Universiteit Leiden

Opleiding Informatica

Gathering and Managing Spatiotemporal Data

For Tracking Animal Behaviour

Name: J.H. van Staalduinen
Date: September 5, 2016
1st supervisor: Prof. dr. J.N. Kok

2nd supervisor: Prof. dr. H.J. van den Herik

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University

Niels Bohrweg 1

2333 CA Leiden

The Netherlands

GATHERING AND MANAGING SPATIOTEMPORAL DATA
For TRACKING ANIMAL BEHAVIOUR

JAN VAN STAALDUINEN

Abstract

In this thesis, we investigate spatio-temporal data about the movements of animals. The thesis describes three
phases in the process of studying these movements. First, we describe ten methods of gathering the data,
including UvA-BiTS, ARGOS, mobile communication networks, LoRa, video feeds, LIDAR, RADAR, Time-of-
flight measurement, human observation and vibration sensors. Second, we describe four methods of visualizing
the data: moving points on a 2D map, a 3D graph, a Voronoi graph and a heatmap. We test these visualizations
with two data sets, one containing real data about Przewalski’s horses in Mongolia and one fictional, generated,
data set about moving ‘agents’ on the Oostvaardersplassen. Finally, we propose two methods by which the
data can be analyzed: average minimal distance over time and clustering. We use the nature reserve “The

Oostvaardersplassen” in The Netherlands as a case to test our methods.

ii

Acknowledgements

First of all, T would like to thank my supervisor Joost Kok for the weekly meetings and advise about the progress
of my work. Among all the things he did, they were a lot of help in selecting, from a huge body of compelling
research, topics to discuss in this thesis. I also thank Jaap van den Herik, for the very interesting orientating
discussions about some fascinating alternative research subjects I could have chosen: it’s a shame there was

only place for one bachelor thesis.

Furthermore, I thank the people that joined me, each of them working on their own thesis, in livening up the

desolate places that constitute study rooms during summer.

The board members of study association “De Leidsche Flesch” were very kind to provide us with an endless
supply of thesis-fuel (coffee). Finally, I thank my family for trying to understand what I was working on and

supporting me therein.

iii

iv

Contents

Abstract
Acknowledgements

1 Introduction

1.1 Tracking animals
1.2 Methodology
1.3 Problem statement
1.4 Summary of conclusions

2 Animal Tracking Technologies
2.1 Two categories of tracking methods
2.2 Direct tracking methods
UvA-BiTS L.

2.3 Indirect tracking methods
A)Videofeed

B

D) Time-of-flight measurement

E

)
)
C)LDAR . . o o oo
)
) Vibration sensors

F) Human observation

2.4 Chapter summary

3 Data visualisation

3.1 From graphs to spatio-temporal visualisations

iii

12
14
15
15
16
17
17
18
18

19

21

3.2 Sampledata
Movebank e e
Sample data set 1 - Przewalski’s horses in Mongolia
Sample data set 2 - Artificial agents roaming the Oostvaardersplassen

3.3 Visualizations L
3.3.1 Moving pointsona2D map Lo
3.3.2 3D Timegraph L
3.3.3 Voronoioverlay
3.3.4 Heatmap o e

3.4 Plotting a larger data set L

3.5 Cesium e

3.6 Chapter sUIMMATY« . o vttt e e e e e e e e

Data analysis

4.1 Obtaining knowledge from data
4.2 Distance over timeo e e
4.3 Clustering 0 e
4.4 Chapter SUMMATY« . o v vt et et et e e e e e e
Conclusions

5.1 Problem statement and Research questions L L.
5.2 Concluding remarks e
A Hoekendijk’s method e
B Horsesin Python L e
C Matplotlib script o o e
D KML converter script L e e e e e
E Przewalski’s horses study e e
F Voronoi plot script e
G Cesium example
H Viewingon alarge screen L e

List of Tables

List of Figures

References

vi

41
41
42
43
46

47
47
48
51
o4
99
61
63
64
69
71

73

75

77

Chapter 1

Introduction

In this chapter, we will give a short introduction on the field of animal tracking, as well as the topic we
will be discussing in this thesis. We describe the methodology we used and how it relates to a more standard
methodology for data science. We present our problem statement and research questions and, finally, provide a

brief summary of the conclusions of this thesis.

1.1 Tracking animals

In recent years, the tracking of animals has made great leaps through the growing use of electronic trackers.
There are three reasons for this progress: computing power increased, data gathering improved and processing
methods enhanced. So, the knowledge on the behaviour of animals across the globe enriched and became more

detailed each year.

That does not mean, however, that it is easy master the topic. The wide variety of different tracking methods
and techniques make it difficult to select the proper subtopic that is most interesting to investigate. Additionally,
as in general in the growing field of data science, the use of large sets of data to address a problem or obtain

some insight into a situation might not be an obvious step to take.

During talks with the Dutch Foresting Service (Staatsbosbeheer) about the wetlands called the Oostvaarder-
splassen (see Figure 1.2), it became clear to us that they were developing plans with regard to the data they
gathered. Furthermore, it is not only important to know the applicable methods of gathering data, but also
how one could visualize them and make the data useful and/or interesting for both the management and the

public. To this end, we wanted to know more about the tracking of animals and began research into the topic.

2 Chapter 1. Introduction

1.2 Methodology

As described by Van den Herik [vdH16](Dutch)®, one methodology for doing research in the field of data science

consists of 7 steps:
1. Gathering
2. Cleaning
3. Interpreting
4. Analysis
5. Visualising
6. Story telling
7. Emergence of new paradigm

These steps are visualised in Figure 1.1. From the fifth step, visualisations, three alternate routes can be
taken: 1) the data gathering has to be changed, 2) from the visualisations, we can interpret the data and 3) by
analysing patterns in the visualisations, conclusions can be distilled. In this thesis, we focus on three steps in

this methodology: 1) Gathering, 4) Analysis and 5) Visualising.

Chapter 2 Chapter 3 Chapter 4
- Our methodology: Gather Visualise Analyse
data data data
- Data Science p—
. . ; q g fef f gence of
methodology: Gathering Cleaning Interpreting Analysing Visualising Story telling T e

t 1\‘

\ 2

3

Conclusions

Figure 1.1: Our research methodology.

The research for this thesis was thus divided into three phases. In the first phase, we tried to identify different
technologies that can possibly be used to track (larger) animals across a wetland. Then, for each technology
we determine how well it performs and how suited it is for our case. In the second phase we looked at some
interesting ways in which the data can be visualised to aid the management or spark interest for the wetlands

in the public. In the third phase we analysed the data using the power of a computer.

IThe description of this methodology in the cited essay omits the first step ‘Gathering’ as it assumes the data set is already
present.

1.3. Problem statement 3

This trichotomy is reflected in the chapters. In chapter two, we describe the techniques for tracking animals.
We go into some proven, tried-but-true, methods such as human observation and GPS trackers, but also some
methods that are less obvious such as a video feed that might be used to produce a stream of GPS data. In
chapter three, we introduce two sample data sets, one of which we created ourselves, and use these to test a
number of visualisation options. The third phase of our research is reflected in the fourth chapter, where we

analysed the data using the computer.

In the fifth chapter, we conclude this thesis by providing summary and conclusions of our work and propose

some directions for further research.

1.3 Problem statement

As explained in Section 1.1, we are looking to gain knowledge about the field of animal tracking and the use of

spatio-temporal data therein. We express this goal in the following problem statement:

Problem statement: How can we use spatio-temporal data of animals in wetlands to aid management and

interest the public?

As we described in Section 1.2, the methodology we chose leads to three questions around which we have focused

our research to find an answer to the stated problem:

Research question 1: How can we gather spatio-temporal data of animals in wetlands?

Research question 2: Which methods can be used to visualize the spatio-temporal data?
Research question 3: Which methods can be used to analyse the spatio-temporal data?

In our final chapter, Chapter 5, we will combine the knowledge we gained in research for this thesis to answer
these questions and thereby distill a conclusion regarding the problem statement. In the next section, Section

1.4, we will already give a summarised version of this chapter.

1.4 Summary of conclusions

In Chapter 2, we find that mobile operations networks, LoRa or the UvA-BiTS system work best for tracking
animals and gathering the spatio-temporal data. Using a video feed might be interesting, but this idea needs

further development.

In Chapter 3, the testing of data visualisation provided us with interesting graphs. In particular, the Voronoi

diagram proved capable of nicely visualising the distances between the horses. In combination with the analyses

4 Chapter 1. Introduction

of the average distances as produced in Chapter 4, this might show a useful way of continually monitoring
flocking behaviour in a group of animals. The heatmaps we generated are useful to monitor another aspect of
the nature reserve. They can be used to 1) find much used routes the animals take and 2) reveal areas that are

very attractive to the animals.

In Chapter 4, we see that monitoring distances in flocks of animals and finding clusters of animals might
be interesting to test on real-life data, but that our fictional data set is too predictable to show interesting

behaviour.

Case: The Oostvaardersplassen

Figure 1.2: The Oostvaardersplassen is a nature reserve in the Netherlands, managed by the State Forestry
Service. It is located in a polder created in 1968. This means that is a relatively new ecological structure. One
of the goals of this reserve is to re-create a “truly wild’”’ nature as would be found in the Netherlands some two
hundred years ago, before the Industrial age. Another is to gain knowledge of self-preserving ecosystems.

Chapter 2

Animal Tracking Technologies

In this chapter, we describe the methods available for tracking animals. We make a distinction between
methods that use a tracking device that is planted on animals (‘direct’ tracking) and methods that monitor
and animals from afar (‘indirect’ tracking). We evaluate four direct tracking methods and siz indirect tracking
methods. In evaluating direct tracking methods, we focus on the technology by which information is sent to the
processing station instead of on the tracking device itself. After each evaluation, we give the advantages and

drawbacks of that method. Finally, we combine this knowledge to distill a conclusion.

2.1 Two categories of tracking methods

Technologies for tracking animals can be divided into two main categories: (a) direct tracking, whereby animals
are tracked by placing a tracking device on the animal and (a) indirect tracking, whereby animals are tracked

from afar (see Figure 2.1).

(a) Direct tracking (b) Indirect tracking

Figure 2.1: A direct tracking system (a) works by placing a device on an animal, while an indirect tracking system (b)
uses a device that tracks the animal from afar.

6 Chapter 2. Animal Tracking Technologies

We start by looking at different technologies to transmit gathered data to a base station in Section 2.2. We do
not list all possible tracking devices that could be bought and fitted to an animal, because they all basically
fulfil the same function: find the geographic location and send it to a base station. As they do differ in the way

they send their data to this base station, we highlight four available options.

Intuitively, indirect tracking might be preferred over direct tracking because it causes less of a violation for
the animal: the animal does not have to be caught to place a transmitter, we could track it from a distance.
Furthermore, using indirect tracking we can probably monitor multiple animals whereas a tracking device placed

on a single animal only traces that single animal. We explore six possibilities of indirect tracking in Section 2.3.

Finally, in Section 2.4, we combine and distill the information we found and explained in these sections. We
conclude by comparing how suitable the methods are in our case. Included in this section is a table of the
advantages and drawbacks of each method. The advantages and drawbacks of each method are also summarised

at the end of their sections.

2.2 Direct tracking methods

In this section, we describe tracking methods that use a tracking device placed on animals. We will focus on the
technologies available to send the tracking data from the tracker to a receiver and not go into detail about the
large body of different commercially available GPS tracking devices. There are quite a number of technologies
available for sending the gathered data to a base station or processing unit. We describe four such technologies:

A) UvA-BiTS, B) ARGOS, C) LoRa and D) Mobile communications networks.

A) UvA-BiTS

At the University of Amsterdam, a research program is focused on developing and maintaining a system for
tracking birds, called UvA-BiTS (University of Amsterdam Bird Tracking System). The research program
started with a paper in 2013 by Willem Bouten [BBSBC13]. Since then, the system has been used and is in use

to track birds from a number of different species.

The system consists of trackers, base stations and relays (see Figure 2.2). The GPS trackers are sufficiently small
to be worn ‘as a backpack’ by medium-sized birds. They contain a small memory unit, on which spatiotemporal
data is stored during periods the bird is out of reach of the base or relay stations. In the next few paragraphs,
I will describe the system components in further detail. First, I will describe the sensor that is placed on the
animal. Second, I will describe the relay station used to transfer data from the sensor to the base station.

Finally, I will describe the base station.

1See http://www.uva-bits.nl/publications/, consulted July 6th, 2016

http://www.uva-bits.nl/publications/

2.2. Direct tracking methods 7

Bird w/ tracker Relay Base station

Figure 2.2: A graphical overview of a set-up of the UvA-BiTS field unit using one relay.

Sensor
The sensors come in a variety of sizes, although they roughly share the same subsystem that consists of a battery
powered by a solar panel on top, 32MB of flash memory and some sensors. The different models are suited to

different classes of birds (see Figure 2.3). See Table 2.1 for a summary of the tracker specifications.

Due to the battery being powered by a solar cell, it will recharge during flight or when situated in sunny
conditions. By being able to recharge on-the-go the tracker can operate for very long periods away from the

base station. The battery capacity is dependent on the size of the sensor.

All sensor data is stored on a small 32MB flash memory chip. By doing this, the data can be gathered even
when the bird is out of range of a base station. As many birds migrate south for the winter and even considering
the very large transmission area that can be created using a base station and relay stations, this is out of reach.
Once a bird moves into a transmission zone, its data is transferred to a base station and freed up for re-use.

The flash memory is capable of storing 500,000 GPS fixes.

The tracker contains a number of sensors for gathering spatiotemporal data. Apart from the aforementioned
GPS sensor, it also contains a temperature sensor, a tri-axial accelerometer and optionally a barometric pressure
sensor. The accelerometer measures the acceleration in three dimensions with a frequency of 20 times per second.
Noticably, flapping flight can be seen in the data, as this shows up as a periodical change in vertical speed (see

Figure 2.4).

Once the bird moves into a reception area, the tracker starts to communicate with base and/or relay stations
using its ZigBee? radio module. Being a transceiver, it can both send and receive data. The tracker can now
both send the gathered spatiotemporal data to the base station and receive new instructions on measurement,

e.g. sample frequency. By reducing the measuring frequency, the bird can be tracked longer without visiting a

2ZigBee is a wireless communication protocol. See http://www.zigbee.org/.

http://www.zigbee.org/

8 Chapter 2. Animal Tracking Technologies

Figure 2.3: A falcon wearing a UvA-BiTS tracker (a) and various models of UvA-BiTS trackers compared to a 50
eurocent coin for scale (b). Both images: UvA-BiTS website (http://www.vva-bits.nl/)

3

b & 0w

:D 0s 1 15 2 25 R
time (9ec)

)

2

m - P— |

e

[}

'

2 . A A .

o os ' 5 : as E)
tme (se0)

Figure 2.4: Output of the accelerometer in a UvA-BiTS tracker. The first graph shows the acceleration in terms of g
during flapping flight. The second graph shows acceleration in terms of g during gliding flight. Both images: UvA-BiTS
website (http://www.uva-bits.nl/)

Size | 10.9 cm? — 87.8cm?
Weight | 7,5 —-450 g
Power source | Solar panel
Battery capacity | 65 — 860MaH
Battery type | Lithium polymer battery
Communication | ZigBee two-way radio transceiver
Storage | 32MB flash memory
Sensors | GPS, temperature sensor, 3D accelerometer (20Hz), barometric
pressure sensor (optional)

Table 2.1: UvA-BiTS sensor specifications

http://www.uva-bits.nl/
http://www.uva-bits.nl/

2.2. Direct tracking methods 9

reception area as the memory size is fixed.

Base station

The base station, a portable computer such as a laptop connected to a small antenna, is used to coordinate the
gathering of data. The laptop runs software specifically designed for this task, by which received data can be
stored in files and propagated through the UvA-BiTS ground station network. It also acts as an instruction
interface with the tracker, by providing the user with a graphical means to alter measurement settings and send

the renewed instructions back to the tracker.

The laptop connects through the internet (DropBox) with UvA-BiTS’ Virtual Lab, in which large amounts of
data can be stored and processed. The data is then stored in a central database, from which visualizations can
be created. One of the options is to export the data to a KML file to be used in Google Earth. The database

can also be queried by using Structured Query Language (SQL) or a graphical query builder.

