Universiteit Leiden

Opleiding Informatica

Al Agents for the

Card Game Love Letter

Name: Jarno Huibers
Studentnr: 51403230
Date: July 15, 2016

Lst supervisor: dr. W.A. Kosters (LIACS)
2nd supervisor: dr. J.M. de Graaf (LIACS)

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University

Niels Bohrweg 1

2333 CA Leiden

The Netherlands

AT Agents for the Card Game Love Letter

Jarno Huibers

Supervisors:
dr. W.A. Kosters
dr. J.M. de Graaf

Leiden Institute of Advanced Computer Science
Universiteit Leiden

Abstract

Love Letter is a card game that can be played by two to four players.
The game does not use traditional playing cards but instead uses cards
specifically designed for the game. Players draw cards from the same
deck consisting of sixteen cards. They can use the effects of their cards
to eliminate other players to win the game, or win by being the player
that holds the card with the highest value when the deck is depleted.

In this thesis we look at different strategies for playing a game of
Love Letter with two players, with main focus on Dynamic Programming.
Using Dynamic Programming the chance of winning will be calculated
for every possible configuration of a game of Love Letter. The different
strategies will be compared to each other in order to try and find an
optimal strategy.

It is possible to create a table containing the chances of winning and
what action to perform for every possible configuration in reasonable
computation time, using Dynamic Programming. The Dynamic Pro-
gramming algorithm is the best strategy out of the strategies examined
in this thesis.

Contents

Contents
1 Introduction

2 Game Rules
2.1 Classic Love Letter
2.2 Other Variants

3 Different Strategies
3.1 Simple Strategies Lo
3.1.1 Random Player
3.1.2 Monte Carlo Tree Search
3.1.3 Strategic Player
3.2 Dynamic Programming
3.2.1 Love Letter Implementation
3.2.2 Operation Example
3.2.3 The Used Formula
3.2.4 Handling Different Card Effects

4 Results
4.1 Simple Strategies
4.2 Dynamic Programming
4.3 Full Comparisono

5 Conclusion and Future Work

References

21
21
22
28

29

31

1 Introduction

LOVE LETTER is a card game designed by Seiji Kanai and published by Alderac
Entertainment Group [1] that can be played by two to four players. Figure 1
shows the cover of the game. The cards used are not standard playing cards
but are designed specifically for this game. The player’s goal is to get their love
letter to the princess and eliminate the other players. They can accomplish this
by using the various effects of the different cards. The next section will explain
the rules and the course of a traditional game of LOVE LETTER.

The goal of this thesis was to create an agent that can play the game of LOVE
LETTER in an optimal way when the game is played with two players. In
order to do this a computer program that can play LOVE LETTER had to be
created. Multiple computer players were created with different strategies such
as a random player that always makes random decisions or a player that uses a
Monte Carlo Tree Search algorithm to make decision. The focus of this thesis is
a player that uses Dynamic Programming to find an optimal decision for every
possible configuration of the game. This player will make optimal decisions
assuming that the opponent also plays optimal.

The results of the different players will be compared by having them play
against each other or against a player using the same strategy. As the player
using Dynamic Programming is playing in an optimal way this player should
give the best result in terms of win percentage when playing against the other
players.

Figure 1: The cover of Love Letter, from [2].

In Section 2 the rules of the game LOVE LETTER will be explained. We will
look at the rules of a classic game of LOVE LETTER, going over every different
card and also take a look at some different versions of the game.

Next in Section 3 the different strategies for playing LOVE LETTER will be
explained. We will explain how these strategies work and how they are imple-
mented for playing LOVE LETTER.

In Section 4 the results of the strategies will be shown. We will show how well
these strategies do when playing against each other and the results found by
the Dynamic Programming algorithm.

Finally in Section 5 a conclusion will be given based on the results and we will
talk about some future work that can be done to expand upon this thesis.

This thesis is a bachelor thesis written for the Leiden Institute of Advanced
Computer Science (LIACS) at Leiden University. The supervisors for this thesis
are Walter Kosters and Jeannette de Graaf.

2 Game Rules

A classic game of LOVE LETTER can be played by two to four players and uses
sixteen cards in total. First the rules of classic LOVE LETTER will be explained
for up to four players even though this thesis will only focus on playing LOVE
LETTER with two players. When playing with four players all players play for
themselves, so the other three players are seen as opponents for a player. The
main difference between a game with two players and a game with four players
is that players can choose which opponent they want to target with a card
effect when playing with more than two players, but only have one choice when
there is only one opponent.

Usually a player has to win a certain number of games to be declared the
winner of LOVE LETTER which might influence players to target a player who
has already won the most games. This thesis will look at winning individual
games of LOVE LETTER as the player can only target one opponent.

We will also take a look at some different versions of LOVE LETTER.

2.1 Classic Love Letter

The game LOVE LETTER can be played by two to four players. The players
share a deck consisting of sixteen cards. First the deck is shuffled and one card
is put aside; this card will stay unknown to all the players so they won’t know
which card is excluded from the deck. Next all players will draw one card from
the deck. One player will be the active player, he! will draw one card from the
deck and then he will play a card from his hand. He always has two options,
being the two cards in his hand. All players can see which cards have been
played or discarded. After playing a card the next player in a given order will
become the active player. There are eight different types of cards in the deck
each with their own value ranging from 1 to 8. The different cards can be seen
in Figure 2. A description of each card will be given, naming them C; through
Cg with the index number corresponding to the value of the card:

e C; (Guard) - 5 copies - Target one player and name a card other than
C;. If that player was holding the said card he loses the game. When a
player loses the game he can no longer play any cards or be targeted by
other players.

e C, (Priest) - 2 copies - Target one player and look at the card in his hand;
only the active player can see the card.

e C; (Baron) - 2 copies - Target one player and compare the card in his
hand to the card in the active player’s hand, the player with the card

!The personal pronoun he refers here, and in future instances, to he or she.

with the lowest value loses the game. When it is a draw nothing happens.
Only the two players involved can look at the cards when comparing.

e C4 (Maid) - 2 copies - After playing this card no other player can select
the active player as a target until the active player’s next turn.

e C; (Prince) - 2 copies - Target one player; that player has to discard the
card in his hand and draw a new card. The active player can also choose
himself with this card’s effect, which means he will discard the other card
he was holding and draws a new card from the deck. All players can see
the discarded card.

e Cg (King) - 1 copy - Target one player; that player and the active player
swap the cards in their hands.

e C; (Countess) - 1 copy - Playing this card does nothing, however you are
forced to play this card if you have also got Cs or Cg in your hand.

e Cg (Princess) - 1 copy - When a player plays or discards this card he
loses the game.

