
D.F.R. van ArkelAnnotated TypesA System for Constrained Datatypes in Functional Languages

Leiden April 1998

Contents1 Motivation 22 Conventional Typing 33 Annotated Typing 64 Uni�cation of Annotated Types 94.1 Uni�cation of annotated type constructors . 94.2 Uni�cation of a type variable with a type constructor 104.3 Uni�cation of a type constructor with a type variable 114.4 Complete algorithm . 114.5 Uni�cation properties . 125 Algorithm W 136 Typing rewrite rules 177 Typing Simple Clean 188 Examples 199 Conclusion 21We examine the use of user-de�ned type annotations combined with an extended typesystem to e�ciently enforce datatype constraints. Examples of the type of constraintwe have in mind are lists which are sorted and trees which are balanced. The aimis to provide language support for enforcing these constraints such that only a smallnumber of functions need to be manually veri�ed, general functions can be applied tothe constrained datatype, multiple simultaneous constraints can be easily handled andpattern matching is possible with constrained datatypes.We �rst examine the motivation for this extension of the type system. Section two givesa short summary of classical typing. Section three introduces annotated types. Sectionfour describes uni�cation in the presence of annotations. Section �ve gives a typingalgorithm for annotated types along the lines of Milner's algorithm. It also gives sometheoretical results for this algorithm. Next we extend this algorithm from expressions torewrite rules and then to a complete functional language. Finally we give some examplesand then conclude.

1

1 MotivationThis thesis examines the use of user de�ned annotations combined with a classical Hindley-Milner[Hindley69, Milner78] style type system to e�ciently enforce datatype constraints. Examples of thetype of constraints we have in mind are lists which are sorted and trees which are balanced.We would like language support for enforcing constraints on datatypes subject to the followingrequirements:� only require manual veri�cation of constraints for a small number of functions� allow application of general (unconstrained) functions to the constrained datatype, i.e. map isde�ned for plain lists, we would like to also be able to apply map to sorted lists� we want to allow multiple constraints in parallel, i.e. sorted and non-empty lists� we want to be able to use pattern matching with constrained datatypesUsing the plain type does not enforce the constraint thus requiring manual constraint checking ofall functions where the constrained datatype occurs.Using an ADT guarantees constraint satisfaction when the programmer shows the correctness ofthe signature and it does this without runtime costs but that only satis�es the �rst requirement.Special wrapper functions (which do add runtime cost) need to be written for each general functionthat we want to use with the constrained datatype, multiple constraints require new ADT's for eachcombination of constraints and pattern matching is not possible [BurtCam93].We want to maintain the good qualities of ADT's and add our remaining requirements. User de�nedannotations provide this [Koopman96a, Koopman96b, Koopman96c]. They form a simple subtypesystem giving an e�ective solution.We use curly brackets to indicate annotations, i.e.take :: Num fSg[t]! fSg[t]would be the signature for a take function operating on sorted lists (if we assume S to be theannotation for sortedness and [t] to be the constructor for lists of t).But we want more. The same take function if applied to a plain list would yield a plain list as resulttake :: Num [t] ! [t]:To express this form of type polymorphism we introduce annotation variables allowing us to statethe signature of take astake :: Num fs : Sg[t] ! fs : Sg[t]concisely expressing the characteristics of the take function.
2

2 Conventional TypingThis presentation of conventional typing is taken from [BarSmets95].We investigate typing for the following formal language:E ::= x j F(E1; : : : ; Ek) j let x = E1 in E2 j �x[E]where x ranges over term variables and F over a set of symbols with �xed arity. We will use thenotation ~E as shorthand for (E1; : : : ; Ek).Ordinary sharing can be expressed using a let construct and direct cyclic dependencies with �.Thus the expressionlet x = 0 in �z[F(Cons(x;G(x; z)))]denotes the graphF?Cons�	0 @RGI Y
Given a set of type variables V and a set of type constructors C then types T are recursively de�nedby: � ::= � j �1 ! �2 j C~�where � ranges over type variables V , C over type constructorsC,! is the standard type constructorfor functions and ~� stands for (�1; : : : ; �k). We will use �; �1; : : : ; �i; �; �1; : : : ; �i to indicate arbitrarytypes.Type Environment E supplies types for symbols, that is it contains declarationsF : ~�� �This includes both function symbols and data constructor symbols. We use ~�� � as shorthand for(�1; �2; : : : ; �k) ! � .We use the notation E(f) = ~�� � if f : ~�� � in E .Basis B: a �nite set of variable declarations of the form x : � .We use the notation B(x) = � if x : � in B and B[x : �] = [x1 : �1; : : : ; xk : �k; x : �] if B = [x1 :�1; : : : ; xk : �k].A substitution � is a mapping from type variables to types, written as [�1 : �1; : : :], [] is the emptysubstitution. �(�) = � if � : � in �. Uniform substitution, written as �� , is de�ned as follows:�� = � if �(�) = �= � otherwise�(� ! �) = �� ! ���C(�1; : : : ; �k) = C(��1; : : : ; ��k) 3