Relay station

The reception area can be enlarged by using one or more relay stations. By using these signal repeaters,
reception areas of up to hundreds of square kilometres can be realised. The relay stations are designed to be
used extensively in outside conditions, as they are weather-proof and can operate up to three months on one

battery pack.

Advantages Drawbacks

Small sensors, well-developed working environment No continuous tracking information once target

leaves reception area

B) ARGOS

ARGOS is a system for retrieving positional data from trackers through the use of satellites [Cla89]. Dating back
to 1989, it still in popular use and subject to active development today. The project was originally launched in
a collaborative effort between the French Space Agency CNES and the American Space Agency NASA, while

also involving the American National Oceanic and Atmospheric Administration (NOAA).

The ARGOS system consists of a “constellation of low Earth orbit (LEO), polar-orbiting satellites, a global
network of terrestrial receiving stations, two data processing centers for continuous, round-the-clock operations”3
(see Figure 2.6.a) and a series of trackers, in many sizes and shapes. Its main advantage is that the network

can be used on every location of the Earth.

3See http://www.argos-system.org/web/en/333-why-choose-argos.php, consulted July 6th, 2016

http://www.argos-system.org/web/en/333-why-choose-argos.php

10 Chapter 2. Animal Tracking Technologies

Instruments

The current ARGOS hardware is the third iteration of the project, aptly named ’ARGOS-3". The earliest
sketches surfaced in 1997 and the system was delivered in 2002, receiving a software update in 2004. The
instrument was extensively tested by Astrium and EUMETSAT, after which it has been deployed aboard the
Metop-A (launched in 2006) and Metop-B (launched in 2012) satellites (see Figure 2.5). A third Metop satellite
under the EUMETSAT Polar System and carrying ARGOS-3 hardware is to be launched in October 2018.
Alongside these European satellites, the ARGOS-3 hardware was sent into space aboard the NOAA-19 satellite
on February 6th, 2009. According to an official document introducing ARGOS-3, plans exist(ed) for one more
flight plan aboard a then yet to be confirmed fifth satellite.*. This fifth satellite seems to be the SARAL satellite
of the Indian Space Agency ISRO and CNES. SARAL stands for Satellite with ARgos and ALtiKa and was
launched on February 23rd, 2013. Together with the two satellites that still carry ARGOS-2 hardware, this

brings the total number of active ARGOS satellites to six (see Table 2.2).

Figure 2.5: An artist’s rendition of a Metop satellite, which are used to carry ARGOS hardware. Picture: European
Space Agency

Satellite Launch date Hardware
SARAL 25 February 2013 Argos-3
METOP-B | 17 September 2012 | Argos-3
NOAA-19 6 February 2009 Argos-3
METOP-A | 19 October 2006 Argos-3
NOAA-18 | 20 May 2005 Argos-2
NOAA-15 13 May 1998 Argos-2

Table 2.2: The six currently operational satellites that carry ARGOS hardware, in decreasing order of launch date.
Note: NOAA-19 was called NOAA-N’ (NOAA-N Prime) before launch.

4Source: http://www.argos-system.org/files/pmedia/public/r286_9_argos3_metop_en.pdf, consulted July 23rd, 2016

http://www.argos-system.org/files/pmedia/public/r286_9_argos3_metop_en.pdf

2.2. Direct tracking methods 11

The data trail

The data gathered by the six satellites is sent through the air to any of the nearly 70 ground receiver stations
located around the world. There are three main receiver stations: one in Svalbard (in Spitsbergen, Norway),
one in Fairbanks and one in Wallops Island (both in the United States) which together receive all the messages
collected by the satellites in their orbit, providing worldwide coverage (see Figure 2.6.b). The satellites send
their data to all receiver stations (main or otherwise) within their reach, a circle of 5000km in diameter across

the surface of the Earth.

Once a transmitter is within reach of a satellite, it stays within sight of it roughly 10 minutes. The time between
two messages depends on the type of the transmitter, but ranges between 90 and 200 seconds. The satellites
move across each of the poles approximately 14 times a day. The trajectory of a satellite shifts about 2800km
each revolution, measured at the equator. Thus, the trajectories overlap each time. As 14 %28 % 10% &~ 39 % 10%km
and the Earth’s circumference measures 40,075km [Bal09], this corresponds to just under one global sweep per

satellite a day.

In ‘regional mode’, the network of regional stations receives the data from the satellites close to realtime: the
satellites try to send their data immediately to a receiver station that is in range. However, not every place on
earth is within reach of a regional station, and global coverage is thus not guaranteed. In ‘global mode’, the
data gathered by the satellite in its orbit is sent to one of the main receiver stations once it is in range. This

way, global coverage is achieved.

Each of the ground receiver stations sends their data further on to one of the two processing stations; one
operated by CLS®, a subsidiary of CNES, in Toulouse, France and one in Washington, USA, operated by
CLS America which is itself a subsidiary of CLS. Once processed, the data can be accessed by the scientists

conducting the study.

Determining the position of a tracker

The ARGOS satellites can perform a location analysis based of a transmitter by measuring the Doppler shift on
its transmit frequency [VMRF02], making use of the change in distance between the satellites and transmitter
during their interaction. When the distance is decreasing, the transmit frequency as received by the satellite
is higher than it actually is and would be measured when the distance remains static. By measuring Doppler
shift, an accuracy of up to 150 metres can be achieved. When the transmitter also has a GPS sensor, the two

position measurements can be combined to achieve an accuracy of a few meters.

Advantages Drawbacks

Small sensors, well-established research program, global Real-time tracking only within certain areas

5CLS: Collecte Localisation Satellites

12 Chapter 2. Animal Tracking Technologies

E‘t.—‘
L Ors
1 esram

Wallops Island, USA

(b)

Figure 2.6: The ARGOS system makes use of satellites to receive data from transmitters and then sends it via receiver
stations to its processing centres (a). Image: ARGOS website®. In (b) the three main receiver stations are shown on a
map (using the Cassini-Soldner projection). For reference, a red circle measuring 5000km in diameter is drawn with the
North pole as its origin.

C) LoRa

Several wireless communication technologies are currently being developed for use in Internet of Things networks,
network standards designed with the intention of connecting objects to the internet. These technologies include

for example LoRaWAN, Bluetooth 4.0 and WiFi HaLow (IEEE 802.11ah) [APN12].

While these technologies (and many of their kind) differ in implementation, they have the same goal: providing
a low energy data transmission link over a large range. Minimizing the energy cost is essential for long-term
deployment of sensors: they must be able to operate for extended periods of time on a small battery charge.
By providing a long range link, networks can easily be deployed on a large scale, such as the city wide coverage

in Westland® and Amsterdam [Blal5].

LoRa or LoRaWAN is an abbreviation of Long Range [Wide Area Network] and is being developed and promoted
by the LoRa Alliance’, a non-profit open association. Several large companies, e.g. HP, IBM, Cisco and ARM?
are a member of the LoRa Alliance. According to their website, the Alliance is “collaborating together and
sharing experience to drive the success of the LoRa protocol, LoRa WAN, as the open global standard for secure,

carrier-grade IoT LPWA connectivity”.

LoRaWAN makes use of transmitters that can be placed on objects (IoT-objects) and access points. The IoT-

6See http://www.m2mservices.nl/nl/nieuws/m2m-services-rolt-lora-netwerk-uit-voor-het-westland
"See https://www.lora-alliance.org/, consulted July 6th, 2016
8See https://wuw.lora-alliance.org/The-Alliance/Member-List, consulted July 6th, 2016

http://www.m2mservices.nl/nl/nieuws/m2m-services-rolt-lora-netwerk-uit-voor-het-westland
https://www.lora-alliance.org/
https://www.lora-alliance.org/The-Alliance/Member-List

2.2. Direct tracking methods 13

objects communicate with radio waves with the access points, while the access points are connected to the

‘regular’ internet using WiFi or ethernet cables (see Figure 2.7).

I aguber Itermet | rtemet of Things

Lofa Access Pont » ﬁ

Figure 2.7: Schematic diagram of the connection of a LoRa network (box to the right) to the ‘regular’ internet (box to
the left). Source: [vS16]

For its radio communications, LoRaWAN makes use of a section of the radio spectrum that is reserved for, as
stated by the International Telecommunications Union (ITU), “industrial, scientific and medical applications”.
In the European Union, LoRaWAN uses the 863MHz-870MHz and 433MHz bands while in the United States

the 902MHz-928MHz band is used1®.

In recent research commissioned by the Dutch Ministry of Economic Affairs, it was concluded that due to
expected growth in traffic on the 863MHz-870MHz band, an increase in interference problems was to be expected
and close monitoring of this growth was and is necessary. A follow-up inquiry has been started by the Dutch

Telecommunications Agency in May 20161

In terms of performance, LoRaWAN can provide a data rate for LoRa ranging between 0.3kbps and 22kbps
and one GFSK data rate at 100kbps for Europe!?. The minimum data rate in the United States is different at
0.9kbps to comply with FCC rules. A quick estimate based on the numbers used in [BBSBC13] for calculating

the size of GPS records provides us with the data in Table 2.3.

Data rate (kb/s) | Large record (7.7kb) (Hz) | Small record (0.5kb) (Hz)

0.3 0.04 0.6
0.9 0.1 2

22 3 40
100 10 200

Table 2.3: Estimated possible frequencies of sending GPS data over LoORaWAN, assuming a) that the advertised speeds
are in kilobits per second and b) the size of the flash memory described in [BBSBC13] is described in megabytes.

32MB (= 256 10° kilobits) of flash memory can store up to 5% 10° GPS records, which are 15z larger if all sensor data is included.
Thus, a single small record would take up approzimately 510! kilobit and a large record would take up approzimately 7.7 kilobit.
Estimates rounded to 1 significant figure.

9 Article 1.15, ITU Radio Regulations

103ee LoRaWAN Specification (47.1-7.4): https://www.lora-alliance.org/portals/0/specs/LoRaWAN%20Specification}
201R0.pdf, consulted July 6th, 2016

11See https://www.agentschaptelecom.nl/actueel/nieuws/2016/vervolgonderzoek-naar-internet—things (Dutch), consulted
July 6th, 2016

12Source: http://wuw.semtech.com/wireless-rf/lora/LoRa-FAQs.pdf, consulted July 6th, 2016. Although not specified in the
document, these are probably kilobits and not kilobytes.

https://www.lora-alliance.org/portals/0/specs/LoRaWAN%20Specification%201R0.pdf
https://www.lora-alliance.org/portals/0/specs/LoRaWAN%20Specification%201R0.pdf
https://www.agentschaptelecom.nl/actueel/nieuws/2016/vervolgonderzoek-naar-internet-things
http://www.semtech.com/wireless-rf/lora/LoRa-FAQs.pdf

14 Chapter 2. Animal Tracking Technologies

The Kerlink Wirnet 868 MHz is an example of a LoRa access point (gateway) that has a range of around 7
miles (11 kilometers)'3. It can be obtained for around € 1500, With this range, one such gateway would
be enough to cover the entire Oostvaardersplassen when mounted at the Visitor’s center near the entrance (see

Figure 2.8).

Advantages Drawbacks

Relatively cheap and readily available sensors Low data rate

oLers(ad

« Lelystad

Figure 2.8: Range of 11 miles around the Visitor’s center (white dot) of the Oostvaardersplassen (red-lined area)

D) Mobile communication networks

Before the existence of LoORaWAN, many portable devices were already connected to the internet through the
use of GSM/GPRS networks. GPRS (sometimes dubbed 2.5G) is an extension of the original GSM protocol
(dubbed 2G), allowing for (faster) data transfer. These networks were widely used for mobile phones and were
followed up by newer standards such as EGPRS (dubbed 2.75G), UMTS (dubbed 3G) and LTE (said to be a

4G service, but it is under debate whether it is fully compliant with the standard).

Numerous studies have found that next to providing long-distance interpersonal communication channels, these
networks can also be used to transfer data from a tracker in the field to a monitoring station. Three examples
are a study on moose in Sweden in 2004 [DEET04], a study on sable antilopes in the Kruger National Park in
2007 [ROS07] and a study on otters Portugal in 2012 [QMdJ*12]. The last study used small trackers of only

84 grams, while the first two used larger collars, the moose collar weighing circa 1.1 kilograms.

Advantages Drawbacks

Relatively cheap and readily available sensors Low data rate

13See http://www.kerlink.fr/en/products/lora-iot-station-2/lora-iot-station-868-mhz
14Gee https://www.thethingsnetwork.org/

http://www.kerlink.fr/en/products/lora-iot-station-2/lora-iot-station-868-mhz
https://www.thethingsnetwork.org/

2.3. Indirect tracking methods 15

2.3 Indirect tracking methods

We evaluate six indirect tracking methods: A) video feed, B) Radar, C) LiDAR, D) time-of-flight measurement,

E) vibration sensors and F) human observation.

A) Video feed

A wetland usually consists of wide open areas with little vegetation obscuring the view. We could therefore
conceivably use a camera system to monitor movements across the wetland. In the case of the Oostvaarder-
splassen, some projects have already used webcams to provide the public with an insight into the life of animals.
One example of this is ‘Volg de Vos’ (Follow the Fox), where in 2011, 2012 and 2014 a webcam was placed in

the vicinity of a fox’s burrow!.

Using a video feed might therefore be a viable solution to track animals across the fields, especially since there
is little foliage obscuring the view. In early 2015 a mathematical method was designed with which positions (of
porpoises) in a video can be translated to GPS locations [JH15]. To test the method, video was captured of
the water between the island Texel and the town of Den Helder, i.e. Marsdiep. The cameras were placed on
the island, with a view on Den Helder. The GPS coordinates of some clearly visible landmarks in Den Helder
were collected, through which a line was drawn towards the GPS coordinates of each of the cameras. By taking
the bearing of the porpoise location to this line and the distance of the porpoise to the camera (as seen on the
video still) the real GPS coordinates of the porpoise were revealed (see Appendix A for a detailed description
of the method). Estimates of the location were quite accurate, citing an error of 12 meters on a distance to the

camera of 1 kilometers.

It should be possible (see Fig. 2.9) to expand on this method and use it to calculate the GPS position of animals

on a wetland. In this case, a fixed camera would be pointed at the animals from outside of the protected areas.

The detection of key points in the video stills (pinpointing landmarks of which GPS coordinates have been
collecting and where this line crosses the shore) are now done manually by clicking and pointing with a mouse.
We believe this could in large part be done by the computer. We could use any of several feature extraction
techniques, such as the Hough transform [DH72]. Should this prove viable, a system could be implemented that
transforms moving objects in a live video feed to spatiotemporal data that can be visualized close to real-time
on a map. This might be hard to do for the case observed in [JH15] as porpoises that move through water are
hard to distinguish from the (similar coloured and waving) water, but could be easier for animals that move on

(top of) a static field of grass.

158ee http://www.volgdevos.nl/ (Dutch), consulted July 3rd, 2016

http://www.volgdevos.nl/

16 Chapter 2. Animal Tracking Technologies

Advantages Drawbacks

Accurate Small range (up to lkm), problem of obscurement

Figure 2.9: Comparing a possible set-up on a wetland, the Oostvaardersplassen, (b) with the set-up used by Hoekendijk
et al. [JH15] (a) (range in red &~ 5km, range in green fill = 1km, range in green line ~ 2km). Image in (a) from original
paper [JH15]

B) Radar

Radar (RAdio Detection And Ranging) and LiDAR (Light Detection And Ranging) both measure signals
bouncing back from objects. Where Radar relies on the backscatter of radio waves, LIDAR uses optical waves

to determine the locations of certain objects.

Radar can be targeted air-to-surface (Synthetic Aperture Radar), surface-to-air (e.g. the ROBIN bird detection

system!6), air-to-air and surface-to-surface [WP].

While the use of Radar technology to detect birds is quite established and the capabilities of Radar are clear
in that respect, we could hardly find any data about using Radar for ground-based objects. We did find some
related papers about the subject, discussing applications in detecting human movement in restricted areas (such
as around airports) [BC00] [WP]. However, these studies proved it hard to distinguish a person from a car, let
alone distinguish a cow from a horse. Additionally, for these detections it was necessary for the object to move

around, so the Radar could detect the object using (Doppler) frequency shifts.

