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Abstract

In this thesis we consider an attributed graph miner to find patterns among children who play on the play-

ground. These patterns may provide us with a deeper understanding of the impact that the social-emotional

skills of a child have on his social interactions. With a pattern mining approach we hope to find unexplored

information that was not located by the previously used statistical approach. As our pattern mining method

we chose CoPaM, an attributed graph miner that returns connected vertices with cohesive attributes. Firstly,

we discuss the data pre-processing required to prepare the dataset as input for a dynamic social network

whose vertices are associated with features. After that we examine the functionality and output of CoPaM.

Next we visualize the output which gave an interesting insight into the interactions of children and provided

a graphic overview of the data. Additionally, while analyzing the output of CoPaM we stumbled upon the

fact that CoPaM was designed for a static instead of a dynamic attributed graph which caused a rise in

the output of found patterns. To cope with this rise we focused on the frequency of each feature, the most

prominent patterns and the pattern with the most vertices or features during post-processing of the output.

In conclusion, a child’s capacity to calm down or to be calmed down seemed to be the most prominent fea-

ture that was present in groups. Nevertheless, after visualizing and analyzing the output of CoPaM there

seem to be no strong patterns in the data that present a correlation between social-emotional skills and social

development.
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Chapter 1

Introduction

Pattern mining is a topic within data mining concerned with finding relevant patterns between data objects.

Graph pattern mining methods expect a collection of graphs as input and return a set of subgraphs that satisfy

some cohesion or density constraint. For our study the input graphs are undirected attributed graphs. This is

relevant for social network analysis since a social network can be converted to an undirected attributed graph.

An undirected edge between two vertices relates to a connection between two people in a social network. The

vertices in the graph are labelled with features that give us information about a person in the network. A

social network can be static or dynamic but in reality most social networks are not static since they change

over time. [Berger-Wolf and Saia(2006)] describe how in a dynamic social network every timeframe can have

a new list of edges or vertices.

In psychology one of the main research areas is about how people behave in a group environment. A group

can be constructed as a social network if there is a relation between people in the group. In a behavioural

paper such as [Veiga et al.(2016)Veiga, Ketelaar, Leng, Cachucho, Kok, Knobbe, Neto, and Rieffe] the authors

research the impact of social-emotional skills on the social development of children ranging from the age of

4 to 6 years old. During these years the children develop social skills to interact and build up a relationship

with their peers. One of the moments when children interact and play with each other is during recess time.

When children prefer to spend their recess time alone instead of with their peers, then this is known to be

an alarm signal for maladaptive social development as described by [Rubin et al.(2009)Rubin, Coplan, and

Bowker] and [Coplan and Armer(2007)].

To research the impact of social-emotional skills on solitary behaviour, researchers observed 97 children on

the playground during school recess time and tested their social-emotional skills. To observe these children,

every child was given a Radio Frequency Identification Device (RFID) to measure their distance to other

children. Every second the RFID-tag detected if a child was near another child and this was registered by the

3



4 Chapter 1. Introduction

RFID-tags. This registration is seen as an interaction between these children.

After collecting all the data, the researchers have processed the data with a statistical approach. This approach

concluded that non-social behaviours do not necessarily evolve into later solitude. Nevertheless one non-

social play that was associated with later solitude was solitary-pretend play (e.g., pretending to be a teacher

alone), but only for girls and irrespective of their level of emotional competence. For our research we want to

take a pattern mining approach on processing the data. The difference between a pattern mining approach

and a statistical approach is that the statistical approach only shows us information about the interactions of

children, whereas a pattern mining approach focuses more on the relationship between children. This gives

us insight into how children interact and share similarities with each other. These patterns can be visualized

in order to give a graphic overview of the interactions between children and give a deeper understanding

of how they behave. In order to explore our approach we investigate and answer the following research

question: Can we use attributed community detection to help psychologists understand the impact of social-

emotional skills on the behaviour of children?

1.1 Approach

As our pattern mining algorithm we chose Cohesive Pattern Miner [Moser et al.(2009)Moser, Colak, Rafiey,

and Ester]. CoPaM extracts cohesive patterns from an attributed graph. As input we are combining the

children, their interactions and their features into an undirected social network whose vertices are linked

with features. These features consist of the social-emotional skills and statistical analysis performed by the

researchers. These two combined make up the feature space of the social network. Since the interactions

of children cover a time period of 30 minutes we have to convert the social network to a dynamic social

network. During pre-processing of the feature space we will have to make it compatible with the algorithm

to find cohesive patterns. A cohesive pattern is a subgraph with similar attribute values. Figure 1.1 shows

an example of a cohesive pattern where three children each have the value 1 for the social-emotional skill

Aggression. This implies that these 3 children combined are a cohesive pattern and connected by their

interactions and features. An attributed graph can contain multiple patterns, therefore during data post-

processing we will study the most prominent patterns. With CoPaM we can find children who are connected

through an interaction and their features. With this approach we hope to find a correlation between social-

emotional skills and social interactions on a dynamic social network.



1.2. Main Contributions 5

Figure 1.1: Example of a cohesive pattern

1.2 Main Contributions

• We analyzed the data about the social-emotional skills of children together with the domain expert

Guida Veiga to improve data pre-processing.

• We shaped the feature space to be compatible with CoPaM by pre-processing the input data and dis-

cretizing the continuous variables.

• We implemented CoPaM based on the pseudo code in [Moser et al.(2009)Moser, Colak, Rafiey, and

Ester].

• We constructed a dynamic attributed graph which served as input for CoPaM.

• We visualized the dynamic social network and the cohesive patterns that were the output of CoPaM.

• We analyzed the set of cohesive patterns that were extracted by CoPaM.

1.3 Thesis Overview

The rest of the paper is arranged as follows. Section 2 reviews related work. In Section 3, we discuss the

input data for CoPaM. Section 4 explain the functionality of CoPaM and its output. Section 5 discusses the

results of our experiment. Lastly, Section 6 concludes this paper with the findings and interesting topics for

future research.



