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AbstractThis report is based on the work I have done for my Master Thesis project.The project as a whole consists of research done in the �eld of evolutionarycomputation, and it is split into two distinct parts. The main theme isadaptive evolutionary algorithms.The �rst part covers the research done on solving binary constraint sat-isfaction problems using adaptive evolutionary algorithms. This involves acomparative study on three algorithms, each of which incorporates a di�er-ent adaptive �tness measure to guide its search to a solution for an instanceof a binary constraint satisfaction problem.The second part mainly consists of the development of a library. Itsuse is aimed at evolutionary algorithms in general. Furthermore, a geneticprogramming algorithm is contructed, that incorporates an adaptive �tnessmeasure. This construction served as a test of the usability of the library.The genetic programming algorithm has been used for experiments on dif-ferent data sets from the data mining �eld.
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Chapter 1Introduction1.1 What to expectThis report has been written for the conclusion of my Master Thesis. Duringthe time I wrote this, I have been assisted and guided by A.E. Eiben andE. Marchiori. They both did a great job in correcting my mistakes andeven more important, they frequently pointed me into the right direction.The research preceding and described in this report has also resulted in twoarticles:A.E. Eiben, J.K. van der Hauw, J.I. van Hemert. Graph Coloring withAdaptive Evolutionary Algorithms. Journal of Heuristics, 4(1):25{46.A.E. Eiben, J.I. van Hemert, E. Marchiori, A.G. Steenbeek. Solving Bi-nary Constraint Satisfaction Problems using Evolutionary Algorithmswith an Adaptive Fitness Function. In A.E. Eiben, Th. B�ack, M.Schoenauer, H.-P. Schwefel editors, Proceedings of the 5th Conferenceon Parallel Problem Solving from Nature, number 1498 in lncs, pages196{205, Springer, Berlin.The whole project, and therefore this whole document, has evolutionarycomputation as a leading theme. In the �eld of evolutionary computationone uses evolutionary algorithms to solve some kind of problem. The processof getting the answer forms the computation part. The next section providessome inside into evolutionary algorithms for those who have never heardabout it.To make things even more di�cult, the document is split into two parts.Both have some things in common, which comes down to adaptive evolu-tionary algorithms and me doing something with it. But because both areseparate research �elds and because both were independently researched, wedecided to split the report into two parts. The order of these parts is thesame as the order in which both researches were carried out.1



Introduction Evolutionary AlgorithmsThe �rst part is about solving constraint satisfaction problems with evo-lutionary algorithms. In short a constraint satisfaction problem is a bunchof variables and a bunch of constraints. Each of the variables have to beassigned a value, this value is from a �xed and prede�ned domain. But somecombinations of assignments of values are prohibited. These combinationsare de�ned in the constraints. Solving a constraint satisfaction problemmeans �nding values for all variables without violating the constraints.The second part is focused on the construction of a library for program-ming evolutionary algorithms. The library aims at evolutionary algorithmsas a whole, providing a broad spectrum of techniques from di�erent �eldsof evolutionary computation. Its usability is tested on the construction ofgenetic programming algorithm that makes use of an adaptive �tness mea-sure. The genetic programming algorithm is then tested on di�erent datasets from the �eld of data mining.1.2 Evolutionary AlgorithmsAs often is observed when a new �eld of research is maturing a clutter ofnames starts to form. After a while the names that have been formed will beconnected with the founders and their own research. The common divisorof all these smaller research �elds is then given a much broader name and itwill be seen as an umbrella for all all these �elds.The same goes for the evolutionary computation �eld. When someonetalks about evolutionary algorithms he implicitly says: `The �eld concerninggenetic programming, genetic algorithms, evolutionary programming, evolu-tionary strategies, simulated annealing and classi�er systems'. Evolutionarycomputation is all about evolutionary algorithms, search algorithms basedon the theory of evolution by Charles Darwin. All of the research done insidethis �eld is based upon a driving force we can witness in nature: evolution.But what is evolution about? It uses a basic principle which guides it to-wards a goal; `Survival of the �ttest'. By selecting those individuals from apopulation that are closest to the goal, a pressure is created that drives thepopulation to the goal which seems best for survival of the individuals andthe population.This principle would not be as powerful as we see today if things likegenetic operators would not exists. These operators, such as mutation andcrossover, make sure that during the lifetime of a population new individualsare formed that resemble their parents, but have some new information oftheir own. The operators provide the new ideas, while the natural selectionmakes sure, the best ideas survive.An evolutionary algorithm tries to mimic this behavior by creating anarti�cial environment in which arti�cial individuals try to survive. By care-fully constructing the environment it is possible to let a population of these2



Introduction Evolutionary Algorithmsindividuals pursue a special goal. A goal which we want it to reach; thesolution of a problem. The optimizing power of an evolutionary algorithmis so strong that it can solve all kind of optimizing problems. After all, it isevolution that is responsible for the creation of the most powerful problemsolver known to mankind: `the human brain'.Now that evolutionary computation is becoming increasingly popular,the number of practical applications is growing rapidly. The optimizingproperty of evolutionary algorithms is used for scheduling transportation ofgoods, planning lectures, �nding the best shape of all kind of constructionsand data mining purposes. Evolutionary algorithms are even used in anapplication that �nds the best co�ee by mixing several di�erent blends. Apanel of experts grades the co�ee, which is then used as a �tness measure.The �eld of evolutionary computation is still in the process of gettingrecognition of the business community. Looking at the great number ofsuccesses it has witnessed, undoubtedly this recognition will eventually bethere. Who knows what evolutionary algorithms will and can do for us inthe future?

3



Part ISolving ConstraintSatisfaction Problems withAdaptive EvolutionaryAlgorithms
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Chapter 2IntroductionThis part of the report handles the experiments in solving constraint satis-faction problems. These constraint satisfaction problems will be representedin a binary form, which allows for a random generation using a set of param-eters. The parameters have already been investigated in other experiments,and therefore allow us to make a comparison on results.To solve the constraint satisfaction problems we use three evolutionaryalgorithms, where each algorithm makes use of a form of adaptivity. Thethree algorithms are the co-evolutionary method of Paredis (Paredis, 1994;Paredis, 1995b; Paredis, 1995a), the heuristic-based microgenetic methodof Dozier, G. et al. (Dozier et al., 1994) and the stepwise adaptation ofweights technique by Eiben et al. (Eiben et al., 1995; Eiben and Ruttkay,1996; Eiben and van der Hauw, 1996; Eiben and van der Hauw, 1998; Eibenet al., 1998a).The performance of these algorithms in successfully solving the con-straint satisfaction problems is measured and compared. Furthermore wewill see that the empirical results will conform with the theoretical assump-tions made on the hardness of these kind of problems.We compare the di�erent algorithms using a test suit consisting of 625generated problems. The results are then evaluated for 25 di�erent param-eters settings. The two best algorithms will be compared in a scale-up test,where we look at how the performance changes when the size of the problemgrows.The following chapter will explain more about what constraint satisfac-tion problems are. Chapter 4 will show the di�culty of solving constraintsatisfaction problems and how to generate them randomly. The three algo-rithms will be explained in Chapter 5. The experiments and the results willbe shown in Chapter 6, followed by the conclusions in Chapter 7. The lastchapter will discuss future research.
5



Chapter 3Constraint SatisfactionProblems3.1 What is a CSPWhen facing the task of solving a constraint satisfaction problem (csp), theproblem is to �nd values for a given set of variables, without violating con-straints that exist between those variables. The number of variables is �xedand each variable gets its value from a �nite domain. In a csp, a constraintcan exist between any set of variables, but here we only examine binary con-straint satisfaction problems, i.e., constraints between two variables. Thisdoes not restrict our research because any csp can be transformed into abinary csp (Tsang, 1993).Beside csps, another well known problem class is that of constraint op-timization problems (cop). These two classes are similar except that a cophas an additional function that has as input the values of the variables in apossible solution. In addition to satisfying the constraints in the problem,this function has to be minimized as well.On the �rst sight it looks like a problem from the class of cops willgenerally be harder to solve than a problem from the class of csps. Butthis is not the case. Just like any other optimization problem, a cop canbe transformed into a decision problem, in this case a csp. The decisionproblem will be as hard to solve as the optimization problem.Looking at the theoretical base of csps and cops, there is an extradi�culty in solving csps using evolutionary algorithms. To be able to solvea cop, an evolutionary algorithm will try to solve the problem using a �tnessobjective, this function can be based or maybe even completely the same asthe function that comes with the cop. An evolutionary algorithm needs afunction to optimize, i.e., to base its selection mechanism on. It is thereforequite naturally to provide the cop's function as the �tness function. Whenan evolutionary algorithm has to solve a csp, there is no function to base6



Constraint Satisfaction Problems An example: Eight Queensthe �tness of a possible solution on. Therefore a completely new functionhas to be made up for the evolutionary algorithm to optimize.3.2 An example: Eight QueensA well known example of a binary csp is the Eight Queens Problem. Here wewant to place eight queens on a chess-board, such that they can not checkeach other. We know that if we �nd a solution, every column will containprecisely one queen, therefore each queen is assigned to one column. Everyqueen gets a number corresponding to the row it is placed in.Speaking in terms of binary csps, between every pair of queens there isa set of two-tuples, which determine the combinations of values that are notallowed. For the �rst and second queen the following combinations may notoccur: f(1,1), (1,2), (2,1), (2,2), (2,3), (3,2), (3,3), (3,4), (4,3), (4,4), (4,5),(5,4), (5,5), (5,6), (6,5), (6,6), (6,7), (7,6), (7,7), (7,8), (8,7), (8,8)g. Forexample, the (3,4) tells us that it is not allowed to place a queen in the �rstcolumn, third row and at the same time place a queen in the second column,fourth row. But there is no objection to place a queen in the �rst columnof the �rst row and a queen in the third row of the second column, becausethe tuple (1,3) is not in the set of forbidden combinations. The tuples inthe set of forbidden combinations represent the conicts. Remember thatfor this problem we need a set of forbidden combinations for each pair ofqueens. Every queen is a potential danger to any other queen. The amountof sets will therefore be 12 � 8 � (8� 1) = 28.A solution of the Eight Queens Problem is a vector of eight values, thesevalues are the row number where the queen in that column is placed. Oneof the solutions looks like this: (2; 4; 6; 8; 5; 7; 1; 3), the board-representationcan be found in Figure 3.1.1 }2 }3 }4 }5 }6 }7 }8 }Figure 3.1: A solution to the Eight Queens Problem.
7



Constraint Satisfaction Problems A formal de�nition3.3 A formal de�nitionA constraint satisfaction problem is de�ned as a tuple hS; �i, where S iscalled the search space and � is a Boolean function taking as input thevalues of the variables. The search space S is de�ned as the Cartesianproduct of variable domains; S = D1� � � � �Dn, for a csp with n variables.We de�ne the solution of a constraint satisfaction problem s in terms of �,where s 2 S. �(s) returns true if and only if s is a solution for the csp.We will only consider binary csps, which enables us to de�ne � as aconjuncture c1 ^ c2 ^ � � � ^ cm of binary constraints ck. A binary ck can bede�ned as a three tuple ck = hvi; vj ; Cki. Here the constraint ck is upon thevariables vi and vj with i < j, without loss of generality. Ck is a matrixof size jDij � jDj j, where each element Ck(x; y) 2 f0; 1g. If Ck(x; y) = 1 wespeak of a conict, which means the instantiation vi = x and vj = y maynot occur, thus resulting in �(v) = false.Through this report we will also use m(vi) to denote the size of thedomain Di of variable vi, instead of writing jDij. Furthermore m is usedwhen we mean the average size of the domain size over all the variables, itis de�ned as follows: m = Pni=1m(vi)n3.4 A general binary CSPTo illustrate what a binary csp looks like, we give at an example. We take�ve variables v1; : : : ; v5, where each variable has a domain Di = f1; 2; 3; 4g.Note that the domains of the variables do not have to be the same in acsp, nor do they have to have the same size. There are three constraintsc1; c2 and c3, each of which relates to two variables vi and vj , and with amatrix Ck representing the conicts. This is denoted as the three-tuplehvi; vj ; Cki. Here are the constraints in the example: c1 = hv1; v2; C1i, c2 =hv2; v3; C2i and c3 = hv2; v4; C3i.
v1 v2

v3

v4

v5

c1

c2
c3

Figure 3.2: The variables and constraints in the binary csp represented asa graph. 8



Constraint Satisfaction Problems A general binary CSPThe variables and the way in which the constraints connect these vari-ables can be represented as a graph. The nodes of the graph will representthe variables, the edges will represent the relations as de�ned by the con-straints (Figure 3.2). More precisely, there is an edge (vi; vj) in the graphbetween variable vi and vj with i < j i� hvi; vj ; Ci is a constraint of csp forsome C. Figure 3.3 shows the conicts between the values of the variablesin the constraints. For instance the matrix C1 belonging to the constraintc1 tells us that the variables v1 and v2 can not be assigned the value 2 atthe same time.C1 1 2 3 41 0 0 1 02 1 1 0 13 0 0 1 04 0 1 1 1 C2 1 2 3 41 0 1 0 12 1 1 0 03 0 0 0 04 0 0 1 0 C3 1 2 3 41 1 0 0 02 0 1 1 03 0 0 0 04 0 0 0 1Figure 3.3: Matrices for C1, C2 and C3.
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Chapter 4Generating Random CSPs4.1 IntroductionIn the �eld of constraint satisfaction problems, a lot of experiments havebeen done on speci�c instances of csps, for instance on n-queens problem(Dozier et al., 1994; Paredis, 1995a; Homaifar et al., 1992; Crawford, 1992),on graph coloring (Davis, 1991; Eiben and van der Hauw, 1996; Eiben et al.,1998a; Fleurent and Ferland, 1996a; Fleurent and Ferland, 1996b), and onsatis�ability (Selman et al., 1992; Eiben and van der Hauw, 1997; Selmanand Kautz, 1993; B�ack et al., 1997; B�ack et al., 1998). These experimentsmostly consist of comparisons with other techniques that solve the sameproblem. The drawback of this method of testing is that it is not possibleto say what kind of problems is easily tackled by a method and what kindis not. It is only possible to speculate about the performance of a methodon other problems than those used in the experiments.These speculations can only be based upon a comparison between thedomains1 of the problems on which the technique was tested and the do-mains of the problems where we want to say something about the expectedperformance of the technique. However, this approach is not very e�ective,since most problems have a search space that is very hard to get a grip on,let alone compare it to other search spaces.Nevertheless, it would be very interesting to know if a method will ingeneral perform better on a class of problems than other known techniques.With this knowledge it would be easier to decide which technique to usewhen facing the task to solve a new problem from this class. Especiallywhen the task is to come up with a method that solves the problem fasterthen the currently used method. The best performing techniques within theclass could then be compared, and the winner could do the job. This wayno extensive study into the search space of a new problem is needed to �ndgood techniques to solve it.1Here the domain as de�ned by a problem, not the domain of the variables of a problem.10



