
Opleiding Informatica

Using the Rectified Linear Unit activation function

in Neural Networks for Clobber

Laurens Damhuis

Supervisors:

dr. W.A. Kosters & dr. J.M. de Graaf

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 30/01/2018

Abstract

A Neural Network based approach for playing the game Clobber has been implemented. This approach has

been shown to be extremely good at playing other abstract strategy games like Go, Chess and Shogi. Clobber

is a two-player board game, the first person unable to move loses. We use ReLU and Leaky ReLU to train

against a random opponent and use the resulting network to play against a Monte Carlo opponent and achieve

a win rate of over 50%.

We look at various different techniques to create a Neural Network, including two variants of the activation

function, ReLU and Leaky ReLU. We also vary the structure of the Neural Network by using different numbers

of hidden nodes as well as different numbers of hidden layers. We introduce a Temporal Learning Rate which

weights moves made later in the game more.

Contents

1 Introduction 1

1.1 Thesis Overview . 2

2 Clobber 3

3 Related Work 5

4 Agents 6

4.1 Random . 6

4.2 Pick First . 6

4.3 Monte Carlo . 6

4.4 Neural Network . 7

5 Evaluation 11

5.1 Random and Pick First . 11

5.2 Monte Carlo . 13

5.3 Neural Network . 14

5.3.1 Temporal Rate . 19

5.3.2 Leaky ReLU . 20

5.3.3 Neural Network vs. Monte Carlo . 21

6 Conclusions 23

6.1 Future Research . 23

Bibliography 25

Chapter 1

Introduction

The game of Clobber [AGNW05] is an abstract strategy board game in which two players play against each

other. The game was introduced in 2001 by combinatorial game theorists Michael H. Albert, J. P. Grossman,

Richard Nowakowski and David Wolfe. The goal of the game is to eliminate all possible moves the opponent

can make and in doing so one wins the game. Clobber has been featured in tournaments at the ICGA

Computer Olympiad since 2005, see Figure 1.1.

In this thesis we discuss several AI agents for playing Clobber, with a focus on a Neural Network based

approach. The agents that will be created are Random, Monte Carlo and Neural Network. We will test these

agents to determine under what conditions the Neural Network is able to learn near optimal play. The

Neural Network is a feedforward network using backpropogation and the Rectified Linear Unit (ReLU) as the

activation function for the nodes in the network.

Figure 1.1: An AI agent called Pan playing Clobber at the ICGA Computer Olympiad 2011 [Alt17].

1

1.1 Thesis Overview

The rules of Clobber will be explained in Chapter 2, including some of its variants. Related work done on

the game and the techniques used will be discussed in Chapter 3. Chapter 4 describes the workings of the

different agents that have been implemented and what decisions were made during implementation. Chapter

5 discusses the results of the experiments and in Chapter 6 we draw conclusions and discuss what future work

could be done.

This bachelor thesis was supervised by Walter Kosters and Jeannette de Graaf at the Leiden Institute of

Advanced Computer Science (LIACS) from Leiden University.

2

Chapter 2

Clobber

Clobber is a two-player strategy game usually played on a chequered m× n board on which white stones are

placed on every white square and black stones on every black square; see Figure 2.1 for a starting position on

a 6× 5 board. The two players take alternating turns ”clobbering” an opponent’s stone. This is done by taking

one of your stones and moving it onto a square that is currently occupied by an opponent’s stone and that is

directly next to it either horizontally or vertically. The opponent’s stone is then removed from the game and

the square your stone was on is now empty. The win condition is to be the last player to be able to make a

move, which is called normal play. Because it is impossible for one player to still have available moves while the

opponent does not, the game of Clobber is an all-small game. his also means there is always one winner with

no possible draws. The game of Clobber is a partizan game, which means it is not impartial, as the moves that

can be made by one player are different from the other player [Sie13], but it does meet the other requirements

of being impartial: there are two players who alternate turns, a winner is picked when neither player can make

a move, there is a finite number of moves and positions for both players and there is no element of chance.

Figure 2.1: Starting position for Clobber on a 6× 5 board.

3

Figure 2.2: A game state where multiple smaller games are played, starting player wins [Gri17].

In competitions Clobber is usually played on different sizes of boards; usually a board of size 6× 5 is used

between human players and board sizes of 8× 8 or even 10× 10 are used for games between computer players.

Clobber positions such as the one in Figure 2.2 can be approached from a Combinatorial Game Theory

perspective [Sie13] since the three unconnected groups of stones each creating their own smaller game of

Clobber with just one winner each. By combining these values one can determine the winner of the entire

game.

There are several different variants of Clobber. One of them is a version of Clobber called Cannibal Clobber

where you are allowed to capture your own pieces as well as your opponent’s pieces. Another variant is

Solitaire Clobber [DDF02] in which there is only one player and the goal is to remove as many stones from the

board as possible. And finally the game of Clobber does not need to be played on a chequered m× n board

but instead can be played on any arbitrary undirected graph with one stone on each vertex [AGNW05]. This

includes variants where the stones are not in a chequered pattern at the start but can be in any pattern, e.g.,

random.

