
Universiteit Leiden

Opleiding Informatica

ETA: A machine learning oriented platform for high-
dimensional time series analysis

Name: Lars Hopman
Date: 29/08/2016

1st supervisor: Shengfa Miao
2nd supervisor: Thomas Bäck

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

ETA: A machine learning oriented platform for

high-dimensional time series analysis

L.K. Hopman (S1289152)

August 26, 2016

Abstract

Time series data can be found in a variety of fields such as finance, signal pro-
cessing, weather forecasting and more. A time series analysis pipeline typically
covers a wide variety of tasks such as feature extraction and model generation.
To support the full range of tasks we propose an Environment for Time series
Analysis (ETA). The platform provides a platform for analyzing time series
data aiding both academia and industry. This implies that the functionalities
associated with time series analysis are supported inside the platform. Some
basic modules for machine learning, time series representation methods, prepro-
cessing and feature extraction are delivered to provide a working platform since
the first release. ETA enables the users to expand the application by creating
modules on their own. As ETA is written in Python, machine learning packages
such as scikit-learn can be utilized to gain access to a great amount of existing
algorithms. Our application can be used to analyze time series data sets more
efficiently.

Contents

1 Introduction 4

2 Preliminaries and related work 6
2.1 Time-series data . 6

2.1.1 Data representation . 7
2.1.1.1 Time domain methods 7
2.1.1.2 Frequency domain methods 9

2.1.2 Similarity measurement 10
2.1.3 Motif discovery . 12
2.1.4 Indexing methods . 14

2.2 Feature extraction . 15
2.3 Machine learning . 15

2.3.1 Machine learning categories 16
2.3.2 Machine learning tasks . 17

2.4 Comparison with other time series tools 24
2.4.1 FAP . 25
2.4.2 Weka . 25
2.4.3 Quickie . 26
2.4.4 LiveRAC . 26
2.4.5 ChronoLenses . 26
2.4.6 VizTree . 27

3 ETA 28
3.1 Architecture . 28
3.2 Profiling . 28
3.3 Visualisation . 30
3.4 Preprocessing . 30
3.5 Feature extraction . 30
3.6 Representation methods . 33
3.7 Machine learning . 34

4 Conclusion and future work 37

A Adding your own module. 45

1

B Technical documentation. 49

2

List of Figures

2.1 An example of a line graph containing time series data. 7
2.2 A plot showing the original time series and the generated PAA

series. 8
2.3 Plot showing the original time series, the PAA representation and

their corresponding SAX string. 9
2.4 An example conversion from a time series in the time domain to

the frequency domain from [64]. 10
2.5 The result of normalizing a time series from [28]. 11
2.6 Figure to provide an intuition into the mapping of DTW from [69]. 12
2.7 Motif discovery is about finding and matching subsequences in-

side time series. 14
2.8 An example of a decision tree. 20
2.9 GUI of two time series analysis and prediction tools. 25
2.10 Two examples of the GUI of Quickie. 26
2.11 Two tools targeted at exploratory analysis of time series data. . . 27
2.12 Viztree, a tool for finding anomalies. 27

3.1 Example of a Pandas-profiling report. 29
3.2 Data flow for feature extraction. 31
3.3 Example of a Simple Moving Average. 31
3.4 A baseline for a time series. 32
3.5 Available options for SAX. 33
3.6 Options provided for classification and regression modules. 35
3.7 An overview of clustering methods inside scikit-learn from [59]. . 36

3

Chapter 1

Introduction

Time series data has a wide variety of applications, they can be found in finance
[63], signal processing [54], bio informatics [2] and many other scientific and
non-scientific fields. Time series can be analyzed to gain more insight in the
domain or to create models for predicting values. Time series analysis covers
a wide spectrum of tasks. Example tasks are feature extraction, preprocessing
and model generation. A tool that is extendible and customizable and would
offer a valuable contribution. All these functionality combined offers a platform
which can be used to research time series data sets more effectively.
Machine learning is used in more and more fields. With many machine learning
algorithms, the applications are diverse. Tasks such as classification, clustering
and regression can be utilized to analyze (large) streams of data. When combin-
ing automatic learning and data measured at a certain interval, an interesting
event of smaller scale can be seen. By combining the knowledge of different
scales, better understanding is achieved and interesting new applications can be
conceived.
Although many time-series related software exists (shown in section 2.4) they
are all focused on a single task in the data mining process. To our knowledge no
platform covering all tasks related to time series data mining exist. In this thesis
we propose a Python-based [68] framework called Environment for Time series
Analysis (ETA) for analyzing time series data. ETA offers some basic modules
for profiling, plotting, preprocessing, feature extraction and machine learning.
All these modules are build with Python libraries such as Pandas [42], SciPy
[29], Numpy [10], Scikit-learn [52] and Matplotlib [26] By applying a modular
approach the application can easily be expanded in the future. Future modules
can also easily incorporate these or other existing Python libraries.
This thesis will start with a brief introduction in time series data. In the sec-
ond chapter, some background and definitions are provided. The first section
will cover time series specific subjects such as data representation, similarity
measurements and indexing methods. This will give an intuition in current time
series. The second part will provide a background in machine learning. The dif-
ferent tasks such as regression, classification and clustering are are shown. Also,

4

machine learning categories as supervised learning and unsupervised learning
are discussed. Finally, an overview of existing platforms and their drawbacks is
reviewed to show the novelty of this work. The functionalities implemented by
these applications are discussed. A comparison with our platform is made to
show the differences.
After showing the related work on time series analysis software. A more in depth
review is about the implementation of ETA is provided. This includes the ar-
chitecture and the several types of modules available inside ETA. In the final
section illustrations are used to show how a typical machine learning workflow
can be applied inside ETA.
Apart from this thesis a tutorial on how to add modules can be found in Ap-
pendix A. The documentation of the platform can be found in Appendix B. This
tutorial will elaborate on the naming conventions and the knowledge necessary
to write a module. After this tutorial the user should be able to implement his
own module inside ETA.
ETA is open-source. Open-source software can be used and expanded by every
user. To provide easy distribution, the source is available online. Hosting of the
The most recent version can be found at Bitbucket1. We encourage users to use
or expand this platform.

1https://bitbucket.org/bachelorproject timeseries/eta

5

Chapter 2

Preliminaries and related
work

In this chapter the fundamentals of time series are discussed and an overview
is given on machine learning. Our platform focuses on time series analysis and
machine learning model generation. For the user to work with our platform, a
background in machine learning and time series is necessary.

2.1 Time-series data

Time series data is ubiquitous. Many fields make use of time series data. To-
gether with the increase of data in general, time series data is growing more
and more. New sources of time series can be found in social media and signal
processing. Time series data can be defined as information measured at a certain
interval (definition 1). Each tn is a measurement and should be a real number.

Definition 1. A time-series T is an ordered sequence of m real-valued variables

T = (t1, ..., tm), ti ∈ R

Many applications utilize only a part of the time series. Patel [50] gives us a
more formal definition on subsequences of time series data (definition 2).

Definition 2. Given a time series T of length m, a subsequence C of T is a sam-
pling of length n < m of contiguous position from T , that is, C = tp, . . . , tp+n−1

for 1 ≤ p ≤ m–n+ 1.

To create an easy understanding of time series data, visualisations can be
used. The most simple visualisation is the two dimensional plot. An example of
a two dimensional plot containing time series data can be found in (Figure 2.1
). More about visualizations of time series can be found in the Bachelor thesis
of Joost Martens. He elaborates on the visualization part in his thesis.

6

Figure 2.1: An example of a line graph containing time series data.

Many interesting directions arise when working with time series, examples
include dimensionality reduction, similarity measurement and data representa-
tion. To provide a framework for describing these directions, Esling [15] defines
three major categories for working with time series data. Data representation,
similarity measurement and indexing method are typical aspects for time series
specific data mining tasks. By combining time series specific knowledge with
more generic machine learning knowledge to create a machine learning pipeline
oriented specifically at time series.

2.1.1 Data representation

As time series are getting bigger and bigger, dimensionality reduction becomes
an important factor in time series analysis. The aim of dimensionality reduction
is to derive the essential characteristics of the data. This data with reduced
dimensionality can be used for further processing. By using dimensionality re-
duction, computation time and storage could be minimised. Several methods
for dimensionality reduction of time series are proposed in the literature. One
method of dimensionality reduction is segmentation. Keogh [31] shows us an
overview of segmentation approaches and their qualities. We can divide two
categories for time series representations: representation in the time domain
and representations in the frequency domain.

2.1.1.1 Time domain methods

Data representation in the time domain are oriented at time instead of fre-
quency. Popular approaches for representation techniques apply a sliding win-
dow for dimensionality reduction. Several algorithms for data representation in
the time domain exist but we will only discuss Piecewise Aggregate Approxi-
mation (PAA) and Symbolic Aggregate approXimation (SAX) to gain a basic
understanding of how time series representation methods could be implemented.

PAA Piecewise Aggregate Approximation [30] (PAA) presented by Keogh et
al is a method for representing a time series in the time-domain. The algorithm

7

works by applying a sliding window approach on the given time series. For each
window it calculates the mean and uses this value to describe the complete
window. This functionality can be seen in Figure 2.2. Dimensionality reduc-
tion through PAA is fast to calculate. Additional to normal Euclidean distance
(which can be seen in section 2.1.2), the weighted Euclidean distance can be
implemented in the algorithm. PAA is a relative simple approach which can be
used for many applications and can be used for time series of different lengths.
PAA also has disadvantages. Because PAA uses the mean value of the sliding
window, the risk of missing important subsequences exist.

Figure 2.2: A plot showing the original time series and the generated PAA series.

SAX Another time series representation method is Symbolic Aggregate ap-
proXimation [38] (SAX). SAX reduces a time series to a string by using a sliding
window approach. Before applying the SAX algorithm, normalization is neces-
sary. We first normalize the time series with Z-normalization (shown in 2.3). The
normalization of the time series has another advantage: the normalized time se-
ries follow a Gaussian distribution. SAX assumes this distribution in the final
part of the algorithm. In the next step PAA is applied. Figure 2.3 shows that for
each window, the mean of the normalized time series is used for the current win-
dow. The alphabet size can be defined by the user. Depending on the alphabet
size, breakpoints are calculated. These breakpoints divide the Gaussian curve
in n equal-sized areas under the curve. For calculating the distance between
strings, a distance measure MINDIST is introduced. This distance measure is
further introduced in section 2.1.2

8

Figure 2.3: Plot showing the original time series, the PAA representation and
their corresponding SAX string.

2.1.1.2 Frequency domain methods

Data representation in the frequency domain is oriented at the frequency of
the signal. In most cases the original data is in the time domain. When using
a frequency domain a conversion is often necessary. When converting a signal
from the time domain to the frequency domain, different transformations can
be used. Examples are Discrete Fourier Transform (DFT), Wavelet Transform
or Laplace Transform. To provide an intuition in the frequency domain DFT is
discussed.