Chapter 2

Related Work

Social network analytics is in general context about interactions between people and determining the impor-

tant structural patterns in such interactions. The authors [Aggarwal and Abdelzaher(2011)] discuss the key

problems which arise with sensor data and the corresponding solutions. Also different dynamic models for a

social network are suggested and analyzed. Extracting these structural patterns can be done in various ways

and different techniques could result in different candidate graph patterns. [Akoglu et al.(2012)Akoglu, Tong,

Meeder, and Faloutsos] present PICS (Parameter-free Identification of Cohesive Subgroups), a parameter-free

clustering model to find groups of nodes with similar connectivity and attributed homogeneity. Since it is

parameter-free it works without any user-specified input, such as the number of clusters, choice of density

or similarity functions and thresholds. PICS constructs a matrix where users are carefully arranged to reveal

the patterns. A pattern consists of nodes with a similar connectivity and high attribute homogeneity. In ad-

dition, it also clusters the attributes into attribute-clusters to show the distribution of attribute values. [Zhou

et al.(2009)Zhou, Cheng, and Yu] produces a method that isolates a large graph whose vertices are associated

with attributes into k clusters so that each cluster contains a densely connected subgraph with homogeneous

attribute values called a SA-pattern. [Moser et al.(2009)Moser, Colak, Rafiey, and Ester] presents CoPaM

(Cohesive Pattern Miner), which exploits various pruning strategies to efficiently find connected subgraphs

whose vertices have cohesive attributes and filters patterns that are a subset of other found patterns.

In our application we are using the CoPaM algorithm. The reason behind this decision is that PICS works

without parameters, which limits the filtering of false positive input data. With PICS a pattern has high

attribute homogeneity, but for our problem we need the possibility to find patterns with specific attributes.

SA-pattern was not chosen because a SA-pattern does not have to be a connected subgraph, though in our

problem we are looking for groups of children that interact with each other. Therefore, a pattern has to be

connected. Another reason why CoPaM is more relevant, is because it enables us to find common recurrent

patterns.

6



Chapter 3

Data

In this chapter we will discuss the dataset that was used as input for our pattern miner.

3.1 Data acquisition

The vertices and edges of our social network consist of the children and interactions observed during the

school recess time with the RFID-tags. The edges are undirected and have a lifetime of one second. The

school recess time was 30 minutes on average and all interactions were stored in a dataset. This dataset is

called the interaction dataset and consists of the children, adults and seesaws that have an interaction, their

distance to each other and the timestamp of the interaction. Interactions with a seesaw is a special case since

the distance between two children sitting on the ends of a seesaw can not be registered. Therefore, the ends

of a seesaw were also given RFID-tags. If two children have an interaction with the ends of the same seesaw

and have the same timestamp then this is counted as an interaction between these children. Table 3.1 shows

the interaction dataset structure.

Column name Datatype Description
TagX Numeric Tag ID of child 1

TagY Numeric Tag ID of child 2

power Numeric Inverse distance between children
time Timestamp Timestamp of interaction

Table 3.1: Interaction dataset structure

[Veiga et al.(2016)Veiga, Ketelaar, Leng, Cachucho, Kok, Knobbe, Neto, and Rieffe] used the interaction

dataset to extract information with a statistical approach. With their approach they derived additional data

about behaviour of a child such as the number of interactions, mean time spent alone and percentage of time

7



8 Chapter 3. Data

spent with same gender. This dataset is called the derived interaction dataset and its structure can be seen

in Table 3.2

To determine the social-emotional skills of a child, children would participate in testing sessions. Besides

testing sessions, the parents and teachers of the children filled out surveys. The results of these tests were

collected in a dataset and is called the social-emotional skills dataset. The structure of the social-emotional

skills dataset is shown in Table 3.3

Column name Datatype Description
child Numeric Tag ID
number.childs.interacted Numeric Number of different children interacted with
number.interactions Numeric Total number of interactions
mean.time.interactions Numeric Mean duration of an interaction
percentage.time.alone Numeric Percentage of their time alone
mean.count.simultaneous.interactions Numeric Mean count of simultaneous interactions
number.alone Numeric Number of time alone
mean.time.alone Numeric Mean time of their time alone
percentage.time.adult Numeric Percentage of their time with an adult
percentage.time.same.gender Numeric Percentage of their time with a child of the same gender
percentage.time.other.gender Numeric Percentage of their time with a child of the a different gender
percentage.time.interaction Numeric Percentage of their time making an interaction
percentage.time.interaction.one.child Numeric Percentage of their time interaction with only one child
percentage.time.interaction.group Numeric Percentage of their time interacting with multiple children
gender String Gender of the child
code String Child ID

Table 3.2: Derived interaction dataset structure

Column name Datatype Description
Code String Child ID
gender Boolean 1 = male, 2 = female
age Numeric Age of parents
SocialCompTeachersMay Numeric Social Competence - rated by teachers in May (same time as Tags)
Empathy Numeric Empathy - rated by parents
EmoUnderstanding Numeric Emotion Understanding
Aggression Numeric Aggression
TheoryofMind Numeric Theory of Mind
SocialCompParentsDec Numeric Social Competence - rated by parents in December
SocialCompTeachersDec Numeric Social Competence - rated by teachers in December
PositiveEmotions Numeric Display of positive emotions
EmoRegulation Numeric Emotion Regulation
CapacitytoCalmDown Numeric Capacity to calm down or be calmed down
MotorCompetence Numeric Motor Competence
tagalonen Numeric Number of interactions alone
tagalonept Numeric Percentage of time alone
tagalonet Numeric Mean time alone
taggroupsize Numeric Group size - mean of simultaneous interactions
taginteractn Numeric Mean time of interactions

Table 3.3: Social-emotional skills dataset structuce
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3.2 Data pre-processing

Generally real world data is either incomplete, noisy or inconsistent. The pattern mining algorithm looks for

cohesive patterns in a connect subgraph that has homogeneous values in its feature space. Unfortunately,

some features in the feature space have no homogeneous values. Therefore, in order to use our pattern

mining algorithm we had to clean and discretize the gathered data. The feature space of our graph consists

of the derived interaction dataset and social-emotional skills dataset.

