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Abstract

In this paper we introduce Protein structure prediction by Iterative fragmenT Assembly (PITA),
a protein structure predictor using a dihedral angle database to iteratively build the 3D structure of
the protein. Two methods of construction have been proposed: Iterative fragment assembly favouring
conformations with the most probable dihedral angles and Iterative fragment assembly with energy
calculation, favouring conformations with the lowest energy. Using steric hindrance and Minimal
Bounding Sphere (MBS) pruning, both search techniques are capable of predicting conformationally
correct structures. Using the scoring function Local Global Alignment (LGA) and a scoring function
based on the secondary structure (CSS), predictions up to LGA = 0.937939 and CSS = 80.4% are
reported, comparable to state of the art protein structure predictions, showing promising results for
PITA. Finally, a novel Energy Adaptation Function (EAF) is introduced to overcome the many local
minima of the energy landscape, resulting in a significantly higher probability that PITA will predict
a fully built protein (100% for our test set).

1 Introduction

In 1972, Christian B. Anfinsen denaturated Bovine nuclease A, a 124 residue protein, by adding
urea to the solution. When removing the denaturant, the protein was again fully functional, showing
some proteins are able to successfully refold to their minimal energy state without Chaperones, since
these proteins were not present in the solution[1]. Although the physics of proteins seams fairly
straight forward in this experiment, protein structure prediction is still one of the mayor challenges in
Bioinformatics today. The prime objective of protein structure prediction is predicting a proteins three
dimensional structure from its amino acid sequence and has been called the holy grail of molecular
biology and is considered equivalent to deciphering the second half of the genetic code[2]. In medicine,
protein structure prediction can become vital for diseases linked to different folds of the protein
and their origin, where an different fold is a consequence of an alteration in the gene. Diseases
such as Creutzfeldt-Jakob’s, Alzheimer’s, Huntington’s and Parkinson’s [3][4] are all connected to
the malformations of proteins. In structure-based drug design, protein structure prediction can be
used to predict binding affinities of different substrates on the binding site of compounds. In this
way, the search for promising drugs can be narrowed down to the more promising compounds[5].
Over the last 5 decades, particularly since the human genome project, the field of protein structure
prediction has received enormous interest among molecular biologists and computational scientists.
This is because of the potential impact on many areas, since the three dimensional structure is essential
to understanding the function of a protein and the interaction with other proteins. Furthermore, since
a great amount of data that is retrieved from 3rd generation DNA sequencing platforms and the cost
of high-resolution NMR and very high resolution X-ray in both time and money, a need for protein
structure prediction rises. Many prediction techniques have been suggested based on Hidden Markov
Models (HHPRED[6]), Monte Carlo (Rosetta [7][8], SimFold[9]) and Molecular Dynamics (NAMD[10],
ASTROFOLD[11], GROMACS[12][13]) and will be covered in Section 4.

2 Some Basic Concepts

2.1 Protein Biosynthesis

All the information to create and maintain a cell is stored in DNA, two biopolymers coiled around each
other to form a double helix. This double helix consist only of 4 simpler units called the nucleotides:
Adenine, Cytosine, Thymine, Guanine, denoted by A, C, T and G, respectively. In the DNA, both
strands are aligned and for every nucleotide in one strand there is an aligned counter nucleotide in the
other bound through hydrogen bonding, creating base pairs: A will bind with T and C with G, as can
be seen in Figure 1. With this, two structures are created, mimicking two sentences consisting of only
four letters, one read from right to left and the other sentence in reverse. In these sentences all the
information is stored for the cell to survive and procreate. The creation of proteins in a living cell is
known as the process of Protein Biosynthesis. It consist of two parts: Transcription and Translation.

2.1.1 Transcription

The nucleotides in DNA roughly encode two things: Genes and binding sites. A gene is a sequence of
consecutive nucleotides in the DNA which carries the information for one (domain of the) protein. In
the human DNA, only 2% is coding DNA, e.g. DNA encoding proteins. The remaining 98% is thought
to be junk-DNA (non-coding), but it has been known for decades that many non-coding sequences
are functional. The process of copying the information stored in the gene to the intermediary product
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Figure 1: Abstraction of DNA: two strands consisting of nucleotides which are bonded covalently and
creating base pairs, bonded through hydrogen bonds.

Figure 2: The process of transcription, depicting the creation of mRNA from RNA nucleotides, using the
DNA strain as template. Copyright c©Pearson Education, Inc., publishing as Benjamin Cummings.

mRNA (messenger RNA) is called transcription. Binding sites around the gene are used to attach
the copying machinery to the DNA strand: RNA polymerase. The site where the RNA polymerase
binds to the gene is known as the promotor. The gene consists of the coding strand, the strand
having the information for the protein, and the template strand, its complementary strand. The
promotor is next to the template strand. Starting from there, it moves over the template strand,
making a complementary strand: a copy of the coding strand, the mRNA. The mRNA is identical to
the coding strand, except T is substituted for U (Uracil). The process is shown in Figure 2.

2.1.2 Translation

The second step of the protein biosynthesis is translation. In this process, the intermediary biopolymer
mRNA, will be used to create the actual protein. In this process a sequence of 4 different letters (A,
C, T, G), is changed to a sequence with 20 different letters. Living cells have solved this using the
genetic code. This set of rules translates the mRNA directly and deterministically into proteins: every
nucleotide triplets in the mRNA, called a codon, specifies one amino acid, as shown in Figure 3. For
a string of 3n mRNA letters, a string of n codons can be made, and thus a protein of n amino acids.
Using this machinery, shown in Figure 4, all proteins in all living (prokaryotic) cells are made.

2.2 Amino Acids

Proteins, as is stated above, are linear chains of its building blocks, called amino acids, that adopt
a unique 3D structure in their native surroundings. A proteins structure is split into four different
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Figure 3: The genetic code, showing all possible codons and their matching amino acid. AUG is the
starting codon (in green) and UAA, AUG and UGA are stop codons (in red).

Figure 4: The translation process incorporates the 20 standard amino acids, depicted by their 3-letter-
notation, in the precise sequence, dictated by the three-base codons of the mRNA. The tRNA aligns with
mRNA using its anti codon. The ribosome has three sites; the A-site, P-site and E-site. The A-site, being
the acceptor site, is where the new tRNA is positioned. The P-site is occupied by peptidyl-tRNA, i.e.
the tRNA carrying the growing peptide chain. The E-site is the site were the empty tRNA leaves the
ribosome.
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Figure 5: General overview of an amino acid.

levels of structure. Since the building blocks are connected sequentially, the first level, the primary
structure, is the sequence of amino acids of a protein. In Figure 5, the structure of an amino acid
is given, showing at the left side the amino group (H2N), the carboxyl group at the right (COOH)
and the side chain R. The primary structure of the protein is the amino acid sequence. The primary
structure of a protein is defined by the 1-dimensional sequence S:

S = r1 · · · rN , ri ∈ R,R = {A,C,D, . . . , X} where 1 ≤ i ≤ N (1)

where R is the set of all the residues, depicted by their one-letter-notation, ri is a residue at position i
of the sequence and N is the length of the sequence. All the amino acids in the protein are connected
through a peptide bond: the C−N bond between two neighbouring amino acids. This peptide bond
is the result of an amino group reacting with an acidic group. The reaction between two amino acids,
is shown in Figure 6. Starting only with two amino acids, a dipeptide is created. The dipeptide can
react with another amino acid to form a tripeptide and so on. The result is a polypeptide consisting
of a main chain of repetitive NCC fragment, called the backbone and the R-groups connected to this
backbone, one for each amino acid. There are 23 proteinogenic amino acids. Of the 23, selenocysteine
and pyrrolysine are incorporated into proteins post-translationaly, and N-formylmethionine is often
the initial amino acid of proteins in bacteria, mitochondria, and chloroplasts, but is often removed
post-translationally. This leaves us with 20 standard amino acids, all with a unique side chain. These
residues can be split into three different groups: charged residues, polar residues and hydrophobic
residues, shown in Table 3. The column Chemical structure shows, for every amino acid, the amino
group, the carboxyl group and its side chain.

Charged residues contain an electron donor or acceptor and the charge of their side chain can
change at different pH levels, by donating or accepting a hydrogen atom (H+) on the side chain.
Polar residues are able to make hydrogen bonds, because of the electronegativity in its structure.
Electronegativity is the ability of an atom to attract electrons to itself and is effected by the number
of protons in the core of the atom and the distance from the outer electron to the nucleus. Since oxygen
has a higher electronegativity than, for example, hydrogen, the oxygen atom attracts more electrons
than the hydrogen atom and the electron cloud is then slightly moved towards the oxygen atom. This
creates a net negative charge on the oxygen atom and a net positive charge on the hydrogen atom.
The order of electronegativity for atoms in proteins is the following:

O > N > S > C > H (2)

where oxygen has an electronegativity of 3.44 and hydrogen 2.20, both on the Pauling scale, a relative
scale running from 0.7 (Francium) to 3.98 (Fluor).

The latter group, hydrophobic residues, do not have a charge in their side chain and are not able
to make hydrogen bonds. The forces that act on these side chains are van der Waals forces. Charged
and polar residues also interact through van der Waals forces. In Table 1, the different intermolecular
forces are shown. Ionic lattices, such as salts (NaCl, MgO2, Al2O3), have the most energy stored
in their bonds. For covalent bonds, such as C−H and C−C, the energy in the bond is about 100
kcal/mol. Hydrogen bonds, one of the driving forces in protein stability, is third in Table 1 and the
least strongest bond is the van der Waals bond, with less than (or equal to) 0.2 kcal/mol.

2.3 Zwitter ion

In nature, only a small part of all the reactions are a one way step. Consider the dissociation of
acetic acid into acetate and hydronium: CH3COOH + H2O −−⇀↽−− H2NCH2COO− + H3O+. This nota-
tion depicts that the chemical processes occur in both directions, however, with their own (possible
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Table 1: The different intermolecular forces and their approximated values. For example table salt (NaCl)
has a ionic lattice energy of 787 kJ/mol. The most common bond in protein, C−N, has an energy of 305
kJ/mol. All values depend on the participating atoms and context of those atoms within the molecule.

Force Energy range (kcal/mol)
Ionic Lattice 500− 15000
Covalent Bond 35− 500
Hydrogen Bonds (dipole-dipole) 1.9− 6.9
Van der Waals forces ≤ 0.2

Figure 6: The formation of a peptide bond, starting with two amino acids. The free electrons of the
amino group react with the carbon of the carboxylic acid, since it’s negatively charged, because of the two
electronegative oxygen atoms that pull away the electrons from the carbon atom. A hydroxide ion OH−

is separated because the double bonded oxygen binds more strongly to the carbon atom. The hydroxide
ion then takes the proton bonded to the nitrogen, resulting in a dipeptide and 1 water molecule (not
displayed).

different) speed. At equilibrium, both the reactions happen with the same speed and the acid disso-
ciation constant, pKa, can be measured: the equilibrium constant for a chemical reaction known as
dissociation in the context of acid-base reactions and is written as:

pKa = logKa = log
[A−][H+]

[AH]
(3)

where [A−] is the concentration of the base in M (molair = mol/litre), [H+] is the concentration of
the hydrogen ions in M and [AH] is the concentration of the acid in M. Functional groups also have
a pKa value, showing the dissociations of protons at certain positions in a molecule. If we look at
Alanine, two functional groups are able to donate or accept an H+: amino group (NH2) and carboxyl
group (COOH). For the NH2 the pKA is 9.9. Using the HendersonHasselbalch equation

pH = pKa + log
[A−]

[AH]
, (4)

we can see that at pH = 9.9, the concentration of both the acid and base are the same, since
log X

X
= 0, thus we can conclude that for pH values lower than 9.9 the majority of the amino groups

in the molecule is present as NH2. For the carboxyl group, the pKa in alanine is 2.3. With the
same reasoning we can conclude that the majority of the carboxyl groups in the molecules will be
protonated at pH < 2.3. In the regime between the two pKa values, one can see that the amino-
group will most likely be protonated and carboxyl group will most likely be deprotonated, creating a
zwitterion, where the head and tail of a (poly)peptide are charged, but the net charge is 0, as shown
in Figure 7. Zwitterions are present in aqueous solution but sometimes also in solid state. In the cell,
an aqueous solution, proteins form a zwitterion. For the protein, only the first and last residue need
to be in the charged state.

