
Universiteit Leiden

Opleiding Informatica

A Framework for Scheduling and Analysis of Real-Time

Applications without the use of Worst-Case Execution

Times

Name: Frank van Smeden

Date: 17/07/2015

1st supervisor: Todor Stefanov
2nd supervisor: Walter Kosters

MASTER’S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Acknowledgments

First of all, I would like to thank Jezus Christ my savior for all He has given
to me and enabling me to do this. Also I would like to thank my parents for
their support during my study and their interest in my work. Also I would
like to thank my friends for being there for and also for their opinions and
suggestions. Of course I also want to thank my supervisors Todor Stefanov,
Teddy Zhai and Mohamed Bamakhrama for giving me the opportunity and
the chance to do my master thesis in the LERC group and provide me with
the right amount of guidance throughout the project. I’m sure that all the
things I have learned during my time in the LERC group will proof their
value. I also want to thank my study advisor Jeannette de Graaf for all her
advise during my study at Leiden Institute of Advanced Computer Science
(LIACS). Also I would like to thank Emanuele Cannella, Jelena Spasic, Di
Liu and Tsvetan Shoshkov of the LERC group for always having time for
my questions and also for a good laugh (also thanks for the free coffee). Last
but not least I would also like to thank my wife for trying to understand
what I have been doing for the last couple of months and listening to me
for hours and hours explaining about what she refers to as “real-time blah
blah”.

i

Abstract

In today’s modern real-time embedded systems, there is a huge demand
for high performance. Especially in the world of multimedia systems and
streaming applications. While we see that multiprocessor architectures are
becoming more common, we also see that scheduling these hard real-time
tasks is hard. Often these schedules are not optimized for high throughput
due to the guarantee of system stability, which means the system should
always respond correctly in the correct time frame.

In this thesis we explore the effect of optimizing the schedule of a hard
real-time system by reducing estimations based on the worst possible ex-
ecution time. We also present a framework for: A) optimizing throughput
for a multiple predefined types of applications and B) analysis of schedules
running on both a simulator and a hardware platform.

In the end we conclude that our proposed optimization could be used to
potentially increase throughput for various types of applications.

ii

Samenvatting

Vandaag de dag is er een grote vraag naar moderne real-time embedded
systems met hoge prestaties. Vooral in de wereld van multimedia systemen
en streaming applicaties. Naast dat processor architecturen met meerdere
kernen meer en meer gebruikelijk zijn, zien we ook dat het schedulen van
deze processen in real-time applicaties een moeilijke taak is. Vaak zijn deze
schedules niet geoptimaliseerd voor een hoge doorvoer binnen het systeem
doordat de stabiliteit moet kunnen worden gegarandeerd. Wat betekend dat
er geen deadlines gemist mogen worden.

In deze thesis verkennen we het effect van optimalisatie van een hard
real-time schedule door het reduceren van de voorspelde executie tijd die
gebaseerd is op de slechts mogelijk executie tijd. Ook presenteren we een
framework voor het: A) Optimaliseren van de doorvoertijd voor een aantal
voorgedefinieerde applicatie typen en B) Analyse van een schedule op een
simulator en een hardware platform.

Aan het eind concluderen we dat onze voorgestelde optimalisatie ge-
bruikt kan worden om de doorvoertijd van meerdere soorten type applicaties
te vergroten.

iii

Abbreviations

BCET

Best-case execution time

CPU

Central processing unit

CSDF

Cyclo-static dataflow

EDF

Earliest Deadline First

ET

Execution time

ETC

Execution time compensation

FP

Fixed priority

RM

Rate monotonic

WCET

Worst-case execution time

iv

Contents

Acknowledgments i

Abstract ii

Samenvatting iii

Abbreviations iv

1 Introduction 1

1.1 Problem Description . 3
1.2 Contribution . 3
1.3 Scope of Work . 4
1.4 Related Work . 4
1.5 Structure of the Thesis . 6

2 Background 7

2.1 Worst-case execution time . 7
2.2 CSDF . 9
2.3 Repetition Vector . 10
2.4 Periods . 11
2.5 Start Times . 12
2.6 Buffer Sizes . 13
2.7 Scheduling . 13

2.7.1 Utilization . 15

3 Hard Real-time Testing Framework 16

3.1 Functionality . 16
3.2 Deriving Execution Times . 19
3.3 Creating Datasets . 22
3.4 Calculating Periods . 23

v

CONTENTS vi

3.5 Calculating Start Times . 27
3.6 Calculating Buffer Sizes . 27
3.7 Scheduling . 28

3.7.1 Utilization . 28
3.7.2 Yielding . 29
3.7.3 Starvation . 31

3.8 Framework Usage . 32
3.8.1 Installation . 32
3.8.2 Running the Framework 32
3.8.3 Hardware Platform . 33
3.8.4 Extended Usages . 34

4 Experiments and Results 35

5 Conclusion and Open Issues 40

5.1 Open issue 1 - Leveling of ET / ETC 41
5.2 Open issue 2 - Different Scheduling Algorithm 41

A Datasets 42

Bibliography 46

List of figures 48

List of tables 49

Chapter 1

Introduction

Modern operating systems are often complex pieces of software that con-
sist of multiple components. One handles interrupts, another one handles
drivers, networking, process management and so on. In order for modern
operating systems to be able to correctly execute more then a single process
simultaneously, these processes have to be managed. This is done by a com-
ponent called scheduler. The scheduler is responsible for a variety of tasks.
First of all it has to keep track of all running processes and their properties.
Secondly, it has to inform the central processing unit (CPU) which process
to execute. If there are multiple CPUs present, the scheduler also has to
decide which process gets executed by which CPU.

Scheduling processes can be done in many ways, using different algo-
rithms. An efficient scheduler maximizes the utilization of the available
CPUs in a system to increase the throughput of the system as a whole.
However, some applications demand CPU execution time by a certain fre-
quency in order to produce correct results. For example, an audio playing
application. If the application is not assigned proper CPU execution time,
the playback of the audio will be interrupted and wrong/no output is pro-
duced. Such applications where time is critical to the correct functionality
are called real-time applications. Real-time applications must be executed
on a real-time system in order to be able to guarantee certain throughput
of an application. Basically, a system could be categorized in two ways:

• General purpose system. Such a system is able to execute many differ-
ent types of tasks and is flexible to perform a lot of different tasks.

• Embedded system. Such a system is designed for a specific purpose and
can be found in devices like TVs, cars, airplanes, etc.

1

CHAPTER 1. INTRODUCTION 2

The majority of real-time systems are implemented on embedded devices.
This is because the task of a real-time system is often very specific and does
not require the flexibility introduced by a general purpose system. However,
a real-time operating system (operating system that is adjusted to meet
real-time requirements) could be implemented on either general purpose or
embedded system.

A scheduler that takes care of scheduling tasks within a real-time system
is called a real-time scheduler. A real-time scheduler can be either hard
or soft. A hard real-time scheduler has the property that if the scheduler
fails to meet the real-time requirements at even a single point in time, the
system has failed. A practical example of a hard real-time scheduler is the
one used in the airbag in a car. The airbag has to perform only once but
if the airbag pops out too late, the system failure has lead to catastrophic
consequences. Soft real-time schedulers are different in the sense that a single
failure does not make the system as a whole a failure. A practical example
is a video-streaming application. If the system fails to meet its requirement
of decoding video frame at a single time, the video would be scrambled but
if this happens only once in a while, someone watching the video would
probably not even notice it and the system can recover which results in
normal playback of the video being resumed.

Hard real-time scheduling has been an extensive research topic for the
last couple of decades. A lot of different algorithms have been proposed
over the years, like the EDF (Earliest-Deadline-First) [LL73] algorithm and
the server-based [DB11] approach. All these hard real-time scheduling algo-
rithms share the same goals, which are to:

• Maximize CPU utilization to create higher throughput;

• Generate as less overhead as possible;

• Keep the algorithm easy to implement;

• Keep the algorithm deterministic (for debugging purposes);

These goals have become even more challenging with today’s heteroge-
neous Multiprocessor Systems-on-Chip architectures. For a long time, Fixed
Priority Rate Monotonic scheduling has proven to be very dominant in the
research field of hard real-time scheduling as stated in [But05]. This is be-
cause Rate monotonic is considered easy to implement, and easier to debug
then other proposed algorithms.

CHAPTER 1. INTRODUCTION 3

1.1 Problem Description

One of the major drawbacks of scheduling hard real-time systems in general
is the fact that one has to estimate the execution time of every tasks within
an application. Execution time (ET) of a task is how long it will take to
execute the task on a specific hardware platform. Hard real-time systems
have to guarantee task completion with a given amount of time, otherwise it
is considered a system failure. Modern hard real-time systems overestimate
the execution time of the tasks within a system to make sure the system
does not fail. Due to this overestimation, the throughput of task decrease
which influences the throughput of the application negatively.

Since there is no single ET for a task (tasks do not always take the
same amount of time, due to caches or interrupts for example) finding the
worst possible ET is key for creating a Hard real-time system. the worst ET
for a task is called the WCET (worst-case execution time) as will further
described in Chapter 2. WCETs are derived mainly using static or non-static
methods. The drawback that both of these approaches have in common is
that they often overestimate the the actual execution time a task may have.
This overestimation results in slower throughput of the system as a whole.

For example, a hard real-time system may have a task that, in 80% of
all the cases, needs 20 time units to complete. 10% of all the cases it needs
25 units and in the last 10% it needs 15 units. In order to guarantee the
schedulability of the task, hard real-time systems always have to assume the
worst-case and must thereforee schedule the task in such a way that the
task will always need 25 time units available for execution. This means that
in 80% of all cases, 5 time units are overestimated and in 10% there are
10 units overestimated. The amount of overestimation is very application
dependent and can differ highly among different applications. Why the ET
of a task can differ for each firing can have multiple reasons. It could be
due to the fact that the CPU is interrupted to handle different tasks, but it
could also be normal application specific behavior.