3.2.1 Data cleaning

To clean the social-emotional skills dataset we first checked which children were present in the interaction

datasets. Children that were not in any of the interaction datasets were removed from the social-emotional

skills dataset. Secondly, we looked for children with missing values. Since some parents did not fill out the

survey or children were absent at school during the social-emotional tests there were children with missing

values. The following four children: BM280408, JP120208, MA090308 and MF110908 missed 6 data fields and

were therefore excluded and removed from the social-emotional dataset. In addition, there were children

who got registered with RFID-tags but did not have data about their social-emotional skills. Therefore the

following two children: AP060507 and AS281207, were also excluded. Interactions with children who were

excluded were ignored during graph initialisation.

Besides missing values there was also noisy data in the data collected by the RFID-tags. We checked the

interaction datasets and rows with tag IDs that did not belong to any child, adult or seesaw were removed.

In the turma7afternoon and turma7morning dataset the tags with ID 1329, 1652, 3927, 2174 and 4726 do not

belong to any object. In the turma8afternoon dataset the tags with ID 808, 1056, 2744, 3911 and 43274 do not

belong to any object.

3.2.2 Data reduction

In union, the interaction dataset and derived interaction dataset have a total of 30 features. The feature space

that we use as input for our pattern mining algorithm should only consist of features that characterize the

child. For that reason we want to reduce the number of features by removing irrelevant features. Firstly, the

feature SocialCompTeachersMay missed 11 values and replacing it with the mean would make this feature

irrelevant. Moreover, the feature Age represents the age of the parents of the child that filled in the survey

and not the child itself. According to [Gottman and DeClaire(1997)] parenting skills yield the largest benefit

to raising a child rather than age, so the feature age is irrelevant. Lastly, the features of the derived inter-

action dataset seemed to be valuable but during tests with the pattern mining algorithm we discovered that
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most patterns were found between children that share the same feature value of a feature from the derived

interaction dataset. We discovered that the reason behind this is that these features were constructed based

on the interaction dataset, which means that these features are based on the network structure and since

the pattern mining algorithm is looking in the network for a connected subgraph with homogeneous values

these features are redundant. The following features are removed from the feature space because of the

aforementioned reasons:

• SocialCompTeachersMay
• Age
• number.childs.interacted
• number.interactions
• mean.time.interactions
• percentage.time.alone
• mean.count.simultaneous.interactions
• number.alone
• mean.time.alone
• percentage.time.adult
• percentage.time.same.gender
• percentage.time.other.gender
• percentage.time.interaction
• percentage.time.interaction.one.child
• percentage.time.interaction.group

3.2.3 Data discretization

Since the scale of measures used for the features is numerical there were some features with zero or close

to zero homogeneous values. This level of measurement implies that the pattern mining algorithm can not

use these features. In order to overcome this issue we discretized these features into nominal variables. To

convert the features into nominal variables we have binned the feature values into four bins. We used the

equal frequency binning technique on every feature except Gender, as this is a binary variable. We used the

equal frequency technique because we want an equal distribution of children among every bin. This way

there is no overpopulated bin which would result in the influx of patterns found. The range of every bin can

be seen in Table 3.4. To indicate if feature value x should fall in bin number y the following equation should

be true.

minrange(biny) < x ≤ maxrange(biny) = T (3.1)
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feature 0 1 2 3
Empathy [1.800, 2.700] (2.700, 2.872] (2.872, 3.337] (3.337, 3.800]
EmoUnderstanding [-2.481, -0.368] (-0.368, 0.091] (0.091, 0.631] (0.631, 1.277]
Aggression [1.000, 1.500] (1.500, 1.917] (1.917, 2.167] (2.167, 4.000]
TheoryofMind [1.000, 1.4999] (1.4999, 1.500] (1.500, 1.667] (1.667, 2.000]
SocialCompParentsDec [2.000, 2.429] (2.429, 2.690] (2.690, 2.857] (2.857, 3.000]
SocialCompTeachersDec [1.571, 2.286] (2.286, 2.429] (2.429, 2.714] (2.714, 3.000]
PositiveEmotions [3.000, 3.833] (3.833, 4.333] (4.333, 4.792] (4.792, 5.000]
EmoRegulation [1.125, 2.000] (2.000, 2.375] (2.375, 2.625] (2.625, 3.500]
CapacitytoCalmDown [2.333, 3.333] (3.333, 3.667] (3.667, 4.000] (4.000, 5.000]
MotorCompetence [-1.536, -0.500] (-0.500, 0.072] (0.072, 0.437] (0.437, 1.265]

Table 3.4: Bins sizes of the numerical variables



Chapter 4

Methods

In this chapter we will discuss the CoPaM algorithm and how we want to apply this pattern miner to our

network.

4.1 CoPaM

With our application of CoPaM we are researching the groups of children and what features these groups

share. Besides the connections between children, which a cluster algorithm such as [Zhang(2005)] researches,

the patterns will provide us with information about features that correlate with interactions. That is, if we

find frequent patterns with a the same feature and feature value this could imply that this is an important

feature for social development. The implementation of CoPaM was based on the pseudo code provided

by [Moser et al.(2009)Moser, Colak, Rafiey, and Ester]. CoPaM is a pattern mining algorithm that exploits

various pruning strategies to find all maximal cohesive patterns in a network. The input of CoPaM is a

feature vector graph G = (V , E ,D). A feature vector graph is a graph that consists of vectors that each have

a feature value for every feature in the feature space D. For the feature vector graph definition see Definition

1 by [Moser et al.(2009)Moser, Colak, Rafiey, and Ester]). A cohesive pattern is an induced subgraph G =

(V, E, D), V ⊂ V , E = {v1, v2|v1, v2 ∈ V, {v1, v2} ∈ E} , D ⊂ D that satisfies the following three constraints:

• Subspace cohesion constraint: G is homogeneous in D ⊆ D, i.e. s(V, D, θs) = true and |D| ≥ θdim ≥ 1

• Density constraint: d(G) := 2|E|
|V|(|V|−1) ≥ α. (In this case G is also called α-dense.)

