
Universiteit Leiden

Opleiding Informatica

Mining and visualizing sequential healthcare data

Name: Floris Kleyn

Date: 05/09/2016

1st supervisor: Dr. Wojtek Kowalczyk
2nd supervisor: Prof. Dr. Thomas H.W. Bäck

MASTER’S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Mining and visualizing sequential healthcare data

Floris Kleyn

September 5, 2016

Contents

1 Introduction 2

2 Preliminaries 4
2.1 Notations and Definitions . 4
2.2 Constraints . 5

3 Related work 6
3.1 Frequent sequence mining . 6

3.1.1 Frequent sequence mining applied to healthcare 10
3.2 Sequence similarity . 12
3.3 Clustering sequences . 15
3.4 Visualization . 16

4 Methods 18
4.1 Measuring sequence similarity . 18

4.1.1 Costs of operations . 18
4.1.2 Event groups . 20
4.1.3 Simultaneous events . 20
4.1.4 Distance calculation . 23

4.2 Clustering . 23
4.3 Frequent Sequences . 23
4.4 Visualization of Sequences . 27

4.4.1 Aligned Sankey diagrams 27
4.4.2 Edge filtering . 29
4.4.3 Implementation . 31

5 Experiments 32
5.1 Data origin and selection . 32
5.2 Data description . 33
5.3 Evaluation . 34

6 Results 35
6.1 Experiment 1 . 35
6.2 Experiment 2 . 37

7 Discussion and Conclusions 40

A Sankey diagrams 46

1

Chapter 1

Introduction

Sequence mining techniques have been successfully applied in many areas such
as speech recognition, web mining, bioinformatics and many more. Over the
years, many algorithms have been developed to solve problems in those specific
domains.

Sequential data is generated by all kinds of processes. Records in a sequence
database represent sequences of ordered events. Take for example a database
containing purchase transactions. A transaction consists of the set of items
that were bought together by a certain customer at a specific time. In this
case, a sequence consists of all the transactions of a customer ordered by date of
purchase. The order of events in a sequence is not necessarily defined by time.
Consider the order of nucleotides in strands of DNA. The order of nucleotides is
simply the order of their occurrence in the DNA. Other examples of sequential
data are datasets about browsing behaviour on a web site and treatments of
patients in hospitals.

Today, the healthcare industry produces large volumes of data. A lot of this
data is sequential in nature: patients undergo blood tests, receive medical tests,
are prescribed drugs, etc. All these events occur in a certain order and form
a patient’s healthcare trajectory. Mining these sequences can result in valuable
information, provided that appropriate methods are applied and high quality
data is available. Acquired information might benefit patients, hospitals and
insurance companies. It could result in, for instance, better diagnosis of patients,
improved effectiveness of hospitals or new insights in how care is provided to
patients.

We examined how similarity between trajectories could be defined, and how we
could cluster them based on the similarity of trajectories. We incorporated do-
main knowledge about specific medical events in our similarity measure. With
a good similarity measure and proper clustering, this allows identification of
groups of patients that received a similar treatment. We also examined visu-
alization of sequences, such that information can be communicated clearly to
people who are not data mining experts.

Domain knowledge was crucial for our task. Input and feedback from domain

2

experts was necessary to create a meaningful similarity measure, such that se-
quences that are considered similar by our metric correspond to patients who
are considered similar by domain experts. One of our challenges was to translate
domain knowledge into an adequate similarity measure and good visualization
techniques.

The objective of this thesis was to adapt sequence mining techniques and test
their usefulness when applied to medical data. We focused on patients in The
Netherlands who were diagnosed with chest pain and applied sequence mining
techniques to their healthcare trajectories. Trajectories consisted out of activ-
ities related to the diagnosis. Records of chest pain patients that belonged to
other diagnoses were removed. We created a chronological sequence of events
for every patient, where every event is a single care product.

This thesis was made possible with help from Zorginstituut Nederland (ZIN), a
Dutch governmental organisation tasked with several activities [44]. ZIN moni-
tors the quality of the Dutch healthcare system. It also makes sure the system
stays affordable, for example, by advising the Ministry of Health, Welfare and
Sport which care should be covered by the mandatory health insurance policy
every Dutch adult citizen should have. Another task of ZIN is to guarantee that
healthcare stays accessible to everyone. For instance, it provides arrangements
for defaulters and for the uninsured. To support its activities, it has access to
large volumes of healthcare data. It has data about all care provided by hospi-
tals in the Netherlands. This gave us a unique opportunity to research how to
apply sequence mining techniques to healthcare data.

This thesis is organized as follows: We start with some formal definitions and
notations about sequences in Chapter 2 and discuss relevant literature and pro-
vide examples of common algorithms used in sequence mining in Chapter 3.
Chapter 4 describes our contributions. We present the developed similarity
measure, describe the clustering algorithms we used and present our visualiza-
tion technique. In Chapter 5 we provide a description of the dataset we used
and describe the experiments we conducted. The results are presented in Chap-
ter 6. Chapter 7 contains our discussion, conclusions and directions for future
work.

3

Chapter 2

Preliminaries

Throughout this thesis we will be working with sequences and sets. In this
chapter we will provide definitions and notations that we will use throughout
the thesis.

2.1 Notations and Definitions

We start with a definition of the components of a sequence. Sequences consist
of transactions and each transaction consists of one or more items. Let I =
{i1, i2, . . . , ik} be the set of items. The order and frequency of items in a set are
irrelevant, although for readability we will often use an alphabetic ordering when
specifying sets. A sequence S = 〈t1, t2, . . . , tn〉 is an ordered list of transactions
where ti is a transaction and ti ⊆ I for 1 ≤ i ≤ n. To refer to the ith transaction
in S we also write S(i). In other words ti = S(i). In case a transaction consists of
only a single item we will often omit the braces. So the sequence 〈{a, b}, {c}, {d}〉
is identical to sequence 〈{a, b}, c, d〉.

A sequence S′ = 〈t′1, t′2, . . . , t′m〉 is a subsequence of S = 〈t1, t2, . . . , tn〉, denoted
S′ � S, if there exist integers 1 ≤ j1 < j2 · · · < jm ≤ n such that t′1 ⊆ tj1 , t

′
2 ⊆

tj2 , . . . , t
′
m ⊆ tjm . Consider sequence S = 〈{a, b}, c, {d, e, f}, g〉. Sequence S′ =

〈a, {d, f}, g〉 is a subsequence of S, for integers j1 = 1, j2 = 3 and j3 = 4. The
number of transactions in S (i.e., its length) is denoted as |S|. We will usually
use D to denote a set of sequences.

Let D be a set of sequences, a sequence S is called frequent with respect to D
if it meets a user defined threshold value, called minimum support threshold.
The support of a subsequence S is the proportion of all sequences in D that
contain S. A maximal frequent sequence is a frequent sequence for which there
exists no super sequence in D that is also frequent. A frequent sequence is
closed if there exists no super sequence in D with the same support. Maximal
frequent sequences are also closed, since extending it will results in a sequence
that is not frequent and thus the super sequence must have, by definition, lower
support.

4

Sequence mining or sequential pattern mining is a field of data mining, often
described as a field tasked with discovering frequent (sub)sequences in data.
According to [26] “Sequential pattern mining discovers frequent subsequences as
patterns in a sequence database.” However, we will make a distinction between
sequential pattern mining and frequent sequence mining. When referring to
sequential pattern mining or sequence mining, we will mean the larger field of
data mining in sequential data. If we refer to the task of discovering frequent
sequences in data, we will refer to it as frequent sequence mining.

Throughout the thesis, we will often refer to events instead of items, although
the term we use depends on the context. Take for example the area of market
basket analysis. In this case, a sequence would be an ordered set of transactions
where every transaction contains the items that were bought together. In case
of medical treatment data, it would make sense to refer to items as (medical)
events. Referring to the set of events a patient received on the same day as a
transaction is also a bit peculiar. Therefore we will often refer to a transaction
as an event set, although we use it interchangeably with event. Based on the
context it should be clear if we either mean a single event or an event set,
although a set can of course only contain a single event. In the context of
healthcare we will sometimes refer to sequences as trajectories or paths.

2.2 Constraints

It is possible to define constraints that (frequent) sequences should satisfy. This
can limit the number of results returned by a pattern mining algorithm. The
following seven types of constraints are given in [37]:

• Item constraint : a constraint that specifies one or more items that should
or should not occur in mined patterns.

• Length constraint : a constraint that constrains the length of mined pat-
terns. Examples are constraints on the number of transactions or number
of distinct transactions in a sequence.

• Super-pattern constraint : a constraint that specifies which sub-pattern of
transactions should be present in the mined patterns.

• Aggregate constraint : a constraint based on some aggregate of items in
a pattern. An example would be a constraint on the total value of the
pattern.

• Regular expression constraint : a constraint defined by regular expression
operators (e.g., disjunction and union).

• Duration constraint : a constraint on the duration of a pattern. This type
of constraint specifies how much time is allowed to pass between the first
and last item in the pattern.

• Gap constraint : a constraint on the time interval between adjacent trans-
actions.

5

Chapter 3

Related work

In this chapter we will discuss related work in different areas of sequence mining
and provide examples of existing methods. We will discuss frequent sequence
mining, in particular frequent sequence mining applied in the healthcare domain.
We will discuss sequence similarity, clustering of sequences and visualization of
health care trajectories.

3.1 Frequent sequence mining

The task of frequent sequence mining is finding temporal patterns in data. The
foundations of frequent sequence mining were laid by Agrawal and Srikant [2] in
1995. They developed AprioriAll, a frequent sequence mining algorithm based
on Apriori [1, 3], which is an algorithm for mining frequent itemsets. Frequent
itemset mining is related to frequent sequence mining. Frequent itemset mining
focuses on intra-transaction patterns (e.g., patterns inside a single shopping
basket). No order is present between items within a transaction. Frequent
sequence mining searches for inter-transaction patterns (e.g., patterns between
different shopping baskets of the same customer), where there is a certain order:
the order in which the transactions took place.

AprioriAll is a breadth-first search algorithm: in iteration k all sequences of
length k are constructed. It is based on the Apriori principle: subsequences of
frequent sequences are also frequent. Conversely, supersequences of infrequent
sequences are also infrequent. The search space is reduced by pruning candidate
sequences during mining, since a pattern does not have to be extended as soon
as it does not meet minimum support. Still, it will often generate a lot of
candidate sequences in the early stages of mining, of which many might not
even be present in the data.

The discrepancy between the number of generated candidate sequences and
the number of frequent sequences is caused by the generate-and-test feature
of AprioriAll. A pattern is increased incrementally, one event at a time, and
tested if it still meets the minimum support threshold. Since it generates all
candidate sequences of length k based on frequent sequences of length k−1, it

6

u id Item Timestamp
1 a 3
1 b 8
1 c 12
2 a 20
2 c 25
3 a 1
3 b 2
3 c 4
3 d 7
4 {a,b} 10
4 c 15
5 e 3
5 {a,b} 8
5 c 11
6 e 2
6 c 21
7 {c,e} 12

(a) Sorted transaction dataset.

u id Sequence
1 〈a, b, c〉
2 〈a, c〉
3 〈a, b, c, d〉
4 〈{a, b}, c〉
5 〈e, {a, b}, c〉
6 〈e, c〉
7 〈{c, e}〉

(b) Sequence dataset.

Sequence Support Mapping
〈a〉 5/7 1
〈b〉 4/7 2
〈c〉 1 3
〈d〉 1/7 -
〈e〉 3/7 4
〈{a, b}〉 2/7 5
〈{c, e}〉 1/7 -

(c) length-1 sequences.

Table 3.1: Transforming our example transaction dataset into sequences.

could happen that generated sequences do not occur in the data. The memory
requirements are also high and multiple scans of the data are required to find
all frequent sequences. Other algorithms were developed after AprioriAll that
share its characteristics and downsides. These are Apriori-based algorithms.
Examples are GSP [49], SPIRIT [10], SPAM [36] and SPADE [60].

Other groups of frequent sequence mining algorithms exist, but first we will
give an example of frequent sequence mining based on the AprioriAll algorithm.
The transaction data of this example is listed in Table 3.1a, which is already
sorted on user id (u id) and timestamp. There are seven users with a total
of seventeen transactions present in our dataset. Each transaction consists of
items from itemset I = {a, b, c, d, e}

The first step is to construct sequences from our dataset of individual transac-
tions. The order of transactions in the sequences is determined by their times-
tamps. The sequences are listed in Table 3.1b.