Figure 7: Three different configurations of alanine, showing the zwitterion in the middle.
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Figure 8: Abstractions of an alpha helix. (A) shows the ribbon diagram of the helix, (B) shows the
hydrogen bonds between the carboxylic oxygen and the hydrogen on the nitrogen. The top view can be
seen in (C).

Figure 9: Abstractions of an beta sheet showing an anti-parallel beta sheet in (a) and a parallel beta
sheet in (b) with the dotted lines depicting the hydrogen bonds.

2.4 Secondary structure

The next level of structure is the secondary structure. Amino acids that are close together in the
sequence can interact with each other to form local structures. This secondary structures are ther-
modynamically very stable and are primarily formed due to hydrogen bonding (electrostatic forces),
but also the weaker van der Waals forces. Two structures mainly occur: the alpha helix and beta
sheet. The alpha helix is a helical structure where the oxygen of the the nth residue forms a hydrogen
bond with the hydrogen of the n + Xth residue, where X can be 3, 4, or 5, as shown in Figure 8.
Notice that this is a very stable structure for the number of hydrogen bonds is large compared to
other structures. The beta sheet is a structure where ’sheets’ of residues are positioned next to each
other, either parallel of anti-parallel, as shown in Figure 9. Again, the number of hydrogen bonds is
high, with two hydrogen bonds per residue, creating a stable molecule.

2.4.1 DSSP

Following the DSSP[14] program (Determine Secondary Structure Program) 8 different secondary
structures can been identified:

• 3-Turn helix (G)

• 4-Turn helix (H)

• 5-Turn helix (I)

• Hydrogen bonded turn (T)

• Extended strand in parallel and/or anti-parallel β-sheet conformation (E)

• Residue in isolated β-bridge (single pair β-sheet hydrogen bond formation) (B)

• Bend (the only non-hydrogen-bond based assignment) (S)

• Coil (residues which are not in any of the above conformations) (C)

These eight types are usually grouped into three larger classes: helix (G, H and I), strand (E and B)
and coil (all others). The DSSP program calculates the most likely secondary structure assignment,

9



Figure 10: The structure of the Cowpea mosaic virus (CPMV) capsid. CPMV capsid (a) and the asym-
metric unit (b). The capsid of CPMV is comprised of the small (S) and large (L) subunit. The A domain
is shown in blue, the B domain in green and the C domain in orange.[16]

given the 3D structure of a protein. This is done by reading the position of the atoms in a protein
(the ATOM records in a PDB-file) followed by calculation of the H-bond energy between all atoms.
The algorithm will discard any hydrogen atoms present in the input structure and calculates the
optimal hydrogen positions by placing them at 1.000 Å from the backbone nitrogen in the opposite
direction from the backbone C=O bond. Subsequently, the strength of all possible hydrogen bonds
are determined, by calculating the electro-statical forces for every possible hydrogen bond: ON, CH,
OH and CN. By placing a charge on all the C=O pairs (+q1 on C, −q1 on O) and NH pairs (−q2
on N, +q2 on H) the electro-statical force can be calculated using Coulomb’s law for biochemical
units[14]:

E(r) =
q1q2
r
· f (5)

E = q1q2

(
1

ON
+

1

CH
− 1

OH
− 1

CN

)
· f (6)

= 0.084

(
1

ON
+

1

CH
− 1

OH
− 1

CN

)
· 332 (7)

where q1 = 0.42, q2 = 0.2, f is the dimensional factor and E is in kcal/mol. The best two hydrogen
bonds for each atom are then used to determine the most likely class of secondary structure for each
residue in the protein.

2.5 Tertiary & Quaternary Structure

The tertiary structure is the folding of the total chain by combining the structures of the secondary
structure linked by turns and loops. The secondary structures are kept in place by the hydrogen
bonding and van der Waals force as well as covalent bonding caused by disulphide bonds. These
disulphide bonds are due to the fact that two cysteine residues that are close together in the tertiary
structure are able to interact with one another. The side group of cysteine, CH2SH, interacts with
the nearby cysteine removing the two protons. The result are two connected residues through the
two sulphur atoms: B−CH2S−SCH2−B, where B is the backbone of the protein. The result is a fully
folded structure of amino acids that are connected to each other through covalent bonding. Such a
protein sub-unit can be part of a multi sub-unit complex, where multiple domains sub-units are put
together to form the quaternary structure, the organisation of sub-units into a complex. For example
the oligomeric complex consist of a multiple of the same sub-unit and oligomeric complex consisting
of 4 parts is called a tetramer. But also differing sub-units will coexist in these complexes, for example
the well studied ribosome, which consist of the 21 sub-units [15]. A capsid layer, a membrane layer
around a virus, is also complex quaternary structure, where a few monomers are docked together, to
form an entire wall, to protect the virus, as can be seen in Figure 10.

2.6 PDB

The Protein Data Bank (PDB) is a repository for the experimentally-determined three-dimensional
structural data of large biological molecules, such as proteins, nucleic acids, and complex assemblies
with 103199 structures as of 12 September 2014. Since PDB is a member of the wwPDB, the RCSB
PDB curates and annotates PDB data according to agreed upon standards, resulting in high quality
information. The database, which is filled by biologists and biochemists from all over the world, typ-
ically contains X-ray crystallography and NMR spectroscopy data. Although NMR has the ability
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to detect all the atoms, instead of only non-hydrogen by X-ray, and NMR can include spatial con-
straints, X-ray is often the method of choice for its high resolution and thus better accuracy of the
coordinates of individual atoms. PDB supports 3 different formats: PDB, mmCIF and XML. Every
structure, identified by 4 alphanumerical characters, is stored in these three formats. As a standard
in the field of bioinformatics, 1-dimensional sequences are stored in the fasta-format.

2.6.1 PDB-format

The PDB-format is a textual format storing the information of a biological molecule and has been the
standard file format for the PDB since its establishment in 1973. Being a very human readable format,
it consist of lines of 80 characters. Every line starts with a key word and the following characters until
the 80th are fixed where a regular expression can be used ideally to fetch different fields. However, a
good C++ parser for PDB is not known. The PDB file format will be phased out in 2016.

2.6.2 mmCIF-format

The PDB also uses the macromolecular Crystallographic Information File (mmCIF) format to de-
scribe the information content of PDB entries. mmCIF is a flexible and extensible tag-value format
for representing biomolecules. The set of mmCIF tags, which determine the classes of information
present in a given mmCIF format file, are defined in an mmCIF dictionary. The dictionary consolidates
content from a variety of crystallographic dictionaries including: the IUCr Core, mmCIF, Image and
symmetry dictionaries. Since the information is described by the dictionary, a very structured dataset
arises. CIFPARSE-OBJ C++ Parser is a C++ based parser, able to read any mmCIF-formatted file.
PDBx/mmCIF has become the standard PDB archive format from 2014.

2.6.3 Fasta-format

The fasta-format is de standard format for representing nucleotide (DNA/RNA) and peptide se-
quences (proteins). It is a text-based format and has the following format:

;The fasta format encodes three different things

;Every line starting with a semicolon is a comment

>The sequence identifier

THE-ACTUAL-SEQUENCE

;Multiple sequences can be placed within a fasta file

;Both RNA and DNA, using the 1-letter-notation for both

>AB000263 |acc=AB000263|descr=Homo sapiens mRNA for prepro cortistatin like peptide, complete cds.|len=368

ACAAGATGCCATTGTCCCCCGGCCTCCTGCTGCTGCTGCTCTCCGGGGCCACGGCCACCGCTGCCCTGCC

CCTGGAGGGTGGCCCCACCGGCCGAGACAGCGAGCATATGCAGGAAGCGGCAGGAATAAGGAAAAGCAGC

CTCCTGACTTTCCTCGCTTGGTGGTTTGAGTGGACCTCCCAGGCCAGTGCCGGGCCCCTCATAGGAGAGG

AAGCTCGGGAGGTGGCCAGGCGGCAGGAAGGCGCACCCCCCCAGCAATCCGCGCGCCGGGACAGAATGCC

CTGCAGGAACTTCTTCTGGAAGACCTTCTCCTCCTGCAAATAAAACCTCACCCATGAATGCTCACGCAAG

TTTAATTACAGACCTGAA

>DROME_HH_Q02936

MRHIAHTQRCLSRLTSLVALLLIVLPMVFSPAHSCGPGRGLGRHRARNLY

PLVLKQTIPNLSEYTNSASGPLEGVIRRDSPKFKDLVPNYNRDILFRDEE

GTGADRLMSKRCKEKLNVLAYSVMNEWPGIRLLVTESWDEDYHHGQESLH

YEGRAVTIATSDRDQSKYGMLARLAVEAGFDWVSYVSRRHIYCSVKSDSS

ISSHVHGCFTPESTALLESGVRKPLGELSIGDRVLSMTANGQAVYSEVIL

FMDRNLEQMQNFVQLHTDGGAVLTVTPAHLVSVWQPESQKLTFVFADRIE

EKNQVLVRDVETGELRPQRVVKVGSVRSKGVVAPLTREGTIVVNSVAASC

YAVINSQSLAHWGLAPMRLLSTLEAWLPAKEQLHSSPKVVSSAQQQNGIH

WYANALYKVKDYVLPQSWRHD

In the above fasta-file, three sequences are stored: ’The sequence identifier’, ’AB000263’, an mRNA
sequence from the species Homo sapiens and ’DROME HH Q02936’, a protein sequence of Protein
hedgehog of the species Drosophila melanogaster, also known as the fruit fly.

2.7 Dihedral Angles

There are multiple ways to describe the structure of a protein and with this, the location of all the
atoms in the protein. An easy way is to use the X, Y and Z coordinates of all the atoms. With this
method no constraints are implicitly enforced, since it’s a general one. A more specific method is
the description through dihedral angles, also torsion angles. With dihedral angles, the structure of a
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Figure 11: The dihedral angle, the angle φ between plane Pb1b2 defined by vectors b1 and b2 and the plane
Pb2b3 defined by vectors b2 and b3. A) shows the front of the 4 atoms, B) shows the same situation, but
from the side.

molecule can be defined between three successive chemical (covalent) bond vectors, shown in Figure
11. If we look at Figure 11A, we have three covalent bonds: b1, b2 and b3. Now, take planes P1 = Pb1b2
and P2 = Pb2b3 . The dihedral angle φ for b1, b2 and b3 is the angle between P1 and P2, showing the
range of the dihedral angle is −180◦ ≤ φ ≤ 180◦, where φ = −180◦ ⇐⇒ φ = 180◦. The backbone of
a protein consist of three different torsion angles: Cn−1−Nn−Cn

α−Cn called φ, Nn−Cn
α−Cn−Nn+1

called ψ and Cn
α−Cn−Nn+1−Cn+1

α called ω, where n is the position of the residue in the primary
sequence. Since the PDB-format only gives us coordinates, the following scheme is used to calculate
the torsion angle: Let b1 be the vector from Cn−1 to Nn, b2 the vector from Nn to Cn

α and b3 the
vector from Cn

α to Cn. Torsion angle φ can be calculated using Equation 8.

φ = atan2

(
(b1 × b2)× (b2 × b3) · b2|b2|

, (b1 × b2) · (b2 × b3)

)
(8)

atan2(y, x) =



arctan y
x

x > 0

arctan y
x

+ π y ≥ 0, x < 0

arctan y
x
− π y < 0, x < 0

+π
2

y > 0, x = 0

−π
2

y < 0, x = 0

undefined y = 0, x = 0

(9)

The covalent bond between C and N is able to become a double bond leaving the carboxyl oxygen
single bonded, as shown in Figure 14. With a single covalent C−N bond, typically the torsion is freely
rotatable and all torsion angles are possible. With a double bond, all atoms are forced into one plane,
making the torsion angle practically 180◦, which is also the case for the ω torsion angle. Because of
this double bond potential, the ω-bond will most likely be in a superstate between the two states,
which forces the atoms, to a certain degree, into a plain, resulting in torsion angles around the 180◦.

