- Universiteit o .
/4 Leiden Opleiding Informatica

The Netherlands

Using the Rectified Linear Unit activation function

in Neural Networks for Clobber

Laurens Damhuis

Supervisors:

dr. W.A. Kosters & dr.].M. de Graaf

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)

www.liacs.leidenuniv.nl 30/01/2018

Abstract

A Neural Network based approach for playing the game CLOBBER has been implemented. This approach has
been shown to be extremely good at playing other abstract strategy games like Go, Chess and Shogi. CLOBBER
is a two-player board game, the first person unable to move loses. We use ReLU and Leaky ReLU to train
against a random opponent and use the resulting network to play against a Monte Carlo opponent and achieve

a win rate of over 50%.

We look at various different techniques to create a Neural Network, including two variants of the activation
function, ReLU and Leaky ReLU. We also vary the structure of the Neural Network by using different numbers
of hidden nodes as well as different numbers of hidden layers. We introduce a Temporal Learning Rate which

weights moves made later in the game more.

Contents

1 Introduction

1.1 Thesis Overview e
2 Clobber

3 Related Work

4 Agents
41 Random
42 Pick First L
43 MonteCarlo L e
4.4 Neural Network e

5 Evaluation

5.1 Random and Pick First o
52 MonteCarlo
5.3 Neural Network o e
53.1 TemporalRate.
53.2 LeakyReLU
5.3.3 Neural Network vs. Monte Carlo.

6 Conclusions

6.1 Future Research e

Bibliography

11
11
13
14
19
20

21

23
23

25

Chapter 1

Introduction

The game of CLOBBER [AGNWo5] is an abstract strategy board game in which two players play against each
other. The game was introduced in 2001 by combinatorial game theorists Michael H. Albert,]. P. Grossman,
Richard Nowakowski and David Wolfe. The goal of the game is to eliminate all possible moves the opponent
can make and in doing so one wins the game. CLOBBER has been featured in tournaments at the ICGA

Computer Olympiad since 2005, see Figure 1.1.

In this thesis we discuss several Al agents for playing CLOBBER, with a focus on a Neural Network based
approach. The agents that will be created are Random, Monte Carlo and Neural Network. We will test these
agents to determine under what conditions the Neural Network is able to learn near optimal play. The
Neural Network is a feedforward network using backpropogation and the Rectified Linear Unit (ReLU) as the

activation function for the nodes in the network.

13. g3-¢4 3
14, i10-19 8
e3-

.
1 20.
021 it

Figure 1.1: An Al agent called Pan playing CLOBBER at the ICGA Computer Olympiad 2011 [Alt1y].

1.1 Thesis Overview

The rules of CLOBBER will be explained in Chapter 2, including some of its variants. Related work done on
the game and the techniques used will be discussed in Chapter 3. Chapter 4 describes the workings of the
different agents that have been implemented and what decisions were made during implementation. Chapter
5 discusses the results of the experiments and in Chapter 6 we draw conclusions and discuss what future work

could be done.

This bachelor thesis was supervised by Walter Kosters and Jeannette de Graaf at the Leiden Institute of

Advanced Computer Science (LIACS) from Leiden University.

Chapter 2

Clobber

CLOBBER is a two-player strategy game usually played on a chequered m x n board on which white stones are
placed on every white square and black stones on every black square; see Figure 2.1 for a starting position on
a 6 x 5 board. The two players take alternating turns ”clobbering” an opponent’s stone. This is done by taking
one of your stones and moving it onto a square that is currently occupied by an opponent’s stone and that is
directly next to it either horizontally or vertically. The opponent’s stone is then removed from the game and
the square your stone was on is now empty. The win condition is to be the last player to be able to make a
move, which is called normal play. Because it is impossible for one player to still have available moves while the
opponent does not, the game of CLOBBER is an all-small game. his also means there is always one winner with
no possible draws. The game of CLOBBER is a partizan game, which means it is not impartial, as the moves that
can be made by one player are different from the other player [Sie13], but it does meet the other requirements
of being impartial: there are two players who alternate turns, a winner is picked when neither player can make

a move, there is a finite number of moves and positions for both players and there is no element of chance.

Figure 2.1: Starting position for CLOBBER on a 6 x 5 board.

Figure 2.2: A game state where multiple smaller games are played, starting player wins [Gri17].

In competitions CLOBBER is usually played on different sizes of boards; usually a board of size 6 x 5 is used

between human players and board sizes of 8 x 8 or even 10 x 10 are used for games between computer players.

CLOBBER positions such as the one in Figure 2.2 can be approached from a Combinatorial Game Theory
perspective [Sie13] since the three unconnected groups of stones each creating their own smaller game of
CLOBBER with just one winner each. By combining these values one can determine the winner of the entire

game.

There are several different variants of CLOBBER. One of them is a version of CLOBBER called Cannibal Clobber
where you are allowed to capture your own pieces as well as your opponent’s pieces. Another variant is
Solitaire Clobber [DDFoz2] in which there is only one player and the goal is to remove as many stones from the
board as possible. And finally the game of CLOBBER does not need to be played on a chequered m x n board
but instead can be played on any arbitrary undirected graph with one stone on each vertex [AGNWos5]. This
includes variants where the stones are not in a chequered pattern at the start but can be in any pattern, e.g.,

random.