4

Chapter 3

Related Work

The game of Clobber was introduced in a paper by Albert et al. in 2005 [AGNW05]. In this paper the authors

show that you can play this game on any arbitrary undirected graph and the paper also shows that determining

the value of the game is NP-hard.

A basic Neural Network approach has been implemented by Teddy Etoeharnowo in his bachelor thesis [Eto17],

which has shown that winning on smaller boards against a random player is fairly easy to achieve, but larger

boards are much more difficult to achieve high win rates on. He also implemented a Monte Carlo Tree Search

based agent which played better than his Neural Network agent on all different board sizes. A NegaScout

search was applied to Clobber by Griebel and Uiterwijk [GU16]; they used Combinatorial Game Theory (CGT)

to calculate very precise CGT values of (sub)games and used these to reduce the number of nodes investigated

by the NegaScout algorithm by ∼ 75%. Many other aspects of Combinatorial Game Theory are described

in [Sie13].

Neural Network based approaches have been shown to be extremely good at learning board games that

were classically very hard to create AI agents for. These new agents could compete with high level human

players and have recently been able to defeat the world champions of Go, Chess and Shogi [SHS+17, SSS+17],

the programs use Deep learning techniques, Monte Carlo Tree Search, Reinforcement Learning, and often

specialized hardware. In this thesis we only used Reinforcement Learning.

The Rectifier activation function has been used successfully for different tasks [JKRL09]. Several variants of

this activation function also exist which have been used to solve specific problems [NE10].

5

Chapter 4

Agents

Now the different agents for playing Clobber will be explained, namely Random, Monte Carlo and Neural

Network. In particular, we describe how these different agents determine what move will be played. The

different choices that were made for each agent will also be explained here. Every single agent will abide by

the rules of Clobber by only picking moves from a list which contains all valid moves for the current player.

4.1 Random

Random is a very simple player which picks its move by randomly choosing a move from all available moves,

where every move has the same odds of being picked. Because there is only one type of move that can be

made this agent is not biased towards any play style.

4.2 Pick First

Another agent that was useful to create, similar to Random in its simplicity, was an agent which always picks

the first possible move in the list of available moves. Because the move list is always generated ordered in the

same way this agent always picks the same move. The move list is generated by going through every direction

of every square, starting in the first row and column and incrementing the column until the last column is

reached after which the row is incremented and the column is reset to the first one until we reach the final

column of the final row. So this player has a tendency to play as near to the upper leftmost corner as possible.

4.3 Monte Carlo

The next agent uses the Monte Carlo algorithm, which employs random playouts to find the move that has

the highest chance of winning. The algorithm does this by calculating a score for every possible move it can

6

make, and plays the move with the highest score. This score is determined by doing a set amount of playouts

for every possible move using the Random algorithm until the end of the game. One playout is one full play

through of the game from a given position using just the random algorithm. If the game is won in a playout the

score of the initial move is incremented by 1. The algorithm does a set number of playouts per possible move,

and we let playouts denote this number. In a given position the total number of games played is playouts× k,

with k being the number of possible moves available to the Monte Carlo player on a given board. By doing

enough random playouts the strength of a certain move can be approximated fairly well.

An improvement on the basic Monte Carlo algorithm is called Monte Carlo Tree Search (MCTS) [BPW+
12].

This method consists of the following: a game tree is built and a policy is used to determine what node in this

game tree to expand; a simulation of the game is then run after which the game tree expands and the policy can

select a new node to expand, see Figure 4.1. This algorithm was implemented by Teddy Etoeharnowo [Eto17]

and was shown be an improvement over regular Monte Carlo. For this research only the basic Monte Carlo

algorithm will be considered.

Figure 4.1: The structure of the Neural Network [Dic18].

4.4 Neural Network

The Neural Network agent that has been created in this research utilizes a feedforward Neural Network with

the game state as the input layer, and one output node that gives the score of the board in the current state.

These input and output nodes are connected through a number of fully connected hidden layers, see Figure 4.2.

The activation function used is the Rectified Linear Unit (ReLU).

The way in which the Neural Network is used to determine what moves to play is similar to Monte Carlo in

that it determines a score for every possible move that can be made, and, once every available move has a

score assigned, it picks the move with the highest score. These scores are calculated by temporarily making

every move and using the resulting board as input for the Neural Network and comparing the outputs of all

possible moves.

The score of a board is calculated using the following steps:

7

Figure 4.2: The structure of the Neural Network [Mor17], this network has two hidden layers.

• First the entire game state is loaded into the input nodes. Each square on the board is mapped to one

input node exactly. If the square contains a stone of the player whose turn it currently is, the value is set

to 1, if it is an opponent’s stone it is set to −1, and if the square does not contain a stone it is set to 0.

The number of input nodes is equal to the board size +1; this extra node is the bias node.

• Secondly the values of the nodes in the hidden layers have to be calculated. This value is calculated in

two steps. Firstly the invalue of a node needs to be calculated, which is done by taking the sum over all

input nodes times the weight that connects the node with the input node. After the invalue of a node has

been calculated one calculates the value of the node by using the activation function. This step is then

repeated for every hidden layer but instead of the sum over the input nodes the values in the previous

layer in the network are used.