DFT Discrete Fourier Transform [25] can be used to transform a signal from
the time-domain in the frequency domain. Equation 2.1 shows the formula
associated with this transformation. ω is used for the circular frequency.
An example of a time series in the time and frequency domain can be seen
in Figure 2.4. Several algorithms for applying DFT exist. The most widely
used algorithm is the Fast Fourier Transform (FFT). While the original
algorithm had a complexity of O(n2), the FFT algorithm has a complexity
of O(n log n) and therefor can be easily used for a high n without high
computational cost.

fk =
N−1∑
n=0

x(n)eiωnk/N (2.1)

9

Figure 2.4: An example conversion from a time series in the time domain to the
frequency domain from [64].

2.1.2 Similarity measurement

Another important research direction in time series analysis is similarity mea-
surement. Being able to compare time series can provide a valuable asset in
analyzing data. Similarity measurement can be used for finding similar subse-
quences. In this section several methods are discussed for comparing signals and
for finding subsequences in streams of time series data.

As Keogh [32] states, comparing offset or amplitude is useless for a non nor-
malized time series. Therefor, normalizing is necessary to provide useful results.
Several methods of normalization can be applied. Example of a normalization
method is Z-score normalization (shown in equation 2.3). Equation 2.2 shows
the calculation of the mean. This equation shows µ as mean and σ as standard
deviation. Z-normalization normalizes the values based on these values.

µ =

∑
X

N
(2.2)

ZScore =
T − µ
σ

(2.3)

Normalization makes comparing numeric features with different mathemati-
cal ranges possible. As can be seen in Figure 2.5a and Figure 2.5b, normalization
can help showing similarity of data which first appeared different.

10

(a) Two raw streams of time series data. (b) Two normalized streams of time series data.

Figure 2.5: The result of normalizing a time series from [28].

Several methods for quantifiying distance between measurements exist. Ex-
amples are the relatively simple Euclidean distance, Manhattan distance or Dy-
namic Time Warping. More methods are discussed in the work of Cha [8]. Again,
we provide an intuition of distance measures by looking at two different dis-
tance measures: the Euclidean distance and Dynamic Time Warping (DTW)
[48]. Sometimes an algorithm specific measure is introduced to quantify the dis-
tance between measurements. Non-numeric time series representation method
SAX is an example where a new metric (MINDIST) is introduced. This metric
will also be reviewed.

Euclidean distance Euclidean distance is the most widely used distance met-
ric. It relies on the distance between points. The formula to calculate the
euclidean distance can be found in equation 2.4. Computation of the eu-
clidean distance is fast and the complexity is O(n).

d(p, q) =

√√√√ n∑
i=1

(qi − pi)2 (2.4)

DTW Dynamic Time Warping is a method for measuring distance when the
series do not align on the x-axis. A practical example is pronouncing a
word at different speed. As can be seen in Figure 2.6a and Figure 2.6b,
DTW does not apply a one-to-one mapping as Euclidean matching does.
Instead, it tries to make a match based on similarity. DTW origins in
speech recognition but the algorithm can be used for many situations
where distortion exist on the x-axis.

11

(a) Mapping of Euclidean distance. (b) Mapping of DTW.

Figure 2.6: Figure to provide an intuition into the mapping of DTW from [69].

MINDIST As introduced in section 2.1.1.1, SAX utilized a string for repre-
senting the time series. As existing numeric-based distance measures such
as Euclidean distance can not be applied to string values, a new distance
measure is introduced by Lin [38]. SAX works by first generating the PAA
representation of the time series. Equation 2.5 is based on the minimum
distance between letters in the SAX representation. This equation is de-
rived from the minimum distance between the PAA representation. Often
a look-up table is used for calculating dist(q̂i, ĉi). dist(q̂i, ĉi) gives the
minimum distance between two letters in the SAX string. The function
accepts two sets of SAX strings.

MINDIST (Q̂, Ĉ) ≡
√
n

w

√√√√ w∑
i=1

(dist(q̂i, ĉi))2 (2.5)

2.1.3 Motif discovery

An important research direction in time series analysis is motif discovery. Motif
discovery deals with detecting patterns and finding similar patterns in a time
series. A definition which defines a (wide) scope on motif discovery can be found
in definition 3.

Definition 3. A motif is a pair of non-overlapping sequences with very similar
shapes in a time series.

To provide more background on motif discovery, we will now go more in depth
regarding tasks in motif discovery. As applications range from bioinformatics to
speech recognition, different algorithms have been developed. As mentioned be-
fore, motif discovery covers a wide variety of tasks including peak detection,
finding similar patterns or even finding outliers. Peak detection is an example
of pattern detection. After defining a motif, finding similar motifs can also be

12

an interesting application within motif discovery. It aims at finding reoccurring
patterns in time series to gain a better insight in the domain.

As Mueen [46] states, motif discovery algorithms have to deal with multiple
aspects: the definition of the the motif, domain based pre processing and the
algorithm itself. As these aspects are important for creating motif discovery al-
gorithms, they can be used for comparing algorithm types as well.

Defining the order of importance of motifs can be an important step as
time series are getting longer and longer. With an increasing amount of motifs,
the amount of motifs within a time series are increasing as well. By defining
a pattern, a scope is created. Different definitions create different subsets of
motifs. Mueen gives two examples of definitions and explains the difference.
Definition 4 and 5 show how a small difference can lead to a different selection
of motifs. Definition 5 focuses on the most number of repetitions, which imposes
more weight on the repetition part than definition 4 does.

Definition 4. Given a time series and its length, time series motifs are the
repeated segments in order of their similarities among the repeated occurrences
within an R-ball (data points around a center) .

Definition 5. Given a time series and a length, time series motifs are the
segments that have the most number of repetitions within an R-ball.

Second, Mueen mentions domain-based preprocessing. Motif discovery is rel-
evant for multiple domains. Preprocessing is necessary to use a motif discovery
algorithm. After domain-dependent preprocessing, the algorithm should be able
to handle all types of time series data.

Finally, we describe the third aspect of Motif Discovery. The third aspect
is about the algorithm and the functionalities. Three aspects for describing the
algorithm could be considered: exactness, similarity measure and the represen-
tation method used.

13

(a) A time series.

(b) An interesting subsequence.

Figure 2.7: Motif discovery is about finding and matching subsequences inside
time series.

• Exactness
The trade-off between computational cost and exactness of the solution is
always a decision in algorithm development. An exact solution is always
better than approximation. However, calculating an exact solution is of-
ten combined with high computational cost. The creator of the algorithm
should weigh these computational cost and the desire for exactness.

• Representation
Section 2.1.1 gives us a brief introduction in data representation methods.
Mueen shows in his paper that dimensionality reduction does not impact
the results of motif discovery.

• Similarity measurement
The third aspect is related to the distance measure used by the algorithm.
Section 2.1.2 gives a background on these similarity measures. The choice
of similarity measure affects the result of the algorithm.

2.1.4 Indexing methods

The third category Esling [15] defines for dealing with time series data is the
indexing method. As time series are getting larger and larger, space and fast
querying becomes more important. An appropriate indexing method should fa-
cilitate fast querying with relatively low computational cost. Example indexing
methods are Spatial Access Methods (SAMs) [3], shareOur platform is not tar-
geted at implementing different indexing methods. Therefore we only mention
this category to provide a complete overview of time series aspects as defined
by Esling.

14

2.2 Feature extraction

Directly applying Machine Learning algorithms to the raw time series data
sometimes proves to be ineffective. In most of the cases, feature extraction is
applied to tackle this problem. Feature extraction derives new features from the
available data while retaining the information included in the original data.

Different types of features can be extracted from time series data sets. Based
on scales, features can be divided into three levels (categories). Each extraction
category results in a different kind of features.

Data set level This level can be seen as a global approach of feature extrac-
tion. The goal of this approach is to select key variables from the original
data set. Different approach exist ranging from selecting only the most im-
portant features to other methods such as Principal Component Analysis
(PCA) [51].

PCA is a dimensionality reduction method used in multivariate statisti-
cal analysis. It works by creating a lineair combination to maximize the
current variance until the given number of components is met.

Variable level This category can be used to describe the data set on a more
general level. An example can be found in extracting peaks and their
corresponding height, width and area under curve. Sometimes domain
knowledge can be used to create domain specific features. Other, more
broad, examples are information about the distribution of the data sets
or the mean of the time series. Other relatively simple statistics such as
minimum, maximum, frequencies or median can be considered as well.
These statistics are used to calculate a value over the whole time series.
To calculate this values over subsequences of the signal the sliding window
level is introduced.

Sliding window level The sliding window approach is a popular approach for
generating time series representation. This method could also be used to
generate different type of features. This approach divides the time series
in separate windows and calculates values for each window. As said, this
approach is also used to create different representation methods such as
PAA or SAX.

2.3 Machine learning

Several definitions for machine learning can be found in the literature. Samuel
[58] states that machine learning is the field of study that gives computers the
ability to learn without being explicitly programmed. Mitchell [45] introduces
Machine Learning as the question of how to construct computer programs that
automatically improve with experience. A more formal definition from Mitchell
can be found in definition 6.

15

Definition 6. A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if its performance
at tasks in X, as measured by P, improves with experience E.

Machine learning algorithms have a wide variety of applications ranging
from self-driving cars [22], cancer detection by gene expression monitoring [20],
to learnto play the game of Go [61].

2.3.1 Machine learning categories

As machine learning has a wide variety of applications, several tasks can be con-
sidered. These tasks such as classification, regression or clustering can be classi-
fied in larger machine learning categories: supervised learning, semi-supervised
learning, unsupervised learning and reinforcement learning

• Supervised learning
Supervised learning is a machine learning method where, for the training
set, the attribute to predict has been provided and can be used to learn.
This implies that a labeled data set is supplied. The derived knowledge
can be applied to new examples. Examples of supervised learning methods
are regression and classification. After model generation, the model should
be able to predict new examples.

• Semi-supervised learning
Semi-supervised learning [71] uses both labeled and unlabeled data to per-
form a machine learning task. Semi-supervised learning can be used when
large quantities of unlabeled data are present while having just a small
amount of labeled data. Gathering of labeled examples can be expensive
or difficult while unlabeled data can be collected easily. Semi-supervised
learning uses both supervised and unsupervised learning to generate mod-
els.

• Unsupervised learning
Unsupervised learning is the field of study that is researching how to
draw knowledge from data without labels. Clustering is an example of
an unsupervised learning method. Applications of unsupervised learning
methods can be found in bio-informatics for gene clustering and in other
field such as pattern discovery.

• Reinforcement learning
Considering a maximizing agent, conditioning can help an agent learning.
This process is called reinforcement learning. This process is different from
supervised learning in the fact that the correct input and output are never
shown. For each mistake a penalty is given and for positive behaviour
points are awarded. The algorithm tries to maximize the amount of point
to generate the best possible result.

16

2.3.2 Machine learning tasks

Several data mining tasks associated with unsupervised and supervised learning
are discussed in this section. For each task, a definition is given as this will pro-
vide us with a scope. After the definition, some basic applications and examples
are shown to give a practical background of the task and the goal of the task.
Some data mining tasks have smaller subcategories which are used to describe
several types of algorithms. If these subcategories exist we discuss them . After
that, an intuition is given by explaining a popular algorithm considered part of
this learning method. Finally some metrics are reviewd to quantify the quality
of the model. These metrics are often task specific and they are discussed as
part of the category.