Chapter 3

Related Work

The game of CLOBBER was introduced in a paper by Albert et al. in 2005 [AGNWos5]. In this paper the authors
show that you can play this game on any arbitrary undirected graph and the paper also shows that determining

the value of the game is NP-hard.

A basic Neural Network approach has been implemented by Teddy Etoeharnowo in his bachelor thesis [Eto17],
which has shown that winning on smaller boards against a random player is fairly easy to achieve, but larger
boards are much more difficult to achieve high win rates on. He also implemented a Monte Carlo Tree Search
based agent which played better than his Neural Network agent on all different board sizes. A NegaScout
search was applied to CLOBBER by Griebel and Uiterwijk [GU16]; they used Combinatorial Game Theory (CGT)
to calculate very precise CGT values of (sub)games and used these to reduce the number of nodes investigated
by the NegaScout algorithm by ~ 75%. Many other aspects of Combinatorial Game Theory are described
in [Sie13].

Neural Network based approaches have been shown to be extremely good at learning board games that
were classically very hard to create Al agents for. These new agents could compete with high level human
players and have recently been able to defeat the world champions of Go, Chess and Shogi [SHS" 17,5557 17],
the programs use Deep learning techniques, Monte Carlo Tree Search, Reinforcement Learning, and often

specialized hardware. In this thesis we only used Reinforcement Learning.

The Rectifier activation function has been used successfully for different tasks [JKRLog]. Several variants of

this activation function also exist which have been used to solve specific problems [NE10].

Chapter 4

Agents

Now the different agents for playing CLOBBER will be explained, namely Random, Monte Carlo and Neural
Network. In particular, we describe how these different agents determine what move will be played. The
different choices that were made for each agent will also be explained here. Every single agent will abide by

the rules of CLOBBER by only picking moves from a list which contains all valid moves for the current player.

4.1 Random

Random is a very simple player which picks its move by randomly choosing a move from all available moves,
where every move has the same odds of being picked. Because there is only one type of move that can be

made this agent is not biased towards any play style.

4.2 Pick First

Another agent that was useful to create, similar to Random in its simplicity, was an agent which always picks
the first possible move in the list of available moves. Because the move list is always generated ordered in the
same way this agent always picks the same move. The move list is generated by going through every direction
of every square, starting in the first row and column and incrementing the column until the last column is
reached after which the row is incremented and the column is reset to the first one until we reach the final

column of the final row. So this player has a tendency to play as near to the upper leftmost corner as possible.

4.3 Monte Carlo

The next agent uses the Monte Carlo algorithm, which employs random playouts to find the move that has

the highest chance of winning. The algorithm does this by calculating a score for every possible move it can

make, and plays the move with the highest score. This score is determined by doing a set amount of playouts
for every possible move using the Random algorithm until the end of the game. One playout is one full play
through of the game from a given position using just the random algorithm. If the game is won in a playout the
score of the initial move is incremented by 1. The algorithm does a set number of playouts per possible move,
and we let playouts denote this number. In a given position the total number of games played is playouts x k,
with k being the number of possible moves available to the Monte Carlo player on a given board. By doing

enough random playouts the strength of a certain move can be approximated fairly well.

An improvement on the basic Monte Carlo algorithm is called Monte Carlo Tree Search (MCTS) [BPW " 12].
This method consists of the following: a game tree is built and a policy is used to determine what node in this
game tree to expand; a simulation of the game is then run after which the game tree expands and the policy can
select a new node to expand, see Figure 4.1. This algorithm was implemented by Teddy Etoeharnowo [Eto17]
and was shown be an improvement over regular Monte Carlo. For this research only the basic Monte Carlo

algorithm will be considered.

Selection Expansion Simulation Backpropagation

@: @

01

Figure 4.1: The structure of the Neural Network [Dic18].

4.4 Neural Network

The Neural Network agent that has been created in this research utilizes a feedforward Neural Network with
the game state as the input layer, and one output node that gives the score of the board in the current state.
These input and output nodes are connected through a number of fully connected hidden layers, see Figure 4.2.

The activation function used is the Rectified Linear Unit (ReLU).

The way in which the Neural Network is used to determine what moves to play is similar to Monte Carlo in
that it determines a score for every possible move that can be made, and, once every available move has a
score assigned, it picks the move with the highest score. These scores are calculated by temporarily making
every move and using the resulting board as input for the Neural Network and comparing the outputs of all

possible moves.

The score of a board is calculated using the following steps:

Input Hidden Hidden Output
Layer Layer #1 Layer #2 Layer

: Neurons Neurons
Xo 3

Neuron

=z
:

X1

X2

X3

Bias @

Inputs -1

®

-1

Figure 4.2: The structure of the Neural Network [Mor1y], this network has two hidden layers.

e First the entire game state is loaded into the input nodes. Each square on the board is mapped to one
input node exactly. If the square contains a stone of the player whose turn it currently is, the value is set
to 1, if it is an opponent’s stone it is set to —1, and if the square does not contain a stone it is set to o.

The number of input nodes is equal to the board size +1; this extra node is the bias node.

e Secondly the values of the nodes in the hidden layers have to be calculated. This value is calculated in
two steps. Firstly the invalue of a node needs to be calculated, which is done by taking the sum over all
input nodes times the weight that connects the node with the input node. After the invalue of a node has
been calculated one calculates the value of the node by using the activation function. This step is then
repeated for every hidden layer but instead of the sum over the input nodes the values in the previous

layer in the network are used.

e This continues until the value of the output node can be calculated by repeating the same process as
used for nodes in previous layers using the sum of all values of the previous layer times their respective

weights and putting this invalue through the activation function to get the value of the output node.