• This continues until the value of the output node can be calculated by repeating the same process as

used for nodes in previous layers using the sum of all values of the previous layer times their respective

weights and putting this invalue through the activation function to get the value of the output node.

The activation function that was used for our network is the Rectified Linear Unit (ReLU) which is defined as

follows:

g(x) = max(0, x)

A variant of this activation function is called Leaky ReLU [MHN13], which uses a small positive gradient

when the input of the unit is negative. This variant was shown to perform as well as regular ReLU but could

help combat the dying ReLU problem where all possible input of the network results in an output of 0. The

ReLU function and Leaky ReLU function are shown in Figure 4.3, we use a value of 0.01 for a for Leaky ReLU.

Leaky ReLU is defined as follows:

8

g(x) =

x if x > 0

0.01× x otherwise
(4.1)

Figure 4.3: ReLU and Leaky ReLU [Sha18].

After a game has been played the result of the game will be used to train the network to play better in the

future, rewarding play if the game was won and punishing if the game was lost. This is called Reinforcement

Learning [SB18], and is done using backpropogation, which is the process by which the weights in the network

are updated. The algorithm compares the value the Neural Network returns for a given position with the

result of the game. The positions the Neural Network decides on during play are stored and after a game has

finished are all used to train the Neural Network. The boards are passed into the update function in a first in

first out system, which means that the first move of the game will also be the first to update the weights of the

network. We also introduce a temporal learning factor τ, which changes the learning rate α depending on

how far into the game a position is. This τ increases the learning rate after every board that is passed to the

backpropogation function which means that when τ is positive α will increase after every board and decrease

if τ is negative. After one whole game has been passed through the backpropogation function we reset α to

the initial value. The following formula is used for this process:

α← α(1 + τ)

The weights of the Neural Network will be updated using the following algorithm:

• Compute the output of the Neural Network for a given position using the same algorithm as before. This

also gives us the invalue of every hidden node and the output node as well as the value of all the hidden

nodes.

• Compute the error value and the ∆ value of the output node with target being the result of the game

that was played. We use target in case of a win and −target in case of a loss. We let output be the value

the Neural Network outputs for the given position, we let g′(x) denote the derivative of the activation

function used, (4.2) is used in the case of ReLU and (4.3) is used in the case of Leaky ReLU. We then let

error = target− output

9

∆ = error× g′(invalue of output node)

g′(x) =


0 if x < 0

1 if x > 0

undefined if x = 0

(4.2)

g′(x) =


0.01 if x < 0

1 if x > 0

undefined if x = 0

(4.3)

• Next the ∆j of every hidden node j will be calculated using the ∆ values of the nodes in the previous

layer and the weight Wj, i connecting node i from the previous layer with node j:

∆j = g′(invaluej)×∑
i
(Wj, i × ∆i)

• After this the weights Wj,i can be updated according to the following formula with α being the learning

rate:

Wj, i ←−Wj, i + α× valuej × ∆i

After being updated the Neural Network should be slightly better at playing Clobber than before. How good

the Neural Network is able to learn Clobber depends on quite a few different variables that all need to be

tuned. Some of these include how many hidden layers there are, the number of hidden nodes every hidden

layer has, and what the value of α is. Some of the values need to be tuned for different sized boards since a

2× 2 board can be learned very easily but a 10× 10 board cannot.

10

Chapter 5

Evaluation

In this chapter we will let the agents play against each other to see which one has the best odds of winning.

We will have a large focus on the tuning of the Neural Network, since there are many variables that determine

how well it is able to learn the concepts of the game. We examine board sizes from 4× 4 up to 10× 10, and we

will only look at chequered board initialization.

The experiments were run using Bash on Ubuntu on Windows using gcc version 5.4.0. Two different computers

were used to run experiments, one running an Intel i7-3820 and the other running an Intel i5-7300HQ, which

have different single- and multithreaded performance. Multiple experiments were run at the same time on

both computers, which increased the amount of time it took to complete each single experiment. This means

that comparing execution times of the different experiments would result in unfair comparisons and also

means that playing for a set amount of time would not always result in the same number of games being

played.

5.1 Random and Pick First

The first two agents that will play against each other will be Random and Pick First. Both will play against

themselves and against each other, both as the starting player and as the other player. To approximate the win

rate for every combination 100,000 games will be played for each of them. In the case of the Pick First agent

playing against itself all randomness is removed from play and this should result in either the first player

winning all games or losing all games. The results are shown in Table 5.1. It took only a few minutes to run all

games.

11

Players Board size Black wins

Random (black) vs Random (white)

4× 4 51,367

4× 5 56,330

5× 5 54,522

6× 6 50,578

7× 7 52,149

8× 8 50,435

9× 9 51,021

10× 10 50,424

Pick First (black) vs Random (white)

4× 4 34,261

4× 5 50,797

5× 5 47,136

6× 6 33,656

7× 7 32,842

8× 8 27,911

9× 9 26,960

10× 10 24,276

Random (black) vs Pick First (white)

4× 4 47,431

4× 5 61,634

5× 5 68,520

6× 6 66,460

7× 7 71,389

8× 8 72,019

9× 9 75,398

10× 10 75,901

Pick First (black) vs Pick First (white)

4× 4 0

4× 5 100,000

5× 5 0

6× 6 0

7× 7 100,000

8× 8 0

9× 9 100,000

10× 10 100,000

Table 5.1: Random and Pick First playing on different board sizes.