• Connectivity constraint: G is connected.

These three constraints combined are called the cohesive pattern constraint (CP constraint). In addition,

an edge is called cohesive if the induced graph, constructed with its two connected nodes, fulfills the CP

12



4.1. CoPaM 13

Figure 4.1: Example of a maximal cohesive pattern

constraint. Figure 1.1 shows a cohesive pattern that complies with the CP constraint.

The output of the CoPaM algorithm is the set of maximal cohesive patterns. A maximal cohesive pattern

can be defined as a cohesive pattern that can not be extended by a node while still being a cohesive pattern.

Furthermore, the feature subspace of a cohesive pattern should be maximal, which implies that there does not

exist an additional feature whose feature values are homogeneous among the nodes of the pattern. For the

maximal cohesive pattern definition see Definition 3 by [Moser et al.(2009)Moser, Colak, Rafiey, and Ester].

Figures 4.1 shows a toy example of a maximal cohesive pattern. Both patterns, left and right, are a cohesive

pattern but the left pattern is not a maximal cohesive pattern because it can be extended by a vertex and still

comply with the CP constraint.

4.1.1 Feature vector graph

The feature vector graph G is constructed with a node set V , edge set E and feature space D. We will discuss

how we implemented each part. The feature space D is discussed in Chapter 3 and consists of the following

eleven features:

• gender
• Empathy
• EmoUnderstanding
• Aggression
• TheoryofMind
• SocialCompParentsDec
• SocialCompTeachersDec
• PositiveEmotions
• EmoRegulation
• CapacitytoCalmDown
• MotorCompetence

The node set V consists of the children that were present in the interaction dataset minus the children whose
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data were incomplete (see 3.2.1). The edge set E consists of the registered interactions between children in

the interaction dataset. The interaction dataset registered 30 minutes of interactions, which causes multiple

edges between two vertices. In order to maintain an overview of the data we introduced a dynamic social

network.

Definition 1. [Dynamic social network] Let N = (T, θi,G) be a dynamic social network with the following parame-

ters:

• Time interval in seconds T,

• Interaction threshold θi,

• Feature vector graph G

We study our dynamic social network across the time axis and assume a series of discrete timepoints

t1, . . . , tn−1, tn. For our application we only change the edge set E over time, so at timepoint ti we ob-

serve the feature vector graph instance Gi = (V , Ei,D). The interval T is the number of seconds between

every timeframe. Every T seconds the edge set is cleared and filled with the interactions of the following

T seconds. For our application we chose T = 60 because increasing T reduces the change of disconnected

vertices and decreasing T would increase the number of disconnected vertices. An alternative would be a

sliding window to show a graph representation of every second. We did not implement a sliding window

because it would enlarge output of maximal cohesive patterns and this would clutter the results. To exclude

false positive interactions, for example children that briefly brush up against each other, we set an interaction

threshold. The interaction threshold θi implies that there should be a minimum of θi edges between two

nodes during an interval. Thus if two children have θi or more interactions its edge is included in the edge

set E . For our application we set θi = 5 so that two children need to have 1
12 · T or more interactions during

an interval. Since two children can have more than one interaction during an interval we assign a weight to

every edge. The weight wE of edge E relates to the number of interactions between two children.

4.1.2 CoPaM parameters

CoPaM accepts the following parameters:

• density threshold α, 1
3 < α ≤ 1,

• subspace cohesion function s,

• subspace cohesion threshold θs,

• dimensionality threshold θdim

For our implementation we are using the following parameters. Density threshold α = 1
2 since α = 1 would

imply that every child in a pattern is a maximum of 1,5 meter away from each other. Density threshold α = 2
3

and α = 1
2 increase this maximum distance between two children in a pattern to (|V| − 1) · 1, 5m. Though
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both are valid options we do not want to exclude loosely organized groups of playing children, so we set

our density threshold to α = 1
2 . We are not using density threshold α = 1

3 since our node set consists of

approximately 20 nodes and a density threshold of α = 1
3 would need a minimum of 6 vectors in a pattern

to be a connected subgraph making this irrelevant for our application. We chose the following subspace

cohesion function s:

s(V, D, true) = ∀v ∈ V, d ∈ D : Fd(v) = true (4.1)

Fd(v) stands for the feature value of node v in dimension d. The subspace cohesion function requires that

every node in a pattern has a identical feature value in dimension D. For example, in Figure 1.1 three

nodes share the same feature value for the feature Aggression. Since we are not using the subspace cohesion

threshold parameter this parameter can be set to θs = true. As input for our minimum dimensions parameter

we chose θdim = 3 which implies that dimension |D| ≥ 3. Increasing the minimum number of dimensions

threshold causes overfitting considering only a few children share 5 or more features values. Table 4.1 shows

the average maximal cohesive patterns found for each dataset. The average is calculated by dividing the sum

of the maximal cohesive patterns per timeframe t by the total number of timeframes.

averagemaximalcohesive =
∑n

i=0 |maximal cohesive patternsi|
n

(4.2)

Minimum dimensions θdim ≥ 5 results in some timeframes having no cohesive patterns and is therefore not

viable.