Regression Regression is considered as an important tool for creating machine
learning models. Regression is used for predicting continuous values based
on given variables. The target value can be considered a lineair combina-
tion as can be seen in equation 2.6 where Wp gives the weight for each
variable.

Y (w, x) = W0 +W1x1 + ...+WpXp (2.6)

Regression has a wide variety of applications and can be described as fit-
ting a line to an amount of measurements. Applications are found in many
fields such as finance or trend predictions.

Two regression methods can be considered depending on the distribution
of the response variable. The fitting of the regression line can be done in
a variety of ways. The following, more global methods can be seen:

• Linear regression
Linear regression assumes that the response variable follows a Gaus-
sian distribution. Often, a least-squares fit is applied to generate the
model as this is the most simple fitting method of regression.

• Generalized Linear Model (GLM)
A Generalized Linear Model [49] can be used when the response
variable does not follow a Normal distribution. For example when
the distribution is skewed the GLM can be applied.

Both methods have larger quantity of approaches for fitting the line. Meth-
ods such as LASSO regression [65] and LARS [13] can be used when normal
methods are not returning the desired result.

After model generation, the model needs to be evaluated to quantify the
performance. Metrics can be used to compare the performance of the
model. According to Mayer [41], it can be useful to use a variety of mea-
sures to determine the quality of the data. A good addition is to visualize

17

the predicted and the observed data as this provide a good first impres-
sion about the quality of the model. Below we find a list containing some
measures reviewed by Mayer. This is a selection from the wide variety of
existing measurements.

• Root Mean Squared Error (RMSE)
The Mean Squared error measures the mean of the square considering
the difference between all errors. The y values are used to calculate
the difference between the actual value and the predicted value.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (2.7)

• Mean absolute error (MAE)
The mean absolute error measures the average error. To calculate the
MAE, we again calculate the difference between the predicted value
and the actual value. This time we use the absolute value.

MAE =
1

n

n∑
i=1

|fi − yi| (2.8)

• R2

R-Squared can be used to measure the performance of the fit depend-
ing on the variation of the data. The best possible score is 1.0 which
implies that all values are predicted correctly.

R2 = 1−

n∑
i=1

Wi(Yi − Fi)2

n∑
i=1

Wi(Yav − Fi)2
(2.9)

Classification Another subset of supervised learning is classification. Classi-
fication is used for categorizing examples based on a generated model.
Supervised learning implies that labeled data is necessary to train the
model. Applications can be found in spam detection, fraud detection and
bio informatics (classify proteins). Classification can be done by a vari-
ety of algorithms. These algorithms are often called classifiers. Several
categories can be defined when dealing with classification problems. The
type of preprocessing, algorithm and evaluation metrics are application-
dependent.

• Binary
A binary task is the most widely used form of classification. Binary
implies two possibilities for the predicted values. An example binary
classification task could be to predict if a customer is going to convert
in the next year.

18

• Multi-class
For a multi-class classification task, there is one target value to pre-
dict. Possible values x for the target can be x > 2 as we are not
dealing with a binary classification task. As we are dealing with clas-
sification, the target value needs to be categorical. An example of a
Multi-class classification task can be found in the iris [36] data set
where the target value consists of species.

• Multi-label
In contrary to multi-class classification, multi-labelled classification
is aimed at predicting different categorical values for multiple tar-
get columns. Applications for this classification task can be found in
document topic classification. A review of existing methods can be
found in the work of Tsoumakas [67].

• Hierarchical
Hierarchical classification classifies the target value in a way that hi-
erarchy is preserved. Applications can be found in text classification
and bio informatics. A popular method for the hierarchical struc-
ture is the tree. An overview containing current methods discussing
advantages and disadvantages can be found in the literature [60].

An example classification approach is the decision tree. We take the deci-
sion tree as an example because of the relative simplicity. This will give
provide us with an intuition.

A decision tree is a diagram containing the path to different responses.
Every branch represents a decision while the leaves represent the possible
response. An example of a decision tree can be seen in Figure 2.8. Decision
trees can be easily understood and used without much introduction. Two
variants of decision trees can be identified. The choice of decision tree type
depends on the response variable.

• Classification trees
Classification trees can be used when the response variable is cate-
gorical.

• Regression trees
Regression trees are used when the response variable is numerical.

19

Figure 2.8: An example of a decision tree.

Classification algorithms can be categorized into either decision tree cate-
gory. Several algorithms are proposed in the literature. The most popular
algorithms are described below.

• ID3
ID3 [55] is an algorithm introduced by Quinlan. It creates the split
based on information gain. First, the entropy before the split is cal-
culated with equation 2.10. Second, the same formula is used to cal-
culate the entropy after the split. The p value is used to give the
distribution of the response variables.

Entropy(C) =

c∑
i=1

pilog2pi (2.10)

For each candidate, the information gain (see equation 2.11) is eval-
uated and the split is created on the largest information gain. This
method does not allow for numerical values and therefor can be con-
sidered as a classification tree.

Gain(w) = Entropy(C)− Entropy(C|w) (2.11)

• C4.5
Regression trees are used when the response variable is numerical.
C4.5 is the successor of ID3. Quinlan [56] uses entropy from infor-
mation theory to generate a decision tree. The main advantage of
C4.5 over ID3 is the ability to utilize numeric values for tree gener-
ation. C4.5 creates discrete intervals which are used to calculate the
entropy.

• CART
CART is introduced by Breiman [7] to create an algorithm to make
full use of numerical values. The algorithm finds the best numerical
value to create the split on. After tree generation, the full tree is
pruned. CART can be classified in the regression trees category as
full support of numerical values is supported.

20

The algorithms mentioned above are popular algorithms and are used for
a variety of applications. Again, the goal of this overview is to provide an
intuition in machine learning. Although different classification algorithms
can be found in the literature, often a combination of algorithms is used
to produce better results. Examples of these ’ensemble methods’ can be
found in Random forests [6], Bagging [5] and Boosting (such as AdaBoost
[19]).

Quantifying the quality of the generated model can be done by using
metrics. Just as with regression in subsection 2.3.2, task specific metrics
exist. Several popular measures for quantifying the robustness of a model
are discussed. The discussed measures are a selection, many more mea-
sures exist. The discussed metrics are focused on a specific feature of the
model (ie. the exactness of predicted positive values). bird-eye view can
be achieved by looking at the confusion matrix.

• Accuracy
Accuracy is the most popular and basic performance measure. It
works by calculating the percentage of correct predicted values. Equa-
tion 2.12 shows us formally how the true positives tp and true nega-
tives tp is divided by all predicted values.

Accuracy =
tp + tn

tp + tn + fp + fn
(2.12)

• Recall
Recall calculates the percentage of identified positive labels. It is
aimed at indicating how complete the positive prediction is. The for-
mula to calculate the recall can be seen in equation 2.13. A high
number of False negatives can be found when the recall value is low.

Recall =
tp

tp + fp
(2.13)

• Precision
Precision is aimed at indicating how exact the positive prediction is.
As recall is more focused on completeness, precision is focused on
exactness.

Precision =
tp

tp + fp
(2.14)

• F1 Score
The F1 score combines the values calculated by precision and recall.
Therefore it combines the measures of exactness and completeness
into a new measure. The combination of these measurements can be
seen in equation 2.15.

F1 = 2 · precision · recall
precision+ recall

(2.15)

21

• Confusion matrix The final model quality quantification method we
discuss is the confusion matrix. Table 2.1 shows a confusion matrix.
On the diagonal we see the true negatives and the true positives.
Our example shows a confusion matrix for a binary classification
problem but the matrix can be expanded when applying it to different
classification problems.

Table 2.1: Confusion matrix

Prediction
Yes No

Yes Tp Fn

Actual No Fp Tn

Just like regression performance metrics, these classification performance
measures are often combined to create a better understanding of the qual-
ity of the model. The measures mentioned above are just an overview of
popular performance measures. Other metrics exist and have been anal-
ysed in the literature. A more comprehensive overview can be found in
the work of Sokolova [62].

Clustering Clustering is a method which can be classified as unsupervised
learning. The goal of clustering is to identify structure in an unlabeled
data set. Graepel [21] gives us a more formal definition, which can be
found in definition 7. Many definitions found in the literature mention a
grouping criteria states Estivill-Castro [17]. To provide a more high level
intuition, the individual clustering approach should be more focused on
this grouping criterion.

Definition 7. Clustering methods aim at partitioning a set X of D data
items xi into N groups Cr such that data items that belong to the same
group are more alike than data items that belong to different groups.
These groups are called clusters and their number N may be preassigned
by the analyst or can be a parameter to be determined by the algorithm.
The result of the algorithm is thus an injective mapping X → C of data
items xi to clusters Cr.

Clustering can be used in a wide variety of situations. The fields of appli-
cations are immense, examples include marketing and social sciences.

The literature provides several options for categorizing clustering meth-
ods [57]. Han and Kamber [27] propose a division in three categories:
density-based methods, model-based clustering and grid-based methods
while Farley and Raftery [18] suggest for only two different classes (hi-
erarchical and partitioning). Estivivill-Castro proposed a categorization
containing five categories: Partitioning, Hierarchical, Density, Grid, and

22

Model methods. This categorization gives us clear scope to describe the
differences between the categories.

• Hierarchical
In contrast to the other proposed methods, hierarchical clustering cre-
ates clusters which are ranked inside a dendogram. Two approaches
for creating a cluster hierarchy can be defined.

– Agglomerative hierarchical clustering
The approach of agglomerative hierarchical clustering starts with
each node as a separate cluster. Each step clusters are merged
based on a similarity measure.

– Divisive hierarchical clustering
Divisive hierarchical clustering can be seen as the opposite of
agglomerative hierarchical clustering. This approach starts by
creating one cluster containing all measurements. The algorithm
divides this cluster into separate smaller clusters until final con-
ditions are met.

Hierarchical clustering has advantages and disadvantages. According
to Rokach, it is versatile and can create multiple partitions which
represent different levels of similarity. An important disadvantage is
the complexity of most algorithms. The algorithms do not scale well
with O(n2) complexity.

• Partitioning Methods
Partitioning methods are an approach for clustering data. Most al-
gorithms start with a predefined number of clusters. The algorithm
assigns measurements from cluster to cluster until the clusters have
converged. An example of a partitioning algorithm is K-Means [39]
which is used for a wide range of applications.

• Density-based Methods
Density-based clustering is a method based on the sparseness of the
data. It assumes measurements in the same cluster have a similar
density. An example density-based method is density-based spatial
clustering of applications with noise (DBSCAN) [16].

• Model-based Clustering Methods
Model-based clustering works by optimizing the fit between the data
and underlying mathematics. Next to finding clusters, the method
also tries to create model of each separate cluster. By using this
approach it tries to find the underlying characteristics of the cluster.
Models can be created by using neural networks or decision trees.