As can be seen the Random player has a slight edge if it is the starting player against another random player

and is most pronounced on 4× 5 and 5× 5 board sizes. Pick First in most cases is a fair bit weaker than a

Random player. When Pick First has the first move it only is able to compete on 5× 4 and 5× 5 board sizes,

12

when it is not first it is only able to win more than half the games on 4× 4 boards. The results for Pick First

playing against itself are in line with the prediction we made.

5.2 Monte Carlo

The second agent we will look at will be the Monte Carlo agent. We will let it play against Random and Pick

First with different values for the number of playouts and on different board sizes, the number of games

played has been reduced to only 1000 due to Monte Carlo being extremely slow as the board size and number

of playouts is increased, only playing a few games per second in the worst case. The results are shown in

Table 5.2 and Table 5.3.

Board size playouts Monte Carlo wins

4× 4

5 915

10 957

20 969

50 987

4× 5

5 916

10 948

20 958

50 979

6× 6

5 904

10 935

20 947

50 967

8× 8

5 878

10 914

20 944

50 969

Table 5.2: Monte Carlo and Random on different board sizes and different number of playouts.

13

Board size playouts Monte Carlo wins

4× 4

5 972

10 973

20 992

50 999

4× 5

5 979

10 984

20 987

50 988

6× 6

5 965

10 987

20 987

50 994

8× 8

5 971

10 981

20 993

50 997

Table 5.3: Monte Carlo and Pick First on different board sizes and different number of playouts.

These results show that even when the number of playouts is fairly low the Monte Carlo player has a good

win rate against Random and Pick First. Using a higher number of playouts raised the win rate under all

circumstances.

5.3 Neural Network

The last agent we will be looking at is the Neural Network agent. This agent must have its parameters tuned

for every different board size that it will play on. The list of parameters is as follows:

• α, the rate of learning.

• target; the value of a win, −target in the case of a loss, by having different values of target we can reward

or punish the Neural Network more.

• number of hidden nodes.

• number of hidden layers.

• τ; the temporal learning rate or by how much later moves are weighed more heavily.

We will start by having the Neural Network play against a Random player on a 4× 4 board. For all experiments

from now on we will let the Neural Network learn for 1,000,000 games, after which we stop training the

14

network and let it play against the same player for another 100,000 games to determine its win rate, unless we

note otherwise. We will start off with only one hidden layer with twenty hidden nodes plus one bias node and

we will keep the temporal factor at 0.0. The weights of the network will be initialized randomly between 0 and

1 except for the weights of the bias nodes which are all set to 0.1.

XXXXXXXXXXXXXXX
Learning rate

Target
1.0 10.0 50.0 100.0 150.0 200.0

0.0000002 35,179 70,634 76,454 79,639 84,096 76,817

0.000002 36,200 81,847 85,506 91,645 87,609 84,445

0.00002 34,294 95,343 94,842 97,521 97,955 90,521

0.0002 93,288 97,101 34,170 33,961 34,111 33,868

Table 5.4: Neural Network vs. Random on a 4× 4 board, win rate for 100, 000 games.

The results in Table 5.4 show a wide range of play, with a low of 33,868 and a high of 97,584. The observation

that the win rate goes to about 34% is the result of the dying ReLU problem [Kar18], where a unit in the

network only outputs 0 for all possible inputs. In the scenario that a large part of the network dies, the output

of the network will be 0 for almost all inputs, which means all moves have the same value and the first move

in the move list will be picked, since this is the default move. This means that the Neural Network will play

the same moves as the Pick First algorithm would. This issue is often the result of the learning rate being set

too high, but this was not the case when the target was 1.0, where the highest learning rate is the only one

that did not die or got close to dying. The best learning rate for a 4× 4 board is 0.00002 with a target of 150.0,

with a few other combinations of parameters close behind it. The Neural Network got close to winning all

games (∼ 98%) but still got beaten by Random. To improve the result we let the Neural Network train with the

parameters we found for 10, 000, 000 games to see if it is able to learn even better play after more games. This

resulted in a win rate of around ∼ 99% after 2, 000, 000 games, which it stayed around for the remainder of

training. This means that the network was not able to create a model that was good enough to achieve flawless

play, since it has been shown that on a 4× 4 board the first player to move is winning [GU16].

Next we increase the board size to 4× 5 and to 6× 6 and ran the experiments with similar parameters as

before, The results are shown in Table 5.5 and Table 5.6.

XXXXXXXXXXXXXXX
Learning rate

Target
1.0 10.0 50.0 60.0 100.0 150.0 200.0 350.0

0.0000002 52,156 66,007 78,270 77,049 73,242 75,033 75,663 73,110

0.000002 52,197 69,994 85,790 78,864 82,016 78,520 84,801 81,105

0.00002 60,073 81,864 90,381 85,992 84,845 82,945 90,344 51,190

0.0002 83,201 87,297 50,975 51,311 51,022 51,092 51,146 51,312

Table 5.5: Neural Network vs. Random on a 4× 5 board, win rate for 100, 000 games.