θdim turma6-
afternoon

turma6-
morning

turma7-
afternoon

turma7-
morning

turma8-
afternoon

turma8-
morning

turma9-
afternoon

turma9-
morning

2 23 26 17 17 10 13 4 5

3 19 23 15 16 10 15 5 6

4 13 16 11 11 8 12 4 6

Table 4.1: Average maximal cohesive patterns per interaction dataset



Chapter 5

Experiments

We evaluate CoPaM on being able to present patterns that display a positive or negative correlation between

features and interactions. We visualize and analyze the generated output of the input described in Chapter

4. The input data for our experiment reflects children playing on the playground. During our experiment

we are looking to identify groups of children that play together. When analyzing these groups we hope to

find features and feature values that are frequently present since this would imply a correlation between

these features and social interaction. Our dynamic networks have an average of 30 timeframes. Figure 5.1

shows timeframe t3 from social network turma6afternoon with the node color decided by the node feature

’gender’. When the gender equals male, female or adult the color is either blue, pink or red respectively. For

the full visualization of the social networks see [Fonhof(2016)]. In this visualization we highlighted 3 patterns

that were acquired during postprocessing. Figure 5.2 shows a snapshot from the visualization. To clarify the

visualization and the 3 patterns:

• In the lop left corner we see a normal network without any highlight. This image shows how the

different genders interact with each other.
• In the top right corner we see the network with a green highlighted pattern. This pattern is at that time

the maximal cohesive pattern with the most children together, max |V|.
• In the bottom left corner we see the network with a yellow highlighted pattern. This pattern is at that

time the maximal cohesive pattern where the children share the most number of features, max |D|.
• In the bottom right corner we see the network with an orange highlighted pattern. This pattern is at

that time the maximal cohesive pattern pattern with the highest value for the equation: |D| · |V|.

16
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Figure 5.1: Example of a network timeframe

Figure 5.2: Snapshot of the visualization
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5.1 Results

Table A.1 shows the number of maximal cohesive patterns for every snapshot per dynamic network. This

overview displays the increase of patterns found by converting the social network to a dynamic social net-

work. Given that we found over 100 maximal cohesive patterns for every single dynamic network we decided

to first provide further inspection of the composition of the found patterns.

Table A.2 presents the most frequent maximal cohesive pattern for each dynamic network. From the 8 pre-

sented patterns, 7 are unique combinations of children. Each pattern seems to be friends of the same gender

playing together, though turma7afternoon dataset shows a boy and a girl interacting. While analyzing the

boy GQ110608 and girl NL201207 in the visualization we can see them either playing with each other or a

group of girls.

Table A.3-A.9 shows the frequency of each feature and its respective bin for each dynamic network. An

explanation for why gender 1(male) has more patterns could be that the distribution is skewed towards boys.

There are a total of 44 boys to 26 girls in the social-emotional skills dataset. TheoryofMind with bin [1.49, 1.5]

is a frequent combination, although this could also be incited by the distribution of this feature. Considering

there are 28 children with the value 1,5 for TheoryofMind, an even distribution is not possible.

Table A.11-A.18 shows the frequency of each feature per dynamic network. These tables reveal that gender

is the most important feature, however this is caused by the fact that gender is a binary value and thus

only has 2 bins compared to the 4 bins of the other features. When we review the ranking of each feature

across all datasets (see Table A.19) there are a few noteworthy features such as CapacitytoCalmDown and

MotorCompetence. CapacitytoCalmDown because its lowest frequency rank across all datasets is 4th and

MotorCompetence for its highest frequency rank being 7th. Which hints that children with the same value for

CapacitytoCalmDown group up with each other and also children with equal values for MotorCompetence

do not seem to strive for interactions.



Chapter 6

Conclusions and further research

In this paper we examined the application of the pattern mining algorithm CoPaM to detect features that

impact the social interactions of a child on the playground. While analyzing the output of CoPaM the first

complication was the fact that we were working with a dynamic social network. There was a linear relation-

ship between the amount of patterns found and the number of snapshots taken which caused an increase of

total patterns found per network. This clutters the output and raises the importance of postprocessing to filter

the irrelevant patterns. By analyzing the output we could not determine a clear correlation or noncorrelation

between a feature and the social interactions of a child. However, CapacitytoCalmDown seemed to consis-

tently be one of the top 4 features and MotorCompetence one of the bottom 3 features. This could imply

that children with the same value for CapacitytoCalmDown tend to group up together and that MotorCom-

petence has little impact. The psychologists were also interested in children who show signs of maladaptive

social development by spending their time alone instead of with their peers, but CoPaM can not detect these

patterns because a disconnected vertex can not be a maximal cohesive pattern and is therefore not included in

the output. To conclude, CoPaM does not seem to be a suitable algorithm for mining patterns on a dynamic

feature vector graph and did not find any strong patterns that present a correlation between social-emotional

skills and social development. The biggest problem is the lack of dynamic analysis, a possible solution to this

problem is evolutionary clustering over time by [Chakrabarti et al.(2006)Chakrabarti, Kumar, and Tomkins]

or ContextTour [Lin et al.(2010)Lin, Sun, Cao, and Liu] which consists of the two components: Dynamic

Relational Clustering and Dynamic Network Countour-map.

In this paper we have mainly focused on patterns that share the same features. To further study social-

emotional skills in a dynamic social network one could research the patterns of not only connected but

also disconnected vertices and analyze the difference in features and behaviour. Another point that could be

explored is disconnected patterns. The output of CoPaM are connected patterns but a pattern of vertices with

homogeneous features and how they behave could be interesting. Furthermore solutions to the problems that

19
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arise with the upsurge of patterns while pattern mining a dynamic social network would be fruitful.
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Output analysis
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feature bin frequency
gender 1 296