The game is won by a player when he is the only player remaining. If the deck
is empty and there is more than one player remaining, the player with the card
with the highest value in his hand is the winner. When the values of these cards
are equal the player who has discarded cards with the highest total value wins.
If even these numbers are equal the game will end in a draw.

Figure 2: Eight different cards with their values, from [3].

2.2 Other Variants

There are many different versions of the game LOVE LETTER. Most of these
are just simple redesigns of the original game that use the same number of
cards with the same values and effects, only with different pictures and style.
However, there are some versions which use slightly different rules.

The different versions are usually based on popular movies or TV-series. In
a variant based on BATMAN players are awarded victory tokens when they
correctly guess an opponent’s card with card C; [4]. This means that when a
player has to win a certain number of games he will get closer to his goal by
guessing cards with card C; even if he does not win that round, as normally a
victory token is only given to whoever wins the round. This, however, does not
change anything when looking at only a single game of LOVE LETTER with
two players.

A version based on the TV-show ARCHER has more differences [5]. Certain
card effects allow you to choose to look at the card that was removed from
the game. Also card C; now has a new effect where the cards of every player
and the card that was removed from the game get shuffled and re-dealt to the
players.

Finally a version based on the movie THE HOBBIT uses a deck of seventeen
cards instead of sixteen [6]. This one extra card has a value of 0 and has the
special ability that at the end of a round the card’s value becomes 7. Also there
are now two different version of card Cs, one copy of each. The first version
is the same as in the traditional LOVE LETTER game. The second version
compares both cards just like the first version, only this time the player with
the card with the higher value loses. The rest of the cards are identical to the
traditional LOVE LETTER game.

Another variant of LOVE LETTER is called BiG LOVE LETTER, that can be
played with up to eight players. This variant uses two sets of cards of the
game LOVE LETTER. The total number of cards and the number of copies of
each different card depend on the number of players. When playing with eight
players there will be thirty cards in total. There will be twice as many copies of
every card except for the cards C; and Cg; there will always be only one copy
of these cards.

3 Different Strategies

In this section we will look at some different strategies that can be used by
a computer player to play LOVE LETTER. Here we will explain how these
strategies work and how they are implemented. First we will look at some
simple strategies for playing LOVE LETTER and then look at an, in some sense,
optimal strategy that uses Dynamic Programming.

3.1 Simple Strategies

We will look at three different simple strategies for playing LOVE LETTER. The
first strategy is a random player who will always make random decisions. The
second is a player that uses a Monte Carlo Tree Search algorithm to make his
decisions and finally a more strategic player who will decide what card to play
solely based on the cards he is given and whether he knows the opponent’s
card.

3.1.1 Random Player

The simplest strategy is a random player who will always make random decisions.
First the random player will check if he is forced to play a certain card. This
is the case with the effect of card C;. Also the random player will never play
card Cg as this is the worst move possible and will always result in a loss for
the active player. It is however still possible for the random player to cause
himself to lose by for example playing card C3 when the other card in his hand
has a low value. When playing card C; the guess the random player makes will
also be decided randomly. The random player will randomly choose a number
between 2 and 8. If the card played is card C; this is the guess the random
player makes. The same goes for the decision which player to target when
playing card Cs; the random player will randomly choose a number, 1 or 2.
Next, when the random player plays card Cs, he will target the opponent if
this number was 1 and he will target himself if the number was 2.

3.1.2 Monte Carlo Tree Search

The principle of Monte Carlo Tree Search is to search for the most promising
moves by playing out a certain number of random games with the current
configuration. For more information on Monte Carlo Tree Search see [7]. For
the implementation of the Monte Carlo player we use Basic Monte Carlo Tree
Search. The player using a Monte Carlo algorithm will first check if he is forced
to make a certain move. The player will never play card Cg. Also when both
cards have the same value, this card will automatically be played. If the player
is not forced to make a certain move he has two options, the two cards he is

holding. The program will first simulate playing the first card 1000 times. A
copy is made of the current game and current configuration and the first card
is played. Now the game will continue with both players playing as the random
player described before. When the Monte Carlo player has no knowledge of the
opponent’s card the card the opponent is holding will be a random card out of
the remaining cards per game. However, if the Monte Carlo Player does know
which card the opponent is holding, the opponent’s card will be this card for
all 1000 games simulated.

The program keeps track of the number of games won by the active player, so
the number of wins out of the 1000 simulated games played. The same will be
done for playing the second card, 1000 random games are simulated where the
active player first plays the second card and the rest of a game is played with
two random players. The card with the most simulated games won out of 1000
is considered the more promising card and this is the card that will actually be
played. When the number of wins for both cards is exactly the same the first
card considered will be played. An example of how this algorithm works can
be seen in Figure 3.

4421000 920/1000
M
VAR

Card1 Card2

Simulate Simulate

Figure 3: Monte Carlo Search Tree Example.

When the active player first has to decide on a move he is in the root node of
the tree in Figure 3. Playing the first card gave him a result of 442 games won
out of 1000 games played. Playing the second card gave him a result of 920
games won out of 1000 games played. This means the Monte Carlo player will
play the second card and the tree continues from there. Now in his next turn
the player again has to decide if he wants to play card 1 or card 2. He now has
to simulate playing 1000 games for both cards again. This is indicated by the
nodes Cardl and Card2 in Figure 3.

When the card played is card C; a guess has to be made. To decide what guess
will be made 1000 games are simulated for every possible guess where the first
move of the active player is playing card C; with the corresponding guess. The
guess with the highest number of wins is the guess that will be made. If the
other card the player had in his hand was not C;, the number of wins of the
value guessed with the highest number of wins will be compared to the number
of wins when playing the other card. This will decide whether card C; will be
played or the other card. When both cards the player is holding are C; the
best guess will only be determined once.

When the card played is Cs the player has to decide if he wants to target the
opponent or himself. In a similar way as with playing C; 1000 simulated games
are played for both different options. The option with the most wins will be
chosen if this number of wins is greater than the number of wins for playing
the other card the player was holding that was not Cs. If both cards were Cs
the best targeting option is only determined once.