We de�ne substitution composition ��0 as ��0� = �(�0�).We say that � is idempotent if �� = � which is to say that if �� = � , then �� = � .This system deals with statements of the formB `E E : �with the interpretation that given a basis B we can derive that expression E has type � using typeenvironment E . Such a statement is valid if it can be produced by the following derivation rules:(variable)B(x) = � `E x : �B `E ~E : ~� E ` F : ~�� � (application)B `E F ~E : �B `E E1 : �1 B[x : �1] `E E2 : �2 (sharing)B `E let x = E1 in E2 : �2B[x : �] `E E : � (cycle)B `E �x[E] : �Due to the separation of the speci�cations of rewrite rules and algebraic types from their applicationswe need a mechanism to deal with di�erent occurences of symbols. This is called instantiation andis handled by the next two rules: (instantiation)E(F) = ~�� � ` F : ~�� �E ` F : ~�� � (substitution)E ` F : �~�� ��where � is an idempotent substitution.A term is called algebraic if it is built up from data constructors and variables only, using application.FV(E) denotes the set of free variables occuring in expression E:FV(x) = fxgFV(F(E1; : : : ; Ek)) = Ski=1FV(Ei)FV(let x = E1 in E2) = FV(E1) [FV(E2) n xFV(�x[E]) = FV(E) n xOperations on terms are de�ned using rewrite rules of the formF(A1; : : : ; Ak) ! E;where FV(E) � FV(~A), and the Ai are algebraic expressions. Following standard practice infunctional languages such as Clean [PlasEek97] only left-linear rewrite rules are considered i.e. rulesin which each variable occurs at most once in the left-hand side. For exampleAppend(Cons(h; t); l) ! Cons(h;Append(t; l)): 4

The rewrite semantics of expressions (according to some set R of rules) is de�ned as usual. ByE �R E0 we denote that E rewrites to E0 in zero or more steps.We say that E is R-ok if for each ruleF(A1; : : : ; Ak) ! E;say with E containing F : (�1; : : : ; �k)� � one has for some BB `E A1 : �1; : : : ; B `E Ak : �k ; B `E E : �:For example if E containsAppend : ([s]; [s])� [s]Cons : (s; [s])� [s]and for BB(h) = sB(t) = [s]B(l) = [s]then the example rule above is R-ok.The following two theorems give the two main properties for classical typing. Proofs can be foundin [Barendsen95].The �rst states that typing is preserved during reduction.Theorem 1 (subject reduction property).B `E E : �E �R E0E is R-ok 9>=>;) B `E E0 : �The second states that each typeable expression E has a type from which all other types for E canbe obtained by instantiation.Theorem 2 (principal type property). Suppose E is typeable. Then there exist B0; �0 such thatfor any B and �B `E E : �) B � �B0; � = ��0for some substitution �.
5

3 Annotated TypingIn order to distinguish the rules for annotated typing from those for ordinary typing we use . insteadof ` and prime the names of the rules.Given a set of type variables V , a set of type constructors C and a set of type annotations A thenthe annotated types TA are recursively de�ned by:� ::= � j �1 ! �2 j hC;Ai~�where � ranges over type variables V and C over type constructors C. A = fa : A; : : : g where aranges over 0, 1 and annotation variables. A ranges over annotation symbols.We use the annotation symbol to indicate the type of constraint, for example S for sorted and Nfor non-empty lists. 0 indicates that the constraint is not (known to be) present, 1 indicates thatthe constraint is present and annotation variables are used to indicate type polymorphism. If weuse fAg[�] as notation for hList; Ai� thenTail : f1 : N; s : Sg[�]� fs : Sg[�]indicates that Tail is a function that takes a list of � and produces a list of �, and the argumentlist should be non-empty f1 : Ng and furthermore that if the argument is sorted then the result issorted. Thus Tail preserves the sortedness constraint if it is present.We assume that if for a particular annotation A no annotation is given, then 0 : A is implied.We de�ne the operation j�j to �nd the underlying (unannotated) type as follows:j�j = �j�1 ! �2j = j�1j ! j�2jjhC;Ai(�1; : : : ; �k)j = C(j�1j; : : : ; j�k j)Annotations induce a subtype relation on types. For example if trees can have annotations S andB for sorted and balanced trees respectively then we get the following partial order:Tree t��	 @@RfSgTree t@@R fBgTree t��	fS;BgTree tThe subtype (�) relation on annotated types:(id)� � �~� � ~�0 A0 � A (subtype)hC;Ai~� � hC;A0i~�0�1 � �01 : : : �k � �0k (vector)~� � ~�0 6