The activation function that was used for our network is the Rectified Linear Unit (ReLU) which is defined as

follows:
g(x) = max(0, x)

A variant of this activation function is called Leaky ReLU [MHN13], which uses a small positive gradient
when the input of the unit is negative. This variant was shown to perform as well as regular ReLU but could
help combat the dying ReLU problem where all possible input of the network results in an output of 0. The
ReLU function and Leaky ReLU function are shown in Figure 4.3, we use a value of 0.01 for a for Leaky ReLU.

Leaky ReLU is defined as follows:

X if x>0
g(x) = (4-1)

0.01 x x otherwise

fo4 SOt
fo)=y =y

h
h

f0)=0 y - y
f)=ay

Figure 4.3: ReLU and Leaky ReLU [Sha18].

After a game has been played the result of the game will be used to train the network to play better in the
future, rewarding play if the game was won and punishing if the game was lost. This is called Reinforcement
Learning [SB18], and is done using backpropogation, which is the process by which the weights in the network
are updated. The algorithm compares the value the Neural Network returns for a given position with the
result of the game. The positions the Neural Network decides on during play are stored and after a game has
finished are all used to train the Neural Network. The boards are passed into the update function in a first in
first out system, which means that the first move of the game will also be the first to update the weights of the
network. We also introduce a temporal learning factor 7, which changes the learning rate « depending on
how far into the game a position is. This T increases the learning rate after every board that is passed to the
backpropogation function which means that when T is positive a will increase after every board and decrease
if T is negative. After one whole game has been passed through the backpropogation function we reset « to

the initial value. The following formula is used for this process:
o a(l+1)
The weights of the Neural Network will be updated using the following algorithm:

e Compute the output of the Neural Network for a given position using the same algorithm as before. This
also gives us the invalue of every hidden node and the output node as well as the value of all the hidden

nodes.

e Compute the error value and the A value of the output node with target being the result of the game
that was played. We use target in case of a win and —target in case of a loss. We let output be the value
the Neural Network outputs for the given position, we let ¢’(x) denote the derivative of the activation

function used, (4.2) is used in the case of ReLU and (4.3) is used in the case of Leaky ReLU. We then let

error = target — output

A = error x ¢’ (invalue of output node)

0 if x <0
g(x)=<1 if x>0 (4.2)

undefined if x =0

0.01 ifx <0

g(x) =11 if x>0 4-3)

undefined if x =0
e Next the A; of every hidden node j will be calculated using the A values of the nodes in the previous
layer and the weight W; ; connecting node i from the previous layer with node j:
Aj = g'(invalue;) x L (Wj, ; x A;)
1

e After this the weights W;; can be updated according to the following formula with « being the learning

rate:
Wj,i — Wj, i tax value]- X A

After being updated the Neural Network should be slightly better at playing CLOBBER than before. How good
the Neural Network is able to learn CLOBBER depends on quite a few different variables that all need to be
tuned. Some of these include how many hidden layers there are, the number of hidden nodes every hidden
layer has, and what the value of « is. Some of the values need to be tuned for different sized boards since a

2 x 2 board can be learned very easily but a 10 x 10 board cannot.

10

Chapter 5

Evaluation

In this chapter we will let the agents play against each other to see which one has the best odds of winning.
We will have a large focus on the tuning of the Neural Network, since there are many variables that determine
how well it is able to learn the concepts of the game. We examine board sizes from 4 x 4 up to 10 x 10, and we

will only look at chequered board initialization.

The experiments were run using Bash on Ubuntu on Windows using gcc version 5.4.0. Two different computers
were used to run experiments, one running an Intel i7-3820 and the other running an Intel i5-7300HQ, which
have different single- and multithreaded performance. Multiple experiments were run at the same time on
both computers, which increased the amount of time it took to complete each single experiment. This means
that comparing execution times of the different experiments would result in unfair comparisons and also
means that playing for a set amount of time would not always result in the same number of games being

played.

5.1 Random and Pick First

The first two agents that will play against each other will be Random and Pick First. Both will play against
themselves and against each other, both as the starting player and as the other player. To approximate the win
rate for every combination 100,000 games will be played for each of them. In the case of the Pick First agent
playing against itself all randomness is removed from play and this should result in either the first player
winning all games or losing all games. The results are shown in Table 5.1. It took only a few minutes to run all

games.

11

Players Board size | Black wins
4 x4 51,367
4 x5 56,330
5x5 54,522
Random (black) vs Random (white) 6x6 50,578
7x7 52,149
§x8 50,435
9x9 51,021
10 x 10 50,424
4 x4 34,261
4x5 50,797
5x5 47,136
Pick First (black) vs Random (white) 66 33,656
7x7 32,842
8x8 27,911
9x9 26,960
10 x 10 24,276
x4 47,431
4 x5 61,634
5x5 68,520
Random (black) vs Pick First (white) 66 66,460
7x7 71,389
8x8 72,019
99 75,398
10 x 10 75,901
4 x4 0
4x5 100,000
5x5 0
Pick First (black) vs Pick First (white) 66 ©
7 X7 100,000
8x8 0
9x9 100,000
10 x 10 100,000

Table 5.1: Random and Pick First playing on different board sizes.