3.1.3 Strategic Player

Finally a so-called strategic player is implemented that will play according to
a certain strategy based on the cards he is given and whether he knows what
card the opponent is holding. First the player will check if he is forced to make
a certain move and will never play card Cg. The main idea of this strategic
player is to always play the card with the lowest value. The cards with lower
values usually have a more immediate useful effect. Also when the deck has no
more cards left, the player holding the card with the higher value wins, so the
player will hold on to his higher valued cards.

If the player has knowledge of the opponent’s card he will use this knowledge
if it allows him to win directly after playing his next card. For example, if the
player knows the opponent’s card and one of the cards he is holding is Cy, he
will use C; to guess the opponent’s card and win the game. This of course only
works if the opponent’s card is of a value higher than 1. Another example is
when the player is holding card C3 and he knows that the value of the card
the opponent is holding is lower than the value of the other card he himself is
holding, he will use card Cs to win the game. Furthermore, if the player does

10

not know what card the opponent is holding he will only play card Cs if the
other card he is holding is either Cg, C; or Cg, otherwise he will play the other
card. This is the only exception where the player does not play the card with
the lowest value when the player does not know the opponent’s card.

The guess that is made when playing card C; is decided by looking at the
number of cards that are left of each copy. The player will always guess the
card with the most copies left if he does not know what card the opponent is
holding. If multiple cards have the same number of copies left the player will
guess the card with the lowest value.

If the player plays card Cs he will always target the opponent. The only time the
player will target himself is when the opponent played card Cy4 in his previous
turn, the player now has no other choice than to target himself.

3.2 Dynamic Programming

Dynamic Programming is used to solve a large problem by reducing it to
smaller, similar problems that are easy to solve, and this is done in such a way
that the smaller problems are solved first and only once. For more information
on Dynamic Programming see [8, Chapter 15].

3.2.1 Love Letter Implementation

When playing LOVE LETTER, if a player knows his move will be the last turn
it can be decided what card will be the best choice and how big his chances of
winning are. A function is used that will return 1 when the chances of winning
are 100%, 0.5 when the chances of winning are 50% and 0 when the chances
of winning are 0%. This function is used for playing LOVE LETTER with two
players. When the game will result in a draw 0.5 is given as the return value.
The function does not look at the total value of discarded cards and will result
in a draw when the last cards of both players are the same. When the current
turn is not the last turn the function will still be called but will be called
recursively until a return value is given.

The function definition is as follows: f (b1, b, ¢, A, maid, known, p). The param-
eters by and by are integers in {1,2,3,4,5,6,7,8} that indicate the values of the
two cards the player calling this function has in his hand; these are his two
options. The parameter A indicates the number of remaining cards and the
values of these cards. The remaining cards consist of the cards that are still
left in the deck, the card in the opponent’s hand and the card that has been
put aside in the beginning of the game. The parameter A actually is a vector
that consists of 8 different parameters which all indicate the number of cards
of a certain value, so A = (ay, as, as, ay, as, ag, a7, ag). If there are still 3 copies
left of card Cy, then a; will be 3. The parameter ¢ indicates the card that
the other player is holding in his hand; the player calling the function does

11

not know the value of this card, but this value will be used to calculate the
correct return value. This also means that card c is included as a remaining
card indicated by A. The value of ¢ can also be 0, this is the case when the
opponent has not yet made a move. Now the value of ¢ will not be necessary
to calculate the correct return value. The parameter maid is a Boolean that
indicates if the other player has played card Cy4 in his previous turn, as this
will affect the course of the game. The parameter known is a Boolean that
indicates whether the active player has knowledge of the card in the opponent’s
hand. This means that when known is set to true, the active player knows the
value of card c. When the value of ¢ is 0 the Boolean known will never be set
to true. Finally parameter p is an integer in {0,1,2} that indicates whether
the opponent has knowledge of the cards of the active player. When the value
of p is 1 the opponent has knowledge of card b, when the value of p is 2 the
opponent has knowledge of card by and when the value of p is 0 the opponent
has no knowledge of the active player’s cards.

When playing card b; a certain gain value is calculated and the same is done for
playing card by. This gain value for card by is calculated by a certain formula.
This formula calculates the gain value of playing card b; by looking at all
the possible cards the opponent could be holding and how big the chances
of winning are for the player playing card b;. This chance of winning will be
multiplied by the chance that the opponent was actually holding that card and
because this will be done for every possible card the summation of these values
becomes the gain value.

To calculate the chance of winning a function r is used that can be defined as
follows: r(by, be, i, A, maid, guess, known, p, prince). The parameters b; and by
indicate the values of the cards the active player is holding and are the same
as in the call to f. Function r simulates what happens when the player chooses
to play card by, so the first parameter of r is the card that is being played.
When the gain value for playing card b; is calculated the value of b; in r is
the same as the value of b; in f, however if the the gain value for playing card
b, is calculated the value of b; in r is the same as the value of by in f. The
parameter ¢ indicates the card the opponent is currently holding. Parameters
A, maid, known and p are the same as in the call to f. Parameter guess is
an integer in {2,3,4,5,6,7,8} used to indicate the guess that is made when the
active player plays card C;. When this guess is the same card as the one the
opponent is holding the player playing C; wins. This value is only used if the
card played is actually card Cq, so if the value of b; is 1. All different possible
guesses, so all cards other than C} have to be taken into consideration when
calculating the chance of winning. This means that r has to be used multiple
times when the card played is C;. Parameter prince is an integer that indicates
whether the active player targets the opponent or himself when playing card

12

Cs. The value of prince is 1 when the active player targets the opponent and 2
when the active player targets himself. Note that when the opponent played
card Cy in his previous turn he cannot be targeted and the player playing card
Cs will have to target himself.

When the result of function r is not a direct win or direct loss for the active
player the function f has to be called recursively, it is now called for the other
player. Because the other player does not know what card the first player is
still holding he will look at every possibility, however when calculating the gain
value for the first player the card he was actually holding needs to be taken
into consideration. This is done when the value of ¢ in the recursive call to
function f is not 0 but known is false. The function r will now be used again
to calculate the true gain value, which is explained later.