�0 � � � � � 0 (contravariant)� ! � � �0 ! � 0� on annotation sets is de�ned component-wise where � on annotations:0 : A � 1 : A0 : A � v : Av : A � 1 : A0 : A � 0 : A1 : A � 1 : Av : A � v : AWith annotated types the variable, application and sharing rules remain the same. The cycle ruleon the other hand needs to be modi�ed giving:B[x : �] .E E : � � � � (cycle0)B .E �x[E] : �We only need this modi�cation for technical reasons in our typing algorithm which follows later.Note that if we restrict this to underlying types it is equivalent to the original rule.A substitution now consists of two parts. One being the underlying substitution which is the classicalsubstitution given before but now extended to be a mapping from type variables to annotatedtypes. The other being the annotation substitution which is a mapping from annotation variablesto annotations. We use the notation j�j for the underlying substitution and �A for the annotationsubstitution parts of �. Uniform substitution is now de�ned as follows:�� = � if j�j(�) = �= � otherwise�(� ! �) = �� ! ���hC;Ai(�1; : : : ; �k) = hC;A0i(��1; : : : ; ��k)where A0 = fa0 : A j a : A 2 A ^ a 7! a0 2 �Ag [fa : A j a : A 2 A ^ a 62 Dom(�A)g. Thiscorresponds with replacing annotation variables given in the mapping with their replacements andleaving all other annotations intact.We de�ne Dom(�A) = fa j a 7! a0 2 �AgThe new form of substitution means that although the substitution rule still looks exactly thesame: E ` F : ~�� � (substitution0)E ` F : �~�� ��it now has a broader interpretation.For example givenF : (fa : AgC(: : :); fa : AgC(: : :))� fa : AgC(: : :)then one can always useF : (f0 : AgC(: : :); f0 : AgC(: : :))� f0 : AgC(: : :)and F : (f1 : AgC(: : :); f1 : AgC(: : :))� f1 : AgC(: : :) 7

Besides the modi�ed interpretation of the substitution rule we also need an extra instantiation rule:E ` F : ~�� � �0i � �i (weakening0)E ` F : ~�0 � �This allows weakening of the argument type required for function applications. Intuitively it re�ectsthe fact that one may always reduce the type of accepted arguments for a function to an instanceof the most general type allowed i.e. for the example above this means that we may also useF : (f0 : AgC(: : :); f1 : AgC(: : :))� f0 : AgC(: : :)and F : (f1 : AgC(: : :); f0 : AgC(: : :))� f0 : AgC(: : :)We do not need a similar rule for the result type since that wil occur as an argument elsewhere andcan be weakened if necessary then.Summary of the derivation rules for annotated types:(variable0)B(x) = � .E x : �B .E ~E : ~� E ` F : ~�� � (application0)B .E F ~E : �B .E E1 : �1 B[x : �1] .E E2 : �2 (sharing0)B .E let x = E1 in E2 : �2B[x : �] .E E : � � � � (cycle0)B .E �x[E] : �Summary of the instantiation rules for annotated types:(instantiation0)E(F) = ~�� � ` F : ~�� �E ` F : ~�� � (substitution0)E ` F : �~�� ��where � is an idempotent substitution.E ` F : ~�� � �0i � �i (weakening0)E ` F : ~�0 � �
8

4 Uni�cation of Annotated TypesThe next step is to de�ne uni�cation in the presence of annotations. This is done in such a way thatfor the underlying types it is equivalent to Robinson uni�cation U [Robinson65, Robinson71].Unfortunately we do not retain all the properties of Robinson uni�cation, whereas Robinson uni�-cation is symmetric in its two arguments annotated uni�cation cannot be. For example succesfuluni�cation of a sorted list with a plain list depends on which one is the expected type and whichone is the actual type.E(f) = ([�])� �B(v) = f1 : Sg[�] � =) f(v) : �whereasE(f) = (f1 : Sg[�])� �B(v) = [�] � =) Fail, no type can be derived for f(v):Therefore we will de�ne uni�cation such that it di�erentiates between its two arguments, takingthe �rst to be the expected argument and the second to be the actual argument. Furthermore, ifuni�cation succeeds then the actual argument wil be a subtype of the expected argument.4.1 Uni�cation of annotated type constructorsWe start by examining uni�cation of two annotated type constructors. GivenE(f) = (fs : Sg[�])� fs : Sg[�]then we wantB(v) = f1 : Sg[�] =) f(v) : f1 : Sg[�]B(v) = f0 : Sg[�] =) f(v) : f0 : Sg[�]B(v) = ft : Sg[�] =) f(v) : ft : Sg[�]This seems to indicate that we can always substitute the actual annotation for the annotationvariable in the expected argument but it is not quite that simple. GivenE(f) = (fs : Sg[�]; fs : Sg[�])� fs : Sg[�]and B(v) = f1 : Sg[�]then we wantB(w) = f1 : Sg[�] =) f(v; w) : f1 : Sg[�]B(w) = f0 : Sg[�] =) f(v; w) : f0 : Sg[�]B(w) = ft : Sg[�] =) f(v; w) : ft : Sg[�]but ifB(v) = f0 : Sg[�]then we wantB(w) = f1 : Sg[�] =) f(v; w) : f0 : Sg[�]B(w) = f0 : Sg[�] =) f(v; w) : f0 : Sg[�]B(w) = ft : Sg[�] =) f(v; w) : f0 : Sg[�] 9