• Grid-based Methods
Grid-based methods apply a computational fast method. It first sep-
arates the complete space into several clusters, then it applies the
measurements to the corresponding cluster.

23

As Estivill-Castro states, ”Clustering is in the eye of the beholder”. The
decision for clustering algorithm depends on the data and can be difficult
when objective measures do not show significant differences.

Now that we introduced clustering and the several categories of clustering,
we can go more in detail on clustering of time series. Liao [35] defines
three different approaches for dealing with time series clustering: raw-data-
based, feature-based, and model-based. Liao gives a categorized overview
and their corresponding applications.

• Raw-data-based
This approach uses the raw data from the time or the frequency
domain to cluster the time stream. This is the most straight forward
approach.

• Feature-based
The feature-based approach first extracts features before applying the
clustering algorithm. A feature extraction example could be to create
vectors based on the maximum variance such as Principle Component
Analysis.

• Model-based
Model-based time series clustering assumes an underlying logic is
represented in the time series. Therefore it tries to generate a model
based on the raw time series and applies clustering to the model.

When dealing with a method for unsupervised learning, quantifying the
quality of the model is not as straight forward as it is with supervised
learning. Sometimes labels are present but most of the times only un-
labeled data is available. In the case of unlabeled data, internal metrics
from the model need to be used to show the quality of the clusters. Differ-
ent indices are available in the literature. Examples include the distance
between two clusters, the Sum of Squared Error (SSE), Dunn index [12]
and the Davies-Bouldin index [9]. While the Dunn index is focused on
maximum inter-cluster distance and minimum intra-cluster distance, the
Davies-Bouldin index focuses more on the average similarity between clus-
ters. An overview of several performance metrics has been done by Maulik
[40]. While indices are available, it remains difficult to quantify the quality
of a clustering algorithm without domain knowledge.

2.4 Comparison with other time series tools

To be able to show the novelty of this work, we first need to look at the tools
currently available in the literature. To compare these tools we will especially
look at the supplied features and if the system can be easily expanded.

24

2.4.1 FAP

With FAP, Kurbalija [33] proposes a framework for analyzing and predicting
time series data. The framework supports preprocessing, different representa-
tions and data mining algorithms. The outline of the framework is discussed
in the paper. It takes the same modular approach as our application: the user
should be able to easily implement new modules. Unfortunately not all presented
features are implemented yet. The Java-based framework have not been update
since March 2011. The FAP tool differs from our tool because our framework
is based on Python. Next to that, our tool already offers modules for the com-
plete process. Although not all possible modules have been implemented yet,
we still offer a tool which can be used for a range of tasks upward of the first
release. What’s more, the Python language creates freedom for implementing
the already widely available modules for machine learning, preprocessing and
feature extraction, such as Scikit-learn or other modules from the SciPy stack.
An example of the GUI can be seen in Figure 2.9a.

2.4.2 Weka

Weka [24] is a broadly used tool inside the academic world. From version 3.7.3
and upwards, the tool includes the ability to develop time series forecasting mod-
els [1]. The application chooses a machine learning approach by transforming
the data in a way that algorithms can process. Afterwards it can apply vari-
ous types of machine learning algorithms. Weka offers the ability to save and
load models for future use. It aims more at creating models instead of offering
all tools for the complete data mining pipeline. For example, the tool has no
features to apply the different time series representation methods or to extract
completely new features. The GUI can be seen in Figure 2.9b.

(a) The GUI of the Framework for Analy-
sis and Prediction (FAP).

(b) The GUI of the time series analysis
part of Weka.

Figure 2.9: GUI of two time series analysis and prediction tools.

25

2.4.3 Quickie

The Quick User Interface for Convolution Kernel-Involving Experiments (Quickie)
can apply different kernels and feature extraction methods. This Java-based pro-
gram applies these methods on the loaded data and adds them as new columns.
The user can not add new modules to the application due to a lack of modular-
ity. Next to that, the user is not able to apply different representation methods
such as SAX or PAA. These methods can be used to reduce the dimension-
ality of the data. Unfortunately dimensionality reduction can not be achieved
inside Quickie because the program only offers the ability to add new features
as an additional column. In Figure 2.10a and 2.10b we can see the lay-out of
the Quickie application.

(a) Overview. (b) Plot.

Figure 2.10: Two examples of the GUI of Quickie.

2.4.4 LiveRAC

With LiveRAC [43], McLachlan presents a tool for browsing and correlating time
series for system management. The tool aims at providing an overview of the
loaded measurements. As can be seen in Figure 2.11a, LiveRAC uses a matrix
lay-out for displaying large amount of input devices. It applies a client-server
model to divide the database and the visualization application. The visualization
part of the application, LiveRAC, must connect to a back end for the data to
be able to generate the desired plots. This offers scalability and performance to
the application. LiveRAC does not aim to be an application for all the features
associated with data mining.

2.4.5 ChronoLenses

ChronoLenses [70] is an application for exploratory analyis of time series data.
The application aims at integrating user actions and visual analysis. It can
create advanced views and creates the necessary data-transformations on-the-
fly. The approach of ChronoLenses is to derive new time series data from the
selected original data. This new time series is used to apply different functions
and parameters. An interesting feature of ChronoLenses is the visible pipeline

26

which can be used to undo previous steps. The goal ChronoLenses is aimed at
visualizing data. Our goal on the other hand is more diverse and comprehensive.

(a) LiveRAC. (b) ChronoLenses.

Figure 2.11: Two tools targeted at exploratory analysis of time series data.

2.4.6 VizTree

To be able to monitor the data generated by space vehicles, Lin et al created
VizTree [37]. VizTree is a tool developed for mining archival data and monitoring
incoming live telemetry. The goal of VizTree is to visualize the results of pattern
discovery. It works by displaying augmenting suffix trees based on Symbolic
Aggregate Approximation (SAX) as can be seen in Figure 2.12a. The thickness of
the lines is generated by the frequency of certain branches. Thick lines represent
common patterns, while the thin lines may show anomalies. In Figure 2.12b we
see an overview of the application. This application has another goal than our
platform does. The functionality is specified for one task (outlier detection)
instead of offering a bird-eye view.

(a) The generation of the augmenting suf-
fix tree.

(b) Overview of the application.

Figure 2.12: Viztree, a tool for finding anomalies.

27

Chapter 3

ETA

As section 2.4 shows, no existing software covers the complete range of functions
required to analyze time series. Hence, we propose an Environment for Time
series Analysis (ETA).

3.1 Architecture

As discussed, ETA uses a modular approach. While the core contains functions
for the GUI and handling of the data in the background, the modules apply the
transformations. This approach provides a framework suitable for handling all
types of data transformations. The core of the program consists of the following
classes:

• guiHandler()

This class is designed to handle all functionalities regarding the user in-
terface and the user interaction.

• dataFramesHandler()

This class keeps track of the loaded DataFrames and provide functionali-
ties for modifying these DataFrames.

• filesHandler()

This class is utilized for loading and saving files.

Next to these basic classes, classes exist for communicating with the modules.
More information about the design choices can be found in the thesis of Joost
Martens. The flow of the data between these classes and the modules will be
discussed in the sections regarding the module type.

3.2 Profiling

To gain a better understanding of the data loaded in the platform in an easy
way, profiling is implemented in ETA. Profiling is used to create an overview

28

of the data. This can be useful to ascertain missing values, high correlation
between variables or odd measurements. ETA offers several options to inspect
a loaded data set.

• Pandas-profiling
Pandas-profiling [53] offers a diverse overview for profiling data. It works
by generating a web page containing all columns and their meta data.
ETA opens the browser automatically after the module is finished with
some necessary calculations.

Figure 3.1: Example of a Pandas-profiling report.

Unfortunately, Pandas-profiling has its drawbacks. The tool is pretty slow
when dealing with larger quantities of data. The used implementation is
limited to 10000 rows. If more rows are given to the module, a sample of
the complete data set is used. Figure 3.1 shows several measures generated
by Pandas-profiling.

• Print data in terminal
Maybe the most basic feature of them all. This functionality prints the
loaded data to the terminal.

• Visualization
Altough this functionality can not be found inside the profiling menu, it is
a method to gain a basic insight in the data. ETA offers this functionality
through the plotting modules discussed by Joost Martens.

29

3.3 Visualisation

Visualizing data can help to gain an understanding in the data. The proposed
framework offers the ability to create modules for visualization purposes. Nu-
merous examples can be considered. Examples include standard line plots or
scatters plots. Most of the Figures used in this thesis are created using our
platform. This part is developed by Joost Martens and more details about vi-
sualizations and their implementation can be read in his thesis.

3.4 Preprocessing

Preprocessing is the step in which the data is prepared for further use. As
machine learning algorithms automatically extract knowledge from this data,
relevant and accurate data is necessary. Several problems can be considered
when preparing data to be processed by a machine learning algorithm. Prob-
lems as missing data values, noise inside the data, can affect the results of the
machine learning algorithm. A common expression regarding this phenomenon
is ¨garbage in, garbage out ,̈ which means data has to be correct and complete
to provide useful machine learning results. To solve this problem, preprocess-
ing can be applied to the data. After applying the module, the new data is
returned. This new data replaces the changes columns inside the currently se-
lected DataFrame.

Some preprocessing modules are implemented inside our environment.

Imputer The imputer takes care of missing values. This module from scikit-
learn offers a range of parameters. All these parameters such as the place-
holder for missing values and the corresponding strategy could be set
within the GUI.

3.5 Feature extraction

An approach to handle the increasing flow of data is to use feature extraction.
Feature extraction can be used to derive new values from an initial data set.

This section describes how modules are used inside the application. Once
the modules are created, little action from the user is required. After selection,
the module is loaded and, if present, a window to set parameters for the se-
lected module is shown. After confirmation, the module is executed and a new
DataFrame containing the extracted features is returned. If the amount of rows
of the new DataFrame differs from the source DataFrame, the user is asked to
create a new DataFrame for the extracted features. This functionality can be
used to reduce the dimensionality of the data.

ETA is a complex application containing multiple classes. It is necessary to
show how the different classes interact. This pipeline can be seen in Figure 3.2.

30

After confirming the parameters, extract() is ran. The data is pulled from the
dataFramesHandler and, together with the selected parameters, passed to the
module. The returned DataFrame is passed and added to the dataFramesHandler.
At last, the GUI is updated to contain the created DataFrame.

Figure 3.2: Data flow for feature extraction.

In this section several modules are discussed. These modules are able to
extract different types of features to show the range of possibilities ETA offer.
We show a peak detection algorithm, Principal Component Analysis (PCA) and
the Simple Moving Average (SMA).

Figure 3.3: Example of a Simple Moving Average.

SMA Simple Moving average or rolling mean has many application and is often
used in finance [14, 23, 44] for trend analysis. It smoothens the time series
and can be used to detect trends. Our implementation relies on Pandas
built in function to apply rolling calculations. Different windows can be
used by passing values within the GUI. To calculate the moving average,
the module uses the formula as can be seen in equation 3.1. An example

31

plot of a SMA with different length of the sliding window can be seen in
Figure 3.3. The calculation works by taking the average over the last m
values.