Our goal is to find all subsequences that are frequent. In our example, we
will consider subsequences frequent if they occur at least twice in the dataset.
Therefore, the minimum support equals 2/7. The first step is to find all frequent
itemsets and count their support. All frequent sequences of length 1 are obtained
automatically during this step, since these are identical to itemsets. The result
is shown in Table 3.1c. There are two sequences of length 1 below our support
threshold: 〈d〉 and 〈{c, e}〉. Removing these sequences will give us the set of
frequent sequences of length 1.

Every frequent itemset (i.e., frequent sequence of length 1) is mapped to a single
integer. This allows to test sets for equality in O(1). The mapping from itemsets

7

u id Sequence Transformed sequence Mapped sequence
1 〈a, b, c〉 〈{a}, {b}, {c}〉 〈{1}, {2}, {3}〉
2 〈a, c〉 〈{a}, {c}〉 〈{1}, {3}〉
3 〈a, b, c, d〉 〈{a}, {b}, {c}〉 〈{1}, {2}, {3}〉
4 〈{a, b}, c〉 〈{a, b, {a, b}}, {c}〉 〈{1, 2, 5}, {3}〉
5 〈e, {a, b}, c〉 〈{e}, {a, b, {a, b}}, {c}〉 〈{4}, {1, 2, 5}, {3}〉
6 〈e, c〉 〈{e}, {c}〉 〈{4}, {3}〉
7 〈{c, e}〉 〈{c, e}〉 〈{3, 4}〉

Table 3.2: Sequence transformation. The transformed and mapped sequences
consist of sets of frequent itemsets.

to integers is also shown in Table 3.1c. The next step is to transform sequences
into sequences of frequent itemsets, and map them into sequences of sets of
integers. This process is shown in Table 3.2. Note that during transformation all
nonfrequent itemsets are removed from the sequences (e.g., itemset d from u id
3) and that all subsets of frequent itemsets are also present in the transformed
sequences (e.g., transaction {a, b} in the sequence of u id 4 is transformed into
{a, b, {a, b}}1) since subsequences of frequent sequences are also frequent. For
readability we will be working with the transformed sequences and not with the
mapped sequences for the remainder of the example.

Next, the AprioriAll algorithm will generate candidate sequences of length 2,
by joining the frequent sequences of length 1 with each other. When generat-
ing sequences of length k, the prefix of length k -1 should be identical for the
join. For length-2 candidate sequences this means all combinations of frequent
sequences of length 1 are generated. All candidate length-2 sequences are listed
in Table 3.3a.

Thanks to the Apriori principle we did not have to generate sequences of length 2
that contained non-frequent itemsets, for example, sequences containing itemset
d. However, only eight of the twenty-five candidate sequences listed in Table 3.3a
are actually present in the data. Only five of them meet minimum support,
shown in bold in Table 3.3a. Our small example dataset had only five different
items. If there are a lot more distinct items (and itemsets containing multiple
items), many candidate sequences would be generated, of which only a fraction
is present in the data and even fewer would be frequent.

Now that we have frequent sequences of length 2, we can generate candidate
sequences of length 3. These are shown in Table 3.3b and were obtained by
joining 〈a, b〉 with 〈a, c〉 since these are the only sequences that share a length-
1 prefix (i.e., a). No other candidates of length 3 can be frequent. We can
prune sequence 〈a, c, b〉 since subsequence 〈c, b〉 is not frequent and thus neither
is one of its supersets. Therefore, it is not required to count support of this
sequence.

Since there are no candidate sequences of length 3 that share the same prefix,
no sequence of length 4 can be frequent and the algorithm will terminate. We
have found eleven frequent subsequences, listed in Table 3.4.

1actually, since it is transformed into a set of frequent itemsets the notation should be
{{a}, {b}, {a, b}}, but we omitted braces for sets containing a single item.

8

Cand. seq. Support
〈a, a〉 0
〈a, b〉 2/7

〈a, c〉 4/7

〈a, e〉 0
〈a, {a, b}〉 0
〈b, a〉 0
〈b, b〉 0
〈b, c〉 4/7

〈b, e〉 0
〈b, {a, b}〉 0
〈c, a〉 0
〈c, b〉 0
〈c, c〉 0
〈c, e〉 0
〈c, {a, b}〉 0
〈e, a〉 1/7
〈e, b〉 1/7
〈e, c〉 3/7

〈e, e〉 0
〈e, {a, b}〉 1/7
〈{a, b}, a〉 0
〈{a, b}, b〉 0
〈{a, b}, c〉 2/7

〈{a, b}, e〉 0
〈{a, b}, {a, b}〉 0

(a) Candidate sequences of length 2.

cand. gen. support
〈a, b, c〉 2/7
〈a, c, b〉 -

(b) Candidate sequences of length 3.

Table 3.3: Candidate sequences.

AprioriAll also removes all subsequences of frequent sequences, keeping only
sequences that are maximal. Applying this step will result in the sequences
shown in bold in Table 3.4.

We already discussed Apriori -based algorithms. Other types of algorithms are
pattern growth based and early pruning based. A detailed taxonomy of fre-
quent sequence mining algorithms is given in [26], but a brief overview is given
below.

The problem of generate-and-test is illustrated in Table 3.3a. There are many
generated sequences listed that did not occur in the data. To overcome the
problems of generate-and-test, pattern growth algorithms were developed. The
main idea was to avoid the candidate generation phase. Instead, a new repre-
sentation of the data is created to allow search space partitioning. Each search
space is solved recursively. Examples are FreeSpan [14], PrefixSpan [38] and
FS-Miner [7]. FS-miner, which is based on FP-miner [13] and only suitable for
mining of contiguous subsequences, converts the data into a tree. Only a single
scan of the data is required to construct the tree. After the tree is constructed
it can be mined efficiently for frequent sequences.

9

Freq. seq. Support
〈a〉 5/7
〈b〉 4/7
〈c〉 1
〈e〉 3/7
〈{a, b}〉 2/7
〈a, b〉 2/7
〈a, c〉 4/7
〈b, c〉 4/7
〈e, c〉 2/7

〈{a, b}, c〉 2/7

〈a, b, c〉 2/7

Table 3.4: Frequent sequences and their support. Bold sequences are maximal.

Early-pruning algorithms are pattern growth algorithms that try to prune can-
didate sequences as early as possible and limit counting support of candidate
sequences as much as possible. Examples are HSVM [47] and LAPIN [59].

3.1.1 Frequent sequence mining applied to healthcare

The healthcare sector produces lots of data, so it is no surprise that data mining
gets a lot of attention. Fewer attention has been given to sequence mining in
healthcare data. One cause is the limited access to healthcare data since health-
care providers do not share data for several reasons: privacy of patients, compe-
tition between hospitals and a variety of registration systems. We will present
an overview of frequent sequence mining applied to healthcare data.

The work presented in [4] is similar to ours. Their goal was to identify frequent
medical sequences, and discover deviations of such sequences in treatment data
of diabetic patients. Sequences were created with only a unique patient identi-
fier, activity name and activity date. They mined for frequent closed sequences
and for frequent itemsets (i.e., sets of activities performed on the same day).
They used BIDE [52] to mine for frequent closed sequences. Domain knowledge
was used in the preprocessing phase to be able to limit data analysis to pa-
tients that received a certain activity (e.g., the most expensive one) or to paths
of certain length (e.g., to patients receiving many activities in a year). Mined
pathways were classified as corresponding to guidelines, as an alternative or new
pathway, or as erroneous.

Similar data to the data we had access to was used for process mining [29]. The
data consisted of billing information from a Dutch hospital about gynecologic
oncology patients. No order was known in cases where multiple events took
place on the same day, since only the billing date was available. However,
since the authors were interested in discovering patterns between departments,
they did not look at sequences of events. Instead, they mapped events to the
corresponding department and removed repetitions of events that occurred after
mapping.

Process mining of healthcare data was also performed by Huang et al. [17].

10

The data had a similar level of detail as ours. Clinical events were treated as
point-based events. Events were represented with two points, a start and end
point, in case of interval-based events. To investigate if care was given according
to medical guidelines, they took the time between events into account during
mining for frequent closed sequences. By quantifying the time between events in
a sequence, they showed that it is possible to check if the time intervals present
in the data correspond to the time intervals that should occur according to
guidelines.

In other research more information of patients is used, such as drug prescrip-
tions, test results (e.g., results from blood and urine tests) or outcome of treat-
ments. We did not have access to such data, but we will discuss some of it
below.

The health condition of HIV patients was described with a small set of variables
by Ramirez et al. [42]. Every record consisted of event date, event type (e.g.,
hospital visit, emergency room visit), health status, recovery time and specific
laboratory results and drug prescriptions. Laboratory results were normalized
and discretized. Drug prescription period was taken into account as well. If a
new event occurred during the prescription period of a drug, the drug would
be part of that event. Time windows were used to determine if events should
be considered to have occurred simultaneously. This way, lab results that oc-
curred just before a clinical visit and drugs prescribed just after the clinical
visit were grouped together with the actual clinical visit to form an event set.
They started with the GSP algorithm, but switched to their own system, TEM-
PADIS, because GSP was too slow to mine frequent sequences. Partial matches
were used to allow some small differences between lab results and still consider
records identical. With help of domain experts they discovered some interesting
sequential patterns.

Lab results were also used by Ohsaki et al. [34]. A system was built to discover
rules in data from chronic hepatitis patients. Time series mining was used to
discover rules and predict future values in blood and urine test results.

Treatment outcomes were combined with sequences [23, 39, 40] to classify mined
frequent sequences. An insight was obtained about which patterns (i.e., treat-
ment of a disease) resulted in positive (e.g., alive, no rehospitalization) or neg-
ative outcomes. The data they used “consist of events including diagnoses,
medication orders, laboratory reports and vital statistics for a given patient”
[23]. They also addressed the problem of simultaneous events (i.e., occurring
on the same day), which can result in pattern explosion in situations where
sequences have many simultaneous events, since all subsequences of a frequent
sequence are also frequent. They developed a method to reduce the number
of simultaneous events. First, they mined for frequent itemsets in all sets of
simultaneous events. A frequent itemset is then treated as a single super event.
Second, break down sets of simultaneous events into super events and regular
events using a two-way sorting technique, reducing the number of simultane-
ous events. They adapted SPAM to add time window capabilities and perform
outcome analysis.

A combination of medical event data and drug prescription data was used by
Norén et al. [33]. Instead of being interested in the sequential order of events,

11

as in most literature about frequent sequence mining, they were interested in
the relative time between events, especially time between drug prescription and
certain medical events. Temporal patterns between drugs and medical events
were discovered, such as side effects of certain drugs.

3.2 Sequence similarity

In order to discover groups of similar sequences, we need to determine the
similarity between sequences. Alternatively, we can define a distance measure.
The rationale is that the smaller the distance between a pair of sequences, the
higher their similarity.

To determine the distance between two sequences, a distance function, or metric,
is required. A metric should have the following properties:

1. dist(x, y) ≥ 0 (non-negativity)

2. dist(x, y) = 0⇔ x = y (identity)

3. dist(x, y) = dist(y, x) (symmetry)

4. dist(x, z) ≤ dist(x, y) + dist(y, z) (triangle inequality)

A natural approach is to define the distance between two sequences as the
minimum cost to transform one sequence into the other using a small set of
operators, where every operator has a certain cost. This approach was first
applied to strings, so we will first discuss how to apply it on strings and then
make the transition to sequences.

Levenshtein distance [25], named after Vladimir Levenshtein who invented it
in 1966, is probably the best known string metric. It is also known as edit
distance, although edit distance is in fact a larger family of distance measures of
which Levenshtein distance is just a common variant. The Levenshtein distance
between two strings is measured by the minimum number of insertions, deletions
and substitutions required to transform one string into the other.

Take for example strings ‘hospitals’, ‘hospitable’ and ‘hospice’. If the cost of
every operation is 1, then we have the following alignments with minimum cost,
although other alignments with equal cost are possible:

hospita ls hospic e hospitals
hospitable hospitable hospice

The cost of transforming hospitals into hospitable is 2: inserting b and
substituting s for e. The cost is 4 to transform hospice into hospitable:
1 substitution and 3 insertions. Transforming hospitals into hospice also
has cost 4: it requires 2 substitutions and 2 deletions. Note that the distance
is symmetric: transforming hospitals into hospice has the same cost as
transforming hospice into hospitals since deletion and insertion have equal
cost.