Generating Random CSPs Di�culty of a CSPWe have to point out that in general it is not possible for any algorithm tohave a better performance than another algorithm. Wolpert and Macready(Wolpert and Macready, 1995; Wolpert and Macready, 1997) have shownthat all algorithms that try to optimize a function, will perform equallywhen averaged over all possible cost functions. This result, which they havenamed the No Free Lunch Theorem, is informally discussed by Culberson(Culberson, 1996), where he states that solving a collection of problem in-stances from a np-complete problem does not solve the np-problem itself.Often a np-complete problem has a set of instances which are very easy tosolve. Our results will show that with binary csps this claim also holds.This gives rise to the question of how to collect information about amethod such that it has a general content. One way would be to test themethod on a test case consisting of problems from the whole class of prob-lems we want to test. This can be achieved by constructing a problemrepresentation that can be used to represent any problem in the class ofproblems. In the case of a csp this is always possible, because every cspcan be represented by an equivalent binary csp (Tsang, 1993). But thetransformation can result in very complex domains for the variables. Bi-nary csps with variables over a �nite domain can be generated using a socalled random method. As every binary csp can be produced in the process,every csp we are able to model using the formalism from Chapter 3, canbe produced this way. A binary constraint satisfaction problem created thisway is called a random binary constraint satisfaction problem. In section 4.3two methods for generating csps will be shown.4.2 Di�culty of a CSP4.2.1 Measuring hardnessTo compare techniques, information about the hardness of a problem isneeded. Two sorts of comparing measures lie beforehand, �rstly the amountof space needed to solve the problem, and secondly the amount of timeneeded to solve the problem. The focus will lie on the second measure,mainly because small binary csps take far more time to solve compared tothe amount of space they need, especially because of the simple representa-tion of the solution inside of the evolutionary algorithms we will use. Therepresentation mainly consists of a possible solution, i.e., an instantiation ofthe variables in the csp. Furthermore the problem needs to be accessible sowe can check the possible solutions for validity.The size of the problem increases quadratically with the number of vari-ables and also quadratically with the size of the domain of the variables. Thesearch space, i.e., the number of possible solutions grows exponentially withregard to the number of variables n: mn where m represents the averagedomain size of all the variables. 11



Generating Random CSPs Di�culty of a CSP4.2.2 NP-completenessThe reason that solving csps is a very di�cult task, whether randomlygenerated or speci�c ones, lies in the fact that csps are member of a classknown as the class of np-complete problems. The problems inside this classare characterized by two facts. Firstly, given some solution to an instanceof an np-complete problem, it should be possible to verify that it is correctin polynomial time. Secondly, all problems in this class can be reduced toany other np-complete problem, using a function that can be evaluated inpolynomial time as well.One of the problems from the np-complete class, the famous satis�abilityproblem (sat), has been proven to be np-complete. There is no knownalgorithm that solves this problem in polynomial time. If it would exist,every np-complete problem would be solvable in polynomial time as well,because of the reduction mechanism.Proving that binary csps belong to the np-complete problems class,would imply the need for a veri�cation algorithm and a reduction. It is easyto see that the veri�cation algorithm will work in polynomial time, becausea binary csp has at most 12n(n�1) constraints. Each constraint will have tobe checked once, which can be done in quadratic time, with respect to thedomain sizes of the variables. By carefully choosing a problem, the reductionbecomes easy as well. If we take a speci�c problem from the class of binarycsps that is known to be np-complete, like graph coloring or the n-queensproblem, we can almost copy the problem into the binary csp model.4.2.3 Where are those hard CSPs?Parameters of a problem classIf a problem has been identi�ed as belonging to the class of np-completeproblems, this does not mean that every instance of this problem is hard tosolve. The parameters of a np-complete problem, i.e., the parameters thatde�ne an instance from a class of problems, determine in a sense the di�cultyof this instance. When the parameters are changed another instance maybe created that could be more, less or just as di�cult to solve.A trivial example of this is when we look at an instance consisting of justa few variables. A binary csp with only two variables that have a domainsize of one can be easily solved. And even if there is no solution we canverify that this is the case. Here there are only three possibilities:1. No constraint present | solution2. A constraint, without a conict | solution3. A constraint, with a conict | no solution12



Generating Random CSPs Di�culty of a CSPWhen looking at binary csps with more variables and with larger domainsizes, the number of possible solutions grows exponentially when one of theseparameters is increased. It gets much harder to �nd a solution for particularproblem instances and it also gets much harder to �nd out if a solution doesexist.The landscape of solvabilityIf the number of variables and the domain sizes are �xed, experiments revealan interesting phenomenon. When randomly generating binary csps, someinstances appear easy to solve, while others are quite a hard nut to crack.This raises the question \What makes a binary csp hard to solve?".In a number of articles Prosser et al. (Prosser, 1994; Prosser, 1996; Gentet al., 1995) uses a method of exploring the landscape of the chance on�nding a solution for a binary csp. By using four parameters he creates athree dimensional view on this landscape. From these four parameters, twoare �xed; the number of variables and their domain sizes. He de�nes thedensity and the tightness of a problem and uses these to show the probabilitythat a problem instance has a solution. The �rst parameter, the density ofa binary csp, is de�ned as the probability that a constraint exists betweentwo variables. The second parameter, the tightness of a binary csp, isde�ned as the probability of having a conict between two given variablesin a constraint.Setting the number of variables to 15 and the domain size of each variableto 15, the two parameters density and tightness are varied throughout theirreal valued domains, varying from zero to one. This gives a very remarkablelandscape. For low values of the parameters the chance a solution exists isalmost one. This remains so when the values are increased, until a certainpoint. When this point is reached a steep curve takes the chance of havinga solvable problem from almost one to almost zero. This area is calledthe mushy region or phase transition, it can be observed in Figure 4.1. Itmarks the region where pairs of the parameters density and tightness createproblems which have a chance of having a solution somewhere between zeroand one.The results from Prossers' work con�rm what Smith (Smith, 1994) con-jectures. Smith estimated the expected number of solutions given a binarycsp, knowing that there are 12dn(n� 1) constraints and mn possible instan-tiations, with the following equation:E = mn(1� t) 12dn(n�1) (4.1)Smith thinks that the hardest problems would occur when E = 1, i.e., whenthe problem probably has one solution. This enables us to �nd the criticalvalue for the tightness: t̂crit :̂tcrit = 1�m�2=d(n�1) (4.2)13
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Figure 4.1: Mushy region as predicted theoretically.Prosser (Prosser, 1996) shows that the values found in his experiments agreewith the values predicted with Equation 4.2, except for low values of d(d < 0:3).4.3 Two methods for generating CSPsThe following sections describe two slightly di�erent methods for generatingrandom binary csps. Both method have been implemented in C++ and areavailable as a library or problem instance generator. The package is calledRandomCsp, and can be downloaded from the Internet (see Appendix A).Also documentation on the library and the problem instances generator isavailable (van Hemert, 1998a).4.3.1 Method by ProsserThe �rst method for creating random binary csps is developed and usedby Prosser in a number of articles (Prosser, 1994; Gent et al., 1995) wheresome exact algorithms, i.e., algorithms that are able to tell if a problem hasa solution, for solving binary csps are compared. The method starts by
14



Generating Random CSPs Two methods for generating CSPscalculating the exact number of constraints that will be produced.number of constraints = n(n� 1)2 � d; (4.3)where n is the number of variables and d is the constraint densityThe method generates a random number between zero and one for everycombination of two variables. When this number is below the density of thegraph, a constraint is added. When the number of constraints calculatedwith Equation 4.3 is reached the algorithm terminates.For every constraint that is generated, a matrix of conicts has to beproduced. This matrix is build by generating a random number in the rangeof [0::1) for every possible pair of values of the two variables. When thatnumber is lower then the chosen tightness, a conict is produced and storedin the matrix. An overview of the method is given in Algorithm 1.Algorithm 1 Generating binary csps using Prossers' method.constraints = density * variables * (variables - 1) * 0.5;while (constraints > 0)f i = 0;while ((constraints > 0) && (i < variables - 1))f j = i + 1;while ((constraints > 0) && (j < variables))f if ((random(1.0) < density) && no edge(i, j))f constraints--;add constraint(i, j);for (x = 0; x < domainsize; ++x)for (y = 0; y < domainsize; ++y)if (random(1.0) < tightness)add conict(i, j, x, y);gi++;ggg4.3.2 Method by DozierThe method developed by Dozier has been used in his research on solvingrandom binary csps with a heuristic-based microgenetic algorithm (mid)15



Generating Random CSPs Two methods for generating CSPs(see Section 5.2). It uses roughly the same technique as the method insection 4.3.1, but there are two di�erences:1. The method for choosing between which variables constraints are added.2. The way in which conicts are produced.The individual constraints are produced by randomly selecting two dis-tinct variables, if no constraint exists between them a constraint is created.This is repeated until we have created the number of constraints determinedin Equation 4.3.Just as the number of constraints is determined in advance, so is thenumber of conicts that are generated for each constraint. When a con-straint has been produced, the number of conicts is determined with thefollowing equation, where vi and vj are two distinct variables and t is thetightness: number of conicts(vi; vj) = m(vi) �m(vj) � t; (4.4)where m(vi) is the domainsize of variable iThe same procedure to generate conicts is used as in generating constraints.Two random values are chosen, one for each variable. If no conict existsbetween them, a conict is added to the matrix of conicts for this con-straint. This is repeated until there are as much conicts as calculated withEquation 4.4. An overview of the method can be found in Algorithm 2.
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Generating Random CSPs Two methods for generating CSPs
Algorithm 2 Generating binary csps using Dozier's method.constraints = density * variables * (variables - 1) * 0.5;while (constraints > 0)f dof i = random integer() % n;j = random integer() % n;gwhile (i != j);if (!constraint exists(i, j))f add constraint(i, j);conflicts = tightness * domainsize(i) * domainsize(j);while (conflicts > 0)f x = random integer() % domainsize(i);y = random integer() % domainsize(j);if (!conict exist(i, j, x, y))f add conict(i, j, x, y);conflicts--;gggconstraints--;g
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Chapter 5Three AlgorithmsThis chapter consists of the explanation of the three algorithms that weretested in the experiments. All three are evolutionary algorithms, but eachone employs a di�erent technique to help improve its performance on solvingcsps.The three algorithms share one common feature, they all make use ofadaptation. Which means that the population has to work with a �tnessobjective that changes throughout the lifetime of the algorithm. Each algo-rithm introduces its own way of adaptation. The co-evolutionary algorithmuses two populations, that are entangled in a constant arms race. mid usestwo techniques, it provides information to o�spring from their parents. Andit maintains a mechanism which evolves during the lifetime of the system, itis used to help individuals escape local optima. The saw-ing technique di-rectly alters the �tness function thereby inuencing the pressure of selectionin the population.5.1 Co-evolutionary Algorithm5.1.1 What makes up a co-evolutionary algorithmThis method uses a technique that is based on a natural phenomenon. Whena population evolves in an environment, this environment often changes,partly because of the way the population interacts with its environment. Anenvironment will for instance contain other species. One of the interactionswill be the way in which the population reacts with one of the other speciesinside the environment. Such as the way in which a population of predatorsevolves better techniques to get its prey, and in return the prey will try tocounter these techniques and evolve its own methods for a better chance ofsurvival. This kind of interaction, which resembles an arms race, is a formof co-evolution.This is the process on which Paredis has based his Co-evolutionary ap-proach to Constraint Satisfaction (ccs) (Paredis, 1994; Paredis, 1995b; Pare-18



Three Algorithms Co-evolutionary Algorithmdis, 1995a). This approach uses a system called Lifetime Fitness Evaluation(ltfe).A co-evolutionary algorithm based on ccs consists of two populations,the solutions population and the constraints population. The solutions pop-ulation consists of individuals that represent possible solutions to the cspthat is being handled by the algorithm. The constraints population consistsof all constraints that are in the csp.To let these two populations interact the ltfe is used. It provides bothpopulations with a �tness value to base selections on. The �tness of an in-dividual in either of the populations is based on a history of encounters. Anencounter occurs when an individual from one of the populations is pairedwith an individual from the other population. In this co-evolutionary algo-rithm two things can happen. An individual from the solutions populationis paired with a constraint, and the individual either violates the constraintor does not violate the constraint. If it does not violate the constraint itreceives one point, otherwise it gets nothing. Likewise, the individual rep-resenting the constraint respectively gets nothing, otherwise it receives onepoint. The results of the encounters an individual makes are saved in itshistory, this history has a �nite size, thus only part of the results of allencounters are registered.Algorithm 3 The co-evolutionary algorithm.i = 0;while (i < encounters)f solution = select(solutions population);constraint = select(constraints population);result = encounter(solution, constraint);update history and �tness(solution, result);update history and �tness(solution, 1 - result);i++;gparents = select(solutions population);offspring = crossover and mutate(parents);evaluate(offspring);insert(solutions population, offspring);The �tness of an individual is calculated from the history of the individ-ual. It is simply the sum of all the points, i.e., the number of non-violatedconstraints in the history of this individual. Because of the inverse e�ect theencounters have on individuals from the opposite population an arms raceis created where individuals that are able to withstand the most individualsfrom the other population gets the most chance of survival. The better indi-viduals will be selected more often for an encounter, which results in better19



Three Algorithms Co-evolutionary Algorithmindividuals getting paired more often with better individuals from the otherpopulation.Before the co-evolutionary algorithm starts, the two populations willhave to be initialized. This is done by letting all individuals in both pop-ulations have a �xed number of encounters. When this is done the mainalgorithm will start its work, as illustrated in Algorithm 3.5.1.2 Techniques used in the implementationThe �tness functionAs described in Section 5.1.1 the �tness function is calculated from thehistory of an individual. This history consists of the results of the encountersthe individual has had over some �nite time. It is represented as a vectorof zeros and ones, where a one means the individual had success in itsencounter and a zero means the it has failed to succeed. The history hasa �xed and �nite size size(h). The �tness of an individual with historyh = hh1; : : : ; hsize(h)i becomes:�tness(h) = size(h)Xi=0 hiTo be successful in being selected, an individual has to obtain a high�tness value. When we talk about the best individuals, we mean the indi-viduals with the highest �tness value, the worst individuals are those thathave the lowest �tness value. This value can never exceed the size of thehistory and it can never be lower than zero.The selection mechanismThe selection mechanism used in the implementation is called linear rankedbased selection. In the implementation the linear function for selective pres-sure from an article of Whitley is used (Whitley, 1989).linear () =population size � �bias �qbias2 � 4 (bias � 1) � random()�2=(bias � 1) ;where random() generates a real number between 0 and 1.The linear function is repeatedly used to determine which individual getsselected for crossover. The population is sorted, from best to worse �tness.The place an individual occupies in the sorted population is called its rank.Thus the �rst individual from the top has a rank of one, the second hasa rank of two, and so on. Every time an individual needs to be selected,20