2.7.1 Conservation of dihedral angles

Apart from a good representation, dihedral angles carry extra information. This can be shown in
two ways. The first is the Ramachandran plot, which is a visualization of the dihedral angles of the
backbone in proteins. The 2-dimensional plot shows the φ-ψ pair of the amino acid residues, shown
in Figure 12. It can be seen that the allowed values are condensed, showing allowed regions of φ-ψ
pairs. Note that dihedral angle values are circular and 180◦ is the same as −180◦, the edges of the
Ramachandran plot wrap right-to-left and bottom-to-top. The second way dihedral angles contain
extra information is the conservation of dihedral angles in polypeptide fragments. Shown in Figure
13, The possible dihedral angle values for 4 fragments are displayed. For the fragment ALA, possible
value range from −180◦ to +180◦. However, the probability that a φ−angle is in the range from −70◦

to −30◦ is more probable than from 20◦ to 120◦, showing a tendency for fragments with the length
of 1. For bigger fragments, not all possible values are registered and the tendency towards certain
values is bigger. For all the fragments with pattern THR-GLY-ALA-ASP-ASP, 74, 1% of the φ angles is
within the range 120◦ − 130◦. PITA implements this by favouring dihedral angles of fragments with
larger neighbourhoods over smaller ones.

2.8 Energy Calculation

In nature, all molecules have an internal energy. Although this energy cannot be measured directly,
there are techniques to estimate these values by energy functions. All energy functions consider
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Figure 12: (a)Ramachandran map showing sterically favoured regions for L-alanine. The regions corre-
sponding to the important secondary structures are marked αR (right-handed α-helix), φL (left-handed
α-helix), 310 (310-helix), two upward arrows (parallel β-sheet), left up, right down arrows (anti-parallel
β-sheet), P(polyproline II), C(collagen triple helix). (b) Scatter plot of 104718 non-Gly residues in protein
crystal structures (less than or equal to 2.0Å) showing the distribution of the backbone dihedral angles
φ and ψ[17]. The group of data points around φ = 50 and ψ = 120 represents the nucleophilic elbow.

Figure 13: Possible phi (φ) and psi(ψ) dihedral angles for 4 different fragment sizes, with sizes 1, 3, 5 and
7, sorted, from a data set of 104 different structures. The phi and psi curves are not correlated and all
data points are sorted for their own set. For example, about 60% of the 46018 psi angles of ALA fragments
are between −80◦ and approximately −40◦. Of the 46018 phi angles of ALA fragments are between −80◦

and −30◦.
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Figure 14: The double bond characteristic of the ω torsion angle, showing the normal state at the left,
its charged state at the right and the transition state at the bottom. Since both (left and right) states
occur, the transition state can be seen as the average state the bond.

a molecule as a collection of particles, held together by some sort of elastic forces. Many energy
functions are based on (part of) the following principle[10][12].

ETotal = Ebond + Eangle + Edihedral + EvdW + ECoulomb. (10)

The total energy, ETotal, is a summation of 5 different energies:

• Ebond, is the term which represents the energy stored in the covalent bond. It is often compared
as spring. The energy stored in this bond is estimated by:

Ebond =
∑

bond i

kbondi (ri − r0i)2,

where kbondi is the bond energy, ri the distance between the two atoms and r0i the ideal distance
between the two atoms.

• Eangle, is the energy caused by bending of the angles between each pair of covalent bonds sharing
a single atom at the vertex. The modelling of the energy for this term is similar to the covalent
bond energy:

Eangle =
∑

angle i

kanglei (θi − θ0i)2, (11)

where kanglei is the angle energy, ri the angle between the two covalent bonds and r0i the average
angle for those covalent bonds.

• Edihedral, can be split into two parts: Proper energy and Improper energy. The proper energy
is the energy from the torsion angle. It describes the force created by atom pairs separated by
exactly three covalent bonds with the central bond, subject to the torsion angle φ, shown in
Figure 15C. Energy from the out-of-plane bending is modelled by the improper angle. The angle
is defined for the four atoms a, b, c, d, for which the central atom a is bonded to b, c, d, as the
angle between the planes Pabc and Pbcd, shown in 15. The dihedral energy is formulated as:

Edihedral =
∑

dihedral i

∑
ni

{
kpropi [1 + cos(nφ− φ0))] ni 6= 0

kimpr
i (αi − α0)2 ni = 0

(12)

where n is the periodicity of the rotational barrier and kpropi is the associated barrier height.
kimpr
i determines the ”stiffness” of the potential in, αi is the angle the two planes as is shown

in Figure 15D and α0 is the equilibrium value.

• EvdW is the energy as a result of the van der Waals force. This force is a sum of the attrac-
tive and repulsive force between molecules and internal atoms other then covalently bonded
atoms, electrostatic interactions and ionic bonds. This force is estimated by the Lennard-Jones
potential:

EvdW =
∑
i

∑
j

4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]

1 ≤ i < j ≤ N, (13)
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Figure 15: Representation of 4 of the 5 forces used for energy estimation. A depicts the covalent bond,
represented as a stretching string. B shows the energy stored in the angles between covalent bonds. C
shows the dihedral energy and D the improper energy.

where ε is the depth of the potential well, σ is the distance at which Evdw(r) = −ε, r is the
distance between the two atoms, i and j are atoms and N is the number of atoms in the
structure.

• ECoulumb, accounts for the static electrical energy. It is modelled based on Coulomb’s law:∑
i

∑
j

qiqj
4πε0rij

1 ≤ i < j ≤ N, (14)

where qx is the electric charge on atom x, ε0 the permittivity of free space in C2m−2N−1.

For every particle in a given context of bonds (e.g. covalent, hydrogen, etc.), the parameters for the
interactions given in Equations 11-14 are laid out in force field parameter files. The determination
of these parameters is a significant undertaking generally accomplished through a combination of
empirical techniques and quantum mechanical calculations. Two well established force fields are
CHARMM and AMBER.

2.8.1 Steric Hindrance

The energy calculation has multiple objectives. One of the reasons is to exclude (intermediary) struc-
tures from the search. If the energy of a molecule is relatively higher, the probability that a molecule
will exist in that form in a living cell will drop. For very high energies, the structures will be too
improbable and these candidates can be excluded from the list of potential molecules. On the other
hand, if the energy of an (intermediary) structure is low, it could lead to a final conformation with a
overall low energy. The energy of a molecule will increase considerably, if two non-covalently bonded
atoms are very close, since each atom (or molecule) occupies a certain amount of space. This effect
is known as steric effects, of steric hindrance: the overlapping of electron clouds causing a repulsive
force. Since the energy calculation is a time consuming effort, a pre-check for steric hindrance is
favourable. This is done by looking for an overlap of the electron clouds for all the atom pairs, given
their radii [18][19]. If an overlap of the clouds is detected, the molecule is will most probably not exist
in that state in a living cell and will be eliminated. To introduce some tolerance, the radii can be
multiplied by a factor x. In this way high energy intermediaries can still fold to low energy proteins.

2.9 Minimal Bounding Sphere

The structure of a protein is often very compact and proteins do not take up much space. In other
words, if an intermediary structure is not compact, the probability that such a structure exists in
a living cell is small. This is the basis for the pruning technique based on a bounding sphere. The
bounding sphere is the 3 dimensional equivalent of the smallest circle problem. Thus, what is the
smallest sphere that contains all of a given set of points in the Euclidean space. An easy way would
be to search for the longest coordinates pair distance and use the middle of these coordinates as
the center and the distance as the diameter. This algorithm, however, has complexity O(n2), which,
for large sets of coordinates, will take too much computational time. Therefore, 3 methods will be
discussed: Ritter’s bounding sphere, Bouncing bubble and an own implementation of the Bouncing
bubble, all with better complexity than O(n2), which will be explained in the next 3 sections.
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Figure 16: The construction of an enclosing circle. Starting point is circle C (red) with center c and radius
r, and point P, not enclosed by C. Using Equations 15-17 the new circle Cn (blue) can be constructed
with center cn and radius rn.

2.9.1 Ritter’s bounding sphere

Known for its simplicity, Ritter’s bounding sphere is widely used in various applications. The algo-
rithm starts with the initialization of the circle. Starting with a set of points P , this is done in two
steps:

1. Pick a point x ∈ P , search a point y ∈ P , which has the largest distance from x (O(n))

2. Search a point z ∈ P , which has the largest distance from y (O(n))

The center of the starting sphere is the middle between y and z ( y+z
2

), the radius is half the distance
from y to z (| y−z

2
|). From this starting point, we propagate through all points checking whether

the point is within our sphere or not. If the point is within the sphere, the sphere still encloses all
propagated points and nothing is done. If it’s not, a new sphere is constructed using the following
approach:

d = |−→p −−→c | (15)

rn =
d+ r

2
(16)

−→cn = −→c +
rn
d
· (−→c −−→p ), (17)

where −→p is the unenclosed point, −→c the center of the circle with radius r, −→cn the center of the new
enclosing circle and its radius rn. This creating the smallest sphere that encloses the unenclosed point
and the old sphere. The construction is shown in Figure 16 for the 2 dimensional problem. To calculate
the complexity of this algorithm, we add the the complexity of the different steps: the search for point
y ∈ P , the search for point z ∈ P and the propagation through all the points (O(n)), resulting in
complexity O(3n) ≈ O(n). Note that this algorithm does not create the smallest enclosing sphere,
only an approximation.

2.9.2 Bouncing bubble

The approximations of Ritter’s algorithm are dependent on the initialization: a different initialization
will result in a different enclosing sphere. Bouncing bubble tries to find a better enclosing sphere by
starting with a better initialization than Ritter’s initialization. This is done by randomly picking two
points constructing the smallest enclosing sphere for those points and propagating through all the
points, checking if the point is within the sphere. Only if the point is outside the sphere, a new (not
enclosing) sphere is constructed using the following method:

α =
d

r
(18)

rn = 0.5r · 1 + α

α
(19)

−→cn = 0.5 · ((1 +
1

α2
) · −→c + (1− 1

α2
) · −→p ), (20)

where −→p is the unenclosed point, −→c the center of the circle with radius r, −→cn the center of the
new enclosing circle and its radius rn. This initial procedure is done twice. After the initialization,
one propagation through all the points using the same method as Ritter’s algorithm is performed.
Since the initialization propagates twice through all the points and Equations 15-17 add a third
propagation, the complexity of this algorithm is O(3n), the same as Ritter’s algorithm.
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2.9.3 Bouncing bubble with center of mass

As a third algorithm to find an approximation of the enclosing circle we created our own algorithm,
based on the bounding bubble algorithm and the geometric center. As stated, Ritter’s algorithm’s
initialization influences the outcome of the algorithm. In addition to the bouncing bubble initializa-
tion, the geometric center is introduced, which is defined as the arithmetic mean of all the points in
P , in Euclidean space:

pgc =
1

N

N∑
i

pi pi ∈ P (21)

where pgc is the position of the geometric mean and N is the number of points. Point pgc is the center
of the sphere with the radius being the distance to a randomly picked point p ∈ P . The sphere is used
as a starting sphere for one propagation of the bouncing bubble initialization. Subsequently, Ritter’s
propagation is used to enclose all points. The calculation of the geometric mean (O(n)), 1 bouncing
bubble initialization propagation and 1 Ritter’s propagation, results in a complexity of O(3n).

2.10 Distance functions

In order to evaluate a prediction method, the result of the prediction can be compared with the test
set. Comparing two structures can be done on multiple ways. Here 3 ways will be described: RMSD,
LGA and DSSP.