and ifB(v) = ft : Sg[�]then we wantB(w) = f1 : Sg[�] =) f(v; w) : ft : Sg[�]B(w) = f0 : Sg[�] =) f(v; w) : f0 : Sg[�]B(w) = fu : Sg[�] =) f(v; w) : fu : Sg[�]where in the �nal case we require that u and t are identi�ed with each other.Thus if the expected argument has annotation 0 we can ignore the actual annotation. If the expectedargument has an annotation 1 then if the actual annotation is 0 uni�cation fails, if it is 1 uni�cationsucceeds and if it is a variable v then uni�cation succeeds with v 7! 1 in the resulting substitution. Ifthe expected argument has annotation v then if the actual annotation is 0 then uni�cation succeedswith v 7! 0 in the resulting substitution. If the actual annotation is a variable w then uni�cationsucceeds with v 7! w in the resulting substitution and if the actual annotation is 1 then uni�cationsucceeds without any addition to the resulting substitution.expectednactual 0 � 10 X X X� X(� 7! 0) X(� 7! �) X1 � X(� 7! 1) X4.2 Uni�cation of a type variable with a type constructorThe next issue arises when unifying a type variable with an annotated type constructor. We �rstlook at the case when the type variable occurs in the expected argument.E(f) = (�)� �B(v) = hC;Ai�Initially we would expect that f(v) : hC;Ai�, but things are not that simple. To demonstrate thiswe extend the example:E(f) = (�; �)� �B(v) = hC;A1i�1B(w) = hC;A2i�2Now we would expect that f(v) : hC;A1i�1 � hC;A1i�1 and to proceed with uni�cation from there.When we give concrete types for v and w the problem shows itselfB(v) = f1 : Sg[Num]B(w) = f0 : Sg[Num]then f(v) : f1 : Sg[Num]� f1 : Sg[Num] and uni�cation for f(v; w) fails.This leads us to propose the following rule for the single argument case: f(v) : hC;A0i�0 providedthat � 62 Var(�), otherwise uni�cation fails, and hC;Ai� � hC;A0i�0.Here Var is a utility function giving the set of type variables in a type as follows:Var(�) = �Var(� ! �) = Var(�) [Var (�)Var(hC;Ai~�) = Var(~�)Var((�1; : : : ; �k)) = Ski=1 Var (�i) : 10

For the two argument case we propose: f(v; w) : hC;A0i�0 provided that � 62 Var(�1) and � 62Var(�2) with hC;A1i�1 � hC;A0i�0 and hC;A2i�2 � hC;A0i�0.This leads to the rule that if an annotation has value 0 in A1 then it has value 0 in an initialsubstitution for �. Similarly a value of v is retained but a value of 1 is modeled by a fresh annotationvariable w in the initial substitution for �. Then in the next step this initial substitution for � isuni�ed with hC;A2i�2 as described earlier.4.3 Uni�cation of a type constructor with a type variableNext we look at the case when the type variable occurs in the actual argument.E(f) = (hC;A1i�1; hC;A2i�2)� �B(v) = �B(w) = �then f(v; w) : � and � : hC;A0i�0 where hC;A0i�0 � hC;A1i�1 and hC;A0i�0 � hC;A2i�2.This leads to the rule that if an annotation has value 0 in A1 then it is modeled by a fresh annotationvariable w in an initial substitution for �. Otherwise if an annotation has a value of v or 1 thenthat value is retained in the initial substitution for �. In the next step this initial substitution for� is uni�ed with hC;A2i�2 as described earlier.Further examination reveals that both these cases are equivalent to initially assuming a substitutionfor � where each annotation has a fresh annotation variable as value.4.4 Complete algorithmWe now present the complete uni�cation algorithm with �rst the expected argument and then theactual argument re�ecting unify(exp,act). The algorithm returns the substitution required to unifyits two arguments and if this is not possible it returns FAIL.unify(�; �) = []unify(�; �) = [� : �]unify(�; �1 ! �2) = [� : ��1 ! ��2] if � 62 Var(�1 ! �2)where �1; �2 fresh and � = unify((�1; �2); (�1; �2))= FAIL otherwiseunify(�; hC;Ai~�) = unify(hC;A0i~�0; hC;Ai~�) if � 62 Var(~�)where ~�0 fresh and A0 = copy(A)= FAIL otherwiseunify(�1 ! �2; �) = [� : ��1 ! ��2] if � 62 Var(�1 ! �2)where �1; �2 fresh and � = unify((�1; �2); (�1; �2))= FAIL otherwiseunify(�1 ! �2; �01 ! �02) = unify((�1; �2); (�01; �02))unify(�1 ! �2; hC;Ai~�) = FAILunify(hC;Ai~�; �) = unify(hC;Ai~�; hC;A0i~�0) if � 62 Var(~�)where ~�0 fresh and A0 = copy(A)= FAIL otherwiseunify(hC;Ai~�; �1 ! �2) = FAIL 11