3.2.2 Operation Example

An example of the use of the formula is as follows. Suppose there are five cards
left and these cards are C,, C3, Cg, C7 and Cg, one copy of each. Player 1 has
two cards in his hand, these are C3 and Cg, and has to decide which card to
play. The remaining cards are Cy, C7; and Cg. One of these cards is the last card
in the deck, one of these cards is the card the opponent is holding and the other
card is the card that was put aside at the beginning of the game. Suppose that
in the previous turn the maid, card C4, was not played and neither player has
knowledge of the other player’s cards, the call to function f will be as follows:

f(3,6,0,0,1,0,0,0,0,1,1, false, false, 0).

The card that the opponent possibly has in his hand will be called ¢ and the
total number of possible remaining cards will be indicated by n. In this case n
will be equal to 3 because there are 3 cards remaining, one copy of Cs,, one copy
of C7 and one copy of Cg. Also p;/n will be used to indicate how many of the
remaining cards have value i, so p; indicates the number of cards with value 3.
The function will first look at the gain value from playing card Cs. The value
of p;/n will be 0 for i = 1,4 = 3,i =4,i =5 and i = 6. When i = 2 the value
of p;/n will be 1/3 and the function

r(3,6,2, A, false, 2, false,0, 1)

will return a value of 1 because of a direct win. Note that when the parameters
guess and prince of function r are not used they are given as their lowest
possible value. When ¢ = 7 the value of p;/n will be 1/3 and the function

r(3,6,7, A, false, 2, false,0, 1)

will return a value of 0 because of a direct loss. The same result is given when
i = 8, meaning that the total gain value for playing Cs is 1/3.

13

The gain value for playing Cg will be a bit more difficult to determine. We first
look at the value gained when i = 2. The value of p;/n will be % Next the call

r(6,3,2, A, false, 2, false,0,1)

will not result in a direct win or direct loss, so the function f will have to
be called again. The function r did however swap the values of the cards the
players are holding because of the effect of card Cg, so player 1 is now holding
card Cy and player 2 is now holding card C3. Now the opponent will make a
move. It is important to look at the card the opponent will draw in his turn to
determine what his two options are. The card the opponent possibly draws in
his next turn will be called j. First we look at j = 7. The call to function f
now becomes,
f£(3,7,2,0,1,0,0,0,0,0,1, false, true, 1).

This function call will give a value of 1, because the second player will always
win when the first player is holding card C,. To get the chances of winning
for the first player this value needs to be subtracted from 1 so in this case the
chance of winning for the first player will be 1 — 1, or 0. Next look at j = §;
the call to f now becomes,

f(3,8,2,0,1,0,0,0,0,1,0, false, true, 1),

which has a predetermined return value of 1, meaning that the chances of
winning are 0 for the first player. The total gain value when i = 2 becomes,
1/3%(1/2%x041/2%0), or 0.

Next look at ¢ = 7 and j = 2; the call to f becomes

£(2,3,7,0,0,0,0,0,0,1, 1, false, true, 1),

giving a value of 0 because playing either Cy or C3 will always result in a loss.
When playing card Cs, the player will lose because the opponent’s card has
a higher value than the other card in the player’s hand, C,. When playing
card Cy the player will lose because the deck will be depleted and the card the
opponent is holding will have a higher value than the card the player is holding,
Cs. When j = 8 the call to f becomes

f£(3,8,7,0,1,0,0,0,0,0,1, false, true, 1),

giving a value of 1 because playing card Cs will result in a win. The total gain
value when ¢ = 7 becomes, 1/3 % (1/2x 1+ 1/2%0), or 1/6.
Finally look at : = 8 and j = 2; the call to f becomes

£(2,3,8,0,0,0,0,0,0,1, 1, false, true, 1),

14

giving a value of 0 because playing either Cy or C3 will always result in a loss.
When j = 7 the call to f becomes

f£(3,7,8,0,1,0,0,0,0,0,1, false, true, 1),

giving a value of 0, because the second player will always lose if the first player
is holding card Cs. The total gain value when ¢ = 8 becomes 1/3 % (1/2% 1+
1/2 % 1) or, 1/3. This means the total gain value for playing card Cg becomes
0+1/6+1/3=1/2.

In conclusion, the total gain value for playing card C; was 1/3 and because
1/3 < 1/2 the player will choose to play card Cg instead of Cs.

3.2.3 The Used Formula

The general formula for calculating the gain value when playing b; is described
as follows :

8
gain(by) = Z 2&7’(1)1, ba, i, A, maid, guess, known, p, prince)
n
i=1

with 7(by, ba, i, A, maid, guess, known, p, prince) = 1 in case of a direct win for
the active player, (b, bo, i, A, maid, guess, known, p, prince) = 0 in case of a
direct loss and

(b, be, i, A, maid, guess, known, p, prince)

8
:Z g 1<1_f(7‘7.]7b27A_Z_j+b2’ma2d7kn0wn7p))
n —
=1

for other instances.

The parameters used in the recursive call to f will be explained later. The
formula looks at the chance that the opponent has a certain card ¢, indicated by
pi/n, and multiplies this by the return value of the function r. Eventually the
formula gives a value between 0 and 1 which indicates the chance of winning
when playing card b;. The same will be done for playing card by using the same
formula only now with every instance of b; replaced by by and vice versa. The
result will now be saved as gain(by) instead of gain(by). The first parameter of
function r is the card that is played but in function f both cards can still be
played. The result of the function f will be the following:

f(by, be, ¢, A, maid, known, p) = max(gain(b), gain(bs))

The value of b; will always be lower than or equal to the value of by. The order

15

in which b; and b, appear in f has no influence on the outcome of function f,
so in order to avoid calculating function f multiple times for the same state
of the game the first parameter will always be lower than or equal to the
second parameter. When the value of ¢ in the call to function f is 0, meaning
that the active player has no knowledge of his opponent’s card, the result of
the summation of using function r will be returned as stated in the formula,
however if the value of ¢ was not 0, the function r will be used again, only this
time no summation and fraction is used before calling r; the value of ¢ will be
the value of ¢ and the card played will be b; if b; gave a gain value higher than
or equal to by, otherwise the card played will be by. The result of this function
r will then be returned without the use of summations or fractions. There is
an exception when the gain values of b; and by are the same but the values of
using r for the second time for b; and b, are different. In this case the original
value of the formula will be returned.