As can be seen the Random player has a slight edge if it is the starting player against another random player
and is most pronounced on 4 x 5 and 5 x 5 board sizes. Pick First in most cases is a fair bit weaker than a

Random player. When Pick First has the first move it only is able to compete on 5 x 4 and 5 x 5 board sizes,

12

when it is not first it is only able to win more than half the games on 4 x 4 boards. The results for Pick First

playing against itself are in line with the prediction we made.

5.2 Monte Carlo

The second agent we will look at will be the Monte Carlo agent. We will let it play against Random and Pick
First with different values for the number of playouts and on different board sizes, the number of games
played has been reduced to only 1000 due to Monte Carlo being extremely slow as the board size and number
of playouts is increased, only playing a few games per second in the worst case. The results are shown in

Table 5.2 and Table 5.3.

Board size | playouts | Monte Carlo wins
5 915
10 957
4x4
20 969
50 987
5 916
10 948
4x5
20 958
50 979
5 904
10 935
6 X6
20 947
50 967
5 878
10 914
8x8
20 944
50 969

Table 5.2: Monte Carlo and Random on different board sizes and different number of playouts.

13

Board size | playouts | Monte Carlo wins
5 972
10 973
4x4
20 992
50 999
5 979
10 98
4 x5 +
20 987
50 988
5 965
10 987
6 X6
20 987
50 994
5 971
10 981
8x8
20 993
50 997

Table 5.3: Monte Carlo and Pick First on different board sizes and different number of playouts.

These results show that even when the number of playouts is fairly low the Monte Carlo player has a good

win rate against Random and Pick First. Using a higher number of playouts raised the win rate under all

circumstances.

5.3 Neural Network

The last agent we will be looking at is the Neural Network agent. This agent must have its parameters tuned

for every different board size that it will play on. The list of parameters is as follows:

e «, the rate of learning.

or punish the Neural Network more.
e number of hidden nodes.

e number of hidden layers.

We will start by having the Neural Network play against a Random player on a 4 x 4 board. For all experiments

from now on we will let the Neural Network learn for 1,000,000 games, after which we stop training the

14

target; the value of a win, —target in the case of a loss, by having different values of target we can reward

T; the temporal learning rate or by how much later moves are weighed more heavily.

network and let it play against the same player for another 100,000 games to determine its win rate, unless we
note otherwise. We will start off with only one hidden layer with twenty hidden nodes plus one bias node and
we will keep the temporal factor at 0.0. The weights of the network will be initialized randomly between 0 and

1 except for the weights of the bias nodes which are all set to 0.1.

Target
1.0 10.0 50.0 100.0 150.0 200.0
Learning rate
0.0000002 35,179 | 70,634 | 76,454 | 79,639 | 84,096 | 76,817
0.000002 36,200 | 81,847 | 85,506 | 91,645 | 87,609 | 84,445
0.00002 34,294 | 95343 | 94,842 | 97,521 | 97,955 | 90,521
0.0002 93,288 | 97,101 | 34,170 | 33,961 | 34,111 | 33,868

Table 5.4: Neural Network vs. Random on a 4 x 4 board, win rate for 100,000 games.

The results in Table 5.4 show a wide range of play, with a low of 33,868 and a high of 97,584. The observation
that the win rate goes to about 34% is the result of the dying ReLU problem [Kar18], where a unit in the
network only outputs 0 for all possible inputs. In the scenario that a large part of the network dies, the output
of the network will be 0 for almost all inputs, which means all moves have the same value and the first move
in the move list will be picked, since this is the default move. This means that the Neural Network will play
the same moves as the Pick First algorithm would. This issue is often the result of the learning rate being set
too high, but this was not the case when the target was 1.0, where the highest learning rate is the only one
that did not die or got close to dying. The best learning rate for a 4 x 4 board is 0.00002 with a target of 150.0,
with a few other combinations of parameters close behind it. The Neural Network got close to winning all
games (~ 98%) but still got beaten by Random. To improve the result we let the Neural Network train with the
parameters we found for 10,000, 000 games to see if it is able to learn even better play after more games. This
resulted in a win rate of around ~ 99% after 2,000,000 games, which it stayed around for the remainder of
training. This means that the network was not able to create a model that was good enough to achieve flawless

play, since it has been shown that on a 4 x 4 board the first player to move is winning [GU16].

Next we increase the board size to 4 X 5 and to 6 X 6 and ran the experiments with similar parameters as

before, The results are shown in Table 5.5 and Table 5.6.

Target
1.0 10.0 50.0 60.0 100.0 150.0 200.0 350.0
Learning rate
0.0000002 52,156 | 66,007 | 78,270 | 77,049 | 73,242 | 75,033 | 75,663 | 73,110
0.000002 52,197 | 69,994 | 85,790 | 78,864 | 82,016 | 78,520 | 84,801 | 81,105
0.00002 60,073 | 81,864 | 90,381 | 85,992 | 84,845 | 82,945 | 90,344 | 51,190
0.0002 83,201 | 87,297 | 50,975 | 51,311 | 51,022 | 51,092 | 51,146 | 51,312

Table 5.5: Neural Network vs. Random on a 4 x 5 board, win rate for 100,000 games.