Three Algorithms Co-evolutionary Algorithmthe linear function is called and the individual with the rank equal to thevalue returned by the linear function is selected. If the bias is higher thanone, individuals at the top of the population get selected more often thanindividuals at the bottom. When the bias is one, the selection is completelyrandom.More precisely when the bias equals 1:5, it means that the best individ-ual, i.e., the one at the top of the population, has one and a half as muchchance of getting selected for reproduction than the median one. Whitleyshowed that a bias higher then 1:5 leads to premature convergence, whilelower values did not push the algorithm they tested to a good optimum.The crossoverThe crossover used in the co-evolutionary algorithm is called two point re-duced surrogate parents crossover (Whitley, 1989; Booker, 1987). It uses aspecial technique that tries to minimize the chance of generating o�springthat look much alike. The operator is the same as the standard two pointcrossover operator, except for the way in which the crossover-points arechosen. The operator �nds the �rst position such that the values at thatposition in both parents are di�erent. It repeats this starting at the otherside of the individual. The part that lies between these two points is wherethe two crossover-points will be chosen in.An example can be found in Figure 5.1. Here the �rst di�erence invalues is at position 3 (position numbering starts from left and with one asthe �rst position), and looking from the other side, the �rst position is 6.The bottom line shows the positions. The part in which the crossover-pointshave to be chosen is marked bold in both parents. In the example two pointsare chosen and the o�spring is created.Parents O�spring9 8 7 6 5 4 3 2 1 ! 9 8 6 5 4 4 3 2 11 2 6 5 4 3 7 8 9 ! 1 2 7 6 5 3 7 8 91 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9Figure 5.1: Two point reduced surrogate crossover.The idea behind this operator is to prevent the generation of o�springthat look almost the same, or worse are exact duplicates. If this wouldhappen it could result in premature convergence. The operator also enablesthe algorithm to examine more possible solutions in the same number ofruns, because more di�erent individuals will be generated.Another interesting aspect of this operator is that the two parents createo�spring by exchanging information in the parts they do not agree on. The21



Three Algorithms Co-evolutionary Algorithmother two parts are copied without alteration, this ensures that the o�springdoes not lie very far from their parents in the search space.The mutationThe mutation is a simple operator called uniform mutation. It is appliedto freshly created o�spring, and has one additional feature regarding themutation probability pm. A random number between zero and one is gen-erated for each variable in the vector v. If this number is lower than the pmthe value is replaced with a random value from the domain of this variable.The mutation probability depends on the parents of the individual. If theparents are di�erent, it is set to pm = 0:001. If the parents are duplicates,the mutation probability is raised to pm = 0:01.5.1.3 Parameters of the algorithmThe co-evolutionary algorithm has a number of parameters. These param-eters can be modi�ed and may yield better or worse results. When analgorithm has a couple of parameters without knowledge of their exact in-uence on the performance, it is already very di�cult to choose the rightsetting. For the parameters of the co-evolutionary algorithm the valuesare taken from articles of Paredis (Paredis, 1994; Paredis, 1995b; Paredis,1995a). The parameters can be found in Table 5.1.Parameter ValueSolutions population size 50Constraints population size # constraints in cspInitial number of encounters 20Number of encounters when running 20History size 25Parent selection linear rankingBias for linear ranked selection 1.5Replacement strategy replace worseMutation probability with di�erent parents 0.001Mutation probability with duplicate parents 0.01Crossover 2-point surrogate parentsRepresentation integer-basedStopcondition solution found ormaximum # evaluationsTable 5.1: Fixed parameters of the co-evolutionary algorithm.
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Three Algorithms Microgenetic Method5.2 Microgenetic Method5.2.1 General ideaThis algorithm gets its name from the small population size it uses. Togetherwith the incorporation of the Iterative Descent Method (idm) as describedby Dozier et al. (Dozier et al., 1994; Dozier et al., 1995) its adopted nameis Microgenetic Iterative Descent (mid).The basic operator in this method is called the value reassignment, whichis a kind of hill-climber algorithm. It works on one variable at a time, byreassigning a new value to this variable using a heuristic mutation operator.Two di�erent objectives exist, the minimization of the number of constraintviolations this variable causes, and the minimization of the total number ofconstraint violations the whole individual causes. In this research idm isused, which minimizes the total number of constraint violations, it includesa Breakout Management Mechanism for escaping local optima.The Breakout Management Mechanism (bmm) stores a list of breakouts.A breakout consists of two parts:1. A 2-tuple called 'nogood' | this is really just a pair of values that vio-lates a constraint. Recall that we are dealing with binary constraints.2. A weight | also called the value of the breakout.When idm gets trapped in a local optimum (see Section 5.2.2), it invokes theBreakout Management Mechanism. For each pair of values from the individ-ual that violates a constraint the bmm either creates a breakout or changesthe breakout if it already exists. The weight of a newly created breakoutis set to one. If the breakout already exists, the weight of the breakout isincremented by one. These weights are used in the �tness function, whichwill be explained in the next section.5.2.2 Techniques used in the implementationThe representationBefore revealing the overall structure of an individual, we �rst describe asingle allele within this structure. Each allele consists of four elements (Fig-ure 5.2), the name (or number) of the variable, the assigned value, thenumber of constraint violations this variable is involved in and an h-value.This h-value is used in choosing the pivot variable of an individual. It isexplained in the section on reproduction.
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Three Algorithms Microgenetic MethodVariable nameValue  � undergoes heuristic mutationConstraint  � number of constraint violationsviolations this value assignment causesh-value  � used for choosing the pivot alleleFigure 5.2: Representation of an allele from an individual within mid.The overall structure of an individual is made up of n alleles, one foreach variable in the problem. The structure also consists of the �tness valueand a pivot. The pivot determines which variable should be used for thevalue reassignment process and it is also used for a single point mutationoperator.Variable nameValueConstraintviolationsh-value Variable nameValueConstraintviolationsh-value � � � Variable nameValueConstraintviolationsh-valueFitnessPivotFigure 5.3: Representation of an individual within mid.The �tness functionTo compute the �tness of an individual x = hx1; : : : ; xni, it counts thenumber of constraint violations each variable is involved in and then sumsthese all up. Added to this is the weight of each breakout that is violatedby the individual.�tness(x) = nXi=1 V (i) + nXi=1 nXj=1B(xi; xj)Where V (i) gives the number of violated constraints involving the i-th vari-able, and B(xi; xj) returns either the weight belonging to the breakout oftuple hxi; xji, or zero when the breakout is not de�ned. We are trying tominimize the �tness function, which has an optimum at zero. The �tness ofan individual is better than that of another individual if its �tness value islower.
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Three Algorithms Microgenetic MethodInitializing the populationInstead of randomly generating all the individuals to create the �rst genera-tion for the population, a di�erent scheme is adopted here. A �rst individualis created by randomly choosing values for all the variables. The remainingindividuals are created by copying the �rst individual, after which a muta-tion is done on one variable in each individual. A random variable is chosenand then a random number is assigned from the domain of the variable.When an individual is created, i.e., the variables have been assigneda value, the other items inside the individual have to be initialized. Theh-value for each allele is set to zero and the number of constraint violationsthe allele is involved in is counted. Then the �tness is calculated and thepivot allele is chosen. The allele involved in the most constraint violationsis chosen as pivot, where ties are broken randomly.Heuristic mutationAfter selecting an individual for reproduction the reassignment process willbe run. This is a single-point heuristic mutation where a parent copiesitself to produce an o�spring and then mutates one allele. The pivot ofthe o�spring points to the variable that will undergo the mutation. Thisvariable is assigned a value chosen randomly from its domain. No othergenetic operators are used.The reproductionThe o�spring that is created by the reassignment process is then comparedto its parent. If the �tness of the parent is better than or equal to that ofthe o�spring, the h-value of the corresponding pivot allele of the o�springis decremented by one. And the individual is inspected to see if the pivotshould point to another allele. This is done by computing the s-value of eachallele, which is calculated by summing the number of constraint violationsof this allele and its h-value. The allele with the highest s-value will beappointed as the new pivot. If there is a tie between the current pivot andone or more other alleles, the current allele stays pivot. Ties between otheralleles are broken randomly. If the �tness of the parent is not better thanthat of the o�spring, the h-values and thus the pivot is left unchanged.Using this method of inheriting information for choosing which alleleis to be mutated provides two interesting mechanisms for the algorithm toexploit. First of all, a consecutive line of successful o�springs can optimizethe number of constraint violations related to one variable. Secondly, itallows the algorithm to switch to other variables when this optimizing stopsor when other variables have higher s-values.On the other hand, the method also poses a problem, after a while itis possible that the h-value causes the system to choose an allele that is25



Three Algorithms Microgenetic Methodnot involved in any constraint violations. This happens when the h-valuesof the variables that are involved in constraint violations get lower thanthe actual number of constraint violations. If the algorithm would reachthis state, no further progress will be made. In order to prevent this fromhappening, the h-values will be reset to zero using a probability function rxfor an individual x:rx = 1jOxj+ 2where Ox is the amount of variables involved inconstraint violations caused by individual x:In addition to the heuristic mutation operator mentioned here before,the algorithm makes use of one genetic operator as well. It is a single-pointuniformmutation operator, that is applied to the freshly generated o�spring.A value from the domain of the variable of the allele the pivot is pointing atis randomly generated. This value is than assigned to the variable belongingto the pivot allele.Calling the Breakout Management MechanismAs mentioned in Section 5.2.1, the algorithm makes use of a breakout systemto escape local optima. This implies that the algorithm must have a wayof deciding when to invoke this system. The system used here is identicalto that used by Morris (Morris, 1993). Let m(i) give the domain size ofvariable i, and let V be the set of variables involved in constraint violationscaused by the best individual in the population. If we de�ne y as the numberof consecutive o�springs created which do not have a better �tness than the�tness of their parents, the bmm will be invoked when the following equationy >Pi2V m(i) holds.Once invoked, the bmm starts creating breakouts using the best indi-vidual in the population. When a breakout already exists, its weight isincremented by one. When the bmm is �nished, all the individuals insidethe population have to be reevaluated. Furthermore the counter y has to bereset to zero again.5.2.3 Parameters of the algorithmThis algorithm does not have a lot of parameters, the ones mentioned inTable 5.2 are mostly taken from articles of Dozier et al. (Dozier et al.,1994; Dozier et al., 1995). Some of them are slightly di�erent, to boostperformance, but they are still close to the originals.
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Three Algorithms Stepwise Adaptation of WeightsParameter ValuePopulation size 8Parent selection roulette-wheelReplacement strategy replace worse (8+1)Mutation one point with heuristicCrossover noneRepresentation integer-basedStopcondition solution found or max. evals.Table 5.2: Fixed parameters of the Iterative Descent Method.5.3 Stepwise Adaptation of Weights5.3.1 Where SAW-ing is based onThe Stepwise Adaptation of Weights (saw) mechanism �rst appeared in(Eiben et al., 1995; Eiben and Ruttkay, 1996) and is invented by Eibenet al. It has been used in numerous experiments to solve di�erent kind ofproblems, such as satis�ability problems (Eiben and van der Hauw, 1997;van der Hauw, 1996; B�ack et al., 1997), bin-packing (Vink, 1997) and graphcoloring (van der Hauw, 1996; Eiben and van der Hauw, 1996; Eiben andvan der Hauw, 1998; Eiben et al., 1998a).The saw-ing mechanism is an adaptive technique, which uses the ideathat after some generations, the constraints that are violated by the bestsolution, i.e., the individual with the best �tness value, must be hard. Byincreasing the penalty for violating these constraints, it gets more rewardingfor all individuals to make sure these constraints are not violated. Thusfocusing the search on the harder constraints.Previous research from Eiben et al. (van der Hauw, 1996; Eiben and vander Hauw, 1996; Eiben and van der Hauw, 1997; Eiben et al., 1998a) showthat the best performing algorithm with the saw-ing mechanism makes useof an order-based representation with a decoder. The decoder takes as inputan individual in order-based representation and delivers a partial solutionfor the csp. As we will show in Section 5.3.2 this makes it impossible tocount the number of violated constraints, to overcome this we will countthe number of unassigned variables. Thus the �tness function works onvariables, not on constraints.To represent the penalties a system of weights is used. Every variable iis assigned a weight wi. Initially these weights are all set to one. After somegenerations the algorithm is interrupted and the best individual is evaluated.The weight of every variable that has not been assigned a value by thisindividual is increased with �w. The �tness function will incorporate thewi values, such that when an individual cannot assign a value to a variable i,27



Three Algorithms Stepwise Adaptation of Weightsthe wi will have a negative inuence on the �tness function. This techniqueclosely resembles the original idea where every constraint is paired with aweight, and where a weight is changed when the corresponding constraint isviolated.One of the consequences of this technique is that we will have to decidewhen to interrupt the algorithm to update the weights belonging to thevariables. In the �rst version called O�ine-saw (Eiben and Ruttkay, 1996;Eiben et al., 1995), the algorithm was stopped and the best individual isthen used to make changes to the weights. The algorithm then had tobe restarted by hand using the new weights. The second version, whichis used in this experiments, is called Online-saw. It uses a parameter Tpto determine when to interrupt the evolutionary algorithm to update theweights. One of the results in (Eiben et al., 1998a) is that varying Tp in arange of 1 to 10000 has not much e�ect on the performance of the algorithmwhen tested on hard problem instances of the graph coloring problem forthree colors. Another result shows that varying �w from 1 to 30 also doesnot alter the performance of the algorithm.5.3.2 Techniques used in the implementationThe representationInstead of just representing the values of each variable, this algorithm usesan order-based representation. An order-based representation provides datathat is then fed into a decoder. This decoder transforms this data into anactual solution. The individual is nothing more than a permutation of thevariables. The decoder used is a greedy algorithm, which tries to assignevery variable with the �rst possible value, starting with the lowest value,without violating constraints. If no value can be assigned without violatingconstraints, the variable is left unassigned.The decoder tries to assign a value to each variable without violatinga constraint. It does this by looking in turn at each variable and thenfor each variable tries every possible value from the domain of the variableuntil it �nds a value that does not violate any constraint. Unfortunatelythis is quite a costly operator, because for every variable, and every valuefrom its domain size, every other constraint between this variable and anyother variable will have to be checked. For one variable this amounts tochecking quite a lot of possible conicts. The worst case is when there is nopossible assignment, then the amount of checked conicts for variable vi isapproximately:checked conicts(vi) = 12n(n� 1)dn m = 12(n� 1)dmAn example of an individual that is decoded can be found in Figure 5.4.After the decoding we end up with values for the variables v1; : : : ; v7, except28