Advantages Drawbacks

Large scanning distance Expensive, inaccurate

16Source: www.robinradar.com, consulted July 6th, 2016

www.robinradar.com

2.3. Indirect tracking methods 17

C) LiDAR

LiDAR is gaining popularity as a tool for scanning vegetation in ecosystems [DAXX] and height mapping

[vdZ13]. Vertical resolution is typically 15 to 20 c¢m, horizontal resolution is % to 1 m!7.

In The Netherlands, the water authority Rijkswaterstaat works together with district water boards (‘Water-
schappen’ or "Hoogheemraadschappen’) to build a height map of the whole country. They use LiDAR tech-
nology: measuring devices carried by planes or helicopters that fire laser beams at the ground and measure
the time the laser takes to reflect back to the device. In combination with differential GPS and an inertial
navigation system, accurate height maps are created of small regions, which are stitched together to make a
country-wide data set. After the first project, AHN-1'8 ran from 1997 to 2003 and the second project, AHN-2,
ran from 2007 to 2012, the first data of AHN-3 made it to the public on September 10th, 2015. Plans are to

expand the data set to have the complete country covered in 2019.

In Figure 2.10, some images can be seen from the AHN project. On these images, the resolution is sufficient to
spot individual cars on the street, so it might be possible to use this technique to also spot some larger animals

such as horses.

Advantages Drawbacks

Large scale Expensive, resolution might not be sufficient

Figure 2.10: LiDAR imagery from the AHN project in The Netherlands. See online viewer: http://ahn.arcgisonline.
nl/ahnviewer/

D) Time-of-flight measurement

A specific class of LiDAR is the so-called ‘Time-of-flight distance measurement’ technique (ToF). In 2013,
an experiment was conducted using photons to create a 3D distance model of a person standing in front of

a sheet of wood, far away from the sensor [MKG™'13]. This proved quite successful, as a resolution of one

17Source: http://web.pdx.edu/~jduh/courses/geogi93f12/Week04 .pdf, consulted July 6th, 2016
I8 AHN: Algemeen Hoogtebestand Nederland

http://ahn.arcgisonline.nl/ahnviewer/
http://ahn.arcgisonline.nl/ahnviewer/
http://web.pdx.edu/~jduh/courses/geog493f12/Week04.pdf

18 Chapter 2. Animal Tracking Technologies

square centimetre was achieved with a measuring distance of up to one kilometre. The installation used in this

experiment is however quite cost-intensive and too slow to be used to track moving objects.

There are commercial solutions available that speed up the process. These cameras are able to capture a
large number of frames per second, but only relatively small frames of a few hundred by a few hundred pixels.

Furthermore, the distance they can measure is not very large at only a few meters.

Disregarding the rather slow speed of scanning at a long range, there is the problem of occlusion: when two
objects stand on the same line of sight, only the object in the foreground can be sensed. This problem might be
solved by keeping track of objects over time, although it will be hard to distinguish objects from one another if

they move close.

Advantages Disadvantages

Very high resolution Expensive and slow (quicker solutions do not have a sufficient range)

E) Vibration sensors

Measuring vibrations on the ground can indicate whether animals are close by. By using more than one in
conjunction, the direction of a vibration travelling through the ground can be determined. An example of one
such sensor is the ‘Trespasser’, developed by the Dutch company SensingClues!®. It can be easily deployed, but
does not give a detailed picture of the situation around it: it only records the presence of something nearby, not

what that vibration-causing object is.

Advantages Drawbacks

Easily deployed Needs power (electricity), doesn’t give a detailed picture of the situation

F) Human observation

Traditionally, animals are tracked by observing them in person during field research. As this is not in the scope
of this thesis, we will not delve further into this. It is a tried and true practice, but very costly in personnel

time. One of the goals of this thesis is to find a way of minimizing this time.

Advantages Drawbacks

Detailed information Relatively expensive in human time, hard(er) to interface with a database

19Gee https://sensingclues.com/trespasser/, consulted July 6th, 2016

https://sensingclues.com/trespasser/

2.4. Chapter summary 19

2.4 Chapter summary

Section | Method Advantages Drawbacks
2.2.A UvA- Small sensors, well- | No continuous tracking information once target
BiTS developed working en- | leaves reception area
vironment
2.2.B ARGOS Small sensors, well- | Real-time tracking only within certain areas

established research
program, global

2.2.C LoRa Relatively cheap and | Low data rate
readily available sen-
sors

2.2.D Mobile Relatively cheap and | Low data rate

commu- readily available sen-
nications | sors
networks

2.3.A Video Accurate Small range (up to 1km), problem of obscurement
feed

2.3.B Radar Easy deployment Expensive, inaccurate

2.3.C LiDAR Large scale Expensive, resolution might be insufficient

2.3.D Time-of- Very high resolution Expensive and slow (quicker solutions do not have
flight a sufficient range

2.3.E Vibration | Easily deployed Needs power, doesn’t give a detailed description of
sensing the surroundings

2.3.F Human Detailed information Labor intensive, relatively hard to interface with
observa- database
tion

Table 2.4: A summary of the methods covered in this chapter.

In this chapter, we described ten techniques for gathering spatio-temporal data about animals. In each section,
we included a small table displaying the advantages and drawbacks of the method. In Table 2.4 these are

aggregated.

UvA-BIiTS is interesting because it consists of a complete system, like ARGOS, but instead of using satellites
it uses receptors on the ground or on a tower. The trackers use a memory unit to save data while outside of a
reception zone, which would go against the wish to create a real-time monitoring system. However, since the
Oostvaardersplassen is an area small enough to be entirely covered, this should pose no problem. The question
remains whether the system for processing the data, being designed with this caching of data in mind, is suitable

for real-time observation.

The go-to solutions most used seem to be either GPS trackers using mobile communication networks or
GPS trackers using ARGOS. The latter is far better suited to keep track of animals across the world and in

situations where it can be hard to physically come close to the animals and seems to be a bit excessive seing as

20 Chapter 2. Animal Tracking Technologies

the area in the case only consists of about 50 km? and lies in between two cities (Almere and Lelystad). The
solutions based on mobile communication networks do seem viable, especially considering cellphone coverage in

the Netherlands is excellent.

Lora(WAN) is equally viable, for its relatively low cost and optimization towards power efficiency. This makes
it possible to have trackers that continue to operate for long periods of time without having to recharge, even
operating on solar power. It does need a transceiver station to be installed to connect the network, but the
periodical costs are less compared to mobile communication networks, where the services and networks of access
providers are used. An advantage of Lora is the intrinsic connection to the internet, which makes it easy to set

up a system (a server) with a database to process the data.

Using a video feed is also a viable method to track animals. The method described in that section to extract
GPS coordinates from the video feed could, with some adaptations and more research into the application of

computer vision to automate the now tedious labeling of objectcs, be deployed in the Oostvaardersplassen.

We were not able to acquire details about every method. In particular, while the use of Radar technology to
detect birds is quite established and the capabilities of Radar are clear in that respect, we could hardly find
any data about using Radar for ground-based objects. LiDAR, using light instead of radio waves, could be
employed, but the only solutions currently used are based on scanning from the air and that is impractical for
continued observation. Time-of-flight measurements seem to suffer from a trade-off between being very fast
but at a small distance with a low resolution and being much slower at a larger distance and higher resolution.
On top of that, it shares with more methods the problem of obscurement: once one object moves behind another,
it is invisible to the observer. This could only partially be solved by keeping a memory of where objects should

be.

Two methods we discussed only briefly are vibration sensing and human observation. Using vibrations to
sense locations seems viable, but it’s restrictions make it suboptimal for our use case. It might be possible to
lay out a network of vibration sensors, thus providing insight in where the most movement happens across the
area. A visualization for this that springs to mind is the heatmap. Human observation has been the method
of choice for tracking animals for ages and is, thanks to the ease of which it can be done, still widely used. As
examples like the Dutch ‘National Garden Bird Count’ (Nationale Tuinvogeltelling) show, it can even involve
the public. Although not impossible, it is undesirable to have people watching the areas every day and keeping

notes of the locations of the animals; an automated solution is preferred.

Chapter 3

Data visualisation

In this chapter, we use four methods to visualise spatio-temporal data of animals. First, we discuss spatio-
temporal data visualisations in general. Then, we implement four visualisation methods and test them using two
sample data sets of which one consists of real data about horses in Mongolia and the other consists of fictional
data, generated to mimic animal movements on the Qostvaardersplassen. After testing the visualisations with a
small data set, we increase the sample size of the fictional data set to assess whether the visualisations hold up
when used on larger amounts of moving agents. We describe Cesium, a Javascript library in which interactive

visualisations can be plotted onto a map. Finally, we present our conclusions.

3.1 From graphs to spatio-temporal visualisations

This chapter concerns visualisation. We explain what they are (in the context of computer science), in what
ways visualisations can be classified and how we can use them to gain more insight into our data. First, in this
section, we will give an introduction into the field of visualisations'. In Section 3.2 we will describe the data
sets we used to test visualisations. In Section 3.3, we will move on to the visualisations themselves. We began
with a traditional animated 2D map (Section 3.3.1). After that, we used Google Earth to plot the data on a
map and be able to use the functions of Google Earth to move around the graph (Section 3.3.2). Third, we
implemented functionality to plot the data using Voronoi diagrams, which we built into an animation showing
the changes over time (Section 3.3.3). Finally, we used heatmaps to display the most travelled locations on the
map (Section 3.3.4). In the last section, we use the visualisations on a larger data set to see whether they would

hold up when we increased the number of individuals tracked.

First, we should explain what exactly we mean by visualisations. By visualisations, in the scope of this thesis,

IThis section is for a large part based on the PhD-thesis of Ayush Shrestha [Shr14].

21

22 Chapter 3. Data visualisation

we mean methods of presenting data by the use of a certain algorithm. The use of an algorithm makes it possible
to recreate the visualisation at a later time, or with other data. This is what sets visualisations in computer

science apart from those in other research areas.

Data visualisations are used every day in office software, where people will encounter them in the form of 2D
or 3D graphs. Examples of these graphs include the pie chart, the scatter plot and the histogram. 2D graphs,
by definition, show data on a flat, two-dimensional surface (a plane). The inclusion of a third axis in a 3D
graph opens up more possibilities, most notably including a third variable to plot when the dimension of the
data exceeds two dimensions. However, the dependencies on more than two variables can also be shown in a

2D graph, for example by a change in color, shape or size.

3D visualisations might also be used when the data is geospatial in nature, as the data can be plotted on a map
relating to the original location. However, these visualisations suffer from inherent problems such as occlusion,
glyph cluttering and overplotting. These might be solved or reduced by adding functionality to zoom, rotate
or move the view of the graph. This is an advantage present in software like Google Earth. The Google Earth
API, with which extensive animations could be written for the program, has been discontinued. An alternative

is the Cesium platform, which uses a web-based Javascript engine to render (3D) maps?.

Time can be inspected by means of one of two primitives, as described by Aigner in [AMM™07]. The first is by
looking at the values in the data at one point in time, while the second is by looking not at one point in time,

but rather at a certain time interval®.

To visualise the change in a variable in time, numerous inventive approaches have been proposed. Among them
are ThemeRiver (changes in document collections over time) [HHWNO02], TimeWheel (axes-based approach for
multivariate data) [TAS04] and flocking boids (stock market visualisation based on simulation and animation
of flocking behaviour) [Moe04], as noted by Aigner [AMM™07] (see Figure 3.1). On the website of his book, a

collection of visualisation techniques for time-oriented data is maintained?.

U UL ARCECU R LS I LR (RRCLECT I ERLLE EL

» M . 1"
S 1090

(a) ThemeRiver [HHWNO02] (b) TimeWheel [TAS04] (c) Flocking boids [Moe04]

Figure 3.1: Three examples of time-based visualizations. Adapted from their respective papers.

2See https://cesiumjs.org/, consulted August 4th, 2016
30ne could argue, though, that the first is an instance of that latter where the interval is just very (or rather infinitely) small.
4See http://survey.timeviz.net/, consulted August 4th, 2016

https://cesiumjs.org/
http://survey.timeviz.net/

3.2. Sample data 23

Man has long been busy finding ways to visualize space, as evidenced by maps found as early as 2300 B.C.,
in the form of Babylonian clay tablets. Over the years, cartography has continued to improve. The advent of
satellites which can make accurate photographs of the earth has proved a huge step. Since the 1960s, people
have worked on creating Geographic Information Systems (GISs), which are data structures or standards for

describing geographic objects such as houses, bridges and rivers.

Spatio-temporal data binds these two (time and space) together. It consists of data describing objects in
space over a certain time interval. Shrestha [Shrl4] referenced three main types of visualizations for spatio-
temporal data: 1) multi-views, which monitor change over time by use of multiple graphs next to each other,
each displaying one situation at a certain time; 2) animations, which show the change over time by showing
the situations after each other through which the viewer can scroll by manipulating the time value and 3)

isosurfaces, which shows longitude and latitude along axes X and Y and time in the Z axis (a space-time cube).

We have chosen to implement four graphing methods: 1) regular 2D moving points, 2) isosurfaces (3D Time-
graph), 3) Voronoi diagrams and 4) heatmaps. We used two sample sets to test these methods: one real data

set concerning Przewalski’s horses and one data set that we generated to fit the Oostvaardersplassen.

3.2 Sample data

To test and evaluate different approaches to visualizing spatiotemporal data concerning moving animals, we
needed some sample data. Due to the time scope of this thesis, we were unable to gather data of animals
moving around the Oostvaardersplassen, so we went looking for data that comes close to it and is in nature,

scope and taxonomical sense optimally equivalent.

Movebank

The Max Planck Institute for Ornithology hosts a freely online accessible database: Movebank [WK14]. It is
accessible through the website www.movebank.org. By registering an account, one can access the rich collection
of tracking data uploaded and archived by researchers around the world. The website features a search func-
tionality, the ‘Tracking Data Map’, by which the collection can be filtered to find studies of certain species (see

Figure 3.2). We used it to find the study featured below about Przewalski’s horses in Mongolia.

Sample data set 1 - Przewalski’s horses in Mongolia

The first data set used concerned data about the reintegration of Przewalski’s horses in Mongolia. During

the 18th century, these horses were found on steppes ranging from the eastern regions of Kazakhstan to the

www.movebank.org

24 Chapter 3. Data visualisation

W

L)
-

-

I

- et e A v o
s e v e —

B e L b

BRI e
B Ny -

T e

-

WEIPPPEIPPEREPPPP

»

Figure 3.2: Movebank’s Tracking Data Map, with which data of tracking studies can be browsed and, in some cases,
downloaded.

Mongolia and northern China. However, in the 20th century, the number of horses rapidly decreased. The last
sighting of Przewalski’s horses in the wild is said to have been around the late 1960s [Col10]. The species were
kept in existence through continued breeding in captivity. In 1997, a mission was started to reintroduce the

horses into the wild, in a protected area in the Gobi Desert.

During the years following the reintroduction, the horses were tracked across this area, the Gobi B Special
Protected Area. This data set is the one we use here. A total number of 10 horses were tracked over the years
of 2001 through to 2007, although not all horses were tracked at the same time. The trackers record a location

every 12 hours.

For detailed information about this data set we refer to Appendix E.

Sample data set 2 - Artificial agents roaming the Oostvaardersplassen

The data set about Przewalski’s horses is useful for longer term analysis, but not entirely suitable to test
visualization methods for visualizing high frequency or realtime spatiotemporal data. As real data about the
focus area is out of reach, we created a Python script that produces artificial agents (‘horses’) moving around

on a map of the Oostvaardersplassen.

The agents move in a semi-random fashion, travelling in a certain direction until they encounter a body of
water. Once that happens, they turn around and try a different (random) direction until one is found that

satisfies an evalution function. This is done by using the evaluation function for each step of each agent, where

3.2. Sample data 25

it checks each of the next n steps forward for evidence of water®. The existence of water on a certain position
is determined by loading a black-and-white bitmap image of the map of the area, where water bodies are black

and land is white. The speed of the moving agents is determined by the following formulas:
v
Aspixels - ; - At (3.1)

Where Aspjyls denotes the distance to be moved in pixels, v the speed in meters per second, y the meters per
pixel ratio of the used map image and At the size of the timestep that is used. A smaller timestep improves

fluidity of the animation, but increases computing load.