15

XXXXXXXXXXXXXXX
Learning rate

Target
1.0 10.0 50.0 100.0 150.0 200.0 500.0 1000.0

0.00000002 41,318 51,312 36,200 33,710 33,996 33,894 62,419 64,526

0.0000002 34,477 34,813 59,872 64,528 60,147 64,543 33,849 33,659

0.000002 33,546 33,317 61,020 33,848 33,834 33,512 33,396 33,390

0.00002 33,614 33,800 33,642 33,436 33,557 33,539 33,770 33,769

Table 5.6: Neural Network vs. Random on a 6× 6 board, win rate for 100, 000 games.

These results show that it is more difficult for our Neural Network to learn how to play against a Random

player. We also see that on larger boards our network dies very often, especially on 6× 6 boards where a

majority of the chosen parameters resulted in the network dying. On 4× 5 boards it is a bit more difficult to

determine if a network is dead due to the win rate of a dead network against random being ∼ 51%. We can

also already see that different parameters perform differently on different board sizes.

To improve the performance of our network, we will increase the number of hidden nodes and hidden layers

in our network so that a more complex model can be created.

First we will increase the number of hidden layers to 2 and continue play on 4× 5 and 6× 6 boards. The

results are shown in Table 5.7 and Table 5.8.

XXXXXXXXXXXXXXX
Learning rate

Target
1.0 10.0 50.0 100.0 150.0 200.0 500.0 1000.0

2× 10−9
50,861 51,790 53,247 51,316 73,788 68,660 77,000 83,106

2× 10−8
51,246 49,737 62,065 51,190 78,512 78,984 83,786 85,676

2× 10−7
51,240 60,879 80,194 79,331 85,844 85,831 51,257 51,103

2× 10−6
51,019 51,033 82,209 81,741 55,850 51,019 51,024 51,037

2× 10−5
51,189 51,190 51,189 80,475 51,198 51,155 51,900 51,190

2× 10−4
51,316 51,316 51,189 70,130 51,494 50,618 51,314 51,316

Table 5.7: Neural Network vs. Random on a 4× 5 board with 2 hidden layers, win rate for 100, 000 games.

16

XXXXXXXXXXXXXXX
Learning rate

Target
1.0 10.0 50.0 100.0 150.0 200.0 500.0 1000.0

2× 10−12
49,448 49,344 48,065 47,750 45,542 45,644 44,907 47,790

2× 10−11
46,764 46,094 49,646 49,754 48,108 44,626 48,514 50,693

2× 10−10
48,874 42,381 33,849 52,521 50,549 50,592 51,518 33,610

2× 10−9
34,366 33,459 33,692 33,815 33,544 34,070 60,623 64,218

2× 10−8
34,268 34,204 33,980 51,264 33,293 33,754 33,773 33,794

2× 10−7
33,703 33,449 33,621 33,608 33,471 33,375 33,815 33,813

Table 5.8: Neural Network vs. Random on a 6× 6 board with 2 hidden layers, win rate for 100, 000 games.

These results show no improvement for 6× 6 and 4× 5 boards over the first experiment with one hidden

layer. It should be noted that the learning rate had to be much lower to prevent the network from dying. This

could mean that the network had to train longer than 1, 000, 000 games to achieve a better result, so we picked

the best parameters for a 6× 6 board, learning rate 2× 10−9 and target 1000.0, and let it train for 20, 000, 000

games. This resulted in a win rate of ∼ 73% against a Random opponent.

Instead of increasing the number of hidden layers we now change the number of hidden nodes; for this we

will stick with a 4× 5 board and try different numbers of hidden nodes. The results are shown in Table 5.9,

Table 5.10, Table 5.11, Table 5.12 and Table 5.13.

XXXXXXXXXXXXXXX
Learning rate

Target
1.0 10.0 50.0 100.0 150.0 200.0 500.0 1000.0

2× 10−9
52,539 56,471 65,414 65,474 63,228 65,944 69,396 68,386

2× 10−8
50,286 61,779 69,548 67,965 73,575 79,349 69,417 74,814

2× 10−7
50,859 75,779 72,566 82,750 81,276 80,686 73,284 81,005

2× 10−6
53,095 77,880 82,921 86,702 88,850 87,191 88,070 87,868

2× 10−5
55,980 85,748 89,488 91,498 81,191 51,187 51,092 51,039

2× 10−4
76,697 91,806 50,877 51,336 51,045 51,314 50,988 46,323

Table 5.9: Neural Network vs. Random on a 4× 5 board with 30 hidden nodes, win rate for 100, 000 games.