Three Algorithms Stepwise Adaptation of Weightsfor variable v6, it has a cross, which means no value could be assigned bythe decoder without violating a conict.Individual Partial solution2 3 7 4 1 5 6 �����!decoder 9 1 3 5 4 � 4Figure 5.4: Example of decoding an individual.The �tness functionThe use of the decoder means that violated constraints cannot be counted,because they will not occur. Instead we �rst decode the individual x toobtain a partial solution. Every variable vi that has not been assigned a valuein the partial solution is multiplied by its weight wi. The results of thesemultiplications are then summed to produce the �tness of the individual x.�tness(v) = nXi=1wi � �(v; i) (5.1)where �(v; i) = ( 1 if variable vi is not assigned a value,0 otherwise.To �nd the minimum of this function, the evolutionary algorithm willhave to generate an individual that has no variables with unassigned values.This is the only case where the �tness function is zero. If the weights wiwould not be changed during the lifetime of the evolutionary algorithm, butinstead would stay constant, we would end up with a conventional �tnessfunction that only counts the number of variables with unassigned values.Such a �tness function always prefers an individual with fewer variables thathave unassigned values, i.e., give a better �tness value. The �tness functionin Equation 5.1 however can give a worse �tness value to a individual withless unassigned variables, this happens when the weights of the unassignedvariables have, relative to other weights, a high value.The selection mechanismDuring a great number of experiments, involving numerous operators, se-lection mechanisms and other techniques, Eiben et al. (Eiben et al., 1998a;Eiben and van der Hauw, 1997; Eiben and van der Hauw, 1996; van derHauw, 1996) found that he best strategy involved a populations size of one.Our experiments will be done using the same preservative selection strategy,denoted as (1 + 1).
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Three Algorithms Stepwise Adaptation of WeightsThe mutationJust as in the previous section, the mutation will be the same as in theexperiments of Eiben et al. This mutation is called swap. It is an order-based operator that swaps pairs of genes. The parameter pm determines theprobability that an allele is used in a swapping session. If it is used, thesecond allele for swapping is selected randomly from the individual. Thisparameter will be set to pm = 1=n as results by Eiben et al. show that thisvalue (or higher ones) give optimal results.An example of a swap operation is in Figure 5.5. First the allele atposition 6 is chosen for the session, then the allele at position 2 is chosen.They are swapped resulting in a new individual.Before After2 3 7 4 1 5 6 ! 2 5 7 4 1 3 6Figure 5.5: Example of the swap operation.5.3.3 Parameters of the algorithmThe saw-ing algorithm has a number of parameters. These parameters canbe modi�ed and may e�ect the quality of the results. When an algorithmhas a couple of parameters without knowledge of their exact inuence onthe performance, it is already very di�cult to choose the right setting. Forthe parameters of the saw-ing algorithm the values are taken from articlesof Eiben et al. Some e�ort was taken into optimizing the parameters, butthese ended into the same results as these articles (Eiben et al., 1998a; Eibenand van der Hauw, 1997; Eiben and van der Hauw, 1996; van der Hauw,1996). The parameters that were used in the experiments can be found inTable 5.3.Parameter Value�w 1Initial w for each variable 1Tp 250Selection (1 + 1)Population size 1Representation order-basedCrossover noneMutation type swapMutationrate (pm) 1=nStopcondition solution found or Tmax evaluationsTable 5.3: Fixed parameters of the Stepwise Adaptation of Weights algo-rithm. 30



Chapter 6Experiments and results6.1 Measuring performance6.1.1 Success rateOne of the measures of performance is the success rate (sr). It is de�ned asthe average number of times a method �nds a solution, during a number ofruns:sr(#runs) = #runsPi=1 success(run i)#runs ;where success(runi) = ( 1 when a solution is found in runi,0 otherwise.Some care has to be taken when results are interpreted concerning thesuccess rate. When the success rate of an algorithm is lower then one, thisdoes not mean it did not �nd all the solutions. When the experiments involveproblems that are not solvable we have no way in telling how much of theproblems actually did �nd a solution. That is except if one of the algorithmshas a success rate of one. As all algorithms are tested on the same test suit,if one of them has a success rate of one, we can say something extra on theperformance of the algorithms that did not �nd all solutions.6.1.2 Average evaluations to successIf the performance of several algorithms has to be compared, one of themost obvious measures seems to be the measure of time complexity, i.e., thetime an algorithm needs to complete a task. But this measure has somedisadvantages. It highly depends on the hardware and the implementationof the algorithm itself. Not only that, but other less obvious things likecompiler optimizations can disturb the measure. A more robust measure isrequired, one which does not depend on external factors. One such measure31



Experiments and results Comparing three algorithmsis computational complexity. It measures the performance of an algorithmby counting the number of basic operations.This of course leads to the question: \What are basic operations?".In search algorithms the basic operation is often de�ned as the creationand evaluation of a new candidate solution. This de�nition is not perfect,because it does not de�ne how much time can be spend on the creationand evaluation of a candidate solution. Also it does not measure work doneoutside these operations. But the advantages are numerous, �rst of all itsindependence of external events. Furthermore, every search algorithm needsto create and evaluate candidate solutions. And best of all, when we look atscale-ups of results, i.e., how the performance varies when changing certainparameters, the comparison becomes independent of the absolute amount oftime an algorithm has spend in the experiment. A scale-up test comparesthe change in performance between algorithms, measured as a change in thenumber of basic operations, which is much more fair than trying to comparealgorithms on �xed parameter settings.The measurement used in the experiments is called average number ofevaluations to solution (aes). It is de�ned as the sum over all runs of thetotal number of evaluations needed to reach a solution divided by the numberof successful runs (Section 6.1.1). Consequently, when the sr = 0, the aesis unde�ned.aes(#runs) = #runsPi=1 evaluations(runi)sr(#runs) �#runs ;where evaluations(runi) = ( 0, if no solution has been found,evaluations in runi otherwise.On very few occasions the aes can lead to strange results. When thenumber of successful runs is relatively low, lets say 1 or 2 out of a hundred,and the algorithm has found a solution in relatively few evaluations (it gotlucky), the aes will report a low number. It is therefore important to al-ways report the sr and aes together, so that it is possible to make a clearinterpretation.6.2 Comparing three algorithmsTo compare the three algorithms, we need a test suite of problem instances.This test suite will be created with one of the random generators describedin Section 4.3. For our experiments we choose the generator by Dozier.Although the number of constraints and conicts are more �xed then inthe method of Prosser, the choice of constraint placements seems to bemore random in Dozier's method. The di�erence lies in the selection ofpairs of variables where a constraint will be added. Prosser's method uses a32



Experiments and results Scaling up of MID and SAWdouble loop that generates a random number between zero and one for everycombination of two variables. If this number is below the density parametera constraint is added. When the density parameter is quite high, i.e., nearone, chances are that the constraints are all added in the �rst iterations ofthe second loop. This would result in an unfair distribution of constraintsover the variables, the variables looked at �rst in the �rst loop will getmore constraints assigned than the variables that have not been looked at.Dozier's method assigns all constraints by randomly selecting two variables,preventing any ordering in the variables and their chance of assignment.The test suite consists of a total of 625 problem instances. It is dividedinto 25 combinations of the density and tightness parameter. Thus everycombination consists of 25 problem instances. Every algorithm did 10 runson each problem instance. When an algorithm had not found a solutionafter 100000 evaluations it was terminated and the run was marked as un-successful. The parameters for the number of variables and the domain sizeof all the variables are set to n = 15 and m = 15.The results of the experiments can be found in Table 6.1. The tableshows the success rate for each algorithm for every combination, togetherwith the aes (in brackets).The �rst thing that is clear from the results is that ccs is not able tocompete with the other two algorithms. There is no combination of theparameters where saw and mid perform worse then ccs. Therefore ccs isleft out of further comparisons and experiments. However the conclusionswill contain speculations on the worse performance of ccs.Only the comparison between saw and mid remains. For the less di�cultproblems, i.e., with low values for the connectivity and tightness parameters,saw seems to be at the winning hand. But on the harder problems ((d =0:1; t = 0:9); (d = 0:3; t = 0:7) and (d = 0:5; t = 0:5)) the success rate of sawdrops down to a lower value than that of mid. However, saw is has lowervalues for the aes on the problem instances. For two of the combinations((d = 0:1; t = 0:9) and (d = 0:5; t = 0:5)) even two and a half time as fast.6.3 Scaling up of MID and SAWBased on results from Section 6.2 the next results will not include infor-mation about ccs. The experiments described in this section are calledscaling-up tests. Here the size of a problem, in this case the number ofvariables, is increased in a number of steps. This gives us insight into therobustness of the algorithms, which is very important, because most real lifeproblems are very large.Before revealing the experiments and the results �rst some words on thefairness of this kind of testing. We will look at how the aes of the algorithmschanges when the problem size is increased. This kind of measure is more fair33



Experimentsandresults
ScalingupofMIDandSAW

density alg. tightness0.1 0.3 0.5 0.7 0.9ccs 1.00 (3) 1.00 (15) 1.00 (449) 1.00 (2789) 0.62 (30852)0.1 mid 1.00 (1) 1.00 (4) 1.00 (21) 1.00 (87) 0.96 (2923)saw 1.00 (1) 1.00 (1) 1.00 (2) 1.00 (9) 0.64 (1159)ccs 1.00 (96) 1.00 (11778) 0.18 (43217) 0.00 (-) 0.00 (-)0.3 mid 1.00 (3) 1.00 (50) 1.00 (323) 0.52 (32412) 0.00 (-)saw 1.00 (1) 1.00 (2) 1.00 (36) 0.23 (21281) 0.00 (-)ccs 1.00 (1547) 0.08 (39679) 0.00 (-) 0.00 (-) 0.00 (-)0.5 mid 1.00 (10) 1.00 (177) 0.90 (26792) 0.00 (-) 0.00 (-)saw 1.00 (1) 1.00 (8) 0.74 (10722) 0.00 (-) 0.00 (-)ccs 1.00 (9056) 0.00 (-) 0.00 (-) 0.00 (-) 0.00 (-)0.7 mid 1.00 (20) 1.00 (604) 0.00 (-) 0.00 (-) 0.00 (-)saw 1.00 (1) 1.00 (73) 0.00 (-) 0.00 (-) 0.00 (-)ccs 0.912 (28427) 0.00 (-) 0.00 (-) 0.00 (-) 0.00 (-)0.9 mid 1.00 (33) 1.00 (8136) 0.00 (-) 0.00 (-) 0.00 (-)saw 1.00 (1) 1.00 (3848) 0.00 (-) 0.00 (-) 0.00 (-)Table 6.1: Success rates and the corresponding AES values (within brackets) for the co-evolutionary EA (ccs), the Micro-genetic algorithm with Iterative Descent (mid), and the saw-ing EA (saw). In this experiment the number of variables is setto n = 15 and the domain size of each variable is set to m = 15.
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Experiments and results Scaling up of MID and SAWthan the previous comparisons, because the aes only measures the numberof search steps an algorithm does. It does not show how much work analgorithm performs for each search step, but when a scale-up is performed,the behavior of the performance is compared, which is by far more fair thanonly comparing aes values for a number of �xed parameter settings.The experiment consists of varying n from 10 to 40 with a step size of5, while keeping the other parameters constant (m = 15; t = 0:3; d = 0:3).Again 25 problem instances were generated and 10 runs were done on eachinstance. All runs for both algorithms were successful, therefore we will onlyshow the aes values (Figure 6.1).n mid saw10 10 115 52 220 163 525 410 3030 1039 19035 3462 146540 17252 18668
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Figure 6.1: aes results for the scale-up tests of mid and saw.For the �rst part until n = 35, saw scales up much better then mid.Between n = 35 and n = 40, the lines cross each other and mid gets theupper hand. Because neither of the algorithms performs better than theother on the whole range of n, and because the di�erence between bothalgorithms decreases as n grows, we are not able to conclude if one of thealgorithms performs signi�cantly better than the other.
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Chapter 7ConclusionsThis research consists of two major experiments in which we compare threealgorithms that incorporate adaptive mechanisms to improve their perfor-mance. The comparison is based upon results that were produced by havingthe algorithms solve randomly generated binary constraint satisfaction prob-lems.7.1 First experimentThe �rst experiment consists of comparing the algorithms on di�erent com-binations of two parameters: the connectivity and density of binary con-straint satisfaction problems. The outcome is that the results closely matchthe theoretically estimated landscape of solvability. Prosser (Prosser, 1996)also concluded this, which again gives us a stronger feeling that this theo-retical estimated landscape is precise enough in pointing out where to �ndhard instances of binary constraint satisfaction problems.An interesting conclusion can be drawn. The co-evolutionary method,at least the one as implemented and used here, does not have a satisfactoryperformance compared to the other two algorithms; mid and saw. It wasoften observed during runs of the algorithm that after a while the �tnessvalues of all the members in the solution population were almost the same.By this time the �tness value of the members of the constraint populationwere all zero, except for one or two. Once in a while the algorithm is ableto change which individual occupies the top of the constraint population,showing that the algorithm is still exploring the search landscape. Butit seems that the pressure inside both of the populations is gone. Thelow performance of ccs made us decide to cut the algorithm from furtherexperiments, some suggestions on improvement will be made in Section 8.The performance of the algorithms mid and saw di�er signi�cantly onthree combinations of the density and tightness parameters, all of which aresituated in the mushy region. On two of these combinations saw is two and36