More formally, we can write down the cost of transforming one string into an-
other using Levenshtein distance with the following (recursive) formula. Con-

12

sider strings a and b of length |a| respectively |b|, then the Levenshtein distance
is given by leva,b(|a|, |b|) where:

leva,b(i, j) =

min

leva,b(i− 1, j − 1) +

{
0 if ai = bj

1 if ai 6= bj

leva,b(i, j − 1) + 1

leva,b(i− 1, j) + 1

if min(i, j) 6= 0

max(i, j) otherwise

and where leva,b(i, j) is the distance between the first i characters of a and the
first j characters of b and 0 ≤ i ≤ |a| and 0 ≤ j ≤ |b|.

In cases where a (not necessarily non-empty) prefix of one string is compared
with the empty string, the cost is simply the length of the prefix2 since delet-
ing all characters of the prefix will result in the empty string. This corre-
sponds to the max -case. The min-case has three parts, corresponding to a
match/mismatch, an insertion and a deletion.

The distance between two strings can be calculated using dynamic program-
ming. An algorithm to achieve this is the Wagner-Fischer algorithm [51], which
uses a matrix to store intermediate results. Every cell of the matrix corresponds
to an alignment of the first i characters of the first string and the first j charac-
ters of the second string where i, j ≥ 0. The first row and column are initialized
with the cost of aligning those strings to the empty string. After initialization,
the matrix can be filled in a row wise or column wise fashion. The final dis-
tance is stored in the bottom right cell. The time complexity of the algorithm
is O(|a| · |b|) and the space complexity is also O(|a| · |b|).

As an example, take the matrix containing the minimum costs to transform
all possible prefixes of ‘hospice’ into all possible prefixes of ‘hospitable’, shown
in Table 3.5. The cost of transforming the complete strings into each other is
4, shown in the bottom right cell of the matrix. If required, the exact align-
ment can also be reconstructed using the filled matrix. It can be reconstructed
by iteratively inspecting the three neighboring cells: left, diagonal up, and up,
corresponding to respectively deletion, match/mismatch and insertion. By in-
specting these cells, starting in the bottom right cell, we can determine which
operations were used during matrix construction.

We will give an example of reconstructing the alignment based on Table 3.5.
We start the reconstruction in the bottom right cell. We can not move to the
left since it will increase the cost. According to our recurrence relation the
cost should be decremented by 1 (cost of a deletion) if we would move the the
left. The cost stays the same along the diagonal. This would correspond to a
match and since we indeed have a match (both the column and the row contain
‘e’), this move would be allowed. Additionally, we could check if we could also
move up. This is not the case since the cost stays the same although moving
up corresponds to an insertion. We move up along the diagonal and check the

2Only if indels have cost 1. Otherwise the cost of the prefix is determined by the sum of
indel costs.

13

λ h o s p i c e

λ 0 1 2 3 4 5 6 7

h 1 0 1 2 3 4 5 6

o 2 1 0 1 2 3 4 5

s 3 2 1 0 1 2 3 4
p 4 3 2 1 0 1 2 3

i 5 4 3 2 1 0 1 2

t 6 5 4 3 2 1 1 2

a 7 6 5 4 3 2 2 2

b 8 7 6 5 4 3 3 3

l 9 8 7 6 5 4 4 4

e 10 9 8 7 6 5 5 4

Table 3.5: Alignment of two strings using Wagner-Fischer algorithm.

neighboring cells. There are two valid moves, either the diagonal (mismatch) or
up (insertion). Both moves will result in an alignment with minimum cost. For
this example we will take the diagonal. This approach is continued until the
top left cell is reached. The alignment corresponding to our example is equal
to:

hospi ce
hospitable

This alignment is shown in bold in Table 3.5. Italic numbers correspond to cells
belonging to different alignments that also have minimum cost.

The Wagner-Fischer algorithm fills a complete matrix, where it is also possible
to reconstruct the alignment. However, we are not interested in the exact align-
ment of two sequences but only in the cost of such an alignment. Hirschberg’s
algorithm [16] is a modification of the Wagner-Fischer algorithm which reduces
the space complexity to O(min(|a|, |b|) since it only requires two vectors instead
of a matrix to store intermediate results. This modification is possible since
only the previous and current row of the matrix are required to calculate the
distance. The time complexity is still O(|a| · |b|), but a slight improvement
in performance is possible since less memory has to be allocated every time a
distance is calculated.

The problem of string similarity can be translated easily to sequence similarity,
where the length of a sequence corresponds to the length of a string and every
transaction corresponds to a character. Calculating sequence similarity using
dynamic programming was proposed by Mannila et al. [28], although they also
took the time between events into account: They described an event as a pair
(e, t), where e is an event type and t the time the event took place. By taking

14

into account the time an event took place, it becomes a different problem than
pure similarity between sequences of events instead of strings. They used an edit
distance in combination with the following possible transformations: indel(e, t),
which inserts or deletes event e at time t and move(e, t, t′), which moves event
e at time t to time t′.

The cost of inserting or deleting a specific event was proportional to the fre-
quency of that event in a long reference sequence. As a result, the indel cost
of a more common event is lower than a rarer event. The cost of a move was
proportional to the length of the move, such that it is cheaper to move an event
over a short period of time than over a longer period of time.

3.3 Clustering sequences

The goal of clustering is to group the data into different clusters where the
intra-cluster similarity between objects is as high as possible and the inter-
cluster similarity as low as possible. It is an unsupervised learning process. By
clustering sequences, we can create groups of similar sequences and search for
intra-cluster characteristics. We provide an overview of sequence clustering of
healthcare data.

Sequences were first clustered based on their similarity and then an approximate
sequence was generated for every cluster by an algorithm by Kum et al. [22] to
discover patterns that are (approximately) present in many sequences. First
the edit distance was used to calculate the similarity and then they applied
their density-based “uniform kernel k -Nearest Neighbor” (k -NN) algorithm to
cluster the sequences: each sequence is initially in its own cluster and clusters are
merged based on the density of surrounding clusters. Approximate sequences
were obtained by first applying multiple sequence alignment on the sequences
of every cluster, and then selecting transactions that were shared among many
sequences. The edit distance was normalized by dividing the distance between
two sequences by the length of the longest of the two sequences. To extend
their method to sequences of sets, they used Sørensen-Dice coefficient [48, 6]
to calculate the cost of a substitution. The cost of inserting or deleting a set
was defined as the cost to substitute it by the empty set, which is 1. Inserting
any set of arbitrary length has therefore the same cost: in case of sequences
S1 = 〈{a, b}, c, d〉, S2 = 〈a, c, d〉, S3 = 〈c, d〉 then dist(S1, S3) = dist(S2, S3)
since in both cases the first set ({a, b} and (a) respectively) is substituted for
the empty set.

Patient sequences consisting of medical events were clustered with DBScan by
Lakshmanan et al. [23] using a string distance metric. First, event sequences
were created; second, events were mapped to single Unicode characters; third,
Levenshtein distance between strings was calculated. No further details are
given about their metric. They used clustering to remove outliers. To deal
with events occurring on the same day (and with no more detailed timestamp
available), they decreased the number of simultaneous events by creating super
events of frequent simultaneous event sets, as already discussed in Chapter 3.1.1.
Their approach only reduced the problem instead of eliminating it: it still re-

15

quired assumptions about the order of events in case these events are not in
a single frequent super event. No further detail was provided about how their
metric dealt with super events, e.g., it is unclear if edit operations concerning
super events had same costs as normal events.

Web page browsing sessions were clustered by Wang and Zäıane [54] using se-
quence alignment. The alignment score between web pages was calculated with
a custom scoring function, where the scoring depends on the similarity between
the web page URLs. The higher the total alignment score of two sessions, the
more those sessions are considered to be similar. Several clustering algorithms
were applied (ROCK[12], TURN[9] and CHAMELEON[19]).

3.4 Visualization

An important aspect of sequential pattern mining is visualization. We focused
on visualization of sequences in the field of healthcare. Recently, there has been
a lot of research on visualization of medical data.

LifeLines [41] is one of the older visualization methods for visualizing sequences.
It was only capable of visualising a single person on (multiple) horizontal time-
lines. The work was extended in LifeLines 2 [53], which included the option of
a relative timeline view: align patient data to important medical events.

LifeFlow’s [58] visualization provides an overview of all event sequences by ag-
gregating records that have the same event sequence. Its visualization also takes
into account time between events. To create a LifeFlow display, event sequences
are first aggregated into a prefix tree. Every node in the tree is then visualized
by a colored bar, corresponding to a color that is associated with a particular
event. The bar size depends on the number of records that share the corre-
sponding prefix. The distance between nodes at adjacent levels depends on the
mean time between events. Time is displayed at the horizontal axis and the
number of records is displayed on the vertical axis.

EventFlow [31] is an adaptation of LifeFlow that could not only visualize point
events, but also allowed visualization of interval events (e.g., hospital bed days,
drug prescription period). It was extended with capabilities to simplify the visu-
alization [32] since results turned out to be too complex for certain datasets. By
providing the user with filtering capabilities (e.g., by record, category, time, at-
tribute) and transformation-based simplifications (e.g., interval merging in case
of small gaps or small overlap, category merging in case of similarity between
events) the resulting visualizations were improved.

VISITORS (VISualizatIon of Time-Oriented RecordS) [21] is also able to visu-
alize records of multiple patients. It is an extension of the KNAVE-II system
[46] which only allowed single patient visualization.

Events were aggregated in Outflow [57], where it was assumed that events are
cumulative. For example, if a patient first had symptom a, then b and finally c it
was treated as a the following sequence 〈{a}, {a, b}, {a, b, c}〉 instead of 〈a, b, c〉.
So in an Outflow graph, every node contained the set of events that led to the
current state. This graph was annotated with some statistics such as average

16

time, average outcome (e.g., did the patient survive or die) and number of pa-
tients. This graph was then used to create the Outflow visualization, which is
essentially a Sankey [43] diagram. Colors of nodes and edges show the outcome
(shaded from green to red) of the event and their height represents frequency.
The distance between adjacent nodes represents the average time between tran-
sitions, and its horizontal position corresponds to the position in the sequence.
The visualization can be used interactively to explore the data.

They also discuss an “alignment point”, although it is basically a way of filtering
the data. Sequences S1 = 〈a, b, c, d〉 and S2 = 〈c, b, a, e〉 would be transformed
into S′1 = 〈a, {a, b}, {a, b, c}, {a, b, c, d}〉 and S′2 = 〈c, {b, c}, {a, b, c}, {a, b, c, e}.
Now sequences S′1 and S′2 have an event set in common (t3), which can be used
to ‘align’ the sequences on. This simply means that the (unaggregated) prefixes
of sequences that have been aligned, contain the same events, either in the same
or different order.

Frequence [39] is similar to Outflow: It is a user interface for mining and visual-
izing frequent sequences and uses Sankey diagrams to visualize sequences. The
main difference is that it does not aggregate data but instead showed all paths.
Unlike Outflow, events were not considered to be cumulative. Care Pathway
Explorer [40] was an extension and adaptation of Frequence to make it more
suitable for medical data.

17

Chapter 4

Methods

In this chapter we will describe the contributions we made to the area of sequence
mining. First, we discuss the adaptations we made to Levenshtein distance to
create our edit distance metric for sequences, which is suitable for comparing
the similarity of (event) sequences instead of character strings, and how domain
knowledge can be incorporated into the new metric. Second, we will discuss the
clustering of sequences based on the proposed metric. Third, we describe the
frequent sequence mining we did before visualizing the data. We conclude with
describing a new way to visualize sequences based on Sankey diagrams.

