
Real time force field simulation for stm controlled
molecular electronics experiments using Cuda gpu

programming

Thesis

submitted in partial fulfillment of the
requirements for the degree of

bachelor of science
in

physics and computer science

Author : Dyon van Vreumingen
Student id : s1348434
Supervisors : Prof. dr. J.M. van Ruitenbeek

Dr. ir. F.J. Verbeek
Msc. S. Tewari

Leiden, The Netherlands, August 28, 2016

Real time force field simulation for stm controlled
molecular electronics experiments using Cuda gpu

programming

Dyon van Vreumingen

Huygens-Kamerlingh Onnes laboratory, Leiden university
P.O. Box 9500, 2300 RA Leiden, The Netherlands

August 28, 2016

abstract

Since the introduction of the scanning tunnelling microscope (stm)
as a tool for experiments in nanotechnology, much research has been
done on topics such as molecular electronics and atomic surfaces.
Recently, a program was developed that simulates the motion of a
system consisting of a gold substrate and gold adatoms, under influ-
ence of an stm tip, through Newtonian molecular dynamics. Since
the program was aimed at assisting stm experiments, it needed the
ability to simulate a sample with a tip in real-time, thus demanding
high performance. In this project, we work on the extension of
the simulation to a new type of stm experiment, which involves
an organic molecule in addition to the gold elements. The more
complex nature of such systems, however, makes these simulation
severely more computation heavy; this is a serious problem that
has to be addressed. In our quest of speeding up the program, we
reimplement certain algorithms on a graphics processing unit (gpu),
with the Cuda gpu programming framework.

Keywords: scanning tunnelling microscope, molecular dynam-
ics simulation, general purpose gpu

Contents

1 Introduction 7

2 Theoretical background 9
2.1 Principles of molecular dynamics 9
2.2 Interactions between gold atoms 11
2.3 Gold-molecule interactions 11
2.4 Intramolecular interactions 12

3 Project goal 15
3.1 Simulation of stm manipulation 15
3.2 Extension to molecular electronics 16
3.3 Increasing the substrate size 17
3.4 The timescale problem 17

4 Graphics card programming with Cuda 21
4.1 Motivation 21
4.2 Cuda vs. Opencl 21
4.3 Programming in Cuda 22

4.3.1 Programming model 22
4.3.2 Memory model 24

4.4 Plan of action 25
4.4.1 Tackling the timescale problem 26
4.4.2 Key assumptions 27
4.4.3 Technical specifications 27

4.5 Gold-gold forces 27
4.6 Gold-molecule forces 30
4.7 Intramolecular interactions 32

4.7.1 Bond and angular forces 33

5

6 CONTENTS

4.7.2 Torsional forces 34

5 Results and discussion 37

6 Conclusion 43

7 Outlook 45

References 47

Acknowledgments 51

6

Chapter 1
Introduction

Over the past years, much progress has been made in the field of atomic
and molecular electronics. Since its first proposal in 1974[1], many articles
have been published, describing research exploring its nature and applica-
bility. However, there is a clear discrepancy in the suggested models and
reported experiments. Jan van Ruitenbeek’s research group, where I have
been working on my bachelor research project, seeks to bring these closer
together by developing tools for conducting these types of experiments in a
more standardised fashion.

During the spring of 2014, bachelor student Jacob Bakermans, in collab-
oration with S. Tewari and C. Wagner, aided this research by developing
a computer program that provides a real-time simulation of scanning tun-
nelling microscopy (stm) experiments, taking the movement of the actual stm
tip as input[2]. His program is based on the molecular dynamics paradigm of
atomic and molecular simulation[3], and mimics the behaviour of gold atoms
by modelling their interactions with Newtonian mechanics.

The task we face now is to extend this simulation program to other types
of stm experiments; the original program, after all, was written for experi-
ments featuring gold adatoms placed on gold substrates. The experiments
that are currently either being carried out or planned for a future stadium
of the research require the simulation program to support certain molecules
(bipyridyl benzene, in this case) on a gold substrate, in addition to gold
adatoms.

This, however, drastically complicates matters. For one, many new inter-
actions—that is, interactions between gold and molecule atoms, as well as
interactions between molecule atoms themselves—are introduced, and these
all have to be modelled properly. Secondly, atomic vibrations in the molecule
and the gold atoms need to be reconsidered. It is mainly the molecule atoms

7

8 Introduction

that tend to vibrate at a higher frequency than the gold atoms which pose
certain problems, slowing down the simulation, to the point that it can no
more run in real-time.

In this bachelor research project, we seek to complete this extension of
the program to a gold-molecule system, which has partially been developed
already, primarily by looking for ways to make the program faster. This
acceleration is done with the aid of graphics card programming, using the
Nvidia Cuda platform. All aspects of the design and implementation of
the gpu algorithms, along with a theoretical reference framework, and an
elaboration of the issues we seek to address are discussed in this thesis.