Conclusions Second experimenta half times as fast as mid, but saw has a lower success rate on all threecombinations. In one case the success rate of saw is half that of mid's.On all combinations saw has a lower aes value, but mostly the di�erencebetween mid and saw are not to large.7.2 Second experimentThe second experiment is only performed on mid and saw, this is due to thelow performance of ccs in the �rst experiment. The experiment consists ofa scale-up test, where we increase the size of the problem and observe thebehavior in performance of the two algorithms. We observed that saw scalesup much better than mid in the �rst part of the test where the number ofvariables lies between 10 and 35. But when the number of variables is 40,the di�erence in performance of both algorithms is not very high. Here sawperforms only slightly worse than mid.
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Chapter 8Future research8.1 Dynamic constraintsAn interesting research area is that of constraints that change during theruntime of the algorithm. A lot of problems in the real world have con-straints that can change, because of a change in the environment. If analgorithm is robust enough to cope with such a change and continue itssearch to a new optimum, this can be seen as a very important feature foran algorithm. Evolutionary algorithms with adaptive �tness measures arepromising candidates for such robust methods.8.2 Adapting history sizeAs we observed during experiments with the co-evolutionary algorithm, itoften happened that the �tness value of all the members from the solutionpopulation became equal to the maximum size of the history. This leads toa drop in the selective pressure, because individuals do not have to competeto stay inside the population.One way of sustaining pressure is to increase the size of the history andthe number of encounters. This way the better individuals can use thelarger history to show that they are actually better then the rest. Whichleaves us with the decision when to change the history size and the numberof encounters. A good starting point is to do it when the �tness value ofthe member with the highest rank is (almost) equal to the �tness valueof the member with the lowest rank. This is the point where we observethat the number of changes inside the solution population drops and thatthe constraints population almost exclusively consists of individuals with a�tness value of zero.
38



Future research Penalizing the constraints8.3 Penalizing the constraints8.3.1 Using a di�erent representationBecause the same representation for saw was used in this experiment as inthe those done on graph coloring by Eiben et al. (Eiben and van der Hauw,1996; Eiben and van der Hauw, 1998; Eiben et al., 1998a), we also usedthe same way of penalizing variables that were not instantiated. It couldbe interesting to see what the performance of the saw-ing technique wouldbe if we would stick to the authentic idea of penalizing violated constraints.The easiest way of implementing is to use an integer-based representationwhere the �tness would be calculated as weighted constraint violations.8.3.2 Another approach using permutationsThe permutation-based representation for the saw-ing techniques, as usedin the experiments seems less appropriate for counting violated constraints,because there are no constraints violated once the individual is decoded.Instead we have uninstantiated variables. But when the process of decodingis doing its work we can still observe which constraints are responsible for theconstraint violations. Instead of counting uninstantiated variables we cankeep track of all the constraints that were the cause of an uninstantiatedvariable. When decoding is �nished the weights of these constraints can beadjusted. The �tness function will still only return zero when a solution tothe csp is found, on the simple idea that a solution is found when there areno constraints that prevent us on instantiating variables.Because we are dealing with binary csps every constraint can be thecause of one of two uninstantiated variables. This technique ones againgive the saw-ing mechanism a chance to focus on the constraints. For highvalues (near one) of the density of a graph this is especially important,because there will be more constraints then variables.8.4 Improving the problem instance generator8.4.1 Disconnected graphsIt is possible that the techniques explained in Section 4.3 for generatingrandom csps create graphs that are disconnected, i.e., the graph can bedivided into more than one group of vertices, such that there are no edgesbetween vertices that reside in di�erent groups. The chance that such agraph is generated increases when the density of a graph is low. Prosserrecognizes this too in (Prosser, 1996) and uses it as a probable reason forjustifying the di�erence between the obtained results and the theoreticalestimations. Further research by Kwan et al. (Kwan et al., 1996) showedthat the estimations made by Smith are not accurate for sparse graphs.39



Future research Combining di�erent techniquesThis has lead to the development of a better model for predicting the phasetransitions of binary csps. But this model has not yet resulted into a wayof generating random binary csps.Because of the results mentioned previously, it may be wise to preventthe random generator for binary csps to generate disconnected graphs. Wecould try to change the generator such that it is forced to generate con-straints that at least make the graph fully connected. But this could givethe generated graphs some unknown and unwanted property that changesits solvability. Another approach is to discard graphs that are disconnectedand to perform experiments only with connected graphs. This should bedone rather carefully, because a loop like mentioned in Algorithm 4 couldbe in�nite if the parameters are set such that it is not possible to generateconnected graphs (n > constraints + 1).Algorithm 4 Generating connected binary csps.while (number of binary csps > 0)f binary csp = generate binary csp();if (connected(binary csp))f add to list(binary csp);number of binary csps--;gg8.4.2 Random domain sizesIt would be interesting to know what happens with the di�culty of solvingbinary csps, when the domain sizes of the variables would not be equalthroughout the problem. These domain sizes could, for instance, be drawnfrom a random uniform distribution. This sounds more natural, becausereal life problems are not restricted to having one constant size for everyvariable's domain.8.5 Combining di�erent techniquesSometimes the combination of two techniques can lead to an even betterone. When such a combination can easily be created it is always worthwhileto have a look at it. If we look closely at mid and saw, it is clear thatthese methods can be combined quite easily. mid keeps the penalty termcaused by violated constraints in the �tness function identical throughout itslifetime, and focuses the adaptation on the penalty caused by breakouts. The40



Future research Combining di�erent techniquessaw-ing mechanism can thus be applied on the penalty term for violatingconstraints.Combinations where ccs is involved are a little bit more complicatedto produce. Its ltfe system causes much di�culty in adapting the �tnessfunction. Another aspect is that by changing the interactions between thetwo populations, we could just be throwing away the careful balance thatis introduced by the system, maybe causing it to converge to a non-globaloptimum from which it cannot escape.
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Part IIConstruction of a Library forEvolutionary AlgorithmProgrammingandGenetic Programming onData Mining

Library for Evolutionary Algorithm Programming
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Chapter 9IntroductionThis part of the report will give an non-technical overview of a library forprogramming evolutionary algorithms. Because we are aiming at a frame-work that can be used in a broad �eld, we will have to incorporate techniquesfrom all the di�erent subareas that reside within the �eld of evolutionarycomputation. One of these subareas is genetic programming, a method whereprograms are evolved to perform certain tasks.The incorporation of a general genetic programming frame within thewhole framework will be necessary to complete the second goal: testing theextensibility of the framework by using it for the construction of a geneticprogramming algorithm, which will be added to the library in the future.This genetic programming algorithm will be provided with an adaptive �t-ness function. We have chosen the Stepwise Adaptation of Weights methodto ful�ll the role of adaptive measurement.The genetic programming algorithm will be tested on di�erent classi�ca-tion test sets. These sets are taken from standard data sets from the �eld ofdata mining. The idea here is to breed rules that should classify the recordsfrom the data set as good as possible, and then take the best rules and testhow well they perform on the classi�cation of another data set that holdsthe same sort of information.The goals we want to reach in this part are highly integrated and theyhave a chronological ordering. First the framework needs to be build, beforewe can use it for the construction of a genetic program. Although the em-phasis in this part lies on these two goals, we will apply the adaptive geneticprogramming algorithm to data mining problems, because we are interestedin the performance of it, and because we want to test the implementationon real problems. The same ordering is used in this report. We will start byexplaining the basic idea that was used in the construction of the frameworkand we will give information on the availability of the framework and its doc-umentation. We will continue with information on the genetic programmingalgorithm and �nish with the experiments on data mining.43



Chapter 10A library for evolutionaryalgorithm programming10.1 A general overviewMany libraries for programming evolutionary algorithms exist, but mostof these have two major drawbacks. Firstly, these libraries are so calledtoolkits, which means that they provide a collection of handy functions andobjects that can be used to construct a new evolutionary algorithm. This issimilar to programming toolkits that contain things such as string handlingand hash tables. Generally speaking, these toolkits consist of containersand functions, that put together, provide the user with a library of buildingblocks for the construction of an evolutionary algorithm. Thus the user hasto determine which building blocks are needed, and how to use them tobuild a new algorithm. To do this job, a user needs to know exactly whichblocks should be connected and how they should be connected. This takesa lot of time to learn. Secondly, these libraries are aimed at a speci�c areawithin the �eld of evolutionary computation. Using methods from otherareas means that the user will have to make the necessary changes him orherself, basically doing work that was already done in other libraries of thiskind.The problems with using toolkits occurs when the library or the pro-gram that was build with it, has to be changed. For instance, when a newselection mechanism has been added to the library, incorporation of thisnew mechanism into a program that was designed for an older version of thelibrary, often requires a step by step change of the source code. This is hardwork, for just trying out a new selection mechanism.By using a framework we can overcome the problem of having to digthrough hundreds or even thousands of lines of source code, just for tryingout a new or other mechanisms. A framework does not supply the user withloosely connected building blocks, instead it provides an almost running44



LEAP A general overviewalgorithm. The user only has to put in the last pieces of the puzzle andmaybe has to change the parts of the framework that are not appropriatefor the problem. The framework will then provide a running evolutionaryalgorithm using the provided pieces, substituting the changed parts.When additions are made to the library, programs made with it can eas-ily make use of these additions, by only changing some lines of code in aspeci�c and predetermined place. As long as the new method is compatiblewith the old one, in a high level speci�cation sense, the library will pro-duce a new evolutionary algorithm without the need of much work. Onecan imagine things going horribly wrong when trying to use a new geneticalgorithm operator on a genetic program for instance. On the other hand aselection mechanism could easily be tested on di�erent kind of algorithms,thus providing an easy way of sharing techniques between di�erent areas ofresearch.To provide a running algorithm, the framework needs strong connectionsbetween the di�erent parts that make up the library. These parts are calledobjects, taken from the Object Oriented Paradigm. The connections shouldnot require that an object knows what the actual implementation behindanother object is. By showing only the interface of an object, i.e., theway an object requires others to make use of it, an object can hide itsimplementation. The interface part of an object is called its abstract part.Together, these parts make up the abstract layer of the library.A framework can only produce running programs when it has an actualimplemented algorithms inside. The pieces of implemented code that providethe functionality of the di�erent methods that are described in the abstractlayer form another layer in the library: the implementation layer. Eventuallythis layer should grow when the library is equipped with new methods. Thetwo layers and the parts into which they are divided are shown in Figure 10.1.To put the abstract and implementation layer together a system is neededsuch that objects know only of the interfaces of other objects and such thatchanging objects within an implementation is made easy. This is accom-plished using a technique called an abstract factory method taken from thesoftware engineering paradigm called Design Patterns (Gamma et al., 1994).By forcing every object in the library to use factories for the creation of newobjects, we can easily control which implementation is used in a program. Ifa user wants to make use of another method, for instance another selectionmechanism, only the factory that creates this object has to be changed. Thefactory is part of the package for which it creates objects, it is an object aswell, that has to be provided by the user of the library. A default factory isprovided for each package, that creates basic objects from the library.The construction of the library is an ongoing project where multiplepeople use the library for their own purpose and afterwards donate theirmaterial to the main authors of the library. These in turn incorporate itinto the library. This way the library can be extended faster and it can45



LEAP Structure of the library
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yFigure 10.1: Overview of the Library for Evolutionary Algorithm Program-ming.bene�t from the diversity of the provided material.As the library is distributed under the gnu Public License (gpl2), ev-eryone can use the library for its own personal projects, and everyone is freeto modify the library as long as they do not violate the gpl2. This licenseis provided with the distribution package for the library, and users of thelibrary are advised to read it.For technical information on the library we point you to the program-ming manual (van Hemert, 1998b), please note that as the development ofthe library continues, the current state of the library can di�er from theinformation provided in this chapter.10.2 Structure of the libraryThis section zooms in on the library to reveal the structure of the individualobjects. Before we continue, some words on the meaning of the terminologiesused in this report. When talking about libraries in general we could betalking about a toolkit, a framework, or even on a combination of the two.A library is nothing more than a collection of objects that together providea kind of functionality. Our framework is a kind of library as well. We willuse the words framework and library intertwined throughout the text.The objects in the library, such as a population and a �tness function,should really be called classes. As the library is build using object oriented46



LEAP A more detailed viewtechniques, a de�nition (or type) is called a class and an instance of such aclass is called an object. Because there will be no technical information onprogramming issues in this report, we will continue to name these essentialitems objects.To provide some more structure, the library is divided into a numberof packages. A package holds a collection of objects, where every objectonly belongs to this package. The contents of a package is based upon thefunctionality it should provide. The package consists of objects that togetherprovide the functionality of the package. It could be the case that one objectis needed in di�erent packages, the decision where to put this object is thenbased on intuitive and maintenance grounds. Intuitive as in: \Where wouldI look �rst when trying to �nd this object?" And from a maintenance pointof view; \What will happen when an object is changed within the library?"If an object is changed, the objects should be distributed over all thepackages such that most of the objects that have to be changed with it arein the same package. Note that packages work from a di�erent angle on thelayers, i.e., if an object is derived from an object of the abstract layer, bothobjects will be put in the same package.10.3 A more detailed viewThis section describes the objects that make up the library. Again no tech-nical information is given, just a small overview of every object. The objectsare grouped in smaller sections, where each section equals a package in thelibrary, except for the �rst one. The library has no package named `main',it is provided here for grouping the objects in the root of the library. Notethat abstract and implemented objects are not discussed di�erently. Onlythe structure of the library is described here, which leaves out the details ofthe inner workings of the implemented objects.An overview of all the di�erent objects can be found in Figure 10.2. Theobjects are placed in a striped box, representing the package. The threeobjects, that are not part of a striped box, placed at the top of the picturebelong to the main package. To better understand this �gure we providesome notational remarks. The notation used here is taken from the Uni�edModeling Language (uml) (Burkhardt, 1997; Fowler and Scott, 1997), withsome modi�cations to keep the picture from getting cluttered with arrows.Arrows with diamonds The object with the diamond attached holds theobject where the arrow points to and is responsible for its creation anddestruction.Striped box around smaller box A package with its name in the top leftcorner of the box. This is not the usual way of representing packagesin uml. 47



LEAP A more detailed viewBorders of objectsContinued lines | An object that plays a role in providing theactual evolutionary algorithm.Striped lines | A factory that produces objects in the same pack-age.Every package has its name in the top-left corner, and its factory in thetop-right corner. Objects that have access to a factory are able to produceinstances of objects from that package. For example the Population objecthas access to the ReproductionFactory, thus it can produce objects fromthe Reproduction package. The factories have to be provided by the user ofthe system, they determine which implemented version of an object from theabstract layer will be created. Default versions of the factories are providedby the library, they choose the basic objects that are present in the library.How these default objects look can be found in the technical documentation.
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LEAP A more detailed view10.3.1 Main packageThis package is not present as a real package in the library, it is the collec-tion of objects that are often used in other packages or that have a greatresponsibility. In the library these objects can be found in the root of thedirectory tree. Note that the �rst object is not included in the library, butused here for the purpose of explanation.MainThe library does not contain an object called main, instead this should beprovided by the user. It is included here to show how some of the objectsin the library have to be used in an actual implementation.Con�gurationThe con�guration is responsible for reading in the con�guration �le. Mostof the other objects in the library have access to this object, and they canuse it to obtain information from the con�guration �le.ExperimentThis object provides the actual experiments that have to be performed.It sets up the Statistics object and makes sure problem instances areproduced before starting the evolutionary algorithm.StatisticsA couple of objects have access to the statistics. It stores the data providesby these objects, and uses this data to provide information during and afterthe experiments. Data comes in the form of success rate, average evaluationsto solution and average �tness.10.3.2 Core packageObjects that reside in this package make up the inner workings of an evo-lutionary algorithm. Often they require little or no change when a newalgorithm is being made. They either represent some sort of container forother objects or they provide a very simple algorithm.Evolutionary AlgorithmAlthough this object is what gives the library its name, it does not providemuch functionality. It has one population and a stop condition, and usesthese to run the main evolutionary algorithm loop until the stop condition istrue. The loop consists of asking the population to go to the next generation.50