4.1 Measuring sequence similarity

In order to calculate the similarity between sequences, we need to address a
couple of points: We propose a method to define costs that reflect the sequence
similarity. We discuss how we treated simultaneous events. Defining costs can
be difficult in case a lot of costs have to be defined, so we propose a method
to make it easier for a domain expert. In the following sections we will ad-
dress these issues, as well as an algorithm to calculate the distances between
sequences

4.1.1 Costs of operations

Levenshtein distance has unit cost for its three edit operations: The distance
between two strings is equal to the minimum number of insertions, deletions
and substitutions that are required to transform one string into another, i.e.,
all operations have a cost equal to 1. According to [30] a variant of this metric
where no substitutions are allowed was also proposed by Vladimir Levenshtein.
This corresponds to using a substitution cost of 2, since it then equals the cost of
an insertion plus a deletion. Other costs are also possible, resulting in Weighted
Levenshtein Distance (WLD) [35] where every operation is assigned its own
non-negative weight. Although different weights (i.e., costs) can be chosen, two
constraints are required. First, the same cost should be used for insertions and

18

deletions since a metric should be symmetric. As a consequence, insertions and
deletions can be treated as a single operation: an indel. Second, the cost of a
substitution should not exceed the cost of an insertions plus a deletion, otherwise
substitutions will never happen since it is cheaper to perform a deletion plus an
insertion.

Besides assigning different costs to different operations, more complex weighting
schemes can also be used, such as confusion matrices [30] or using costs propor-
tional to the number of occurrences of an event [28], resulting in a lower cost
to insert a common event than a rare event. We wanted the costs to reflect the
similarity of events. To determine how similar events are, domain knowledge
about the events is required. We made a framework where, with help from do-
main experts, event similarity could be quantified into costs such that the cost
to transform one sequence into another reflects the similarity between the two
sequences as determined by domain experts.

To achieve this, we made the following modifications to the edit distance met-
ric: We used a vector of length n, where n is the number of unique events
in the dataset, to hold the indel cost of every event. We also used an n × n
substitution matrix. This matrix has to be symmetric and contains the costs
to substitute one event by another. These kind of matrices are also used in
bioinformatics. Different substitution matrices have been developed containing
costs for replacing amino acids in protein. Two well known families of matrices
are PAM [5] and BLOSUM [15] matrices, where costs depend on the likelihood
that one amino acids mutates, in one or more steps, into another. The costs in
our matrix should reflect the similarity between every pair of events.

One problem that might arise when choosing substitution costs is that the final
substitution matrix will not satisfy the triangle inequality:

dist(x, z) ≤ dist(x, y) + dist(y, z)

a b c
a 0 3 1
b 3 0 1
c 1 1 0

Table 4.1: Substitution matrix.

Take for example sequences S1 = 〈a〉, S2 = 〈b〉 and S3 = 〈c〉. The substitution
matrix is listed in Table 4.1. According to the triangle inequality the following
should hold: dist(S1, S2) ≤ dist(S1, S3) + dist(S3, S2). However, based on our
substitution matrix this means that 3 ≤ 2.

One cause might be that we made poor choices when picking costs for our
matrix. According to the substitution matrix, the similarity between events
a and c is the same as the similarity between events b and c, while events a
and b are defined as very dissimilar. So care has to be taken when choosing
costs.

A simple solution to create a substitution matrix that will always satisfy the
triangle inequality, is to set the substitution cost equal to the cost to delete one

19

event and insert the other. Continuing from the previous example would result
in:

del(a) + ins(b) ≤ del(a) + ins(c) + del(c) + ins(b)

It is easy to see that this will hold for all non-negative values of inserting and
deleting event c. It is also possible to use a fixed ratio of the insertion and
deletion costs, for example, set every substitution to half the insertion plus
deletion cost which results in equal costs for insertions, deletions and substitu-
tions.

4.1.2 Event groups

Defining a substitution cost for every event pair can be a cumbersome task. In
many cases there will not be a clear definition of similarity between events, so
all costs have to be determined together with a domain expert. Sometimes it
might be more convenient to specify a couple of groups, where the rationale is
that events belonging to the same group are more similar than events belonging
to different groups. Now a distinction can be made between intragroup and
intergroup substitution costs, reducing the number of costs that have to be
defined. The grouping is implicitly removed if each event is assigned its own
group.

In order to fill the substitution matrix, we can first create a p×p matrix, where p
is the number of groups, the off-diagonal values contain the intergroup costs and
the diagonal contains the intragroup costs. We can fill the substitution matrix
based on this smaller matrix. Of course, the intragroup cost of two identical
events should still be zero (i.e., the diagonal of the substitution matrix should
be zero).

Instead of having to define 1
2 (n2 − n) values, we need only 1

2 (p2 + p) values1.
This can be a huge advantage for a domain expert since less values have to
be determined: In case a dataset has ten distinct events, 45 values have to be
determined. If it would be possible to categorize those ten events in four groups,
only ten values have to be determined. This can make the task of defining costs
much more manageable.

4.1.3 Simultaneous events

One problem that arises when applying a string metric to sequences is the oc-
currence of simultaneous events (e.g., events occurring on the same day where
no more detailed timestamp is available), since it is only capable of single edit
operations. Costs have to be defined to insert, delete and substitute itemsets in-
stead of items, because in many cases it would not make sense to assign the same
cost to every itemset, especially when they are different in size. To illustrate the
problem, take the following three itemsets: I1 = {a}, I2 = {b} and I3 = {b, c, d}.
If we would use the standard costs of Levenshtein distance, substituting itemset
I1 with itemset I2 would have the same cost as substituting itemset I1 with

1Note the sign difference since in the first case the diagonal is 0 and in the second case the
diagonal contains intragroup substitution costs.

20

itemset I3, although the latter is clearly less similar than I2 with respect to
I1.

There are several possibilities to deal with itemsets. We could define some
artificial ordering of the events, as in [23], and then treat a sorted itemset as a
subsequence of the entire sequence. For example, we could transform an itemset
into an alphabetically sorted subsequence. This ensures that every itemset is
treated in the same way. Consider sequence S = 〈b, {c, a}, {a, g, d, f}, c〉. It
would be transformed into S′ = 〈b, a, c, a, d, f, g, c〉.

An alternative is to keep the ordering as present in the data and assume that
it equals the order in which the events took place. In that case S would be
transformed into S′ = 〈b, c, a, a, g, d, f, c〉.

A third option, that might be feasible in some situations, is to reconstruct the or-
der the events (probably) took place, and again treat them as a sequence.

However, for all these approaches assumptions have to be made about the order
the events took place. We think it would be better to minimize the number of
assumptions and directly deal with itemsets. Of course, some methods exists
to calculate similarity between sets, such as Jaccard Index [18] and the already
mentioned Sørensen-Dice coefficient [48, 6]. However, these methods are not
suitable for our task. The set similarity should not be expressed as a value
based on how many elements they have in common, but should take the costs
into account to transform one itemset into the other in the same way we already
defined it for items. Another issue is that these methods normalize the similarity
value between 0 and 1. We want to apply normalization only on the entire
sequence, not on individual transactions.

We wanted the cost to reflect the cost to transform one itemset into the other
(in case of an indel the cost to transform it into the empty set). To achieve this,
we propose the following: The indel cost of an itemset should be equal to the
cost of inserting (or deleting) all events in the set, and the substitution cost of
an itemset should be equal to the minimum cost (defined by edit operations)
to transform one itemset into the other. To accomplish this, we treated every
itemset as a “super event” and changed our substitution matrix to hold all
“super events” that occurred in the data instead of all events.

A problem that arose is that it matters which event pairs are substituted,
and which are inserted or deleted. Consider itemsets I1 = {a, d} and I2 =
{c}. To transform I1 into I2 we could perform either sub(a, c) + indel(d) or
sub(d, c) + indel(a). Therefore, the minimum transformation cost has to be
determined.

To calculate the minimum cost, the number of insertions, intragroup substitu-
tions and intergroup substitutions have to be determined. Items that occur in
both itemsets are removed by taking the relative complement, because those
do not need to be substituted. Take itemsets A and B. Then A′ = A \ B and
B′ = B \ A such that A′ ∪ B′ = A 4 B (symmetric difference). The num-
ber of substitutions is equal to the set with lowest cardinality: min(|A′|, |B′|).
The number of indels equals the difference in cardinality: max(|A′|, |B′|) −
min(|A′|, |B′|).

Based on the number of substitutions, the number of intragroup substitutions

21

can be determined. The number of intragroup substitutions should be maximal
since these are cheaper than intergroup substitutions. In order to obtain the
intragroup and intergroup substitutions, the frequency of every event group is
calculated for sets A′ and B′. The lowest frequency of every group corresponds
to the number of intragroup substitutions that can be performed for that group.
The remaining substitutions are intergroup substitutions.

It is trivial to calculate the total cost of intragroup substitutions: it is just a
summation of substitution costs. Determining the costs of intergroup substitu-
tions is harder since these should be minimized.

Consider itemsets A′ and B′ again, and the number of intergroup substitutions
s and indels d. Let A′′ and B′′ be sets where all events have been removed for
which an intragroup substitution should be performed. Then the cost that has
to be minimized equals:

min

 s∑
i=1

sub(xi, yi) +
d∑

j=1

indel(zj)

where xi ∈ A′′ ∧ yi ∈ B′′ ∧ (zj ∈ A′′ ∨ zj ∈ B′′. Every element of A′′ and B′′

should be used exactly once, as an item can not be part of a substitution (or
insertion/deletion) multiple times. In other words, the union of all xi’s, yi’s and
zj ’s is equal to A′′ ∪ B′′. To obtain the total event set substitution cost, the
cost of intragroup substitutions has to be added.

Let us look at an example to illustrate the entire process. Say we have item-
sets A = {a, b, x, y} and B = {a, c, d, w, z} and four groups G1 = {a, b, c, d},
G2 = {x}, G3 = {y}, G4 = {w, z}. The first step is to remove common el-
ements: A′ = {b, x, y} and B′ = {c, d, w, z}. The number of substitutions
equals min(|A′|, |B′|) = 3 and the number of indels equals max(|A′|, |B′|) −
min(|A′|, |B′|) = 4− 3 = 1.

The next step is to calculate for both itemsets the frequency of every group. In
A′ groups G1, G2, G3 occur once. In B′ groups G1 and G4 both occur twice.
The minimum frequency of groups G1, G2, G3 and G4 is respectively 1, 0, 0
and 0. Therefore, one intragroup substitution should be performed: sub(b, c) or
sub(b, d), which have equal cost since it is an intragroup substitution. We pick
sub(b, c). The remaining substitutions, in this case two, are intergroup substi-
tutions. After removing the items that were used in the intragroup substitution
we have sets A′′ = {x, y} and B′′ = {d,w, z}. The cost to transform A into B
equals:

sub(b, c) + min

sub(x,d) + sub(y,w) + indel(z)

sub(x,w) + sub(y,d) + indel(z)

sub(x, z) + sub(y,w) + indel(d)

sub(x, d) + sub(y, z) + indel(w)

sub(x,w) + sub(y, z) + indel(d)

sub(x, z) + sub(y, d) + indel(w)

22

Since w and z are elements of the same group it is sufficient to calculate the
costs marked in bold.

4.1.4 Distance calculation

With our metric in place, we were able to calculate distances between sequences.
We used Hirschberg’s algorithm [16] and modified it to calculate the proposed
metric. In Algorithm 1 the algorithm to calculate the distance between se-
quences is listed. Vectors v0 and v1 are used to store the cost of the align-
ment.

To make the edit distances comparable between sequences of various lengths,
we normalized the results by dividing the distance by the maximum of indel
costs of the two sequences. However, distances will not satisfy the triangle
inequality after normalization. We conducted experiments to assess the impact
of normalization.

Only a triangular distance matrix has to be calculated. To take advantage
of datasets where there are many duplicate sequences, we only calculated the
distances between unique sequences, and used these to fill the complete distance
matrix. This can greatly reduce the running time of the algorithm.

4.2 Clustering

We used the distance matrix as input to cluster sequences. It is not possible to
apply k -means [27] on the data since there is no clear concept of a mean because
we only have distances between sequences and not its position in an Euclidean
space. We chose an agglomerative hierarchical clustering method, which means
it is bottom-up, starting with every sequence in its own cluster, and merging the
most similar cluster pairs until there is only a single cluster left. To determine
which clusters should be merged we used Ward’s method [55]. It minimizes
the total within-cluster variance. A Lance-Williams algorithm [24] was used
in combination with Ward’s method [56] to create a hierarchical clustering,
although we also experimented with other linkage criteria.

We also experimented with k -medoids [20] clustering using the partitioning
around medoids (PAM) algorithm.