In this simple version, we do not take into account any other factors such as attraction to feeding grounds and
flocking behaviour. Especially the last factor might be interesting to implement to accurately model animal

populations that move in herds.

The Python scripts creates a file for each of the horses, that contains a continually updated location. These
locations can be visualized on a map. To test whether the script creates convincingly moving agents on the
map of the Oostvaardersplassen, the locational data of the artificial agents was first visualized simply as named
points on top of the map original that was flattened and used to find the bodies of water that the horses avoid

(see Figure 3.3).

annntea,,

" ‘e

.

. .
Trranannt

Figure 3.3: Location of sample agents on the map. The white dotted circle denotes the area where the agents were
spawned (circle added after taking screenshot).

5Tt checks each of the steps, to avoid ‘jumping’ over a body of water smaller than 1 resolution points.

26 Chapter 3. Data visualisation

3.3 Visualizations

In this section, we will use the data sets described in the Section 3.2 to test four visualization methods. We will

implement a 2D map, a 3D graph on a map, a Voronoi diagram and a heatmap.

3.3.1 Moving points on a 2D map

One way of visualizing location data is by showing its position on a map. This way, the viewer can see the

surroundings of the positional data, and view the data in its context.

Using the Python package Basemap [H107], we can use the capabilities of the Matplotlib library to plot data
on any section of the world. It even provides some standard world maps to be used as a background, including

NASA’s Blue Marble image and NOAA’s ETOPO1 Global Relief ModelS.

For our use however, these standard background maps do not have a sufficient resolution: once zoomed in to
the Oostvaardersplassen, the readability of the map drops drastically. We therefore use the Basemap package’s
functionality to connect to the servers of ESRI ArcGIS to download a high resolution map image of the area

we need:

Initialize a Basemap object, defining the corners of our map

map = Basemap(llcrnrlon=5.244927,1lcrnrlat =52.383565,urcrnrlon=5.445427,urcrnrlat=52.511627,
epsg=5520)

Download the map image from http://server.arcgisonline.com/

map. arcgisimage (service="ESRI_Imagery World 2D’, xpixels = 1500, verbose = True)

This does take a few seconds, depending speed of the local internet connection.

We use the second data set described in the section above: the artificial agents. We create a data set of the
latitude and longitude of 23 agents during 500 timesteps. Plotting this data set in an animated fashion resulted
in the frames displayed in Figure 3.4. As with the videos displaying the animated Voronoi diagrams described

in the corresponding section below, we uploaded the video of this animation to YouTube’.

An improvement on this would be to show the previous positions of the agents as a line, drawn from its origin
along each data point to its current position. To avoid a cluttered image, this line could fade out after a certain
amount of data points, so only the most recent data points remain visible. We were as of yet unable to produce
this with this package and we are not aware of whether this is possible. We did however manage to create this

effect in Cesium (see Section 3.5).

6See http://matplotlib.org/basemap/
"https://youtu.be/VdRip2DY_ak (15 frames per second)

http://matplotlib.org/basemap/
https://youtu.be/VdRip2DY_ak

3.3. Visualizations 27

(b) t =496

Figure 3.4: The Al agents roaming the OQostvaardersplassen (blue dots), at t = 4 (a) and t = 496 (b). Plotted using
Python’s Matplotlib and Basemap packages.

3.3.2 3D Timegraph

In this section, we will implement the 3D Timegraph and use it to visualize each of the two data sets mentioned

in Section 3.2.

Data set: 1 - Przewalski’s horses in Mongolia

We started with creating a 3D graph using Matplotlib (see Appendix C) which shows on the X and Y axis the
location as latitude and longitude and on the Y axis the time. This already cleared some things up about the
data set, namely the distribution of the trackers over time. In particular, one horse was tagged at a later time
when most of the other horses were no longer tracked. Removing this horse from the graph made it possible to

zoom in to the details of the other horses (see Figure 3.5).

These graphs are static. It means, as illustrated above, that looking for interesting details entails rerendering

the graph. It would be better if we could freely zoom into and look at the graph from different angles.

One of the possibilities is loading a KML-file (see Box 2) into Google Earth. Therefore, we wrote a script that
converted the data points of the data set, which were provided in Keyhole Markup Language (KML, see Box
3.1), to lines. The longitude and latitude coordinates were kept the same, but a height attribute was added

that depends on the time stamp accompanying the location.

After loading the resulting KML-files into Google Earth Pro, we saw the points were successfully attributed
with a height (see Figure 3.6.a). However, it was quite hard to connect the location of a ‘floating’ line with the
location on the ground, so we opted to turn on the ‘extrude’ option available in the KML language. This draws

a plane from the line to the ground (see Figure 3.6.b).

28 Chapter 3. Data visualisation

(a) (b) (c)
Figure 3.5: A 3D graph produced with the Python package Matplotlib (see Appendix C) of the horses in the study about
Przewalski’s horses in Mongolia [WK14]. In (a), all of the horses are shown, but very visibly one horse was followed in a

later time frame than the rest of the horses. This horse (codenamed ‘shandas’) was removed in the second plot (b). In
the third plot (c), the horse codenamed ‘mondor’ was also removed.

We did notice that although we made the extruding planes semitransparent by lowering the alpha-value in its

styling definition, the program only shows the underlying terrain, not other lines that run behind it.

The KML file format

This format, its name an abbreviation of ‘Keyhole Markup Language’, is an XML-based data container format. Just as XML,
it describes objects with certain properties. These objects might have objects embedded in them. In the case of KML, the
objects describe geographical data entities such as buildings, borders or shapes and their geographical location. Geographical

objects are of the type Placemark.

A basic XML file containing one Placemark:

<?xml version="1.0" encoding="UTF-8"7>
<kml xmlns="http://www.opengis.net/kml/2.2”">
<Placemark>
<name>Simple placemark</name>
<description>Attached to the ground. Intelligently places itself
at the height of the underlying terrain.</description>
<Point>
<coordinates>—122.0822035425683,37.42228990140251,0</coordinates>
</Point>
</Placemark>

</kml>

Box 3.1: The KML file format

3.3. Visualizations 29

Figure 3.6: A 3D graph produced with the converter script in Appendix D, which converts KML point sets into KML
lines without (a) or with (b) the option ‘extrude’ turned on (which extends the line to the ground). Viewed in Google
Earth Pro, obtainable at https://www.google.nl/earth/download/qgep/agree. html

#01-Anteaie

16 01; MorseNume: Ansonks;
St O B 4990

Figure 3.7: Each KML file can be given a name (displayed bold) and description, which are displayed when the line is
clicked on.

Data set: 2 - Artificial agents
After generating and converting a data set of 500 steps for 23 horses (simultaneous steps; for each step a location

is recorded for every horse), we again opened the KML files with Google Earth.

This turned out to make for quite a chaotic image (see Figure 3.8.a). However, we could zoom in and look at
each of the lines in detail. Google Earth also allows for toggling the visibility of each of the lines, so individual
‘horses’, or a small number of them, can be inspected more easily (see Figure 3.8.b and .c). It would be

interesting to see whether inspecting the myriad of tracks is easier when viewed on a (much) larger screen®.

One additional useful built-in feature of KML files is that they have fields available for storing a name and a
description of the data. The information becomes visible as a tag when one clicks on the line in Google Earth

(see Figure 3.7).

8Current device: 12-inch MacBook Pro (2015)

https://www.google.nl/earth/download/gep/agree.html

30 Chapter 3. Data visualisation

(b)yn=3 (c)n=5

Figure 3.8: A 3D graph of the movement of the artificial agents, first plotting all of them (a) (n = 23), then only a few
(b) (n = 3) and then a few more (c) (n =5)

3.3.3 Voronoi overlay

A Voronoi partitioning, named after the Russian mathematician Georgy Voronoi, is a method of dividing an
n-dimensional space into subspaces. In this section, we will look at building a 2-dimensional Voronoi diagram

based on the position of our moving objects.

To divide a (2-dimensional) plane into Voronoi regions, called “cells”, we draw a cell around each data point.
The size of the cell depends on the distance of the data point to other data points. The border of a cell is
defined as the collection of points where the distance to the cell’s data point is equal to the distance to the
nearest other data point. The Voronoi diagram is then the tuple (collection) of all Voronoi cells. It can be
visualised by drawing the cells in a 2D graph (see Figure 3.9). The cells can be drawn with background colours

or border colours to improve readability.

In mathematical terms: a Voronoi cell C containing data point P; is defined as the set of all points in the

3.3. Visualizations 31

Example Voronoi Diagram (n=5)

Figure 3.9: Example of a Voronoi Diagram, with 5 randomly generated data points.

2-dimensional space X for which the distance to P; is smaller than or equal to its distance to any of the other

data points in the set of data points P:

Cp={xeX|VpeP:dxP)<dxp)} (3.2)

In Python, Voronoi diagrams can be created using the Voronoi module of the spatial package of scipy.

We used the script for creating a data set of artificial ‘horse’ agents moving about the Qostvaardersplassen,

described in the previous section, to create a data set of 23 moving agents that move for 500 steps.

With this data set, we ran our new Matplotlib script enriched with the Voronoi module for each of the 500 steps,
resulting in 500 Voronoi diagrams. To each diagram, colour was added to differentiate the cells. The locations
of the horses were added as blue dots. To make the graph more recognisable, we scaled the original ‘water
location image’ used to intelligently move the agents and set it as the background to the plot. By creating a
sequence of all plots (steps 1 to 500 denoted as t = 0 to t = 499), we were able to play it as an animation. Some

of these frames are pictured in Figure 3.10, the last frame is displayed enlarged in 3.11.

We uploaded the animations to YouTube: the first version, only drawing a partial Voronoi diagram?, the second
version, incorporating colors'® and the final version, the diagram displayed over a map (the map is scaled so

the points move over their original coordinates)!.

9mttps://youtu.be/jL-e4elEyo8
Ohttps://youtu.be/SCGi0vUuoCs
Mhttps://youtu.be/jL-ede1Eyo8

https://youtu.be/jL-e4e1Eyo8
https://youtu.be/SCGiOvUuoC8
https://youtu.be/jL-e4e1Eyo8

Chapter 3. Data visualisation

32

of locations of horses

oi diagram

Figure 3.10: Voronoi diagrams: various steps in the process.

3.3. Visualizations 33

Voronoi diagram of locations of horses

Figure 3.11: Voronoi diagram, final step.

3.3.4 Heatmap

A heatmap is a method of displaying the dispersion of data points. In this section, we will look into the
possibility of using the data set we also used in the previous section (Voronoi), following 23 ‘horses’ during 500

time steps.

Heatmaps originate from temperature imaging, where the temperature of certain parts of an object are denoted
by a colour in a colour range. By using the same principle not for the temperature but for the density of data

points, we can provide insight into a (large) data at a glance.

Heatmaps can be built in two or more dimensions, but they are based on the same principle. The graph is
divided into subspaces (in 2D: small planes, in 3D: in cubes) of a certain size. Then, each subspace is given a
value according to how many data points in the data set would be plotted into that space. Usually, this value
is then visualized using a colour range. This range could for example be a gradient of blue to red, where the

more red a cell is, the more data points are associated with it.

The heatmap(s) we produced used two dimensions and a colour to represent data density. By using two
dimensions, we could overlay the heatmap on the map of the Oostvaardersplassen, just as we did with the
Voronoi diagrams, so the data can be viewed and inspected in context of the surroundings. We wanted to see

the change in the heatmap over time, so we plotted the heatmap at each time frame in the step range. We then

34 Chapter 3. Data visualisation

created an animation of these heatmaps. After this, we used the same process to create an animation of the
heatmap, but for each map considering only the last 50 steps. This made the heatmap more flexible and closer

resembling the most recent state of affairs. We then inspected the animations to see how much they differed.

We used the histogram2d() function out of the numpy package for Python to generate the heatmaps and
matplotlib to plot them over the map image. First, we rendered two animations building up to a heatmap
of the full data set, one with interpolation set to “nearest”, resulting in sharp-edged boxes'?, and one with

interpolation set to “None”, resulting in a blurred but smoother view!3.

Second and last, we rendered two
animations, one smooth and one sharp, of the heatmap as it is built stepping through the data set with a

window of only the last 50 steps.

Once we created these plots, it was clearly visible that once we narrowed the scope of the heatmap to only the
last 50 steps, the image became more like a plot of the trails of the agents. In essence, this is of course what
happens: a trail of the last 50 positions is drawn on the map. This can be useful to visualise the direction the
individual horses are travelling. Furthermore, due to the nature of the heatmap, locations where trajectories
intersect turn up with a brighter (more red) colour due to the location being mentioned twice in the data set:

once for each agent.

Heatmap of locations of horses. Heatmap of locations of horses. Heatmap of locations of horses

(a) Smoothed, full scope (b) Unsmoothed, full scope (c¢) Unsmoothed, scope = last 50 steps

Figure 3.12: A comparison of three approaches to plotting the heatmap. First, a smoothed view of the heatmap’s ‘boxes’
(a). Second, the same view with the smoothing turned off (b). Third, plotting with smoothing turned off and only
capturing the last 50 steps in the data set (c). This results in more clearly visible trail-like lines. Note: in (b) and (c),
the opacity of the background image is turned down a bit.

3.4 Plotting a larger data set

Using the plotting methods with the data sets as described in the previous section proved reasonably useful for
visualizing the position of objects on the map. We increased the size of the fictional data and rerendered the

3D graph, Voronoi diagram and heatmaps to see whether they held up when using a larger amount of agents.

In the upcoming figures, we used the same script as before (see Appendix B), generating data of n moving

12See https://youtu.be/-itUQNJmxVE (without smoothing)
13Gee https://youtu.be/s04TvZIWSj8 (with smoothing)

https://youtu.be/-itUQNJmxVE
https://youtu.be/s04TvZJW8j8

3.5. Cesium 35

agents on the Qostvaardersplassen. This time, instead of generating data for n = 23, we generated two data
sets: one with n = 1024 and one with n = 4096. The amount of steps for both data sets was 1000, so t,,;, = 0
and ty, = 499. When generated, the first data set amounted to 32.5MB and the second data set amounted to
129.8MB. The times it took to plot each frame can be found in Table 3.1. In the following three paragraphs we

describe our findings regarding the effectiveness of the graphs with the new data set(s).

3D graph The 3D graph becomes very cluttered under the increased data set. This makes it almost impossible
to draw conclusions from the graph, even considering the amount of agents in this image was limited to n = 512,
instead of the much larger numbers in the other graphs. One upside is that it is still possible to toggle visibility
of individual paths, but this is quite the hassle. This view could be improved by taking a smarter approach to

plotting the paths, as is described in the next section about Cesium.

Voronoi We see that while the heatmap is improved by the larger data set, the Voronoi graph becomes quite
cluttered by all the small cells. This is especially true for the field in the bottom left. We viewed the same
plot on a video wall to see whether this problem can (at least partially) be solved by inspecting it on a much
larger screen. This was the case: on this large screen it was much easier to follow and watch the small cells.

For pictures of this, see Appendix H.

Heatmap The heatmap copes well under the increased number of moving agents. It even seems to be the
case that the heatmap profits from a larger data set. We see a clear distinction between the field to the bottom
left and the field more to the top right, where less activity occurs. This is exactly what the heatmap is meant

to show.

‘ n=23 n=1024 n = 4096
Voronoi 11s 14s 31s
Heatmap | 1s 3s 7s

Table 3.1: Indication of time spent plotting one frame (f = 499). Timed using the function time in Bash. Voronoi script:
fastervoronoi.py (see Appendix F). CPU: Intel(R) Core(TM) i5-5257U @ 2.70GHz.

3.5 Cesium

When using Google Earth, we liked the ability to move around and zoom, but the plotting of the data was quite
static. There used to be an API by which we could write programs to run in Google Earth, the Google Earth
API, but it is deprecated as of December 12th, 20144 and will be shut down by the end of 2016. An alternative
for this is Cesium: an open-source Javascript library for developing Google Earth-like visualizations based on

WebGL. It can project shapes and data on globes and maps. The project is based at https://cesiumjs.org/.