1.2 Contribution

In this thesis we will present a way to overcome some of the issues stated in
Section 1.1. We will introduce a method to analyze an application to come
up with higher throughput on a real-time Fixed Priority rate monotonic
scheduler. We obtain this higher throughput by trying to reduce the over-
estimation. This overestimation is introduced by guaranteeing no deadline

CHAPTER 1. INTRODUCTION 4

will be missed by using ETs that are based on the WCET. Significant re-
duction of the overestimation in a hard real-time system could optimize the
utilization and could therefore increase the throughput.

Also, we contribute a framework that monitors and analyses the execu-
tion of a predefined schedule and generate statistics based on the execution
of that schedule. For this thesis we created both a real-time system imple-
mentation on the STM32F4 Discovery board hardware [dis] and a software
simulator which involves an extension of theDaedalusRT framework [dae14].
The hardware implementation is based on Erika Enterprise operating system
[eri14]. In our framework we have chosen for Erika Enterprise because it is
an operating system with much flexibility and supports multiple scheduling
algorithms and it supports the STM32F4 discovery board.

1.3 Scope of Work

In this section, we list all the assumptions and restriction to our work pre-
sented in this thesis.

• Multimedia applications
We mainly focus on multimedia applications. This means that our
applications are data-flow dominated and could be modelled using
CSDF graphs.

• Scheduling algorithm
We use Rate Monotonic as a scheduling algorithm both on the hard-
ware platform and in the simulator. However, our proposed framework
is capable of also handling different scheduling algorithm. Any limi-
tations for using a different scheduler are based on the availability of
the algorithm on the operating system used (Erika Enterprise) and the
DaedalusRT framework.

• Single processor
In this thesis we focus on using a single processor for our applications.

1.4 Related Work

Optimizing the utilization by trying to reduce the estimated time for a task
has been tried before. Zhao et al. [ZKW+04] presented their method in 2004.
They proposed a method for optimizing the estimated WCET and tune it
to become more like the actual WCET. They present the first compiler that

CHAPTER 1. INTRODUCTION 5

interacts with a timing analyzer. This timing analyzer calculates WCET
predictions during the compilation of applications to come up with better
estimations. This timing analyzer uses static analysis of the code by calcu-
lating the WCET for each function and loop in the program. The outcome
of this paper is that their timing analyzer, together with an interactive com-
piler, is capable of estimating the WCET more accurately. Our approach is
different from this in the sense that we take into account that there could
be multiple ETs per task. This allows us to create a more fine grained opti-
mization. Also, their proposed method is compile time and our method uses
run-time analysis.

Like us, Sung-Soo Lim et al. present in [LKM98] a technique to ana-
lyze the WCETs. They use a technique called “extended timing schema”
and try to apply these schemas to optimized machine code in order to more
accurately estimate the WCET. One of the main issues that they try to over-
come with their compiler-based approach, is the lack of correspondences in
the control structure between the optimized machine code to be analyzed
and the original source program written in a high-level programming lan-
guage. However their approach suffers from what they call the “unfeasible
path problem”. Their compiler is unable to eliminate some of the paths of
the application logic that are unfeasible. This results in a overestimation
for applications with multiple executions paths. Since our approach is not
compile time but run-time, we do not have these issues. However our ap-
proach can still benefit from approaches like these to generate more accurate
WCETs at forehand as described in Section 2.1

In [BCPt02] Bernat et al. present another approach to reduce the WCET
by doing probabilistic static analysis. According to their work, their ap-
proach is capable of strongly reduce the overestimation produced by tradi-
tional approaches. Basically they estimate the ET by profiling how long a
certain code-block takes taking into account the probability of having cache
misses or hits. Opposite of what Zhao et al. did, Bernat et al. do take into
account multiple possible ETs for same blocks of code.

Other research is done by M. Petters et al. They focus in their paper
[PF99] more on measurements and less on modeling to make proper WCET
estimations. They use a compiler to generate an intermediate flow control
graph and run measurements based on this graph. Our approach is similar
in the sense that we also make our predictions mainly on measurements.
However, the intermediate graphs they use are a simplification of all the
code branches within a system. Therefore they do not consider the fact that
some branches are shortest in terms of ET then others. This will give one
a good estimation of the WCET, but does not consider overestimation in

CHAPTER 1. INTRODUCTION 6

case the short branch is being executed. Our approach takes multiple ET
per code branch into account and uses this to improve the throughput of
the system as a whole.

1.5 Structure of the Thesis

The first Chapter of the thesis is an introduction and covers the problem
description in Section 1.1 and the contribution of my thesis can be found
in Section 1.2 Section 1.3 presents the scope of this thesis and covers the
boundaries of the work. Section 1.4 describes other work related to this thesis
and in which way this thesis covers a different approach. Chapter 2 contains
sections about different background topics like WCET, repetition vector,
and periods. In Chapter 3, our framework is proposed. One will also find a
brief description about how to use the framework in Section 3.8. In Chapter
4 we present the experiments done during this project and the outcome.
Chapter 5 discusses the findings based on the results and remaining issues
related to this thesis.

Chapter 2

Background

In this section we explain more about the context of the proposed framework
and the basic concepts of (hard) real-time systems. The following subsections
are necessary to understand the subsequent chapters. They cover definitions
like CSDF graphs, worst-case execution time, periods and more hard real-
time related topics.

2.1 Worst-case execution time

While designing a real time application, time is an important aspect. In order
to make proper scheduling calculations, the time a task takes to execute a
certain amount of code should be known. Two definitions that relate to the
time a task takes within a system are the WCET and the BCET, being the
worst-case execution time and best-case execution time, respectively.

Definition 1. (Worst-case execution time [WKRP05]) the longest time it
takes to execute a given program code.

Definition 2. (Best-case execution time [WEE+08]) the shortest time it
takes to execute a given program code.

As explained by Reinhard Wilhelm et al. [WEE+08] , Figure 2.1 shows
a basic notion of timing analysis of systems. Here one can see that the
distribution of different ETs can differ among different executions of the
application. Please note that this figure is an example and the real ETs
depend highly on the application. The lower curve represents a subset of
measured executions. Its minimum and maximum are the minimal observed
ETs and maximal observed ETs, respectively. The darker curve represents

7

CHAPTER 2. BACKGROUND 8

the times of all executions. Its minimum and maximum are the best-case
and worst-case execution times, respectively.

Figure 2.1: Timing analysis of systems.(Figure by Reinhard Wilhelm et al.
[WEE+08]).

A general way to extract the exact WCET of a task has proven to be
impossible since it is equivalent to the halting problem proposed by A. Turing
[Tur36]. In his proposal, Turing tries to decide whether the given program
will ever halt on a particular input. Unfortunately, at the time of writing, this
problem remains undecidable. Therefore, despite frameworks on the market
today try to not derive the exact WCET of a task but an approximation of
the WCET instead.

There are basically two approaches to derive the WCET of an applica-
tion or task within an application. In the first approach, a static analysis
of the code implementing a task or application is performed. This means
one has to count the assembler instructions for each function, loop etc. and
combining them to compute the ET of that particular piece of code. One
drawback of this method is that it can not account for other factors that
only occur at run-time, like interrupts or the use of caches. Interrupts and
the use of caches are extremely hard to predict at design time. Static anal-
ysis overcomes these issues by assuming the worst possible execution time,
whether this will happen or not.

The second approach is hardware profiling, also called “end to end” mea-
suring. One has to run the application for a long period of time and measure
the actual ETs performed by the hardware platform. This method as stated
by [WKRP05] tends to be very error-prone and has the drawback of begin

CHAPTER 2. BACKGROUND 9

unable to keep up with the rapidly increasing complexity of modern sys-
tems. As stated by [WEE+08] this method ”will in general overestimate the
BCET and underestimate the WCET”. This type of measuring can also be
done by simulation. But as stated by [DBK01] this is not very reliable since
not all simulators use clock-cycle accurate models which can lead to very
inaccurate results.

2.2 CSDF

In our framework we use Cyclo-Static Dataflow (CSDF) graphs [BELP96].
These graphs are an extension of the Synchronous Dataflow (SDF) graphs
presented by [LM87].

CSDF allows us to model an application as a set of actors. A CSDF
graph as defined by [BELP96] as G = (A,E) where A is a set of actors
that are represented in the graph by the nodes and E ⊆ A × A is a set of
communication channels represented by the graph’s edges.

An actor represents one or multiple statements in the program that have
to be completed to transform incoming data stream(s) into outgoing data
stream(s). In a CSDF graph the information on an edge indicates the pro-
duction and consumption rate of the adjacent actors. The input and output
produced or consumed by an actor is related to the execution sequence of
the actor. For example, if the production rate of an actors is [0, 1], the ac-
tors will produce the amount of output indicated by the first item (being
0) during the first execution of the actor. The next execution the actor will
produce the amount of output presented in the second item of the sequence
and so on. The same holds for the consumption rate.

Communication channels use the FIFO mechanism and are bounded in
size so they are limited in the amount of output data from the node they
can hold. A single instance of output created by an actor is referred to as
a token. A communication channel is defined as Eu = (Ai, Aj) where Ai is
called source actor and Aj is called destination actor.

A CSDF graph can be either connected or unconnected. If there is a
path from any actor in the graph to any other actor in the graph, it is called
connected otherwise it is called unconnected.

We define the successor actor and predecessor actor as follows:

Succ(Ai) = Aj ∈ A : ∃Eu = (Ai, Aj ∈ E) (2.1)

CHAPTER 2. BACKGROUND 10

Prec(Ai) = Aj ∈ A : ∃Eu = (Aj , Ai ∈ E) (2.2)

A1 A2
e1

[1][0, 1]

Figure 2.2: CSDF graph example, Actor A1 produces a single token after
two firings, actors A2 consumes a token each firing.

In Figure 2.2, an example of a CSDF graph is given. It consists of two
actors, A1 and A2. In this graph, actor A2 is the successor of actor A1

indicated by the arrow. The production rate of actor A1 is [0, 1], meaning it
will create a single token on the second firing. No output will be produced
the first time the actor is fired. Also, actor A1 has a phase of 2, this means
that the production rate has 2 possibilities (being 0 and 1) before it will
start repeating the same sequences from the start.