4.3 Frequent Sequences

An important question is what care patients received until or around a certain
event. To provide this insight we wanted to visualize as much treatment data of
the patient population as possible, without making the visualization too com-
plex. If we would mine for all frequent sequences we could get multiple patterns
per sequence, especially when sequences are long. However, we wanted only a
single pattern per sequence. To achieve this, a couple of constraints were re-
quired for mining. We will discuss two groups of frequent sequences that we

23

Algorithm 1: Edit distance with custom costs

1 function Levdist (a, b, sm, indel)
Input : Sequences a and b, substitution cost matrix sm and indel cost vector

indel, where sm and indel are hash tables
Output: dist(a, b)
/* Identical sequences */

2 if a = b then
3 return 0
4 end
5

/* Empty sequence */
6 if min

(
|a|, |b|

)
= 0 then

/* return sum of indel costs of all elements of the
non-empty sequence */

7 if |a| = 0 then

8 return
|b|−1∑
n=0

indel
[
b[n]

]
9 else

10 return
|a|−1∑
n=0

indel
[
a[n]

]
11 end

12 end
13

/* Initialization: cost to align first i events of
sequence b to empty sequence */

14 v0[0]← 0
15 for i← 1 : |b| do

16 v0[i]←
i−1∑
n=0

indel
[
b[n]

]
17 end
18

/* Calculate cost to align first i events of sequence a to
first j events of sequence b */

19 for i← 0 : |a|−1 do

20 v1[0]←
i∑

n=0
indel

[
a[n]

]
)

21 for j ← 0 : |b|−1 do
22 cost← sm

[
a[i], b[j]

]
23 v1[j+1]← min

v1[j] + indel

[
b[j]
]

v0[j+1] + indel
[
a[i]
]

v0[j] + cost

24 end
25 v0← v1

26 end
27

28 return v1
[
|b|
]

// last element of v1 contains total cost

24

mined, used as input for two different types of visualization. The visualization
based on the mined sequences is discussed in Chapter 4.4.

A couple of constraints on the mined patterns were required. We were only in-
terested in frequent sequences that contained certain events at a specific position
in the sequence, where the position is either absolute or relative. We were also
only interested in contiguous sequences and we did not take subsets of event sets
into account (i.e., an event set was treated as as single super event). We either
mined for frequent prefixes or mined for frequent subsequences that contained
(the first occurrence of) a specific event. In the latter case, multiple events or
event sets could be specified. The first group of sequences consisted of prefixes,
were a prefix of a sequence S = 〈t1, . . . , tn〉 corresponds to S′ = 〈t1, . . . , tm〉
where 1 ≤ m ≤ n. This definition corresponds to the definition of prefix of a
string, which should also be contiguous.

The second group contained contiguous subsequences S′ �T S such that S′ =
〈tj , . . . , tk〉 where 1 ≤ j ≤ k ≤ n and {S ∈ D | ∃S(i) ∈ T}, where T is the set
of events in which we are interested, D the set of sequences and i an arbitrary
transaction of S. The first group of sequences can be expressed as the latter by
making the set T contain all events that occur in the data. Then the selected
subsequences is determined by the set {S ∈ D | S(1) ∈ T}.

Sequence
S1 = 〈b, c, b, b〉
S2 = 〈b, c, b, a〉
S3 = 〈b, c, a, b〉
S4 = 〈b, a, e〉
S5 = 〈c, a, b, a〉
S6 = 〈a, e〉

Table 4.2: Sequences.

Sequence Freq.
F1 = 〈b, c, b〉 2
F2 = 〈b, c〉 3
F3 = 〈b〉 4
F4 = 〈c〉 2

(a) Frequent prefixes.

Seq. t1 t2 t3 t4
S1 b c b b
S2 b c b a
S3 b c a b
S4 b a e
S5 c a b a
S6 a e
S7 c b a b

(b) Selection of sequence
marked in bold.

Table 4.3: Mining frequent prefixes.

We will illustrate the patterns that we were interested in with an example. The
set of sequences is listed in Table 4.2. In case of mining for frequent prefixes that
occur at least twice in the data, the set of frequent sequences would be the set
of sequences listed in Table 4.3a. Note that sequence 〈b, a〉 occurs three times
(S2, S4, S5), but only once as a prefix and therefore is not listed in Table 4.3a.
Table 4.3b shows exactly what part of every sequence is selected based on the
frequent sequences.

In case of mining frequent sequences with the constraint that it should contain
the first occurrence of a specific event, the selection would be different. We
use the same set of sequences and support of the previous example, but now a
frequent sequence should contain event a. The resulting set of frequent sequences
and corresponding frequencies are listed in the first two columns of Table 4.4a.
Table 4.4b shows our data selection, where ti is the first transaction that matches
with our selection criterion. There are a couple of observations to make. First,
sequence S1 is missing since it does not contain event a at all. Second, although

25

Sequence Freq.
F5 = 〈c, a, b〉 2 2
F6 = 〈c, b, a〉 2 2
F7 = 〈a, b〉 3 2
F8 = 〈a, e〉 2 1
F9 = 〈b, a〉 3 2
F10 = 〈c, a〉 2 2
F11 = 〈a〉 7 7

(a) Frequent sequences containing a.

Seq. ti−3 ti−2 ti−1 ti ti+1 ti+2

S1 - - - - - -
S2 b c b a
S3 b c a b
S4a b a e
S4b b a e
S5 c a b a
S6 a e
S7 c b a b

(b) Selection of sequence marked in bold.

Table 4.4: Mining frequent subsequences containing particular event.

frequent sequence F9 occurs four times in the data it is only listed three times
since in sequence S5 there is an event a that occurred earlier in the sequence.
Third, note that sequence S4 is listed twice: it contains two frequent sequences
of maximum length. Before we can visualize the result we would have to choose
which one to pick, since otherwise we would either end up with two sequences for
a single patient or, if we would take the union and visualize sequence 〈b, a, e〉,
we would get a non-frequent sequence. A consequence is that the resulting
visualization might contain infrequent sequences. If we would pick S4a then
F9 would not be frequent, and if we would pick S4b then F8 would not be
frequent. Fourth, sequence S7 is only listed once, although it contains two
frequent sequences: F6 and F7. We are only interested in the longest frequent
sequences that is present in the sequence.

The third and fourth observation brings us to the following: although we mine
for frequent sequences, it does not mean that they will be frequent in the visu-
alization. If we would pick S4b over S4a we would end up with the frequencies
listed in the last column of Table 4.4a, resulting in the support of F8 drop below
our threshold and in a decrease in support of F9.

In order to determine which frequent sequences should be visualized and what
their frequency should be, an extra pass over the dataset is required after mining.
This pass is also used to determine if a frequent sequence is a proper (contiguous)
subsequence and if so, determine if it is a proper prefix, a proper suffix or neither.
This information was used to indicate in the visualization if a complete path is
visualized or only part of it.

Since we are interested in pattern that start at a certain position, either absolute
(first group of frequent sequences) or relative (second group), certain patterns
that occur in the data might have high enough support, but will not be mined
since they will not fulfill the constraints we imposed. Therefore, it could be
helpful to also produce a set of frequent sequences where no such constraints were
imposed. This set does not have to be visualized but could help with discovering
patterns in the data when used in conjunction with the visualization.

26

4.4 Visualization of Sequences

Sankey diagrams [43] are a powerful visualization method for sequential data.
They can be used as a starting point to get insight in data, or as a final step
to visualize results. It is a flow diagram where the width of nodes and edges
is proportional to the flow quantity. Usually, every path starts completely to
the left of the diagram with the flow moving to the right through several nodes
until an end node is reached.

It can be used for sequence visualization [39] by creating a node at level i of
the diagram for every unique transaction t that occurs at position i in the
sequence: The set of nodes for an arbitrary level of the Sankey diagram is
defined as Ni = {ti | ti = S(i) : S ∈ D}. Edges to nodes at level i (and coming
from level i−1) are determined by the set of unique length-2 subsequences Ei =
{S′ | S′ = 〈S(i−1), S(i)〉 : S ∈ D}. The width of every node n ∈ Ni and edge
e ∈ Ei should be proportional to their frequency.

Sankey diagrams are used primarily for visualizing relatively short sequences
with a few distinct events. A potential risk is that the whole diagram will become
too cluttered in case too many transitions and events are visualized.

We extended the Sankey diagram to create a new method to visualize se-
quences.

4.4.1 Aligned Sankey diagrams

We combined existing visualization techniques to address situations where the
main interest lies in events occurring at or around a specific point in the se-
quence. Sankey diagrams have already been used to visualize (medical) se-
quences [57, 39, 40]. Aligning sequences in a visualization has also been done
[53, 31, 32]. We combined these two techniques for our visualization interface
to make it easier to get insight in sequential data.

It might not always be convenient to start all sequences at the first level of
the diagram. Therefore, we introduced a Sankey diagram where a sequence
may start at an arbitrary level in the diagram, unlike [57] where although they
discuss an alignment point, sequences still start at the first level of the diagram
since it always takes n transactions to reach the state shared by all sequences.
Aligning sequences is useful in situations were we are interested in the relative
position of an event in a sequence instead of the absolute position. It allows
us to center the Sankey diagram on a specific event. This provides insight in
the events that occurred before and after that specific event. This is not clear
in the traditional Sankey diagram, where the selected event can occur at many
levels. This can be especially useful when the same events happen before and
after the alignment point.

We filtered a dataset such that every sequence contained event F to make a fair
comparison between the two methods. In Figure 4.1 the ‘traditional’ Sankey
diagram is shown. Figure 4.2 contains the same data2, but this time event F

2We applied edge filtering to simplify the diagram. Every edge now has at least a frequency
of 5. Therefore, not the exact same data is visualized.

27

was used to align the Sankey diagram on3. Here it is immediately visible which
events took place before and after event sets containing event F, as where as in
Figure 4.1 event F occurs at all three levels of the Sankey diagram (sometimes
preceded by another occurrence of event F.

(A)2020
(F;H)

26

0

(B)

5252

(C;F)

34

13

(E)
13

0

(E)

34

10

(C;F)
10

0

(D)66

(F)

115

60175

(A;G)
21

0

Figure 4.1: ‘Traditional’ Sankey diagram where sequences start at the first level
of the diagram.

(C;F)

56

227

(E)

61

9(E)
158

(A)
2121

(F;H)

34

06

(B)

5656

(C;F)
9

0(B)
77

(D)
77

(F)

125

70195

(A;G)
22

0

Figure 4.2: ‘Aligned’ Sankey diagram containing the same data as Figure 4.1
but aligned on event F.

Additionally, we can indicate if a subsequence was part of a longer sequence.
Sometimes the entire sequence is visualized, but sometimes only a subsequence.
In Figure 4.3 we indicate in blue the longer sequences that were cut off instead
of treating them as sequences that started or terminated there, as indicated by
green and red respectively.

3All event sets holding event F were also used to align on.

28

(C;F)

48

30

(E)

52

18

(E)
15

(A)
2121

(F;H)

28

6

(B)

5656

(C;F)
5

4
(B)

77
(D)

77

(F)

115

80195

(A;G)
21

1

Figure 4.3: ‘Aligned’ Sankey diagram containing the same data as Figure 4.2 but
now indicated if a sequence was terminated before it was completely visualized.

4.4.2 Edge filtering

In Chapter 4.3 we discussed frequent sequence mining as an optional prepro-
cessing step before visualizing the data with a Sankey diagram. Using frequent
sequence mining to remove uncommon subsequences can help reduce the amount
of data that has to be visualized. A disadvantage was that, although we mined
for patterns that met minimum support, it was not guaranteed that the re-
sulting visualization would not contain paths with a lower frequency. Here we
present an alternative method that can be used to reduce the complexity of the
Sankey diagram. It can be used in conjunction with frequent sequence mining,
and provides more control over the data that will be visualized.

To balance the quantity of visualized data and to reduce clutter, we made a
distinction between the frequency of a sequence and the frequency of edges.
The frequency of sequences in the Sankey diagram is mainly determined by
frequent sequence mining. In this section we will look into the frequency of the
edges between nodes.

Before data is visualized, the frequency every edge is checked, and sequences that
contain an infrequent edge are pruned. Pruning infrequent edges can remove
rare transitions caused by frequent sequences dropping below support, since
not every frequent sequence will end up in the diagram with the same support
it was mined. A second use case is to further limit the number of displayed
nodes and links. A node or link will often be part of multiple unique sequences.
So on average, a node or link will have a higher frequency than the minimum
support threshold. There might be links (or nodes) that are only visited by
very few frequent sequences, and we might want to remove them to improve the
visualization.

