with a 𝐶 𝑖 and µ⃗   (Fig. 4B, distribution). For segment i, this distribution is 

ℙ (𝐿𝐴𝐹⃗⃗⃗⃗⃗⃗⃗⃗ 
𝑖|𝐶 𝑖 , µ⃗  ). The means of the components equal the corresponding 

lesser allele frequency measurements. σ is measured as the standard 

deviation in the reference sample, which is approximated to be 0.02. 

Finally, under the assumption that all segments are independent, the  

ℙ (𝐿𝐴𝐹⃗⃗⃗⃗⃗⃗⃗⃗ |𝐶 , µ⃗  ) for n segments is computed as 

 

         ℙ (𝐿𝐴𝐹⃗⃗⃗⃗⃗⃗⃗⃗ |𝐶 , µ⃗  ) =  ∏ ℙ (𝐿𝐴𝐹⃗⃗⃗⃗⃗⃗⃗⃗ 
𝑖|𝐶 𝑖, µ⃗  )

𝑛
𝑖=1                          (7) 

 

2.2.2 Computing ℙ(�⃗⃗� ) 

As stated previously when introducing the event distance, we assume that 

there exist evolutionary relationships between the samples and that the 

number of events between subclones is minimal. Therefore, the copy 

numbers of segments are also expected to be similar across subclones. The 

likelihood of a C⃗  is higher when the total distance between the copy 

numbers of all subclones is minimal. The distance ds between subclones is 

defined as 

 

                  𝑑𝑠 = (∑ ∑ |𝐶 𝑖 − 𝐶 𝑗|
𝑚
𝑗=𝑖+1 ) + 1𝑚−1

𝑖=1        (8) 

As explained before, the distance between subclones is not immediately a 

probability, but is proportional to the probability. Like before, we take the 

reciprocal of ds to convert the distance to a similarity score. This score is 

ℙ(𝐶 ) (Fig. 4C). In the example of Fig. 4C, the blue cell indicates a tumor 

subclone. As the alleles of the tumor subclone are not known at this point, 

the alleles are omitted from the figure.  

 

2.2.3 Maximizing ℙ (𝐂 , µ⃗ |𝑳𝑨𝑭⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) 

We aim to find the combination of C⃗  and µ⃗  per sample that maximizes the 

likelihood of our initial lesser allele frequency measurements in each 

sample. The assumption is made that all segments are independent. 

Therefore, for any µ⃗ , we can find the most likely C⃗  per segment. Segments 

typically consist of multiple lesser allele frequency measurements. We first 

give a description of how the method can handle multiple measurements 

per segment. Then, we continue with describing how we maximize 

ℙ (C⃗ , µ⃗ |𝐿𝐴𝐹⃗⃗⃗⃗⃗⃗⃗⃗ ).  

 

ℙ (𝐂 , µ⃗ |𝑳𝑨𝑭⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) is maximized with an exhaustive search 
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As the most likely C⃗  is computationally easy to obtain given an initial µ⃗ , 

we first perform a greedy exhaustive search where we iteratively search 

through all possible µ⃗ , where the frequencies are increased with a step size 

of 0.01 (details on the choice of step size are discussed in Section B.2 of 

the Supplementary data).   

Given any µ⃗ , we compute ℙ (C⃗ , µ⃗ |𝐿𝐴𝐹⃗⃗⃗⃗⃗⃗⃗⃗ ) for any C⃗  where the copy 

number of the tumor component lies between kmin and kmax. By default, 

kmin is set to 0 and kmax is set to 6. This computation is performed for 

each segment independently as  

 

          ℙ (𝐶 , µ⃗ |𝐿𝐴𝐹⃗⃗⃗⃗⃗⃗⃗⃗ ) =  ∏ ℙ (𝐿𝐴𝐹⃗⃗⃗⃗⃗⃗⃗⃗ 
𝑖|𝐶 , µ⃗  ) ℙ(𝐶 𝑖)

𝑛
𝑖       (9) 

A semi-greedy approach is used to include information across samples  

For any µ⃗ , we obtain the l C⃗  with the highest ℙ (C⃗ , µ⃗ |𝐿𝐴𝐹⃗⃗⃗⃗⃗⃗⃗⃗ ). Here, we fix l 

at 2. This is shown in Fig. 4D and Fig. 4E. In Fig. 4D, we show the two 

best C⃗ i for sample one. The best solution has a copy number of two in the 

tumor subclone, whereas the second best solution has a copy number of 

one in the tumor subclone. C⃗ i1r1 indicates that this C⃗ i is for sample one and 

has rank one. ℙ (𝐿𝐴𝐹⃗⃗⃗⃗⃗⃗⃗⃗ 
𝑖|𝐶 𝑖 , µ⃗  ) = 3/5 is obtained for a copy number of 2 with 

a lesser allele frequency measurement of 0.5 based on the probability 

distribution shown in Fig. 4B. ℙ(𝐶 𝑖) = 1 is computed as shown in Fig. 4C. 

For sample 4, the best 2 C⃗ i are similarly computed. As we see, the best C⃗ i 

is no the correct solution, but the second best C⃗ i is. Thus, we here show that 

it is useful to include the second best C⃗ i in our computations compared to 

the greedy approach.   

For each segment in every sample, we make all possible combinations 

with the copy numbers of the tumor components across all samples. An 

example of this step for the samples of Fig. 4D and Fig. 4E is shown in Fig. 

4F (left). A total of 4 combinations can be made for these samples. For 

every possible combination, we re-compute ℙ (C⃗ , µ⃗ |𝐿𝐴𝐹⃗⃗⃗⃗⃗⃗⃗⃗ ) per sample as 

defined in equation 3 (Fig. 4G), but ℙ(𝐶 𝑖) is now computed using the copy 

numbers of all samples (Fig. 4F, right). The ℙ (C⃗ , µ⃗ |𝐿𝐴𝐹⃗⃗⃗⃗⃗⃗⃗⃗ ) of the two 

samples are multiplied. Thus, a higher probability is assigned to 

combinations where the copy numbers do not deviate much between the 

samples at a specific segment. From Fig. 4G we observe that the third 

combination has the highest likelihood given our lesser allele frequency 

measurements in the two samples. This combination is indeed the desired 

solution. In Section 3.2 of the Results we demonstrate the benefits of 

including information across samples (semi-greedy) to compute 

ℙ (C⃗ , µ⃗ |𝐿𝐴𝐹⃗⃗⃗⃗⃗⃗⃗⃗ ) as compared to when C⃗  is selected based on only the 

information within each sample individually (greedy) for our simulation 

data.  