2.10.1 RMSD

One of the most used methods for comparing two structures is the Root Mean Squared Distance or
RMSD. In this method, the average distance between the atoms is calculated between the N pairs of
equivalent atoms in both structures, where N is the number of atoms in the biopolymer. Since this
measure in dependent on the rotation of the structures, a superposition which minimizes the RMSD
is first performed. Given two structures a and b, the RMSD is defined as:

RMSD(a,b) =

√√√√ 1

N

N∑
i=1

‖ai − bi‖2 (22)

=

√√√√ 1

N

N∑
i=1

((aix − bix)2 + (aiy − biy)2 + (aiz − biz)2). (23)

The RMSD can in principle be applied on all atoms, but the RMSD of the Cα only is used very often.
Although the RMSD is known as a good and straightforward method to compare structures, it is
very sensitive to small changes. A small perturbation in just one part of the protein (e.g. in a hinge
joining two domains) can create a large RMSD and it would seem that the two structures are very
different overall. Thus, it is desirable to also consider local regions of the proteins in assessing their
similarity. In essence, the smaller such deviant regions, the more similar the two structures are.

2.10.2 LGA

LGA (Local-Global Alignment) is a method designed to facilitate the comparison of protein struc-
tures or fragments of protein structures in sequence dependent and sequence independent modes[20].
It incorporates both local and global similarity of the structures, by using two different distance
functions: Longest Continuous Segment (LCS) and Global Distance Test (GDT). The LCS procedure
is able to localize and superimpose the longest segments of residues. The GDT algorithm is designed
to complement evaluations made with LCS searching for the largest (not necessary continuous) set of
’equivalent’ residues that deviate by no more than a specified distance cut-off. The LCS is the longest

17



Table 2: Example of data generated by LCS and GDT analyses

Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Cut-offs: 1Å 2Å 5Å 0.5Å 1.0Å 1.5Å 2.0Å 2.5Å 3.0Å 3.5Å 4.0Å 4.5Å . . .

LCS GDT Molecule 1 Molecule 2 Length of the

LCS GDT Residue Residue continuous

LCS GDT Name Number Name Number Segment Global distance test data
LCS GDT V 40 A 29 23 26 90 10 18 22 23 24 24 27 33 49 . . .
LCS GDT A 41 Q 30 23 26 90 10 18 22 23 24 25 27 42 55 . . .
LCS GDT L 42 L 31 23 26 90 4 7 20 23 24 25 36 46 55 . . .
LCS GDT E 43 E 32 8 26 90 4 7 15 23 24 25 35 46 55 . . .
LCS GDT Q 44 V 33 8 26 90 4 6 9 18 24 26 37 46 55 . . .
LCS GDT T 45 T 34 8 26 90 4 7 9 13 22 25 36 46 55 . . .
LCS GDT G 46 G 35 8 14 90 3 7 9 12 17 22 35 46 55 . . .

continuous segment (in terms of Cα atoms) which can be found under a selected RMSD, shown in
Equation 24:

LCS(a,b, x, rc) = max ({1 + j − i |RMSD(ai..j ,bi..j) < rc ∧ i ≤ x ≤ j }), 1 ≤ i < j ≤ N (24)

where a and b are the input structures, x is the residue for which the LCS is determined, rc is the
cut-off RMSD and N is the sequence length. For all n Cα atoms is checked to which longest continuous

segment (possible continuous segments is n2+n
2

) it belongs. This is done for RMSDs 1Å, 2Å and 5Å,
as shown in Table 2.

For example, residue L-31 from Molecule 2 is a member of a 23-residue long continuous segment
that can be superimposed with corresponding residues from Molecule 1 under a 1Å RMSD cut-off,
but residue E-32 is an element of a segment consisting of just 8 residues at an RMSD cut-off of 1Å.

The GDT is used to collect the global similarity between the two structures. This is done by
looking, for every Cα atom, for the biggest set of Cα atoms it belongs to, provided is can be fit under
a selected RMSD. Given two structures a and b, position of the Cα in the structure, x, and the cut-off
RMSD, rc, GDT is defined as:

GDT(a,b, x, rc) = max({|u| |mRMSD(u, v) < rc ∧ u ⊆ a ∧ ax ∈ u ∧ v = Eq(b, u)}), u ⊃ a, (25)

where Eq(b, u) returns the equivalent set of Cα atoms of u in b and mRMSD(u, v) returns the
minimum RMSD of all the equivalent Cα-pairs in u and v, after the RMSD superposition. Since it is
infeasible to calculate the GDT for all the possible subsets of a (the number of subsets is 2n, where
n is the sequence length), the search for the optimal superposition needs to be approximated. This
is done using an iterative method. For each three-residue long segments (not per se continuous) the
RMSD and superposition is calculated and the superpositions of all the LCS are combined to get the
set of initial superpositions. Each calculated superposition is used as a starting point to give an initial
list of equivalent residues (Cα atom pairs from a and b). The list of such equivalences is iteratively
extended to collect the largest set of residues that can fit under a given distance cut-off. To extend
the set, the following procedure is applied on all the initial superpositions:

1. Obtain the transform

2. Apply the transform

3. Identify all atom pairs for which the distance is larger than the threshold

4. Re-obtain the transform, excluding those atoms

5. Repeat steps 2 to 4, until the set of atoms used in calculations is the same for two cycles running.
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The cut-off distances for the GDT are 0.5, 1.0, 1.5, . . . , 10, Using this method the GDT-table, as shown
in Table 2, can be filled. After retrieving the LCS and GDT, de LGA can be calculated. The LGA
for two structures a and b is defined as:

LCS(a,b, x) =
1

N2

N∑
i=1

LCS(a,b, i, x), (26)

GDT (a,b, x) =
1

N2

N∑
i=1

GDT (a,b, i, x), (27)

LCST (a,b) = 2 ·
∑k
i=1(k − i+ 1) · LCS(a,b, r1i )

k(k + 1)
, k = |r1|, (28)

GDTT (a,b) = 2 ·
∑k
i=1(k − i+ 1) ·GDT (a,b, r2i )

k(k + 1)
, k = |r2|, (29)

LGA(a,b) = w ·GDTT (a,b) + (1− w) · LCST (a,b), (30)

r1 = {1, 2, 5}, (31)

r2 = {0.1, 1.0, 1.5, . . . , 10.0}, (32)

where LCS(a,b, x) is the average percent of residues in target that can fit under an RMSD cut-off x
is the average LCS for structures a and b, N the number of residues, GDT (a,b, x) is an estimation of
the average percent of residues of structures a and b, that can fit under the distance cut-off x, LCST
is the weighted average of LCS and GDTT is the weighted average of GDT . r1 and r2, the radii for
the LCS and GDT, are by default filled with the values presented above, but can be changed.

The LGA method combines these two functions resulting in a ’best’ superposition and locating
structural similarity on a more local level, where one can see the structural similarity on a 2D manner.

2.10.3 CSS

Although local structure similarity can be measured with the LCS-function, the secondary structure
of the protein is also a good identifier for comparison of two structures and thus evaluation of a
protein structure predictor. Using the DSSP-algorithm, the secondary structure of both the target
and prediction can be determined, in order to asses the predictor. The result is two one-dimensional
sequences indicating the secondary structure for every residue. The score CSS (CompareSS) can be
calculated using the following formula:

CSS(s1, s2) =
1

N

N∑
i=1

{
1 if s1i = s2i ∧ s1i 6= ∅ ∧ s2i 6= ∅
0 otherwise

, (33)

where s1 and s2 are the secondary structure sequence of target and the prediction models, respectively
and N is the number of residues with secondary structure assigned to them, in the first string. If
no secondary structure is assigned by the DSSP-program, (∅, coil), no comparison can be done and
the residue is skipped. Note that two identical strings of no secondary structure has a score of 0%.
This distance function is not per se symmetric (CSS(a,b) = x 6=⇒ CSS(b,a) = x) and the target
should always be the first parameter. The CSS is not used in PITA and is only used to asses it.

3 Computational Protein Prediction: Problem descrip-
tion

The basic idea of computational protein folding is to find a minimal free-energy of the three dimen-
sional structure of the protein following the rules of nature, given a one dimensional sequence of
amino acids, by searching through the immensely large search conformational space of the protein.
While this still is the best way to get the actual structure of proteins, the complexity and enormity
of the search space do not allow us to do so: current computing resources are insufficient and current
forcefield descriptors are inadequate. As an alternative, the problem can be approximated by other
techniques. Each of these techniques will be explained in the next section.
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Table 3: The 20 standard amino acids, divided into three groups, showing their entire name, 3-letter
notation, 1-letter notation and chemical structure.

Category Amino acid name three-letter notation 1-letter notation Chemical structure

Charged

Arginine Arg R

Lysine Lys K

Aspartic acid Asp D

Glutamic acid Glu E

Histidine His H

Polar

Glutamine Gln Q

Asparagine Asn N

Serine Ser S

Threonine Thr T

Tyrosine Tyr Y

Cysteine Cys C

Methionine Met M

Tryptophan Trp W

Hydrophobic

Alanine Ala A

Isoleucine Ile I

Leucine Leu L

Phenylalanine Phe F

Valine Val V

Proline Pro P

Glycine Gly G
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4 Current State of the Art

Protein structure prediction can be classified into 4 categories: (1) Comparative Modelling, (2) Fold
Recognition, (3) First principles methods with database information, and (4) First principles methods
without database information[21][22]. In this section, the state of the art in these categories will be
explained.

4.1 Comparative modelling

Comparative modelling, also known as homology modelling, consists of the five stages[23]:

1. Identification of related sequences of known structures (using sequence and profile similarity)

2. Aligning of the target sequence to the template structures

3. Modelling of structurally conserved regions using the known templates

4. Modelling side chains and loops which are different than the templates

5. refining and evaluating the quality of the model through conformational sampling

For comparative modelling, as a rule of thumb, if the sequence similarity is above 50%, the predictions
are of very good to high quality, whereas 30 − 50% sequence similarity will have 80% of the target
within 3.5Å of its true position, while the ”twilight zone” (between 10% and 30% similarity) and the
”midnight zone” (< 10% similarity) will have significant errors. The best way to search for homology
in the first regime is using pairwise sequence alignment methods, whereas profile-sequence and profile-
profile alignment tools are the best for the second regimes. For the last regimes (”twilight zone” and
”midnight zone”), sequence-structure threading methods get the best result. For the model building
(steps 3 and 4), there are three general groups[24]:

1. Modelling by assembly of rigid bodies

2. Modelling by segment matching or coordinate reconstruction

3. Modelling by satisfaction of spatial restraints, Homology-derived restraints, stereochemical re-
straints, optional restraints derived from experimental data

One of the well known modellers in this category is the Rosetta Modelling Suite which is a software
suite usable for multiple goals. Rosetta is one of the leading predictors on CASP events. The basis
has been created in 2004. Rosetta uses a torsion space representation, using perfect bond lengths and
stretch angles. Although, it was initially developed for de novo protein structure prediction, multiple
other programs have been created to guide other protein related problems, such as ligand docking.

Rosetta is based on fragment insertion: It uses 9 AAs fragments and 3 AAs fragments to fold the
target. For every three and nine residue long fragment, a library of fragments defining the conforma-
tional space is selected, by comparison with known protein structures from a non-redundant database
of X-ray structures. Using PSIBLAST on each window, a sequence similarity score is calculated. To-
gether with the similar secondary structure, a ranked list is constructed for all the three and nine
residue fragments, of length 200 for every window.

The monte carlo search begins with a fully extended conformation of the query and uses to
following steps:

1. Random 9-residue windows are selected and a fragments from the top 25 of that window is
picked. The torsion angles are copied and if the energy has decreased, the conformation is
retained. If the energy increases, the move is picked based upon the Metropolis criterion. Each
simulation uses 28000 9-residue insertions. The first iterations, only Van der Waals forces are
included and stops until all torsion angles have been replaced.

2. The next 2000 iterations, secondary structure (SS) and all terms except those rewarding com-
pactness are included, with strand pairing at 0.3 of its final weight.