SMA =
1

n

n−1∑
i=0

pm−1 (3.1)

Peak Detection A subfield of motif discovery is Peak Detection. The goal of
this module is to show that motif discovery modules could be implemented
in ETA. Our module creates a new DataFrame based on the peaks of the
time series. Several features are considered such as the duration of the
peak, the height and the area under the curve.

Our module offers several options. First, the selection of peak detection is
necessary. We provide two options for peaks: a method from SciPy based
on Continuous Wavelet Transformation [11] and a Python implementation
of the Matlab Peak Detection algorithm [4]. The selection is done within
the GUI.

After the peaks are detected, the features from these peaks can be derived.
To calculate these features a baseline needs to be established. This base-
line is calculated based on the mean value of the time series. This implies
that the time series should not contain an ascending or descending trend.
A baseline can be seen in Figure 3.4.

Figure 3.4: A baseline for a time series.

After the baseline has been established. The width of the peak can be
calculated. We first check the crossings between the baseline and the time

32

series. These crossings are used as left and right bound of the peak. Finally
we utilize the composite trapezoidal rule to calculate the area under the
peak. This calculation is done by a function inside NumPy.

PCA Principal Component Analysis (PCA) [51] is implemented in ETA to
show that feature extraction is possible inside ETA. Our module uses
the implementation from Scikit-learn which is based on [66]. The user
can change the amount of components within the GUI. The generated
components are placed inside the current or new DataFrame.

3.6 Representation methods

As discussed in chapter 2, different time series representation methods exist.
Representation methods are an important part in time series analysis and are
supported in our application. Representation methods can reduce the amount
of features necessary to describe the data. Our implementation focuses on cre-
ating a framework for deriving new features and translate time series in other
representation methods. Different modules are included to show a variety of
possibilities. Because of the modularity of ETA, expanding the application with
new modules can easily be achieved.

PAA Piecewise Aggregate Approximation as presented by Keoghis a method
to change the representation of the time series. The algorithm itself is
explained in section 2.1.1.1 of this thesis. The parameters of the algorithm
can be adjusted through the GUI of the application. The module offers
options to declare the size of the sliding window and an option to make
the resulting data the same size as the original DataFrame. The latter
functionality can be used to plot the generated values in the same Figure
as the original time series. This functionality can be seen in Figure 2.2.

Figure 3.5: Available options for SAX.

SAX Another time series representation method is Symbolic Aggregate ap-
proXimation as presented by Lin [38]. The algorithm is described in sec-

33

tion 2.1.1.1. The module features with a number of parameterss such as
alphabet size and the size of the sliding window. An illustration of this
GUI interface can be found in Figure 3.5. This module uses a look-up table
for the letters of the alphabet to provide fast calculations.

3.7 Machine learning

Machine learning can be considered as the last step in the knowledge discovery
process. Previous steps such as preprocessing and feature extraction are applied
to support machine learning methods by providing useful data. The proposed
framework offers a wide variety of functionalities and provides several modules
to show the possibilities ETA could offer.

As described in section 2.3, several types of machine learning are proposed
in the literature. Both supervised and unsupervised learning modules can be
created inside ETA. The workflow for executing these modules depends on the
desired data mining task. In supervised learning, a typical workflow could look
like this:

1. Split data in training and test.
ETA offers the ability to apply a standard train/test-split on the data.
Splitting the data in two separate sets helps to prevent overfitting.

2. Load model or train model on test set.
Training the model needs te be done on the train data set. Several pa-

rameters can be adjusted from inside the GUI. Instead of creating a new
model, a previously created model can also be loaded.

3. Use model to predict values on test set.
The created model in step 2 can be used to predict values. The prediction

is added as a new column to the target DataFrame.

4. Evaluate the model by using metrics.
In supervised learning, one can compare the values that are predicted by

the model and the real values. Metrics can be used to quantify the quality
of the model. Several metrics can be considered depending on the applied
data mining task. Examples of metrics are accuracy, mean squared error
or precision. For each module, the returned metrics need to be defined.
After applying step 3, a window containing the defined metrics is shown.

5. Adjust model based on evaluation.
Evaluating the metrics can help adjusting the model. It helps to detect
overfitting, to check if the model works as expected or to detect flaws. If
the model is not performing as desired, step 2 can be redone with different
parameters or even with a different algorithm. Evaluation of the model as
explained in step 4 needs to be redone as well to measure the outcome of
the changed model.

34

6. Save model for future use.
Finally the created model can be saved as a pickle for future use.

The described typical workflow for classification and regression tasks can be
applied inside the proposed framework. The provided options can be seen in
Figure 3.6. A short tutorial on how to create a new machine learning module
can be found in Appendix A.

Figure 3.6: Options provided for classification and regression modules.

Unsupervised learning problems require a different approach. As labels are
not available, other metrics are required to quantify the quality of the cluster-
ing. Another difference is the lacking ability of saving a generated model. Within
ETA, the clustering algorithm can be executed. The algorithm parameters can
be set within the GUI. After applying clustering, an additional column is added
to the DataFrame containing the cluster labels for each measurement.

The most important difference to supervised learning (inside ETA) lies in
the fact that no model is generated for future use and no splitting is done on
the data.

The flow of the data can be compared with the feature extraction data flow,
which can be seen in 3.5. The data is passed along multiple classes. Finally the
GUI is updated containing the new DataFrame.

We show two clustering algorithms, one classification algorithm and one
algorithm. We are aware that these modules may not cover all the desired func-
tionality. Of course, additional modules can be added by the user.

K-Means K-means is a clustering algorithm based on the Euclidean distance
to the cluster centroid. The algorithm randomly places a n number of
centroids. It iteratively defines the nearest cluster centroid for each mea-
surements and calculates the new centroid for each cluster based on the
measurements currently assigned to that cluster . If the cluster allocation
does no longer change, we can say the algorithm has converged. Our im-
plementation relies on Sci-kit learn. Sci-kit learn offers a broad package of
clustering algorithms as can be seen in Figure 3.7.

35

Figure 3.7: An overview of clustering methods inside scikit-learn from [59].

Spectral clustering Figure 3.7 shows that Spectral Clustering is another clus-
tering method offered by scikit-learn. This method can be used when the
structure of the clusters is non-convex. This means that the lines between
points inside the cluster does not always lie inside the cluster.

CART CART is a decision tree algorithm which generates the model based on
entropy from the information theory. CART supports the use of numeri-
cal values. Our implementation uses scikit-learn to build the model. The
classifier requires no additional parameters. Several metrics are returned
to quantify the quality of the generated model. Supported metrics include
accuracy, recall, F1 score and the confusion matrix.

LassoLARS regression ETA also implements a regression algorithm to com-
plete the list of machine learning modules. We implemented this algorithm
to prove thatregression algorithms can be implemented in ETA. Least An-
gle Regression (LARS) is a method we can implement to prove this. Again,
we use scikit-learn because they already offer an implementation of this
algorithm. Interesting in this implementation is that cross validation is
built in (LassoCV function in Sci-kit learn). Little parameters have to be
set within the GUI. Only the option to normalize and the desired target
are given. Two metrics are returned to show the quality of the model: R2

and the MSE.

36

Chapter 4

Conclusion and future work

Literature study shows that no platform offers all time series relevant functional-
ities. Research shows that most tools focus on only a few specific functionalities.

To provide a solution to this problem, we propose ETA (Environment for
Time series Analysis). ETA is a platform which aims to provide a bigger pic-
ture when analyzing time series. Our tool adopts a modular approach. Several
modules are provided since the first release. Modules for preprocessing, feature
extraction, dimensionality reduction and machine learning can be easily created.
Our framework is delivered with some standard modules. Example modules in-
clude Principal Component Analysis, a Peak Detection algorithm and machine
learning algorithms such as CART, K-means or regression. Different time series
representation methods such as SAX and PAA are also implemented and can
help reducing the dimensionality of the data. With the use of Python, widely
used packages such as scikit-learn and Pandas can be easily utilized inside the
application. The platform is offering the complete pipeline from file loading till
machine learning model generation.

Our platform fills the gap of a time series analysis platform.

While our approach covers the wide range of tasks related to time series,
several discussions exist. FAP proposes a similar approach. We decided to de-
velop our own platform because of the preference of using Python. While Python
offers machine learning frameworks such as scikit-learn, it proves to be slower
than other languages when handling large quantities of data. In our opinion this
drawback can be ignored by considering the flexibility of the available machine
learning modules. Open source libraries such as Pandas and Numpy often use
other languages in for calculations to speed up the prices. Another point of dis-
cussion is the focus of this thesis. This thesis offers a more high level background
of machine learning techniques, the platform and time series specific issues. This
thesis aims to give a more broad overview instead of a more in-depth knowl-
edge. This choice is motivated by the importance to understand the necessity
of the tool and the offered functionality. Not every algorithm is included in the
platform. Our modular approach covers this argument and we encourage the

37

user to expand the application with their own modules.

Research is never finished and so is research in time series. As time series
research progresses, so should our platform. We can derive several approaches
for improving our framework, both development and research.

The modular nature of our application makes expanding the platform sim-
ple. Future directions could focus on implementing new algorithms inside ETA.
Especially motif discovery algorithm development is encouraged. Several algo-
rithms exist for finding similar sub sequences in time series such as [34] and [47].
Next to expanding the application with modules, the core could be expanded
as well. The current application supports the analysis of off-line data sets. As
time series is generated in real time, adding stream functionality could provide
an interesting opportunity.

Ìn future research, the scalability of the platform can be researched. No
research has been done on the performance of ETA when working with large
time series. Research should show us the performance of the application when
stressed by big data sets.

38

Bibliography

[1] Time series analysis and forecasting with weka. http://wiki.pentaho.

com/display/DATAMINING/Time+Series+Analysis+and+Forecasting+

with+Weka. Accessed: 2016-07-10.

[2] Ziv Bar-Joseph. Analyzing time series gene expression data. Bioinformat-
ics, 20(16):2493–2503, 2004.

[3] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard
Seeger. The r*-tree: an efficient and robust access method for points and
rectangles. In ACM SIGMOD Record, volume 19, pages 322–331. Acm,
1990.

[4] Eli Billauer. peakdet: Peak detection using matlab. Eli Billauer’s home
page, 2008.

[5] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[6] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[7] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen.
Classification and regression trees. CRC press, 1984.

[8] Sung-Hyuk Cha. Comprehensive survey on distance/similarity measures
between probability density functions. City, 1(2):1, 2007.

[9] David L Davies and Donald W Bouldin. A cluster separation measure.
IEEE transactions on pattern analysis and machine intelligence, (2):224–
227, 1979.

[10] NumPy Developers. Numpy. NumPy Numpy. Scipy Developers, 2013.

[11] Pan Du, Warren A Kibbe, and Simon M Lin. Improved peak detection in
mass spectrum by incorporating continuous wavelet transform-based pat-
tern matching. Bioinformatics, 22(17):2059–2065, 2006.