The consumption rate of actor A2 is [1], meaning it will consume a single
token from the FIFO each time this actor fires. An actor is called sink-actor
or sink-node if the actor is the last actor in a chain of actors and generates
output for the application instead of creating input for other actors.

2.3 Repetition Vector

One of the most important aspects of a real-time system is the schedule. A
schedule is being generated by the scheduler based on a scheduling algorithm
and a predefined taskset. In order to make sure a schedule of a hard real-
time system will not end up in a situation where deadlines will be missed,
one has to make sure avalid static schedule will be generated.

Definition 3. (Valid static schedule [BELP96]) Given a connected CSDF
graph G, a valid static schedule for G is a finite sequence of actors invoca-
tions that can be repeated infinitely on the incoming sample stream while the
amount of data in the buffers remains bounded.

Within a hard real-time system where no deadline misses should occur,
the system does not have to handle deadline misses since it assumes it can
derive a valid static schedule based on the given taskset. If the scheduler
is not able to derive a valid static schedule the behavior of the system is
undeterministic but will likely end up in an unrecoverable state. In a soft

CHAPTER 2. BACKGROUND 11

real-time system, deadline misses can occur so the system should be able to
handle them and should not become unrecoverable after a deadline miss.

To determine a valid static schedule for a CSDF graph one has to derive
the amount of invocations of each actor and the correct sequence of these
invocations. This is done by computing the repetition vector :

Definition 4. (Repetition Vector [BS14]) A vector ~q = [q1, q2, ..., qn]
T where

qj > 0 and n is the amount of actors in the CSDF graph G. This vector is a
repetition vector if each qj represents the number of invocations of an actor
Aj in a valid static schedule for G

According to [BS14], the repetition vector ~q can be computed by

~q = Θ · ~r (2.3)

Where:

Θjk =

{

Nj if j = k
0 otherwise

and where ~r is calculated according to the following balance equation:

Γ · ~r = ~0 (2.4)

and where Γ is the topology matrix of G representing the production
and consumption rate of the communication channels:

Γuj =

Xu
j (Nj) if actor Aj products from channel Eu

−Y u
j (Nj) if actor Aj consumes from channel Eu

0 otherwise

Where Nj , is the length of the production/consumption rate vector.
Taking the graph presented in figure 2.2 as an example G, the needed

invocations of actor A1 and A2 are 2 and 1 respectively.

Γ =
[

1 −1
]

, ~r =

[

1
1

]

,Θ =

[

2 0
0 1

]

, ~̆q =

[

2
1

]

(2.5)

2.4 Periods

One of the first steps in our approach is to calculate the period. Here follows
a definition.

CHAPTER 2. BACKGROUND 12

Definition 5. [BS14] (Period) For a CSDF graph G, a period vector ~P ,
where ~P ∈ ◆|❆|, represents the periods, measured in time-units, of the actors
in G. Pj ∈ ~P is the period of actor Aj ∈ A. ~P is given by the solution to
both:

q1P1 = q2P2 = ... = qn−1Pn−1 = qnPn (2.6)

and
~P − ~C ≥ ~0 (2.7)

Where ~C is called the execution time vector as defined by the following
definition:

Definition 6. [BS14] (execution time vector) For a graph G = (V,E), an
execution time vector ~C, where ~C ∈ ◆|❆|, represents the worst-case execu-
tion times measured in time units of the actors in G.

From (2.6) and (2.7), one can derive the period vector (P̆) of a CSDF
graph by the following formula:

P̆i =
lcm(~q)

qi
⌈

Ŵ

lcm(~q)
⌉∀Ai ∈ A (2.8)

where lcm(~q) is the least common multiple of the repetition vector, and
Ŵ is the maximum workload defined as Ŵ = maxAi∈A{Wi}. The workload
of an actor is Wi = qiCi where Ci is the WCET and qi the entry in the
repetition vector.

2.5 Start Times

Each actor within a real-time system has a start time. For the start time
of an actor, we use Si to refer to the time at which an actor Ai can start
executing. The definition is as follows:

Definition 7. (Start Time [BS14]) Let Eu = (Ai, Aj) be a communication
channel in graph G. Under a periodic schedule, a valid start time of Aj,
denoted by Sj,guarantees that Aj finds enough data in Eu to fire at time
instants Sj + kPj for all k ∈ ◆0

Definition 7 implies that Aj will never block while reading from Eu

i.e. no buffer underflows will occur. To enforce this, actors that depend on
incoming data from their predecessor, are scheduled after the start time of
their predecessor plus their predecessors period.

CHAPTER 2. BACKGROUND 13

Once the start times are computed they are passed to the hard real-time
scheduler together with the periods (see chapter 2.7 for more details) The
scheduler will create release times based on the start times and periods for
each actor/task. A release time is the exact point in time a task is ready
to be schedulable but this does not mean that it will be scheduled at that
exact time. It could be that some other task will be scheduled first because
of prioritization of the scheduler. After the first release time of a task, the
period will indicate the point in time the tasks will be schedulable again for
execution. More on prioritization on a fixed priority schedule algorithm in
Section 3.7.2.

2.6 Buffer Sizes

As described in Section 2.2, communication channels define the production
rate of the output of an actor. Buffers are the actual containers of the data
once the output is produced. The size of these buffers is important because
it allows the scheduler to fire an actor multiple times without the need for
the successor actor to be fired directly after.

Definition 8. (Valid Buffer Size [BS14]) Let Eu = (Ai, Aj) be a communi-
cation channel in graph G. Under a periodic schedule, a valid buffer size of
Eu, denoted by bu, guarantees that Ai can store tokens to Eu at time instants
Si + kPi∀k ∈ ◆0.

When calculating the buffer sizes, one should assume that when an actor
is executed that is dependent on input from another actor, the corresponding
buffer contains the amount of tokens that the actor must consume. Other-
wise, the actor may not be able to consume the tokens and the system will
run into a buffer underflow. Also, one should also assume that an actor pro-
duces output at the very end of its execution so that other actors depending
on its output will not be released and try to consume data from the buffer
too quickly.

2.7 Scheduling

In our proposed framework we use the Rate Monotonic (RM [LL73]) schedul-
ing algorithm. RM is categorized as a fixed priority (FP) scheduling algo-
rithm which means that priorities for all the tasks have to be known at the
start of the scheduling and do not change throughout the execution of the

CHAPTER 2. BACKGROUND 14

algorithm. The assignment of the priorities is based on the length of the
periods. The smaller the period, the higher the priority.

Figure 2.3: Example of a schedule.

Figure 2.3 shows an example of a RM schedule. In this schedule there are
5 tasks denotes t1, t2...t5. All these tasks combined are called a taskset. Each
gray block represents the WCET assigned to a particular job which is an
instance of that particular task. In this example, the priorities of the tasks
are assigned according to the number of the task with t1 having the highest
priority. The arrows indicate the task’s release time. The release time of a
task is the exact point in time a job of that task is ready to be scheduled by
the operating system. Each job in a schedule has a deadline. The deadline
is the point in time when the job must have finished execution. In our
scheduling implementation, the deadline of a job is the next release time of
the task. If a job has not finished executing by its deadline, a deadline miss
occurs. For a hard real-time system, this results in a failure of the system.
The space between two release times of a task (indicated in Figure 2.3 with
the arrows) is the period of a task (see section: 2.4).

One of the properties of the RM scheduling is that when a new job
is released that has a higher priority then the job that is currently being
executed, the current job, will be postponed and the job with the higher
priority will start execution. Postponing a job in favor of another job is
called preemption. Preemption will cause a context-switch in the operat-
ing systems because the execution context for different tasks are different.
Context-switching within operating systems are time-consuming and should
be done as less as possible to reduce the overhead of the system. Preemption
is more likely to occur on systems were the processor is more utilized (See
section 2.7.1 for more about utilization).

Figure 2.4 shows an example of preemption. Task t5 is preempted twice
in favor of t1 because the priority of t5 is lower. Also one can see that no

CHAPTER 2. BACKGROUND 15

deadline is missed even though t5 was preempted, indicated by the two white
blocks of task t5. This is because the period of t5 is long enough to cope with
the preemption. Also, as shown in Figure 2.4, the release time (indicated with
the arrow for each task) is the same for t1, t2 and t3. The FP scheduling
algorithm makes sure that in this case the task with the highest priority is
executed.

Figure 2.4: Example of a schedule with preemption.

2.7.1 Utilization

One other important aspect of scheduling is the utilization of the available
CPUs in a system. The utilization reflects the time a CPU is execution a
task. to define the utilization of a CPU we use a range from 0...1 where 0
means the CPU is not being used at all and 1 means the CPU is working at
its full capacity. The utilization of a real-time system depends on multiple
factors. First there are the amount of processors. On a system with 2 CPUs
the maximum utilization is 2. This is equal to the amount of processors in
a system and is called the upper bound utilization. Secondly, the utilization
also depends on the paralyzability of the taskset. For example, if a taskset
contains 4 tasks which are all independent on an other task, each task can
be executed on a separate CPU. This means that the utilization of the
system is 4. However if the tasks are dependent of each other, the utilization
could become less since some task(s) have to wait for other task(s) to finish
execution first.

In order to improve the speed of execution on a system, Schedulers gen-
erally try to keep the utilization as high as possible. This means one has to
remove as much slack as possible. Slack is the amount of time in a schedule
that the CPU is in an idle state and not executing any job.