TheoryofMind (1.49, 1.5] 141

SocialCompTeachersDec (2.714, 3] 119

CapacitytoCalmDown (3.667, 4] 102

gender 2 100

SocialCompParentsDec (2.69, 2.857] 80

EmoUnderstanding [-2.481, -0.368] 78

SocialCompTeachersDec [1.571, 2.286] 68

Empathy (3.337, 3.8] 66

PositiveEmotions (3.833, 4.333] 61

TheoryofMind (1.5, 1.67] 61

Empathy [1.8, 2.7] 56

EmoUnderstanding (-0.368, 0.0914] 54

MotorCompetence (0.072, 0.437] 53

Aggression (2.167, 4] 50

EmoRegulation (2, 2.375] 48

SocialCompParentsDec [2, 2.429] 44

MotorCompetence (-0.5, 0.072] 43

EmoRegulation (2.375, 2.625] 41

Aggression [1, 1.5] 37

MotorCompetence [-1.536, -0.5] 33

EmoUnderstanding (0.631, 1.277] 31

CapacitytoCalmDown (3.333, 3.667] 30

PositiveEmotions [3, 3.833] 28

Aggression (1.917, 2.167] 28

EmoRegulation [1.125, 2] 28

SocialCompParentsDec (2.429, 2.69] 27

PositiveEmotions (4.333, 4.792] 25

SocialCompTeachersDec (2.429, 2.714] 24

CapacitytoCalmDown [2.333, 3.333] 24

CapacitytoCalmDown (4, 5] 22

Empathy (2.7, 2.872] 22

SocialCompParentsDec (2.857, 3] 21

PositiveEmotions (4.792, 5] 21

MotorCompetence (0.437, 1.265] 20

EmoRegulation (2.625, 3.5] 17

Empathy (2.872, 3.337] 15

TheoryofMind (1.67, 2] 9

EmoUnderstanding (0.0914, 0.631] 8

Aggression (1.5, 1.917] 7

TheoryofMind (1.0, 1.49] 3

Table A.3: The frequency of each feature bin for turma6afternoon
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feature bin frequency
gender 1 373

TheoryofMind (1.49, 1.5] 195

SocialCompTeachersDec (2.714, 3] 132

gender 2 116

CapacitytoCalmDown (3.667, 4] 92

SocialCompParentsDec (2.69, 2.857] 79

SocialCompTeachersDec [1.571, 2.286] 79

TheoryofMind (1.5, 1.67] 73

EmoRegulation [1.125, 2] 70

EmoUnderstanding [-2.481, -0.368] 69

Aggression [1, 1.5] 63

CapacitytoCalmDown (3.333, 3.667] 63

Aggression (1.917, 2.167] 63

Empathy [1.8, 2.7] 60

PositiveEmotions (3.833, 4.333] 56

EmoUnderstanding (-0.368, 0.0914] 55

Empathy (3.337, 3.8] 53

EmoRegulation (2.375, 2.625] 46

MotorCompetence (-0.5, 0.072] 44

Empathy (2.7, 2.872] 44

PositiveEmotions [3, 3.833] 40

MotorCompetence (0.437, 1.265] 39

EmoUnderstanding (0.631, 1.277] 38

SocialCompParentsDec [2, 2.429] 35

MotorCompetence (0.072, 0.437] 35

MotorCompetence [-1.536, -0.5] 34

SocialCompParentsDec (2.429, 2.69] 33

Aggression (2.167, 4] 32

TheoryofMind (1.67, 2] 28

EmoRegulation (2, 2.375] 28

EmoRegulation (2.625, 3.5] 24

PositiveEmotions (4.792, 5] 24

CapacitytoCalmDown [2.333, 3.333] 24

SocialCompParentsDec (2.857, 3] 23

Aggression (1.5, 1.917] 22

SocialCompTeachersDec (2.429, 2.714] 21

Empathy (2.872, 3.337] 13

CapacitytoCalmDown (4, 5] 12

EmoUnderstanding (0.0914, 0.631] 12

PositiveEmotions (4.333, 4.792] 11

TheoryofMind (1.0, 1.49] 2

Table A.4: The frequency of each feature bin for turma6morning
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feature bin frequency
gender 1 214

CapacitytoCalmDown [2.333, 3.333] 139

TheoryofMind (1.49, 1.5] 83

SocialCompParentsDec [2, 2.429] 78

SocialCompTeachersDec (2.429, 2.714] 76

EmoRegulation (2.625, 3.5] 75

gender 2 73

Aggression [1, 1.5] 71

Empathy [1.8, 2.7] 61

Empathy (2.872, 3.337] 58

MotorCompetence (-0.5, 0.072] 54

EmoUnderstanding (0.631, 1.277] 53

Aggression (2.167, 4] 53

PositiveEmotions (4.792, 5] 49

Empathy (3.337, 3.8] 45

MotorCompetence [-1.536, -0.5] 35

PositiveEmotions (3.833, 4.333] 35

SocialCompTeachersDec [1.571, 2.286] 34

PositiveEmotions [3, 3.833] 32

EmoRegulation (2, 2.375] 30

EmoUnderstanding [-2.481, -0.368] 29

Empathy (2.7, 2.872] 28

MotorCompetence (0.072, 0.437] 27

CapacitytoCalmDown (3.333, 3.667] 26

TheoryofMind (1, 1.49] 26

EmoRegulation (2.375, 2.625] 25

SocialCompParentsDec (2.857, 3] 21

EmoUnderstanding (0.0914, 0.631] 20

TheoryofMind (1.5, 1.67] 20

SocialCompTeachersDec (2.286, 2.429] 19

EmoUnderstanding (-0.368, 0.0914] 18

PositiveEmotions (4.333, 4.792] 18

SocialCompParentsDec (2.69, 2.857] 16

Aggression (1.917, 2.167] 15

CapacitytoCalmDown (4, 5] 11

EmoRegulation [1.125, 2] 11

MotorCompetence (0.437, 1.265] 7

TheoryofMind (1.67, 2] 5

Table A.5: The frequency of each feature bin for turma7afternoon
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feature bin frequency
gender 1 265