14Source: https://developers.google.com/earth/, consulted August 9th, 2016

https://cesiumjs.org/
https://developers.google.com/earth/

36 Chapter 3. Data visualisation

Heatmap of locations of horses

£ min = 399, £ max = 499, n = 4096, n_bing = 304 (t Max*1,5), interpotation=None. window =100

534
longtude (decimals;

(a) Voronoi diagram (b) Heatmap

Figure 3.13: The data set with n = 4096, t;;;x = 499 plotted as a Voronoi diagram (a) (f = 499), a heatmap (b)
(tmin = 399, tax = 499) and as seen in Google Earth (¢) (f,in = 0, fax = 499).

(b)

Figure 3.14: The data set with n = 512, t,r = 499 plotted as a 3D graph, viewed as a KML file in Google Earth (Pro).

3.5. Cesium 37

We installed the Cesium by first installing Node.js, then downloading the latest version of Cesium as a zipfile
from https://cesiumjs.org/downloads.html, unzipping it and running npm install in a terminal in the
unzipped folder. Finally, we started a local web server by running node server.js, which starts the server

with the settings defined in the file ‘server.js’ which comes with the Cesium zipfile.

Starting a Cesium viewer is done by creating a HTML-document which includes a Cesium widget and opening it
in a browser (in our case by browsing to localhost:8080/[file]). This widget is expanded to fill the browser
window and optionally the entire screen. It can be manipulated with Javascript code. The user can use the

mouse to view different parts of the Earth, just as in Google Earth.

First, we wanted to get as far as we got with Google Earth: importing KML files and showing them in the viewer,
using Cesium’s Km1DataSource class '°. This was successful, as can be seen in Figure 3.15. The cluttering that

appears in Google Earth is still an issue that we tried to solve by animating the lines.

The second step was thus to move beyond what we could accomplish in Google Earth: change the behaviour of
the data lines as they are drawn in the viewer. In particular, we wanted to be able to animate the lines beyond
the capabilities of standard KML files. This was accomplished by not loading the data as a KML file, but
loading the original CSV data file containing rows of GPS locations and drawing each ‘step’ between locations
as a polygon onto the screen. As Cesium supports toggling visibility of an object based on the currently viewed

date, we implemented this (the code is inluded in Appendix G).

The standard Cesium user interface includes a time slider with which the user can scroll at various speeds
through time (see Figure 3.16). The dates in the objects are in Julian Day Number (JDN) format: the integer
number of days since January 1, 4713 BC, proleptic Julian calendar!®. We placed the date of testing, August
9th 2016, in the code!” to set this as the starting date for the fictional data we plotted. By scrolling through
the time line, the new data points appear on the map. By default, the time moves in real-time at one second

per second. Time can also be paused or reversed.

The visuals created in Cesium can be seen in Figure 3.17.

15See https://cesiumjs.org/Cesium/Build/Documentation/KmlDataSource.html, consulted August 9, 2016
16Starting to count at noon, Greenwich Mean Time.
17 August 9th 2016 (00:00) corresponds to 2457610.5 in JDN.

https://cesiumjs.org/downloads.html
https://cesiumjs.org/Cesium/Build/Documentation/KmlDataSource.html

38 Chapter 3. Data visualisation

Figure 3.15: KML imported as KmlDataSource in Cesium. Note the white glow, probably caused by the partial
transparency of the line stretches that is handled peculiarly by Cesium (i.e. the colours of the semi-transparent layers
are added to form a white colour, instead of the semi-transparent layers only letting part of the ‘light’ pass through as
would be natural).

= R ~N CESIUM b bing Imgap’p«muon IsuﬁCe

Aug 9 2016 % Cesium'BingMapsApi defauliKey propérty beforé/eaisiructing the C4
£ =4 « - P -,
11:23:23 UTC ftergraph - ©2016 Eurosenss " g
2016 12:00:00 UTC Aug 9 2016 16:00:00 UTC
4 Il » ‘ g

Figure 3.16: A detailed look at the Cesium time controller. Note the green arrow that designates the speed at which
time moves (it can be dragged around the circle to increase or decrease the speed of time) and the blue marker at the
start of the time line denoting the current time frame. The date and time of the current time frame are also displayed
in the centre of the circle. The button at the top left, displaying a clock icon, resets the time frame to the current, real,
time.

3.6 Chapter summary

In this chapter, we reviewed four ways of visualizing spatio-temporal data. We began with the ‘traditional’
2-dimensional map (1) onto which data points were placed. This was then expanded to a 3-dimensional graph
(2) showing the previous locations of the animals. It proved more useful when the map of the area was projected
behind the data, so context was created for the viewer. We then experimented with Voronoi plots and heatmaps,
while keeping the map image as a background. The Voronoi plots (3) could be used to visualize distances between
animals, and differentiating groups using the human ability for pattern recognition. When dealing with larger
groups, the Voronoi plot became quite cluttered, but this could partially be solved by viewing it on a larger
screen (see Appendix H). The heatmap (4) proved useful for determining attracting locations for animals to
visit, and improved in usability when plotting the larger data set. It was however interesting to see that by
plotting the small dataset filtered by only showing data within a time window, the heatmap turned into a path

visualization. Places where paths crossed were automatically highlighted.

A distinction can be made between two visualization approaches in temporal sense: 1) visualizing real-time data
and 2) visualizing collected data after the fact. Voronoi diagrams and ‘points on a 2D map’ can without any

modification be used for both. For heatmaps and 3D graphs, one must make a decision about the time window

3.6. Chapter summary 39

(a) n = 25,ret = co, Ahpp—1 = 0.5

(b) n =10,ret =5, AhAt:l =2

i Tam

Tl TN [

(c) n=10,ret =2,Ahp;—1 =2

Figure 3.17: 3D Graphs in Cesium. The first image displays a KML file loaded into Cesium (a). The second image
displays 25 agents moving without fading (b). The third (c) and fourth (d) images show agents moving with fading,
where the retention time ret determines how long the data points stay on screen. The value of Ahp;—q describes the
height (in meters) each data point rises relative to the previous data point in that series.

40 Chapter 3. Data visualisation

the visualization method is to display. The heatmap must continually adapt the colours on the map to avoid
raising every pixel to its highest intensity over time, while 3D graphs (as discussed here) would eventually rise
to enormous heights as time progresses. A solution for the latter would be to let the lowest timestamp in the

current timeframe be equal to a zero or minimum height and re-evaluate this in each frame.

It was interesting to use Cesium to graph the data as a 3D graph on a map. We would like to see this expanded
upon: 1) improving interaction with the data, e.g. by toggling visibility of data points and 2) by loading data

into the program in real-time.

Chapter 4

Data analysis

In this chapter, we will apply two methods for analyzing the data we generated in the previous chapter. For the
first method, we use the distance between the animals as a means for finding unusual behaviour. The distance we
use is the distance to each animal’s closest neighbour. We start by inspecting the distance per animal, then we
establish the average minimal distance in the population over time. For the second method, we use the k-means
clustering algorithm to try to find subgroups of animals in the population. In Section 3.6, we summarize this

chapter and present our conclusions.

4.1 Obtaining knowledge from data

In this section, we want to use the data to improve our knowledge of the environment we are modelling.
Visualization helps in this regard, by using the human’s quite extraordinary capability for recognizing patterns
in images [Matl4]. However, some patterns are hard to extract from images alone. In this section, we use
the computer’s forte: crunching numbers. We try out a few techniques to analyse the data generated by our

horse-moving script.

First, in Section 4.2, we look at the distances between the horses. Due to the nature of the script, placing the
horses near each other at t = 0 and then letting them wander until they encounter water, we expected that the

distances would grow over time and reach an equilibrium once the average distances could not grow any further.

Second, as described in Section 4.3, we tried to distinguish different clusters (groups) of horses. We used the
k-means clustering algorithm. This algorithm partitions the population into k clusters, which can then be either
visualized or further processed. We tried out a number of values for k and describe which seemed to be the

most accurate.

41

42 Chapter 4. Data analysis

4.2 Distance over time

To analyse the distance between horses over time, we chose to look at, in a certain timeframe ¢, the nearest

neighbour of each of the data points on the map.

Since the number of points generated is not extremely large, we applied a ‘naive’ search approach: for each
point, we calculate the distance to each of the other points and save this distance in a proximity matrix D. In
this matrix, the value of D[i][j] refers to the distance between points 7 and j. We do not need to fill the entire
matrix; the value of D[i][j] is by nature the same as the value of D[j][i]. Furthermore, the value of D[i][i], the

distance of a point to itself, is of no use.

In applying it to the case, we are more interested in the relative changes' in the distance of the horses and not
in the actual distance. Therefore, we chose to use the Manhattan distance metric. This means that instead
of calculating the shortest path (‘as the crow flies’) between two points, which would be calculated by using
Pythagoras’s theorem, we simply add the difference over one axis (e.g., ‘x’) to the difference over the other
(perpendicular) axis (e.g., ‘y’). Addition is easier and faster to calculate than squaring and taking the square

root of the differences in the two axes.

If we wish to calculate the actual distance between horses (perhaps for other analyses), we would have to
use a conversion function for the distances between horses, as the positions are in longitudinal and latitudinal
coordinates. To convert the latitudinal difference to meters, we can use a relatively simple multiplication with
the amount of meters that constitutes one degree of latitude?. However, the longitudinal factor varies very
much from pole to pole, as one degree of longitude is the largest in meters at the equator, and zero at the North
or South pole. The amount of meters per degree of longitude therefore depends on the latitude. To find this
value, we can use the following formula:

1 7T
Alongitude = 180 a-cos ((P) (4.1)

Where a is the radius of the Earth and ¢ the latitude of our position. The latitude ranges from 0° at the equator

to 90° at the poles.

In the end, we did use the conversion function, even though we calculated the distance using the Manhattan

metric, to give at least a rough idea of how large the distances would be on the field.

For each timeframe, we calculated for each horse the distance to its nearest neighbour. The minimal distance
was then averaged with the minimal distances of the remaining horses in that timeframe to produce the average

minimal distance and the standard deviation to that average. The results of this are shown in Figure 4.1.

IThat is, once we know the value at a certain point in time, we want to compare it with another point in time to see whether
change has occurred.
2This value does vary slightly due to the Earth not being a perfect sphere, but we’re only analyzing a small area.

4.3. Clustering 43

Here, we see that at the start, the distances are small and do not vary very much. This is true to the way the
generating script worked: the horses spawn in a region close to each other. In the next frames, we see that the
distances increase, with a few being much larger than the rest, but most of them residing in the range of 0 to

150 ‘Manhattan’ meters.

Distance to closest neighbours (t=0) Distance to closest neighbours (t=249) Distance to closest neighbours (t=499)

X
600
700

10
500
500 600

200 300
00 400

Distance (m) (Manhattan)
200

Distance (m) (Manhattan)

100
Distance (m) (Manhattan)

100

2
100
100

(a) t =000 (b) t =249 (c) t =449
avg = 0.02 avg = 40.56 avg = 63.10
stdev = 2.36 stdev = 56.92 stdev = 78.80

Figure 4.1: The minimal distances of all the horses at t =0 (a), f =249 (b) and t = 499. Also included are the average
value (avg, blue line) and standard deviation (stdev). The green lines show avg + stdev, the red lines show avg — stdev.

We then wondered to what extend this spreading behaviour had its influence over time. As shown in Figure 4.1,
we noticed that the difference between t = 0 and t = 249 is much larger than the difference between t = 249
and t = 499. This would make sense, as the horses cannot always move further from each other; the space they
can move in is limited by the size of the frame (boundaries of the field). To find out how the average minimal
distance behaved over time, we calculated the value for a larger amount of frames, resulting in 4.2.a. It looked
like the average was indeed flattening out, so we did the same with another data set that had fewer horses, but
more frames. This resulted in 4.2.b, which seems to show the average minimal distance leveling off at around

100 to 120 meters.

4.3 Clustering

A large number of animal species display flocking behaviour and move in (social sub-)groups. By dividing the
population into clusters, we can get insight into the different subgroups that might exist in the population. We
used the k-means clustering algorithm. We start this section by briefly describing this algorithm, after which

we show and discuss the results.

The k-means algorithm works by starting with an initialisation step, after which two steps are repeated until
the result is satisfactory. The result is a certain number (k) of groups, in which the data points are classified.

Each group has a center point, the average value of the data points it contains.

The first step of the algorithm is in some way (randomly or with a certain strategy) placing the k center points.

44

Chapter 4. Data analysis

Distance to closest neighbours

100

Distance (m) (Manhattan)

t(frémés)
(a) tmax = 500
n = 4096

93 124 155 186 217 248 279 310 341 3

Distance (m) (Manhattan)

Distance to closest neighbours

LA o L B S s |

? AT v

\ AV o A NAN Mo
e A,

T T T T T

TG T T O L, (T SR UL LN I (Y

T~ L 8 R

t (frames)

(b) tpax = 4096
n = 1024

Figure 4.2: The average minimal distances of each frame (AVG) for two data sets, containing positions for n horses
in tyay timeframes. Also shown are the standard deviation (STDEV) and the average plus and minus the standard
deviation (ARG+STDEV).

The second step is assigning all data points to the center point they are closest to, thus classifying them. The
third step is to reposition the center point to perfectly average its group. The second and third step are repeated

until the center point does not move (more than a certain threshold) anymore.

We compared the resulting graphs for k = 2 to k = 5, which are displayed in Figure 4.3. In the Figure 4.3.a, we
see that for k = 2 the algorithm nicely almost perfectly divides the population into a group that is contained
within the bottom-left (almost trapezoid) field and one that roams the larger fields. This is also what we saw in
the Voronoi diagrams in Section 3.3.3. If we increase k, more subgroups are formed, but not much is gained. In
the future, we might examine the minimum or average distance between horses for each subgroup to determine

the coherence of that subgroup.

In the end, it seems not much is gained in this case by clustering the population. Depending on the animal
species, real animals are more likely to display flocking behaviour. We believe therefore that the applicability

and usefulness of clustering improve when using real-world data.

4.3. Clustering 45

Latitude (dec)

Latitude (dec)

KMeans Clustering (k=2,n=1024,t=499) KMeans Clustering (k=3,n=1024,t=499)

g

Latitude (dec)

53 538 53% 538

Longitude (dec) Longitude (dec)

(a) k=2 (b) k=3

KMeans Clustering (k=5,n=1024,t=499)

KMeans Clustering (k=4,n=1024,t=499)

Latitude (dec)

538

538

53% s 5%
Longitude (dec) Longitude (dec)

() k=4) k=5

Figure 4.3: The k-means clustering algorithm applied to our data set (n = 1024, t = 499).

46 Chapter 4. Data analysis

4.4 Chapter summary

In this chapter, we looked at two methods for analyzing data.

First, we looked at the distance between animals over time and used for each horse the distance to its nearest
neighbour, which could be used to monitor the coherence in a herd of animals over time. To calculate the
distance to each horse’s nearest neighbour, we simply considered the distance between each horse and every
other horse, resulting in n(n — 1) computations. We did bring this number down by only considering pairs we
did not treat yet, to %n(n — 1), but should time become scarce when dealing with larger data sets, we suggest

using a k-d tree to find each horses nearest neighbour. This should bring the number of computations down

from O(n?) to O(nlogn).

Second, we looked at clustering of the animals. Again, this could be used to monitor herd behaviour in animals
over time or at one point in time. Due to the semi-random behaviour of the animals in our fictional data set,
we found two subgroups: one group of animals seemed to stay in the smaller area to the bottom left of the map
(in a north-up orientation) and one group of animals scattered over the rest of the map. As implemented, this
method required a human to choose a k-value (the number of subgroups to detect). This could be automated
by evaluating the coherence of the group that is detected (e.g., by considering the distances in the group as

discussed in the previous paragraph).

Chapter 5

Conclusions

In this chapter, we summarise the chapters and distill conclusions on the discussed matters by means of the

problem statement and research questions.

5.1 Problem statement and Research questions

Our problem statement was stated as follows:
PS: How can we use spatio-temporal data of animals in wetlands to aid management and interest the public?

The answer to this question lies in the conclusions we describe below, for each of the research questions. We
summarise and distill conclusions from Chapters 2 to 4 by considering each of the three research questions.
We can use the spatio-temporal data of animals by gathering them as described at RQ 1, visualise them as

described at RQ 2 and analyse them as described at RQ 3.