Chapter 3

Hard Real-time Testing
Framework

In this chapter, we will present a real-time testing framework. The frame-
work’s main feature is measuring the impact on the scheduler while running
different schedules. Our framework tries to find an optimal period for all
tasks in the system by running the scheduler and monitor the amount of
deadline misses that occur during the execution of A taskset. Our approach
is to reduce the periods of the tasks within a taskset. We accomplish this
by not using the WCET while deriving the period but a lower value. The
impact of this reduction is measures in the amount of deadlines misses of the
sink-node in our CSDF graph. This is because the application as a whole
only generates output at the time the sink-node has been executed. So if
deadlines are missed within the system because of the reduction, but the
sink node is still not missing any deadlines, the throughput is still being
generated at a higher rate then if the system uses the WCET. However, in
these conditions we cannot say it is still a hard real-time system anymore
because of the missed deadlines. But since we can still guarantee certain
throughput for the system as a whole we can still call it a real-time system.

3.1 Functionality

The framework is divided into two parts, one is for running on hardware and
the other part is the simulator. To conduct our experiments we have used
a hardware platform based on an ARM processor called the STM32F4 Dis-
covery board. On this board, we use the Erika Enterprise operating system
[eri14] to run a fixed priority rate monotonic schedule.

16

CHAPTER 3. HARD REAL-TIME TESTING FRAMEWORK 17

Next to running on a real hardware platform we also use a simulator
to simulate the FP RM algorithm. This is because hard real-time operating
systems often only assume a valid static schedule (see Section 2.4). But in
our experiments this will not always be the case because reduction of the
value taken as the WCET will decrease the size of the periods. This can
cause the schedule to become invalid. If the total amount of time needed for
a task to finish a single execution is more than the period for that task, the
task will result in a deadline miss and according to the theory of hard real-
time systems, the schedule will not invalid. Hard real-time systems that are
supplied with an invalid static schedule can become unstable due to deadline
misses or may not run at all. Because deadline misses should never happen,
hard real-time schedulers often cannot recover with a deadline miss. The
hard real-time operating system, we used on our hardware platform (Erika
Enterprise), could also not handle a deadline miss. This is why we decided to
use a simulator to be able to adjust this behavior and be able to define how
the system should cope with deadline misses. More details about how we
ensured proper execution after deadline misses is given in Section 3.7.2. The
simulator we used is a modified version of the simulator in the DaedalusRT

framework [dae14]. In Figure 3.1 one can see a schematic overview of the
proposed framework. The input for the framework consists of two parts.
The framework we propose needs a CSDF graph as input. The format of
this graph is specified by theDaedalusRT framework. The needed dataset is
explained later in Section 3.3.

The framework consists of a pipeline of features that are executed after
each other. The next items shows each of those stages:

• CSDF Graph
This a representation of a graph in text file. It contains information
like the names of the nodes, the production and consumption rate of
each of the the actors and the WCET of all the actors.

• Dataset
This is a file that presents all execution times and how often they
happen for each actor that is specified in the CSDF graph.

• Computing scheduling data
Based on the supplied CSDF graph and the dataset scheduling data
generated. The scheduling data is contains the following information;

– Periods for each of the tasks in the CSDF graph;

– Start times for each of the tasks in the CSDF graph;

CHAPTER 3. HARD REAL-TIME TESTING FRAMEWORK 18

Figure 3.1: Schematic overview of the framework, each box represent a sep-
arate stage within the framework.

– Buffer sizes for each of the communication channels in the CSDF
graph

This scheduling data is generated multiple times for each dataset. Once
by taking the WCET to compute the scheduling data and after that
again while we gradually decrease the value we take for the WCET by
5%.

• Running the simulator
After we have generated the scheduling data, we run the simulation

CHAPTER 3. HARD REAL-TIME TESTING FRAMEWORK 19

based on the scheduling data. The simulator is a python framework
that simulates a hard real-time operating system and contains a FP
RM scheduler. While running, the simulator generates output that is
saved for analysis later on.

• Initialize hardware
After the simulation we initialize a hardware platform to run with the
same datasets as the simulator.

• Initializing tasks
As with the simulation, we supply the hard real-time operating system
with the scheduling data and set the periods, start times and buffer
sizes to the correct values.

• Hardware execution
We let the hardware platform run. While running the hardware plat-
form generates output that is collected by the host platform.

• Collecting result
After both running on the hardware platform and simulation are done,
we parse the result and save them in databases.

• Generating graphs / tables
Based on the results we generate new tables and generate graphs based
on the generated databases

• Presenting results.
We store the tables and derived results in a report.

3.2 Deriving Execution Times

The first step in our approach is to construct a CSDF graph modeling an
application and give this CSDF as input to our framework. This is part of
the “computing scheduling data” stage shown in Figure 3.1 For our testing
framework we use the CSDF graph G showed in Figure 3.2 as an exam-
ple. This graph represents a simple image manipulation application and it
contains 5 actors and 5 edges.

The next step is to obtain the ETs for each of the actors within G. Each
actor may have multiple ETs. All the ETs for a single actor are represented
by vector ~D, being the actor execution time vector. ~D always has to be
ordered from high to low. In our framework we assume one obtains ~D by

CHAPTER 3. HARD REAL-TIME TESTING FRAMEWORK 20

A1

A2

A3

A4 A5

e1

e2

e3

e4

e5

[1, 1, 0]

[0, 0, 1]

[1] [1]

[1] [1]

[1, 1, 0]

[0, 0, 1]

[1] [1]

Figure 3.2: CSDF graph containing 5 actors and 5 edges.

either one of the two methods described in Section 2.1 being static analysis
or hardware profiling.

As an example, Figure 3.3 shows the occurrence of each of the ETs of
an actor A1. As one can see, there are 8 different ETs all in the range from
10 to 40 time units for a total of 50 firings for actor A1.

Figure 3.3: Example actor execution times.

CHAPTER 3. HARD REAL-TIME TESTING FRAMEWORK 21

execution time occurrences % occurrences out of 50

10 4 4/50 = 8%
11 8 8/50 = 16%
20 11 + 5 16/50 = 32%
26 6 + 4 10/50 = 20%
40 8 + 4 12/50 = 24%

Table 3.1: Dataset of an actor. In this table one can see 3 occurrences of
execution-time mapping

Like the WCET, the amount of different ETs for an actor is hard to
predict. Mechanisms like caches and interrupts can also result in different
execution times.

Our approach assumes that ~D contains all possible ETs that were the
result of either static analysis or hardware profiling. However, because this
can be a very large vector, we introduce a shorter fixed vector representing
the actor execution time vector ~D as ~D′. This shorter fixed vector contains
the WCET, BCET and the n-most occurring execution times. The larger
value one will take for n, the more accurate to the ~D it will be. In our
approach we take n = 3 for convenience reasons. Regarding Figure 3.3,
one can represent vector ~D = (10, 11, 12, 20, 23, 26, 35, 40) as a shorter fixed
vector (40, 26, 20, 11, 10) where 40 is the WCET and 10 is the BCET.

The next step is to obtain the corresponding occurrences for each ET in
the shorter fixed representation of ~D. To do this, we have to round each ET
in ~D up to the nearest ET present in ~D′.

For example, as one can see in Figure 3.3, there are 5 occurrences of ET
12. But because 12 is not present in our short execution-time-vector we map
these 5 occurrences to another execution time that is within the exection-
time-vector but only to one which has a higher execution time then 12 which
is in this example 20. We call this execution-time mapping.

Considering the results from Figure 3.3 and the approach stated above
we construct Table 3.1. The first column shows the execution times present
in ~D′. The second column shows the occurrences of a particular ET. If this
column contains a summation of multiple integers, they indicate the event
of execution-time mapping. The third column shows the occurrences out of
the total amount of executions of the task. In order to obtain the execution
times for all actors within G, one has to repeat this method for all actors
within the CSDF graph.

CHAPTER 3. HARD REAL-TIME TESTING FRAMEWORK 22

3.3 Creating Datasets

As stated earlier in Section 3.2, the ET of a tasks differs for each application.
Some applications can have a large amount of values for ~D and other ap-

plication can have a very small value for ~D. This influences the the amount of
possible deadlines misses and how much reduction of the periods is possible.
To analyze how our approach is affected by multiple types of application,
our framework mimics various application characteristics by using different
amounts of occurrences of ETs for an actor.

A dataset represents ETs and occurrences for an actor in a CSDF graph.
It holds the information present in column 1 and 3 in Figure 3.1 for each
task. Also it contains the period, start times and buffer sizes for each actor.

Because we mimic application to test our framework on different types of
applications, we have to determine the ET. In a non-experimental setting,
this would be done by static analysis or hardware profiling as described
in Section 2.1. For our application we assume BCET = WCET

2 , and all
the other execution times have to be mapped evenly in between by using
execution-time mapping. We define ∆ as the difference between two adjacent
execution times in ~D′

∆ =

(

WCET
2

)

| ~D′| − 1
(3.1)

Our framework uses 9 datasets. These are represented in Table 3.2 and
Table 3.3 In these tables, one can see the occurrences of ETs available in
the short execution time vector.

Each of these datasets represent a certain characteristic behavior that a
task can have.

• Dataset 1
Here all the times this task gets executed, the task will have the same
ET. We took 20 as the ET here.

• Dataset 2
Tasks that often execute between the WCET and BCET are repre-
sented in this dataset.

• Dataset 3
A more extreme case of dataset 2, the chances of executing x2 are
more likely here.

CHAPTER 3. HARD REAL-TIME TESTING FRAMEWORK 23

• Dataset 4
Tasks that more often execute the BCET evenly distributed chance of
executing any other ET.

• Dataset 5
A more extreme case of dataset 4.

• Dataset 6
Tasks that more often execute the WCET evenly distributed chance
of executing any other ET. This is exactly the opposite of dataset 4

• Dataset 7
A more extreme case of dataset 6.

• Dataset 8
Tasks that are either likely to execute the WCET or BCET but less
likely to execute something in between.

• Dataset 9
A more extreme case of dataset 8.

One can see in dataset 2 of Table 3.2 that in 10% of the cases, the WCET
is used as ET. Also, in 60% of all the cases the x2 is used, which for a WCET
of 80, means 2 ·∆. Equation 3.2 shows how to derive ∆ based using | ~D′| = 5
and WCET = 80.