17

XXXXXXXXXXXXXXX
Learning rate

Target
1.0 10.0 50.0 100.0 150.0 200.0 500.0 1000.0

2× 10−9
52,000 53,762 51,003 55,589 62,127 65,495 68,881 76,250

2× 10−8
52,525 53,550 70,752 70,659 72,386 72,024 70,420 72,458

2× 10−7
51,496 74,034 72,299 75,640 69,567 72,766 77,587 86,360

2× 10−6
51,018 77,183 84,518 85,934 89,056 89,600 89,418 93,512

2× 10−5
64,083 87,134 92,096 92,929 51,187 51,189 51,188 51,187

2× 10−4
79,706 93,674 51,315 51,315 51,315 51,435 51,336 51,335

Table 5.10: Neural Network vs. Random on a 4× 5 board with 40 hidden nodes, win rate for 100, 000 games.

XXXXXXXXXXXXXXX
Learning rate

Target
1.0 10.0 50.0 100.0 150.0 200.0 500.0 1000.0

2× 10−9
54,356 58,166 52,459 62,415 63,126 66,495 65,060 73,834

2× 10−8
52,174 63,045 71,291 74,431 75,157 79,061 78,647 77,666

2× 10−7
50,933 70,617 82,465 70,402 81,857 78,917 78,190 82,183

2× 10−6
51,039 79,490 87,673 91,086 91,408 88,717 92,086 87,677

2× 10−5
51,329 90,120 93,153 93,048 92,711 51,103 51,512 51,173

2× 10−4
50,880 93,853 50,778 51,195 51,145 51,130 51,235 51,202

Table 5.11: Neural Network vs. Random on a 4× 5 board with 50 hidden nodes, win rate for 100, 000 games.

````````````Learning rate
Target 1.0 10.0 50.0 100.0 150.0 200.0 500.0 1000.0

2× 10−9
51,535 51,762 55,565 63,346 60,305 68,028 64,353 74,395

2× 10−8
51,809 56,991 70,946 69,141 72,523 72,060 73,789 68,217

2× 10−7
51,270 73,359 73,170 79,685 83,323 80,375 84,059 82,357

2× 10−6
51,130 79,394 90,348 90,105 92,349 91,980 92,285 91,376

2× 10−5
50,916 92,391 90,357 94,443 51,386 51,364 51,314 50,829

2× 10−4
50,654 94,772 51,059 51,006 51,242 51,226 51,383 50,755

Table 5.12: Neural Network vs. Random on a 4× 5 board with 60 hidden nodes, win rate for 100, 000 games.

XXXXXXXXXXXXXXX
Learning rate

Target
1.0 10.0 50.0 100.0 150.0 200.0 500.0 1000.0

2× 10−9
56,759 56,480 59,620 62,892 74,012 68,493 70,660 75,766

2× 10−8
53,657 50,602 71,404 72,571 71,696 73,969 68,197 87,000

2× 10−7
50,515 76,373 82,640 82,002 79,576 84,434 83,420 87,000

2× 10−6
51,052 79,895 89,286 86,750 92,268 92,250 96,091 94,633

2× 10−5
52,326 93,859 95,182 94,922 51,119 51,225 51,048 50,979

2× 10−4
58,901 51,096 51,290 51,129 51,271 51,131 51,073 51,026

Table 5.13: Neural Network vs. Random on a 4× 5 board with 100 hidden nodes, win rate for 100, 000 games.

18



These results show that having 100 hidden nodes for a 4× 5 board has the best results. As opposed to the

Neural Network with two hidden layers we also observe that increasing the number of hidden nodes does not

result in the network dying more often. After this we increased the number of hidden nodes to 150, 250, 350,

500 and 750 with a learning rate of 2× 10−5 and a target of 50.0 this resulted in win rates of ∼ 96%, ∼ 97%,

∼ 99%, ∼ 98% and ∼ 51% respectively. These results show that increasing the number of hidden nodes does

not necessarily result in a better win rate and could also result in the network dying. The win rate of ∼ 99%

with 350 hidden nodes does show a significant improvement over a ∼ 90% win rate with only 20 hidden

nodes. Another drawback of increasing the number of hidden nodes is that the number of games being played

per second is lower.

Now we again move onto the 6× 6 boards with an increased number of hidden nodes. The results of this are

shown in Table 5.14.

XXXXXXXXXXXXXXX
Learning rate

Target
50.0 100.0 150.0 200.0 500.0 1000.0

2× 10−9
46,992 47,774 44,389 45,641 47,909 49,634

2× 10−8
34,647 53,042 33,809 62,172 63,860 62,099

2× 10−7
33,983 66,530 34,033 62,289 67,702 74,517

2× 10−6
67,415 33,509 69,044 74,439 33,526 33,734

2× 10−5
33,532 33,471 33,698 33,583 33,612 33,549

2× 10−4
33,892 33,674 33,541 33,667 33,665 33,510

Table 5.14: Neural Network vs. Random on a 6× 6 board with 100 hidden nodes, win rate for 100, 000 games.

These results show a slight improvement over the previously best win rate on a 6× 6 board by the Neural

Network but was able to learn to play at this level in only a fraction of the games it took before. This was at the

cost of playing less games per second but still resulted in less time spend training. We still see that the network

dies often. Using this result we tried different numbers of hidden nodes with 2× 10−7 as the learning rate and

1000.0 as the target; we used 50, 200, 300 and 400 hidden nodes and let them play for 5, 000, 000 games which

resulted in win rates of ∼ 78%, ∼ 89%, ∼ 33% and ∼ 83% respectively. Increasing the number of hidden nodes

beyond this would slow down the network by a very large amount taking more than a minute to play 10, 000

games, it should already be noted that playing 5, 000, 000 games with 200 hidden nodes took less than 4 hours,

while having 400 hidden nodes took around 12 hours. Some weird behavior was observed for 50 and 400

hidden nodes where the win rate would fluctuate downwards at times and then recover towards the better

win rate; this behaviour did stop after enough games were played and the win rate slowly increased over time.