The variable ¢ in the formula indicates the value of the card that the op-
ponent is holding; the formula will look at every possible card. The variable j
indicates the card the opponent will draw during his next turn. Furthermore
p; stands for the number of copies of card ¢ that are still remaining, so they
are either left in the deck, in the opponent’s hand or were put aside at the
beginning of the game; ¢; stands for the number of copies of j that are still
remaining with one copy of card ¢ no longer a remaining card. The variable
n stands for the total number of remaining cards at the start of the active
player’s turn, so n is the summation of the elements of vector A;

n=a+as+az+as+ a5+ as+ ar+ag

The function r is used to simulate playing card b;. The parameter b, is the
other card the player is holding in his hand and the parameter ¢ is the card the
opponent is holding. When the function r results in a direct win for the player
the gain value 1 will be returned for that value of i. When the function r results
in a direct loss for the player the gain value 0 will be returned for that value of
7. When neither of these cases occur the formula will look at the possibilities
for the other player and the function f is called recursively. Function r will
handle the effects that the different cards that are played can have. This means
that the values of maid, known and p can change based on what happens in
function r.

The function f will be called when the second player is holding card ¢ and
draws card j. The parameter ¢ will get the value of card by. The parameters
a; and a; corresponding to cards ¢ and j will be decreased by 1 because these
cards are not remaining cards to the second player and the parameter a,
corresponding to card by will be increased by 1 because this card is unknown to

16

the second player and is seen as one of the remaining cards. This is indicated
by A —i — j + by in the formula. The Boolean maid will be set to true if b;
was card C4 and will otherwise be set to false. Boolean known will be true if
the knowledge of the first player’s card was gained by the second player or if
the second player already knew the first player’s card and the opponent did
not play that particular card. Integer p will indicate whether the first player
gained or already had knowledge of the second player’s card. The gain value
that will be returned will be 1 minus the value of f. This is because function f
will return the chances of winning for the second player so 1 minus the value of
f will be the chances of losing for the second player, or the chances of winning
for the first player.

This call to the function f will give a value based on the parameters of the
function call. This is a value that has already been calculated by an earlier call
to function f according to the principle of Dynamic Programming. First the
values of function f will be calculated with the smallest number of remaining
cards. When the current turn is the final turn of a game the chances of winning
can be calculated. These values are stored in a big table. When f has to be
calculated with a bigger number of remaining cards the function will look in
the table when f gets called recursively as the value will already be there,
because there is a smaller number of remaining cards in the recursive call to f.
This means that the function will not have to calculate that value again. The
new value of f will then also be saved in the table. This means that bottom
up Dynamic Programming is used where a recursive call to f means that the
program will look in the table for an already calculated value of a smaller
problem.

The card for which the formula gives the highest gain value will be the card that
is actually played. This formula is used during regular instances but there are
certain exceptions based on the value of the card played b; or by. The function
r will handle these exceptions.

3.2.4 Handling Different Card Effects

We now distinguish the eight cases for card b;:

e When the card played is C; the formula will be used 7 times, once for
each possible guess that can be made when playing card C;. This means
that seven different gain values will be given. Every time the formula is
used a different value guess will be used, corresponding to the possible
guesses. Now when the value of guess is equal to the value of ¢ in the
formula, the function r will indicate a direct win and 1 will be returned.
If guess is not equal to ¢ the function f will be called recursively as stated

17

in the formula. Say that card b; is C; and card by is a different card, there
will now be eight different options instead of the usual two.

When the card played is Cy the active player will gain knowledge of the
card that his opponent is holding. This means that when the opponent
does not play this card in his next turn the player will not have to look
at every possible card the opponent could be holding because he already
knows what card the opponent is holding. The Boolean known indicates
whether the active player knows his opponent’s cards and integer p is used
to indicate whether the opponent knows one of the active player’s cards.
Now the gain values for playing cards b; and b, have to be calculated for
only that instance of variable i.

When the card played is C3z the card that is not played will be compared
to card ¢ in function r, so if b; is played by will be compared and vice
versa. If by is played and the value of by is higher than the value of i the
return value of r will be 1. If b, is smaller than ¢ the return value of r will
be 0. When the value of by is equal to the value of ¢ the formula will be
used as normal for that part of the calculation. Furthermore when this is
the case the players have knowledge of each other’s cards, meaning that
as long as the opponent does not play a card with the same value of the
card a player has knowledge of, the same applies for calculating the gain
value as with playing card Cs,.

When the card played is C4 the Boolean maid in the function f will be
set to true, otherwise this value will always be false. When this Boolean is
true the call to function r will never result in a direct win or a direct loss
in that call to function f, no matter what card is played. For instance,
the exceptions previously described when playing card C; or Cz will not
take effect and the formula will be used as normal. When maid is set to
true the active player still has to play and discard a card even though
the card will not have its usual effect when targeting the opponent. The
only exception is card C; where the active player will be forced to choose
himself as a target. After the second player has played a card the Boolean
maid will become false, unless the card played was also Cy.

When the card played is C; the formula will be used two times because
the player can target his opponent or himself. This is similar as with
playing card C;, but now two different gain values will be given. They
are calculated by using the variable prince to indicate whether the player
targets himself or the opponent. When prince has value 1 the formula
will change slightly because the card the opponent is holding will be
discarded and a new card is drawn. This means that the formula has to
look at the card the opponent discards, the new card he then draws and

18

the card he will draw in his next turn. The formula when playing card b,
now becomes:

8
gain(by) = Z r(by, be, i, A, maid, guess, known, p, 1)

with r(by, b, i, A, maid, guess, known,p,1) = 1 in case of a direct win for
the active player, r(by, by, i, A, maid, guess, known, p,1) = 0 in case of a
direct loss and for other instances

(b1, by, 1, A, maid, gquess, known,p,1) =

8 8
mg Q7 . . .
g — g — f(k,j,bo, A—i— j—k+ by, maid, known, p))

When prince has value 2 the formula will also change because the other
card the player was holding will be a new card, so the formula has to
look at the possibilities of what this card could be. The formula when
playing card b; now becomes:

8
gain(by) = Z (b1, ba, 1, A, maid, guess, known, p, 2)

with 7(by, be, i, A, maid, guess, known,p,2) = 1 in case of a direct win for
the active player, r(by, by, i, A, maid, guess, known, p,2) = 0 in case of a
direct loss and

(b1, be, i, A, maid, guess, known, p,2) =

8 8
My qj
E 7 E p— f(i, j,k, A—i— j,maid, known,p))

2
k=1 j=1

for other instances.