3. The next 20000 iterations, the SS score increases to its final weight. During this stage, the SS
potential alternates by evaluating interactions only 10 residues apart.

4. For the last 4000 iterations, the high resolution energy function is used, consisting of the sum of
the Lennard-Jones potential together with a solvation approximation, the secondary structure
potential, a knowledge-based electrostatics term and a knowledge based conformation dependent
amino acid interval free energy term.

5. After this, 8000 3-residue Gunn-insertions are attempted

Since the initial fragment insertion can be too perturbing, 5 basic operators have been introduced
if finer sampling is required:
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1. Random angle perturbation is the alteration of either one angle-couple or one angle and a
compensating rotation in de opposite direction of the preceding angle, creating a shear-motion

2. Selection of globally non-perturbing fragments, is the insertion of a fragment that is similar to
the existing fragment and therefore will cause not too much global perturbation.

3. Torsion angle variation to offset global perturbation, is the insertion of a fragment and subse-
quently alter residue angles to wear off the global perturbation

4. Monte Carlo with minimization, is the greedy gradient descent minimization along the backbone
torsion

5. Rapid side-chain optimization applies a simulated annealing techniques with a rotamer library.
The number of proteins fold (approximately 20000-50000) is then reduced by clustering the
RMSDs and refinement is used on the resulting conformations. The best models with the lowest
energy will get atom refinement.

Still major challenges need to be tackled, for instance new folds, model selection and large protein pre-
diction. Like Rosetta, PITA uses fragments, with the difference that Rosetta uses the entire structure
of the neighbourhood, where PITA only uses the atoms of the middle residue.

4.2 Fold Recognition

In protein prediction, for now, comparative modelling search is the best way to predict a protein.
However, if a protein does not have structural neighbours, this technique is not feasible for it cannot
use structural equivalence to calculate the 3 dimensional structure. Fold recognition and threading
come in handy when little comparison is found between the target and already known structures. The
concept is based on the idea that the shapes of fragments are more limited rather than the sequence
possibilities. Therefore only a few structures need to be modelled instead of a wide spread of all the
theoretically possible folds. Two examples of threading algorithms are TASSER[25] and I-TASSER[26]
(Iterative TASSER). TASSER (Threading ASSEmbler Refinement) is a threading program described
in this article. It uses the thread database creator PROSPECTOR 3. The alignment with the target
is done with Needleman-Wunsch.

4.3 First principles methods with database information

The algorithm PITA belongs to this category, taking dihedral angles from a constructed database and
using an energy potential to distinct bad from good configurations. For this category of algorithms,
many types of database information can be used, such as sequence dependent local interactions,
common structures, centroids and secondary structures. Baker [27] studied the distributions of local
structures based on short sequence segments of up to 10 residues based on the protein database, and
developed effective approaches that compare fragments of a target to fragments of known structures.
Once appropriate fragments have been identified, they are assembled to a structure, often with the
aid of scoring functions and optimization algorithms. The course grained structure of the protein is
created with this information, followed by refinement by first principle forces and potentials.

4.4 First principles methods without database information

Ab initio protein folding comes in handy when no sequence similarity is known, but it is seen as
the most difficult of methods, since it uses purely physics to understand the folding pathway. For
the potential physics-based and knowledge-based energy functions can be used. Although MD sim-
ulations with only physics based potentials are slow, MC simulations and genetic algorithms can be
used instead, to reduce the number of computations. To reduce the number of potential solutions,
conformational search methods are used to check for so called decoy structures. Because there is an
abundant number of these structures, smart ways to tackle this problem must be used. Using the
correct way to search the space and to rule out potential candidates, the number of calculations can
be held down to a minimum. In 2013, a pure MD simulation was started for the deduction of the
structure of the capsid layer of HIV-1. Using tomographic images and cryo-electron microscopy, the
authors deduced the structure of a monomer of the capsid layer [28]. Using this information they
built a model consisting of 71 hexamers (64 million atoms) into a predefined capsid reconstruction.
Using NAMD2.9 as the MD package, they simulated 100ns at 2 fs time steps. Since all the atoms in
the reconstruction stayed at their place, it was concluded that the reconstruction was at equilibrium
and the deduced structure was correct.
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4.5 Hybrid Algorithms

As stated earlier, Protein structure prediction presents a vast search space and since the analysis of
each protein structure requires a significant amount of computing time, it is necessary to take advan-
tage of high-performance parallel computing platforms as well as to define efficient search procedures
to search the space of possible protein conformations. Hybrid techniques have been proposed to tackle
these two problems. In [29], two known protein structure predictions algorithms are parallelized and
compared to one another. Both algorithms use a cost function consisting of 2 or 3 terms: Bonded,
non-bonded and the rest of non-bonded. The 2 algorithms are PAES (Pareto Archived Evolution
Strategy) and NSGA-2 (Non dominated Sorting Genetic Algorithm 2). NSGA-2 is parallelized by
calculating the cost for every individual separate. PAES, which uses only one candidate for its so-
lution and iteratively created a new individual and chooses whether to keep the current parent as
its solution, is parallelized by creating multiple children at every iteration, thus generating better
solutions earlier. Although they both produce proteins with similar quality, PAES is less efficient
with the parallelization.

As another example for hybrid algorithms Multi-objective Evolutionary Algorithm with Many
Tables (MEAMT) are introduced [30], where an ab initio technique with database information is
combined with evolutionary algorithms. It uses many tables to optimize the energy of a protein. The
energy is described by an equation using 4 terms (Van der Waals, electrostatic charge, solvent energy
and hydrogen bonds), thus 4 terms need to be optimized at the same time. MEAMT is an extension
to MEAT (with only one table) which is an extension to MT (without the evolutionary algorithm).
MEAMT (and MEAT) use a population of non-dominated (ND) individuals: Each individual is part
of the Pareto front, described by only the dihedral angles of the backbone and the side-chain angles.
Using multiple tables (tables for the four individual and part of that power set) the search space
is searched efficiently. This results in good prediction compared to GAPFCG I-PAES and Quark
(although Quark seems to be superior on average).

On Lattice prediction methods, reduce their search space to quantified coordinates in space [31].
This article uses a FCC cubic space, where 12 direction of motion are allowed. First a tabu search is
started, reducing the search space. The algorithm uses the possible 10 (12 two adjacent amino acids)
as the neighbourhood of each amino acid. Constraints are:

1. Self avoiding walk

2. Every amino acid is on the lattice of the FCC

3. Two adjacent amino acids are bonding, only if the distance is 1 unit length

The objective function is to maximize the number of hydrophobic connections and hydrophilic con-
nections. The second part of the algorithm uses constraint programming, and Large neighbourhood
search to narrow the search. The initial constraints hold except for the objective function, which now
minimizes randomly one of four objectives:

1. Minimize the distance to the origin

2. Minimize the distance to the center of mass

3. Maximize the density

4. Maximize the hydrophobic density

During this search, subsequences are subject to optimization. Although the results are not comparable
to state-of-the-art techniques, it shows a good framework next to Monte Carlo simulations. Objective
(2) and (3) are implemented in PITA by the BMS.

4.6 General Implementation Decisions

The different algorithms performance factors for protein structure prediction often have similar treats.
Five of these are[32]:

1. Candidate representation

2. Dihedral angle space

3. Energy function

4. Folding strategy

5. Test set

Comparing these performance factors, might give more inside into good algorithms and choices.
Picking a good representation (1) might significantly decrease computational power, but could be
harmful to its accuracy. The candidate representation of PITA is based on dihedral angles, which is
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Figure 17: The entire framework PITA, showing the flow-chart of data and programs. Cylinders represent
data sets, boxes represent programs

not harmful to its accuracy and reduces the search space significantly, since atoms must be close to
each other (∼1.3Å) instead of all possible places in a 3-dimensional grid. This is implicitly enforced
by dihedral angles, stretch angles and bond lengths. Type (2) handles the choice of angle space and
atom radii. Because an infinite number of angles can be adopted, reduction of this search space is
needed. Rotamer libraries, modelling the side chains as a oval appendix to the backbone, can be used
or lattice space, where the number of angles significantly drops at a risk of inaccurate description.
Energy functions have a great influence on the structure and therefore used wisely, since it will
greatly influence the structure and computation time. Basically two groups can be specified: Physics-
based and Statistics-based potentials. Although based on different concepts, both exhibit comparable
results. The actual folding technique can be very different from other strategies, but two things should
be noted: Using fragments may not be wise, since it reduces the potential long-range interaction and
increase rigidity. Furthermore, these systems are bounded to known structures, since they use extra
information of known structures. Finally, Type (5), algorithms use a test set which are different from
other techniques, depending on size, protein size and protein type. Therefore no good comparison can
be made between these techniques, since they might favour one very specific property. In the end,
simplified protein representation together with fragment based methods using physics-based potential
(slightly better) shows the best results. Specifically, I-TASSER, is the best and fastest.

5 Implementation of PITA

The approach we take is based on the first principles methods with database information. First a set
of proteins is picked as being the source of information of dihedral angles (the database), as explained
in Section 5.1. A database is filled with the dihedral angle information of this set of proteins, as
explained in Section 5.3. The database is then used to build the protein structures. Our prediction
program uses a 1-dimensional residue sequence (fasta-format file) as input and delivers as output a
3D structure (PDB-format file), described in Section 5.4. An overview of the entire framework is given
in Figure 17(small) and Appendix 9(large). All the programs mentioned in this section are explained
in Appendix 8.

5.1 Data set creation

The starting data set is a set of structures described in PDB format and mmCIF format (XXXX.pdb
and XXXX.cif). This set can be selected by the user, the entire PDB dataset or any specific subset
of the PDB/mmCIF dataset. We use two ways for selecting our starting dataset: Using the program
FilterDataset and using the web interface of de pdb-website (www.pdb.org), which are two unrelated
protocols. The program FilterDataset is provided, to filter for specific properties, which are described
in the filter file. The CIFPARSE-OBJ C++ Parser was the basis for the program FilterDataset and
was used to read and handle the initial set. The program filters using the following rule: If the input
structure has all of the following qualities, it is put in the output data set:
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• At least one of the substructures contains a structure constructed of only the 20 standard amino
acids.

• At least one of the substructures follows all the substructure specific properties specified in the
filter file, such as experimental method, number of entities, etc.

• All the experimental specific properties specified in the filter file are present in the experimental
specific properties of the mmCIF-file, such as species, length, etc.

The resulting data set now contains the PDB files and associated mmCIF files following all the rules
in the filter files. The program is explained in detail in Appendix 8.

The website has an alternative filtering system, with less functionality (FilterDataset can search
on any criterion, where the website interface uses more general criteria), but the interface is very user
friendly and much faster than our program.

5.2 Data set preprocessing

The data set now contains the proteins that we want to have, however the structures are not complete:
apart from the hydrogen atoms missing in X-ray structures, some structures are missing atoms (e.g.
C, N and H). The VMD (Visual Molecular Dynamics) package, a package created as a visual display
of NAMD, the location of the missing atoms can be determined. Using the feature ’guesscoord’ of
the VMD package, all the coordinates of missing atoms are guessed and the structures are converted
to zwitterions. The program CreateEntireProteins was created for this purpose. This way, a clean
data set of structures with only fully described structures with only the 20 standard amino acids
remains.