CapacitytoCalmDown [2.333, 3.333] 144

TheoryofMind (1.49, 1.5] 98

gender 2 90

SocialCompTeachersDec (2.429, 2.714] 87

Empathy [1.8, 2.7] 82

PositiveEmotions (4.792, 5] 74

Aggression [1, 1.5] 69

EmoRegulation (2.625, 3.5] 67

Empathy (3.337, 3.8] 66

SocialCompParentsDec [2, 2.429] 62

EmoRegulation (2, 2.375] 52

SocialCompTeachersDec [1.571, 2.286] 51

MotorCompetence (-0.5, 0.072] 50

Aggression (2.167, 4] 50

SocialCompTeachersDec (2.286, 2.429] 44

EmoUnderstanding (0.0914, 0.631] 44

PositiveEmotions [3, 3.833] 37

SocialCompParentsDec (2.69, 2.857] 37

EmoUnderstanding (0.631, 1.277] 36

MotorCompetence [-1.536, -0.5] 32

PositiveEmotions (4.333, 4.792] 32

EmoRegulation (2.375, 2.625] 27

CapacitytoCalmDown (3.333, 3.667] 24

MotorCompetence (0.072, 0.437] 24

Empathy (2.872, 3.337] 21

SocialCompParentsDec (2.857, 3] 20

TheoryofMind (1.67, 2] 20

TheoryofMind (1, 1.49] 20

EmoUnderstanding (-0.368, 0.0914] 19

EmoUnderstanding [-2.481, -0.368] 18

MotorCompetence (0.437, 1.265] 17

CapacitytoCalmDown (4, 5] 14

TheoryofMind (1.5, 1.67] 14

Empathy (2.7, 2.872] 12

Aggression (1.917, 2.167] 11

PositiveEmotions (3.833, 4.333] 9

EmoRegulation [1.125, 2] 6

Aggression (1.5, 1.917] 1

Table A.6: The frequency of each feature bin for turma7morning
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feature bin frequency
gender 1 256

CapacitytoCalmDown (3.667, 4] 87

EmoRegulation (2, 2.375] 86

TheoryofMind (1.49, 1.5] 59

Aggression (1.5, 1.917] 55

MotorCompetence (0.437, 1.265] 38

Empathy (3.337, 3.8] 36

PositiveEmotions [3, 3.833] 35

EmoRegulation (2.625, 3.5] 34

SocialCompParentsDec (2.69, 2.857] 33

SocialCompParentsDec [2, 2.429] 33

SocialCompTeachersDec [1.571, 2.286] 31

Aggression (1.917, 2.167] 28

gender 2 27

TheoryofMind (1, 1.49] 27

Empathy (2.7, 2.872] 27

EmoRegulation [1.125, 2] 27

TheoryofMind (1.67, 2] 25

EmoUnderstanding (-0.368, 0.0914] 24

EmoUnderstanding [-2.481, -0.368] 23

EmoUnderstanding (0.631, 1.277] 20

MotorCompetence (0.072, 0.437] 18

SocialCompParentsDec (2.429, 2.69] 16

PositiveEmotions (3.833, 4.333] 15

CapacitytoCalmDown [2.333, 3.333] 13

CapacitytoCalmDown (3.333, 3.667] 10

SocialCompTeachersDec (2.714, 3] 10

PositiveEmotions (4.333, 4.792] 10

EmoUnderstanding (0.0914, 0.631] 8

SocialCompTeachersDec (2.429, 2.714] 7

Aggression (2.167, 4] 7

MotorCompetence [-1.536, -0.5] 6

Empathy [1.8, 2.7] 5

Aggression [1, 1.5] 4

Empathy (2.872, 3.337] 4

CapacitytoCalmDown (4, 5] 3

SocialCompTeachersDec (2.286, 2.429] 3

Table A.7: The frequency of each feature bin for turma8afternoon



29

feature bin frequency
gender 1 340

TheoryofMind (1.49, 1.5] 116

CapacitytoCalmDown (3.667, 4] 113

EmoRegulation (2, 2.375] 102

SocialCompTeachersDec [1.571, 2.286] 83

Aggression (1.5, 1.917] 75

Empathy (3.337, 3.8] 66

gender 2 62

TheoryofMind (1, 1.49] 62

SocialCompParentsDec (2.69, 2.857] 60

PositiveEmotions [3, 3.833] 58

Aggression (1.917, 2.167] 58

EmoRegulation (2.625, 3.5] 46

MotorCompetence (0.437, 1.265] 43

Empathy (2.7, 2.872] 43

SocialCompTeachersDec (2.714, 3] 34

EmoUnderstanding (-0.368, 0.0914] 34

MotorCompetence [-1.536, -0.5] 33

EmoUnderstanding [-2.481, -0.368] 29

Empathy (2.872, 3.337] 28

SocialCompParentsDec [2, 2.429] 25

CapacitytoCalmDown [2.333, 3.333] 24

TheoryofMind (1.67, 2] 20

SocialCompParentsDec (2.429, 2.69] 20

SocialCompTeachersDec (2.429, 2.714] 19

EmoUnderstanding (0.0914, 0.631] 19

PositiveEmotions (3.833, 4.333] 18

MotorCompetence (0.072, 0.437] 15

Empathy [1.8, 2.7] 13

EmoUnderstanding (0.631, 1.277] 12

EmoRegulation [1.125, 2] 12

Aggression [1, 1.5] 11

SocialCompTeachersDec (2.286, 2.429] 9

CapacitytoCalmDown (3.333, 3.667] 6

PositiveEmotions (4.333, 4.792] 6

CapacitytoCalmDown (4, 5] 3

Aggression (2.167, 4] 1

Table A.8: The frequency of each feature bin for turma8morning
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feature bin frequency
SocialCompTeachersDec [1.571, 2.286] 114