The variable my, represents the number of copies of card £ left remaining
with card 7 respectively card by no longer a remaining card. The value
of the variable ¢; will now be the number of remaining copies of card j
with one copy of cards ¢ and k£ no longer remaining. When prince is 1 the
function r will result in a direct win if the value of i is 8, otherwise the
function f will be called recursively as described above. When prince is 2
the function r will result in a direct loss if the value of by is 8, otherwise
the function f will be called recursively as described above.

19

e When the card played is Cg the function r will swap the value of the
other card the active player is holding with the card the opponent is
holding before calling function f. These are the cards by and ¢ when the
card played was b;. Furthermore the players now have knowledge of each
other’s cards meaning that the same applies for calculating the gain value
as with playing card Cs.

e When the card played is C; the formula will be used as normal, however
when card by is C; and card b, is either Cs or Cg card b; will have to be
played. When card by is C; and card by is Cy or Cg, card by, will have to
be played. Only the gain value for playing C; will have to be calculated
and no gain value will be calculated for playing Cs or Cg.

e When the card played is Cg the gain value will always be 0 and no
calculations will be needed.

20

4 Results

In this section we will take a look at the table that is built using the Dynamic
Programming algorithm. We will also look at the results the different players
get when playing against each other, by having them play a large number
of games. This way it will be possible to see which algorithm gets the best
results and also to check whether the beginning player has an advantage over
the player going second. First we will look at the results of the more simple
strategies and then at the results of the Dynamic Programming algorithm.

4.1 Simple Strategies

First the random player will play one million games against another random
player. The program keeps track of the total number of games won by the
beginning player and the number of games won by the second player. The
games that are neither won by the first player nor the second player resulted in
a draw. Each game uses a random permutation of the deck and starting cards.
The results can be seen in Table 1.

Starting Player | Second Player
516016 483 867

Table 1: Number of games won of random versus random.

When both players use a random strategy the player who makes the first move
has a slight advantage over the player making the second move. The percentage
of games won by the first player however is not much larger than the percentage
of games won by the second player; 52% won by the first player against 48%
won by the second player.

Next we look at a player using the Monte Carlo algorithm. This player will also
play one million games against a random player. The results can be seen in
Table 2. The computation time of playing one million games was 181m43.821s.

Monte Carlo Player | Random Player
526 314 473 595

Table 2: Number of games won of Monte Carlo versus random.

In all of the games played the player using the Monte Carlo algorithm was the
player to make the first move. The results show that the Monte Carlo player
does slightly better than the random player when playing against another
random player. Because the simulated games the Monte Carlo player plays are
played randomly, the Monte Carlo player does not do that much better than
the random player. However if a Monte Carlo player can make a move that will

21

win him the game immediately he will always make that move.
Finally we look at the strategic player, this player will also play one million
games against a random player. The results can be seen in Table 3.

Strategic Player | Random Player
717719 282243

Table 3: Number of games won of strategic versus random.

The strategic player was the first player in all one million games played. The
strategic player does a lot better than the random player or the Monte Carlo
player when playing against a random player. The strategic player wins just
over 70% of the games played. When playing LOVE LETTER luck can play a
big factor on the outcome of a game. This is why the random player still wins
almost 30% of the games played.

4.2 Dynamic Programming

Using the described formula it is possible to create a large table that contains
the chances of winning for the active player for all possible configurations of the
game. The computation time for creating this table is 13.500s, so the table can
be created in very reasonable computation time. The total number of non-zero
entries the table contains is 2604 215. These entries are all configuration of the
game LOVE LETTER that can possibly be reached and entries that are used to
calculate the chance of winning for other configurations. This table is contained
in a multidimensional array that can hold around 24 million values. An array
element has the following structure:

Chance [b1] [b2] [c] La1] [as] Las] [a4] Las] Lag] Lar] Las] [maid] [known] [p]

and will represent f(by, by, ¢, A, maid, known, p). This means that an entry of
the array contains the chance of winning when the active player has cards b,
and b, and the opponent has card c; the value c is 0 if the active player does
not know the opponent’s card. The remaining cards correspond to a; through
ag, maid is 1 if the opponent played card C4 in the previous turn, known is
1 if the active player knows what card the opponent is holding, ¢ will not be
zero if this is the case and finally p will be 1 if the opponent knows the active
player’s card by, 2 if the opponent knows the active player’s card by and 0
if the opponent has no knowledge of the active player’s cards. Only possible
configurations need to be calculated.

The card that has to be played in a certain situation is also saved in a similar
array: this is the card that gives the highest chance of winning. When the
chances of winning of both cards are equal, the first card, so the card with the
lowest value, will be chosen. The same is done for what guess to make when

22

the card chosen to be played is C; and who to target when the card chosen to
be played is Cs. When multiple guesses give the same chance of winning the
player will guess the card with the lowest value and when both options when
playing Cs give the same result the player will target the opponent.

Table 4 shows the results when the player has to make the very first turn of a
normal two player game of LOVE LETTER.

The first column indicates the number of cards that are still remaining. In the
beginning of the game the number of cards remaining will be fourteen. These
include the twelve cards still left in the deck, the card the opponent is holding
and the card that has been taken out of the deck at the beginning of the game.
These cards all have to be considered when making a decision.

The second and third column indicate the cards the active player is holding by
and by. The lowest card will always be indicated by b; to avoid getting multiple
entries in the table that are the same configuration as the order of the cards
the player is holding does not matter for the resulting chance of winning.

The fourth column shows the result of function f, this is the chance of winning
rounded to 6 decimal places. This number indicates the highest probability of
winning out of the two possible cards that can be played.

The fifth column shows which of the two cards a player using this table will
play. This is the card that gave the highest probability of winning out of the
two cards b; and by. The probability indicated in the fourth column corresponds
to playing the card indicated in the fifth column.

The sixth column shows the guess that has to be made when the card that has
to be played, so the card from the fifth column, is C;. The probability from the
fourth column corresponds to this guess. The seventh column indicates what
player to target when the card played is card Cs. A 1 in this column indicates
the player has to target his opponent and a 2 indicates the player has to target
himself with the effect of card Cs.