15

Target
1.0 10.0 50.0 100.0 150.0 200.0 500.0 | 1000.0

Learning rate

0.00000002 41,318 | 51,312 | 36,200 | 33,710 | 33,996 | 33,804 | 62,419 | 64,526
0.0000002 34,477 | 34,813 | 59,872 | 64,528 | 60,147 | 64,543 | 33,849 | 33,659
0.000002 33,546 | 33,317 | 61,020 | 33,848 | 33,834 | 33,512 | 33,396 | 33,390
0.00002 33,614 | 33,800 | 33,642 | 33,436 | 33,557 | 33,539 | 33,770 | 33,769

Table 5.6: Neural Network vs. Random on a 6 x 6 board, win rate for 100,000 games.

These results show that it is more difficult for our Neural Network to learn how to play against a Random
player. We also see that on larger boards our network dies very often, especially on 6 x 6 boards where a
majority of the chosen parameters resulted in the network dying. On 4 x 5 boards it is a bit more difficult to
determine if a network is dead due to the win rate of a dead network against random being ~ 51%. We can

also already see that different parameters perform differently on different board sizes.

To improve the performance of our network, we will increase the number of hidden nodes and hidden layers

in our network so that a more complex model can be created.

First we will increase the number of hidden layers to 2 and continue play on 4 x 5 and 6 x 6 boards. The

results are shown in Table 5.7 and Table 5.8.

Trget |90 | 100 | 500 | 1000 | 1500 | 2000 | 5000 | 10000
Learning rate
2x107° 50,861 | 51,790 | 53,247 | 51,316 | 73,788 | 68,660 | 77,000 | 83,106
2x10°8 51,246 | 49,737 | 62,065 | 51,190 | 78,512 | 78,084 | 83,786 | 85,676
2x1077 51,240 | 60,879 | 80,194 | 79,331 | 85,844 | 85,831 | 51,257 | 51,103
2x107° 51,019 | 51,033 | 82,209 | 81,741 | 55,850 | 51,019 | 51,024 | 51,037
2x107° 51,189 | 51,190 | 51,189 | 80,475 | 51,198 | 51,155 | 51,900 | 51,190
2x107* 51,316 | 51,316 | 51,189 | 70,130 | 51,494 | 50,618 | 51,314 | 51,316

Table 5.7: Neural Network vs. Random on a 4 x 5 board with 2 hidden layers, win rate for 100,000 games.

16

Target

1.0 10.0 50.0 | 100.0 | 150.0 | 200.0 | 500.0 | 1000.0
Learning rate
2x10712 49,448 | 49,344 | 48,005 | 47,750 | 45,542 | 45,644 | 44,907 | 47,790
2x107M 46,764 | 46,004 | 49,646 | 49,754 | 48,108 | 44,626 | 48,514 | 50,693
2x10°10 48,874 | 42,381 | 33,849 | 52,521 | 50,549 | 50,592 | 51,518 | 33,610
2x107° 34,366 | 33,459 | 33,692 | 33,815 | 33,544 | 34,070 | 60,623 | 64,218
2x1078 34,268 | 34,204 | 33,980 | 51,264 | 33,293 | 33,754 | 33,773 | 33,794
2x1077 33,703 | 33,449 | 33,621 | 33,608 | 33,471 | 33,375 | 33,815 | 33,813

Table 5.8: Neural Network vs. Random on a 6 x 6 board with 2 hidden layers, win rate for 100,000 games.

These results show no improvement for 6 x 6 and 4 x 5 boards over the first experiment with one hidden

layer. It should be noted that the learning rate had to be much lower to prevent the network from dying. This

could mean that the network had to train longer than 1,000,000 games to achieve a better result, so we picked

the best parameters for a 6 x 6 board, learning rate 2 x 10~? and target 1000.0, and let it train for 20, 000, 000

games. This resulted in a win rate of ~ 73% against a Random opponent.

Instead of increasing the number of hidden layers we now change the number of hidden nodes; for this we

will stick with a 4 x 5 board and try different numbers of hidden nodes. The results are shown in Table 5.9,

Table 5.10, Table 5.11, Table 5.12 and Table 5.13.

Target

1.0 10.0 50.0 100.0 150.0 200.0 500.0 1000.0
Learning rate
2x107° 52,539 | 56,471 | 65414 | 65474 | 63,228 | 65944 | 69,396 | 68,386
2x10°8 50,286 | 61,779 | 69,548 | 67,965 | 73,575 | 79,349 | 69,417 | 74,814
2x1077 50,859 | 75,779 | 72,566 | 82,750 | 81,276 | 80,686 | 73,284 | 81,005
2x107° 53,095 | 77,880 | 82,921 | 86,702 | 88,850 | 87,191 | 88,070 | 87,868
2x107° 55,980 | 85,748 | 89,488 | 91,498 | 81,191 | 51,187 | 51,092 | 51,039
2x107* 76,697 | 91,806 | 50,877 | 51,336 | 51,045 | 51,314 | 50,988 | 46,323

Table 5.9: Neural Network vs. Random on a 4 x 5 board with 30 hidden nodes, win rate for 100,000 games.