 
2.2.4 Inferring the most likely alleles of the tumor subclones  

As described in Section 2.2.1, 𝐶 𝑖 can correspond to multiple possible 

combinations of alleles (Fig. 4B). The distribution ℙ (𝐿𝐴𝐹⃗⃗⃗⃗⃗⃗⃗⃗ 
𝑖|𝐶 𝑖 , µ⃗  ) explains 

how likely it is to measure the lesser allele frequencies that correspond to 

the combinations of alleles. Thus, in this distribution, each region between 

one valley to the next represents the probability of measuring one lesser 

allele frequency given 𝐶 𝑖 and µ⃗ . The regions are shown in the distribution 

of Fig. 4B, where the allele threshold indicates a switch from one valley to 

the next. For example, if we consider the distribution in Fig. 4B, the first 

valley until the second corresponds to a lesser allele frequency of 1/4, and 

the alleles can be AA or BB. Thus, if our actual lesser allele frequency 

measurement in the sample at this segment is 1/4, then the alleles will be 

either AA or BB given this 𝐶 𝑖 and µ⃗ . As it is not possible for us to 

distinguish between AA or BB based on the lesser allele frequency 

measurements alone, we always arbitrarily select the solution with the most 

frequent number of B alleles by default. In our example, we would thus 

select the alleles BB for the tumor subclone at this specific segment. The 

alleles of the tumor subclone at all segments are stored in A⃗⃗ . 

 

2.2.5 Reconstructing the subclonal evolution tree 

To reconstruct subclonal evolution trees for tumor subclones, a distance 

matrix is defined which contains the distances between the subclones. This 

distance matrix can be computed in various ways. We can for example 

compute the distances between subclones based on only C⃗ , or only A⃗⃗ . We 

expect that making combinations with different types of information can 

improve the reconstruction of subclonal evolution trees. For example, 

alleles are good indicators of which relationships may be possible between 

subclones. If allele A or B has been lost in one subclone, then it can never 

be regained. For copy numbers, the same idea holds for having zero copies, 

where the copy number can never again increase. Somatic variants in a 

tumor subclone are also good indicators of relationships between 

subclones. By definition of the infinite sites assumption, a somatic variant 

is not lost once gained. Therefore, a subclone without a somatic variant at 

a specific location can never be the child of a subclone that does contain a 

somatic variant at that location. These restrictions are useful in reducing 

the possible number of subclonal evolution trees that can be made for a set 

of tumor subclones. However, especially when a limited number of somatic 

variants have been measured, the somatic variants alone may not always 

provide enough information to accurately reconstruct subclonal evolution 

trees. However, this information may be present in for example the alleles 

or copy numbers. Thus, we expect to observe that making combinations 

between C⃗ , A⃗⃗  and somatic variants to compute distance matrices can 

increase reconstruction accuracy of subclonal evolution trees.  

The distance matrix based on only C⃗  is determined by computing 𝑑𝑠 

(Section 2.2.2) between all subclones. The distance matrix based on only 

A⃗⃗  is computed similarly, but is instead based on the sum of the event 

distances for all segments between subclones. An example of a distance 

matrix based on A⃗⃗  is shown in Fig. 4H (the matrix is called Ad). The 

distance matrices in this figure are computed for the subclones shown in 

Fig. 3. An ‘X’ in the matrix in the figure indicates that the relation between 

subclones is not possible. In the actual distance matrix, an ‘X’ is encoded 

as an infinite distance. The distance matrix based on only somatic variants 

is computed slightly differently. For all somatic variants that have been 

measured in all samples, we use an indicator value of 1 to indicate that the 

somatic variant is present in the subclone (variant allele frequency > 0), 

otherwise the indicator value is 0. Using these binary indicator values, we 

define the distance matrix between subclones based on somatic variants as 

follows. Between any subclone, if no somatic variant is lost, the distance is 

1. Otherwise, the distance is infinite. An example of such a distance matrix 

for the somatic variants is shown in Fig. 4H (called Sd). 

The distance matrix of the somatic variants can be combined with the 

distance matrices of C⃗  and A⃗⃗ . This combination is done through weighing 

the C⃗  and/or A⃗⃗  matrices with the distance matrix of the somatic variants by 

summing the matrices (Fig. 4I shows a distance matrix when the distance 

matrix for A⃗⃗  is summed with the distance matrix of the somatic variants).  

The (weighted) distance matrix is used as input to Edmond’s algorithm 

to reconstruct a subclonal evolution tree34. Edmond’s algorithm infers a 

spanning arborescence, which is an acyclic directed graph, from a given 

distance matrix such that the distances on all branches in the tree sum up 

to a minimum value.    

2.3 Simulation data 

To generate our simulated dataset, we first generated 100 artificial tumors. 

Then, we took samples of the artificial tumors with which we validated the   
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method. Both steps are elaborated on in their respective sections below. 

Additional details can be found in section B.1 of the Supplementary Data. 

 

Step 1: artificial tumor generation 

An ensemble of 100 datasets was created, each resembling an artificial 

tumor bulk containing 5 subclones each. For every dataset individually, we 

started by randomly introducing 500 heterozygous SNP positions into a 

normal, diploid genome at which the lesser allele frequency will be 

measured. In addition, 10 positions were defined at which somatic variants 

will be measured. These SNP positions were non-uniformly assigned to a 

total of 35 segments. Starting from the normal genome, we generated a new 

subclone by probabilistically introducing 5 rounds of allelic copy number 

variations into the normal genome, where each genomic event affects an 

entire segment. Additionally, a random number (between 0 and 10) of 

somatic variants were added to the subclone. We define the presence and 

absence of a somatic variant in a subclone with a 1 or 0, respectively. 