2 ·∆ = ·

(

80
2

)

|5| − 1
= 20 (3.2)

In Table 3.4 One can see the actual values used in dataset 2.
For the WCETs of our actors in our presented CSDF graph G we take

[50, 80, 240, 40, 40] for actors A1 till A5 respectively. These are similar to the
WCETs proposed in [BS14]. Based on Equation 3.1, we can construct all
the datasets for all actors in G. Details of dataset 2 are presented in Table
3.4.

3.4 Calculating Periods

Recall from Section 2.4 how periods of actors are computed using theDaedalusRT

framework. Our framework recalculates the periods by gradually decreasing
the value of the WCET by 5%. This will decrease the length of the periods
since these are based on the this value. Decreasing the length of the periods

CHAPTER 3. HARD REAL-TIME TESTING FRAMEWORK 24

Table 3.2: Datasets containing ~D′ and the percentage of occurrences for
single actor within CSDF graph G (part A)

within a taskset will increase the throughput since the CPU will have less
time assigned for each task to finish execution. However this can also result
in creating more deadline misses if the periods are becoming too small to
finish execution of a task.

In our framework we use the following steps to calculate the periods for
a single dataset:

1. Take the WCETs from a dataset.

2. Calculate the periods of all actors in the CSDF graph with theDaedalusRT

framework based on the WCET.

3. Reduce the period of each of the actors in the CSDF graph by 5%

4. Recalculate the period and start times of the tasks using theDaedalusRT

CHAPTER 3. HARD REAL-TIME TESTING FRAMEWORK 25

Table 3.3: Datasets containing ~D′ and the percentage of occurrences for
single actor within CSDF graph G (part B)

framework

5. Redo step 3 and 4 until a total of 20 datasets are produced containing

CHAPTER 3. HARD REAL-TIME TESTING FRAMEWORK 26

executions and occurrences
BCET X1 X2 X3 WCET others
ET % ET % ET % ET % ET % period start time buffer

A1 22 10 29 10 36 60 43 10 50 10 320 0 2
A2 40 10 50 10 60 60 70 10 80 10 480 320 2
A3 120 10 150 10 180 60 210 10 240 10 960 960 3
A4 20 10 25 10 30 60 35 10 40 10 320 1280 2
A5 20 10 25 10 30 60 35 10 40 10 320 1600 2

Table 3.4: Dataset 2 for all actors within CSDF graph G

data for a range 0% period reduction to 95% period reduction with
steps of 5%.

As an example, we take the dataset presented in Table 3.4. For actor A2

the WCET is 80. The calculated period for that actor given CSDF graph
G is 480 and the start times is 320. The next step is to reduce the value
taken as the WCET of each actor in the CSDF graph by 5%. We reduce
80 to 76 and recalculate the periods and the start times. The reason for
also recalculating the start times is because the period of the predecessor
actor could have changed by the recalculation of the period of that actor.
For example, if the value we take for the WCET of Actor A1 is reduced by
5%, the period has been changed as well. As a result of that, the successor
actor of actor A1 is released earlier. In the case of our CSDF graph G, where
actor A2 has multiple successors, the successor with the highest priority can
have an earlier start time.

One can see the 5% reduced version of dataset 2 in Table 3.5. Also note
that ~D′ is the same in Table 3.4 as in Table 3.5

executions and occurrences
BCET X1 X2 X3 WCET others
ET % ET % ET % ET % ET % period start time buffer

A1 22 10 29 10 36 60 43 10 50 10 304 0 2
A2 40 10 50 10 60 60 70 10 80 10 456 304 2
A3 120 10 150 10 180 60 210 10 240 10 912 912 3
A4 20 10 25 10 30 60 35 10 40 10 304 1216 2
A5 20 10 25 10 30 60 35 10 40 10 304 1520 2

Table 3.5: Dataset 2 with 5% reduction of the WCET

It could happen that while taking a percentage of the WCET, the result

CHAPTER 3. HARD REAL-TIME TESTING FRAMEWORK 27

is not an integer value, in such a case we round the value up to its nearest
integer value. Also, recalculating the buffer sizes is not necessary in our
framework, the buffer sizes that are calculated with the WCET of an actor
are minimal. Reduction of the periods and the changing of the start times
should not change the order of releases in the schedule.

3.5 Calculating Start Times

Recall from Section 2.5 the method to obtain the start time of a task. For cal-
culating the start time of a task we use the DaedalusRT framework [dae14].
To extract the start time of an actor Aj ∈ A, denoted by Sj , of graph G
under a periodic schedule is given by:

Sj =

{

0 if prec(Aj) = ∅

maxAi∈prec(Aj)
{Si→j} if prec(Aj) 6= ∅

(3.3)

where Si→j =

min{t∀k − 0, 1, · · · , α : prdS(Ai, Eu) ≥ cnsS(Aj , Eu)} (3.4)

where k are the actors within the CSDF graph.
In Equation 3.4, prdS(Ai, Eu) represents the cumulative production and

cnsS(Aj , Eu) represents the cumulative consumption of the corresponding
actors. This results in Si→j being the minimal point in time that, with every
firing of the actor, the the cumulative production is equal or greater then
the cumulative consumption. Meaning that the actor will always be able to
fire because there are tokens in the input buffer available.

As briefly described in Section 3.4, we recalculate the start time at the
same time we recalculate the periods. The re-calculated start times are there-
fore also based on the new reduced value of the WCET.

The re-calculation of the start times is necessary because if the periods
are reduced and the start times are not, there will be additional slack added
to the schedule. Since the tasks are able to start execution earlier.

3.6 Calculating Buffer Sizes

For calculating the buffer sizes of a communication channel we use the
DaedalusRT framework [dae14]. Equation 3.5 presents the minimum bounded
buffer size bu of a communication channel Eu = (Ai, Aj) under a periodic
schedule.

CHAPTER 3. HARD REAL-TIME TESTING FRAMEWORK 28

bu = maxk∈[0,1,··· ,α]{prd
B(Ai, Eu)− cnsB(Aj , Eu)} (3.5)

Equation 3.5 ensures that at any point in time, bu will not receive a
token that will cause the buffer to overflow. Also, within a single iteration
of the CSDF graph there is at least a single point in time where the buffer
is filled completely.

These buffer sizes are minimum so reducing these will likely result in
buffer overflows during run-time of the system. While calculating the buffer
sizes one has to make sure two constrains are met. The first one is to make
sure they are sufficient. This means that given a schedule, an actor is never
blocked because it could not write to a specific buffer. In a general hard-
real time system, this may never happen. Secondly, an actor should never
be blocked at reading from a buffer at any point in time. Section 3.7 will
explain that using our approach, the periods will change and therefore the
these two constrains are not met. How our framework copes with this is
explain in Section 3.7.

3.7 Scheduling

Recall from Section 2.7 the different scheduling algorithms. Our framework
uses the FP RM scheduling algorithm. Further in this section we will ex-
plain the discussion made regarding the utilization and starvation, also we
introduce a technique called Yielding.

3.7.1 Utilization

To compute the utilization of the the CSDF graph G used in our framework,
we used the DaedalusRT framework. The utilization of our graph ≈ 3.3.
However in our framework we use the STM32F4 Discovery board which
contains only a single CPU. This means that our hardware is having a upper
bound utilization of 1. Therefore we have to multiply the start times and
periods by ⌈3.3⌉ = 4 to be able to schedule G on a single processor. This
will increase the amount of slack in our schedule a bit.

The reason why we do not have to recompute the buffer sizes is because
we do not change the order of the execution of the task by increasing the
periods and start times. Therefore buffer sizes will not change.

CHAPTER 3. HARD REAL-TIME TESTING FRAMEWORK 29

3.7.2 Yielding

Sometimes in our approach it could happen that a task is unable to start.
The reason for this could be because there is no input data (token) available
for that job to consume. Another reason could be that the output buffer is
already full. For these situation we introduce Yielding. Yielding means that
the scheduler will postpone a task and schedule a different task because
the initial task that should be scheduled is unable to start execution. The
reason that yielding has to be implemented in our approach is because if
the scheduler will let the job would start anyway, it would not be able to
finish because it will either have to wait for the successor actor to consume
data from the buffer first, or wait for the predecessor to create data. In
a general hard real-time system, this behavior cannot occur because the
periods are based on the WCET of a task. So, once a task fires, the schedule
is design in that way, that there will always be input data available for that
job. However, this assumption only holds if the periods are based on the
WCET and because in our framework the periods are decreased in length,
this assumption does not hold. Yielding keeps the scheduler from entering a
deadlock state where buffer overflows and buffer underflows occur. In Figure
3.4 one can see a representation of the life cycle of a job, the dotted line
represents the situation without yielding. The dark gray shapes represent
default hard real-time system behavior, the light gray shapes represent parts
that were introduced in order to make the system able to handle deadline
misses.

As specified in Figure 3.4, one can see there are three queued a task can
be in.

• Ready queue
This is the queue where every task starts, it holds the tasks that cannot
to be fired at that particular moment in time.

• Release queue
This queue holds all the tasks that are ready to be fired, so in a general
hard real-time system, this is where the tasks go at the point in time
that there are released.

• Active queue
This queue holds all the tasks that are currently being executed. The
size of this queue is equal to the amount of processors in the system.

For our approach to be able to be operational, there were multiple
adjustments made to the standard hard real-time system behavior in the

CHAPTER 3. HARD REAL-TIME TESTING FRAMEWORK 30

Figure 3.4: Lifecycle of a task within a system

DaedalusRT framework in order to cope with previously described situa-
tions. Also, the changes should still ensure proper execution of the tasks.
Commonly, a hard-real time operating system assumes that the schedule
provided will not have any deadline miss and therefore yielding is not nec-
essary. In a system were the schedule is bound to have deadline misses,
yielding should be implemented to make sure that a task is not executed if
there is nothing to consume from its input buffer or no room to store data
in the output buffer. In both cases the system will run into a buffer overflow
or underflow state and cannot be recovered. Also, the checking of deadlines
is added to the DaedulusRT framework. By default, there is no need for
hard real-time systems to check for deadline misses since the schedule is
assumed to not introduce these. In our approach this is a necessity to check
for deadline misses to be able to measure the influence of the reduction of
the periods on the system.