RQ 1: How can we gather spatio-temporal data of animals in wetlands?

In Chapter 2, we discussed ten methods by which animals can be tracked, describing two categories. First, we
looked at four ’direct’ tracking methods, which involve the use of small tracking devices, sensors, that are placed
upon an animal and send their data to a base station. With these methods, we focused on the technology the
trackers use to communicate with the base station. ARGOS is an interesting project, but not suited to our case
as the area we would like to monitor is rather small. More interesting are the ‘traditional’ option of mobile
communication networks and new solutions in the form of LoRa and the UvA-BiTS system. Second, we looked

at six ’'indirect’ tracking methods, which do not involve any interference in the habitat of the animal. Of these,

47

48 Chapter 5. Conclusions

most were found not fit to use for detailed observation in the case of a wetland like the Oostvaardersplassen.

However, the use of a video feed remains an interesting option that deserves more research.

RQ 2: Which methods can be used to visualize the spatio-temporal data?

In Chapter 3, we reviewed four data visualizations possibly applicable in our case. For this, we used two data
sets: one real data set about Przewalski’s horses in Mongolia, and one fictional data set, generated to behave
like animals moving about the Qostvaardersplassen. The first option we implemented was plotting the locations
of our targets on a 2D map. We then went on to examine three other ways of visualizing the spatio-temporal
data: a 3D timegraph or ‘isosurface’, a Voronoi graph placed on top of a map image and a heatmap plotted
over the same map image. The addition of a map image proved valuable in producing context for the moving
points!. Initially, the heatmap did not look very interesting, but this changed when we increased the number
of agents (n) in the data set. In the Voronoi plot however, this modification made it hard to distinguish the
individual cells, which of course became a lot smaller. We tested this on a large screen? which did improve
visibility and readability of the visualization (see Appendix H). From this we conclude that the Voronoi diagram
is still useful for larger amounts of animals, but better when reviewing smaller groups. The heatmaps can be
used to monitor two aspects of the nature reserve: 1) to find much used routes the animals take and 2) to reveal

areas that are veryattractive to the animals.

RQ 3: Which methods can be used to analyse the spatio-temporal data?

In Chapter 4, we used the same data sets as in Chapter 3 to perform two analyses. First, we looked at the
possibility of plotting and inspecting the average closest distance to a neighbour. Second, we used the k-means
clustering algorithm to find clusters of animals. Both were reasonably interesting, but the data set used (the
fictional set) was, as was to be expected by its nature, quite regular in its distributions. It would be interesting
to see the same graphs when a data set is used with individuals that move more in a flock, as some species do.

This behaviour could in the future be implemented in the script that generates the fictional locations.

5.2 Concluding remarks

It was interesting to take this first step into this field of biology with a focus on data gathering and visualization.
We look forward to the possibilities of further gathering animal data as described in Chapter 2 and both

improving the visualization and analyzation methods described in Chapter 3 and 4 and exploring more methods

1See especially the Voronoi animation videos https://youtu.be/yjOgWMYbCUU (without map) and https://youtu.be/
jL-e4elEyo8 (with map).
2Twelve 32” LCD televisions arranged in a 3x3 matrix, mounted to the wall of a room.

https://youtu.be/yjOgWMYbCUU
https://youtu.be/jL-e4e1Eyo8
https://youtu.be/jL-e4e1Eyo8

5.2. Concluding remarks 49

to get the most out of the data.

The model known as the ‘DIKW Pyramid’ describes four steps in working with data: Data, Information,
Knowledge and Wisdom. Data can be transformed into information, which can lead to knowledge about a
system and finally the wisdom to make decisions regarding the system. In this thesis, we formed the base of
this pyramid: we described methods suitable to gather data and how to transform this data into information
and knowledge. The final step lies, in our case, with providing the knowledge to the management of the nature
reserve and working with them to improve the policies. By perfecting the methods described in this thesis,

implementing them and deploying them, we can do just that.

Appendices

This section contains appendices to the main text:

A Hoekendijk’s method

This method was used in [JH15] to distill GPS coordinates of a porpoise from a video still image.

B Horses in Python
The Python script used to generate spatio-temporal data for fictional horses moving around the Oost-

vaardersplassen.

C Matplotlib script

The Python script used to generate 3D plots without a map, as seen in Figure 3.8.

D KML converter script
The Python script used to convert KML files without a height attribute to a KML file with graph lines

with the timestamp as height value.

E Przewalski’s horse study
Detailed information about the study on Przewalski’s horses conducted by Petra Kaczensky. This data

set was used in Chapter 2: Data visualization.

F Voronoi plot script

The Python script used to generate Voronoi diagrams out of CSV files containing spatiotemporal data.

G Cesium example
The JavaScript script used in the example Cesium visualization in Chapter 2: Data visualization. The

surrounding HTML code has been left out.

H Viewing on a large screen
Following the generation and evaluation of the several visualizations that we discussed, we tested whether

some of the more cluttered visualizations would be improved when viewed on a larger screen.

50

A. Hoekendijk’s method 51

A Hoekendijk’s method

To determine the geographic location of a porpoise, we need a) the geographic position and height of the camera,
b) the distance between the porpoise and the camera (Dpp) and ¢) the bearing of the sighting (the horizontal
deviation from a reference point). To find b) and c¢), we follow the following steps. Once the distance of the
observer to the porpoise and the bearing are known, we can use adapted versions of two functions R has built
in, to get the geographic coordinates (see last step).

First two images: original paper [JH15]

D()B Rl

D()P UI'M ® P

R,

R, Ep Opnp

I) Finding the distance between the observer and the porpoise (Dop)

1. Find 00A, OOB and TAB:

A 2 AA 2
IIx)Iy] = 2sin”"! \/(sin (P[ZX][Y]> +cos @x) cos @[y <sin [;]M> (1)

2. Find Dp (using the law of cosines):

Das = /2R — 2R2 cos(0.4p) 2)

3. Find Dpa and Dpp (similar to the above):

Doix) = \/2R% + (Rg + h)* = 2Rg (Rg + h) cos(0px)) (3)

52 Chapter 5. Conclusions
4. Find a (again using the law of cosines):
& = cos— ! (Dlqu_DZOA_D(ZJB> (4)
—2DoaDosp
5. Find pixel size g (in radians) (using the Pythagorean theorem):
) : 5)
V/(Ay = By + (Ax — By)?
6. Find ep (using the law of cosines):
ey — cos] ((RE +h)?+ D}y — R%) cog] <2REh +h+ DZOB> ©)

2(Rg +h)Dog 2(Rg +h)Dog

7. Find Opg and, subsequently, ep:

See the original paper for the calculations to find Opg. In short, Opp is found by calculating Lppr (see step

II) and multiplying it by q.

ep =¢ep —Opp

8. Find Dop:

Do = (R + 1) cosep — y/(Rg +h)*(cos ep)? — (2R +h2)

II) Finding the bearing relative to reference point B (7ypp)

(7)

To find the horizontal deviation from reference point B, we project P onto the artificial horizon line through B

(cpc) to get P,

See the original paper for the calculations to find the coordinates of P’ and the artificial horizon line through B,

CBC-

A. Hoekendijk’s method

53

1. Find the length of line segment Lpp::

@p=¢®—@

2. Find the bearing:

YPB =4

)2+ (Px = P{)? (9)

- Lgpr (10)

Finally, we use the distance between the observer and the porpoise and the bearing in the (adapted) functions

bearing and destPoint of the R geosphere-package [RHV], which give us the latitude and longitude coordinates

of the porpoise.

List of variables

(0]

= N W o

QR

Position of observer

Reference point A

Reference point B

Position of porpoise

Height of observer

Angle between A,O and B

Center of the Earth

Radius of the Earth

Interior spherical angle between [X] and [Y]
Distance between [X] and [Y]

Distance in pixels between points [X] and [Y]
Size of an individual pixel (in radians)
Vertical angle between [X], O and E
Latitude of [X]

Longitude of [X]

Difference in latitude between [X] and [Y]
Difference in longitude between [X] and [Y]
Pixel coordinates (x,y) of reference point [X]

Bearing of P relative to point [X]

54 Chapter 5. Conclusions

B Horses in Python

This Python script was used to generate spatio-temporal data for fictional horses moving around the Oost-
vaardersplassen. It outputs a plaintext file containing rows of locations (as pixel coordinates x and y on the

provided image). By way of commenting, it can be used to either output a KML or a CSV file.

from PIL import Image
import time

import sys

import random

import os

import math

def writeCSVHeader (id,rgb):
#o0s.system("echo 'latitude,longitude,height' >> horses-csv/"+4id+".csv")

return

def writeKMLHeader (id,rgb):

os.system("echoy '<?xmlversion=\"1.0\"_ encoding=\"UTF-8\"?><kml xmlns=\"http://earth.google.com/
kml/2.2\"><Document><Styleid=\"style-1\"><LineStyle> uuuuu<color>"+rgb+"66</color> ,uuuuuu<
width>1</width>,,Luuu</LineStyle > uuuu<PolyStyle> L uuuuuu<color>"+rgb+"66</color >, uuuu</
PolyStyle><IconStyle><color>"+rgb+"66</color><scale>1</scale><Icon><href>http://maps.google.
com/mapfiles/kml/pal4/iconb7.png</href></Icon></IconStyle></Style> ,uuuuuu<Placemark>, L uuLuuu
<name>HorseID:"+id+"</name> ,uuuuuu<visibility>1</visibility > uuuuuuuuu<description>HorseID: "
+id+",color: "+rgb+"</description> uuuuuuuu<styleUrl>#style-1</styleUrl>, ,uuuuuu<lineString>
LuuuuLuLLuuuuuuuuuuu<tessellate>1</tessellate > uuuuuu<extrude>1</extrude > uuuuuuuuu<

altitudeMode>absolute</altitudeMode>_ Luuuuuuuu<coordinates>' >> horses-kml/"+id+".line.kml")

def writeKMLCoords(x,y,z,id):
os.system("echo,"+str(pixToLongitude(x))+","+str(pixToLatitude(y))+","+str(z)+",>> horses-kml/"+id

+".line.kml")

def writeCSVCoords(x,y,z,id):
csvstrings[str(id)].append(str(pixToLongitude(x))+","+str(pixToLatitude(y))+","+str(z))
#os.system("echo "+str(pizToLongitude (z))+","+str(pizToLatitude (y))+","+str(z)+" >> horses-csv/"+

id+".csv")

def evaluatePosition(x,y,image):
e =0
for n in range(1l,len(x)):
e_current = sum(image[int(x[nl]),int(y[nl1)1)
e += e_current

return e

66

69

70

B. Horses in Python

95

def moveHorse (horse,image,i):
v = horse['speed']

r = horse['rotation']

x horse['x'] + math.cos(math.radians(r))

y horse['y'] + math.sin(math.radians(r))
temp_x = []

temp_y = []

for n in range(1,4):

temp_x.append(x + n*math.cos(math.radians(r)))

temp_y.append(y + n*math.sin(math.radians(r)))

if ((x <= 2*v or x >= (im.size[0]-2*v)) or (y <= 2*v or y >= (im.size[1]1-2*v))):

return

while (evaluatePosition(temp_x,temp_y,image) < 700*(len(temp_x)-1) and True):
temp_x = []
temp_y = []
r = random.randint (0,360)
for n in range(1,4):
temp_x.append(x + n*math.cos(math.radians(r)))

temp_y.append(y + n*math.sin(math.radians(r)))

horse['x'] = x + v*math.cos(math.radians(r))
horse['y'] = y + vx*math.sin(math.radians(r))
horse['rotation'] = r

if (mode == "kml"):

writeKMLCoords (horse['x'] ,horse['y'],i,horse['id"'])
elif (mode == "csv"):

writeCSVCoords (horse['x'],horse['y'],i,horse['id"'])

def printToTerminal (horse, image):
print (chr (27) + "[2J")
for i in range(0,im.size[1],50):
sys.stdout.write(str(i)+",|")
for j in range(0,im.size[0],25):
if horse['x'] == j and henk['y'] == i:
sys.stdout.write('X"')
elif sum(pix[j,il) > 100:
sys.stdout.write('."')
else:
sys.stdout.write(',"')

print

56 Chapter 5. Conclusions

74| def newHorse(horse_name):

75 horse = {'id':horse_name, 'x':1400, 'y':random.randint(1100,1300), 'speed':speed_horse, 'rotation':
random.randint (0,360)}

76 horses.append (horse)

77 os.system("echo,"+horse_name+".txt >> horsenames.txt")

78 os.system("echo,"+str(len(horses))+" > no_of_horses.txt")

s1| def horseDistance(horsel ,horse2):

82 return abs(horsel['x'] - horse2['x']) + abs(horsel['y']l - horse2['y'])

s1| def calculateDistances (horses):

85 mindistance = 1000000

86 for i,horse in enumerate (horses):

87 for j,horse2 in enumerate(horses):
8 if (§>i):

89 d = horseDistance (horse,horse2)

90 if (d<mindistance):

91 mindistance = d

92 #4f (horseDistance (horse,horse2) < 100 and False):
93 #newHorse (horsenames.pop ())

94 print mindistance

06| def printCoords (horse):

97 return str(horse['x'])+","+str(horse['y'])

90| def pixToLongitude(x):

100 return 5.478612 - (2876-x)*(0.241279/2538)
101
02| def pixToLatitude(y):

103 return 52.494943 - (y) * (0.093713/1614)
104
105
106 | #ARRRARRARARAARARAARBHAAY
107| # CREATE THE HORSES

108 | #ERRBABABRABRBRARRBRARERY
109
110/ im = Image.open("images/map-flattened.bmp") #Can be many different formats.
111 pix = im.load()

112| print im.size[0] #Get the width and hight of the image for iterating over
13| print im.size[1]

14| size = im.size

115| horses =[]

116 timestep = 0.1

159

B. Horses in Python

57

meter_per_pixel = 6.0
speed_kmph = 15.0

speed_mps = speed_kmph/3.6

speed_horse = timestep * speed_mps / meter_per_pixel
csvstrings = {}

#mode = 'kml'

mode = 'csv'

colors = ['194fdd', 'e442cb','bb896d', 'b2dell’', 'b67405"','d2df6a','5dfbea','252140"',"'a21793"'," 'f0fe2b’,

'22e400','8a1f92"','85fd28"','d3ff6b']

if (mode == "csv"):
os.system("rm_ horses-csv/*.csv")
os.system("rm_ horses-csv.n1024.t4096/*.csv")
elif (mode == "kml"):

os.system("rm horses-kml/*.kml")

i_min = 0

i_max = 1024

print "Writing headers,in,"+mode+" mode..."
for i in range(i_min,i_max):
if (mode == "kml"):
writeKMLHeader (str (i) ,colors[i%len(colors)])
elif (mode == "csv"):
writeCSVHeader (str(i),colors[i%len(colors)])
csvstrings([str(i)] = []

newHorse (str(i))

;| print "Headersywritten."

j=0
j_max=4096.0
print "Starting movement, generator..."
while (j<j_max):

for horse in horses:

moveHorse (horse ,pix, j)

#os.system("echo "+printCoords(horse)+" > horses/"+horse['id']J+".tzt")

time.sleep(timestep)

j+=1

print str(round(float(j)/j_max*100,1))+ "%y ly" + str(j) + "/" + str(j_max) + " steps"

160

161

162

163

164

165

166

167

168

169

58

Chapter 5. Conclusions

print "Allgmovements have been, generated."

print "Startingytoywriteytoyoutput,in mode,"+mode+"..."

for i in range(i_min,i_max):

outputfile = open("horses-csv.n1024.t4096/"+str(i)+'.csv',

outputfile.write('longitude,latitude,height\n"')

for line in csvstrings[str(i)]:
outputfile.write(line+'\n')

outputfile.close ()

print "Written,csvyfile for ID="+str (i)

print "Doneywriting,tooutput."

for i in range(i_min,i_maz):
if (mode == "kml"):

print "Writing footer..."

w')

0s.system("echo '</coordinates></LineString></Placemark></Document></kml>' >> horses-kml/"+str (%

)+". line.kml")
print "Footer written.”

#elif (mode == "csv"):

[

print "Finished."