Somatic variants are allowed to be gained, but never lost. Furthermore, 

somatic variants are not allowed to be introduced at the same position. 

As allelic copy number variations are theoretically reversible, the copy 

number events are allowed to occur with replacement. Both the normal 

component and the new subclone were added to the artificial tumor, 

randomly selecting their frequencies such that the total frequency inside 

the artificial tumor sums to 1. In the next step, more subclones were 

generated by probabilistically determining the parent based on the 

frequencies of the existing subclones. Again, each subclone was subjected 

to 5 rounds of introducing genomic events and adding somatic variants. 

This iterative process was repeated until the desired number of 5 subclones 

was reached. 

 

Step 2: sampling from the artificial tumors 

We define a sample as a mixture of one subclone and normal cells. Each 

subclone was assigned to a sample exactly once without replacement, 

generating a total of 5 samples. We added a random percentage of normal  

contamination to each sample, after which the lesser allele frequency 

measurement was computed at every segment. The lesser allele frequency 

measurement values at the additional SNP positions at each segment were 

determined by sampling from a normal distribution truncated at a lesser 

allele frequency measurement of 0.5 where the mean equals the lesser allele 

frequency measurement of the segment and the σ = {0, 0.02, 0.04, 0.06, 

0.08, 1}. The final lesser allele frequency measurement assigned to each 

segment is the median of the lesser allele frequency measurements at all 

SNP positions located on that segment.  

 

2.4 Real data 

The method was applied to 2 cases of chemotherapy-resistant testicular 

germ cell tumors. Both cases were subjected to IonTorrent sequencing. The 

first case (T6107) consists of 15 samples, in which the lesser allele 

frequency was measured at 427 heterozygous SNP positions. The variant 

allele frequency was measured for 14 somatic variants. The genomes were 

manually segmented into 35 segments based on visual inspection by an 

expert. The second case (T3209) consists of 25 samples, in which the lesser 

allele frequency was measured at 431 heterozygous SNP positions. The 

variant allele frequency was measured for 31 somatic variants. The 

genomes were again manually segmented into 31 segments based on visual 

inspection by an expert. The measurements in the reference samples have 

a standard deviation of approximately 0.02, which we use as an estimate of 

the sequencing noise in both cases.   

More details on these data are described in Section C of the 

Supplementary Data.  

Measuring the accuracy 

The accuracy of the inferred 𝐶 ̂ across n segments compared to the true C⃗  
is computed as 

 

1 − 
1

𝑛
∑ |𝐶 𝑖 − 𝐶 𝑖

̂
|𝑛

𝑖=1     (10) 

 

The accuracy of the inferred µ⃗ ̂ compared to the true µ⃗  is similarly computed 

as: 

1 − 
1

𝑚
∑ |µ⃗ 𝑖 − µ⃗ 𝑖

̂ |𝑚
𝑖=1      (11) 

 

The accuracy of the inferred 𝐴 ̂ compared to the true A⃗⃗  is computed as: 

 

1 − 
1

𝑛
∑ |𝐴 𝑖 − 𝐴 𝑖

̂
|𝑛

𝑖=1      (12) 

 

Additionally, it is interesting to observe how often copy number 

ambiguities are present in our simulation set. To see if our method can 

resolve copy number ambiguities, we measured an ambiguity score. This 

score measures how often we in a sample infer an incorrect copy number 

at a segment, but the lesser allele frequency at that segment remains the 

same compared to the true subclone.  

 

Accuracy of reconstructing the subclonal evolution trees 

To measure how well the reconstructed subclonal evolution trees match the 

true trees, we define an accuracy score as follows. For every subclone, we 

compare if the correct parent has been inferred for this subclone. Let Ip be 

an indicator variable that is 1 when the correct parent has been inferred. 

The accuracy is then computed as  

 

                1 − 
1

𝑚
∑ 𝐼𝑝

𝑚
𝑖=1        (13) 

3 Results 

 

Here, we present the results of TargetClone on simulation data and a case 

of 2 testicular germ cell tumors with intrinsic resistance to chemotherapy. 

First, we will discuss how well the method can infer C⃗ , µ⃗  and A⃗⃗  and 

subclonal evolution trees for our simulation data in Section 3.1. Then, we 

show the benefits of determining the most likely C⃗  by utilizing the possible 

copy number solutions across samples in Section 3.2. Finally, we discuss 

the reconstructed subclonal evolution trees for the real data in Section 3.3.  

 

3.1 Simulation data 

We started with inferring C⃗ , µ⃗  and A⃗⃗  for the 100 datasets in our simulation 

dataset, while increasing the noise levels from 0 to 0.1 standard deviations 

as defined in Section 2.3. The results shown here correspond to the specific 

scenario where we infer the most likely C⃗  and A⃗⃗  from the median lesser 

allele frequency measurement of each segment. The accuracy of how well  

C⃗ , µ⃗  and A⃗⃗  are reconstructed at each noise level is shown in Fig. 5. Fig. 5A 

focuses on how well C⃗  is reconstructed in our simulation data. We notice a 

couple of things from this result. First of all, the reconstruction accuracy of 

C⃗  drops as the noise level increases. There is little difference in 

reconstruction accuracy between noise standard deviations of 0 and 0.02, 

with a low spread in the accuracy values. We observe that the median 

reconstruction accuracy decreases to approximately 0.2 at a noise level of 

0.1 standard deviations. 

Second, interestingly, the ambiguity score (blue boxplots) remains at a 

median accuracy of approximately 0.95 as the noise increases.  
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Fig. 5. Accuracy of inferring (A) 𝐂 , (B) µ⃗  and (C) �⃗⃗� . The results are described in the 

text. 

 

As discussed previously, the ambiguity score is a measure of on how many 

segments C⃗  is incorrect in the inferred tumor subclone, but the lesser allele 

frequency measurement that is obtained for the incorrectly inferred copy 

numbers at those segments is the same as in the simulated tumor subclone. 

What the ambiguity score reveals in these results is that despite that the 

inferred C⃗  deviates from the true C⃗  in on average 10% of all segments in 

the samples per simulated dataset, the lesser allele frequency 

measurements at those segments are the same as in the simulated samples, 

even as the noise increases. Thus, the inferred C⃗  may deviate from the 

ground truth, but the inferred copy numbers are ambiguous copy numbers. 