5.3.1 Temporal Rate

The results so far show that learning Clobber using a Neural Network on smaller boards results in very high

win rates but on 6× 6 boards only results in a win rate of ∼ 89% against a random opponent after 5, 000, 000

19



games played. Since for this experiment we will only train for 1, 000, 000 games it should be noted that the

network that achieved ∼ 89% win rate only had a ∼ 77% win rate after 1, 000, 000 games played. The win rate

on a 6× 6 board could be improved by weighing moves later in the game as more important; this would result

in slightly more random play for the first few moves of the game but would result in the network winning

more games overall. We do need to be careful about raising the learning rate too high, otherwise the network

could die very fast. We will use values that were shown before to already provide good results. The results are

shown in Table 5.15.

Parameters Temporal Rate Neural Network wins

hidden nodes: 100

target: 200.0

Learning Rate: 2× 10−6

0.1 33,154

0.01 33,477

0.001 65,884

0.0001 71,005

hidden nodes: 100

target: 1000.0

Learning Rate: 2× 10−7

0.1 66,204

0.01 32,811

0.001 69,374

0.0001 63,321

hidden nodes: 200

target: 1000.0

Learning Rate: 2× 10−7

0.1 33,505

0.01 33,746

0.001 75,464

0.0001 72,779

hidden nodes: 200

target: 1000.0

Learning Rate: 2× 10−8

0.1 62,609

0.01 63,209

0.001 64,263

0.0001 66,771

Table 5.15: Neural Network vs Random using different Temporal Learning rates, win rate for 100, 000 games on a 6× 6
board.

Comparing these values to the win rate that was obtained without using a temporal factor we see that using a

temporal factor lowers the win rate the network is able to achieve at the cost of being slightly slower to train.

5.3.2 Leaky ReLU

The dying ReLU problem is a problem that can be seen in the results so far in many cases. We tried to combat

this by lowering the learning rate and changing the target. Another approach to combat this problem is

changing the activation function to Leaky ReLU. we start with 4× 5 and 6× 6 boards with 100 hidden nodes

and one hidden layer. The results are shown in Table 5.16.

20



XXXXXXXXXXXXXXX
Learning rate

Target
1.0 10.0 50.0 100.0 150.0 200.0 500.0 1000.0

2× 10−9
56,171 58,413 60,585 64,290 64,518 64,176 64,339 70,395

2× 10−8
56,789 61,928 70,331 66,931 70,245 67,858 73,635 76,002

2× 10−7
59,084 63,246 76,351 74,063 74,953 75,798 70,311 71,778

2× 10−6
59,484 64,448 71,668 74,620 81,820 74,090 72,565 76,593

2× 10−5
61,049 71,433 70,383 74,374 75,656 79,461 70,749 55,308

2× 10−4
62,476 73,569 64,703 55,291 55,328 55,590 55,246 55,225

Table 5.16: Neural Network vs. Random on a 6× 6 board with 100 hidden nodes, using Leaky ReLU, win rate for 100, 000
games.

The first thing that should be noted is that using Leaky ReLU takes slightly longer when compared to using

ReLU, in the order of magnitude of 3%. The results shown are actually the best we have been able to achieve

so far on a 6× 6 board, none of the parameters resulted in the network dying. We got the best win rate yet

after 1, 000, 000 games played on a 6× 6 board of ∼ 82%.

5.3.3 Neural Network vs. Monte Carlo

Training the Neural Network against the Monte Carlo player would take an incredibly long time, so instead

we will be training against a random player for 1, 000, 000 games with parameters that were shown to be very

good against the random player. After this training phase we will stop training and let the resulting Neural

Network play against the Monte Carlo player with different number of playouts.

Parameters Number of playouts Neural Network wins

hidden nodes: 100

target: 150.0

Learning Rate: 2× 10−6

Leaky ReLU

5 502

10 543

20 560

50 509

hidden nodes: 100

target: 1000.0

Learning Rate: 2× 10−6

Leaky ReLU

5 556

10 498

20 543

50 509

hidden nodes: 200

target: 1000.0

Learning Rate: 2× 10−7

ReLU

5 528

10 599

20 509

50 537

Table 5.17: Neural Network vs Monte Carlo on 6× 6 board size, win rate for 1, 000 games.

21



We see in Table 5.17 that our Neural Network has an edge over Monte Carlo after training for only 1, 000, 000

games of playing against Random. We should note that our Neural Network plays much faster than the Monte

Carlo player. The number of play outs that the Monte Carlo player does did not seem to matter too much

against the Neural Network.

22



Chapter 6

Conclusions

We have shown that a Neural Network based approach for playing Clobber was able to beat a Monte Carlo

player slightly more than 50% of the time on 6× 6 boards, and was able to win most games against a Random

player. We observed that increasing the number of hidden layers resulted in the Neural Network dying much

more often while increasing the number of hidden nodes and having only one hidden layer did not cause the

Neural Network to die much more often.