Because the datasets contain different occurrences of ETs for each task,
it could be that a task misses its deadline for one job and that the next job
has been given a lower execution time from ~D′ so both the ETs combined

CHAPTER 3. HARD REAL-TIME TESTING FRAMEWORK 31

is still less then both periods combined. This will prevent the system from
accumulating the deadlines over time and is called execution time compen-
sation or ETC. This can only occur if the dataset has multiple ETs, so that
if the deadline is missed, one of the next releases of that task will make up
for the time that was taken the time it missed its deadline.

For example, consider the CSDF graph in Figure 3.5 containing 3 actors
and 2 edges. ~D′

1 = (10, 9, 8, 7, 6) and ~D′
2 = (10, 9, 8, 7, 6).

A1 A2 A3
e1 e2

[1][1] [1][1]

Figure 3.5: CSDF graph with three nodes

Also note that our estimated period for actor A1 and A2 are 8 and 8
for our current series of executions. Now consider the scenario that actor
t1 is fired and will execute its WCET being 10. This means that A1 is
missing its deadline because 10 > 8. If actor A2 is also selecting its WCET
(being also 10), the sink-node A3 is also missing its deadline. This is because
actor A3 will start firing after the predecessors. This scenario will result
in lower throughput of the system because the sink-node was not able to
create output within the correct time. However, if actor A2 is selecting 6
as execution time instead of 10, the total ET for both actor A1 and A2 is
reduced to 16. This results in the sink-node being fired after both the periods
of node A1 and A2 (which is 8+8 = 16). The output is still produced at the
correct point in time, even though a deadline was missed. Given our dataset
from Figure 3.2, dataset 1 can have no execution time compensation because
all the execution times are of a single value.

3.7.3 Starvation

Another phenomenon that is introduced while reducing the value taken as
the WCET, is starvation of a task. If the periods become smaller, the uti-
lization of the hardware platform increases. If the utilization becomes too
much for the hardware platform to handle, deadlines will be missed and
some tasks may not be scheduled at all. This is because according to the FP
scheduling algorithm, the task with the highest priority should be scheduled.
This means that at some point, one or multiple tasks will not executed at all
and will stay in the release queue all the time. The task that will “starve”
first under a FP rate monotonic schedule is the one with the lowest priority.
This is because all other tasks are more likely to be schedule due to their

CHAPTER 3. HARD REAL-TIME TESTING FRAMEWORK 32

priority. Also, if the task with the lowest priority does get scheduled, it is
likely to get preempted later on.

3.8 Framework Usage

In this section, we describe how to use the framework and how to setup
everything needed in order to get it working on a Linux based system. We
assume basic knowledge about how to use Linux’s CLI and how to flash
external hardware.

Please note that the package ’libusb-1.0’ is needed as well as libusb-devel.
These are the package names for the Linux distribution Fedora, For Ubuntu
the packages are libusb-1.0-0 and libusb-1.0-0-dev.

3.8.1 Installation

First one has to download the framework from cvs.liacs.nl:/cvs/lerc/

docs/students/frankvansmeden/ and extract it to a desired place. Please
make sure to use a file system with support for symbolic links like EXT2
EXT3 or EXT4. 64 and 32 bit systems are both supported to run the frame-
work. Within this framework, part of the DaedalusRT framework is already
included in order to precompute things like periods start times and buffer
sizes.

3.8.2 Running the Framework

Now that the hardware platform is ready, we can start using the framework.
Go to the root directory of the downloaded framework and execute the
following code:

Listing 3.1: command line interface start script setup

sh f ramework star t . sh <dataset> <case> [percentage]

The framework start.sh script takes three arguments.

• The first argument is the dataset to use. Within the directory of the
framework there are 9 datasets present that all have a separate folder
in the root directory of the framework. Every dataset consists out
of separate cases. Cases are variations within the same dataset. For
example, currently, all the actors within our CSDF graph use the same

cvs.liacs.nl:/cvs/lerc/docs/students/frankvansmeden/
cvs.liacs.nl:/cvs/lerc/docs/students/frankvansmeden/

CHAPTER 3. HARD REAL-TIME TESTING FRAMEWORK 33

equation for reduction defined in Equation 3.1. Cases could be used
to create variations on this and reduce periods more/less for a specific
actors within the CSDF graph.

• The second argument is the case the use. This could be used for mak-
ing small variations within a certain dataset. At this point its not used
within the framework and its value will always be 1.

• The third argument is the percentage. If the value 0 is used, the frame-
work will generate datasets and take the WCET to derive the periods
start times and buffer sizes. If 1 is used, 95% of the WCET will be
used and so on.

Listing 3.2: command line interface start script

sh f ramework star t . sh 2 1 0

In listing 3.2 one can see an example of the start arguments of the frame-
work. In this case dataset 2 is being generated. After the dataset generation
the framework will automatically start execution on both the hardware plat-
form and simulator. This corresponds to the ”running the simulator” and
”initialize hardware” stages in Figure 3.1.

Also, if the optional percentage argument is not supplied, the framework
will run all the percentages (from 100% to 0% with a step of 5% as explained
in section 3.4).

3.8.3 Hardware Platform

By default, the framework uses only the simulator, but there is support to
run the simulator and the external hardware platform. In order to setup
the hardware platform, one has to download the package from https://

github.com/texane/stlink. Compile and install this package. Then down-
load the software for the hardware platform from cvs.liacs.nl:/cvs/

lerc/docs/students/frankvansmeden/. This package contains the Erika
Enterprise based operating system is capable of mimicking various applica-
tions as explained in Section 3.3. In order to compile the operating sys-
tem, one has to use the Erika Enterprise IDE that can be downloaded
from http://erika.tuxfamily.org/drupal/download.html (used version
in development: 2.1). This is an Eclipse based IDE that contains plugins to

https://github.com/texane/stlink
https://github.com/texane/stlink
cvs.liacs.nl:/cvs/lerc/docs/students/frankvansmeden/
cvs.liacs.nl:/cvs/lerc/docs/students/frankvansmeden/
http://erika.tuxfamily.org/drupal/download.html

CHAPTER 3. HARD REAL-TIME TESTING FRAMEWORK 34

compile the operating system. Once started, one can select the workspace
for the IDE to work in. Point the workspace towards the downloaded oper-
ating system. Once the IDE has finished loading, press ctrl-b to build the
project and generate a BIN-file. This BIN file is the executable needed on
the hardware platform and contains the operating system as well as the first
stage bootloader. Then navigate to the place where one has extracted the
operating system and run the script in the file called “flash”. Make sure the
hardware platform is connected with a USB cable. Also a few changes have
to be made to a file called “start.sh”. Comment out line 377 and uncomment
lines 373, 376 and 772 to support running on the hardware platform.

3.8.4 Extended Usages

The framework is setup in a flexible way, one can easily adjust pieces of
code to add/change functionality. One can easily change the CSDF graph
that we have used in our framework or add datasets that have different
characteristics.

If one wants to add a dataset, one has to execute the following steps:

1. Create a new folder in the root directory of the framework that starts
with “dataset”;

2. Within this new folder create another folder that starts with “case”;

3. Within this new folder create a file called “raw input.txt”;

4. Fill this file with the content that can be found in Table 3.4 specifying
the ETs and occurrences.

Chapter 4

Experiments and Results

In this section, we present the experiments and the results that were obtained
using the proposed framework. For these experiments we use the datasets
that are presented in Appendix A and also the CSDF graph presented in
Section 3.2 as G. The results of the tests are based on the simulation.

In our CSDF graph G there are 5 actors present. The prioritization of the
actors is 1 for actor A1,2 for actor A4, 3 for actor A5, 4 for actor A2 and 5 for
actor A3. In this case, a lower number means a higher priority. Actor A1 has
the highest priority and is able to fire at any given point in time because the
actor does not depend on any input. During execution, we monitor which
actor gets scheduled and if it misses its deadline. For our experiment, we are
mainly interested in actor A5. This actor is called the sink-actor. As long
as the sink-actor does not miss deadlines, the throughput of the application
as a whole is as to be expected. It could happen that other actors do miss
deadlines and fill the buffer for their successor node at a slower rate while
the sink-actor does not miss deadlines.

With every firing of an actor within CSDF graph G, the actor randomly
picks one of the 5 possible ETs available from a provided dataset. This being
either the WCET, BCET or one of the three other possible values within
~D′. The dataset also contains the amount of occurrences for each of the ETs
in ~D′ as explained in Section 3.2. As shown in Table 3.1 all the occurrences
have a percentage on how many times they are being executed. To mimic
the behavior of executing certain ETs with respect to the percentage, we
keep track which ET was executed and count the occurrences. For this we
execute the actor 100 times and subtract 1 of the occurrences for each time
that ET was randomly selected.

For example, consider actor A with ~D′ = [10, 20, 30, 40, 50] and the cor-

35

CHAPTER 4. EXPERIMENTS AND RESULTS 36

responding occurrences are [5%, 10%, 30%, 40%, 15%]. When actor A is exe-
cuted, it randomly selects one of the entries available in ~D′, for example 20.
D20 has a corresponding occurrence value of 10%, we adjust this value to 9
so this ET can only be selected for another 9 times. After 100 executions of
actor A, all occurrences are exhausted. When this happens the occurrences
reset to their initial value and the sequence starts again.

This reset is done for each actor as many times as the corresponding value
in the repetition vector. For our example CSDF graph G is the repetition
vector: [3, 2, 1, 3, 3]. So, actor A1 in our CSDF graph will use and reset the
dataset 3 times, actor A2 2 times etcetera. This is done so that we can be
sure that every dataset is exhausted at least once, mimicking the distribution
of ETs for our specific dataset. We also do this to ensure 1 full execution
iteration of the CSDF graph.