LEAP A more detailed viewPopulationThis object is responsible for the creation and destruction of quite a lot ofother objects. It has a pool where it stores all the genotypes that reside in thepopulation. After the population is initialized using the Initializationobject its main functionality is provided in the building of new generations.To accomplish this it has a Reproduction object, that given a pool of geno-types generates a new pool using prede�ned genetic operators.PoolThe pool is just a storage container for genotypes. It is mentioned herebecause it can have a functionality of its own that can be useful for otherparts of the library. For instance when the selection method used in animplementation is rank based, it could be handy to have a pool that storesits genotypes sorted on �tness.GenotypeThe genotype basically provides two functionalities. Firstly, it stores thedata that is used by the genetic operators. Secondly. it stores the �tnessvalue after it has been calculated by the �tness function.InitializationBefore the evolutionary algorithm can begin its main loop, an initial popu-lation has to be generated. This object is used for initializing the data partof a genotype.StopConditionSome objects in the library have access to the stop condition. These ob-jects can request the stop condition to terminate the evolutionary algorithmbefore the next loop starts. It handles two types of requests: terminationbecause a solution was found, and termination because of an event otherthan �nding a solution.10.3.3 Reproduction packageOne of the most important packages, because this package takes full respon-sibility in providing facilities for the selection mechanisms and the geneticoperators. It has one main object that controls which objects are called andin which sequence. All other objects provide either a selection mechanismor a genetic operator. 51



LEAP A more detailed viewReproductionHere the main control procedure for the reproduction takes place. Thisobject decides which other objects in the reproduction package are used,and in which order. The default is a steady state evolutionary algorithm,where we �rst select a list of parents. These parents then produce o�springby recombination, which are mutated afterwards. The last operation isselecting who will survive and go to the next generation.SelectParentsThis object gets as input the current pool and returns a list of parents,which are used in one or more genetic operators.ProduceOperatorThe ProduceOperator gets its name from the fact that given some par-ents, it creates new genotypes using these parents. The new genotypes,called o�spring, are returned as a list. Depending on the reproduction algo-rithm, this list can then be given to the SelectSurvivors object or to theChangeOperator object. Examples of genetic operators that fall into thiscategory are crossovers and mutation operators that copy existing genotypes.ChangeOperatorThis operator does not create new genotypes, instead it takes existing geno-types and alters their data. Examples of such an operator are normal mu-tation operators and heuristic repair methods.SelectSurvivorsThe �nal step in reproduction is determining the contents of the new pool.This is the responsibility of the SelectSurvivors object, which given a listof new genotypes and the old pool, outputs the new pool.10.3.4 Common packageWhen constructing a new algorithm one of the most important thing is tohave good building blocks. Although this library is aimed at evolutionarycomputation and not on data structures, a few building blocks are provided.ArrayThis is a very simple array, with two advantages over other implementations.It always checks its input, and provides the user with useful information52



LEAP A more detailed viewwhen something went wrong. Furthermore, it is possible to add a name tothe array, which will be used when an error is reported.TreeThe tree object provides the basic functionality of an n-ary tree. It hidesmost of its internal structure, and it has basic features for the manipulationand traversal of a tree. The tree object has already been added to the libraryand will be used for the implementation of the adaptive genetic program.StringThis class should be replaced with the string class from the standard C++because it is much more e�cient and easier to use. For now this objectprovides basic string manipulation.RandomIt is very hard to �nd a good random generator that works on di�erentplatforms and compilers, and at the same times guaranteeing the same re-sults. We have chosen for the standard random generator that comes withthe libraries provided by the Egcs compiler. This object merely raps thegenerator with a nice interface.10.3.5 Error packageDuring the development of a computer program mistakes are almost in-evitable. By providing a good system for detecting anomalies during theruntime of a program, errors can be exposed more quickly and more easily.But a program often needs more than debugging facilities, it needs a properway of handling errors caused by not using the program correctly.To report errors in a program, the library provides a small collection ofdi�erent exceptions that can be used for reporting errors. Such an exceptioncan be thrown anywhere in the library, it can than be handled by objectsthat were responsible for calling this code, or if this is not the case, it canbe handled by the main program.WarningThis object should only be used if something strange is found, but whichdoes not cause immediate danger for further execution of the program. Forexample a parameter that has not been given in the con�guration �le, butwhich can be provided with a default value. In other words, it should reporton actions taken by the program that may not be anticipated by the user ofthe program. 53



LEAP AvailabilityErrorAn error should be the result of wrong usage of the program, such as failingto read in a �le or trying to set a parameter to an unacceptable value.InternalErrorThis exception helps a programmer in locating problems in a program. Itreports on wrong usage of objects within the library. For instance, supplyinga genetic operator with data it was not designed to manipulate should resultin an internal error. Hypothetically speaking, this error should only occurduring the development of a program.LibraryErrorThe library error is not used much, and is not to be used in objects outsideof the library. If this error occurs it means something is wrong inside thelibrary. This could be something innocent like a function that has not beenimplemented yet, but it can also mean a bug has been found.10.4 AvailabilityDuring the development of leap, a tool was used to produce a documentcontaining technical information on the inner workings of the library. Thistool is called doc++, and it is freely available on the Internet. The Libraryfor Evolutionary Algorithm Programming is free as well, it is made availableto the public under the gnu Public License (gpl2). This license can befound inside the main archive, in the �le `COPYING'. leap has its own pageon the World Wide Web from which the latest version can be obtained. Forthe address of this page we point you to Appendix A.Archives of the technical documentation can be downloaded from theleap page in Postscript and html format, in addition the html format hasbeen put online. The documentation is also included in the main archive, butit has to be compiled by doc++ before it can be used. This documentationwill have to be maintained throughout the development of the library, itis therefore important to have matching versions of the documentation andlibrary.The library has been developed using the experimental Egcs compiler(version 1.0.3a), this was necessary because of the lack of good C++ supportin older compilers. No attempt to test the library on other systems andcompilers has been made so far, but it is known not to work on versions ofthe gnu compiler equal or lower than 2:7:2:1.As development continues the library will become more dependent onthe Standard Template Library (stl). Without this library leap will be54



LEAP Availabilityuseless. stl is freely available for almost every platform and compiler. Agood implementation of stl is provided by Egcs, but for those who want todownload their own version or who want to have a look at the documenta-tion, we point you to the Internet address in Appendix A.
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Chapter 11An Adaptive GeneticProgramming algorithm forData Mining11.1 Genetic programming and data mining11.1.1 What is genetic programming?Genetic programming (gp) started out as a new kind of genetic algorithm.One that does not operate on bit strings, but instead uses trees to representindividuals. Because of the special nature behind the idea of genetic pro-gramming and due to the success of the applications, genetic programminghas become a �eld on its own. The special nature lies in the interpretation ofthe individuals. In genetic algorithms the individual is a static solution fora problem that was supplied to the genetic algorithm. However in geneticprogramming, an individual is a function or program that can be storedand used on di�erent input than that during the execution of the geneticprogramming algorithm.When genetic programming �rst started the structure of an individualwas represented as a tree (Koza, 1992). Later other representation wereadopted, such as linear and graph representations. These structures stillrepresent a kind of program or function. Although using these representa-tions have produced promising results, we will use the tree representationhere, because it easily represents the functions we are going to breed. Forthe reader who is interested in the more advanced topics of genetic program-ming, we point you to a book written by Banzhaf et al. (Banzhaf et al.,1998) and a book edited by Kinnear (Kinnear, 1994).Genetic programming has produced numerous successful applications,in a wide variety of �elds. It has been applied in robotics, function ap-proximation, creation of jazz melodies, construction of randomizers, cellular56



Data mining using GP A genetic program for classi�cationautomata rules, data mining, and much more. When genetic programming isapplied for data mining purposes, it is often used to breed rules that provideinformation on a data set. Di�erent sorts of information can be gatheredfrom data, we could be looking for rules that tell us something about therelations of the di�erent data �elds or we could be looking for rules that areable to predict an unknown data �eld from new data sets. We will test ourgp algorithm on this last sort of information.11.1.2 What is data mining?The most important goal of data mining is to �nd new information that ispotentially interesting and useful by looking at data. This search can beon a lot of di�erent kinds of information. Examples of useful informationare summary of data, classi�cation rules, analysis of changes, detection ofanomalies and clustering of data. The basic idea in all these di�erent typesof information is the discovery of information in data that gives a higherform of knowledge on the complete data set.With so many di�erent types of information, the �eld where data miningcan be applied is very large. Some areas are medicine, �nance and marketing.In these areas data mining has been used to analyze genetic sequences, makepredictions on the stock market and discover buying patterns.As the main focus of this research is on the development of a usable li-brary, and not on the construction of a very e�cient algorithm that outper-forms presuccessors, we will not try any advanced data mining techniques.Instead the gp algorithm will be tested on a number of data sets that arecommonly used to compare classi�cation algorithms.11.2 A genetic program for classi�cation11.2.1 RepresentationThe genetic program contains individuals that represent classi�cation rules.These rules will have to work with records, r = hr1; r2; : : : ; rni, with n thenumber of records, i.e. the number of data �elds. The attribute ri, with1 � i � n, can have any value. Most of the time a value is from one ofthese three domains: boolean, real or nominal. In the data sets used inthe experiments later on, the attributes have been scaled to the real valueddomain such that 0 � ri < 1. The rules will have to classify the recordsfrom the provided test set into two classes.Given this information, we choose the building blocks for the classi�ca-tion rules. There will be two types of building blocks, functions and atoms.The set of functions will consist of Boolean functions with two argumentsfrom this set: fand; or; nor; nandg. Note that this set is functionally com-plete. The atoms will read the value from one attribute, compare it to a57



Data mining using GP A genetic program for classi�cationrule(r) = (A>(r1 ; 0:347) nor A<(r0 ; 0:674)) and A>(r1 ; 0:240)Figure 11.1: An example of a classi�cation rule.�xed constant c, and return a boolean value. Two types of atoms will beprovided, one that checks if the value from an attribute is greater than c:A>(ri; c), and one that checks if the value is less than c: A<(ri; c). Here c ischosen from the same domain as ri. Figure 11.1 shows an example of a rulethat can be produced using these functions and atoms. This rule returnseither true or false depending on the record r. The gp is build such thatthe syntax as described here can easily be extended.The atoms return a boolean value, therefore they are able to serve asinput to the Boolean functions. Note that normally genetic programminguses a set of terminals, instead of atoms, these terminals represent the in-formation as found in the data it receives as input. If the standard way ofencoding would be used we would have to add two new functions, `<' and`>' and add two types of terminals, one for reading a �eld from a record, andone representing a constant. But as we will show next this would complicatethe structure of individuals in the gp algorithm.The rules are easily represented as trees, especially because we alreadymade a distinction between functions and atoms. The functions become thenodes of the tree and the atoms will be represented as leaves. When the rulefrom Figure 11.1 is represented as a tree, it will look like Figure 11.2. Wecan evaluate the rule on a record by doing a postorder tree traversal whichreturns the class as false or true at the root of the tree.
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>Figure 11.2: Representation of a classi�cation rule as a tree.If standard representation for genetic programming would be used, i.e.,terminals instead of atoms, we would have to make sure that the tree is keptin a certain form. The reason for this is that not all functions understand58



Data mining using GP A genetic program for classi�cationthe same type of arguments. The and function for instance only acceptsboolean values, but the terminals are real-valued. The `<' function requirestwo real-valued arguments, but the and functions returns a boolean value.When constructing a tree, we would have to make sure these restrictions arenot violated. To overcome this problem, the idea of atoms is introduced,where some of the functions are combined with the terminals to produce aset of atoms. When creating trees, the leaves of the tree will be selectedfrom this set. In the next chapter we will show that this idea can be easilyextended to other representations.11.2.2 InitializationBefore the gp algorithm can start its main loop, a population of individualshas to be created randomly. Thus we need a method for randomly creatingtrees. Three methods are commonly used in genetic programming.Full methodStarting with a function at the root of the tree, this method continues to�ll the tree with randomly chosen members of the function set, up to aprede�ned maximum depth of the tree. When this depth is reached, themethod chooses the leaves from the tree from the set of atoms. An atomis further initialized by randomly selecting an attribute ri and randomlyselecting a value for the constant c from the domain of ri. Note that treescreated this way will always be completely �lled.Grow methodThis method starts out with a function for the root and then keeps selectingmembers from the conjunction of the functions and atoms set randomly.The initialization of an atom is the same as with the full method. To keepthe method from running forever, a maximum depth is introduced. Whenit reaches this depth it will only select from the set of atoms.Ramped half-and-halfThis is not a new method for creating trees, but it is a combination of theother two commonly used methods. This technique generates half of thepopulation using the full method and half of it using the grow method. Thisway a wide variety of trees are created.11.2.3 ReproductionEvery generation two parents are selected using rank-based selection (Sec-tion 5.1.2), which breed two o�spring using crossover or by copying them-selves, this is determined using a crossover probability. Another probability,59



Data mining using GP A genetic program for classi�cationthe mutation probability, determines whether the o�spring is mutated. Theo�spring is put into the population using a worst rank replacement strategy.CrossoverThe crossover used by the gp algorithm is the basic subtree swap as de�nedby Koza(Koza, 1992). When two parents have been selected from the pop-ulation for sexual reproduction, a random process chooses a crossover pointin both parents. The choice is biased to give functions a higher probabilityof being selected than atoms. The o�spring is created by swapping the sub-trees between the two crossover points in both parents, an example is shownin Figure 11.3.
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Figure 11.3: Crossover in genetic programming by swapping subtrees.An exception is made when the size of a child is larger than the predeter-mined maximum number of nodes an individual is allowed to have. Whenthis happens, the o�spring will be disposed and a copy of the parent will beused as o�spring. 60