C. Matplotlib script

99

C Matplotlib script

This Python script was used to generate 3D plots without a map, as seen in Figure 3.8.

import matplotlib as mpl

import numpy as np

#Importing pyplot

from matplotlib import pyplot as plt
from matplotlib import style

from matplotlib.dates import date2num

from matplotlib.dates import datestr2num

import matplotlib.dates as mdates

from mpl_toolkits.mplot3d import Axes3D

mpl.rcParams['examples.directory'] =

'/Users/janvanstaalduinen/Documents/Universiteit/Scriptie/test-python-plot/"'

style.use('ggplot')

plt.title('Movement of Przewalski\'s horses')
plt.ylabel('Latitute')

plt.xlabel('Longitude')

some that are close

animals = ['mundol','orchon', 'shagai','soir','tayan', 'todook']

all of them
#animals = ['mondor', 'mundol’', 'orchon', 'shagat', 'shandas’', 'soir’', 'tayan’,

'todook ']

without outlier

#animals = ['mondor', 'mundol’', 'orchon', 'shagat’', 'soir', 'tayan’', 'todook ']

these are very close

#animals = ['todook', 'shagat ']

animals_data = []

for animal in animals:
tmp = np.loadtxt('csv/'+animal+'.csv',
unpack=True,
delimiter = ',',

skiprows=1,

50

60

60

Chapter 5. Conclusions

converters={2: datestr2num},
usecols=(4,5,2))

animals_data.append (tmp)

fig = plt.figure(figsize=(10, 10))

ax = fig.gca(projection='3d"')

years = mdates.YearLocator () # every year
months = mdates.MonthLocator() # every month
days = mdates.DayLocator ()

yearsFmt = mdates.DateFormatter ('%Y-%m-%d"')
ax.zaxis.set_major_locator (years)
ax.zaxis.set_major_formatter (yearsFmt)

ax.zaxis.set_minor_locator (months)
ax.set_xlabel('longitude')
ax.set_ylabel('latitude')

ax.set_zlabel('date')

for index,animal in enumerate (animals_data):

ax.plot(animal [0] ,animal [1],animal [2], label=animals[index], marker='.

ax.legend ()

plt.show ()

")

o

D. KML converter script 61

D KML converter script

This Python script was used to convert KML files without a height attribute to a KML file with graph lines
with the timestamp as height value. As can be observed, the output file contains a KML header and footer

string, between which coordinates are printed.

HARHRARARBRRRRARBHRRHARH HEAD HRHHRARARERRARARBRRARHS
from time import mktime

from time import strptime

import xml.etree.ElementTree as ET

#import cElementTree as ET # Safer, but has to be installed
RARRHARRHARRRARR##H DEFINITIONS #HER#ARBHARBHHRRHHH
date_format = "%Y-%m-%d %H:%M:%S"

ns = "{http://earth.google.com/kml/2.2}" # namespace

minimum_date = strptime("2001-09-01","%Y-%m-%d")

16

0

date_factor = float (1) /7000

colors = ['6b65cOff','33b694ff', 'f7abd9ff', '243ab4ff', 'b0O5810ff ", '625

e50ff"','09e3b4ff', " '9edal3dff','51ab99ff"','27cb50ff", 'b726fdff"', 'b66737Lf", '07a977£ff", 'c1ff1bEff']

file_headerl = '<?xml,version="1.0",encoding="UTF-8"7>\

<kmly,xmlns="http://earth.google.com/kml/2.2">\

<Document ><Style id="style-1">\
<LineStyle>\
uuuuuuuu<color>!

file_header2 = '</color>\

3| buuuuuuu<width>1</width>\

uuuuuu</LineStyle>\
uuuuuu<PolyStyle>\
uuuuuuuu<color>!
file_header3 = '</color>\
Luuuuu</PolyStyle>\

\

<IconStyle><color>ffff00ff</color><scale>1</scale><Icon><href>http://

maps.google.com/mapfiles/kml/pal4/iconb7.png</href></Icon></IconStyle></Style>\

\
Luuuuuuu<Placemark >\

Luuuuuuuuu<name>Absolute</name>\

Luuuuuoooe<visibility>1</visibility >\

36| buuuuuuuuu<description>Transparentpurpleline</description>\

\
| buuuuuuuLu<styleUrl>#style-1</styleUrl>\

uuuuuuuuuu<LineString >\

62 Chapter 5. Conclusions

10| Luuuuooo\

1| buuuuuuuuuuu<tessellate>0</tessellate>\

12| buuuwuuuuu<extrude >0</extrude >\

13| buuuuuwuuuuun<altitudeMode >absolute</altitudeMode >\

4| yuuuuuuuuuuu<coordinates >

16| file_closer = ' ,</coordinates>\
17| Luuuuuuuuu</LineString >\

18| uuuuuuuu</Placemark >\

19| </Document >\

50| </kml>"

52| RARHBRARABRARRBRARAHURA MAIN RARBHRARBHRARBHRARBHRH
3| for i in range(1,10):

54 handle = open("line"+str(i)+".kml",'w')

56 handle.write(file_headerl+colors[i]l+file_header2+colors[i]+file_header3+'\n"')

58 path = "data/"+str(i)+"/points.kml"
59 root = ET.parse(path).getroot()

60 placemarks = root.find(ns+'Document').findall(ns+'Placemark’')

62 for placemark in placemarks:

63 coordinates = placemark.find(ns+'Point').find(ns+'coordinates').text
64 timestamp_text = placemark.find(ns+'Snippet').text

65 timestamp_struct = strptime(timestamp_text, date_format)

66 timestamp_adjusted = (mktime(timestamp_struct) -

67 mktime (minimum_date)) * date_factor

68 handle.write(coordinates+str(timestamp_adjusted)+'\n')

69

70 handle.write(file_closer)

72 handle.close ()

E. Przewalski’s horses study 63

E Przewalski’s horses study

This table contains detailed information about the study on Przewalski’s horses in Mongolia conducted by Petra

Kaczensky. This data set was used in Chapter 2: Data visualization. General

Study Name Przewalski’s horse Mongolia 2002-2007

Contact Person & Principal In- | Petra Kaczensky (profile: https://www.movebank.org/node/14589

vestigator

Citation Kaczensky, P., Ganbaatar, O. and Walzer, C. 2008. Przewalski’s horse GPS telemetry 2002-
2007 dataset.

Acknowledgements This research was conducted within the framework of the Przewalski’s horse reintroduction
project of the International Takhi Group (ITG)

Grants used Funding was provided by the Austrian Science Foundation (FWF) projects P14992 and the
Austrian National Bank (Jubileums Fonds).

License Terms employ specific citation and acknowledgement terms

Study Summary The aim of the study was to understand habitat and space use of reintroduced Przewalski’s
horses in the Mongolian Gobi. The data was needed as a basis for science based decision
making within the framework of the Przewalski’s reintroduction program.

Study reference location

Longitude 93.455
Latitude 45.341
Movebank ID 14291872

Study statistics (last updated > 1 year ago as of July 25th, 2016)

Number of Animals 10
Number of Tags 10
Number of Deployments 10

Time of First Deployed Loca- | 2001-11-01 04:00:00.000
tion
Time of Last Deployed Loca- | 2005-07-04 23:01:00.000
tion
Taxa Equus caballus

Number of Deployed Locations | 3813

Number of Records Deployed (outliers) / Total (outliers)
GPS 3813 (0) / 0 (0)

Argos Doppler Shift 0 (0) /0 (0)

https://www.movebank.org/node/14589

~

64 Chapter 5. Conclusions

F Voronoi plot script

This Python script was used to generate Voronoi diagrams out of CSV files containing spatiotemporal data.
The script was adapted from the Git project ‘Colorized Voronoi’.
Note: the image ‘map-flattened.bmp’ was added to the local Python Cookbook Samples folder, to be able to

quickly access it from different locations and scripts.

import numpy as np

import matplotlib.pyplot as plt

from scipy.spatial import Voronoi, voronoi_plot_2d
import csv

import os

import sys

import time

from scipy.misc import imread

import matplotlib.cbook as cbook

def formatNumberToThreeDigits(i):
if (i > 99):
return str(i)
elif (i > 9):
return "0"+str (i)
else:

return "00"+str (i)

def voronoi_finite_polygons_2d(vor, radius=None):
mumnn
Reconstruct infinite voronot regions in a 2D diagram to finite

regions.

Parameters
vor : Voronot
Input diagram
radius : float, optional

Distance to 'points at infinity'.

regions : list of tuples
Indices of wertices in each revised Voronoti Tegions.
vertices : list of tuples

Coordinates for revised Voronoi wertices. Same as coordinates

3See https://gist.github.com/pv/8036995, last consulted August 14th, 2016

https://gist.github.com/pv/8036995

F. Voronoi plot script

38 of input wvertices, with 'points at infinity' appended to the
39 end.

10

11 e

12

3 if vor.points.shape[1l] != 2:

14 raise ValueError ("Requires2D,input")

16 new_regions = []

7 new_vertices = vor.vertices.tolist ()
18

19 center = vor.points.mean(axis=0)

50 if radius is None:

5 radius = vor.points.ptp().max()

53 # Construct a map containing all ridges for a given point

54 all_ridges = {}

55 for (pl, p2), (vl, v2) in zip(vor.ridge_points, vor.ridge_vertices):
56 all_ridges.setdefault(pl, []).append((p2, vi, v2))

57 all_ridges.setdefault(p2, []).append((p1, vi, v2))

59 # Reconstruct infinite regions
60 for pl, region in enumerate(vor.point_region):

61 vertices = vor.regions[region]

63 if all(v >= 0 for v in vertices):
64 # finite region
65 new_regions.append(vertices)

66 continue

68 # reconstruct a non-finite region
69 ridges = all_ridges[p1]

70 new_region = [v for v in vertices if v >= 0]

72 for p2, vl, v2 in ridges:

73 if v2 < 0:

7 vi, v2 = v2, vi

75 if vl >= 0:

76 # finite ridge: already in the region

77 continue

79 # Compute the missing endpoint of an infinite ridge

81 t = vor.points[p2] - vor.points[pl] # tangent

88

90

98

99

100

101

102

104

106

107

108

109

110

119

120

66

Chapter 5.

Conclusions

t /= np.linalg.norm(t)

n = np.array([-t[1], t[0]]) # mormal

midpoint = vor.points[[pl, p2]].mean(axis=0)
direction = np.sign(np.dot(midpoint - center, n)) * n

far_point = vor.vertices[v2] + direction * radius

new_region.append(len(new_vertices))

new_vertices.append(far_point.tolist())

sort region counterclockwise

vs = np.asarray([new_vertices[v] for v in new_region])
¢ = vs.mean(axis=0)

angles = np.arctan2(vs[:,1] - c[1], vs[:,0] - c[0])

new_region = np.array(new_region) [np.argsort (angles)]

finish

new_regions.append(new_region.tolist())

return new_regions, np.asarray(new_vertices)

def getHorses(path):

for file in os.listdir(datapath):

if (file.endswith(".csv") and n < 140000):

' '

horses.append(file[:-4]) # remove '.csv
n += 1

return horses

def getData(horses,path):
horses_data = {}
for horse in horses:
tmp_longs = []
tmp_lats = []
with open(datapath+horse+'.csv', 'rb') as csvfile:
csvreader = csv.reader(csvfile,delimiter=',")
csvreader .next () # skip first row with column names
for row in csvreader:
tmp_longs.append (float (row[0]))
tmp_lats.append(float (row[1]))
horses_datal[horse]l = { 'longitude' : tmp_longs, 'latitude'

return horses_data

tmp_lats }

159

160

161

162

164

165

166

168

F. Voronoi plot script

67

def getPoints(data):
points = []
for i in range(0,int(len(datal'0']J['longitude']))):
tmp = []
for horse in data:
#print horses_data[horse]['longitude 'J[<]
new = np.array([datalhorsel['longitude'][i],datal[horse]['latitude'][i]])
#print new
tmp . append (new)
points.append (tmp)

return points

def makePlot (current_frame,points):

print "Plotting, frame,"+str(current_frame)+"/"+str(sys.argv[1])+"..."

fig = plt.figure(figsize=(80,60))

ax = fig.add_subplot(111)

vor = Voronoi(points)

regions, vertices = voronoi_finite_polygons_2d(vor)

plt.xlim(vor.min_bound[0] - 0.1, vor.max_bound[0] + 0.1)
plt.ylim(vor.min_bound[1] - 0.1, vor.max_bound[1] + 0.1)
ax.set_xlabel('longitude,(decimals)"')

ax.set_ylabel('latitude,(decimals)"')

colorize
for region in regions:
polygon = vertices[region]

plt.fill (xzip(*polygon), alpha=0.4)

plt.plot(points[:], points[:], 'ko',zorder=1)

ax.set_title('Voronoigdiagramof locations of horses,(n="'+str(len(horses))+',t =_'+str(
current_frame)+")")

voronoi_plot_2d(vor,ax=ax, show_points=True, show_vertices=False)

ax.axis([5.30 , 5.435, 52.402, 52.49])

plt.imshow(img, zorder=0, extent=[5.237333 , 5.478612, 52.401230, 52.494943])

plt.gca() .set_aspect('equal', adjustable='box')

169

186

189

190

191

194

68 Chapter 5. Conclusions

print ", [Plotybuilt, saving,to,pngl"
plt.savefig('renders/faster.4096/t'+formatNumberToThreeDigits (current_frame)+'.png', bbox_inches='
tight')

print ", ,[Plot saved]"

plt.close()

MAIN #H####

Common settings
datafile = cbook.get_sample_data('map-flattened.bmp')
img = imread(datafile)

font = {'size' : '35'}

lowerbound = int(sys.argv[1])
upperbound = int(sys.argv[2])

dataset = str(sys.argv[3])

7| datapath = "../massive-dataset/csv/outputcsv."+dataset+"/"

horses = getHorses(datapath)

print "File_ list_loaded._ (1/4)"

data = getData(horses,datapath)

print "Data,setloaded. (2/4)"

points = getPoints(data)

print "Datagpoints,loaded. (3/4)"

for i in range (upperbound,lowerbound-1,-1):
makePlot (i,points[i])
print ", [Plots left: "+str(i-lowerbound)+"]"

print "Plotting,complete. (4/4)"

G. Cesium example 69

G Cesium example

This JavaScript script was used in the example Cesium visualization in Chapter 2: Data visualization. The
surrounding HTML code has been left out. The HTML element containing the Cesium widget is identified by

identifier ‘cesiumContainer’.

function loadCSVFile(filepath,startdate,datestepsize){

var values = [];
var startDateNumber = startdate; // a date in Julian Date format
var stepDateNumber = datestepsize;

var txtFile = new XMLHttpRequest();
txtFile.open("GET", filepath, false);
txtFile.onreadystatechange = function(){

if (txtFile.readyState === 4) { // document is ready to parse.
if (txtFile.status === 200) { // file is found
allText = txtFile.responseText;

lines = txtFile.responseText.split("\n");
for (var i=1; i < lines.length-1; i+=resolution){ // skip header row
lineSplitted = lines[i].split(',');
valueArray = [startDateNumber + i*stepDateNumber, lineSplitted[0], lineSplitted[1] 1;
values.push(valueArray);
}
}
}
}
txtFile.send(null);
return values;

}
function newIntervalFromDaysNumber (startdate,stopdaysnumber){
var timeInterval = new Cesium.TimeInterval ({
start : new Cesium.JulianDate(startdate),
stop : new Cesium.JulianDate(startdate+stopdaysnumber),
isStartIncluded : true,
isStopIncluded : false
9N
return timelnterval
}
function newWall(lonl,latl,zl,lon2,lat2,z2,widget,interval,color){
var timeIntervalCollection = new Cesium.TimeIntervalCollection([intervall);
return widget.entities.add({
name : 'Greenpwall_ from_surface_ with_ ,outline',
availability : timeIntervalCollection,
wall : {
positions : Cesium.Cartesian3.fromDegreesArrayHeights ([

lonl,latl,zl, // A
lon2,lat2,z2, // B

D,
material : Cesium.Color.WHITE.withAlpha(0.25),
outline : true,
outlineColor : color
}

I
}

function plotAgent(values,color){
var wall;
var i = 0
prev_lon values [i] [1];
prev_lat = values[i][2];
for (var i; i < values.length; i++){
wall = newWall(prev_lon, prev_lat, i*heightStepSize, values[i][1], values[i][2],
(i+1) * heightStepSize, viewer,
newIntervalFromDaysNumber (values[i] [0] ,retentionDaysNumber) ,color);
prev_lon = values[i][1];
prev_lat = values([i][2];

}
}

var heightStepSize = 0.5; //

70

Chapter 5. Conclusions

var
var

var

var
for

resolution = 5; // Every Xth step is skipped
retentionDaysNumber = 5; //

viewer = new Cesium.Viewer ('cesiumContainer');

n = 25;

(var i = 0; i < n; i++){

values = loadCSVFile('csv/'+i+'.csv',2457610.5,0.01);
plotAgent (values,Cesium.Color.fromRandom());
console.log("Loaded,"+i+"/"+(n-1));

}

viewer.camera.flyTo ({

destination : Cesium.Cartesian3.fromDegrees(5.3747,52.3922,1250.0),
orientation : {
heading : Cesium.Math.toRadians(-25.0),
pitch : Cesium.Math.toRadians(-25.0),
roll : 0.0

B

H. Viewing on a large screen 71

H Viewing on a large screen

Following the generation and evaluation of the several visualizations that we discussed, we tested whether some

of the more cluttered visualizations would be improved when viewed on a larger screen.