Because we cannot be sure about the amount of time a dataset will take
given a certain dataset, we wait for 300 executions of the sink-actor. This way
we are sure that every actor has exhausted the their dataset at least once.
Since we are reducing the periods with 5% for each simulation as described
in Section 3.1, there are datasets being generated from which a valid static
schedule cannot be derived. We call these datasets invalid datasets.

Invalid datasets are unable to finish execution because the sink-actor is
unable to execute 300 times. This is due to the prioritization of the actors.
When reducing the periods but not the ET, the actors with the lowest
priority will be preempted in favor of actors with a higher priority until
there is no room to schedule the actor with the lower priority in any way.
This will eventually stop the production of output of the application.

For example, for our CSDF graph G, the actor with the lowest priority
(being actor A3) will eventually not be able to execute at all. This is because
it will never be scheduled in favor of any other actor within G. This will
cause actor A4 to stop executing because actor A3 is not able to create
output needed for the execution of actor A4. So, in order to keep executing
the sink-node, every actor has to be able to finish execution. The reason
why an increase of delay is possible by reducing the periods is because it
could happen that actor A3 is not able to finished execution and it is being
preempted. This means that the output A3 should have produced will be
produced the next time A3 get scheduled. This is initially preventing actor
A4 from being able to execute but next time A4 is scheduled it will be able
to execute because the input buffer of A4 has been filled by the second
execution of actor A3.

Consider Figure 4.1. This Figure shows the amount of deadline misses of
the sink-actor for each dataset for different percentages of the WCET used

CHAPTER 4. EXPERIMENTS AND RESULTS 37

Figure 4.1: Deadline misses versus percentage of the WCET for all datasets

to calculate the period. As one can see. dataset 6 and 7 go up to 55% of the
WCET. At 55% of the WCET the lines stop. This indicates that at 50% of
the WCET, the sink-actor did not execute 300 times.

During the experiments we let the system run for the estimated time of
one full iteration of the CSDF times 25. We assume this is enough time to
finish execution even with missed deadlines. If the iteration did not finish
completely we assume the dataset is invalid and a no valid static schedule
could be derived from it. We can see this in Figure 4.1 onces the lines stop.
This indicates that the sink-node was unable to execute a full iteration.

Consider Figure 4.1, as expected, dataset 1 is either schedulable or not.
Once a single deadline is misses for this dataset, it accumulates and no task
will be able to finish execution within its period. This is expected because all
the ETs for each task is the same (8 as described in Table A.1). This means
that there is no room for compensation (ETC) as described in Section 3.7.

Figure 4.2 represents the execution time of the application measured in
time units in order to finish 300 execution of the sink-actor. As one can see,

CHAPTER 4. EXPERIMENTS AND RESULTS 38

Figure 4.2: Troughput versus percentage of the WCET for all datasets

most of the datasets become more stable in the amount of execution time
before being invalid. We call this execution time leveling This is probably
due to ETC described in Section 3.7. This means that when the periods are
reduced, there is a percentage of the WCET where reducing it further will
not increase the throughput of the system anymore but only increase the
amount of deadline misses.

One can also see that dataset 6 and 7 are becoming unfeasible prior to
the other datasets. Dataset 1 is becoming invalid at 75%, the reason for the
straight line is because the dataset uses very small ET values, the periods
are not changed for the 100%, 95%, 90%, 85% and 80%. Because the new
reduced period is always rounded up to the nearest possible integer. This
means that when the new reduced period is being calculated for 75% the
value is lower then the WCET for the first time. This results in an invalid
schedule.

Basically, one can extract three stages for reducing the periods by looking
at Figure 4.1 and Figure 4.2. The first stage is where the reduction leads

CHAPTER 4. EXPERIMENTS AND RESULTS 39

to an increase of the throughput of the system. In this stage, deadlines are
being missed already but not that much compared to the second stage. The
second stage, is where the the reduction of the periods does not lead to
an increase of the throughput but mainly to an increase of the amount of
deadline misses. In Figure 4.2 this is very well visible with dataset 9. This
dataset levels at 65% and from there on the ET does not change significantly
but the amount of deadline misses increases at a much higher rate then
before the 70%−100% as can be seen in Figure 4.1. The third stage is when
the periods are reduced too much and the schedule becomes invalid. The
first stage is the most beneficial, some deadlines are missed so the reduction
has a direct effect on the throughput of the system. The benefit of the
second stage depends on the dataset that is being used. Datasets that have
the characteristics of dataset 6 are more likely to level earlier and become
unfeasible then datasets like dataset 5.

Comparing Figure 4.1 and Figure 4.2, one can see that there is a corre-
lation between the amount of deadlines being missed and the ET. As soon
as the ET of a task does not decrease much more, the amount of deadline
misses increases. This is because the utilization of the processor is approxi-
mately 1.0, meaning that reduction will not increase the utilization but only
stress the system and generating more deadline misses. Reducing the peri-
ods even more will make the schedule invalid and the system will enter a
deadlock state. As one can see in Figure 4.2, dataset 9 will level at 65%, so
for this dataset is does not matter in terms of throughput of the system to
reduce the periods by 65% or 50% because the only difference will be the
amount of deadlines but the ET will not change much. At this point we can
only determine where this leveling point is by reducing the periods further
and see the results.

One benefit of scheduling dataset 9 at 65% instead of 50% is the fact
that because less deadlines are missed, the sink-node is producing output
regularly then it would at 50% reduction. Depending on the type of applica-
tion this could be more desirable.Note that, like in Figure 4.1, deadlines are
started to be missed at 80%. This is because of the periods and start times
are scaled by 4.0, as described in 3.7, introducing slack and not utilizing the
processor a 100% at WCET = 100%. So when we reduce the length of a
period, our analyzed deadlines of the sink-node are not missed immediately.
This is because the accumulated periods could be still lower then the start
time of the sink-node (as described in Section 3.7.2 as ETC). Dataset 1 is
different from the other datasets since this dataset is either valid or not.
This is also expected since there is no room in the dataset for any ETC.

Chapter 5

Conclusion and Open Issues

In this thesis, we proposed a framework for exploration and reduction of ETs
calculated by the value taken as the WCET of a task within an application.
Nowadays the demand for high performance real-time embedded systems
keeps growing. However, due to undecidable problems, the throughput on
these systems is not optimal due to overestimation. Our framework is capa-
ble of simulating applications and possibly show better estimations for the
periods given the single-actor-execution-time-vector. These better estimates
depend upon the distribution of ETs and therefore are different for each
application. However, in this thesis we showed that there is a correlation
between characteristics of applications and the amount of ETC. These char-
acteristics are defined by the single-actor-execution-times of an actor. This
means that with proper testing, applications can benefit more from having
shorter periods and more deadline misses but a higher throughput of the
system. Especially for datasets with the same characteristics as datasets 4
and 5. These could benefit more from our reduction approach then datasets
like 6 and 7. Datasets 4 and 5 are able to cope with more reduction compared
to other datasets. Also, datasets that are extreme versions (datasets 3, 5,
7 and 9) of other datasets but have the same characteristics seem not very
much affected by the difference between them. This is probably because the
difference between extreme and non-extreme datasets is too small compared
to having a different characteristics.

Another benefit of our research is the fact that with our framework,
one can make a trade-off between the throughput of the system versus the
regularity of the production of the output tokens. This is because the less
deadlines are missed, the more regular the tokens will be produced. Depend-
ing on the system this could be desirable.

40

CHAPTER 5. CONCLUSION AND OPEN ISSUES 41

Further research could be done on the following open issues:

5.1 Open issue 1 - Leveling of ET / ETC

Further research could be investigating the “leveling” of ET and trying to
calculate at which point this occurs for an application. Applications can
benefit very much from this if this could be calculated based on the dataset
instead of having to run experiments to find out when this happens.

5.2 Open issue 2 - Different Scheduling Algorithm

Another topic would be to change the scheduling algorithm. The proposed
framework uses Rate Monotonic scheduling rules but changing this to EDF
and measuring the effect of ETC. Since EDF will always schedule the task
with the nearest deadline, the yielding will not be an issue anymore. This
is because the task with the lowest priority will not longer be preempted
in favor of higher priority tasks if the deadline of the lowest priority task
is ealier. This also means that effects like starvation will have different con-
sequences because the execution of tasks will not depend anymore on the
priority of the task but on the deadlines of the tasks.

Appendix A

Datasets

executions and occurrences
BCET X1 X2 X3 WCET others
ET % ET % ET % ET % ET % period start time buffer

A1 8 20 8 20 8 20 8 20 8 20 32 0 2
A2 8 20 8 20 8 20 8 20 8 20 48 32 2
A3 8 20 8 20 8 20 8 20 8 20 96 96 3
A4 8 20 8 20 8 20 8 20 8 20 32 128 2
A5 8 20 8 20 8 20 8 20 8 20 32 160 2

Table A.1: Dataset 1 with 100% WCET used as the period

executions and occurrences
BCET X1 X2 X3 WCET others
ET % ET % ET % ET % ET % period start time buffer

A1 22 10 29 10 36 60 43 10 50 10 320 0 2
A2 40 10 50 10 60 60 70 10 80 10 480 320 2
A3 120 10 150 10 180 60 210 10 240 10 960 960 3
A4 20 10 25 10 30 60 35 10 40 10 320 1280 2
A5 20 10 25 10 30 60 35 10 40 10 320 1600 2

Table A.2: Dataset 2 with 100% WCET used as the period

42

APPENDIX A. DATASETS 43

executions and occurrences
BCET X1 X2 X3 WCET others
ET % ET % ET % ET % ET % period start time buffer

A1 22 5 29 5 36 80 43 5 50 5 320 0 2
A2 40 5 50 5 60 80 70 5 80 5 480 320 2
A3 120 5 150 5 180 80 210 5 240 5 960 960 3
A4 20 5 25 5 30 80 35 5 40 5 320 1280 2
A5 20 5 25 5 30 80 35 5 50 5 320 1600 2

Table A.3: Dataset 3 with 100% WCET used as the period

executions and occurrences
BCET X1 X2 X3 WCET others
ET % ET % ET % ET % ET % period start time buffer