As a reminder, these ambiguous copy numbers can for example be 0, 2 or 

4, which each generate a lesser allele frequency of 1/2 when µ⃗  = (1/2, 1/2) 

in the simulated sample. From this observation we learn that our method 

has more difficulties with resolving copy number ambiguities when the 

noise levels increase.   

Third, we observe that even in the scenario where no noise has been 

added to the lesser allele frequency measurements, the median 

reconstruction accuracy is 0.9. This value indicates that in all samples, 

approximately 10% of all inferred copy numbers in C⃗  is different from the 

ground truth. 5% of the inferred copy numbers that are different from the 

ground truth are ambiguous copy numbers that have the same lesser allele 

frequency as the simulated samples. The other 5% is explained by segments 

in the simulated samples at which the method infers copy numbers different 

from the ground truth that are also not ambiguous for the input lesser allele 

frequency measurements, and can be viewed as a true error. 

Fig. 5B shows the accuracy with which µ⃗  is inferred. It can be observed 

from this figure that the accuracy decreases slower than for the inference 

of C⃗  as the noise in the lesser allele frequency measurements increases. At 

the highest noise level, the median reconstruction accuracy does not 

decrease below 0.7. The median reconstruction error rate at a noise level 

of 0 is approximately 5%. As discussed above, the reconstruction error of 

C⃗  is approximately 10% in the scenario without noise. From these error 

rates alone, it is not possible to tell if for 5% of the samples for which the 

inferred C⃗  deviates from the true C⃗ , the inferred µ⃗  of that same sample is 

also different from the true µ⃗ . 

Overall, we observe that the spread in the accuracy of inferring  µ⃗  is 

relatively large at all noise levels compared to the accuracy of inferring C⃗  

and thus varies largely between samples. 

Fig 5C shows the reconstruction accuracy of  A⃗⃗ . Similar to the accuracy 

of inferring C⃗ , the accuracy with which A⃗⃗  is reconstructed decreases as the 

noise level increases. However, the reconstruction accuracy of A⃗⃗  decreases 

faster starting from a noise level of 0.02. The explanation for this behavior 

lies with the ℙ (𝐿𝐴𝐹⃗⃗⃗⃗⃗⃗⃗⃗ 
𝑖|𝐶 𝑖, µ⃗  ) distribution that we use to determine the most 

likely alleles given a lesser allele frequency measurement. For any given C⃗  

and µ⃗ , we determine the alleles by determining which noise-less lesser 

allele frequency is most likely associated with our measurement that is 

affected by noise by finding the nearest peak in the distribution. Thus, even 

if the inferred C⃗  may be correct, due to the presence of noise in the lesser 

allele frequency measurements the nearest peak could be a different one 

from expected, which results in the inference of the incorrect alleles.     

 

Conclusions 

As discussed above, we observed from our results on the simulation data 

that µ⃗  is in general more difficult to estimate than C⃗  and A⃗⃗ , which can be 

observed from the larger spread in the accuracies of inferring µ⃗  compared 

to C⃗  and A⃗⃗  (Fig. 5B). One possible explanation for this behavior is that 

inferring µ⃗  relies on the lesser allele frequency measurements at all 

segments in a sample. Therefore, if the inferred copy number is incorrect 

at one segment of the sample, it may influence the most likely µ⃗  which in 

combination with the full C⃗  results in the highest ℙ (C⃗ , µ⃗ |LAF⃗⃗ ⃗⃗ ⃗⃗  ⃗).  

Furthermore, we observed in Fig. 5A that a decrease in the 

reconstruction accuracy of C⃗  is affected by ambiguous copy numbers that 

result in the same lesser allele frequency. As our method on average never 

scores accuracies of inferring C⃗  above the ambiguity score, it is thus not 

possible to resolve all ambiguities even when information is included 

across samples. 

Finally, it is more difficult to accurately infer A⃗⃗  than C⃗ . The inference of 

A⃗⃗  is especially influenced by noise and already results in a median 

reconstruction error of approximately 31% at a noise level of 0.02 standard 
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deviations. Therefore, the inferred alleles ought to be interpreted with care 

in real data where sequencing noise in the lesser allele frequency 

measurements is not absent.   

 

Reconstructing subclonal evolution trees 

For each of our simulation datasets, we reconstructed subclonal evolution 

trees for the 5 subclones using only C⃗ , only A⃗⃗ , only somatic variants, 

combining C⃗  with somatic variants, and combining A⃗⃗  with somatic variants. 

As described previously, we expect that combining information can help 

in improving the accuracy with which subclonal evolution trees are 

reconstructed. In Fig. 6, we show an example of the true subclonal 

evolution tree for an arbitrary simulation dataset (Fig. 6A) compared to the 

inferred tree by the model for that particular dataset (Fig. 6B). The tree was 

generated using a distance matrix based on the combination of C⃗  and 

somatic variants. In this figure, we see that the inferred subclonal evolution 

tree is different from the inferred subclonal evolution tree. The reason that 

the inferred tree is different lies with the underlying simulated 

measurements. Both subclone 3 and 4 have the same somatic variants. The 

true copy numbers in subclone 3 and subclone 4 only differ on one 

segment, whereas both subclones are highly similar to a normal cell 

(subclone 1). The distance from subclone 3 to subclone 1 is smaller than 

the distance from subclone 3 to subclone 4. Thus, as neither the copy 

numbers or somatic variants are enough to fully infer the parents of all 

subclones, the smaller distance from subclone 4 to subclone 1 rather than 

from subclone 4 to subclone 3 results in an incorrectly inferred tree. Based 

on the previously described accuracy measurements for trees, the inferred 

tree would receive an accuracy value of 0.8 as the parents of 4 out of 5 

subclones are correctly inferred.    

Fig. 6. (A) Artificial subclonal evolution tree and (B) an incorrectly inferred subclonal 

evolution tree for the same subclones. 

In Fig. 7 the accuracy is shown with which we reconstruct the subclonal 

evolution trees in our simulation data. The results for the tree 

reconstructing using combinations of C⃗ , A⃗⃗  and somatic variants will be 

discussed in their respective sections below. 