[12] Joseph C Dunn. A fuzzy relative of the isodata process and its use in
detecting compact well-separated clusters. 1973.

39

http://wiki.pentaho.com/display/DATAMINING/Time+Series+Analysis+and+Forecasting+with+Weka
http://wiki.pentaho.com/display/DATAMINING/Time+Series+Analysis+and+Forecasting+with+Weka
http://wiki.pentaho.com/display/DATAMINING/Time+Series+Analysis+and+Forecasting+with+Weka

[13] Bradley Efron, Trevor Hastie, Iain Johnstone, Robert Tibshirani, et al.
Least angle regression. The Annals of statistics, 32(2):407–499, 2004.

[14] Craig A Ellis and Simon A Parbery. Is smarter better? a comparison of
adaptive, and simple moving average trading strategies. Research in Inter-
national Business and Finance, 19(3):399–411, 2005.

[15] Philippe Esling and Carlos Agon. Time-series data mining. ACM Comput-
ing Surveys (CSUR), 45(1):12, 2012.

[16] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A
density-based algorithm for discovering clusters in large spatial databases
with noise. In Kdd, volume 96, pages 226–231, 1996.

[17] Vladimir Estivill-Castro. Why so many clustering algorithms: a position
paper. ACM SIGKDD explorations newsletter, 4(1):65–75, 2002.

[18] Chris Fraley and Adrian E Raftery. How many clusters? which clustering
method? answers via model-based cluster analysis. The computer journal,
41(8):578–588, 1998.

[19] Yoav Freund, Robert Schapire, and N Abe. A short introduction to boost-
ing. Journal-Japanese Society For Artificial Intelligence, 14(771-780):1612,
1999.

[20] Todd R Golub, Donna K Slonim, Pablo Tamayo, Christine Huard, Michelle
Gaasenbeek, Jill P Mesirov, Hilary Coller, Mignon L Loh, James R Down-
ing, Mark A Caligiuri, et al. Molecular classification of cancer: class
discovery and class prediction by gene expression monitoring. science,
286(5439):531–537, 1999.

[21] Thore Graepel. Statistical physics of clustering algorithms. Technical Re-
port, 171822, 1998.

[22] Erico Guizzo. How google’s self-driving car works. IEEE Spectrum Online,
October, 18, 2011.

[23] Abeyratna Gunasekarage and David M Power. The profitability of moving
average trading rules in south asian stock markets. Emerging Markets
Review, 2(1):17–33, 2001.

[24] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian H Witten. The weka data mining software: an up-
date. ACM SIGKDD explorations newsletter, 11(1):10–18, 2009.

[25] Fredric J Harris. On the use of windows for harmonic analysis with the
discrete fourier transform. Proceedings of the IEEE, 66(1):51–83, 1978.

[26] John D Hunter et al. Matplotlib: A 2d graphics environment. Computing
in science and engineering, 9(3):90–95, 2007.

40

[27] Han Jiawei and Micheline Kamber. Data mining: concepts and techniques.
San Francisco, CA, itd: Morgan Kaufmann, 5, 2001.

[28] jMotif Github. Z-normalization of time series, 2016. [Online; accessed
August 20, 2016].

[29] Eric Jones, Travis Oliphant, Pearu Peterson, et al. Scipy: Open source
scientific tools for python, 2001. URL http://www. scipy. org, 73:86, 2015.

[30] Eamonn Keogh, Kaushik Chakrabarti, Michael Pazzani, and Sharad
Mehrotra. Dimensionality reduction for fast similarity search in large time
series databases. Knowledge and information Systems, 3(3):263–286, 2001.

[31] Eamonn Keogh, Selina Chu, David Hart, and Michael Pazzani. Segmenting
time series: A survey and novel approach. Data mining in time series
databases, 57:1–22, 2004.

[32] Eamonn Keogh and Shruti Kasetty. On the need for time series data min-
ing benchmarks: a survey and empirical demonstration. Data Mining and
knowledge discovery, 7(4):349–371, 2003.

[33] Vladimir Kurbalija, Miloš Radovanović, Zoltan Geler, and Mirjana
Ivanović. A framework for time-series analysis. In International Conference
on Artificial Intelligence: Methodology, Systems, and Applications, pages
42–51. Springer, 2010.

[34] Hoang Thanh Lam, Toon Calders, and Ninh Pham. Online discovery of
top-k similar motifs in time series data. In SDM, pages 1004–1015. SIAM,
2011.

[35] T Warren Liao. Clustering of time series data—a survey. Pattern recogni-
tion, 38(11):1857–1874, 2005.

[36] M. Lichman. UCI machine learning repository, 2013.

[37] Jessica Lin, Eamonn Keogh, Stefano Lonardi, Jeffrey P Lankford, and
Daonna M Nystrom. Viztree: a tool for visually mining and monitoring
massive time series databases. In Proceedings of the Thirtieth international
conference on Very large data bases-Volume 30, pages 1269–1272. VLDB
Endowment, 2004.

[38] Jessica Lin, Eamonn Keogh, Li Wei, and Stefano Lonardi. Experiencing sax:
a novel symbolic representation of time series. Data Mining and knowledge
discovery, 15(2):107–144, 2007.

[39] James MacQueen et al. Some methods for classification and analysis of
multivariate observations. In Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, volume 1, pages 281–297. Oakland,
CA, USA., 1967.

41

[40] Ujjwal Maulik and Sanghamitra Bandyopadhyay. Performance evaluation
of some clustering algorithms and validity indices. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 24(12):1650–1654, 2002.

[41] DG Mayer and DG Butler. Statistical validation. Ecological modelling,
68(1-2):21–32, 1993.

[42] Wes McKinney et al. Data structures for statistical computing in python.
In Proceedings of the 9th Python in Science Conference, volume 445, pages
51–56, 2010.

[43] Peter McLachlan, Tamara Munzner, Eleftherios Koutsofios, and Stephen
North. Liverac: interactive visual exploration of system management time-
series data. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pages 1483–1492. ACM, 2008.

[44] Massoud Metghalchi, Juri Marcucci, and Yung-Ho Chang. Are moving
average trading rules profitable? evidence from the european stock markets.
Applied Economics, 44(12):1539–1559, 2012.

[45] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York,
NY, USA, 1 edition, 1997.

[46] Abdullah Mueen. Time series motif discovery: dimensions and applications.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
4(2):152–159, 2014.

[47] Abdullah Mueen, Eamonn Keogh, and Nima Bigdely-Shamlo. Finding time
series motifs in disk-resident data. In 2009 Ninth IEEE International Con-
ference on Data Mining, pages 367–376. IEEE, 2009.

[48] Meinard Müller. Dynamic time warping. Information retrieval for music
and motion, pages 69–84, 2007.

[49] John A Nelder and R Jacob Baker. Generalized linear models. Encyclopedia
of statistical sciences, 1972.

[50] Pranav Patel, Eamonn Keogh, Jessica Lin, and Stefano Lonardi. Mining
motifs in massive time series databases. In Data Mining, 2002. ICDM 2003.
Proceedings. 2002 IEEE International Conference on, pages 370–377. IEEE,
2002.

[51] Karl Pearson. Principal components analysis. The London, Edinburgh and
Dublin Philosophical Magazine and Journal, 6(2):566, 1901.

[52] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python.
Journal of Machine Learning Research, 12(Oct):2825–2830, 2011.

42

[53] Jos Polfliet. Pandas-profiling. https://github.com/JosPolfliet/

pandas-profiling, 2016.

[54] David Stephen Geoffrey Pollock, Richard C Green, and Truong Nguyen.
Handbook of time series analysis, signal processing, and dynamics. Aca-
demic Press, 1999.

[55] J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106,
1986.

[56] J Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.

[57] Lior Rokach and Oded Maimon. Clustering methods. In Data mining and
knowledge discovery handbook, pages 321–352. Springer, 2005.

[58] Arthur L Samuel. Some studies in machine learning using the game of
checkers. IBM Journal of research and development, 3(3):210–229, 1959.

[59] Scikit learn. Comparison of clustering methods available in scikit, 2016.
[Online; accessed August 20, 2016].

[60] Carlos N Silla Jr and Alex A Freitas. A survey of hierarchical classifi-
cation across different application domains. Data Mining and Knowledge
Discovery, 22(1-2):31–72, 2011.

[61] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, et al. Mastering the game of go with deep
neural networks and tree search. Nature, 529(7587):484–489, 2016.

[62] Marina Sokolova and Guy Lapalme. A systematic analysis of performance
measures for classification tasks. Information Processing & Management,
45(4):427–437, 2009.

[63] Stephen J Taylor. Modelling financial time series. 2007.

[64] Teach Tough Concepts: Frequency Domain in Measurements. Comparison
between time and frequency domain, 2016. [Online; accessed August 20,
2016].

[65] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society. Series B (Methodological), pages 267–288,
1996.

[66] Michael E Tipping and Christopher M Bishop. Probabilistic principal com-
ponent analysis. Journal of the Royal Statistical Society: Series B (Statis-
tical Methodology), 61(3):611–622, 1999.

[67] Grigorios Tsoumakas and Ioannis Katakis. Multi-label classification: An
overview. Dept. of Informatics, Aristotle University of Thessaloniki,
Greece, 2006.

43

https://github.com/JosPolfliet/pandas-profiling
https://github.com/JosPolfliet/pandas-profiling

[68] Guido Van Rossum et al. Python programming language. In USENIX
Annual Technical Conference, volume 41, 2007.

[69] Yurtman Aras. Automated evaluation of physical therapy exercises using
multi-template dynamic time warping on wearable sensor signals, 2016.
[Online; accessed August 20, 2016].

[70] Jian Zhao, Fanny Chevalier, Emmanuel Pietriga, and Ravin Balakrishnan.
Exploratory analysis of time-series with chronolenses. IEEE Transactions
on Visualization and Computer Graphics, 17(12):2422–2431, 2011.

[71] Xiaojin Zhu. Semi-supervised learning literature survey. Technical Report
1530, Computer Sciences, University of Wisconsin-Madison, 2005.

44

Appendix A

Adding your own module.

For our application we decided to use a modular approach. Therefore it is pos-
sible to implement and use your own algorithms inside the framework. This
document shows how to successfully create a module. We describe the conven-
tions applied by the framework and finally we show an example of a module.

Depending on the type of module you are creating it is required to apply a
standardized class name.

Our framework relies on some standard functions. These functions are manda-
tory for each module.

• getName()

This function should return a string containing the name of the module.

• getOptions()

This function should return a dict containing the available parameters.
These parameters are automatically included inside the GUI. Below we
propose a list with possible GUI elements and how to implement them.

– Dropdown
To create a dropdown menu one should return a list containing the
dropdown items. An example dict entry:
’kernel’: [’gaussian’,’tophat’,’epanechnikov’],

– A dropdown containing columns
To create a dropdown menu containing the columns of the current

Table A.1: Class naming for modules per type.