unify(hC;Ai~�; hC;A0i~�0) = �0�where � = anunify(A;A0)and �0 = unify(�~�; �~�0)unify(hC;Ai~�; hC0;A0i~�0) = FAILunify((�1; �2; : : : ; �k); (�01; �02; : : : ; �0k)) = �0�where � = unify(�1; �01)and �0 = unify((��2; : : : ; ��k); (��02; : : : ; ��0k))Anunify carries out the actual annotation uni�cation in accordance with the tabel given on page 10and copy is a function that copies the annotations but with fresh annotation variables as values.We should really pass a third argument and return a tuple as result to make the passing of the freshvariable supply explicit. The modi�cations required are obvious and not given here.4.5 Uni�cation propertiesWe now proceed to the properties of our uni�cation algorithm.Theorem 3. If unify(�; �) = � then � is idempotent.Proof. This is a direct consequence of the fact that we avoid introducing direct circularities and insubstitution compositions �0� the variables which fall in the range of substitution � are substitutedaway in the expressions whose uni�cation resulted in �0 and thus cannot occur as a result of applyingthat substitution.The next theorem states that when types are restricted to their underlying unannotated variantsunify and U are equivalent. The proof remains future work since that would require a completeformal presentation of U .Hypothesis 4.unify(�; �) = �U(j�j; j� j) = �0 � =) � j��j = �0j�jj�� j = �0j� jThe �nal theorem states that unify satis�es our original requirement that if uni�cation succeedsthen the actual argument is a subtype of the expected argument.Theorem 5. If unify(�; �) = � then j��j = j�� j and �� � ��Proof. The �rst part follows directly from the previous theorem combined with the standard resultfor U that U(�; �) = � =) �� = �� . The second part directly follows from the style of annotationuni�cation chosen.
12

5 Algorithm WWe now present the complete typing algorithm for expressions with annotated types in the style ofMilner's algorithm W . It takes a four-tuple (F;B;E; e) as argument where F is the supply of freshtype and annotation variables, B is the current basis, E is the environment and e is the expressionto be typed. It then returns a three-tupel (F 0; �; �) where F 0 is the partially depleted fresh variablesupply, � is a substitution and � is a type. The intended result now is that ifW(F;B;E; e) = (F 0; �; �)then the judgement�B;E . e : ��is valid.W : (F;B;E; e)� (F 0; �; �)W(F;B;E; e) = case e ofx) let� = B(x)in (F; fg; �)f~e) let(~�� �; F 0) = instantiate(E(f); F)(F 00; �; ~�0) = W(F 0; B;E;~e)(F 000; �0) = unify(F 00; �~�; ~�0)in (F 000; �0�; �)let x = e1 in e2) let(F 0; �; �) = W(F;B;E; e1)B0 = B[x : �](F 00; �0; �) = W(F 0; B0; E; e2)in (F 00; �0�; �)�x[e]) let(�; F 0) = fresh(F)(F 00; �; �) = W(F 0; B[x : �]; E; e)(F 000; �0) = unify(F 00; ��; ��)in (F 000; �0�; �)(e; ~e)) let(F 0; �; �) = W(F;B;E; e)(F 00; �0; ~�) =W(F 0; B;E;~e)in (F 00; �0�; (�; ~�))Here fresh is a function that returns a fresh type variable from the fresh variable supply. Instantiateis a function that takes a type and a fresh variable supply and returns a duplicate of the type butwith fresh type and annotation variables and the depleted fresh variable supply.This algorithm is a direct implementation of the typing rules given and directly compares to itsclassical counterpart. All the real work involving annotations is taken care of in the uni�cationalgorithm.We now proceed to a few formal results for our algorithm. The �rst lemma states that the subtyperelationship is maintained under substitution.Lemma 1.8� : � � � =) �� � ��
13