 

Using only 𝐂  

In Fig. 7A, we see that the median reconstruction accuracy when using only 

the ploidy is 0.4. Overall, an accuracy of 0.4 indicates that C⃗  alone is not 

enough to pinpoint relationships between samples. One important reason 

for this is that copy numbers alone do not always provide sufficient 

information on which relationships are (not) possible. For example, we 

know that when all copies are lost at a segment, the copy number can no 

longer increase. This allows us ensure that a sample with a homozygous 

deletion can never be the parent of a sample that lacks this homozygous 

deletion. However, losing all copies of a chromosome has an event distance 

of 2 if the parent is a normal cell. Therefore, based on the probabilistic 

introduction of allelic copy number changes into the simulated samples as 

described in Section 2.3, homozygous deletions are not common in our 

simulation data. Thus, relationships between samples are difficult to infer 

based on C⃗  alone in our simulation data.   

 

Using only �⃗⃗�  

From Fig. 7B we observe that the average clonal tree reconstruction 

accuracy based on A⃗⃗  is approximately 0.35, which is very low. In Section 

2.2.5, we described that we expected that using alleles can restrict possible 

relationships between samples and may improve reconstruction accuracy. 

From the results shown here, we see that this is not necessarily true. We 

observed a reconstruction accuracy of 0.9 for A⃗⃗  in the scenario where no 

noise is added to the measurements. However, the median reconstruction 

accuracy of the clonal evolution tree never exceeds 0.8 in the same 

scenario. The low accuracy can be explained by the following.   

The current method used to reconstruct the clonal evolution trees is very 

sensitive to mistakes. The distance computed is based on the sum of the 

distances between all segments across all samples. Due to the use of this 

distance matrix in reconstructing the clonal evolution trees, we are prone 

to making mistakes. For example, consider the scenario where a segment 

in A⃗⃗  is inferred to have the alleles AA, while the simulated sample actually 

has alleles AB at that segment. If all the other samples at the same segment 

are inferred to have alleles AB, then the distance computed from the sample 

with AA to the samples with AB will be infinite and this relationship is 

restricted in the final reconstructed tree. However, the inference of AA 

instead of AB may be possible due to noise in the measurements and is 

erroneous (Fig. 4B, distribution). Therefore, in actuality, the relationship 

between the sample should have never been restricted. Thus, erroneously 

inferred alleles at only one segment can already cause the introduction of 

big errors in the final clonal evolution tree when using distance matrices 

containing distances between samples.     

 

Using only somatic variants 

Fig. 7C reveals that the median reconstruction accuracy for the clonal 

evolution trees is 0.6 when using only somatic variants, which is higher 

than the accuracies measured when using only C⃗  or A⃗⃗ . As the somatic 

variant information is not inferred by the model, but actually measured, it  
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Fig. 7. Reconstruction accuracy of different combinations of 𝐂 , �⃗⃗�  and somatic variants. The panels are described in the text.  

 

 

is not unexpected that this information results in higher accuracies. The 

somatic variants are introduced into the simulation dataset as binary values 

(present or absent). Therefore, we expect that there should not be large 

differences between the reconstruction accuracies across the different noise 

levels. The variation in accuracy that is observed is caused by the 

differences in the actual simulated data, as we generate 100 new datasets 

for each noise level.    

 

Combining 𝐂  with somatic variants 

 

 

 

 

As somatic variants alone already have a median reconstruction accuracy 

of 0.6, it is not unexpected that the addition of C⃗  increases the average 

reconstruction accuracy to 0.8 (Fig. 7D). 

 

Combining �⃗⃗�  with somatic variants 

From Fig. 7E, we can observe that the average reconstruction accuracy is 

approximately 0.4. This is a decrease from the reconstruction accuracy of 

0.6, which was obtained using somatic variants only. One would expect 

that if new information is added, the reconstruction accuracy will increase. 

However, due to the previously described issue introduced by erroneously 
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inferred alleles, it becomes a lot more difficult to accurately infer the clonal 

evolution tree. Even though the relations between samples may have been 

inferred based on the somatic variants with a median accuracy of 0.6, the 

relationships are affected by the distances computed based on the alleles 

when weighing the matrices. If there exist incorrect distances in the 

distance matrix computed based on A⃗⃗  due to errors in this matrix, the 

weighted distance matrix will also be incorrect and lead to the 

reconstruction of incorrect clonal evolution trees.  

 

Conclusions 

If we compare the subclonal tree reconstruction accuracies for all 

combinations of C⃗ , A⃗⃗  and somatic variants, we observe that the highest 

median reconstruction accuracy is obtained when combining C⃗  with 

somatic variants, followed by using somatic variants only. Furthermore, 

we observe that reconstructing the clonal evolution trees is robust to noise.  

Thus, we are able to correctly infer the parent of a subclone with an 

accuracy between 0.6 and 1 at a noise level of 0.1, where the median 

reconstruction accuracy of C⃗  is only approximately 0.2. This result 

indicates that despite that C⃗  may not be fully correct, the distance between  

the copy numbers of the tumor subclones is more important to reconstruct 

the subclonal evolution tree than the actual copy numbers.  

3.2 Including information across all samples becomes useful as 

the noise levels increase 

 
Previously, we made the assumption that including information across 

multiple samples increases the accuracy with which C⃗  is inferred. The 

method includes this information by selecting the best copy number from  

an initial choice of 2 copy numbers per segment, which are selected per 

sample individually. The copy numbers that then maximize ℙ (C⃗ , µ⃗ |𝐿𝐴𝐹⃗⃗⃗⃗⃗⃗⃗⃗ ) 

when ℙ(𝐶 ) is computed across all samples are selected as the final choice. 