Using Temporal Rate learning with Rectified Linear Units did not result in a better win rate for the network

on 6× 6 boards, but did cause the network to die in some cases because of the higher learning rate. A much

more successful variant was changing the activation function from ReLU to Leaky ReLU, which prevented the

network from dying and gave us better results against both Random and comparable results against Monte

Carlo.

6.1 Future Research

There is still quite some work for future researchers to do. Clobber has not seen a great amount of research

yet. The Neural Network for example can always be improved by using more advanced techniques to make it

learn better, as well as scaling the Neural Network up. The Neural Network could also be trained against the

decision making of expert human players (if they exist) like was done for Go.

From the last results we can see that Leaky ReLU was a good improvement over ReLU but we only looked at

the problem with a very narrow scope. This should be expanded to include different parameters like different

numbers of hidden nodes with multiple hidden layers, and could also be combined with a temporal learning

rate on larger boards.

Finding the correct parameters was one of the hardest parts of this research especially when the board size

was increased. This could be solved by using natural computing techniques to find and optimize the different

23



parameters of the Neural Network. This could also allow the Neural Network to play at a high level on even

larger boards.

Another approach would be to use the AlphaZero algorithm, which is a general reinforcement learning

algorithm and was used to achieve superhuman play in chess, shogi and Go after only 24 hours of learning,

see [SHS+17].

Altogether, there is still much research that can be done related to Clobber and Neural Networks.

24



Bibliography

[AGNW05] Michael Albert, J.P. Grossman, Richard Nowakowski, and David Wolfe. An introduction to

Clobber. Integers, 5, 2005.

[Alt17] I. Althöfer. Computer olympiad 2011 — Clobber. http://www.althofer.de/clobber/clobber-2011-pan-

10x10.jpg, [accessed 18/12/2017].

[BPW+
12] Cameron Browne, Edward Powley, Daniel Whitehouse, Simon Lucas, Peter Cowling, Philipp

Rohlfshagen, Stephen Tavener, Diego Perez Liebana, Spyridon Samothrakis, and Simon Colton. A

survey of Monte Carlo Tree Search methods. IEEE Transactions on Computational Intelligence and AI

in Games, 4:1:1–43, 03 2012.

[DDF02] Erik D. Demaine, Martin L. Demaine, and Rudolf Fleischer. Solitaire Clobber. CoRR,

cs.DM/0204017, 2002.

[Dic18] Dicksonlaw583. Mcts (english) - updated 2017-11-19 - monte carlo tree search - wikipedia.

https://en.wikipedia.org/wiki/Monte Carlo tree search, [accessed 30/01/2018].

[Eto17] Teddy Etoeharnowo. Neural Networks for Clobber. Bachelor thesis, Leiden University, 2017.

[Gri17] R. Grimbergen. Reijer grimbergen’s research pages. https://www2.teu.ac.jp/gamelab/RESEARCH-

/ResearchPix/clobber.png, [accessed 19/12/2017].

[GU16] Janis Griebel and Jos Uiterwijk. Combining Combinatorial Game Theory with an α-β solver for

Clobber. 2016.

[JKRL09] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best multi-stage architecture

for object recognition? In Proceedings of the 2009 IEEE 12th International Conference on Computer

Vision, pages 2146–2153, 2009.

[Kar18] Andrej Karpathy. Cs231n convolutional Neural Networks for Visual Recognition.

http://cs231n.github.io/neural-networks-1/#actfun, [accessed 21/01/2018].

[MHN13] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities improve Neural

Network acoustic models. In Proceedings of the 30th International Conference on Machine Learning,

volume 30, 2013.

25



[Mor17] T. Morris. Next price predictor using Neural Network indicator for MetaTrader 4.

https://www.forexmt4indicators.com/wp-content/uploads/2014/10/NN1 1.gif, [accessed 19/12/2017].

[NE10] Hinton Nair, Vinod and Geoffrey E. Rectified linear units improve restricted Boltzmann machines.

In Proceedings of the 27th International Conference on International Conference on Machine Learning,

ICML’10, pages 807–814, 2010.

[SB18] Richard Sutton and Andrew Barto. Reinforcement learning: An introduction. The MIT Press, 2018.

[Sha18] Sagar Sharma. Activation functions: Neural Networks — towards data science. https://cdn-images-

1.medium.com/max/1600/1*A Bzn0CjUgOXtPCJKnKLqA.jpeg, [accessed 30/01/2018].

[SHS+17] David Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,

D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis. Mastering chess and shogi by

self-play with a general reinforcement learning algorithm. ArXiv e-prints 1712.01815, 2017.

[Sie13] A.N. Siegel. Combinatorial game theory. AMS, 2013.

[SSS+17] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,

Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan

Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering the

game of Go without human knowledge. Nature, 550:page 354, 2017.

26