5.3 Database of Dihedral Angle Information

The database that is constructed, solely consist of fragments. A fragments contains the information
of one residue:

1. The name of the residue

2. The context, the information of its neighbourhood, restricted to only residue names

3. The size of the neighbourhood, with 4 possible values: 1, 3, 5, and 7

4. The dihedral angles of the backbone

5. The location of the atoms in the side chain, relative to the atoms of that residue in the backbone

An example of a fragment is given in Figure 18. The fragment in Figure 18 is of a valine residue and
is the middle of the sequence ALA-GLY-VAL-VAL-THR and the dihedral angles of the valine residue
are φ = −80.30◦, ψ = −35.97◦, ω = −177.84◦. Using dihedral angle ω of the previous residue, angle
∠CNCα and distance rNCα , the coordinates of the Cα atom can be calculated. This holds for all the
atoms in the valine residue. This means that for a set of N proteins with each of length Li, 1 ≤ i ≤ N ,
the number of fragments, F , would be the following:

Fi = |NS = 1|+ |NS = 3|+ |NS = 5|+ |NS = 7| − 2 (34)

Fi = 100 + 98 + 96 + 94− 2, for Li = 100 (35)

Fi = 2 · (100 + 94)− 2 (36)

Fi = 4 · Li − 14 (37)

F =

N∑
i=1

4 · Li − 14 (38)

where Fi is the number of fragments for protein i and NS is the neighbourhood size. Since the φ
dihedral angle is dependent of the previous residue, and the ω dihedral angle is dependent on the
next residue, not all the torsion angles of the first and last residue (for neighbourhood size 1) could
be calculated and these two fragments are excluded from the database, hence the −2 in Equation 34.
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Figure 18: Representation of the information of a fragment, containing the information of the backbone
and the side chain.The structure of a Valine residue is shown on the left for clarity. Using the torsion
angles (phi, psi, omega and T-*), the stretch angles (CNCA, NCAC, CACN and A-*) and the distances (NCA,
CAC, CN and D-*) all the coordinates of the valine residue can be reconstructed.

5.4 Prediction of the Structure

At this point we have enough information to construct a 3D structure based on the sequence informa-
tion. Using the program PITA, the input file (fasta-format) is read and the internal sequence structure
S is created. For every residue in S, the database is searched for similar fragments. A fragment is
similar if the following statements are true:

1. The name of the residue Si is equal to the residue name of the fragment.

2. The neighbourhood of Si (Si−x, . . . , Si, . . . , Si+x) is the same as the neighbourhood of the frag-
ment, where 2x+ 1 is the neighbourhood size of the fragment.

The fragments are ordered: First all the fragments with size 7 are selected, then size 5, 3 and as last size
1. Using this method we get sequence S with all the possible fragments attached to their accompanying
residues in an organized way, descending in neighbourhood size. This is shown in Figure 19. Notice
that fragments #87, #77, #99 are all fragments with residue name ALA and neighbourhood size 1 and
thus reappear at 3 positions in this sequence. #26 has a bigger neighbourhood size and is therefore
placed before the fragments with neighbourhood size 1. Two methods have been implemented to
construct the 3D structure: Random search and Energy based search.

5.4.1 Random Search

To find a structure based on the fragment database a depth first search with pruning is started.
The starting point is the most common folding of the backbone (NCαC)[33], together with the first
fragment of the first residue, recreated in its zwitterionic state. Iteratively, residues are added to
the intermediary structure based on the fragment list. The fragment list per residue exists of first
the fragments with the longest neighbourhood followed by the smaller neighbourhood. We do not
discriminate between fragments with the same neighbourhood and this procedure is thus seen as a
random search, still using the most probable fragments first. The resulting structure, Q, is checked for
steric hindrance to avoid invalid protein foldings. This is done by calculating the distances between

26



Figure 19: The one dimensional sequence and the fragments which are similar to the sequence in respect
to residue name and neighbourhood, with the lowest having the largest neighbourhood.

all the atoms in the previous structure S and the newly added atoms, N :

S ∩N = ∅ (39)

S ∪N = Q (40)

StericHindrance =

{
false if rmin(s) + rmin(n) < d(s, n) ∀s ∈ S,∀n ∈ N
true otherwise

(41)

where function d(x, y) returns the Euclidean distance between atom x and y and rmin(x) return the
minimum radius of atom x, based on [18]. If there is no steric hindrance, we move on to the first
fragment of the next residue. If there is steric hindrance, the last attached residue of the intermediary
structure is removed and the next fragment in line is added. If the end of the fragments of a residue
is reached, we go back to the previous residue and add the fragment next in line. The structure of
the program is described in Algorithm 1.

5.4.2 Energy based search

The fragment list for the energy based search is built as the fragment list in the random search. The
starting point is created with the backbone of the ideal folding and the side chain of the fragment
list and placed in the queue. From this point on, the first n intermediary structures in the queue are
selected. For these n intermediary structures, the first m fragments from the fragment list are used
to construct the new n×m (intermediary) structures. For all the new structures, the steric hindrance
is checked and the energy is calculated explained in 5.4.3. The energies of these n×m structures are
calculated in parallel. The structures with (internal) steric hindrance or a to high energy are removed
the rest is added to the queue. When a new structure is added to the queue, it is inserted at the
position where the previous structure has less energy and the next structure has more more. This
way, a sorted queue is maintained. For the n structures that served as a base for the new structures,
the last used fragment is registered. Once all fragments are used the structure will be deleted. If the
first of the queue is a fully built protein, its structure is saved (in PDB-format) only if the energy
is lower than the energy of currently best structure. The structure is then removed from the queue.
To avoid a memory overflow, every X cycles, the queue is filtered and the best 10000 structures are
kept. The pseudo code of the algorithm is displayed in Algorithm 2.

5.4.3 Energy Calculation

For the energy calculation the package MDenergy is used. MDenergy is a program that calculate
energies based on its 3D structure. It is originally derived from Mindy, a simplified version of the
NAMD engine[10]. It can calculate the different bonded and non-bonded energies for each atom based
on the information of the structure and the coordinates as specified in Section 2.8. The structure,
which describes which atoms are covalently bonded and what type of atoms are within the structure,
is given by the PSF-file (Protein Structure File). The coordinates are given by the PDB-file. The total
energy values are identical to the NAMD output. The parameter file that comes with the installation
of NAMD was used (July, 2003). MDenergy’s source code was edited to avoid disk activity. The
structure files are loaded at the begin of the program and are stored as PSF-objects in memory. The
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Algorithm 1: PITA with Random Search

Data: Fasta-formatted file in 1D, with name sequence.fasta, target T in pdb-format
Result: Predicted structures in 3D, in a pdb formatted file, resultX.pdb, where

X = 1, 2, . . . ,max structures
Sizes← {7, 5, 3, 1}
begin

S = ReadInputSequence(sequence.fasta) /* Read sequence and store it in array S */

N = GetSize(S) /* Get the size of the sequence */

foreach size in Sizes do /* Get all the possible fragments for al the sizes */

for i← size−1
2 to N − size−1

2 do
Fi += ReturnSimilarFragments(S, i, size)

for i← 1 to N do
num fragmentsi ← GetNumberOfFragments(Fi)

next fragment← {1, 1, . . . , 1} /* Fill array with N times 1 */

max structures← 100
SetInitialStructure(X,F1,1) /* Initialize intermediary structure X */

i← 1 /* Index of the sequence */

while time passed < max time do /* Search for a period of time */

if i 6= N then
j ← next fragmenti
if j ≤ num fragmentsi then /* Check if there are possible fragments */

AddResidue(X,Fi,j)
if StericHindrance(X) then /* Check for steric hindrance */

RemoveResidue(X, i)
next fragmenti = next fragmenti + 1

else
i = i+ 1

else
next fragmenti = 1
i = i− 1

else
rmsd = CalculateRMSD(X,T )
if rmsd < min rmsd then

min rmsd← rmsd
WriteToFile(X)
RemoveResidue(X, i)
next fragmenti = next fragmenti + 1

end
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Algorithm 2: PITA based on energy.

Data: Fasta formatted file in 1D, with name sequence.fasta
Result: Predicted structures in 3D, in a pdb formatted file, resultX.pdb, where

X = 1, 2, . . . ,max structures
Sizes← {7, 5, 3, 1}
begin

S = ReadInputSequence(sequence.fasta) /* Read sequence and store it in array S */

N = GetSize(S) /* Get the size of the sequence */

foreach size in Sizes do /* Get all the possible fragments for al the sizes */

for i← size−1
2 to N − size−1

2 do
Fi += ReturnSimilarFragments(S, i, size)

for i← 1 to N do
num fragmentsi ← GetNumberOfFragments(Fi)

max structures← 100
Q = SetInitialStructure(X,F1,1) /* Initialize queue with most common folding X */

qi← 1 /* queue index qi */

while time passed < max time do /* Search for a period of time */
X = Qqi

if X.size() = target length then
if X.energy < min energy then

X.energy← min energy
WriteBackToFile(X) /* Store final structure */

Q.delete(X) /* Delete from queue */

continue /* else, continue the while-loop */

else
for i← 1 to num threads do

Pi = X
if Pi.next fragment = ∅ then /* All possible fragments have been tried */

Q.delete(X) /* so, delete from queue */

qi← qi+ 1
X = Qqi

num threads = num threads− 1 /* Reset thread */

continue /* And continue with for-loop */

Pi.appendResidue(Pi.next fragment) /* Append structure with */

/* next fragment in line */

threadi.CalculateEnergy(P ) /* And calculate its energy */

if !StericHindrance(Pi) ∧ Pi.energy < 10000 then
AddToQueue(Pi) /* If structure is valid, add to queue */

if i%fragments per cycle = 0 then
qi← qi+ 1
X = Qqi

end
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PDB-objects are created at run time, every time a residue is added. No other disk access then loading
of structure files, loading parameter files and writing valid structures was necessary.

5.5 Optimizations

The search space quickly becomes too large to fully explore it. A few optimization are proposed to
prune the tree, so the search space becomes small enough to traverse.

5.5.1 K-pruning

A very easy method to reduce the search space is too reduce the number of possible fragments in the
fragment list per residue to K ∈ N,. With this, the fragments with the largest neighbourhood remain.
For example, if we take the fragment list in Figure 19 and let K = 2, the resulting fragment list will
not include fragments #87(1st ALA), #87 and #77 (2nd ALA), #87 (3rd ALA) and #7 (1st MET).

5.5.2 MBS-pruning

The minimal bounding sphere can also be used in the pruning process. Assuming that a protein
adopts a very packed structure, the backbone will probably not stretch far from the center. If this does
happen, the minimal bounding sphere will increase. To a certain extend, this must be allowed, since
the backbone does extend the minimal bounding sphere from time to time, so with a threshold based
on the current (approximation of the) bounding sphere the tree can be pruned. The minimal size for
every structure size is kept, as a reference. If the radius of the minimal bounding sphere of the structure
is larger than the radius of the smallest minimal bounding sphere that is found, r, multiplied by factor
α, this structure can be pruned. The approximation of the radius of the minimal bounding sphere
is calculated by taking the minimum of these three approximations: Ritter’s Algorithm, Bounding
Bubble and Bounding bubble with center of gravity. The overview of the algorithm, is shown in
Algorithm 3.

Algorithm 3: MBS-pruning based on energy.

Data: (Intermediary) Protein structure X in PDB-format and array S with the smallest minimum
bounding sphere found for that specific sequence length

Result: Confirmation whether this structure can be pruned.
begin

rR ← RittersAlgorithm(X)
rBB ← BouncingBubble(X)
rBBCG ← BouncingBubbleWithCenterOfGravity(X)
rmin = min(rR, rBB , rBBCG) /* Get minimum of all 3 radii */

l← GetSequenceLength(X)
if r ≤ Sl then

if r ≤ α · Sl then /* If a new minimum is found for a certain length */

Sl ← rmin /* the minimum for length l needs to be altered */

return false
else

return true

end
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5.5.3 Sequence length and energy combined

The energy function is a good measure for probability of the structure and property for pruning.
However, this search technique is looking for the lowest energy. This results in a search between a
breadth first search and a depth first search and therefore it takes much time to find at least one
solution. In order to get results quicker, we introduce the length of the sequence (number of residues)
as part of the energy function. Since newly created structures are placed in front of the queue, the
program is favouring intermediary structures with low energy but not long sequences. This might be
a problem for some sequences as they might have an intermediary structure with relative high energy
which must be passed to get to the final low energy configuration. By favouring both energetically
stable sequences and long sequences, the computation time to actually get a full structure might
possibly decrease. We introduce two different Energy Adaptation Functions (EAF) using length l
and energy E as its input and the new energy En as its output. Using the Boltzmann distribution

(Equation 42) it can be seen that the probability of a structure, F (state), is proportionate to e
− E
kBT ,

where E is the energy in joules, kB is the Boltzmann constant and T the temperature. Now, let there
be 2 structures: X1 and X2, identical in shape, where both structures have energies E1 and E2, which
have the same energy: E1 = E2. Using the Boltzmann ratio (Equation 43) the ratio of them in a
mixture would be 1 : 1.