8

Chapter 2
Theoretical background

2.1 Principles of molecular dynamics
Molecular dynamics is a well-known and widely employed method for simulat-
ing ensembles at microscopic level in a Newtonian fashion[3]. During the pro-
cess of simulation, the atoms in the ensemble are constantly driven to move
by interaction forces, as dictated by classical equations of motion. These
interaction forces have been derived beforehand from continuous potentials,
which were obtained through empirical and quantum mechanics studies of
these systems. This structure makes the simulation entirely dependent on the
choice of correct potentials for modelling the atoms, as these contain the only
input for behavioural information. As such, they form the entry point for
any quantum mechanical modelling in an otherwise classical representation.
This is different from density functional theory (dft), where the quantum
mechanical nature of the atomic arrangement is directly taken into account-
the by using the electron density, which serves as a basis for describing the
ground state of a many-body system[4, 5]. However, we are only interested
in recording atomic motion (charge transport plays merely an implicit role
here), and since the simulation was developed to run in real-time together
with stm experiments, we cannot use dft calculations that tend to take hours
or even days to complete.

Once the forces exerted on each atom are known, the velocities and the
displacements of these atoms are determined through numerical integration.
For this purpose, the velocity-Verlet integration algorithm[6] is used. This
algorithm is based on the second-order series expansion of the position ri of
particle i about time t, with a deviation ∆t:

ri(t+ ∆t) = ri(t) + ṙi(t)∆t+ 1
2
r̈i(t)∆t

2; (2.1)

9

10 Theoretical background

the corresponding velocity ṙi(t+ ∆t) may then be expressed as

ṙi(t+ ∆t) = ṙi(t) + 1
2
(r̈i(t) + r̈i(t+ ∆t))∆t. (2.2)

It is immediately clear that the acceleration r̈i(t) can be derived from the
force Fi(t) via Newton’s second law. Coming back to the principle of iter-
atively moving the atoms, we can regard the deviation ∆t as the time that
passes between two iterations—the so-called timestep. Choosing the right
timestep is critical for producing a stable system that shows correct atomic
behaviour. In theory, we would like our timestep to be infinitesimal, thus
reducing the error to naught; however, the smaller the timestep, the less
simulation time elapses per second. Since we wish to see the evolution of the
system in real-time, and the calculation speed is limited by the hardware, we
must accept a tiny error caused by a finite timestep. The matter of timesteps
is further discussed in chapter 3.

The last step of a each iteration is the application of a thermostat. The
task of this thermostat is to artificially dissipate excess energy that is brought
externally into the system. In our case, this energy comes from the tip, which
is given an additional velocity—and thus an additional kinetic energy, which
it can pass over to the other atoms—with the input device. The reason for
the necessity of a thermostat is twofold:

1 if there is no way for the energy to leave the system, atomic vibrations
will never be damped, which will eventually destabilise the substrate and
the tip;

2 in the stm experiments that are conducted in reality, the temperature
is kept constant, and we want to ensure this is also the case in the
simulation[2].

For keeping the virtual temperature at a constant value, we cannot choose
any arbitrary thermostat. Several algorithms have been proposed for this
purpose[7, 8], which usually revolve around the description of temperature
in statistical physics, taking into account kinetic energy of the atoms, and the
equipartition theorem. The mechanism for drawing away energy is a friction
factor which rescales all velocities in each step, thus reducing the total kinetic
energy. Regrettably, we did not have enough time to reimplement one of these
thermostats on the gpu, and for this reason, we decided to use a constant
friction factor.

10

2.2 Interactions between gold atoms 11

2.2 Interactions between gold atoms
With respect to the old simulation, the potential of gold-gold interaction and
the derived force remain unchanged. We use the following potential[9, 10]:

V = −ζ
N∑
i

√√√√ N∑
j 6=i

e−2q(rij/r0−1) + A

N∑
i

N∑
j 6=i

e−p(rij/r0−1), (2.3)

where ζ, A, p, q and r0 are empirically determined constants, and rij is
the scalar distance between atom i and j. This potential consists of an
attractive part (the first term), and a repulsive part (the second term). While
the combination of these two terms produces a curve similar in shape to
that of a generic Lennard-Jones potential, it originates from dynamics of the
conduction electrons and the band structure of the lattice[10, 11].