Type Class name
Preprocessing preProcess_Module()

Feature extraction featureExtraction_Module()

Machine learning machineLearning_Module()

Plot Plot_Module()

45

DataFrame it is necessary to return a string with the word columns.
A dict entry for a dropdown menu containing columns:
’column_1’: ’columns’,

– Input field
To create an input field it is necessary to return a string with the
word float. A dict entry for an input field:
’clusters’: ’float’,

• getOptionDefaults()

This function should return a dict containing the default options for the
GUI. The key should be the same as the key in getOptions()

• run(self,DataFrames,parameters=None)

This function should contain the algorithm. It receives the DataFrames
and the input parameters from the framework. A DataFrame should be
returned to the platform.

– DataFrames This is a dict containing the DataFrames corresponding
to currently loaded data. This dict contains two entries:

∗ DataFrames[’maskedData’]

This DataFrame only contains the selected columns. A possible
application for this DataFrame could be to apply a module to
multiple selected rows.

∗ DataFrames[’data’]

This contains the complete dataset including the columns not
selected.

– parameters

This contains a dict with all the parameters returned inside

These functions shown above are standard for all types of algorithms. For
machineLearning_Module(), two situations can be derived. First, the sit-
uation with unsupervised learning. For a unsupervised learning algorithm
(such as clustering) the run(self,DataFrames,parameters=None) func-
tion could be called. This function should return a DataFrame containing
all the measurements and their corresponding cluster.

Supervised learning inside ETA offers more functions. For example, the
generated model can be saved for later use. Several other functions need
to be implemented to facilitate this functionality.

– fit(dataFrames,parameters=None)

This function is used to create the model. In a typical machine learn-
ing environment the train set is used to train the model. The complete
model should be returned to the platform.

46

– predict(dataFrames,model)

This function is used to predict values by using the model. Before
applying the model, a model needs to be loaded. This can be done
by loading a previously generated model or by generating one. The
model loaded in the system is passed through the model parameter.
The function should return a dataFrame containing the predicted
values.

– metrics(yPredicted,yTest)

Metrics are used to quantify the quality of the model. ETA offers the
functionality to display the metrics inside the program. To calculate
this metrics the yPredicted and the yTest parameters provide the
predicted and the real values. Again, the results should be returned
as a dict.

It is important that this function returns a DataFrame containing the
new data. The framework automatically checks if the number of rows
corresponds to the source DataFrame. If this is not the case it asks the
user if a new DataFrame needs to be created.

In table A.2 we can see an overview of modules and their file locations.The
framework automatically searches for *.py files at these locations.

Table A.2: Module locations depending on their type.

Type Module location
Preprocessing /modules/preprocessing/*.py

Feature extraction /modules/featureExtraction/*.py

Machine learning classification /modules/machineLearning/classification/*.py

Machine learning clustering /modules/machineLearning/clustering/*.py

Machine learning regression /modules/machineLearning/regression/*.py

Machine learning miscellaneous /modules/machineLearning/miscellaneous*.py

Plot /modules/plot/*.py

import pandas as pd

from sklearn.neighbors.kde import KernelDensity

class featureExtraction_Module():

def __init__(self):

pass

def getName(self):

return "Density Estimator"

def getOptions(self):

settings = {

’algorithm’: [’kd_tree’,’ball_tree’,’auto’],

’kernel’:[’gaussian’,

’tophat’,’epanechnikov’,’exponential’,’linear’, ’cosine’]↪→

47

}

return settings

def run(self,dataFrames,parameters=None):

maskedData = dataFrames[’maskedData’]

newData = pd.DataFrame()

for column in maskedData:

kde =

KernelDensity(algorithm=parameters[’algorithm’],

kernel=parameters[’kernel’]).fit(maskedData[column].as_matrix().reshape(-1,

1))

↪→

↪→

↪→

newData[column] =

kde.score_samples(maskedData[column].as_matrix().reshape(-1,

1))

↪→

↪→

return newData

48

Appendix B

Technical documentation.

Below we find the technical documentation of the software. Unfortunately not
every function has been successfully documented. This will be done in the near
future. For now, the most important class: guiHandler has been included. Of
course, the code itself is well commented.

49

ETA Documentation
Release 1.0

L.K. Hopman

Aug 26, 2016

CONTENTS

1 Indices and tables 7

Python Module Index 9

Index 11

i

ii

ETA Documentation, Release 1.0

Contents:

class core.guiHandler.Handler(gui)
Attaches signals from GTK to the program.

addNewDataFrame(*args)

openFileDialog(*args)

openRecent(*args)

printData(*args)

printMaskedData(*args)

removeColumn(*args)

removeDataFrame(*args)

runMissingRows(*args)

runMissingVis(*args)

runPandasProfiling(*args)

saveFileDialog(*args)

selectAll(*args)

selectInvert(*args)

selectNone(*args)

splitTrainTest(*args)

class core.guiHandler.guiHandler
Class handling the GUI for the the application. Inherits from filesHandler and plotHandler

addNewDataFrame()
This function adds a new df named usergenerated_%time%. It adds the dataframe to the dropdown. :re-
turns: None

askNewDataFrame()
This function creates a dialog asking if the user wants to create a new DataFrame.

Returns None

clearListColumns()
This function clears the list containing the columns

Returns None.

columnsMaskerActive(*args)
This function handles the selection of the data.

Parameters

• buttonActive (button.) – The button concerning the column.

• column (str.) – The column to remove or add to selected data.

Returns None.

createOptionLabel(option, grid)

fillListColumns(dataObject)
Fill the columns list with column

Parameters dataObject (DataFrame.) – The data to fill the columnslist with

CONTENTS 1

ETA Documentation, Release 1.0

Returns None

fillMenuFeatureExtractionModules()
This function fills the feature extraction menu with the values loaded inside self.extract

fillMenuMachineLearningModules()
This function fills the machine learning menu with the values loaded inside self.learning

Returns None – the return code.

fillMenuPlotModules()
This function fills the plot menu with modules available inside self.plot

Returns None.

fillMenuPreprocessingModules()
This function fills the preprocessing menu with modules available inside self.pre

Returns None.

fillMenuProfilingModules()
This function fills the profiling menu with modules available inside self.profile

Returns None.

getFeatureExtractionModules()
This function creates the self.extract global and gets all the feature extraction modules. :returns: list – a
list containing feature extraction modules.

getMachineLearningModules()
This function creates the self.learning global and gets all the machine learning modules. :returns: list – a
list containing machine learning modules.

getMetrics(*args)
This functions retrieves the metrics from a Machine learning module and shows it in the GUI.

Parameters module (str.) – The module to use.

Returns None

getPlotModules()
This function creates the self.plot global and gets all the plot modules. :returns: list – a list containing plot
modules.

getPreProcessingModules()
This function creates the self.pre global and gets all the preprocessing modules. :returns: list – a list
containing preprocessing modules.

getProfilingModules()
This function creates the self.profile global and gets all the profiling modules. :returns: list – a list con-
taining profiling modules.

getTargetColumn()

initMainScreen()
This function initializes the main window and fills all the submenus with the availablemodules :returns:
None

loadFile(dialogData=None)
This function opens openFileChooserWindow and handles the returned list. It loads the data in a new df.
:returns: None.

loadModel(*args)

2 CONTENTS

ETA Documentation, Release 1.0

onDataFrameDropdownChange(*args)
This function is called on dropdown menu change. It fills the list of columns with the selected DataFrame.

Parameters combobox (combobox.) – The name to use.

Returns None.

openFileChooserWindow()
This opens the file chooser window for opening a file. :returns: list – containing filename(str), sepera-
tor(str) and header (bool).

openModuleOptions(*args)
This function opens the module options if options exist for this module.

Parameters

• optionType – The type of module (‘extract’,’pre’,’plot’,’learning’)

• module – The module to load

Returns None

openRecent()

plotMissingRows()
This function runs the missing rows script which visualizes the missing rows.

Returns None

Raises ValueError, BaseException

predict(*args)

printData()
This prints the selected DataFrame in the terminal

Returns None

printMaskedData()
This prints the selected DataFrame and selected columns in the terminal

Returns None

removeColumn()
This function removes a column from the dataFrame and updates the GUI column list.

Returns None

removeDataFrame()
This function removes the current selected df. :returns: None

runMissingVis()
This function runs the MissingVis algorithm

Returns None

Raises BaseException, KeyError

runOptions(*args)
This function gets all setted parameters and runs the module.

Parameters inputs (list.) – The inputs to use as parameter

Returns None

runPandasProfiling()
This runs pandas-profiler on the selected data

CONTENTS 3

ETA Documentation, Release 1.0

Returns None

Raises AttributeError, KeyError

saveFile()
This function opens a saveFileDialog and eventually saves the selected data. :returns: None.

saveModel(*args)

selectAll()
This selects all columns in the selected dataFrame

Returns None

selectInvert()
This function inverts the selection of all the columns

Returns None

selectNone()
This function deselects all columns in the selected dataFrame

Returns None

showMessage(title, message, messageType=’info’)
This creates a GUI dialog containing an info message

Parameters

• title (str.) – The title of the window

• message (str.) – The error message

Returns None

showMetrics(title, metrics)

splitTrainTest()

updateDataFrameDropdown()
This function retrieves the current DataFrames and fill the dropdown menus with these DataFrames. :re-
turns: None

class core.dataFramesHandler.dataFramesHandler

addColumn(dfName, column, data)

addDataFrame(name, df)

addToMaskedData(dfName, column)

copyDataToMasked(dfName)

createEmptyDataframe(name)

getData(dfName)

getDataFrames(dfName)

getListOfFrames()

getMaskedData(dfName)

removeColumn(dfName, column)

removeDataFrame(dfName)

removeFromMaskedData(dfName, column)

4 CONTENTS

ETA Documentation, Release 1.0

resetIndices(name)

splitTrainTest(test_size, randomized, currentDataFrameName)

class core.featureExtractionHandler.featureExtractionHandler(dfHandler, guiObject)

extract(parameters=None)

getOptionDefaults()

getOptions()

listModules()

loadModule(module)

runModule(parameters, ready)

class core.filesHandler.filesHandler
Class for handling the IO operations

getData()
This function returns the data :returns: list – Containing maskedData and Data

getMaskedData()
This function returns the masked data :returns: list – Containing maskedData

getTimeData()

loadFile(dialogData)
This loads the file into a dataframe. :returns: DataFrame – returns a dataframe containing the file

loadModel(filename)
This function loades the selected model.