It is interesting to investigate if allowing the model to select the best copy 

number from 2 initial choices is useful at all (semi-greedy), or if the best 

copy number with the highest probability per sample individually (greedy) 

is sufficient. The ratio with which the first copy number is selected 

compared to the second is shown in Fig. 8A. The ratio at which the second 

copy number is selected compared to the first is shown in Fig. 8B. From 

these figures, we observe that the first copy number with the highest 

probability is selected in approximately 99% of all segments in a sample at 

noise levels of 0 and 0.02. Starting from a noise level of 0.04 standard 

deviations, the copy number with the second highest probability is chosen 

more often (Fig. 8B). This result indicates that including information 

across samples becomes more useful as the noise levels increase. As the 

second best copy number is chosen more often for noise levels higher than 

0.04 standard deviations, it may be useful to let the model choose from 3, 

or even more copy numbers to increase reconstruction accuracy with noise 

levels higher than 0.02 standard deviations. However, as noise levels above 

standard deviations of 0.02 are uncommon in our real dataset, we chose to 

not extend the number of copies to choose from per segment beyond 2.   

We furthermore present the results of inferring C⃗  and A⃗⃗  with the greedy 

approach in Section B.5 of the Supplementary data.   

3.3 Real data: Testicular germ cell tumors 

We applied the method to a case of 2 chemotherapy-resistant testicular 

germ cell tumors. No ground truth is known for the tumors. Furthermore, 

the absence of a method for inferring subclonal C⃗  and µ⃗  from datasets 

without copy number information complicates comparisons to existing 

methodology. Therefore, our interpretations rely on existing knowledge  

Fig 8. Ratio of how often (A) the best copy number is selected for the final 𝐂   and (B) 

how often the second best copy number is selected for the final 𝐂 .  

 

 

about the development of the tumors. A more detailed analysis of the 

genomic events identified in these tumors is provided in Section C.2  

of the Supplementary data. For both cases, the reconstructed subclonal 

evolution trees shown here were reconstructed using the event distance 

based on A⃗⃗  and the somatic variants. From expert reviews and comparisons 

to existing knowledge, these trees were more consistent with our 

expectations of the tumor development than the trees reconstructed using 

other combinations of C⃗ , A⃗⃗  and somatic variants. The results for the other 

combinations that can be used to reconstruct subclonal evolution trees can 

be found in Section C.3 of the Supplementary Data.  

 

Expectations 

As was discussed in the Introduction and shown in Fig. 2B, expectations 

about the development of testicular germ cell tumors are well-described in 

literature. First of all, we expect that samples of the precursor, carcinoma 

in situ, will genetically be most similar to the normal sample (peripheral 

blood), as the precursor is not expected to have gained as many somatic 

mutations as subtypes of the tumor that are formed at later stages of 

development. This carcinoma in situ precursor is assumed to develop into 

embryonal carcinoma, which may be able to differentiate into teratoma, 

yolk sac tumor or choriocarcinoma. In neither of the cases discussed below 

a sample of choriocarcinoma is present. We expect to observe a similar 

pattern in the reconstructed subclonal evolution trees, where carcinoma in 

situ is the parent of embryonal carcinoma, and embryonal carcinoma can 

form teratoma or yolk sac tumor. As somatic mutations and copy number 



 

16 

 

variations are accumulated over time as shown in Fig. 2B, we also expect 

that the later subtypes, such as teratoma and yolk sac tumor will be the 

furthest away from the normal sample in the tree. Furthermore, both cases 

contain samples of the macrodissected primary tumor (nonseminoma), 

which is a mixture of multiple subtypes of the tumor. As the measurements 

are therefore also an average of the genomes of the subtypes that are 

present in the mixture, we expect the genome to be more complex and 

therefore the furthest down in the tree. However, the exact placement in the 

tree could give insight into which subtypes that have been sampled are 

represented the most in the mixture.    

 

Case 1: T6107 

For the first case, we reconstructed a subclonal evolution tree using a total 

of 15 samples of the tumor. As can be seen in Fig. 7A, the reconstructed 

tree resembles the expectations discussed above. We see that the peripheral 

blood samples are at the root of the tree, corresponding with the 

assumptions that tumor development starts from normal, healthy cells. The 

two peripheral blood samples are highly similar as these are both composed 

of healthy cells, and therefore the choice of placing the first sample at the 

root of the tree rather than the second is arbitrary. We see that the 

carcinoma in situ and floating carcinoma in situ samples are indeed 

connected to the peripheral blood samples as expected. In our expectations 

we defined that the carcinoma in situ sample should be placed as the parent 

of the embryonal carcinoma samples, as carcinoma in situ is expected to 

be the precursor that is reprogrammed to form embryonal carcinoma. 

However, these relations are not immediately present in the tree: instead, 

we see that the second and fourth embryonal carcinoma samples are 

defined to be children of the peripheral blood sample rather than carcinoma 

in situ.  This behavior can potentially be explained by the lack of ancestral 

nodes in the tree, which represent early precursor subclones in the tumor 

that have not been sampled, or may not even be present in the tumor bulk 

anymore at time of sampling. In theory, there could actually exist an 

additional step in the tumor development between the peripheral blood 

sample and the second and fourth embryonal carcinoma samples, which is 

also the parent of the two carcinoma in situ samples. In this proposed 

explanation, we assume that since carcinoma in situ is a precursor, and 

samples have been acquired after these precursors initially formed in the 

tumor, additional mutations may have accumulated over time in the 

carcinoma in situ that set them apart from the ancestral node that is 

common to the carcinoma in situ and second and fourth embryonal 

carcinoma samples.  

Additional evidence for the existence of this ancestral node is provided 

by the positioning of the metastasis sample. This sample contains only 1 

somatic variant that is also found in the carcinoma in situ samples (see 

Supplementary Figure C3A). Therefore, it is reasoned that the metastasis, 

which was found 15 months after removal of the primary tumor, has likely 

originated from an early precursor lesion that remained after treatment, but 

that has never been sampled. This again implies a possible hidden precursor 

subclone that follows immediately after the peripheral blood sample.  

According to the reconstructed tree, the yolk sac tumor and teratoma 

subtypes originated from an embryonal carcinoma, which matches our 

initial expectations of the tumor development.  

The fourth embryonal carcinoma sample is found in a different branch 

than the other embryonal carcinoma samples, which can be explained by 

the lack of one somatic variant in the fourth sample compared to the other 

samples. The infinite sites assumption, which states that somatic variants 

are not lost once gained, complicates the positioning of this sample in the 

tree. Due to the lack of abundant measurements around somatic variants, 

we are unable to accurately determine if this somatic variant has never been 

present, or if it has been lost together with the chromosomal region it was 

located on. Therefore, the placement of this sample ought to be interpreted 

with caution.  