The force that results from this takes the following form[2]:

Fi = − qζ

r0

1

si

N∑
j 6=i

(ri − rj)

rij
e−2q(rij/r0−1)

− qζ

r0

N∑
j 6=i

1

sj

(ri − rj)

rij
e−2q(rij/r0−1)

+
2Ap

r0

N∑
j 6=i

(ri − rj)

rij
e−p(rij/r0−1), (2.4)

where

si =

√√√√ N∑
j 6=i

e−2q(rij/r0−1). (2.5)

2.3 Gold-molecule interactions
At the current moment, we use generic Van der Waals forces to model the
interplay between gold atoms and most of the molecule atoms. We chose to
implement the following Lennard-Jones potential for this purpose:

V LJ
ij = ε

[(
σ

rij

)12
−
(
σ

rij

)6]
. (2.6)

This is a straightforward and widely used method to obtain reasonably accu-
rate Van der Waals forces, and is also relatively fast to calculate. After all,

11

12 Theoretical background

only one division and three multiplications need to be carried out in order
to compute the attractive part (which is the fraction raised to the power 6)
and one more multiplication to find the repulsive part.

It appears that the lowermost atom of the stm tip, also dubbed the apex
atom, is much more reactive in the vicinity of nitrogen atoms. Therefore,
we felt it was necessary to add another potential in order to take this into
account. We decided to let this potential be a stronger Morse function:

V Morse
ij = D(1 − e−α(rij−r0))2. (2.7)

2.4 Intramolecular interactions
For the last part of the interactions, the forces between atoms in the molecule,
we adopt the model used by Cornell et al[12]. This model consists of a number
of harmonic oscillator potentials that keep the molecule together as a whole.
Since the atoms are not charged and no electric field is present, we omitted
the Coulumb potential that was employed in their research.

The first and simplest of the three is the bond potential, which describes
the spring-mass system like behaviour of two bonded atoms. This function
is defined as follows:

V bond
ij = 1

2
kbondij (rij − r0)

2. (2.8)

Here, rij is the distance between two atoms i and j, as shown in figure
2.1[13], and kbondij is a bond constant that depends on the types of the atoms
that are involved in the covalent bond. The corresponding force on atom i
is equal in value to the force on atom j—albeit in the other direction—and
is easily derived:

Fbond
i = − ∂

∂ri
V bond
ij = −kbondij (rij − r0)

rij
rij
. (2.9)

i j

rij
Figure 2.1. Two bonded atoms i and j, with interatomic distance rij .

12

2.4 Intramolecular interactions 13

i

j

θijk

k

Figure 2.2. An angle group with atoms i, j, k and the angle θijk between these
three atoms. From the definition of the angle in equation 2.11, it must be that
0 ≤ θijk ≤ π.

Secondly, we have the angle potential. When three bonded atoms form an
angular group, as shown in figure 2.2[13], the lowest energy configuration
appears to occur when the angle between the three atoms, where the middle
atom acts as a pivot, is equal to some equilibrium angle θ0. This is expressed
in the following equation:

V angle
ijk = kangleijk (cos θijk − cos θ0)

2, (2.10)

where

cos θijk =
rij·rik
rijrik

. (2.11)

Please note that rab denotes the vector from a to b, and is thus equal to
rb − ra. The force on the middle atom i, then, is different from that exerted
on the outer atoms j and k; this is further discussed in section 4.7.1.

Lastly, we need to consider the dihedral potential, which emerges from
the strain put on a molecule when a group of atoms which would lie in one
plane in the ground state, are bent out of this plane. Such groups are named
dihedral groups, and consist of four atoms. This is illustrated in figure 2.3[13].
The planes that the four atoms lie in, can be described by their respective
normal vectors:

u = rij ×× rik, v = rkl ×× rik, (2.12)

and the angle φijkl between these two planes is then defined by

cosφijkl =
u·v
uv

. (2.13)

13

14 Theoretical background

ki
j

l

φijkl

Figure 2.3. A dihedral group whose atoms i, j and k lie in the blue plane, while
atoms i, k and l lie in the orange plane. The force that results from the dihdral
potential tends to bring these two planes together to form one single plane.

The final potential depends on this angle in the following way:

V dihedral
ijkl = kdihedralijkl (1 + cos(2φijkl − φ0)). (2.14)

Similar to the case of the angular potential, the outermost atoms, which are
bonded to only one atom in the group, need other treatment in terms of
forces than those that are bonded to two atoms in the group. How we deal
with this discrepancy is set out in section 4.7.2.

14

Chapter 3
Project goal

3.1 Simulation of stm manipulation

Scanning tunnelling microscopy is a technique that was developed for imaging
structures at atomic scales[14]. Images are obtained by bringing an atomi-
cally sharp tip very close (of the order of nanometres or even Ångströms) to
a surface, and measuring the tunnelling current that starts flowing between
the sample and the tip. Later it was discovered that this device is also capa-
ble of moving adatoms, which are atoms lying on top of the sample surface,
either by pulling or pushing them around[15]. Doing so however requires an
atomic bond between such an adatom and the tip, thus cutting the tunnelling
current and essentially stopping all feedback. For this reason, a simulation
program was created, intended to run in parallel with the experiment: the
same input that is sent to the stm device is also received by the simulation,
which then provides visual feedback based on a prediction of reality.