In order to prune a Sankey diagram, we start with the transactions at ti, where

29

ti corresponds to the alignment point (in case of no alignment, this simply is
t1), and determine the frequency of all unique edges, i.e., subsequences of length
2 that start at a certain position: 〈ti−1, ti〉. If the edge frequency is below the
threshold the sequence is pruned, removing all transactions to the left of ti.
Then i is decreased by one, and again the edge frequency is determined. This
process is repeated until the frequency of 〈t1, t2〉 is determined. Analogous,
a pass to the right is performed, until the frequency of 〈tn−1, tn〉 is checked.
Pruned sequences are marked, such that we can indicate in the Sankey diagram
that they are not completely displayed.

We demonstrate the difference between edge filtering and frequent sequence min-
ing with the following example. The dataset consists of the sequences displayed
in Table 4.5 and the corresponding Sankey diagram containing every sequence
is shown in Figure 4.4.

Sequence Freq.
〈a, q, a〉 2
〈a, q, a, e〉 2
〈a, q, b〉 2
〈b, q, a〉 4
〈b, q, b〉 1
〈b, q, b, e〉 2

Table 4.5: Sequence frequency.

(a)

66

(q)

13

(a)

6

2

(e)

4

0

(b)

3

2
(b)

77

Figure 4.4: Sankey diagram.

If we set our minimum support threshold to a frequency of 5 and mine for
frequent sequences, we get the Sankey diagram shaded in pink in case of mining
for prefixes. In case of an alignment on q we get the Sankey diagram shaded
in either pink or yellow, depending on a preference for events occurring before
or after the alignment point. This is caused by the lack of frequent sequences
of length 3. However, if we would not mine for frequent sequences but filter
out edges with a frequency below 5, the blue shaded part would be visualized.
So now every transition has at least a frequency of 5, although sequences have
lower support, for example, 〈a, q, b〉 has a support of 2. But since 13 sequences
pass through node q, we might be interested in this flow.

Of course, we could reduce the minimum support threshold, but we would re-
quire a minimum support threshold of 2 to visualize the blue shaded area, which
would also include event e. We could remove this by setting an edge filter thresh-
old between 3 and 5. Increasing the minimum support threshold to 3 instead
of 2 would make sequence 〈a, q, b〉 infrequent, so only 〈a, q〉 or 〈q, b〉 would be
visualized (in case of alignment). This might be an unwanted result since many
sequences contain events a and b and they might be interesting enough to keep.
Combining frequent sequences with defining an edge frequency can help to fine
tune the visualization.

30

4.4.3 Implementation

Our Sankey diagrams were created using Javascript library D3.js4 and a Sankey
plugin5, both created by Mike Bostock. We adapted the plugin to be able
to start sequences anywhere in the Sankey diagram, and used it to built our
sequence visualization interface.

We added the visualization of number of sequences that start, terminate or were
cut off due to a too low frequency of a subsequence at every node. Addition-
ally, we added some capabilities to interact with the diagram. By selecting a
node, only sequences are visualized that pass through that node. When several
nodes are selected, all paths that pass through at least one of those nodes are
shown. Another possibility is to deselect a node, removing all sequences that
pass through it. These data filtering methods can be combined to interactively
explore the data, although it is recommended to perform some data filtering as
a preprocessing step.

4www.d3js.org
5www.github.com/d3/d3-plugins/tree/master/sankey

31

Chapter 5

Experiments

In this chapter we will discuss the experiments we conducted. We ran experi-
ments on data provided by ZIN, and discussed the results with a domain expert
to improve them. We first discuss the type of data we used and the preprocess-
ing we did. Finally, we describe how we defined the similarity between specific
events. The results of the experiments are described in Chapter 6.

5.1 Data origin and selection

The dataset we used in our experiments consisted of medical records that were
extracted from administrative processes. It contained care and treatment in-
formation from all Dutch hospitals and was provided to us by Zorginstituut
Nederland. It was extracted from DBC-Informatiesysteem (DIS, DBC Infor-
mation System). DBC stands for Diagnose Behandel Combinatie (Diagnosis
Treatment Combination) and was collected by the Nederlandse Zorgautoriteit
(NZa, the Dutch regulatory agency tasked with supervising the Dutch care mar-
ket).

The DBC-system is used to determine the funding hospitals and medical special-
ists in The Netherlands should receive. A DBC contains the total treatment of
a patient for a certain diagnosis. The diagnosis together with the corresponding
treatment leads to a single price that care providers can claim from insurance
companies, using an administrative code: the DBC-code [61]. The cost of a
DBC is based on an ‘average’ treatment, which allows for small deviations in
the treatment to better suit a patient’s needs without affecting the cost of the
DBC.

We only worked with a very small selection of DIS-data. For privacy reasons,
it does not contain any information that could be traced back to specific indi-
viduals, and does not include outcomes of medical tests. It does contain some
information about the event, such as sex and year of birth of the patient, a
product code, what hospital was responsible for the medical test and date of
the test.

32

Name Codes Group

cycle ergometry (cycle test) 039844, 039845 1

echocardiogram (echo) 039494, 085070 1

dobutamine stress echocardiogram (echo stress) 039495 2

dobutamine stress MRI (MRI stress) 039507, 085191 2

SPECT stress 120241, 120246 2

SPECT
120240, 120244,
120245

2

MRI 039506, 085190 3

coronary calcium scan (CT calcium) 085141, 039497 4

CT-scan (CT) 085042, 085140 4

angiography (angio)
033229, 039520,
085720

5

PCI

033231, 033232,
033233, 033234,
033238, 190342,
190343

5

Table 5.1: Names of medical tests with corresponding codes and groups.

The data we worked with consisted of records of patients diagnosed with chest
pain. Two datasets were created with with help of a domain expert.

The complete set of activities that we used is listed in Table 5.1, together with
the corresponding codes. Table 5.2 contains some statistics about the two ex-
periments with chest pain data.

Description Sequences Unique seq. Events Event sets
Experiment 1 10.035 554 12 66
Experiment 2 10.035 1.633 12 70

Table 5.2: Statistics of the two datasets used in our experiments.

5.2 Data description

The domain expert created several groups of similar activities. These groups
are shown in Table 5.1, although the initial grouping was slightly different:
According to the domain expert MRI should be in a group of its own, but this
did not give the expected result. MRIs were in the same cluster with sequences
containing echos and cycle tests, although an MRI is a more severe medical test
and will give you more information than can be obtained with echos and cycle
tests. We decided to put it in the same group with MRI stress and the other
stress tests. The new clusters were considered better by the expert.

Different costs for different event groups were used, based on input from a
domain expert and adjusted during experiments. The costs were kept relatively
simple. We set the intergroup substitution costs equal to the cost to delete one
event (or super event) and insert the other, practically eliminating substitutions

33

in case of intergroup substitutions. An intragroup substitution had the same
cost as the cost of a single indel of that group. This means that in case we
would set all indel costs to 1, intergroup substitutions would have cost 2 and
the cost of intragroup substitutions would stay 1.

However, not every medical test is as severe as the other. Additionally, some
tests are cheaper, or provide more information about the health of a patient.
For example, we set the indel cost of group 1 much lower, since it contains cheap
medical tests which do not tell much about the health condition of a patient.
We used a substitution cost of 0 for group 5, since a PCI also contains an an-
giography and therefore it does not matter which one a patient received.

5.3 Evaluation

We clustered sequences in order to evaluate the metric. We used a dendrogram,
a “‘tree-like’ diagram illustrating the series of steps taken by the method in
proceeding from n single member ‘clusters’ to a single group containing all n
individuals” [8], to determine the number of clusters. We also calculated the
average silhouette width [45] to decide on the number of clusters. Silhouette
coefficients provide an indication how well points fit into the cluster they have
been assigned to. The average value provides an indication of the overall validity
of the clustering.

After assigning on the number of clusters, we wanted to analyze the clusters.
However, we only have a distance matrix. To inspect how well we clustered the
sequences, we used classical multidimensional scaling [50] (MDS, also known as
principal coordinates analysis [11]) to project the distance matrix onto a plane.
It is a generic method to reduce the data dimensionality. The aim of MDS is to
place every object of a distance matrix in an n-dimensional space (in our case
n=2) were distances are preserved as good as possible. We indicated to which
cluster every point was assigned to. This allowed us to visualize the clusters
and get an insight in the spatial relation between sequences.

A Sankey diagram was created for every cluster. These served as a method to
present the clusters to the domain expert in order to discuss results.

34

Chapter 6

Results

As described in the previous chapter, we conducted experiments on two different
datasets about patients diagnosed with chest pain. The results of the experi-
ments on these different sets are discussed in the following two sections.

6.1 Experiment 1

Figure 6.1: Average silhouette width for hierarchical clustering with different
linkage criteria and for k -medoids.

We experimented with several linkage criteria: Single linkage, complete linkage,
average linkage and Ward’s criterion. We also experimented with partition-
ing around medoids (PAM). To compare how well each method performed, we
calculated the average silhouette width for every method and for different num-
ber of clusters. The results are shown in Figure 6.1. It is interesting that in
the beginning PAM produces clusters with a low average silhouette width, but

35

improves when the number of clusters increases. Complete linkage and Ward’s
criterion perform best in case of few clusters. The clustering of complete linkage
and Ward’s criterion is very similar for four clusters, illustrated by the confu-
sion matrix shown in Table 6.1a where most values are on the diagonal. The
corresponding dendrograms are shown in Figure 6.2.

Complete linkage

1 2 3 4

W
a
rd
’s

cr
it
er
io
n

1 7273 1 0 0

2 0 1446 0 0

3 0 2 906 0

4 0 0 0 407

(a) Ward’s criterion vs. complete linkage.

Without normalization

1 2 3 4

W
it
h
n
o
rm

a
li
za
ti
o
n 1 7274 0 0 0

2 89 1357 0 0

3 62 22 824 0

4 0 0 0 407

(b) Ward’s criterion, with and without dis-
tance normalization.

Table 6.1: Confusion matrices.

Based on silhouette plots and dendrograms we picked Ward’s method with four
clusters to look into the impact of distance normalization. As mentioned in
Chapter 4.1.4, normalization made the triangle inequality fail. To assess the
impact we compared cluster solutions created with and without normalization.
It turned out the differences were only minor, as shown in Table 6.1b.

(a) Complete linkage. (b) Ward’s criterion.

Figure 6.2: Dendrograms for complete linkage and Ward’s cluster criterion.

We applied Multidimensional Scaling [50] to project the distance matrix onto a
plane, which could help to inspect how well the data is clustered. The result of
MDS applied to the distance matrix is shown in Figure 6.3, where every point is
colored according to the cluster it belongs to. Clusters are separated quite well,
although it could be interesting to further examine the result, where subclusters
seem to be present. Based on Figure 6.3 there is a group, in the bottom right

36

corner, containing sequences of Cluster 2 and Cluster 3. There is also a group
of four points, in the top center, belonging to Cluster 3 which are far away from
the other points of Cluster 4.

One cluster consisted out of patients that received predominantly either a spect
or spect stress, together with some other medical tests that belonged to the same
event group. Another cluster consisted out of patients that did not receive much
care: mostly echos and cycle tests. A third cluster consisted out of patients
that received either a CT or CT calcium. A fourth cluster contained patients
who had an angiography, a CT and often a CT calcium on the same day. These
clusters are visualized as Sankey diagrams and listed, together with the complete
dataset, in Appendix A.1-A.5.

Figure 6.3: Clusters after projecting them on a plane using MDS.

We discussed these clusters with the domain expert. According to the expert
the first three clusters made sense from a medical point of view. The fourth
cluster was of interest since it contained patients that received multiple tests on
the day of their angiography.

6.2 Experiment 2

In this experiment we applied the same clustering algorithms as in our previous
experiment, resulting in the average silhouette widths shown in Figure 6.4. The
average silhouette width is smaller than in our previous experiment, indicating
lower quality clusters. Ward’s criterion seemed to perform quite well for six
clusters. Again, single linkage and average linkage did not perform well. The
result of PAM improved again after a dip in silhouette width, although it stays
below the initial width for two clusters. The dendrogram corresponding to
Ward’s criterion is shown in Figure 6.5. We chose a six cluster solution. The

37

corresponding Sankey diagrams, together with the complete dataset, are listed
in Appendix A.6-A.12

Figure 6.4: Average silhouette width for hierarchical clustering with different
linkage criteria and for k -medoids.