17

Target

1.0 10.0 50.0 100.0 | 150.0 | 200.0 | 500.0 | 1000.0
Learning rate
2x107° 52,000 | 53,762 | 51,003 | 55,589 | 62,127 | 65,495 | 68,881 | 76,250
2x1078 52,525 | 53,550 | 70,752 | 70,659 | 72,386 | 72,024 | 70,420 | 72,458
2x1077 51,496 | 74,034 | 72,299 | 75640 | 69,567 | 72,766 | 77,587 | 86,360
2x107° 51,018 | 77,183 | 84,518 | 85934 | 89,056 | 89,600 | 89,418 | 93,512
2x107° 64,083 | 87,134 | 92,096 | 92,029 | 51,187 | 51,189 | 51,188 | 51,187
2x107* 79,706 | 93,674 | 51,315 | 51,315 | 51,315 | 51,435 | 51,336 | 51,335

Table 5.10: Neural Network vs. Random on a 4 x 5 board with 40 hidden nodes, win rate for 100,000 games.

Target |10 | 100 | 500 | 1000 | 1500 | 2000 | 5000 | 1000.0
Learning rate
2x107° 54,356 | 58,166 | 52,459 | 62,415 | 63,126 | 66,495 | 65,060 | 73,834
2x107® 52,174 | 63,045 | 71,291 | 74,431 | 75,157 | 79,061 | 78,647 | 77,666
2x1077 50,933 | 70,617 | 82,465 | 70,402 | 81,857 | 78,917 | 78,190 | 82,183
2x107° 51,039 | 79,490 | 87,673 | 91,086 | 91,408 | 88,717 | 92,086 | 87,677
2x107° 51,329 | 90,120 | 93,153 | 93,048 | 92,711 | 51,103 | 51,512 | 51,173
2x 1074 50,880 | 93,853 | 50,778 | 51,195 | 51,145 | 51,130 | 51,235 | 51,202

Table 5.11: Neural Network vs. Random on a 4 x 5 board with 50 hidden nodes, win rate for 100,000 games.

) Target || 1 9 100 | 500 | 100.0 | 1500 | 200.0 | 500.0 | 1000.0
Learning rate
2x1077 51,535 | 51,762 | 55,565 | 63,346 | 60,305 | 68,028 | 64,353 | 74,395
2x1078 51,809 | 56,991 | 70,946 | 69,141 | 72,523 | 72,060 | 73,789 | 68,217
2x1077 51,270 | 73,359 | 73,170 | 79,685 | 83,323 | 80,375 | 84,059 | 82,357
2x10°° 51,130 | 79,394 | 90,348 | 90,105 | 92,349 | 91,980 | 92,285 | 91,376
2x10°° 50,916 | 92,391 | 90,357 | 94,443 | 51,386 | 51,364 | 51,314 | 50,829
2x107% 50,654 | 94,772 | 51,059 | 51,006 | 51,242 | 51,226 | 51,383 | 50,755

Table 5.12: Neural Network vs. Random on a 4 x 5 board with 6o hidden nodes, win rate for 100,000 games.

Target

1.0 10.0 50.0 100.0 150.0 200.0 500.0 | 1000.0
Learning rate
2x 107 56,759 | 56,480 | 59,620 | 62,892 | 74,012 | 68,493 | 70,660 | 75,766
2x10°8 53,657 | 50,602 | 71,404 | 72,571 | 71,696 | 73,969 | 68,197 | 87,000
2x1077 50,515 | 76,373 | 82,640 | 82,002 | 79,576 | 84,434 | 83,420 | 87,000
2x107° 51,052 | 79,895 | 89,286 | 86,750 | 92,268 | 92,250 | 96,091 | 94,633
2x107° 52,326 | 93,859 | 95,182 | 94,922 | 51,119 | 51,225 | 51,048 | 50,979
2x 1074 58,901 | 51,096 | 51,290 | 51,129 | 51,271 | 51,131 | 51,073 | 51,026

Table 5.13: Neural Network vs. Random on a 4 x 5 board with 100 hidden nodes, win rate for 100,000 games.

18

These results show that having 100 hidden nodes for a 4 x 5 board has the best results. As opposed to the
Neural Network with two hidden layers we also observe that increasing the number of hidden nodes does not
result in the network dying more often. After this we increased the number of hidden nodes to 150, 250, 350,
500 and 750 with a learning rate of 2 x 107> and a target of 50.0 this resulted in win rates of ~ 96%, ~ 97%,
~ 99%, ~ 98% and ~ 51% respectively. These results show that increasing the number of hidden nodes does
not necessarily result in a better win rate and could also result in the network dying. The win rate of ~ 99%
with 350 hidden nodes does show a significant improvement over a ~ 90% win rate with only 20 hidden
nodes. Another drawback of increasing the number of hidden nodes is that the number of games being played

per second is lower.

Now we again move onto the 6 x 6 boards with an increased number of hidden nodes. The results of this are

shown in Table 5.14.

Target

50.0 100.0 | 150.0 | 200.0 | 500.0 | 1000.0
Learning rate
2x107° 46,992 | 47,774 | 44,389 | 45641 | 47,909 | 49,634
2x1078 34,647 | 53,042 | 33,809 | 62,172 | 63,860 | 62,099
2x1077 33,983 | 66,530 | 34,033 | 62,289 | 67,702 | 74,517
2x107° 67,415 | 33,509 | 69,044 | 74,439 | 33,526 | 33,734
2x107° 33,532 | 33,471 | 33,698 | 33,583 | 33,612 | 33,549
2x107* 33,802 | 33,674 | 33,541 | 33,667 | 33,665 | 33,510

Table 5.14: Neural Network vs. Random on a 6 x 6 board with 100 hidden nodes, win rate for 100,000 games.