Finally, we see that the samples of the primary tumor are indeed placed 

at the bottom of the tree, and that the samples genetically mostly represent 

embryonal carcinoma. As the measurements in the primary tumor are 

averaged across all the subtypes that are present in the sample, it is difficult 

to tell if the average of the measurements makes the tumor similar to 

embryonal carcinoma, or if the sample actually mostly consists of 

embryonal carcinoma components.  

 

Case 2: T3209 

For the second case, we reconstructed the subclonal evolution tree from a 

total of 25 samples (Fig. 7B). As for the first case, we do not observe that 

the carcinoma in situ samples are inferred to be the parent of embryonal 

carcinoma samples as was initially expected. The tree indicates that the 

fourth teratoma sample is the most likely precursor of many other sampled 

components. This does not follow the expected model where embryonal 

carcinoma is the first precursor after carcinoma in situ, where embryonal 

carcinoma can then differentiate into other subtypes including teratoma. If 

we examine the inferred C⃗  and A⃗⃗  for this sample (not shown here), we 

observe that most inferred copy numbers are 2, or close to 2, with alleles 

AB. Therefore, the distance of this teratoma sample to the peripheral blood 

is small. Furthermore, this teratoma sample has an equal number of somatic 

variants as all other samples but the peripheral blood, carcinoma in situ and 

fourth embryoid body samples. If the fourth teratoma sample lacked 

somatic variants compared to other samples, the assumption that somatic 

variants are never lost would have been useful to place the teratoma sample 

at the start of the tree. However, as there are no differences in the presence 

of somatic variants compared to the previously mentioned samples, the 

somatic variants are not useful in predicting the expected placement of the 

fourth teratoma sample in the tree. Furthermore, the actual truth about 

where the sample should be positioned in the tree is unknown. As teratoma 

components consist of somatic tissue, the inferred C⃗  could in fact be mostly 

correct and indicate a reversal back to a genome that is similar to the normal 

genome. Furthermore, as somatic tissue is difficult to distinguish from 

normal tissue, the estimated possible normal cell contamination of 27% 

could in fact be much higher than predicted by the model.   

Most embryoid body samples cluster together in the tree, with the 

exception of the fourth and seventh embryoid body sample. The fourth 

embryoid sample lacks a somatic variant compared to the other embryoid 

body samples and has an additional loss of heterozygosity region on 

chromosomes 1 and 5 (segment 5A, see Supplementary Figure C3B). 

These characteristics sets the genome of this component apart from the 

other sampled embryoid body components. However, as the lesser allele 

frequencies of the regions other than the aforementioned and the rest of the 

somatic variants are highly similar between the embryoid body 

components, it is more likely that all embryoid body components in the 

tumor share the same precursor and that the fourth embryoid body sample 

should actually in the tree be connected to another embryoid body sample.  

The seventh embryoid body sample has lesser allele frequency 

measurement patterns similar to the other embryoid body samples (see 

Supplementary Figure C3B), but overall seems to have more regions that 

have lesser allele frequencies of approximately 1/2. Therefore, the model 

infers that many segments with a median lesser allele frequency of 1/2 have 

a copy number of 2, again making the component seem more like a normal, 

healthy cell. Whether the inferred copy numbers and alleles are actually 

true or not is unknown.   
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Fig. 9. Clonal evolution trees for the two testicular germ cell tumor cases, using the event distance based on the alleles and including somatic variants as weights. The same 

subtypes are represented with the same color. (A) Clonal evolution tree for case T6107. (B) Clonal evolution tree for case T3209.
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4 Discussion 

In this article, we have described TargetClone, a method developed to infer 

the most likely copy numbers (C⃗ ), frequency (µ⃗ ) and alleles (A⃗⃗ ) of 

subclones in a sample from targeted sequencing data. First, we 

demonstrated that in our simulation datasets, the method can infer C⃗  with a 

median accuracy of approximately 0.9 for noise levels of at most 0.02 

standard deviations, which are typical noise levels for high quality frozen 

samples. A⃗⃗  can be inferred with a median accuracy of approximately 0.9 

when no noise is present in the measurements, while the median 

reconstruction accuracy decreases to approximately 0.7 as the noise level 

increases to 0.02 standard deviations. Furthermore, the median accuracy of 

inferring µ⃗  is never lower than 0.7 and approximates 0.95 and 0.9 at noise 

levels of 0 and 0.02 standard deviations, respectively. Additionally, we 

were able to reconstruct subclonal evolution trees with a median accuracy 

of 0.8 with distance matrices based on a combination of the C⃗  that is 

inferred by the method and a binary representation of the presence and 

absence of somatic variants that are measured in the samples.  

Second, we showed that C⃗  and A⃗⃗  can be more accurately reconstructed 

at noise levels above 0.04 when we first keep the two best C⃗  per sample, 

and finally select the best C⃗  for which the overall distance based on the 

copy numbers is minimized between all samples.  

Third, we reconstructed subclonal evolution trees for 2 testicular germ 

cell tumors with intrinsic resistance to chemotherapy. By comparing the 

resulting trees to descriptions of the development of testicular germ cell 

tumors in literature, we demonstrated that the trees were mostly consistent 

with our expectations.  

Despite these promising results, the method has a number of important 

limitations. Most importantly, the median accuracy with which C⃗  and A⃗⃗  are 

inferred decreases to approximately 0.18 and 0.08 at a noise level of 0.1, 

respectively. Therefore, we recommend to exclude any samples with high 

noise levels (which is typical in for example formalin-fixed paraffin-

embedded samples) from analysis with TargetClone.  

In addition, the median reconstruction accuracy of C⃗  and A⃗⃗  decreases in 

the presence of copy number ambiguities. When the lesser allele frequency 

measurements are not affected by noise, the ambiguity score was no higher 

than 0.95 on average. Thus, our method is unable to resolve copy number 

ambiguities for approximately 5% of all segments per sample. Therefore, 

it is important to be careful when interpreting the inferred C⃗ , A⃗⃗  and µ⃗  when 

the measured lesser allele frequencies in a sample could represent multiple 

possible underlying copy numbers in the tumor subclone.  