(a) Voronoi graph (without colors or map) (b) Heatmap

(¢) Voronoi graph (d) Voronoi graph (large data set)

Figure 1: Inspecting the visualizations on a larger screen, consisting of twelve 32” televisions mounted to the wall of a
room (unfortunately, one screen was not operational on the day these pictures were taken).

72

Chapter 5. Conclusions

List of Tables

2.1 UvA-BiTS sensor specifications 8
2.2 The six currently operational satellites that carry ARGOS hardware, in decreasing order of launch

date. Note: NOAA-19 was called NOAA-N’ (NOAA-N Prime) before launch. 10
2.3 Estimated possible frequencies of sending GPS data over LoRaWAN, assuming a) that the adver-

tised speeds are in kilobits per second and b) the size of the flash memory described in [BBSBC13]

is described in megabytes. 832MB (= 256 + 10° kilobits) of flash memory can store up to 5% 10° GPS records,

which are 15z larger if all sensor data is included. Thus, a single small record would take up approzimately

5%10~1 kilobit and a large record would take up approzimately 7.7 kilobit. Estimates rounded to 1 significant figure. 13

2.4 A summary of the methods covered in this chapter. 19

3.1 Indication of time spent plotting one frame (f = 499). Timed using the function time in Bash.
Voronoi script: fastervoronoi.py (see Appendix F). CPU: Intel(R) Core(TM) i5-5257U @
2.7T0GHz. e 35

73

74

LIST OF TABLES

List of Figures

1.1

1.2

21

2.2

2.3

24

2.5

2.6

2.7

2.8

Our research methodology. L L e

The Oostvaardersplassen is a nature reserve in the Netherlands, managed by the State Forestry
Service. It is located in a polder created in 1968. This means that is a relatively new ecological
structure. One of the goals of this reserve is to re-create a “truly wild”” nature as would be found
in the Netherlands some two hundred years ago, before the Industrial age. Another is to gain

knowledge of self-preserving ecosystems. e

A direct tracking system (a) works by placing a device on an animal, while an indirect tracking
system (b) uses a device that tracks the animal from afar.
A graphical overview of a set-up of the UvA-BiTS field unit using one relay.
A falcon wearing a UvA-BiTS tracker (a) and various models of UvA-BiTS trackers compared to
a 50 eurocent coin for scale (b). Both images: UvA-BiTS website (http://www.vva-bits.nl/) .
Output of the accelerometer in a UvA-BiTS tracker. The first graph shows the acceleration in
terms of g during flapping flight. The second graph shows acceleration in terms of g during
gliding flight. Both images: UvA-BiTS website (http://www.wva-bits.nl/)
An artist’s rendition of a Metop satellite, which are used to carry ARGOS hardware. Picture:
European Space Agencyo
The ARGOS system makes use of satellites to receive data from transmitters and then sends it
via receiver stations to its processing centres (a). Image: ARGOS website’. In (b) the three
main receiver stations are shown on a map (using the Cassini-Soldner projection). For reference,
a red circle measuring 5000km in diameter is drawn with the North pole as its origin.
Schematic diagram of the connection of a LoRa network (box to the right) to the ‘regular’ internet

(box to the left). Source: [VS16]

Range of 11 miles around the Visitor’s center (white dot) of the Oostvaardersplassen (red-lined

4

5

76

LIST OF FIGURES

2.9

2.10

3.1
3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11
3.12

3.13

Comparing a possible set-up on a wetland, the Oostvaardersplassen, (b) with the set-up used by
Hoekendijk et al. [JH15] (a) (range in red ~ 5km, range in green fill ~ 1km, range in green line
~ 2km). Image in (a) from original paper [JHI15] 16
LiDAR imagery from the AHN project in The Netherlands. See online viewer: http://ahn.

arcgisonline.nl/ahnviewer/ L 17

Three examples of time-based visualizations. Adapted from their respective papers. 22
Movebank’s Tracking Data Map, with which data of tracking studies can be browsed and, in
some cases, downloaded. 24
Location of sample agents on the map. The white dotted circle denotes the area where the agents
were spawned (circle added after taking screenshot).o oL 25
The AT agents roaming the Oostvaardersplassen (blue dots), at t = 4 (a) and t = 496 (b). Plotted
using Python’s Matplotlib and Basemap packages. 27
A 3D graph produced with the Python package Matplotlib (see Appendix C) of the horses in
the study about Przewalski’s horses in Mongolia [WK14]. In (a), all of the horses are shown,
but very visibly one horse was followed in a later time frame than the rest of the horses. This
horse (codenamed ‘shandas’) was removed in the second plot (b). In the third plot (c), the horse
codenamed ‘mondor’ was also removed.o Lo 28
A 3D graph produced with the converter script in Appendix D, which converts KML point sets
into KML lines without (a) or with (b) the option ‘extrude’ turned on (which extends the line
to the ground). Viewed in Google Earth Pro, obtainable at https://www.google.nl/earth/
download/gep/agree.html e e 29
Each KML file can be given a name (displayed bold) and description, which are displayed when
the line is clicked on. L L e 29
A 3D graph of the movement of the artificial agents, first plotting all of them (a) (n = 23), then
only a few (b) (n =3) and then a few more (c) (n=5) 30
Example of a Voronoi Diagram, with 5 randomly generated data points. 31
Voronoi diagrams: various steps in the process. oo 32
Voronoi diagram, final step. L 33
A comparison of three approaches to plotting the heatmap. First, a smoothed view of the
heatmap’s ‘boxes’ (a). Second, the same view with the smoothing turned off (b). Third, plotting
with smoothing turned off and only capturing the last 50 steps in the data set (c). This results
in more clearly visible trail-like lines. Note: in (b) and (c), the opacity of the background image
is turned down a bit. Lo e 34
The data set with n = 4096, t,5r = 499 plotted as a Voronoi diagram (a) (f = 499), a heatmap

(b) (tpin = 399, tax = 499) and as seen in Google Earth (¢) (£, = 0, tmaxr =499). 36

LIST OF FIGURES

7

3.14

3.15

3.16

3.17

4.1

4.2

4.3

The data set with n = 512, t;5, = 499 plotted as a 3D graph, viewed as a KML file in Google
Earth (Pro). o
KML imported as KmlDataSource in Cesium. Note the white glow, probably caused by the
partial transparency of the line stretches that is handled peculiarly by Cesium (i.e. the colours
of the semi-transparent layers are added to form a white colour, instead of the semi-transparent
layers only letting part of the ‘light’ pass through as would be natural).
A detailed look at the Cesium time controller. Note the green arrow that designates the speed at
which time moves (it can be dragged around the circle to increase or decrease the speed of time)
and the blue marker at the start of the time line denoting the current time frame. The date and
time of the current time frame are also displayed in the centre of the circle. The button at the
top left, displaying a clock icon, resets the time frame to the current, real, time.
3D Graphs in Cesium. The first image displays a KML file loaded into Cesium (a). The second
image displays 25 agents moving without fading (b). The third (¢) and fourth (d) images show
agents moving with fading, where the retention time ret determines how long the data points stay
on screen. The value of Ahps—1 describes the height (in meters) each data point rises relative to

the previous data point in that series.

The minimal distances of all the horses at f = 0 (a), + = 249 (b) and t = 499. Also included
are the average value (avg, blue line) and standard deviation (stdev). The green lines show
avg + stdev, the red lines show avg —stdev. o0
The average minimal distances of each frame (AVG) for two data sets, containing positions for
n horses in f,y timeframes. Also shown are the standard deviation (STDEV) and the average
plus and minus the standard deviation (ARGESTDEV).

The k-means clustering algorithm applied to our data set (n = 1024,t =499).

Inspecting the visualizations on a larger screen, consisting of twelve 32” televisions mounted to
the wall of a room (unfortunately, one screen was not operational on the day these pictures were

takem). ...

43

References

[AMM™07]

[APN12]

[Bal09)]

[BBSBC13]

[BCOO]

[Bla15)]

[Cla89]

[Col10]

[DAXX]

[DEE*04]

Wolfgang Aigner, Silvia Miksch, Wolfgang Miiller, Heidrun Schumann, and Christian Tominski.

Visualizing time-oriented data—a systematic view. Computers & Graphics, 31(3):401-409, 2007.

Stefan Aust, R Venkatesha Prasad, and Ignas GMM Niemegeers. Ieee 802.11 ah: Advantages
in standards and further challenges for sub 1 ghz wi-fi. In Communications (ICC), 2012 IEEE
International Conference on, pages 6885—6889. IEEE, 2012.

R. Balasubramaniam. On the confirmation of the traditional unit of length measure in the estimates

of circumference of the earth. Current Science (00113891), 96(4):547 — 552, 2009.

Willem Bouten, Edwin W. Baaij, Judy Shamoun-Baranes, and Kees C. J. Camphuysen. A flex-
ible gps tracking system for studying bird behaviour at multiple scales. Journal of Ornithology,
154(2):571-580, 2013.

A. S. Barry and J. Czechanski. Ground surveillance radar for perimeter intrusion detection. In
Digital Avionics Systems Conference, 2000. Proceedings. DASC. The 19th, volume 2, pages 7TB5/1—
7B5/7 vol.2, 2000.

Herbert Blankesteijn. Breekt het ‘internet of things’ nu eindelijk door? (dutch). NRC.nl, 08 2015.

D. D. Clark. Overview of the argos system. In OCEANS ’89. Proceedings, volume 3, pages 934-939,
Sept 1989.

Christina Wynne Collins. Understanding the reproductive biology of the przewalski’s horse (equus

ferus przewalskii). 2010.

Andrew B. Davies and Gregory P. Asner. Advances in animal ecology from 3d-lidar ecosystem

mapping. Trends in Ecology & Evolution, 29(12):681-691, 2016/06/13 XXXX.

Holger Dettki, Géran Ericsson, Lars Edenius, et al. Real-time moose tracking: an internet based

mapping application using gps/gsm-collars in sweden. Alces, 40:13-21, 2004.

78

REFERENCES 79

[DHT2]

[H07]

[HHWNO2]

[JH15]

[Mat14]

[MKG™*13]

[Moe04]

[QMdJ*12]

[RHV]

[ROS07]

[Shr14]

[TAS04]

Richard O Duda and Peter E Hart. Use of the hough transformation to detect lines and curves in

pictures. Communications of the ACM, 15(1):11-15, 1972.

John D Hunter et al. Matplotlib: A 2d graphics environment. Computing in science and engineering,

9(3):90-95, 2007.

Susan Havre, Elizabeth Hetzler, Paul Whitney, and Lucy Nowell. Themeriver: Visualizing thematic
changes in large document collections. IEEFE transactions on visualization and computer graphics,

8(1):9-20, 2002.

Krissy van der Bolt Jens Greinert Sophie Brasseur Kees C. J. Camphuysen & Geert Aarts
J.P.A. Hoekendijk, Jurre de Vries. Estimating the spatial position of marine mammals based

on digital camera recordings. Fcology and Evolution, 5(3):578—589, 2015.

Mark P. Mattson. Superior pattern processing is the essence of the evolved human brain. Front

Neurosci, 8:265, Aug 2014. 25202234 [pmid].

Aongus McCarthy, Nils J. Krichel, Nathan R. Gemmell, Ximing Ren, Michael G. Tanner, Sander N.
Dorenbos, Val Zwiller, Robert H. Hadfield, and Gerald S. Buller. Kilometer-range, high resolution
depth imaging via 1560 nm wavelength single-photon detection. Opt. Ezpress, 21(7):8904-8915,
Apr 2013.

Andrew Vande Moere. Time-varying data visualization using information flocking boids. In Infor-

mation Visualization, 2004. INFOVIS 2004. IEEE Symposium on, pages 97-104. IEEE, 2004.

Lorenzo Quaglietta, Bruno Herlander Martins, Addy de Jongh, Anténio Mira, and Luigi Boitani.
A low-cost gps gsm/gprs telemetry system: performance in stationary field tests and preliminary

data on wild otters (lutra lutra). PloS one, 7(1):€29235, 2012.

E. Williams R.J. Hijmans and C. Vennes.

Sahar Rahimi and Norman Owen-Smith. Movement patterns of sable antelope in the kruger national
park from gps/gsm collars: a preliminary assessment. South African Journal of Wildlife Research,

37(2):143, 2007.

Ayush Shrestha. Visualizing spatio-temporal data. 2014.

Christian Tominski, James Abello, and Heidrun Schumann. Axes-based visualizations with radial
layouts. In Proceedings of the 2004 ACM symposium on Applied computing, pages 1242-1247. ACM,
2004.

80 REFERENCES

[vdH16] J.H. van den Herik. Big data. In Leids-Haags Allegorieénlexicon, pages 41-49. Leiden University
Dual PhD Centre The Hague, Uitgeverij Eburon, Delft, 2016.

[vdZ13] Niels van der Zon. Kwaliteitsdocument AHN2 (dutch). Technical report, Actueel Hoogtebestand
Nederland, May 2013.

[VMRF02] Cécile Vincent, Bernie J. Mcconnell, Vincent Ridoux, and Michael A. Fedak. Assessment of argos
location accuracy from satellite tags deployed on captive gray seals. Marine Mammal Science,
18(1):156-166, 2002.

[vS16] J.H. van Staalduinen. De wet versus het internet — uitdagingen van een internet of things (dutch)
(available on https://www.liacs.nl/~jvstaald/iotpaper.pdf). 05 2016.

[WK14] M Wikelski and R Kays. Movebank: archive, analysis and sharing of animal movement data. World
Wide Web electronic publication, 2014.

[WP] Dominic Zeng Wang and Ingmar Posner. Two approaches to radar-based moving object detection.

https://www.liacs.nl/~jvstaald/iotpaper.pdf

	Abstract
	Acknowledgements
	Introduction
	Tracking animals
	Methodology
	Problem statement
	Summary of conclusions

	Animal Tracking Technologies
	Two categories of tracking methods
	Direct tracking methods
	A) UvA-BiTS
	B) ARGOS
	C) LoRa
	D) Mobile communication networks

	Indirect tracking methods
	A) Video feed
	B) Radar
	C) LiDAR
	D) Time-of-flight measurement
	E) Vibration sensors
	F) Human observation

	Chapter summary

	Data visualisation
	From graphs to spatio-temporal visualisations
	Sample data
	Movebank
	Sample data set 1 - Przewalski's horses in Mongolia
	Sample data set 2 - Artificial agents roaming the Oostvaardersplassen

	Visualizations
	Moving points on a 2D map
	3D Timegraph
	Voronoi overlay
	Heatmap

	Plotting a larger data set
	Cesium
	Chapter summary

	Data analysis
	Obtaining knowledge from data
	Distance over time
	Clustering
	Chapter summary

	Conclusions
	Problem statement and Research questions
	Concluding remarks
	Hoekendijk's method
	Horses in Python
	Matplotlib script
	KML converter script
	Przewalski's horses study
	Voronoi plot script
	Cesium example
	Viewing on a large screen

	List of Tables
	List of Figures
	References