Proof. with induction to the structure of types. Note that � � � implies that j�j = j� j.� = � = �:then �� = �� = � if � : � in � otherwise �� = �� = �. In either case �� � �� according tothe id rule.� = �! �0 and � = � ! �0:then �� = �� ! ��0 and �� = �� ! ��0. Since � � � then � � � and �0 � �0. Applyinginduction we �nd that �� � �� and ��0 � ��0. Applying the contravariant rule for function typeswe �nd that ��! ��0 � �� ! ��0 resulting in �� � �� .� = hC;A�i~� and � = hC;A� i~� 0 :then �� = hC;A0�i�~� and �� = hC;A0� i�~� 0. Now �~� � �~� 0 according to the inductionhypothesis. It remains to be shown that A� � A� =) A0� � A0� which a simple case analysisshows to be true.The second lemma states that if we apply a substitution on an entire type inference it remains valid.Lemma 2.8� : B .E e : � =) �B .E e : ��Proof. We use induction on the structure of the inference.Basis:For the variable0 rule this is trivial.Induction:If the application0 rule was applied then we know that B .E ~e : ~�0, E ` f : ~� ! � and �i � �0i.Applying induction on B .E ~e : ~�0 allows us to conclude that �B .E ~e : �~�0. With the substitutionrule we conclude from E ` f : ~� ! � that E ` f : �~� ! �� . Now we apply lemma 1 to �i � �0i giving��i � ��0i. Finally we can combine these three results with application0 to give �B .E f~e : �� .sharing0: then we know that B .E e1 : �1 and B; x : �1 .E e2 : �2. From B .E e1 : �1 according toinduction �B .E e1 : ��1. And also from B; x : �1 .E e2 : �2 according to induction �B; x : ��1 .E e2 :��2. Applying sharing0 gives �B .E let x = e1 in e2 : ��2cycle0: then we know B; x : �.E e : � and � � � . Applying induction on the �rst and the �rst lemmaon the second item gives �B; x : �� .E e : �� and �� � �� . Finally with cycle0: �B .E �x[e] : ��With the aid of the previous two lemmas we are now able to prove the correctness of the typingalgorithm with respect to the inference rules.Theorem 6 (W is correct). If W(F;B; E ; e) = (F 0; �; �) then �B; E . e : ��Proof. We use induction on the structure of the expression e.W(F;B; E ; x): the algorithm gives (F; fg; B(x)) which can be directly emulated by a single applica-tion of the variable0 rule. 14

W(F;B; E ; f~e): from the induction hypothesis we �nd that �B .E ~e : �~�0. The second lemma allowsthe conclusion �0�B .~e : �0�~�0. The substitution rule allows E ` f : �0�~�� �0�� . The �rst lemmaallows �0��i � �0��0i which together with the observation that �0�0 = �0 (since �0 is idempotent) gives�0�0��i � �0��0i. Now we can use the application0 rule to conclude that �0�B .E f~e : �0�0�� , againusing �0�0 = �0 this gives the desired result that �0�B .E f~e : �0��W(F;B; E ; let x = e1 in e2): from the induction hypothesis we �nd that B; E . e1 : � and B; x :� . e2 : �. Application of the sharing0 rule allows us to conclude that B; E . let x = e1 in e2 : � asrequired.W(F;B; E ; �x[e]): from the induction hypothesis we �nd that �B[x : ��] .E e : �� . Application ofthe second lemma and the cycle0 rule gives the desired result.Finally we would like a theorem stating that principal types exist for annotated types and thatW derives these. For the underlying types this is clear since both the typing and the uni�cationalgorithm are equivalent to their classical counterparts for underlying types. It is as yet unclear ifit is also valid for annotated types and this remains for future investigation.Hypothesis 7 (W approximates principal types). If B; E . e : � and F \ FV(B) = ? thenthere is a substitution � such that W(F;B0; E ; e) = (F 0; �; � 0) with B � ��B0 and � = ��� 0.With respect to the subject reduction property this remains valid for the underlying types but notfor the annotations. For example given a sort function that sorts lists then Sort [3; 2] with typef1 : Sg[Num] reduces to [2; 3] with type f0 : Sg[Num]. However this is no worse than the problemsthat occur with type synonyms and abstract data types. In an ADT the derived type after somereductions can be completely di�erent from the original type whereas with annotations only someof the annotations can be lost. For example with the following ADT for sorted listsdefinition module slist:: Slist tnew :: Slist thead :: (Slist t) -> ttail :: (Slist t) -> Slist tinsert :: t (Slist t) -> Slist tisEmpty :: (Slist t) -> Booland the following possible implementationimplementation module slist:: Slist t :== [t]new :: Slist tnew = []...then the expression new has type Slist t whereas its reduct [] will be assigned type [t]. 15

Thus we can conclude the following properties for the annotated type system:� The principal type property remains valid for the underlying unannotated types.� The subject reduction property remains valid for the underlying unannotated types, but notfor the annotations.� If we ignore the presence of annotations we retain the classical Hindley-Milner type system.