F (state) ∝ e
− E
kBT (42)

F (state1)

F (state2)
= e

E2−E1
kBT (43)

However, we would like the probability of a longer structure to be higher. To achieve this, we set the
ratio to 1 : x, e.g. the structure X2 is x times more likely to occur, where x is a scalar dependent on l
(Equation 44). Since the energy output of MDenergy is in kcal/mol we have to rewrite the equation,
resulting in Equation 46, where R is the gas constant, T the temperature in Kelvin and Na the
number of Avogadro. For all the experiments, T = 310.15K (37◦C) was used.

1

x
= e

E2−E1
kBT (44)

1

x
= e

E2· 4,184·10
3

Na
−E1· 4,184·10

3

Na
RT
Na kB =

R

NA
(45)

1

x
= eρ(E2−E1) ρ =

4, 184 · 103

RT
=

4, 184 · 103

8.314 · 310.15
= 1.622 (46)

1. Assume we would like to have ratio F (state1)
F (state2)

= 1
lα

. In order to get this ratio, the energies should
be changed. Using Equations 47-50, the energy and length of the sequence can be combined,
resulting in the new energy function f(E) = E − α

ρ
ln l. This will be called Energy Adaptation

Function 1 (AEF1)

1

lα
= eρ(E2−E1) (47)

ln l−α = ρ(E2 − E1) (48)

−α ln l

ρ
= E2 − E1 (49)

E2 = E1 −
α

ρ
ln l (50)

2. The second function is based on the ratio 1 : αl, where α is some scalar. Equation 51-54 show
the new energy function f(E) = E − l

ρ
lnα. This will be called Energy Adaptation Function 2

(AEF2)

1

αl
= eρ(E2−E1) (51)

lnα−l = ρ(E2 − E1) (52)

−l lnα
ρ

= E2 − E1 (53)

E2 = E1 −
l

ρ
lnα (54)
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5.5.4 Other optimizations

To speed up the program PITA, energy calculations were performed in parallel. 16 threads were used
to speed up the energy predictions. Also, the package MDenergy was slightly adjusted to avoid disk
activity and all the temporary structures were stored in main memory.

5.6 Experimental Setup

To test PITA, three datasets were created: AlphaFragments, BetaFragments and E.coliFragments. The
focus is on whether PITA can reproduce the secondary structure of the alpha helix and the beta sheet
and also if the structure of proteins of E. coli, the most widely studied prokaryotic model organism,
can be reproduced. The construction of these data sets was done using the following protocol:

1. AlphaFragments
A set of proteins was taken from the PDB-site, using the filter functionality of the PDB-site.
With this functionality one can specify a filter and it returns all the proteins from the PDB that
satisfy all the criteria in the filter. To reproduce alpha helices, all the proteins that contain alpha
helices are taken from the PDB. To guarantee quality structures, the dataset contains all the
structures with: (1) ScopTree Search for All alpha proteins, (2) Experimental Method is X-RAY
(3) Resolution is between 0.0 and 2.0, (4) Chain Type: there is a Protein chain but not any
DNA or RNA or Hybrid. Criterion (1) returns all proteins containing only one or more alpha
helices. All the structures of the resulting AllAlphaProtein-set are checked for their residues. If a
structure contains a residue other than the 20 most occurring residues, it is excluded from the set.
From this set, 15 sequences were excluded, with lengths ranging from 0-150, which will be the test
set. Since X-ray structure do not have the information of hydrogen atoms, the locations of all the
missing hydrogen atoms are estimated using our program CreateEntireProteins, which is based
on the guesscoord functionality of VMD. It estimates the location of the hydrogen atom based on
a template of the residue. CreateEntireProteins creates the data set EntireAlphaProteins. This
data set was an input for the program AnalyzePDBDataset which traverses all the structure,
calculating the angles and distances for all possible neighbourhoods up to neighbourhood size
7, as shown in Section 5.3. The output of this set is the data set AlphaFragments. The test set
is checked for continuity, entirety and whether the residues are correct. If not, the sequence is
discarded.

2. BetaFragments
The same method to create the AlphaFragments was used to create BetaFragments with the
one exception that (1) is equal to ”ScopTree Search for All beta proteins”, being all proteins
containing only one or more beta sheets.

3. EcoliFragments
The entire PDB data set was downloaded and the program FilterDataset was used to filter the
data set. FilterDataset uses a dataset of mmCIF files and a filter file as input and returns a data
set excluding all the structures not satisfying all the criteria in the filter file.The filter stated the
following specifics: Experimental Method is ’X-RAY DIFFRACTION’, the structure is of type
’polypeptide(L)’ (Protein containing only Levorotatory enantiomers) and the scientific name of
the organism of the source gene is ’Escherichia coli’, see Appendix 8 for the specific filter. The
result is checked for validity, hydrogen atoms are added and the test set is excluded like the
other data sets.

The result is 3 fragment sets and 3 test sets. The test sets are displayed in Table 4.
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Table 4: Test sets of the 3 data sets. Data set AlphaFragments has 8 test sequences, BetaFragments 5
and EcoliFragments has 6 test sequences. For each sequence, the length is displayed and distribution,
being the number of residues with maximum neighbourhood size X ∈ {1, 3, 5, 7}. For example, sequence
1NPL has 2 residues with a fragments list with maximum size 1 (first and last residue), 45 residues with
maximum neighbourhood 3, 26 residues with maximum neighbourhood 5 and 36 residues with maximum
neighbourhood size 7, adding it all up to 109 residues, its sequence length. The distribution gives an idea
of the overlap of the sequence and the sequences in the data set. *Sequence 2BRF was missing one residue
in its coordinate file. Since the database had many 5-size fragments of this sequence, the distribution of
the fragments made the protein interesting enough to keep it in the test set. The missing backbone atoms
were estimated using the average value of the surrounding backbone atoms. 3 atoms were added in this
manner.

Sequence type Sequence name Length Distribution
Size (1—3—5—7)

Alpha 1AIE 31 (2 — 23 — 6 — 0)
Alpha 1C26 32 (2 — 24 — 6 — 0)
Alpha 1ROP 56 (2 — 8 — 4 — 42)
Alpha 1R69 63 (2 — 50 — 11 — 0)
Alpha 2G7O 68 (2 — 60 — 6 — 0)
Alpha 2E1F 94 (2 — 82 — 10 — 0)
Alpha 1L3P 102 (2 — 81 — 19 — 0)
Alpha 1S3P 109 (2 — 9 — 6 — 92)
Beta 1JO8 58 (2 — 49 — 7 — 0)
Beta 1MHN 59 (2 — 48 — 9 — 0)
Beta 1PWT 61 (2 — 3 — 3 — 53)
Beta 2BRF* 101 (2 — 69 — 29 — 1)
Beta 1NPL 109 (2 — 45 — 26 — 36)
E.coli 1JCD 52 (2 — 47 — 3 — 0)
E.coli 2YLC 66 (2 — 64 — 0 — 0)
E.coli 1THO 109 (2 — 9 — 4 — 94)
E.coli 3A7L 128 (3 — 118 — 7 — 0)
E.coli 1GMU 138 (3 — 127 — 8 — 0)
E.coli 1I9D 138 (3 — 123 — 12 — 0)

To see the efficiency of the three MBS algorithms, a protein was folded using PITA and 1000 times
the MBS was calculated. The results are in Figure 20.
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Figure 20: The calculated MBS in Å for Ritter’s algorithm (RitterSphere), Bouncing bubble (Bounc-
ingBubble) and Bouncing bubble with center of gravity (COM). The data points are correlated: every
RitterSphere BMS-value has a correlating bouncingBubble BMS-value and COM BMS-value on the same
vertical line. The data points of RitterSphere are sorted ascending.

Table 5: The calculated LGA scores for all the sequences for K-pruning, showing the LGA scores for
different values of K, using a time out of 10 minutes for every prediction without energy calculation. A
’-’ means no prediction was given in time.

2 4 6 8 10 12 14 16
1GMU - - - 0.123654 0.121618 0.121618 0.11225 0.11225
1I9D - - - - - - - -
1JCD - 0.331685 0.331685 0.331685 0.327701 0.302335 0.302335 0.302335
1THO - 0.439712 0.548711 0.561992 0.561927 0.457536 0.457864 0.457492
2YLC - - 0.180736 0.180736 0.182395 0.184632 0.184632 0.184632
3A7L - - - - - - 0.12619 0.12619
1AIE - - - - 0.463441 0.452765 0.474347 0.487558
1C26 - - - - 0.448065 0.448065 0.448065 0.448065
1L3P - - - 0.167624 0.167367 0.167367 0.171405 0.453548
1MHN - 0.212107 0.212107 0.212107 0.212107 0.212107 0.212107 0.212107
1PWT 0.924005 0.924005 0.924005 0.924005 0.924005 0.924005 0.924005 0.924005
1R69 - 0.226909 0.234769 0.237339 0.238851 0.233409 0.237302 0.237302
1ROP - 0.563393 0.563393 0.563393 0.563393 0.563903 0.563223 0.563776
1S3P - 0.505985 0.502927 0.497335 0.497357 0.497357 0.49727 0.494124
2G70 - - - 0.290966 0.296814 0.296814 0.296814 0.296814
2E1F - - 0.501418 0.497822 0.492579 0.204813 0.204813 0.501824
1JO8 - - 0.227778 0.230576 0.231078 0.22523 0.236466 0.238053
1NPL - 0.209917 0.209917 0.212538 0.211817 0.211162 0.210026 0.209873
2BRF - 0.149269 0.150896 0.144884 0.148916 0.148208 0.14314 0.131589

If we were to predict a structure using PITA and gathered all the possible fragments for the all
the residues, every residue would have an average of 1000 potential fragments. Since this is infeasible
for us to use, the number of fragments must be reduced. Using K-pruning, the right K must be uses,
since a K too high would make the problem infeasible again but K too low could mean the correct
fold might not appear because of the steric hindrance pruning. In order to estimate a good K, for all
sequences the structure was predicted with different K, starting from 2 to 16, with step size 2. For
all the best solutions, the LGA score was calculated. Results are displayed in Table 5. From this we
can say that K = 14 will significantly decrease the possibilities and still gives the enough options to
create a solution.
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Table 6: LGA values of the best structures for different values of α. PITA was run without energy function,
K = 12 and a time limit of 1 hour per sequence. No value, in the table, means no experiment was run,
’-’ means the PITA was not able to find a solution within the time limit.

α 1AIE (31) 1L3P (102)
0 0.451920 0.171405

1.01 0.451920 -
1.05 0.451920 -
1.06 -
1.07 -
1.08 0.171405
1.09 0.171405
1.10 0.451920 0.171405
1.15 0.451920 0.171405
1.20 0.451920 0.171405
1.25 0.451920 0.171405

To reduce the search space, minimal bounding sphere (MBS) was proposed. As shown in Algo-
rithm 3, three functions determined the BMS. Since the Bouncing Bubble with center of gravity
was significantly worse than the other two, only Ritter’s algorithm and Bouncing Bubble were used.
Bouncing Bubble performed slightly better overall, but the results were very sequence specific. To
see the effect of the parameter α in the BMS-algorithm, two sequences were used: 1 short and 1 long
sequence. The results are displayed in Table 6. A second run of experiments was executed with all the
sequences and α = 1.01. For 17 of the 19 no difference was seen and the remaining 2 were worse than
the structures create without the BMS-pruning (not shown). From this and Table 6 no improvement
was seen and in the next experiments no BMS-pruning will be used.