Parameters filename (str.) – The path to the file to load

Returns Model

saveMaskedData(df, saveData)
This function saves the selected data to the disk

Parameters

• df (DataFrame.) – The dataframe to save

• saveData (list.) – Information such as filepath

Returns None

saveModel(model, filename)
This function saves the model to the disk

Parameters

• model (machine learning model.) – The model to save

• filename (str.) – Filepath to save the file to

Returns None

class core.machineLearningHandler.machineLearningHandler(dfHandler, guiObject)
Class for handling the the machine learning modules

cluster(parameters, ready)

fit(parameters, ready)

CONTENTS 5

ETA Documentation, Release 1.0

getMetrics()

getModel()

getName()

getOptionDefaults()

getOptions()

getResultOptions()

learn(parameters=None)

listClassificationModules()

listClusteringModules()

listRegressionModules()

loadModel(model)

loadModule(module)

predict()

runClustering(parameters=None)

class core.plotHandler.plotHandler(dfHandler, guiObject)

createPlotWindow()

createToolbarWindow()

getOptions()

getParameters()

getReturned(returned)

listModules()

loadModule(module)

plot(*parameters)

plotCorrelationMatrix(data)

removePage(widget, child)

setOptions(parameters)

update(widget)

class core.preProcessingHandler.preProcessingHandler(dfHandler, guiObject)

getOptionDefaults()

getOptions()

listModules()

loadModule(module)

preProcess(parameters=None)

runModule(parameters)

6 CONTENTS

CHAPTER

ONE

INDICES AND TABLES

• genindex

• modindex

• search

7

ETA Documentation, Release 1.0

8 Chapter 1. Indices and tables

PYTHON MODULE INDEX

c
core.dataFramesHandler, 4
core.featureExtractionHandler, 5
core.filesHandler, 5
core.guiHandler, 1
core.machineLearningHandler, 5
core.plotHandler, 6
core.preProcessingHandler, 6

9

ETA Documentation, Release 1.0

10 Python Module Index

INDEX

A
addColumn() (core.dataFramesHandler.dataFramesHandler

method), 4
addDataFrame() (core.dataFramesHandler.dataFramesHandler

method), 4
addNewDataFrame() (core.guiHandler.guiHandler

method), 1
addNewDataFrame() (core.guiHandler.Handler method),

1
addToMaskedData() (core.dataFramesHandler.dataFramesHandler

method), 4
askNewDataFrame() (core.guiHandler.guiHandler

method), 1

C
clearListColumns() (core.guiHandler.guiHandler

method), 1
cluster() (core.machineLearningHandler.machineLearningHandler

method), 5
columnsMaskerActive() (core.guiHandler.guiHandler

method), 1
copyDataToMasked() (core.dataFramesHandler.dataFramesHandler

method), 4
core.dataFramesHandler (module), 4
core.featureExtractionHandler (module), 5
core.filesHandler (module), 5
core.guiHandler (module), 1
core.machineLearningHandler (module), 5
core.plotHandler (module), 6
core.preProcessingHandler (module), 6
createEmptyDataframe() (core.dataFramesHandler.dataFramesHandler

method), 4
createOptionLabel() (core.guiHandler.guiHandler

method), 1
createPlotWindow() (core.plotHandler.plotHandler

method), 6
createToolbarWindow() (core.plotHandler.plotHandler

method), 6

D
dataFramesHandler (class in core.dataFramesHandler), 4

E
extract() (core.featureExtractionHandler.featureExtractionHandler

method), 5

F
featureExtractionHandler (class in

core.featureExtractionHandler), 5
filesHandler (class in core.filesHandler), 5
fillListColumns() (core.guiHandler.guiHandler method),

1
fillMenuFeatureExtractionModules()

(core.guiHandler.guiHandler method), 2
fillMenuMachineLearningModules()

(core.guiHandler.guiHandler method), 2
fillMenuPlotModules() (core.guiHandler.guiHandler

method), 2
fillMenuPreprocessingModules()

(core.guiHandler.guiHandler method), 2
fillMenuProfilingModules() (core.guiHandler.guiHandler

method), 2
fit() (core.machineLearningHandler.machineLearningHandler

method), 5

G
getData() (core.dataFramesHandler.dataFramesHandler

method), 4
getData() (core.filesHandler.filesHandler method), 5
getDataFrames() (core.dataFramesHandler.dataFramesHandler

method), 4
getFeatureExtractionModules()

(core.guiHandler.guiHandler method), 2
getListOfFrames() (core.dataFramesHandler.dataFramesHandler

method), 4
getMachineLearningModules()

(core.guiHandler.guiHandler method), 2
getMaskedData() (core.dataFramesHandler.dataFramesHandler

method), 4
getMaskedData() (core.filesHandler.filesHandler

method), 5
getMetrics() (core.guiHandler.guiHandler method), 2
getMetrics() (core.machineLearningHandler.machineLearningHandler

method), 5

11

ETA Documentation, Release 1.0

getModel() (core.machineLearningHandler.machineLearningHandler
method), 6

getName() (core.machineLearningHandler.machineLearningHandler
method), 6

getOptionDefaults() (core.featureExtractionHandler.featureExtractionHandler
method), 5

getOptionDefaults() (core.machineLearningHandler.machineLearningHandler
method), 6

getOptionDefaults() (core.preProcessingHandler.preProcessingHandler
method), 6

getOptions() (core.featureExtractionHandler.featureExtractionHandler
method), 5

getOptions() (core.machineLearningHandler.machineLearningHandler
method), 6

getOptions() (core.plotHandler.plotHandler method), 6
getOptions() (core.preProcessingHandler.preProcessingHandler

method), 6
getParameters() (core.plotHandler.plotHandler method),

6
getPlotModules() (core.guiHandler.guiHandler method),

2
getPreProcessingModules() (core.guiHandler.guiHandler

method), 2
getProfilingModules() (core.guiHandler.guiHandler

method), 2
getResultOptions() (core.machineLearningHandler.machineLearningHandler

method), 6
getReturned() (core.plotHandler.plotHandler method), 6
getTargetColumn() (core.guiHandler.guiHandler

method), 2
getTimeData() (core.filesHandler.filesHandler method), 5
guiHandler (class in core.guiHandler), 1

H
Handler (class in core.guiHandler), 1

I
initMainScreen() (core.guiHandler.guiHandler method),

2

L
learn() (core.machineLearningHandler.machineLearningHandler

method), 6
listClassificationModules()

(core.machineLearningHandler.machineLearningHandler
method), 6

listClusteringModules() (core.machineLearningHandler.machineLearningHandler
method), 6

listModules() (core.featureExtractionHandler.featureExtractionHandler
method), 5

listModules() (core.plotHandler.plotHandler method), 6
listModules() (core.preProcessingHandler.preProcessingHandler

method), 6

listRegressionModules() (core.machineLearningHandler.machineLearningHandler
method), 6

loadFile() (core.filesHandler.filesHandler method), 5
loadFile() (core.guiHandler.guiHandler method), 2
loadModel() (core.filesHandler.filesHandler method), 5
loadModel() (core.guiHandler.guiHandler method), 2
loadModel() (core.machineLearningHandler.machineLearningHandler

method), 6
loadModule() (core.featureExtractionHandler.featureExtractionHandler

method), 5
loadModule() (core.machineLearningHandler.machineLearningHandler

method), 6
loadModule() (core.plotHandler.plotHandler method), 6
loadModule() (core.preProcessingHandler.preProcessingHandler

method), 6

M
machineLearningHandler (class in

core.machineLearningHandler), 5

O
onDataFrameDropdownChange()

(core.guiHandler.guiHandler method), 2
openFileChooserWindow() (core.guiHandler.guiHandler

method), 3
openFileDialog() (core.guiHandler.Handler method), 1
openModuleOptions() (core.guiHandler.guiHandler

method), 3
openRecent() (core.guiHandler.guiHandler method), 3
openRecent() (core.guiHandler.Handler method), 1

P
plot() (core.plotHandler.plotHandler method), 6
plotCorrelationMatrix() (core.plotHandler.plotHandler

method), 6
plotHandler (class in core.plotHandler), 6
plotMissingRows() (core.guiHandler.guiHandler

method), 3
predict() (core.guiHandler.guiHandler method), 3
predict() (core.machineLearningHandler.machineLearningHandler

method), 6
preProcess() (core.preProcessingHandler.preProcessingHandler

method), 6
preProcessingHandler (class in

core.preProcessingHandler), 6
printData() (core.guiHandler.guiHandler method), 3
printData() (core.guiHandler.Handler method), 1
printMaskedData() (core.guiHandler.guiHandler

method), 3
printMaskedData() (core.guiHandler.Handler method), 1

R
removeColumn() (core.dataFramesHandler.dataFramesHandler

method), 4

12 Index

ETA Documentation, Release 1.0

removeColumn() (core.guiHandler.guiHandler method),
3

removeColumn() (core.guiHandler.Handler method), 1
removeDataFrame() (core.dataFramesHandler.dataFramesHandler

method), 4
removeDataFrame() (core.guiHandler.guiHandler

method), 3
removeDataFrame() (core.guiHandler.Handler method), 1
removeFromMaskedData()

(core.dataFramesHandler.dataFramesHandler
method), 4

removePage() (core.plotHandler.plotHandler method), 6
resetIndices() (core.dataFramesHandler.dataFramesHandler

method), 4
runClustering() (core.machineLearningHandler.machineLearningHandler

method), 6
runMissingRows() (core.guiHandler.Handler method), 1
runMissingVis() (core.guiHandler.guiHandler method), 3
runMissingVis() (core.guiHandler.Handler method), 1
runModule() (core.featureExtractionHandler.featureExtractionHandler

method), 5
runModule() (core.preProcessingHandler.preProcessingHandler

method), 6
runOptions() (core.guiHandler.guiHandler method), 3
runPandasProfiling() (core.guiHandler.guiHandler

method), 3
runPandasProfiling() (core.guiHandler.Handler method),

1

S
saveFile() (core.guiHandler.guiHandler method), 4
saveFileDialog() (core.guiHandler.Handler method), 1
saveMaskedData() (core.filesHandler.filesHandler

method), 5
saveModel() (core.filesHandler.filesHandler method), 5
saveModel() (core.guiHandler.guiHandler method), 4
selectAll() (core.guiHandler.guiHandler method), 4
selectAll() (core.guiHandler.Handler method), 1
selectInvert() (core.guiHandler.guiHandler method), 4
selectInvert() (core.guiHandler.Handler method), 1
selectNone() (core.guiHandler.guiHandler method), 4
selectNone() (core.guiHandler.Handler method), 1
setOptions() (core.plotHandler.plotHandler method), 6
showMessage() (core.guiHandler.guiHandler method), 4
showMetrics() (core.guiHandler.guiHandler method), 4
splitTrainTest() (core.dataFramesHandler.dataFramesHandler

method), 5
splitTrainTest() (core.guiHandler.guiHandler method), 4
splitTrainTest() (core.guiHandler.Handler method), 1

U
update() (core.plotHandler.plotHandler method), 6
updateDataFrameDropdown()

(core.guiHandler.guiHandler method), 4

Index 13

	Introduction
	Preliminaries and related work
	Time-series data
	Data representation
	Time domain methods
	Frequency domain methods

	Similarity measurement
	Motif discovery
	Indexing methods

	Feature extraction
	Machine learning
	Machine learning categories
	Machine learning tasks

	Comparison with other time series tools
	FAP
	Weka
	Quickie
	LiveRAC
	ChronoLenses
	VizTree

	ETA
	Architecture
	Profiling
	Visualisation
	Preprocessing
	Feature extraction
	Representation methods
	Machine learning

	Conclusion and future work
	Adding your own module.
	Technical documentation.