16

6 Typing rewrite rulesWith this algorithm for expression typing we can develop a system to typecheck rewrite rules. Recallthat these have the formF(A1; : : : ; Ak) ! Eand that if E(F) = (�1; : : : ; �k) � � we require that B `E A1 : �1; : : : ; B `E Ak : �k; B `E E : �for some B. Furthermore recall that we require that FV(E) � FV(~A) and that each free variableoccurs only once in the left hand side. To type a rewrite rule we �rst type ~A with an initial basis inwhich the free variables receive a free type variable. Then we type the right hand side expression Ewith the resulting basis.Rather than requiring equality between the type inferred for the rule and the type found in theenvironment we relax this to requiring that the environment type for each of the arguments is asubtype of the inferred type and that the inferred type of the result is a subtype of the environmenttype. This is applied in turn to each of the rule alternatives.With respect to the environment we need to distinguish between the environment for typing thepattern and for typing the right hand side expression. A good example of why this is useful is thelist constructor. In the pattern we can assign it a type of (�; fs : Sg[�]) � fs : Sg[�] but in theright hand side expression it has type (�; [�])� [�]. We can then infer that Tail(Cons(h; t)) ! thas type (fs : Sg[�])� fs : Sg[�] whereas Construct(h; t) ! Cons(h; t) has type (�; [�])� [�].The extension of this system with currying and higher-order functions can be done as described inBarendsen [Barendsen95]. The idea is to associate with each function symbol F of non-zero arity(say n) a number of so-called Curry variants of arity 0; 1; : : : ; n� 1 respectively. Next we add rulesfor the special function symbol Ap statingAp(F0; x1) ! F1(x1)Ap(F1(x1); x2) ! F2(x1; x2)...Ap(Fn�1(x1; : : : ; xn�1); xn) ! F(x1; : : : ; xn)Now we can simulate higher order functions as follows. Say we want to model the function G(x) =�y:F(x; y) then given a ruleF(x; y) ! � � �then the application F1(x) exactly stands for the required �y:F(x; y)

17

7 Typing Simple CleanWe have used this system as the basis for a typesystem for a simple subset of Clean extendedwith notations for annotations. This simple Clean di�ers from Clean in that there is no overload-ing, strictness, uniqueness, user-de�ned operators, guards, records, local function de�nitions or listcomprehensions. For the rest they have the same syntax.The typesystem for this language uses the system given for rewrite rules to type the various rulesin the source with a few extra additions. These are:Function types If a type for a function is given then that is taken to be the environment type.For each rule alternative the given type for each of the arguments has to be a subtype or aninstance of the inferred type. The opposite applies for the result type.If no type is given then the inferred type of the �rst rule alternative is used as the environmenttype for the other alternatives. This last approach is clearly a crude approximation whichwould bene�t from further work.Function type assertions Besides the usual �e :: � ! � we have added �e :! � ! � for those caseswhere the annotations of the result type � cannot be inferred. For example a sort function onlists would have a sorted list as result type, this cannot be inferred by the typechecker so afunction type assertion is required. The typechecker then checks the argument types as usualand restricts itself to checking the underlying type for the result.Constructor and destructor type assertions These are for giving annotated types for the data-type constructors. Normally datatype constructors implicitly receive a type when they areintroduced.List t = Nil // gives type Nil :: List t| Cons t (List t) // gives type Cons :: t (List t) -> List tNow we want a method of introducing annotations to the datatypes produced by constructors.For example Cons always produces a list that is non-empty and we might want to add anannotation for that. But as we have seen above we also want to introduce di�erent types forapplications of datatype constructors in the pattern and in the right hand side expression. Weuse the notation :<: to introduce types for constructor applications in patterns and :>: forconstructor applications in the right hand side expression. For exampleNil :>: {1:S}List t // the empty list is always sortedCons :>: t (List t) -> {1:N}List t // the constructed list is never emptyThe advantage here is that we only need to give these constructor properties once instead ofneeding to explicitly specify them at every application.With respect to the syntax we have used the usual Clean syntax with the extensions given above.Note that where clauses are used to introduce sharing and cycles.
18

8 ExamplesWe now present a few examples showing how type annotations can be used.::List t = Nil | Cons t (List t)::Num = Zero | Succ Num// we use the following annotations for lists :-// N: non-empty// S: sorted// E: even length// O: odd lengthNil :<: {1:S,1:E}[t]Nil :>: {1:S,1:E}[t]Cons :<: t {s:S,o:O,e:E}[t] -> {1:N,s:S,e:O,o:E}[t]Cons :>: t {o:O,e:E}[t] -> {1:N,e:O,o:E}[t]Note how Cons exchanges the annotations for odd and even length lists.Head :: {1:N}[a] -> a// we can only take the head of a non-empty listHead (Cons h t) = hThe di�erence with the normal Head is that our type system now ensures that Head is only applied tonon-empty lists. Thus there can be no runtime errors, but only programs for which the typecheckercan determine that this is always the case are accepted.Tail :: {1:N,s:S,o:O,e:E}[a] -> {s:S,e:O,o:E}[a]// the tail of a list is still sorted if the whole list is sortedTail (Cons h t) = tMap :: (a->b) {n:N,o:O,e:E}[a] -> {n:N,o:O,e:E}[b]// map maintains all annotations except sortednessMap f Nil = NilMap f (Cons h t) = Cons (f h) (Map f t)Take :: Num {s:S}[t] -> {s:S}[t]// take maintains sortednessTake Zero _ = NilTake (Succ n) (Cons h t) = Cons h (Take n t)Take _ _ = Nil
19