Table 7: The length of the longest predicted structure for different values of α using Energy Adaptation
Function 1, trying to predict sequence 1L3P. K = 12 and time limit was set to 30 minutes.

α Maximum length
1 18

10 22
250 24
500 42

1000 61
2000 75
3000 101

Table 8: The length of the longest predicted structure for different values of α using Energy Adaptation
Function 2, trying to predict sequence 1L3P. K = 12 and time limit was set to 30 minutes.

α Maximum length
1 18
10 22
250 22
500 23
1000 61
2000 75
3000 101

PITA gets stuck in local minima when trying to find the 3D structure, especially with long se-
quences. To tackle this problem, in addition to MBS-pruning and steric hindrance, Energy Adaptation
Functions were implemented. The functionality was tested using the long sequence 1L3P. PITA itera-
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Table 9: Final protein predictions for all the test sequences. Both the LGA and DSSP were calculated
for the structures with the highest RMSD. the no-energy run was calculated with K = 14, BS = 0 and
a time out after 1 hour. The energy calculations were performed using K = 14, BS = 0, and a time out
after 1 hour. If a energy adaptation function was used to get the final structure, the EAF column depicts
which and the variable α. If the EAF is empty, no EAF was used to get the final result.

Sequence name LGA (no-energy) LGA (energy) DSSP (no-energy) DSSP (energy) EAF
1GMU 0.111801 0.123792 5.7971% 2.1898% F2(α = 5000)
1I9D - 0.104658 - 10.2190% F2(α = 3000)
1JCD 0.236466 0.354899 9.6154% 23.5294%
1THO 0.332176 0.195325 41.2844% 22.2222% F2(α = 3000)
2YLC 0.210317 0.199784 15.1515% 9.2308% F2(α = 3000)
3A7L 0.141406 0.119141 12.5% 11.0236% F2(α = 10000)
1AIE 0.498771 0.378648 25.8065% 16.6667%
1C26 0.477083 0.364881 25% 19.3548%
1L3P 0.171405 0.182049 17.6471% 19.8020% F2(α = 3500)
1MHN 0.226352 0.205408 13.5593% 5.1724% F1(α = 3000)
1PWT 0.937939 0.266237 62.2951% 15% F1(α = 1000)
1R69 0.240703 0.239342 23.8095% 22.5806% F2(α = 500)
1ROP 0.570111 0.250255 80.3571% 18.1818%
1S3P 0.498493 0.180756 57.7982% 30.5556% F1(α = 3000)
2G70 0.284909 0.303221 30.8824% 13.4328% F2(α = 3000)
2E1F 0.204813 0.159549 27.6596% 9.6774% F2(α = 3000)
1JO8 0.318223 0.194779 8.7719% 5.3571% F2(α = 3000)
1NPL 0.209961 0.149891 17.4312% 3.7037% F2(α = 3000)
2BRF 0.142763 0.139250 10.8911% 3% F2(α = 3000)

tively builds the structures and records the first predicted structures for all lengths. Thus we can see
the process of predicting an entire structure for specific values of α. For Energy Adaptation Function
1, the results are shown in Table 7, for Energy Adaptation Function 2, result are shown in Table 8.

Based on these experiments a final run of experiments was performed. For the no-energy calcula-
tion, all 19 sequence were predicted with one specific setting. For the prediction based on the energy,
no EAF was used initially, but if no structure was found, the following sequence of EAF’s was used
until a structure was found:

1. EAF 2, α = 100

2. EAF 2, α = 500

3. EAF 2, α = 1000

4. EAF 1, α = 1000

5. EAF 1, α = 3000

6. EAF 1, α = 3500

7. EAF 1, α = 10000

This order was used, because EAF 2 adds less ”length-energy” to the system with the same l and α,
and consequently giving more value to the actual energy.

All the experiments were run on the 32-core huisuil03 supercomputer, provided by the LIACS
(Leiden Institute for Advanced Computer Science).

6 Discussion

One of the challenging aspects of protein structure prediction is the dynamic of the entire protein. An
example of this dynamic behaviour is the disulphide bond that can occur when two cysteine residues
are close to each other. This behaviour is not modelled in PITA. With the no-energy prediction of
PITA, steric hindrance will prevent the two cysteines from being located next to each other and the
energy function will interpret the two residues as two repelling forces, and thus a (non-favourable)
high energy. For future work, these disulphide bonds could be modelled.
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Looking at Table 9, the most remarkable prediction are 1PWT and 1ROP. It must be said, that
the overlap of those sequences with the fragment database was more than expected: as is shown in
Table 4, many fragments with neighbourhood size 7 were found. This is also the case for sequences
1S3P, 1NPL and 1THO. In the case of sequence 1ROP, the publication date is from 1992, but after
this (1995-2013), 15 other sequence with 90%+ sequence similarity were published. With 1PWT,
a alpha-spectrin protein, many structures of the protein alpha-spectrin were measured for many
different species, resulting in the abundant description of that protein and thus multiple sequence in
de PDB data set. Since we only excluded one, the remainder can be used by PITA to predict the
structure.

The EAF was introduced because the energy model calculation became stuck in a local minimum.
Lets assume a function F(x) that represents the energy of all the intermediary structures of protein
X, with length x. This function F will be function with many local minima and maxima and PITA
must overcome all the local maxima to get to the other side, being the entire protein. Table 7 and 8
nicely depict this concept, since the lengths of the longest structure for those runs have almost the
same lengths: there is a local maxima near length 23, 61 and 75. The actual values of α in the EAFs
are somewhat misleading as the number represents a relation of 1:αl (and 1:lα), which in the most
extreme example is 1000128 (sequence 3A7L, Table 9). Mostly long sequences are harder to predict.
Future work could be to find another way to overcome the local optima. Also, the energy that was
calculated was the energy of a structure in a vacuum. This is not bad practice, but in vivo folding
occurs with an excess of water molecules around, which can stabilize some structures by forming
hydrogen bonds especially when polar residues are on the outside of the chain. This is not a new
concept and can be implemented in future versions of PITA.

The energy calculation of all structures was greatly dependent on the correct estimation of all the
hydrogen atoms by VMD, since these were not present in X-ray structures. The estimation of the
hydrogen is based on local descriptors and when applied to a tightly packed protein, some hydrogen
atoms will create a repulsive force, because of steric hindrance. Ultimately this will result in a high
energy for that protein. Because NMR techniques do observe hydrogen atoms, future research could
indicate what the results are when a dataset of NMR structures is used instead of accurate X-ray
structures.

PITA generates a lot of possible structures. It was decided to only save the predicted structure if
the RMSD value is better than previous best prediction for the random search. Consequently, that
research serves as an upper bound of the potential of PITA, based on the RMSD.

7 Conclusion

The protein structure predictor PITA has been created. The predictor was able to create existing
(true) structures by using steric hindrance pruning or by using the energy as a guide for probable
structures. Using the PDB and the package VMD, three clean datasets were created to form a basis
for the prediction. Using the predictor PITA the structure 1PWT was predicted with a LGA score
of 0.937939. Also, the secondary structure could be predicted with a score of 80.3571% for 1ROP.
Since all the predictions of the 19 sequences have > 0% score, we can conclude PITA is able to
create secondary structure, for both alpha helices as beta sheets, for all the test sets. The search of
PITA based on energy showed an improvement of a few predictions, but the search without energy
calculation performs better overall. Using a bounding sphere as a way to prune the search tree had
little to no effect. Problematic were longer sequences. Using the EAF, a prediction could be enforced,
but not for the prediction without energy. Therefore 1I9D could not be predicted. For future work,
the condition to prune or not can be dependent on BMS < α 3

√
r, modelled to the radius-volume

relation of proteins.
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8 Appendix: Created Programs

During our research a lot of programs have been written in order to get a good data set. In our final
results only a subset of these programs were used, since a few of the new programs made the old ones
obsolete. Here we display the entire framework and explain its functionality and how to use them.
Every program is listed and all its parameters are explained. All the programs were written for Linux
(Ubuntu) and must be executed using a terminal. In Figure 9 the entire framework is presented.

AnalyzeDataset

Usage:

./AnalyzeDataset <mmCIF-file directory> <output directory>

From a directory filled with mmCIF-files, all the dihedral information is distilled from the structures
and put in a the output directory.

AnalyzePDBDataset

Usage:

./AnalyzePDBDataset <mmCIF-file directory> <output directory>

The same as AnalyzeDataset but instead of a a directory filled with mmCIF-files the files are PDB-
formatted. All the dihedral information is distilled from the structures and put in a the output
directory.

CompareSS

Usage:

CompareSS <original-file> <prediction>

Compares the secondary structure of two 3D structures with one another. The first parameter is the
target file, the second parameter should be the structure of the prediction.

Usage:

./CreateEntireProteins.sh <PDB-dir> <output-dir>

With some molecules, hydrogen atoms are missing. This program predicts the coordinates of all
the missing atoms. Given the directory where all the pdb-formatted structures reside, the output
directory will be filled with the structure without any missing atom.

FilterDataset

Usage:

FilterDataset <mmCIF-filedir> <PDB-filedir> <output directory> <filter-file>

Using two input directories were structures are stored in mmCIF format (mmCIF-filedir) and PDB
format (PDB-filedir), this program traverses through all the structure and checks whether one of the
structures in the mmCIF file matches all the criteria in the filter file. If so, both the mmCIF-file and
PDB-file of the same structure are copied to the output directory. An example of a filter file:

File 1, Entity 2

’exptl’ ’method’ ’X-RAY DIFFRACTION’

’entity_poly’ ’type’ ’polypeptide(L)’

’entity_src_gen’ ’pdbx_gene_src_scientific_name’ ’Escherichia coli’

In the fist line, the number of file-specific criteria and entity specific criteria are stated. A criterion
is formatted in the following way:
’table_name’ ’column_name’ ’value’

using the structure of a mmCIF file. A criterion is matched if in table table_name the column
column_name has the value value. First all the file specific criteria are listed, than the entity specific.

LGA

Usage:

LGA <first-pdb-file> <second-pdb-file> <start> <length>

Calculates the LGA-score for two proteins of equal length. The file names of the two structures can be
used for parameter 1 and 2. The LGA can also be calculated for a continuous subset of the proteins.
The 3rd parameter states where to start the and the length parameter can be used to specify the
length of the sequence. Note that the begin of a sequence is 0.
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MergePDBmmCIF

Usage:

MergePDBmmCIF <mmCIF-file directory> <ProtonatedPDB-files_dir> <output directory> <hydrogen/all>

Merges the protonated information which is stored in a PDB formatted files with the same structure
without the hydrogen atoms which is in a mmCIF-formatted files and the result is store in an output
directory. Whether only missing hydrogen atoms or all missing atoms must be merged, can be set
with the last parameter. This program has been become obsolete.

PITA

Usage:

PITA <fragment-database-directory> <PSF-dir> <fasta-file> <no-energy/energy>

<function-number> <E-exp> <pruning-K> <BoundingSphere>

<ideal/fragment> <PDB model> <output-dir> <max-seconds>

This program predicts the three dimensional structure of the 1-dimensional sequence given by fasta-
file. It uses the fragments in the directory fragment-database-directory. The 4th parameter should
be energy for the energy search, no-energy for the search only based on the fragments and steric
hindrance. For the energy search, the directory with all the PSF files should be given (created with
CreatePSFs). With function-number, the EAF can be selected, 0 for none, 1 for EAF1 and 2 for
EAF2. The α for the EAF can be set using the E-exp. The pruning-K parameter can be set with
pruning-k, α of the BMS-algorithm can be set with BoundingSphere, if 0, this is turned off. The first
residue is created either based on the ideal shape of that residue or based on a fragment from the
database. To compare the final prediction, the (3D) target model PDB model must be given to the
program. All the predicted structure are saved in output-dir and after max-seconds, the program will
stop.
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9 Appendix: Framework Overview

Figure 21: The entire framework PITA, showing the flow-chart of data and programs. Cylinders represent
data sets, boxes represent programs

42