Most probability values are around 0.5, however there are some clear excep-
tions. When the player has card C3 and card Cg in his hand and C; was not
played by his opponent, his chances of winning will be 100%. This is because
there is only one card Cg so if you compare this card to another card, Cg will
always be the highest card. When the active player starts with two copies of
card C3 his chances of winning are exactly 50% because half of the remain-
ing cards have a value lower than 3 and the other half have a value higher than 3.

23

n | by | by | Chance | Play | Guess | Target
1411 |1 [0.523280 | 1 3

14 |1 |2 |0.474567 | 2

1411 |3 |0.395335 | 1 2

1411 (4 0510439 | 1 3

1411 |5 |0.565033 | 1 2

1411 |6 |0.635893 | 1 2

1411 |7 [0.683812 |1 2

1411 |8 |0.709889 | 1 2

1412 |2 | 0.487082 | 2

1412 |3 |0.413797 | 2

1412 (4 |0.525749 | 4

1412 |5 |0.464601 | 2

1412 |6 |0.626971 | 2

1412 |7 |0.667182 | 2

1412 |8 |0.638904 | 2

14 13 |3 | 0.500000 | 3

14 13 |4 |0.596214 | 3

14 13 |5 |0.736906 | 3

1413 |6 |0.857143 | 3

1413 |7 [0.928571 | 3

14 |3 | 8 | 1.000000 | 3

14 (4 |4 |0.547819 | 4

14 (4 |5 | 0487741 | 4

14 14 |6 |0.599004 | 4

14 14 |7 |0.608690 | 4

14 (4 |8 |0.651215 | 4

14 |15 |5 | 0.565066 | 5 1
1415 |6 |0.552904 | 5 1
14|15 |7 0415273 | 7

14|15 | 8 | 0.626603 | 5 1
1416 |7 |0.618673 | 7

1416 |8 |0.542204 | 6

14 |7 |8 |0.624939 | 7

Table 4: Chances of winning at the start of the game.

24

In order to show what the results will look like we will use the example from
Section 3.2.2, where the player was holding cards C3 and Cg and there were
three cards left, Cy, C; and Cg. The results will give:

[3] Chance[3][6][0][0][1][0][0][0][0][1]1[1]1C(o][0o][0]: 0.5 Play 6

The first number 3 on the left side indicates the number of cards that are
remaining. This is the value of n in the table. The other numbers between the
square brackets indicate the configuration of the array described before. The
player is holding cards C3 and Cg and does not know the value of the card the
opponent is holding. The card with the lowest value is always seen as the first
card and the card with the higher or equal value is seen as the second card,
as stated before. The last three numbers are all 0 because in the example we
assumed that both players had no knowledge of each other’s cards and the card
C4 was not played in the previous turn.

The first number next to the colon is the chance of winning for the active
player for that particular configuration assuming that the opponent plays in
an optimal way similar to the player. This means that the chance of winning
can be higher if an opponent is not playing in an optimal way. This number
will always be between 0 and 1, as this is the probability of winning. The best
chance of winning for this particular configuration is 0.5, which corresponds to
the value found in Section 3.2.2.

The card with the highest probability of winning is the card that has to be
played. This card is indicated by “Play” followed by the card that has to be
played. When this card is C; the card that has to be guessed is indicated by
“Guess” and when the card that has to be played is Cs the value after “Target”
indicates whether the opponent or the player himself should be targeted. This
number is 1 if the opponent has to be targeted and 2 if the player himself
should be targeted. In this case card Cg has to be played as shown in Section
3.2.2 and no guess has to be made, nor does the player need to decide who to
target.

In order to see how well a player would do if he would always plays the
card indicated by the table in the corresponding situation a player using the
table played one million games against a random player. The results of playing
one million games versus a random player are seen in Table 5.

Player using table | Random Player
723929 276 026

Table 5: Number of games won of Dynamic Programming versus random.

The player using the table was the starting player. The player using the table
wins more than 70% of the games played. These results are similar to the results

25

from the strategic player versus a random player. When you look at the cards
that need to be played in the fifth column of Table 4 almost always the card
with the lowest value gives the highest probability of winning, which was part
of the strategy used by the strategic player. The percentage of games won by
using Dynamic Programming is still higher than that of the strategic player,
however.

When the player has to play against another player that uses the table, these
are the results:

Starting Player | Second Player
569 022 430949

Table 6: Number of games won of Dynamic Programming versus Dynamic
Programming.

These results show that the beginning player has a bigger chance of winning
than the second player when both players play in an optimal way according to
the table. When looking at the results in Table 4, most beginning situations
have a probability higher than 0.5 meaning that the game will result in a win
for the first player. This is reflected in the result of playing one million games
between two players using the table as the first player wins around 57% of the
games. When you compare the percentage of games won by the starting player
to that of the starting player when both players are playing randomly, you
can see that the influence of making the first move is greater on the number
of games won when the players are playing using the table, so playing in an
optimal way.

Because the percentage of games won against a random player by the strategic
player and the player using Dynamic Programming are similar we now look at
the number of games won when the player using Dynamic Programming will
play directly against the strategic player. The results can be found in Table 7.

Player using Table | Strategic Player
619072 382081

Table 7: Number of games won of Dynamic Programming versus strategic.

The starting player is the player using Dynamic Programming. Even though
both strategies got similar results when playing against a random player the
player using Dynamic Programming does quite better than the strategic player
when they play directly against each other. However the beginning player has
an advantage over the second player as shown before, so we will also look at
what happens when the strategic player is the starting player. Table 8 will show
the results when the strategic player was the starting player.

26

Strategic Player | Player using Table
509 168 490 808

Table 8: Number of games won of strategic versus Dynamic Programming.

The number of games won by both players are now a lot closer than when the
player using Dynamic Programming was the beginning player. The strategic
player will now win slightly more games than the player using Dynamic Pro-
gramming, however this percentage of games won is much lower than that of
the player using Dynamic Programming when he was the starting player. This
percentage is also lower than the percentage of games won by the player using
Dynamic Programming when he played against another player using Dynamic
Programming and was the starting player.

In order to test the validity of the values of the array the player will play one
million games against another player that uses the table, where the two cards
the first player has in the beginning are set. The chance of winning indicated
in the table shows the chance a player will win when he starts with two specific
cards. So if you play one million games, where the first player always starts
with the same exact two cards, the percentage of games he wins should be
close to the chance of winning indicated in the table. For example if the player
always starts with one copy of card C; and one copy of card Cg the results of
playing one million games are shown in Table 9.