Append :: [t] [t] -> [t]Append Nil l = lAppend (Cons h t) l = Cons h (Append t l)We would like :: {n1:N}[t] {n2:N}[t] -> {n1 v n2:N}[t] but this is something our currentsystem cannot handle. Similarly for the length annotations we would like an AND condition:{o1:O,e1:E}[t] {o2:O,e2:E}[t] -> {(o1&e2)v(e1&o2):O,(e1&e2)v(o1&o2):E}[t]Insert :! a {s:S,o:O,e:E}[a] -> {1:N,s:S,e:O,o:E}[a]// we have to assert that insertion maintains sortednessInsert e Nil = Cons e NilInsert e (Cons h t) = If (e <= h) (Cons e (Cons h t)) (Cons h (Insert e t))Sort :: {n:N,o:O,e:E}[a] -> {1:S,n:N,o:O,e:E}[a]Sort Nil = NilSort (Cons h t) = Insert h (Sort t)We can give the type for sort without an assertion, the typing algorithm correctly checks this itself.Unfortunately it is not able to derive this type correctly from the rule alternatives given. Thisis due to the second rule alternative which is recursive. The typechecker still correctly �nds theunderlying type but is unable to correctly identify the annotations for odd and even length betweenthe argument and the result.

20

9 ConclusionThis approach has given promising early results. We have succesfully added simple subtypes toa simple functional language through the use of annotations. This has given us language supportfor enforcing datatype constraints in such a manner that it satis�es all our requirements. We onlyneed to manually check functions de�ned with a type assertion and the datatypes for which wehave constructor and/or destructor type assertions. General functions are directly applicable toconstrained datatypes. As seen in the examples multiple constraints are trivial to use requiring nomore work than a single constraint and pattern matching of constrained datatypes is possible.The nice qualities of the classical type system have been maintained over the underlying types. Theprincipal type property is still valid over the underlying types as is subject reduction. If we ignorethe presence of annotations we retain the classical Hindley-Milner type system.More practical experience is needed to see how well this extended system combines with the fullClean language in real world programs.For further research:Overloading of plain functions with optimised annotated variants, i.e. the minimum of a sorted listis always the head. Here as with other forms of overloading it is the programmers responsibility toensure that overloaded forms perform the same function. It would be a rather unfortunate situationif the overloaded form of a function produced a di�ering result from the plain function given thesame arguments.The interaction of annotations with typeclasses needs to be investigated. A precursory examinationseems to indicate no problems. Also the interaction with other standard extensions to the typesystem such as strictness and uniqueness annotations should be examined.

21

References[Barendsen95] E. Barendsen (1995) Types and Computations in Lambda Calculi and GraphRewrite Systems. Ph.D. Thesis, University of Nijmegen, The Netherlands.[BarSmets95] E. Barendsen and J.E.W. Smetsers (1995) A Derivation System for Unique-ness Typing. Proc. of Joint COMPUGRAPH/SEMAGRAPH Workshop on GraphRewriting and Computation (SEGRAGRA '95), Volterra (Pisa), Italy, 151�158.ed. Corradini and Montaneri, Elsevier, Electronic Notes in Theoretical ComputerScience.[BurtCam93] W.F. Burton and R.D. Cameron (1993) Pattern matching with abstract datatypes.J. Functional Programming, 3, (2), 171�190.[Hindley69] J.R. Hindley (1969) The principal type scheme of an object in combinatory logic.Trans. American Mathematical Society, 146, 29�60.[Koopman96a] P. Koopman (1996) Constrained data types. Technical Report 96-36, ComputerScience, Leiden University, The Netherlands.[Koopman96b] P. Koopman (1996) Language Support to Enforce Constraints on Data Types.Technical Report 96-37, Computer Science, Leiden University, The Netherlands.[Koopman96c] P. Koopman (1996) Constrained data types. in Dagstuhl Seminar Report 156,Spetember 1996.[Milner78] R.A. Milner (1978) Theory of type polymorphism in programming. J. Computerand System Sciences, 17, (3), 348�375.[PlasEek97] M.J. Plasmeijer and M.J.C.D. van Eekelen (1997) Concurrent Clean 1.2 LanguageReference Manual. http://www.cs.kun.nl/�clean.[Robinson65] J.A. Robinson (1965) A Machine-Oriented Logic Based on the Resolution Principle.J. Assoc. Comput. Mach., 12, 23�41.[Robinson71] J.A. Robinson (1971) Computational Logic: The Uni�cation Computation. Ma-chine Intelligence, 6, 63�72. ed. B. Meltzer and D. Michie, Edinburgh UniversityPress.

22