gender 1 58

gender 2 53

EmoRegulation [1.125, 2] 47

EmoUnderstanding (-0.368, 0.0914] 37

CapacitytoCalmDown (4, 5] 36

CapacitytoCalmDown (3.333, 3.667] 29

SocialCompParentsDec (2.857, 3] 27

SocialCompParentsDec (2.429, 2.69] 23

SocialCompTeachersDec (2.429, 2.714] 22

EmoRegulation (2, 2.375] 18

PositiveEmotions (4.792, 5] 16

Empathy (2.872, 3.337] 16

SocialCompParentsDec (2.69, 2.857] 15

Empathy [1.8, 2.7] 15

TheoryofMind (1.67, 2] 9

MotorCompetence [-1.536, -0.5] 8

MotorCompetence (0.437, 1.265] 8

Aggression [1, 1.5] 6

MotorCompetence (-0.5, 0.072] 6

Aggression (1.5, 1.917] 6

PositiveEmotions (3.833, 4.333] 6

EmoUnderstanding [-2.481, -0.368] 5

Aggression (1.917, 2.167] 5

Aggression (2.167, 4] 4

TheoryofMind (1.49, 1.5] 3

PositiveEmotions (4.333, 4.792] 3

EmoUnderstanding (0.0914, 0.631] 2

TheoryofMind (1.5, 1.67] 2

SocialCompParentsDec [2, 2.429] 1

Table A.9: The frequency of each feature bin for turma9morning
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feature bin frequency
SocialCompTeachersDec [1.571, 2.286] 136

gender 1 92

gender 2 51

EmoRegulation [1.125, 2] 43

CapacitytoCalmDown (4, 5] 40

EmoUnderstanding (-0.368, 0.0914] 32

CapacitytoCalmDown (3.333, 3.667] 26

Empathy (2.872, 3.337] 24

SocialCompParentsDec (2.857, 3] 23

SocialCompParentsDec (2.429, 2.69] 22

PositiveEmotions (4.792, 5] 20

SocialCompParentsDec (2.69, 2.857] 18

TheoryofMind (1.67, 2] 14

EmoRegulation (2, 2.375] 13

SocialCompTeachersDec (2.429, 2.714] 13

MotorCompetence [-1.536, -0.5] 12

Empathy [1.8, 2.7] 12

Aggression [1, 1.5] 11

PositiveEmotions (3.833, 4.333] 11

TheoryofMind (1.49, 1.5] 11

Empathy (2.7, 2.872] 7

Aggression (1.917, 2.167] 6

MotorCompetence (-0.5, 0.072] 5

EmoUnderstanding (0.0914, 0.631] 5

TheoryofMind (1.5, 1.67] 5

MotorCompetence (0.072, 0.437] 4

Aggression (1.5, 1.917] 3

Aggression (2.167, 4] 3

EmoUnderstanding [-2.481, -0.368] 2

PositiveEmotions (4.333, 4.792] 2

MotorCompetence (0.437, 1.265] 1

CapacitytoCalmDown [2.333, 3.333] 1

Table A.10: The frequency of each feature bin for turma9afternoon

feature frequency
gender 396

TheoryofMind 214

SocialCompTeachersDec 211

CapacitytoCalmDown 178

SocialCompParentsDec 172

EmoUnderstanding 171

Empathy 159

MotorCompetence 149

PositiveEmotions 135

EmoRegulation 134

Aggression 122

Table A.11: The frequency of each feature for turma6afternoon
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feature frequency
gender 489

TheoryofMind 298

SocialCompTeachersDec 232

CapacitytoCalmDown 191

Aggression 180

EmoUnderstanding 174

SocialCompParentsDec 170

Empathy 170

EmoRegulation 168

MotorCompetence 152

PositiveEmotions 131

Table A.12: The frequency of each feature for turma6morning

feature frequency
gender 287

Empathy 192

CapacitytoCalmDown 176

EmoRegulation 141

Aggression 139

TheoryofMind 134

PositiveEmotions 134

SocialCompTeachersDec 129

MotorCompetence 123

EmoUnderstanding 120

SocialCompParentsDec 115

Table A.13: The frequency of each feature for turma7afternoon

feature frequency
gender 355

SocialCompTeachersDec 182

CapacitytoCalmDown 182

Empathy 181

EmoRegulation 152

TheoryofMind 152

PositiveEmotions 152

Aggression 131

MotorCompetence 123

SocialCompParentsDec 119

EmoUnderstanding 117

Table A.14: The frequency of each feature for turma7morning

feature frequency
gender 283

EmoRegulation 147

CapacitytoCalmDown 113

TheoryofMind 111

Aggression 94

SocialCompParentsDec 82

EmoUnderstanding 75

Empathy 72

MotorCompetence 62

PositiveEmotions 60

SocialCompTeachersDec 51

Table A.15: The frequency of each feature for turma8afternoon
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feature frequency
gender 402

TheoryofMind 198

EmoRegulation 160

Empathy 150

CapacitytoCalmDown 146

SocialCompTeachersDec 145

Aggression 145

SocialCompParentsDec 105

EmoUnderstanding 94

MotorCompetence 91

PositiveEmotions 82

Table A.16: The frequency of each feature for turma8morning

feature frequency
SocialCompTeachersDec 136

gender 111

SocialCompParentsDec 66

EmoRegulation 65

CapacitytoCalmDown 65

EmoUnderstanding 44

Empathy 31

PositiveEmotions 25

MotorCompetence 22

Aggression 21

TheoryofMind 14

Table A.17: The frequency of each feature for turma9afternoon

feature frequency
SocialCompTeachersDec 149

gender 143

CapacitytoCalmDown 67

SocialCompParentsDec 63

EmoRegulation 56

Empathy 43

EmoUnderstanding 39

PositiveEmotions 33

TheoryofMind 30

Aggression 23

MotorCompetence 22

Table A.18: The frequency of each feature for turma9morning

feature range ranking
Gender 0 - 1

CapacitytoCalmDown 2 - 4

Empathy 1 - 7

EmoRegulation 1 - 9

SocialCompTeachersDec 0 - 10

TheoryofMind 1 - 10

SocialCompParentsDec 2 - 10

Aggression 4 - 10

EmoUnderstanding 5 - 10

PositiveEmotions 6 - 10

MotorCompetence 7 - 10

Table A.19: Highest and lowest frequency rank
for every feature across all interaction datasets
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