Starting Player | Second Player
723094 276 906

Table 9: Player starts with 1 and 8.

The percentage of games won by the starting player is around 72%, which is
only slightly higher than the probability of winning seen in Table 4, which is
around 70%. There are no games that result in a draw, this is because a game
can only result in a draw when card Cg is the card that was taken out of the
deck. Because the first player is holding card Cg, this is not the case and the
game cannot result in a draw. When the cards the first player starts with are
C; and C; the results of playing one million games can be seen in Table 10.

Starting Player | Second Player
690 221 309713

Table 10: Player starts with 1 and 7.

The percentage of games won by the starting player is now lower than when
the starting player had C; and Cg, just like indicated in Table 4. The starting
player wins around 69% of the games and the table indicates a winning chance
of around 68%.

27

4.3 Full Comparison

Table 11 shows the results of every different strategy playing against players
using every other strategy and a player using the same strategy. The strategy
on the left side of the table is the player that made the first move. The table
shows the number of wins by the starting player out of one million games
played.

X Random | Monte Carlo | Strategic Dynamic .
Programming
Random 516016 | 517986 391792 | 345708
Monte Carlo 526314 | 531099 361722 | 363481
Strategic 717719 | 709305 045783 | 509168
Dynamic Programming | 723929 | 656 660 619072 569 022

Table 11: Full comparison results.

The table clearly shows that the starting player always has an advantage.
When a player is playing against another player using the same strategy the
percentage of games won by the starting player is always over 50%. The better
the strategy the bigger this advantage becomes, as the percentage of games
won by the starting player gets higher when the strategy gets better.

The player using Dynamic Programming gives the best results as this player
has the most wins when playing against almost every other player. Only the
strategic player does better than the player using Dynamic Programming when
playing against a Monte Carlo player. The player using Dynamic Programming
expects optimal play from his opponent whereas the strategic player does not.
Luck is also a factor that determines the outcome of a game, hence why a
random player can still win a fair number of games against clearly superior
players. When playing directly against each other the player using Dynamic
Programming does get quite better results than the strategic player. Both
players win more games when they are the starting player, but the player using
Dynamic Programming wins significantly more games when he is the starting
player than the strategic player does, when he is the starting player.

28

5 Conclusion and Future Work

In this thesis we have looked at different strategies for playing the card game
LoveE LETTER. First we looked at some simpler strategies, a random player, a
player that uses a Monte Carlo algorithm and a player that plays strategically
by following certain guidelines to make his decisions based on the cards he is
holding. The main focus was on a player who uses Dynamic Programming to
determine the chance of winning for every possible configuration of the game
and what card needs to be played to get the highest probability of winning.
The results have shown that out of the strategies that are used in this thesis,
the strategy of using Dynamic Programming to determine the move with the
highest probability of winning gives the best results, in terms of games won.
Because this strategy always makes the decision that gives the player using this
strategy the highest probability of winning, this strategy can be considered an
optimal strategy.

The results also show that it is possible to calculate the chance of winning for
every possible configuration of LOVE LETTER with two players in reasonable
computation time.

LovE LETTER is a game that is partly influenced by luck. Both the strategic
player and the player using Dynamic Programming had similar results when
playing against a random player, however when they played against each other
directly the player using Dynamic Programming did significantly better. Be-
cause of the luck involved a random player will always win some games, even
when playing against an opponent that plays optimally.

In this thesis we have looked at playing LOVE LETTER with two players.
Because the game can be played with up to four players, for future work one
could first increase the number of players to three and later even to four. With
three players the number of configurations already makes a huge increase. If one
were to try using a Dynamic Programming algorithm, the algorithm not only
has to check a lot more possibilities when calculating the chance of winning
but also has more options, because the player has to decide who he wants to
target for every card.

Another idea for future work is to look at information a player can acquire
without the direct effect of a card. A good example of this is when an opponent
plays card C;, there is a good chance he also had either card Cs, Cg or Cg in
his hand, as these cards force a player to play C;. Playing card C; otherwise
does not have many advantages. When the opponent plays a certain card the
player can wonder why he would play that card instead of the other card in his
hand and this way determine what the other card could be.

Finally one could look at the different version of LOVE LETTER described
in Section 2.2. Bic LOVE LETTER is a version that can be played with up

29

to eight people where the number of copies of each card differs depending on
how many players there are. Perhaps more interesting is the version based on
THE HOBBIT, as this version is still similar to classic LOVE LETTER with
only a few extra cards. Especially interesting is the new card of value 3 that
compares cards with the lowest valued card winning as this will make the higher
valued cards less powerful and at the same time gives more use to lower valued
cards. This might make a strategy of always playing the lowest valued card less
efficient and drawing a high valued card might not be as advantageous. Looking
at the different versions can be done in the same way as we have looked at
classic LOVE LETTER. You can create a table in the same way using Dynamic
Programming without much extra computation time, only the function that
handles the card effects changes.

30

References

[1] Alderac Entertainment Group, Love Letter,
https://www.alderac.com/loveletter [retrieved 29.06.2016].

[2] BoardGameGeek, Love Letter,
https://boardgamegeek.com/boardgame/129622/1ove-letter
[retrieved 29.06.2016].

[3] S. Coggins, Love Letter Review, BoardGameGeek
https://boardgamegeek.com/thread/1007073/radio-review-31-love-letter
[retrieved 06.07.2016].

[4] BoardGameGeek, Batman Love Letter,
https://boardgamegeek.com/boardgame/168584/1love-letter-batman
[retrieved 30.06.2016].

[5] Alderac Entertainment Group, Archer Love Letter,
https://www.alderac.com/loveletter/products/love-letter-archer/
[retrieved 30.06.2016].

[6] Alderac Entertainment Group, The Hobbit Love Letter,
https://www.alderac.com/loveletter/products/hobbit-battle-five-armies/
[retrieved 30.06.2016].

[7] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. I. Cowling, P.
Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis and S. Colton, A Survey
of Monte Carlo Tree Search Methods, IEEE Transactions On
Computational Intelligence and Al in Games, 4 (2012).

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, Third edition, The MIT Press (2009).

31