Figure 6.5: Dendrogram for Ward’s criterion.

Whether or not distances are normalized does not change much to the resulting
clusters, as shown by the confusion matrix listed in Table 6.2.

The result of MDS seems to indicate that there are four clusters, which are
also not well represented by the produced clustering. For example, there are
two clear groups of points present in Figure 6.6a consisting of points labelled as
Cluster 2. The other two groups contain a mixture of points that are assigned to
different clusters. Decreasing the number of clusters to four illustrates a problem
of interpreting the result of MDS: Table 6.6b shows the cluster membership in
case of four clusters, which do not correspond to the four groups that are clearly
present: Cluster 3 seems to be mixed with sequences belonging to Cluster 1 and

38

Without normalization

1 2 3 4 5 6

W
it
h
n
o
rm

a
li
za
ti
o
n

1 5533 0 0 0 0 0

2 0 1476 1 0 0 0

3 0 0 804 0 1 0

4 27 0 0 683 18 0

5 5 0 0 0 1095 0

6 20 0 0 0 1 371

Table 6.2: Confusion matrix of Ward’s criterion; with and without distance
normalization.

Cluster 4. However, since MDS can not preserve all distances we can only
conclude that clusters exist in the higher dimensional space if they are present
in the lower dimensional space, not the other way around: Based on Figure 6.6a,
where there are two groups consisting out of points assigned to different clusters,
we can not conclude that sequences were clustered poorly. However, it could be
interesting to, for example, compare the two groups of points labelled as Cluster
2 and examine the differences.

(a) Six clusters. (b) Four clusters.

Figure 6.6: Clusters after projecting on a plane using MDS.

39

Chapter 7

Discussion and Conclusions

We made two contributions. We created a generalized distance metric for se-
quences based on a string metric. The proposed metric is suitable for datasets
that contain simultaneous events and supports event groups to improve usabil-
ity. We also proposed a novel method for sequence visualization based on a
Sankey diagram and suggested three methods to reduce the data before visu-
alization. We demonstrated our methods on a leading example by using data
from the health care industry.

Our new metric allows incorporation of domain knowledge, which can help dis-
covering interesting patterns in sequential data. Domain knowledge can be in-
tegrated by specifying costs to quantify event similarity. Using groups reduces
the number of costs that have to be defined by a domain expert, which simplifies
the task since it can be hard to determine proper costs. We took into account
the occurrence of simultaneous events to better serve situations where the ex-
act order of events is unknown due to too imprecise timestamps. By clustering
sequences based on our distance measure, groups of similar sequences can be
obtained.

The new sequence visualization method allows for fast insight in what events
occurred before and after a user-defined critical moment in a set of sequences.
This is achieved by aligning a Sankey diagram on user specified events. We
created a visual interface where users can interact with the Sankey diagram.
Interacting with the visualization can further help domain experts to reach new
insights.

We proposed three methods to reduce the data before visualization, which can be
used in conjunction with each other: Sequences can be clustered into groups of
similar sequences, visualizing each group individually. Frequent sequence mining
can be applied to remove uncommon sequences. Edges with low frequency can
be removed to delete rare transitions which clutter the diagram. Of course,
it is up to the user to decide what input is given to the Sankey diagram. We
decided to only visualize contiguous sequences, but it is also possible to mine for
frequent sequences under different constraints to, for example, remove infrequent
intermediate transactions and display the remainder of the sequence that is
frequent.

40

A condition that should be satisfied in order to determine sequence similarity is
that it is possible to quantify event similarity, since costs have to be supplied to
our metric. This could be hard to achieve and trial-and-error-based. Although
event groups makes this task easier, it can still be a challenge to convert the
knowledge of a domain expert to good costs.

The visual interface we created has a couple of interactive capabilities. More
options could be added to better serve as a data exploration tool. Currently,
there is a preprocessing phase and a visualization phase. During preprocessing
users can define an alignment point and thresholds for path and edge frequency.
The visualization takes place after this data reduction. A single interface to
interact with the data would be more user-friendly. It could also be extended
to supply some information about the sequences (e.g., sex ratios, distribution of
hospitals). It is also possible to add more capabilities for interacting with the
diagram, such as removing certain events and setting certain constraints.

Although we can specify insertions, deletions and (intragroup and intergroup)
substitution costs to our metric, they only take events into account, not the
whole sequence. An example where the sequence is taken into account to deter-
mine the cost is to link the cost of an edit operation to the presence or absence
of the event (or event group) in the sequence. In case an event or event group
is already present in a sequence, inserting more of these events might have a
low impact on the similarity with other sequences. This could be reflected by,
for example, assigning a lower insertion cost in case an event is already present.
This would give more weight to the occurrence of events and less weight to the
length of a sequence.

We demonstrated our methods on real life datasets. However, it is hard to de-
termine in an objective way how well our similarity measure performed. We
performed unsupervised clustering together with feedback from a domain ex-
pert, but the interpretation of results is subjective. Results based on a labelled
sequential dataset could be a valuable addition, but it is hard to obtain such
data.

We developed a powerful tool for analyzing and visualizing sequential data and
evaluated it on healthcare related data. We hope that in the future this tool
will be successfully applied to more interesting data and will help to discover
new insights in data.

41

Bibliography

[1] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. “Mining association
rules between sets of items in large databases”. In: ACM SIGMOD Record.
Vol. 22. 2. ACM. 1993, pp. 207–216.

[2] Rakesh Agrawal and Ramakrishnan Srikant. “Mining sequential patterns”.
In: Data Engineering, 1995. Proceedings of the Eleventh International
Conference on. IEEE. 1995, pp. 3–14.

[3] Rakesh Agrawal, Ramakrishnan Srikant, et al. “Fast algorithms for mining
association rules”. In: Proc. 20th int. conf. very large data bases, VLDB.
Vol. 1215. 1994, pp. 487–499.

[4] Elena Baralis et al. “Analysis of medical pathways by means of frequent
closed sequences”. In: Knowledge-Based and Intelligent Information and
Engineering Systems. Springer, 2010, pp. 418–425.

[5] Margaret O Dayhoff and Robert M Schwartz. “A model of evolutionary
change in proteins”. In: In Atlas of protein sequence and structure. Cite-
seer. 1978.

[6] Lee R Dice. “Measures of the amount of ecologic association between
species”. In: Ecology 26.3 (1945), pp. 297–302.

[7] Maged El-Sayed, Carolina Ruiz, and Elke A Rundensteiner. “FS-Miner: ef-
ficient and incremental mining of frequent sequence patterns in web logs”.
In: Proceedings of the 6th annual ACM international workshop on Web
information and data management. ACM. 2004, pp. 128–135.

[8] Brian Everitt. Cambridge dictionary of statistics. 4th ed. Cambridge Uni-
versity Press, 2010.

[9] Andrew Foss, Weinan Wang, and Osmar R Zäıane. “A non-parametric
approach to web log analysis”. In: Proc. of Workshop on Web Mining
in First International SIAM Conference on Data Mining. Citeseer. 2001,
pp. 41–50.

[10] Minos N Garofalakis, Rajeev Rastogi, and Kyuseok Shim. “SPIRIT: Se-
quential pattern mining with regular expression constraints”. In: VLDB.
Vol. 99. 1999, pp. 7–10.

[11] John C Gower. “Some distance properties of latent root and vector meth-
ods used in multivariate analysis”. In: Biometrika 53.3-4 (1966), pp. 325–
338.

[12] Saikat Guha, Rajeev Rastogi, and Kyuseok Shim. “ROCK: A robust clus-
tering algorithm for categorical attributes”. In: Data Engineering, 1999.
Proceedings., 15th International Conference on. IEEE. 1999, pp. 512–521.

42

[13] Jiawei Han, Jian Pei, and Yiwen Yin. “Mining frequent patterns without
candidate generation”. In: ACM SIGMOD Record. Vol. 29. 2. ACM. 2000,
pp. 1–12.

[14] Jiawei Han et al. “FreeSpan: frequent pattern-projected sequential pattern
mining”. In: Proceedings of the sixth ACM SIGKDD international confer-
ence on Knowledge discovery and data mining. ACM. 2000, pp. 355–359.

[15] Steven Henikoff and Jorja G Henikoff. “Amino acid substitution matrices
from protein blocks”. In: Proceedings of the National Academy of Sciences
89.22 (1992), pp. 10915–10919.

[16] Daniel S. Hirschberg. “A linear space algorithm for computing maximal
common subsequences”. In: Communications of the ACM 18.6 (1975),
pp. 341–343.

[17] Zhengxing Huang, Xudong Lu, and Huilong Duan. “On mining clinical
pathway patterns from medical behaviors”. In: Artificial intelligence in
medicine 56.1 (2012), pp. 35–50.

[18] Paul Jaccard. Distribution de la Flore Alpine: dans le Bassin des dranses
et dans quelques régions voisines. Rouge, 1901.

[19] George Karypis, Eui-Hong Han, and Vipin Kumar. “Chameleon: Hier-
archical clustering using dynamic modeling”. In: Computer 32.8 (1999),
pp. 68–75.

[20] Leonard Kaufman and Peter Rousseeuw. Clustering by means of medoids.
North-Holland, 1987.

[21] Denis Klimov, Yuval Shahar, and Meirav Taieb-Maimon. “Intelligent vi-
sualization and exploration of time-oriented data of multiple patients”. In:
Artificial intelligence in medicine 49.1 (2010), pp. 11–31.

[22] Hye-Chung Kum et al. “ApproxMAP: Approximate Mining of Consensus
Sequential Patterns.” In: SDM. SIAM. 2003, pp. 311–315.

[23] Geetika T Lakshmanan, Szabolcs Rozsnyai, and Fei Wang. “Investigating
clinical care pathways correlated with outcomes”. In: Business process
management. Springer, 2013, pp. 323–338.

[24] Godfrey N Lance and William Thomas Williams. “A general theory of
classificatory sorting strategies II. Clustering systems”. In: The computer
journal 10.3 (1967), pp. 271–277.

[25] Vladimir I Levenshtein. “Binary codes capable of correcting deletions,
insertions and reversals”. In: Soviet physics doklady. Vol. 10. 1966, pp. 707–
710.

[26] Nizar R Mabroukeh and Christie I Ezeife. “A taxonomy of sequential
pattern mining algorithms”. In: ACM Computing Surveys (CSUR) 43.1
(2010), p. 3.

[27] James MacQueen et al. “Some methods for classification and analysis of
multivariate observations”. In: Proceedings of the fifth Berkeley symposium
on mathematical statistics and probability. Vol. 1. 14. Oakland, CA, USA.
1967, pp. 281–297.

[28] Heikki Mannila and Pirjo Ronkainen. “Similarity of event sequences”. In:
time. IEEE. 1997, p. 136.

[29] RS Mans et al. “Application of process mining in healthcare–a case study
in a dutch hospital”. In: Biomedical Engineering Systems and Technolo-
gies. Springer, 2008, pp. 425–438.

43

[30] James H Martin and Daniel Jurafsky. Speech and language processing :
an introduction to natural language processing, computational linguistics,
and speech recognition. Pearson, 2000, pp. 107–111.

[31] Megan Monroe et al. “Exploring point and interval event patterns: Display
methods and interactive visual query”. In: Human Computer Interaction
Lab, University of Maryland (2012).

[32] Megan Monroe et al. “Temporal event sequence simplification”. In: Vi-
sualization and Computer Graphics, IEEE Transactions on 19.12 (2013),
pp. 2227–2236.

[33] G Niklas Norén et al. “Temporal pattern discovery in longitudinal elec-
tronic patient records”. In: Data Mining and Knowledge Discovery 20.3
(2010), pp. 361–387.

[34] Miho Ohsaki et al. “A rule discovery support system for sequential medical
data, in the case study of a chronic hepatitis dataset”. In: Workshop Notes
of the International Workshop on Active Mining, at IEEE International
Conference on Data Mining. 2002.

[35] Teruo Okuda, Eiichi Tanaka, and Tamotsu Kasai. “A Method for the
Correction of Garbled Words Based on the Levenshtein Metric”. In: IEEE
Transactions on Computers 25.2 (1976), pp. 172–178.

[36] Srinivasan Parthasarathy et al. “Incremental and interactive sequence
mining”. In: Proceedings of the eighth international conference on Infor-
mation and knowledge management. ACM. 1999, pp. 251–258.