These results show a slight improvement over the previously best win rate on a 6 x 6 board by the Neural
Network but was able to learn to play at this level in only a fraction of the games it took before. This was at the
cost of playing less games per second but still resulted in less time spend training. We still see that the network
dies often. Using this result we tried different numbers of hidden nodes with 2 x 1077 as the learning rate and
1000.0 as the target; we used 50, 200, 300 and 400 hidden nodes and let them play for 5,000,000 games which
resulted in win rates of ~ 78%, ~ 89%, ~ 33% and ~ 83% respectively. Increasing the number of hidden nodes
beyond this would slow down the network by a very large amount taking more than a minute to play 10,000
games, it should already be noted that playing 5,000,000 games with 200 hidden nodes took less than 4 hours,
while having 400 hidden nodes took around 12 hours. Some weird behavior was observed for 50 and 400
hidden nodes where the win rate would fluctuate downwards at times and then recover towards the better

win rate; this behaviour did stop after enough games were played and the win rate slowly increased over time.

5.3.1 Temporal Rate

The results so far show that learning CLOBBER using a Neural Network on smaller boards results in very high

win rates but on 6 x 6 boards only results in a win rate of ~ 89% against a random opponent after 5,000,000

19

games played. Since for this experiment we will only train for 1,000,000 games it should be noted that the
network that achieved ~ 89% win rate only had a ~ 77% win rate after 1,000,000 games played. The win rate
on a 6 x 6 board could be improved by weighing moves later in the game as more important; this would result
in slightly more random play for the first few moves of the game but would result in the network winning
more games overall. We do need to be careful about raising the learning rate too high, otherwise the network
could die very fast. We will use values that were shown before to already provide good results. The results are

shown in Table 5.15.

Parameters Temporal Rate | Neural Network wins
0.1 P
hidden nodes: 100 33,154
0.01 ,
target: 200.0 33477
0.001 6588
Learning Rate: 2 x 107° 5,004
0.0001 71,005
0.1 66,20
hidden nodes: 100 4
0.01 81
target: 1000.0 32,011
0.001 60,
Learning Rate: 2 x 107 9,374
0.0001 63,321
0.1 o
hidden nodes: 200 33,505
0.01 746
target: 1000.0 33,74
0.001 46
Learning Rate: 2 x 1077 75,464
0.0001 72,779
0.1 62,60
hidden nodes: 200 9
0.01 63,
target: 1000.0 3,209
0.001 6 ,26
Learning Rate: 2 x 108 4,263
0.0001 66,771

Table 5.15: Neural Network vs Random using different Temporal Learning rates, win rate for 100,000 games on a 6 X 6
board.

Comparing these values to the win rate that was obtained without using a temporal factor we see that using a

temporal factor lowers the win rate the network is able to achieve at the cost of being slightly slower to train.

5.3.2 Leaky ReLU

The dying ReLU problem is a problem that can be seen in the results so far in many cases. We tried to combat
this by lowering the learning rate and changing the target. Another approach to combat this problem is
changing the activation function to Leaky ReLU. we start with 4 x 5 and 6 x 6 boards with 100 hidden nodes

and one hidden layer. The results are shown in Table 5.16.

20

Target |10 | 100 | 500 | 1000 | 1500 | 2000 | 5000 | 1000.0
Learning rate
2x107° 56,171 | 58,413 | 60,585 | 64,290 | 64,518 | 64,176 | 64,339 | 70,395
2x10°8 56,789 | 61,928 | 70,331 | 66,931 | 70,245 | 67,858 | 73,635 | 76,002
2x1077 59,084 | 63,246 | 76,351 | 74,063 | 74,953 | 75798 | 70,311 | 71,778
2x107° 59,484 | 64,448 | 71,668 | 74,620 | 81,820 | 74,090 | 72,565 | 76,593
2x107° 61,049 | 71,433 | 70,383 | 74,374 | 75056 | 79,461 | 70,749 | 55,308
2x10°* 62,476 | 73,569 | 64,703 | 55291 | 55,328 | 55590 | 55,246 | 55,225

Table 5.16: Neural Network vs. Random on a 6 x 6 board with 100 hidden nodes, using Leaky ReLU, win rate for 100,000

games.

The first thing that should be noted is that using Leaky ReLU takes slightly longer when compared to using

ReLU, in the order of magnitude of 3%. The results shown are actually the best we have been able to achieve

so far on a 6 x 6 board, none of the parameters resulted in the network dying. We got the best win rate yet

after 1,000, 000 games played on a 6 x 6 board of ~ 82%.

5.3.3 Neural Network vs. Monte Carlo

Training the Neural Network against the Monte Carlo player would take an incredibly long time, so instead

we will be training against a random player for 1,000,000 games with parameters that were shown to be very

good against the random player. After this training phase we will stop training and let the resulting Neural

Network play against the Monte Carlo player with different number of playouts.

Parameters Number of playouts | Neural Network wins
hidden nodes: 100 5 502
target: 150.0 10 543
Learning Rate: 2 x 107° 20 560
Leaky ReLU 50 509
hidden nodes: 100 5 556
target: 1000.0 10 498
Learning Rate: 2 x 10~ 20 543
Leaky ReLU 50 509
hidden nodes: 200 5 528
target: 1000.0 10 599
Learning Rate: 2 x 107 20 509
ReLU 50 537

Table 5.17: Neural Network vs Monte Carlo on 6 x 6 board size, win rate for 1,000 games.