Furthermore, we make the assumption that all samples consist of only 

one tumor subclone and is potentially contaminated with normal cells. 

However, even when samples have been microdissected, it may initially 

not always be known if the samples consist of only one tumor subclone or 

if multiple tumor subclones could be present. The current model of 

TargetClone does not support a good framework that can handle the 

inference of multiple subclones in a sample. When inferring the C⃗  and µ⃗  

that maximize the probability of observing the measured lesser allele 

frequencies in a sample, we perform an exhaustive search across all 

possible µ⃗ . If the sample is a mixture of normal cells and one tumor 

subclone, the model searches through 101 possible µ⃗ . If samples are a 

mixture with two or three tumor subclones, the model will search through 

5151 and 17685 possible µ⃗ , respectively. The number of µ⃗  to search 

through thus becomes too large, and an exhaustive search will require too 

much computational time. Ideally, it would still be possible to apply 

TargetClone even when it is not possible to assume that a sample contains 

only one tumor subclone. Furthermore, removing this assumption would 

make the method more widely applicable to studies in which samples are 

not microdissected and thus may contain multiple subclones, yet saving 

costs as we have shown that subclonal evolution can be reconstructed from 

targeted sequencing data. To conclude this article, we present some ideas 

for future work that may improve the usability of TargetClone. 

5 Future work      

As discussed in the previous section, the main bottleneck of TargetClone 

is the limitation to one subclone per sample, which is introduced by the 

exhaustive search through all possible C⃗  and µ⃗  for each sample. An 

important future improvement may be to explore the benefits of inferring 

C⃗  and µ⃗  with the use of optimization algorithms. Optimization algorithms 

will allow us to more efficiently search through all possible combinations 

of C⃗  and µ⃗  without the need for an exhaustive search. One example of such 

algorithms is Expectation Maximization (EM), which has already been 

applied by the authors of Clomial to a similar problem of identifying tumor 

subclones and their frequencies in heterogeneous samples from variant 

allele frequencies measured for somatic variants9. The biggest difference 

of Clomial compared to our model is that Clomial is restricted to inferring 

a binary C⃗  matrix that indicates if a somatic variant is present or not in a 

tumor subclone. As our C⃗  matrix may contain any copy number k between 

a predefined kmin and kmax, the complexity of our model is higher than 

for Clomial, and may introduce additional challenges on the computational 

level. Nevertheless, optimization algorithms may be useful in solving other 

limitations of the method.  

The first other limitation is that we make the assumption that the lesser 

allele frequency measurements have been assigned to segments that 

correspond to a region with a copy number and combination of alleles that 

are different from the adjacent segments. However, especially when copy 

number information is lacking for the samples and the lesser allele 

frequency measurements are affected by sequencing noise, it is not always 

clear what the exact locations are where segments begin and end. This 

factor makes it difficult to always provide a correct segmentation. As a 

result, our method will infer a copy number and alleles for a segment that 

may actually consist of two regions with different copy numbers and 

alleles. Especially if there is a rather large difference between the lesser 

allele frequency measurements between the two regions, say 

approximately 0.33 and 0.5, for example the mean of these measurements 

will be around 0.4. Thus, the inferred copy number and alleles for the 

segment will also be an average across the two regions and does not 

accurately represent the underlying genomic constitution. However, a more 

efficient algorithm may allow us to automatically update the segmentation 

in regions where it is likely that the initial segmentation is incorrect.  

Second, the model assumes that all segments are independent and infers 

the best copy number and alleles per segment individually. The authors of 

MEDICC demonstrated that dealing with dependencies between segments 

can improve the reconstruction of copy number profiles in tumor samples26. 

For example, when two adjacent segments in one sample have a copy 

number of 1 and 2, respectively, and the same segments have a respective 

copy number of 0 and 1 in another sample, it may very well be that the two 

segments were affected by a loss at once. Our method can currently not 

work with dependencies between segments as this would mean that for 

each segment, at least the copy numbers of the two adjacent segments need 

to be inferred as well at the same time. Thus, per µ⃗  and per segment, the 

model would already need to compute the likelihood for 73 𝐶 𝑖. Therefore, 

if it would require less computational time to search through these 
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combinations with the use of an optimization algorithm, it may be possible 

to include dependency into the model and potentially improve the accuracy 

with which C⃗ , µ⃗  and A⃗⃗  are inferred. 

Finally, TargetClone now reports only the C⃗ , µ⃗  and A⃗⃗  for which the 

likelihood of the lesser allele frequencies of a sample are maximized and 

reconstructs subclonal evolution trees based on the best solutions. 

However, there may exist other C⃗ , µ⃗  and A⃗⃗  that have lower probabilities, 

but may reveal additional information that is interesting for researchers to 

investigate. If it would be less time consuming to search through the entire 

landscape of C⃗  and µ⃗ , it will be easier to report multiple solutions as these 

are typically explored and scored by optimization algorithms before the 

solution with the global maximum is obtained. 

In addition, we demonstrated that reconstructing subclonal evolution 

trees is not perfect for our simulation data. The main reason behind the low 

accuracies observed here is likely that we use distance matrices to 

reconstruct the trees. If  C⃗  or A⃗⃗  is incorrect on one segment, and the distance 

on one segment is inferred to be infinite from subclone 1 to subclone 2, 

then subclone 1 can never be the parent of subclone 2. To overcome 

sensitivity to errors on segments, it may be useful to explore different 

methods to reconstruct subclonal evolution trees. For example, it may be 

useful to start with a tree where subclones are positioned according to their 

similarity, where branches are introduced only as soon as a relationship 

between subclones is not possible.   

We here presented TargetClone, a method that can infer the copy 

numbers, alleles and frequency of subclones in multiple tumor samples and 

reconstruct subclonal evolution trees. We demonstrated that despite the 

existence of a number of discussed limitations, there is definitely potential 

in reconstructing the subclonal evolution of tumors from targeted 

sequencing data.  
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