[37] Jian Pei, Jiawei Han, and Wei Wang. “Constraint-based sequential pattern
mining: the pattern-growth methods”. In: Journal of Intelligent Informa-
tion Systems 28.2 (2007), pp. 133–160.

[38] Jian Pei et al. “Prefixspan: Mining sequential patterns efficiently by prefix-
projected pattern growth”. In: icccn. IEEE. 2001, p. 0215.

[39] Adam Perer and Fei Wang. “Frequence: Interactive mining and visualiza-
tion of temporal frequent event sequences”. In: Proceedings of the 19th in-
ternational conference on Intelligent User Interfaces. ACM. 2014, pp. 153–
162.

[40] Adam Perer, Fei Wang, and Jianying Hu. “Mining and exploring care
pathways from electronic medical records with visual analytics”. In: Jour-
nal of biomedical informatics 56 (2015), pp. 369–378.

[41] Catherine Plaisant et al. “LifeLines: visualizing personal histories”. In:
Proceedings of the SIGCHI conference on Human factors in computing
systems. ACM. 1996, pp. 221–227.

[42] Jorge CG Ramirez et al. “An event set approach to sequence discovery in
medical data.” In: Intell. Data Anal. 4.6 (2000), pp. 513–530.

[43] Patrick Riehmann, Manfred Hanfler, and Bernd Froehlich. “Interactive
sankey diagrams”. In: Information Visualization, 2005. INFOVIS 2005.
IEEE Symposium on. IEEE. 2005, pp. 233–240.

[44] Rijksoverheid. Zorginstituut Nederland. url: www . rijksoverheid .
nl/contact/contactgids/zorginstituut-nederland (visited
on 06/02/2016).

[45] Peter J Rousseeuw. “Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis”. In: Journal of computational and applied
mathematics 20 (1987), pp. 53–65.

44

www.rijksoverheid.nl/contact/contactgids/zorginstituut-nederland
www.rijksoverheid.nl/contact/contactgids/zorginstituut-nederland

[46] Yuval Shahar et al. “Distributed, intelligent, interactive visualization and
exploration of time-oriented clinical data and their abstractions”. In: Ar-
tificial intelligence in medicine 38.2 (2006), pp. 115–135.

[47] Shijie Song, Huaping Hu, and Shiyao Jin. “HVSM: a new sequential pat-
tern mining algorithm using bitmap representation”. In: Advanced data
mining and applications. Springer, 2005, pp. 455–463.

[48] Thorvald Sørensen. “{A method of establishing groups of equal amplitude
in plant sociology based on similarity of species and its application to
analyses of the vegetation on Danish commons}”. In: Biol. Skr. 5 (1948),
pp. 1–34.

[49] Ramakrishnan Srikant and Rakesh Agrawal. Mining sequential patterns:
Generalizations and performance improvements. Springer, 1996.

[50] Warren S Torgerson. “Multidimensional scaling: I. Theory and method”.
In: Psychometrika 17.4 (1952), pp. 401–419.

[51] Robert A Wagner and Michael J Fischer. “The string-to-string correction
problem”. In: Journal of the ACM (JACM) 21.1 (1974), pp. 168–173.

[52] Jianyong Wang and Jiawei Han. “BIDE: Efficient mining of frequent closed
sequences”. In: Data Engineering, 2004. Proceedings. 20th International
Conference on. IEEE, pp. 79–90.

[53] Taowei David Wang et al. “Aligning temporal data by sentinel events:
discovering patterns in electronic health records”. In: Proceedings of the
SIGCHI conference on Human factors in computing systems. ACM. 2008,
pp. 457–466.

[54] Weinan Wang and Osmar R Zäıane. “Clustering web sessions by sequence
alignment”. In: Database and Expert Systems Applications, 2002. Proceed-
ings. 13th International Workshop on. IEEE. 2002, pp. 394–398.

[55] Joe H Ward Jr. “Hierarchical grouping to optimize an objective function”.
In: Journal of the American statistical association 58.301 (1963), pp. 236–
244.

[56] David Wishart. “An algorithm for hierarchical classifications”. In: Bio-
metrics (1969), pp. 165–170.

[57] Krist Wongsuphasawat and David Gotz. “Exploring flow, factors, and
outcomes of temporal event sequences with the outflow visualization”.
In: Visualization and Computer Graphics, IEEE Transactions on 18.12
(2012), pp. 2659–2668.

[58] Krist Wongsuphasawat et al. “LifeFlow: visualizing an overview of event
sequences”. In: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. ACM. 2011, pp. 1747–1756.

[59] Zhenglu Yang, Yitong Wang, and Masaru Kitsuregawa. “LAPIN: effective
sequential pattern mining algorithms by last position induction for dense
databases”. In: Advances in Databases: Concepts, Systems and Applica-
tions. Springer, 2007, pp. 1020–1023.

[60] Mohammed J Zaki. “SPADE: An efficient algorithm for mining frequent
sequences”. In: Machine learning 42.1-2 (2001), pp. 31–60.

[61] Nederlandse Zorgautoriteit. Dbc-systematiek. 2016. url: https://www.
nza.nl/zorgonderwerpen/zorgonderwerpen/ziekenhuiszorg/
veelgesteldevragen/dbc-systematiek/ (visited on 04/14/2016).

45

https://www.nza.nl/zorgonderwerpen/zorgonderwerpen/ziekenhuiszorg/veelgesteldevragen/dbc-systematiek/
https://www.nza.nl/zorgonderwerpen/zorgonderwerpen/ziekenhuiszorg/veelgesteldevragen/dbc-systematiek/
https://www.nza.nl/zorgonderwerpen/zorgonderwerpen/ziekenhuiszorg/veelgesteldevragen/dbc-systematiek/

Appendix A

Sankey diagrams

(angio;ct;ct calcium)
284
0103

(angio;ct)
113
039

(angio;echo)
279
0147

(angio;cycle test)
81
077

(angio)

8319

01590

(cycle test)

22911723

(pci)
863

0366

(ct)
36089

(ct)
3217 (echo)

1582805

(ct calcium)
8513

(echo;cycle test)

17461701

(cycle test;spect stress)
11626 (spect)

271

(ct;ct calcium;spect stress)
61

(ct;ct calcium)
17429

(ct;ct calcium)
2510

(echo)
543462

(cycle test)
893753

(spect stress)
49788

(mri)
26

(spect)
22642

(cycle test;spect stress)
22448

(echo;cycle test)
304301

(cycle test)
228202

(spect stress)
325102

(mri stress)
35

(echo)
163147

(echo;cycle test)
131129

Figure A.1: The entire dataset of Experiment 1.

46

(angio;echo)
258
0147

(angio;cycle test)
80
077

(angio)

6223

01590

(cycle test)

20381612

(pci)
640

0366

(echo;cycle test)

17001665

(echo)

1269789

(echo;cycle test)
5252

(cycle test)
530496

(echo)
312301

Figure A.2: Cluster 1 of Experiment 1.

(angio)

1312

0

(echo)

174

(cycle test;spect stress)
11526

(spect)

269

(spect)

22442

(spect stress)

49688

(pci)
114

0

(cycle test;spect stress)

22048

(echo)
11486

(cycle test)
133113

(spect stress)

31296

(cycle test)

174114

(cycle test)
82

(echo)
124109

(mri stress)
31

(echo;cycle test)
6564

(echo;cycle test)
129127

Figure A.3: Cluster 2 of Experiment 1.

47

(angio)

784

0

(ct)

35489

(ct)
2615

(echo)
82

(pci)

109

0

(ct calcium)
8113

(cycle test)
25

(ct;ct calcium;spect stress)
61

(ct;ct calcium)

17429

(echo)

9660

(echo;cycle test)

186184

(cycle test)

149122

(cycle test)
3029

Figure A.4: Cluster 3 of Experiment 1.

(angio;ct;ct calcium)

284

0103

(angio;ct)

111

039

(cycle test)

132111

(echo;cycle test)
3736

(echo)
3616

Figure A.5: Cluster 4 of Experiment 1.

48

(angio;ct;ct calcium)
190

94103

(echo)

445

313

(pci)
105

22

(angio;ct)
85

2839

(angio;echo)
144

135147

(cabg)
569

77

(echo)
26

(cycle test)
96

35

(pci)

840

273

(angio;cycle test)
57

2477

(angio)

5362

29571590

(angio)
68

54

(ct)
39

30

(cabg)
183

22

(cycle test;spect stress)
33

(cycle test)
168

69

(mri)
32

18

(angio)
32

(spect stress)
33

36

(spect)
49

(spect stress)
27

(cycle test)

22911723

(pci)

678

185366

(ct)
36089

(ct)
3217

(echo)

1582805

(ct calcium)
8513

(echo;cycle test)

17461701

(cycle test;spect stress)
11626 (spect)

271

(ct;ct calcium;spect stress)
61

(ct;ct calcium)
17429(ct;ct calcium)

2510

(echo)
543462

(cycle test)

893753

(spect stress)
49788

(mri)
26(spect)

22642
(cycle test;spect stress)

22448

(echo;cycle test)
304301

(cycle test)
228202

(spect stress)
325102

(mri stress)
35

(echo)
163147

(echo;cycle test)
131129

Figure A.6: The entire dataset of Experiment 2.

49

(angio;echo)
135
34113

(angio;cycle test)
56
2174

(angio)

3951

7361269
(ct)

33

(echo)
330
57

(cycle test;spect stress)
26

(cycle test)
131
32

(mri)
32

(spect stress)
29
22

(spect)
34

(cycle test)

15301216
(pci)

488

51299

(echo;cycle test)

12161192

(echo)

959606

(echo;cycle test)
3838

(cycle test)
370350

(echo)
234229

Figure A.7: Cluster 1 of Experiment 2.

(angio;ct;ct calcium)

190

93103

(echo)
31

15

(angio;ct)

84

1336

(cycle test)

10488

(echo;cycle test)
3736

(echo)
3616

Figure A.8: Cluster 2 of Experiment 2.

50

(angio;echo)3718

(pci)

840

273

(pci)
97

21

(angio)

1307194

(angio)

68

54

(echo)65

(angio)32

(cabg)
46

(cycle test)
72

28

(echo)

241114

(echo;cycle test)

276266

(spect)45

(pci)10762

(ct;ct calcium)31

(echo)4136
(cycle test)

300222

(cycle test)10187

(ct)4911

(cycle test;spect stress)34

(spect stress)82

(spect stress)28

Figure A.9: Cluster 3 of Experiment 2.

(angio)

537

84

(ct)

27672

(echo)
60

(pci)

92

(ct calcium)
66

(echo)
32

(ct;ct calcium;spect stress)
48

(ct;ct calcium)

14326

(echo)
7344

(echo;cycle test)

132130

(cycle test)

121102

(cycle test)
2524

Figure A.10: Cluster 4 of Experiment 2.

(angio;echo)
6316

(cabg)

533

61

(cycle test)
29

(angio)

723127
(echo)

149
(cabg)

130

12

(echo)
12863

(echo;cycle test)

198194

(cycle test)

207152

(spect stress)
36

(echo)
3735

(cycle test)
4440

Figure A.11: Cluster 5 of Experiment 2.

51

(angio)

874

106

(pci)
98

(echo)
39

(cycle test;spect stress)
9122

(spect)

220

(spect)

18136

(spect stress)

36375

(cycle test;spect stress)

17440

(echo)
5034

(cycle test)
9883

(spect stress)

24380

(cycle test)
25

(cycle test)
61

(echo)
10086

(cycle test)
10364

(echo;cycle test)
5151

(echo;cycle test)
10199

(echo)
128

Figure A.12: Cluster 6 of Experiment 2.

52

	Introduction
	Preliminaries
	Notations and Definitions
	Constraints

	Related work
	Frequent sequence mining
	Frequent sequence mining applied to healthcare

	Sequence similarity
	Clustering sequences
	Visualization

	Methods
	Measuring sequence similarity
	Costs of operations
	Event groups
	Simultaneous events
	Distance calculation

	Clustering
	Frequent Sequences
	Visualization of Sequences
	Aligned Sankey diagrams
	Edge filtering
	Implementation

	Experiments
	Data origin and selection
	Data description
	Evaluation

	Results
	Experiment 1
	Experiment 2

	Discussion and Conclusions
	Sankey diagrams