21

We see in Table 5.17 that our Neural Network has an edge over Monte Carlo after training for only 1,000,000
games of playing against Random. We should note that our Neural Network plays much faster than the Monte

Carlo player. The number of play outs that the Monte Carlo player does did not seem to matter too much

against the Neural Network.

22

Chapter 6

Conclusions

We have shown that a Neural Network based approach for playing CLOBBER was able to beat a Monte Carlo
player slightly more than 50% of the time on 6 x 6 boards, and was able to win most games against a Random
player. We observed that increasing the number of hidden layers resulted in the Neural Network dying much
more often while increasing the number of hidden nodes and having only one hidden layer did not cause the

Neural Network to die much more often.

Using Temporal Rate learning with Rectified Linear Units did not result in a better win rate for the network
on 6 x 6 boards, but did cause the network to die in some cases because of the higher learning rate. A much
more successful variant was changing the activation function from ReLU to Leaky ReLU, which prevented the
network from dying and gave us better results against both Random and comparable results against Monte

Carlo.

6.1 Future Research

There is still quite some work for future researchers to do. CLOBBER has not seen a great amount of research
yet. The Neural Network for example can always be improved by using more advanced techniques to make it
learn better, as well as scaling the Neural Network up. The Neural Network could also be trained against the

decision making of expert human players (if they exist) like was done for Go.

From the last results we can see that Leaky ReLU was a good improvement over ReLU but we only looked at
the problem with a very narrow scope. This should be expanded to include different parameters like different
numbers of hidden nodes with multiple hidden layers, and could also be combined with a temporal learning

rate on larger boards.

Finding the correct parameters was one of the hardest parts of this research especially when the board size

was increased. This could be solved by using natural computing techniques to find and optimize the different

23

parameters of the Neural Network. This could also allow the Neural Network to play at a high level on even

larger boards.

Another approach would be to use the AlphaZero algorithm, which is a general reinforcement learning

algorithm and was used to achieve superhuman play in chess, shogi and Go after only 24 hours of learning,
see [SHST 17].

Altogether, there is still much research that can be done related to CLoBBER and Neural Networks.

24

Bibliography

[AGNWos] Michael Albert, J.P. Grossman, Richard Nowakowski, and David Wolfe. An introduction to

[Alt17]

[BPW T 12]

[DDFoz2]

[Dic18]

[Eto17]

[Gri17y]

[GU16]

[JKRLo9]

[Kar18]

[MHN13]

Clobber. Integers, 5, 2005.

I. Althofer. Computer olympiad 2011 — Clobber. http://www.althofer.de/clobber/clobber-2011-pan-

10x10.jpg, [accessed 18/12/2017].

Cameron Browne, Edward Powley, Daniel Whitehouse, Simon Lucas, Peter Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez Liebana, Spyridon Samothrakis, and Simon Colton. A
survey of Monte Carlo Tree Search methods. IEEE Transactions on Computational Intelligence and Al

in Games, 4:1:1—43, 03 2012.

Erik D. Demaine, Martin L. Demaine, and Rudolf Fleischer. Solitaire Clobber. CoRR,

¢s.DM /0204017, 2002.

Dicksonlaws83. Mcts (english) - updated 2017-11-19 - monte carlo tree search - wikipedia.

https://en.wikipedia.org/wiki/Monte_Carlo_tree_search, [accessed 30/01/2018].
Teddy Etoeharnowo. Neural Networks for Clobber. Bachelor thesis, Leiden University, 2017.

R. Grimbergen. Reijer grimbergen’s research pages. https://www2.teu.ac.jp/gamelab/RESEARCH-
/ResearchPix/clobber.png, [accessed 19/12/2017].

Janis Griebel and Jos Uiterwijk. Combining Combinatorial Game Theory with an «-f solver for

Clobber. 2016.

K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best multi-stage architecture
for object recognition? In Proceedings of the 2009 IEEE 12th International Conference on Computer

Vision, pages 2146-2153, 2009.

Andrej Karpathy. Cs231n convolutional Neural Networks for Visual Recognition.

http://cs231n.github.io/neural-networks-1/#actfun, [accessed 21/01/2018].

Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities improve Neural
Network acoustic models. In Proceedings of the 30th International Conference on Machine Learning,

volume 30, 2013.

25

[Mor17]

[NE10]

[SB18]

[Sha18]

[SHS"17]

[Sie13]

[SSST17]

T. Morris. Next price predictor using Neural Network indicator for MetaTrader 4.
https:/fwww.forexmtgindicators.com/wp-content/uploads/2014/10/NN1__1.gif, [accessed 19/12/2017].

Hinton Nair, Vinod and Geoffrey E. Rectified linear units improve restricted Boltzmann machines.
In Proceedings of the 27th International Conference on International Conference on Machine Learning,

ICML'10, pages 807-814, 2010.
Richard Sutton and Andrew Barto. Reinforcement learning: An introduction. The MIT Press, 2018.

Sagar Sharma. Activation functions: Neural Networks — towards data science. https://cdn-images-

1.medium.com/max/1600/1*A_BznoCjUgOXtPCJKnKLgA.jpeg, [accessed 30/01/2018].

David Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,
D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis. Mastering chess and shogi by

self-play with a general reinforcement learning algorithm. ArXiv e-prints 1712.01815, 2017.
A.N. Siegel. Combinatorial game theory. AMS, 2013.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan
Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering the

game of Go without human knowledge. Nature, 550:page 354, 2017.

26