Data mining using GP A genetic program for classi�cationMutationBecause the gp algorithm uses atoms instead of terminals, we will have tomake sure that the mutation operator has e�ect on the whole rule that isrepresented by an individual. To ensure this two mutation operators areused independently. Whenever an individual has been selected for muta-tion, a node (function) or leaf (atom) is chosen randomly from the tree forparticipation in the operation. If a node (function) is selected, the subtreemutation operator is applied. If a leaf is chosen, a random choice is made todetermine whether we will do a subtree mutation or a subatomic mutation.Both operators have an equal chance of being chosen.The subtree mutation replaces the selected node and the complete sub-tree underneath it with a subtree that is generated using the grow initial-ization method described in Section 11.2.2. It also uses the same maximumdepth for the complete tree. Figure 11.4 gives an example of this operator.
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Figure 11.4: Mutation in genetic programming by replacing subtrees withrandomly generated ones.The subtree crossover only works on full building blocks, it only replacesa set of functions and atoms with a new set. This can be very destructive,especially when a node is chosen at a low depth of a tree. Here we want tointroduce a less disruptive mutation, which we will call subatomic, becauseit operates on items in an atom.When an atom is selected for subatomic mutation we randomly pickeither the attribute ri or the constant c, again with an equal chance. If theattribute ri is selected, it will be replaced by randomly selecting an attributefrom the record. If the constant is selected, a small random number isgenerated �d < �c < d, which is then added to the constant c to form the61



Data mining using GP Applying an adaptive �tness measurenew constant c`. This is shown in Equation 11.1.c0 = 8><>: 0; if c+�c < 0;1; if c+�c > 1;c+�c; otherwise: (11.1)
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<Figure 11.5: Example of a subatomic mutation.11.2.4 Fitness functionThe �tness of an individual in the population is de�ned as the number ofwrongly classi�ed records from the data set. This value has to be minimizedby the gp algorithm, and if an individual with a �tness value of zero isfound, this would mean a perfect classi�cation rule for this data set. Toevaluate an individual means that its prediction has to be veri�ed on everyrecord in the data set. If we de�ne D as the set of all the records in thedata set we can state the �tness of individual x as:�tness(x) = Xr2D jevaluate(x; r)� class(r)jBecause the function set consists of Boolean functions, the gp algorithmcan only predict two classes. The tests will also be restricted to data setswith two classes, thus class(r) will give a one or a zero, depending on whichclass record r belongs. The evaluate(x; r) function traverses the tree ofindividual x and calculates the value of the rule, returning a one if theoutcome is true and a zero if it is false. In the next section the �tnessfunction is slightly changed to incorporate an adaptive technique.11.3 Applying an adaptive �tness measureMore and more evolutionary algorithms are using an adaptive �tness mea-sure to guide their search to an optimum solution. As one major aim of62



Data mining using GP Applying an adaptive �tness measurethis project is to build a modern and extensible library, it would be good toinclude such adaptive techniques. The only problem is that some of themare quite speci�cally build for tackling certain problems. The MicrogeneticMethod from Dozier (Dozier et al., 1994; Dozier et al., 1995) (see also Sec-tion 5.2) is an example of such a technique. One of its basic components,the Breakout Management System, requires a problem where we can iden-tify pairs of values (nogoods) that cause the algorithm to get stuck in localoptima. If a problem does not have such a feature, which is the case inclassi�cation of data sets, the method can not be used.To improve the extensibility of the library we want to include an adaptive�tness measure that can easily be used in many evolutionary algorithmsworking on di�erent sorts of problems. A promising candidate for this is thesaw-ing technique by Eiben et al. (van der Hauw, 1996; Eiben and van derHauw, 1996; B�ack et al., 1997; B�ack et al., 1998; Eiben et al., 1998b; Eibenet al., 1998a). It is also described in Section 5.3. This technique changesthe �tness function using a vector of weights. These weights depend on theproblem at hand, but with some creativity they can be added to almostevery problem.In a classi�cation problem, the problem solver is presented with a numberof records from a data set. It is up to the problem solver to �nd one or morerules that classify this list of records as good as possible. For an evolutionaryalgorithm this means that every time an individual needs to be evaluated,the rule it represents has to be checked on this list of records. In otherwords, when if we order a list of records of size n such that every record getsa unique number from 1; : : : ; n. To introduce the saw-ing technique intothe genetic programming algorithm, a vector w = hw1; : : : ; wni is de�ned,where every wi; 1 � i � n is paired with record i. The weights are used inthe �tness function as follows:�tness(x) = Xr2Dwr � jevaluate(x; r)� class(r)jAll weights in the vector w are set to one before the algorithm starts.After a number of generations, determined by the parameter Tp, the geneticprogramming algorithm is interrupted. The �tness of the best individual inthe population is determined, and for every rule it does not classify correctly,the corresponding weight is incremented by one. The whole population thenneeds to be reevaluated, because of the changed �tness function. This maytake a lot of time, because of the large population sizes used in geneticprogramming and because we are doing classi�cation problems. As the dataset does not change, we can speed up this reevaluation by storing a vector offails and successes for each individual. This vector is updated the �rst timean individual is evaluated, and stores boolean values, one for each record.Instead of having to evaluate an individual all over again, we can look at thevector when we need to calculate the �tness value of an individual. When the63



Data mining using GP Parameters of the algorithmwhole population has been reevaluated the gp algorithm continues its run.Note that the reevaluation process is not the same as a �tness evaluation,because there is no need for a complete tree evaluation on all records inthe training set. These reevaluation are not counted as evaluations, andtherefore, will have no e�ect in the maximum number of evaluations.The idea behind this way of applying saw to data mining is that somerecords might be hard to classify, i.e., when trying to �nd a general rulefrom a set of records, some records di�er much from the others. To helpfocus the search of the gp into �nding a rule that is also able to classifythese records, individuals get an extra reward if they classify such a record.In other words, when an individual succeeds in classifying a record that hasgot a high weight because it often was not classi�ed correctly by the bestindividual in the population, that individual can bene�t from the extra highpenalty the other individuals get by not classifying it correctly.11.4 Parameters of the algorithmThe gp contains quite a lot of parameters, as can be seen from Table 11.1.Most of the values were taken from default or recommended values from theappropriate literature.

64



Data mining using GP Parameters of the algorithmParameter ValueRepresentation treesInitial maximum tree depth 5Maximum number of nodes 200Function set fand; or; nand; norgAtom set attribute greater or lessthan a constantPopulation size 1000Initialization method ramped half-and-halfParent selection linear rankingBias for linear ranked selection 1.5Replacement strategy replace worseMutation type 1. subtree replacement2. subatomic mutationSubatomic d parameter 0.1Mutation probability 0.1Crossover swap subtreesCrossover probability 0.9Crossover functions:atoms ratio 4:1Stop condition perfect classi�cation or10000 created individualssaw-ing update interval Tp 250saw-ing �w parameter 1saw-ing initial weights 1Table 11.1: Fixed parameters of the adaptive genetic algorithm program-ming.
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Chapter 12Experiments and resultsIn this chapter we will �rst describe the construction of a genetic programusing the leap library. The results will consist of an overview of the devel-opment path that was followed and of the structure of the gp. The secondsection consists of experiments on data mining. Also, comparisons will bemade with other data mining techniques.12.1 Building a genetic programming algorithmThe genetic programming algorithm as constructed here contains three sep-arate packages. One package for reading and using the data set, anotherpackage that holds all the components of the gp, and another one thatmakes up saw. This section will describe some details of these packagesand how they were constructed, beginning with the data set. An overviewof these packages and of the objects that they contain can be found in Fig-ure 12.1. To keep the �gure from getting cluttered, all connections to thelibrary are left out. Most of these are obvious, as almost all objects showedare inherited from objects from the library.As the gp will be used for classifying data, it is necessary to constructan object that reads in the problem, i.e., the data set. The �tness function,represented by the Classification object, will have to traverse a list ofrecords to evaluate each freshly created classi�cation rule. The object thatstores this list is called DatasetProblem, it contains a list of records. For theexperiments the data sets will have to be split up into two distinct parts.One part is used for the training phase. This is one run of the gp, fromwhich the best individual is taken and tested on the other part of the dataset, this is called the test phase. The distinct parts are called respectivelytraining set and test set.One of the core objects needed in a tree-based gp is of course a tree.Eventually, our aim is to put all the objects constructed here into the li-brary, we therefore make an n-ary tree that can easily be reused for other66



Experiments and results Building a GP
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Experiments and results Building a GPtree1 is showed in Figure 12.2. Some work into extending this set has al-ready begun, but in this version of the gp we will use the objects presentedin Figure 12.2, as this set implements the functionality needed for the gpdescribed in Chapter 11.
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GreaterLess Two_Or Two_And Two_Nand Two_NorFigure 12.2: The inheritance tree for GP Node.The connection between the gp and the data set is made by the GP Nodeand the Classification objects. The GP Node needs the Records objectto read the individual data �elds in a record when it is being evaluated. Forexample when an atom is being evaluated, it needs to know the value ofone of the attributes of the current records. The Classification objectiterates through all the records and tries each record on the individual whichit is evaluating. For this it needs the DatasetProblem. Both relations canbe seen in Figure 12.1.The TreeInitialization implements the ramped half-and-half tree ini-tialization method, by calling calling the appropriate function from theTreeBuilder object. This object implements the �rst two methods asdescribed in Section 11.2.2. The mutation operator also uses one of thefunctions from TreeBuilder. If the TreeMutation object has to perform asubtree mutation, it uses the grow method to generate a new subtree. Thelast object from the gp package, TreeCrossover, uses only the TreeDataobject.1The word tree is taken from the terminology used in Object Oriented programming.68



Experiments and results Data mining with a genetic programAt this point, we almost have a running gp that tries to classify datainto two classes. There is one object missing that has to control these twopackages. We need an experiment manager that performs cross-validationtests using the GeneticProgramming and Dataset package. This object iscalled CrossvalidationExperiment. It runs the gp the required numberof times on the provided training sets and for every run it calculates thenumber of wrongly classi�ed records in the test set.The gp is extended with the saw-ing technique by replacing the defaultevolutionary algorithm object with the SAWingEvolutionaryAlgorithm ob-ject. It di�ers from the default evolutionary algorithm object, because itinterrupts the main evolutionary loop every Tp number of generations, andthen the saw-ing mechanism will update its weights. This process is de-scribed in Section 11.3. The saw-ing mechanism is implemented by the SAWobject, which looks similar to the Classification object, but di�ers in tworespects. It does not alter the �tness value stored by a genotype. Secondly,it contains a vector of weights that can be read by the Classificationobject. We will denote this algorithm as gp+saw, and version without sawas gp.12.2 Data mining with a genetic programThis section describes three experiments conducted on di�erent data sets,where the gp has to classify the records into one of two distinct classes.These data sets are taken from existing collections used for research onneural networks and machine learning. The �rst collection, aimed at neuralnetworks, is called Proben1 (Prechelt, 1994). The second collection is calledStatlog. It has mainly been used for research on machine learning. TheInternet addresses of these collections are in Appendix A.The data set collections are accompanied with results gathered using dif-ferent techniques. We will compare the performance of the gp and gp+sawwith these results. Unfortunally, both collections use di�erent kinds of teststo acquire their results. To provide a fair comparison, we will use the sametechnique when we are comparing with the performance of an algorithmfrom one of these collections.The results in the Proben1 collection are produced by splitting the dataset into two equal parts. The �rst part is used as a training set and thesecond part is used for testing. We call this the `50% training set { 50% testset' experiments, or `50/50 test' in short. The comparisons in this sectionwith Proben1 are all based on the percentage of wrongly classi�ed records inthe test set. Proben1 provides three permutation of each data set, thereforeeach table of results on a 50/50 test gives three columns of data and onecolumn with the average over these three values.Statlog uses n fold cross-validation tests to compare the performance of69



Experiments and results Data mining with a genetic programalgorithms. This involves partitioning the data set into n distinct parts.The experiment consists of doing n runs of the algorithm, each run selectingone part to act as test set, while the remaining parts are used in the trainingphase. The results over all runs are averaged over n. Statlog also reports thepercentage of wrongly classi�ed records in the training set, we will do thesame in all the n folded cross-validation tests. The di�erent algorithms aresorted by their performance on the test set �rst. If this performance doesnot di�er, further sorting is done based on the performance on the trainingset.12.2.1 Test set 1: Breast cancerThe �rst data set comes from the Proben1 data set collection. We will onlycompare the results with Proben1, because Statlog does not contain this dataset. This data set is originally provided by the uci machine learning dataset, and it is called the `Wisconsin breast cancer database'. The objectiveis to classify the set into two types of cancer cells; benign and malignant.The class distribution is shown in Table 12.1. A record consists of nineinput attributes, all having a nominal value between 1 and 10. This valuesare linearly scaled to a number between 0 and 1. There were 16 missingvalues of one attribute, they were all encoded with the average (0.35) ofthat attribute over all the other records.class quantity percentageBenign 458 65.5%Malignant 241 34.5%699 100.0%Table 12.1: Class distribution of the Wisconsin breast cancer data set.50% Training set { 50% test setThe results as shown in Table 12.2 show that the di�erence between thebest neural network and gp is only 0.002. The gp+saw has a bit lowerperformance, 0.014 less than the best neural network.12.2.2 Test set 2: DiabetesThis data set originates from the National Institute of Diabetes and Diges-tive and Kidney Diseases, it contains information on female Pima Indians,all at least 21 years old. Comparisons will be made on results from bothProben1 and Statlog. The set has to be classi�ed into two classes; testedpositive for diabetes and tested negative for diabetes. The input consists ofeight attributes, they are all scaled to a number between 0 and 1.70



Experiments and results Data mining with a genetic programalgorithm cancer1 cancer2 cancer3 averagePivot nn 0.015 0.045 0.034 0.031No-shortcut nn 0.014 0.048 0.037 0.033
☞ gp 0.032 0.040 0.029 0.033Linear nn 0.029 0.050 0.052 0.044
☞ gp+saw 0.026 0.054 0.054 0.045Table 12.2: Percentage of wrongly classi�ed records in a 50/50 test duringthe test phase on the Wisconsin breast cancer data set.class quantity percentageNo diabetes 500 65%Diabetes 268 35%768 100.0%Table 12.3: Class distribution of the Pima Indians Diabetes data set.50% Training set { 50% test setThe results of of this test clearly show (Table 12.4) that both genetic pro-gramming algorithms are beaten by the neural networks. The gp+sawperformance is better than gp, the di�erence is 0.01.algorithm diabetes1 diabetes2 diabetes3 averageNo-shortcut nn 0.241 0.264 0.226 0.244Linear nn 0.258 0.247 0.229 0.245Pivot nn 0.246 0.259 0.231 0.245