A1 22 60 29 10 36 10 43 10 50 10 320 0 2
A2 40 60 50 10 60 10 70 10 80 10 480 320 2
A3 120 60 150 10 180 10 210 10 240 10 960 960 3
A4 20 60 25 10 30 10 35 10 40 10 320 1280 2
A5 20 60 25 10 30 10 35 10 40 10 320 1600 2

Table A.4: Dataset 4 with 100% WCET used as the period

executions and occurrences
BCET X1 X2 X3 WCET others
ET % ET % ET % ET % ET % period start time buffer

A1 22 80 29 5 36 5 43 5 50 5 320 0 2
A2 40 80 50 5 60 5 70 5 80 5 480 320 2
A3 120 80 150 5 180 5 210 5 240 5 960 960 3
A4 20 80 25 5 30 5 35 5 40 5 320 1280 2
A5 20 80 25 5 30 5 35 5 40 5 320 1600 2

Table A.5: Dataset 5 with 100% WCET used as the period

APPENDIX A. DATASETS 44

executions and occurrences
BCET X1 X2 X3 WCET others
ET % ET % ET % ET % ET % period start time buffer

A1 22 10 29 10 36 10 43 10 50 60 320 0 2
A2 40 10 50 10 60 10 70 10 80 60 480 320 2
A3 120 10 150 10 180 10 210 10 240 60 960 960 3
A4 20 10 25 10 30 10 35 10 40 60 320 1280 2
A5 20 10 25 10 30 10 35 10 40 60 320 1600 2

Table A.6: Dataset 6 with 100% WCET used as the period

executions and occurrences
BCET X1 X2 X3 WCET others
ET % ET % ET % ET % ET % period start time buffer

A1 22 5 29 5 36 5 43 5 50 80 320 0 2
A2 40 5 50 5 60 5 70 5 80 80 480 320 2
A3 120 5 150 5 180 10 210 5 240 80 960 960 3
A4 20 5 25 5 30 5 35 5 40 80 320 1280 2
A5 20 5 25 5 30 5 35 5 40 80 320 1600 2

Table A.7: Dataset 7 with 100% WCET used as the period

executions and occurrences
BCET X1 X2 X3 WCET others
ET % ET % ET % ET % ET % period start time buffer

A1 22 35 29 10 36 10 43 10 50 35 320 0 2
A2 40 35 50 10 60 10 70 10 80 35 480 320 2
A3 120 35 150 10 180 10 210 10 240 35 960 960 3
A4 20 35 25 10 30 10 35 10 40 35 320 1280 2
A5 20 35 25 10 30 10 35 10 40 35 320 1600 2

Table A.8: Dataset 8 with 100% WCET used as the period

APPENDIX A. DATASETS 45

executions and occurrences
BCET X1 X2 X3 WCET others
ET % ET % ET % ET % ET % period start time buffer

A1 22 42 29 5 36 6 43 5 50 42 320 0 2
A2 40 42 50 5 60 6 70 5 80 42 480 320 2
A3 120 42 150 5 180 6 210 5 240 42 960 960 3
A4 20 42 25 5 30 6 35 5 40 42 320 1280 2
A5 20 42 25 5 30 6 35 5 40 42 320 1600 2

Table A.9: Dataset 9 with 100% WCET used as the period

Bibliography

[Ada79] Douglas Adams. The Hitchikers Guide To The Galaxy. Pan
Books, 1979.

[BCPt02] Guillem Bernat, Antoine Colin, and Stefan M. Pettersreal-time.
Wcet analysis of probabilistic hard real-time systems. In In
Proceedings of the 23rd Real-Time Systems Symposium RTSS
2002, pages 279–288, 2002.

[BELP96] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete. Cycle-
static dataflow. Trans. Sig. Proc., 44(2):397–408, February 1996.

[BS14] Mohamed Bamakhrama and Todor Stefanov. On Hard Real-
Time Scheduling of Cyclo-Static Dataflowand its Application in
System-Level Design. PhD thesis, Leiden University, 2014.

[But05] Giorgio C. Buttazzo. Rate monotonic vs. edf: Judgment day.
Real-Time Syst., 29(1):5–26, January 2005.

[dae14] Daedalusrt framework. http://daedalus.liacs.nl, 2014.

[DB11] Robert I. Davis and Alan Burns. A survey of hard real-time
scheduling for multiprocessor systems. ACM Comput. Surv.,
43(4):35:1–35:44, October 2011.

[DBK01] Rajagopalan Desikan, Doug Burger, and Stephen W. Keckler.
Measuring experimental error in microprocessor simulation. In
Proceedings of the 28th Annual International Symposium on
Computer Architecture, ISCA ’01, pages 266–277, New York,
NY, USA, 2001. ACM.

[dis] Stm32f4 discovery. http://www.st.com/web/catalog/tools/

FM116/SC959/SS1532/PF252419.

46

http://daedalus.liacs.nl
http://www.st.com/web/catalog/tools/FM116/SC959/SS1532/PF252419
http://www.st.com/web/catalog/tools/FM116/SC959/SS1532/PF252419

BIBLIOGRAPHY 47

[eri14] Erika enterprise rtos. http://www.evidence.eu.com, 2014.

[LKM98] Sung-Soo Lim, Jihong Kim, and Sang Lyul Min. A worst case
timing analysis technique for optimized programs. In Real-Time
Computing Systems and Applications, 1998. Proceedings. Fifth
International Conference on, pages 151–157, Oct 1998.

[LL73] C. L. Liu and James W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. J. ACM,
20(1):46–61, January 1973.

[LM87] Edward A. Lee and David G. Messerschmitt. Synchronous data
flow. Proceedings of the IEEE, 75(9):1235–1245, 1987.

[PF99] S.M. Petters and G. Farber. Making worst case execution time
analysis for hard real-time tasks on state of the art processors
feasible. In Real-Time Computing Systems and Applications,
1999. RTCSA ’99. Sixth International Conference on, pages
442–449, 1999.

[Tur36] Alan Turing. On computable numbers, with an application to
the Entscheidungsproblem. Proceedings of the London Mathe-
matical Society, 42(2):230–265, 1936.

[WEE+08] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas
Holsti, Stephan Thesing, David Whalley, Guillem Bernat,
Christian Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank
Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat,
and Per Stenström. The worst-case execution-time prob-
lem—overview of methods and survey of tools. ACM
Trans. Embed. Comput. Syst., 7(3):36:1–36:53, May 2008.

[WKRP05] Ingomar Wenzel, Raimund Kirner, Bernhard Rieder, and Pe-
ter Puschner. Measurement-based worst-case execution time
analysis. In Proceedings of the Third IEEE Workshop on Soft-
ware Technologies for Future Embedded and Ubiquitous Systems,
SEUS ’05, pages 7–10, Washington, DC, USA, 2005. IEEE Com-
puter Society.

[ZKW+04] Wankang Zhao, Prasad Kulkarni, David Whalley, Christopher
Healy, Frank Mueller, and Gang ryung Uh. Tuning the wcet of
embedded applications. In Proceedings of the 10th IEEE Real-
Time and Embedded Technology and Applications Symposium,

http://www.evidence.eu.com

BIBLIOGRAPHY 48

RTAS ’04, pages 472–, Washington, DC, USA, 2004. IEEE Com-
puter Society.

List of Figures

2.1 Timing analysis of systems.(Figure by Reinhard Wilhelm et
al. [WEE+08]). 8

2.2 CSDF graph example, Actor A1 produces a single token after
two firings, actors A2 consumes a token each firing. 10

2.3 Example of a schedule. 14
2.4 Example of a schedule with preemption. 15

3.1 Schematic overview of the framework, each box represent a
separate stage within the framework. 18

3.2 CSDF graph containing 5 actors and 5 edges. 20
3.3 Example actor execution times. 20
3.4 Lifecycle of a task within a system 30
3.5 CSDF graph with three nodes 31

4.1 Deadline misses versus percentage of the WCET for all datasets 37
4.2 Troughput versus percentage of the WCET for all datasets . 38

49

List of Tables

3.1 Dataset of an actor. In this table one can see 3 occurrences
of execution-time mapping . 21

3.2 Datasets containing ~D′ and the percentage of occurrences for
single actor within CSDF graph G (part A) 24

3.3 Datasets containing ~D′ and the percentage of occurrences for
single actor within CSDF graph G (part B) 25

3.4 Dataset 2 for all actors within CSDF graph G 26
3.5 Dataset 2 with 5% reduction of the WCET 26

A.1 Dataset 1 with 100% WCET used as the period 42
A.2 Dataset 2 with 100% WCET used as the period 42
A.3 Dataset 3 with 100% WCET used as the period 43
A.4 Dataset 4 with 100% WCET used as the period 43
A.5 Dataset 5 with 100% WCET used as the period 43
A.6 Dataset 6 with 100% WCET used as the period 44
A.7 Dataset 7 with 100% WCET used as the period 44
A.8 Dataset 8 with 100% WCET used as the period 44
A.9 Dataset 9 with 100% WCET used as the period 45

50

	Acknowledgments
	Abstract
	Samenvatting
	Abbreviations
	Introduction
	Problem Description
	Contribution
	Scope of Work
	Related Work
	Structure of the Thesis

	Background
	Worst-case execution time
	CSDF
	Repetition Vector
	Periods
	Start Times
	Buffer Sizes
	Scheduling
	Utilization

	Hard Real-time Testing Framework
	Functionality
	Deriving Execution Times
	Creating Datasets
	Calculating Periods
	Calculating Start Times
	Calculating Buffer Sizes
	Scheduling
	Utilization
	Yielding
	Starvation

	Framework Usage
	Installation
	Running the Framework
	Hardware Platform
	Extended Usages

	Experiments and Results
	Conclusion and Open Issues
	Open issue 1 - Leveling of ET / ETC
	Open issue 2 - Different Scheduling Algorithm

	Datasets
	Bibliography
	List of figures
	List of tables