☞ gp+saw 0.234 0.281 0.302 0.276
☞ gp 0.271 0.294 0.294 0.286Table 12.4: Percentage of wrongly classi�ed records during the test phasein a 50/50 test on the diabetes data set.12 Fold cross-validationThe performance results in Table 12.5 have been sorted by performance onthe test set. For algorithms that have an equal result, a second orderinghas been done on the performance on the training set. After inserting gpand gp+saw into the list, the list was truncated after Ac2. Both geneticprogramming algorithms perform average, with a di�erence of 0.01 betweenthem.
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Experiments and results Data mining with a genetic programalgorithm training testLogDisc 0.219 0.223Dipol92 0.220 0.224Discrim 0.220 0.225Smart 0.177 0.232Radial 0.218 0.243Itrule 0.223 0.245BackProp 0.198 0.248Cal5 0.232 0.250Cart 0.227 0.255Castle 0.260 0.258
algorithm training testQuaDisc 0.237 0.262Bayes 0.239 0.262

☞ gp 0.255 0.263C4.5 0.131 0.270IndCart 0.079 0.271BayTree 0.008 0.271lvq 0.101 0.272Kohonen 0.134 0.273
☞ gp+saw 0.246 0.273Ac2 0.0 0.276Table 12.5: Percentage of wrongly classi�ed records in a 12 fold cross-validation test on the diabetes data set.12.2.3 Test set 3: Credit cardsThis data set is taken from the uci machine learning database. Both Statlogand Proben1 contain this data set, but they have transformed it into adi�erent encoding. We have conducted both type of tests to both encodings,thus every table of results contains two entries for each algorithm, one forStatlog and one for Proben1. The class distribution for this data set isgiven in Table 12.6. The data set consists of information on clients, froma Australian credit card �rm. It is divided into two classes; those who aregranted credit and those who are denied credit.The data set encoding in Statlog uses 14 attributes, consisting of contin-uous and categorical. All attributes were scaled linearly to a value between0 and 1. The Proben1 set uses 51 attributes, encoding any categorical at-tribute using a vector the size of the category and assigning a 1 to only oneposition in the vector.class quantity percentageGranted 307 44.5%Denied 383 55.5%690 100.0%Table 12.6: Class distribution of the Australian Credit Approval data set.50% Training set { 50% test setOn this data set, the gp shares the �rst place with the Linear neural net-work (Table 12.7), followed closely by gp+saw. The same algorithms per-form much worse on the same data set with a di�erent encoding, having adi�erence of 0.072 between both gp+saw results and a di�erence of 0.11372



Experiments and results Data mining with a genetic programbetween both gp results. Note that Statlog does not have di�erent permu-tations of its data sets. Entries in the table for Statlog are therefore markedas `|'. algorithm card1 card2 card3 averageLinear nn 0.134 0.192 0.144 0.157
☞ gpa 0.157 0.197 0.116 0.157Pivot nn 0.136 0.192 0.174 0.167
☞ gp+sawa 0.119 0.174 0.191 0.161No-shortcut nn 0.141 0.189 0.188 0.173
☞ gp+sawb | | | 0.243
☞ gpb | | | 0.270aProben1bStatlogTable 12.7: Percentage of wrongly classi�ed records during the test phasein a 50/50 test on the credit card data set.10 Fold cross-validationThe results from this test (Table 12.8), are similar to those from the 50/50test, in a sense that both genetic programming algorithms perform betterusing the Proben1 encoded data set, than using the Statlog encoded dataset. The di�erence between the results on the di�erent encodings is 0.096for gp and 0.077 for gp+saw. The performance on the Statlog encodingis worse than most other algorithms, with a di�erence of 0.120 between gpand the best algorithm.
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Experiments and results Data mining with a genetic program

algorithm training testCal5 0.132 0.131Itrule 0.162 0.137LogDisc 0.125 0.141Discrim 0.139 0.141Dipol92 0.139 0.141Radial 0.107 0.145Cart 0.145 0.145Castle 0.144 0.148Bayes 0.136 0.151IndCart 0.081 0.152
☞ gp+sawa 0.138 0.152BackProp 0.087 0.154C4.5 0.099 0.155

algorithm training test
☞ gpa 0.149 0.155Smart 0.090 0.158BayTree 0 0.171knn 0 0.181Ac2 0 0.181NewId 0 0.181lvq 0.065 0.197Alloc80 0.194 0.201Cn2 0.001 0.204QuaDisc 0.185 0.207
☞ gp+sawb 0.231 0.229
☞ gpb 0.254 0.251Default 0.440 0.440aProben1 | Runs on all three permutations of the data set are averaged.bStatlogTable 12.8: Percentage of wrongly classi�ed records in a 10 fold cross-validation test on the credit cards data set.
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Chapter 13Conclusions13.1 Success of the library13.1.1 Ease of extensibilityOne disadvantage of this library is its age, as it is just a few months old,the library is only equipped with a few basic objects. This led to a lot ofwork that had to be done in the construction of the genetic program. Butas long as the library is growing, these exceptionally high amounts of workwill probably decrease. However, this `growing principle' brings additionalwork as well, we will discuss this in Section 13.1.2.A very nice feature derived from the idea of having a running framework,is the fast response a developer gets during the construction of a new algo-rithm or technique. Because it is easy to take a default program and thento start changing this program to get the desired algorithm, the programcan be executed from a very early state. This enables the developer to testthe implementation from a very early start.When an algorithm has to be implemented, a lot of work will go intodesigning the structure of the program. Things like storage of data, readingin of parameters, e�cient usage of time and space, and hopefully re-usabilityand comprehensibility all take part in making this process of designing moredi�cult. As algorithms get larger and more complex, the construction ofprograms gets slower. A library, such as this one, where the developer getsa running system that already has a structure, can help in speeding up thetime it takes to implement new ideas.13.1.2 Amount of workAs the library grows, users of it will get more chances of trying out newideas that have been implemented by others, without having to go throughthe developing process themselves. Thereby saving a lot of time and work.But to make this work two essential items are needed. Users of the system75



Conclusions Success of the librarythat have developed something new will have to donate their e�orts to thelibrary, and the maintainers of the library will have to keep it up to date.Not only the maintainers of the library will have to do a lot of work,users will have to do quite a lot of work too. Just as with everything thatis new, using a new library will require some time to get use to. But asthe library has examples and as it is a running system, a user can beginby changing small parts of the library at a time. For instance a user couldstart by constructing a new genetic operator and use it to replace it in anexample program.The problem in maintaining a growing library is that it has quite a lotof di�erent areas that require work. A handful of them are listed here:Squashing bugs Whenever there is programming, there will be bugs. Agood design and the usage of software engineering techniques can helpprevent bugs or speed up the time in �nding bugs. But errors willalways be made, and one of the tasks of the maintainers is to correctthese errors.Adding new material As users donate their material it is vital that itgets incorporated into the library. If this does not happen, users couldlose the motivation to turn in new material or even lose interest inusing the library.Testing new material Including new material, especially if it has beenmade by others, is very di�cult and time consuming. The code willhave to be checked to see if it works correctly, and to fully grasp itsfunctionality.Keeping the library consistent One of the most important issues is tokeep the library consistent. This is best illustrated with an example.Lets assume that a new feature has been added to the library suchthat it can now handle trees represented as linear arrays. Althoughthe library already consists of operators that work on arrays, it mightnot be a good idea to let them work on these particular arrays.Keeping the documentation up-to-date One of the most frustratingmoments when using a system is to �nd out that the contents of man-ual is not in line with the system. Especially for users that just startedusing a system it is very important that the documentation actuallytells what the system does.Maintaining a change-log When a system gets larger, it gets more di�-cult to identify updates and new features. Users should have a way ofmaking sure if it is interesting to download a new version.76



Conclusions Experiments on data mining13.1.3 Debugging facilitiesHaving good debugging facilities helps users and maintainers in identifyingproblems and errors much earlier. It is always more informative to see anerror message such as `Tried to read beyond the end of a list' than just aplain `Segmentation fault'. The library provides an easy way of handlingerrors that for most checks only takes two lines of code. It is very importantfor the amount of development time that these checks keep getting built in.A good point on these checks is that when a system is running they takeup precious computing time. Although this can not be denied, two goodreasons block this argument. Firstly, the amount of time that was spent on�xing a system could have been spent on doing experiments if good checkswere built in, such that the error in the system was identi�ed much quicker.Secondly, it is much easier to remove checks, than it is to remove bugs.13.1.4 Di�culty of C++C++ is a strongly typed computer language, which means that the type ofan object will have to be known at compilation time. This helps speed upthe execution time of a program and it can also help in the prevention oferrors. The compiler can check if types are consistently used in the sourcecode. Because C++ is this strongly typed, it is not easy to build a librarythat is usable for every type, as soon as we want to introduce a variable wewill have to de�ne its type, making it impossible for a user of the library tochange it.To overcome this problem templates were introduced. These enable adeveloper to defer the exact type of some of the variables until a user wants touse the code. The user then has to specify the types of these variables. Thisworks very well with containers for instance. As containers only store things,it is not necessary to know anything about the functionality of a variable.But the problem of templates is that they will have to be compiled whenthe user has speci�ed the type of variable. This prevents the constructionof a life system, because without knowing the type of variables we can notproduce code.Templates are very popular in the construction of libraries, such as theStandard Template Library (stl). Most of the time they are easy to useand very e�cient, because they are compiled with the knowledge of the typeof variables. We will try to use templates in the library where suitable, butthe main goal will still be a running system.13.2 Experiments on data miningLooking at the results presented in Section 12.2, it is clear that we didnot produce a killer algorithm that beats all the competition. But this77



Conclusions Experiments on data miningwas not our primary goal. We wanted to construct a library and test itsusability on genetic programming. To observe if the gp, as constructed inthe experiment, actually worked, it was used in experiments on di�erentdata sets.Taking another look at the experiments on data mining, it is quite safeto say the gp and gp+saw did not perform all too bad. Although neitherone ever had the best results, they competed reasonably well with otheralgorithms in the 50/50 tests on the Proben1 data sets. On the Statlog datasets however, the performance varied widely, with a largest di�erence of 0.12measured between gp and the best algorithm on the credit cards data set.The worst di�erence measured between a gp and a gp+saw on the samedata set is 0.027. Showing that both algorithms have about the same perfor-mance on these data sets. Furthermore, gp+saw had a better performancethan gp in 4 of the 7 tests. An interesting point is the di�erence in perfor-mance on the di�erent encodings of the credit card data set. This di�erenceis smaller for gp+saw than for gp in both tests. the This could mean thatgp+saw is less sensitive to a di�erent encoding than gp.Because of the small di�erences in performance of both algorithms wecan not select one of the algorithms as being better than the other. However,the gp+saw seems to be les sensitive to di�erent encodings that gp.
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Chapter 14Future work14.1 On the library14.1.1 MaintenanceAs already discussed in the conclusions, the library will have to be contin-ually maintained. The �rst maintenance task is to clean up the library byremoving unnecessary code, adding more checks and by �nishing some ofthe interfaces.Another important issue is the amount of stl that is used in the library.As stl is getting more popular, and because it is very easy to use it willbe used more in the library. It is therefore a good idea to try to make useof the same syntax. This allows for easier use of the library, especially forthose already familiar to stl.One major point is the technical documentation, which is still not evenhalf �nished. Furthermore, the genetic programming package still has to bedocumented. But can better be delayed until the library has been cleanedup.14.1.2 Genetic programmingThe genetic programming algorithm has been constructed such that its partscan be easily reused. Of course it would be better if the whole packagewould be incorporated into the library. This would be a good test too seehow di�cult it is to incorporate new material into the library itself.The genetic programming package would be a good extension to thelibrary as it opens up a path to another �eld of evolutionary computation.As soon as it is in the library, work could start to extend this package,keeping it compatible with other parts of the library where possible. Thesyntactical restriction of functions that handle only one type of argumentshould be removed. Furthermore, other techniques and methods that haveproven successful in boosting performance should be included.79



Future work On data mining14.1.3 New implementation objectsEvery new object in the implementation layer makes the library more in-teresting. They provide the library with more functionality, as long as theobject is usable by other objects from the implementation layer.Sometimes it would be desirable to extend the abstract layer of thelibrary. A good example here might be repair operators. Although theylook as if they could easily be added as a kind of change operator, someof them could be doing a lot of exotic work. Maybe working on wholepopulations at once, or maybe even on multiple populations at once. Thereis no limitation to fantasy. Work has already begun on repair operators,and when they will be added to the library, the abstract layer will probablybe extended.14.2 On data miningOne interesting idea of handling a data mining problem is to use the co-evolutionary model. By using two populations, one for the rules and onethat holds the records from the data set, we can try a system such as theccs as described in Section 5.1. This would save a lot of computing powerwhen evaluating an individual, because the ltfe system only works on asubset of the data set. Instead of the normal procedure that calculates the�tness of an individual using the whole data set.A more straight forward method of research is to change the gp by ex-tending it with other function, atoms and terminal sets. It still lacks somebasic features, such as the possibility to use it for classifying data that hasmore than two classes. Other improvements could be possible by incor-porating more advanced genetic programming ideas, such as automaticallyde�ned functions, recursion and di�erent representations.
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Appendix AAddresses on the InternetCSP & EA http://www.wi.leidenuniv.nl/~jvhemert/csp-eaThis page contains the algorithms as described in Part 1. It contains alot of programs that were used for doing research on di�erent constraintsatisfaction problems. It also contains the problem instance generator usedin the experiments, called RandomCsp.DOC++ http://www.imaginator.com/doc++doc++ is the documentation tool that has been used for generating theLATEX and html based technical documentation. It is free for usage.Egcs http://egcs.cygnus.comThe Egcs compiler is used for the development of leap. It is free for down-loading and comes standard with most Linux distributions. Eventually itwill supersede the gnu g++ compiler. Egcs comes equipped with a goodimplementation of the Standard Template Library.LEAP http://www.wi.leidenuniv.nl/~jvhemert/leapFor downloading of the Library for Evolutionary Algorithm Programmingwe point you to this page. It also o�ers the complete documentation inPostscript and html format, and it has an online version of the html doc-umentation.Proben1 ftp://ftp.ira.uka.deas/pub/neuron/proben1.tar.gzProben1 consists of twelve learning problems using real data. Along withthe data comes a technical report describing a set of rules and conventionsfor performing and reporting benchmark tests and their results.82



Statlog http://www.ncc.up.pt/liacc/ML/statlogThe project Statlog o�ers data sets that were used in research on machinelearning. The data sets are all accompanied with test results and a detaileddescription of the data and the experiments.STL http://www.sgi.com/Technology/STLThis is the main site for the Standard Template Library as developed bySilicon Graphics. Beside good documentation about its contents, it o�erslinks to many other informative pages as well.
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