In this simulation, the stm tip, which consists of thousands of atomic
layers, is represented by a skeleton and a number of flexible atoms attached
to it. The skeleton is directly controlled by the input device as if it were
a character in a computer game; the other atoms are then dragged along
according to the gold-gold interaction forces described in chapter 2. An
example of such a tip that is used for moving a gold adatom is shown in
figure 3.1. The skeleton can appear in many forms, such as a single layer, a
conic structure or even the entire shape of the tip. Which amount of skeleton
atoms is appropriate depends on the stiffness of the tip we want to simulate:
more skeleton atoms means a stiffer tip; more flexible atoms means a softer
one.

15

16 Project goal

Figure 3.1. A screenshot of the old simulation program in action. In this situation,
the stm tip is used to push around a gold adatom lying on the surface. The
bulk of the tip and the piezo elements used for controlling such a tip in reality
are abstracted away by the top layer or boundary layer, which is moved with an
external input device.

3.2 Extension to molecular electronics
In the new experiment, for which we are modifying the molecular dynamics
simulation, the starring role is played by an organic (either aliphatic or aro-
matic) molecule, which lies on the gold substrate. For the duration of the
project, this place was assumed by 1,4-bis(4-pyridyl)benzene, whose struc-
ture formula is shown in figure 3.2; this can however be easily changed based
on the end user’s needs. The idea is then to lift this molecule from the sur-
face by picking it up with the stm tip at one of the ends. As mentioned
in section 2.3, nitrogen tends to form a stronger bond with gold atoms—
especially the tip apex atom—than the other atoms in the molecule (carbon
and hydrogen), and this is exactly what enables us to do so. In this way, by
having the molecule stand vertically on the surface, we can effectively form
a molecular bridge between two gold electrodes. Such a bridge then makes
up for interesting study material in molecular electronics research.

NN

Figure 3.2. The structural formula of 1,4-bis(4-pyridyl)benzene.

16

3.3 Increasing the substrate size 17

3.3 Increasing the substrate size

One of the problems with this simulation is that its performance is very poor
when the substrate size is increased, allowing for only up to approximately
350 atoms. At a higher number, the program no longer runs smoothly or even
freezes for a couple of reasons while doing the necessary calculations. The
total time needed to execute 100 molecular dynamics iterations (calculate
forces, integrate equations of motion, apply thermostat), which we take as a
unit value from now on, is shown in figure 3.3 for different substrate sizes.

Of course, this is not a realistic situation, for the marcoscopic surfaces
that are usually studied in these types of experiment consist of uncountably
many atoms. These surfaces are usually of a very large area compared to
the molecule, and many bcc- or fcc-oriented layers deep. Out of a mere 350
atoms we can only build a substrate a handful of layers deep, with a small
area, spanning a few molecules in width and length. At this size, the molecule
is affected by deviating motion of the atoms at the boundary. Since these
atoms have neighbouring atoms on just one side, they feel less attraction
forces and are therefore likely to produce strange effects like moving off the
substrate or ‘curling up’. In order to increase our working space, we must
accelerate the program so that it can process a higher number of atoms in
the same amount of time. This, together with the problem described in the
next section, is what we hope to solve with general purpose gpu (gpgpu)
programming.

3.4 The timescale problem

As mentioned in chapter 2, choosing the right value for the timestep ∆t is
vital to obtaining proper particle motion. In this sense, it is mostly a matter
of striking the right balance between speed and accuracy. A higher timestep
results in a faster simulation since less calculations need to be done to reach
the same point in simulation time; however, such timesteps produce large
displacements and in this way increase the error introduced by discretisation
of time. A lower bound to the timestep, on the other hand, is enforced by
the requirement that changes should be visible in real-time.

For a system made up purely of gold, a timestep of the order of femtosec-
onds is sufficient[2, 16]; with the presence of a molecule, this is no longer
the case, for it causes instabilities in the molecule. After all, the mass of
molecule atoms is more than an order of magnitude smaller than that of gold
atoms, while the forces acting on these atoms are larger. When using the
same timestep, the calculated displacement will bring the atom to a position

17

18 Project goal

0 500 1000 1500 2000 2500 30000

1000

2000

3000

4000

5000

6000

E
xe

cu
ti

on
 t

im
e,

 1
00

 i
te

ra
ti

on
s

(m
s)

Number of atoms

measured
fit

Figure 3.3. The amount of time it takes the old simulation program, which was
fully implemented on the central processing unit (cpu), to finish 100 iterations
of gold atom relaxation. Quadratic dependence of this execution time tex on the
number of atoms N (which includes both tip and substrate atoms) is clearly visible.
The data points are fitted according to the quadratic function tex = 0.028N2.

r(t + ∆t) where its potential is higher than the potential at r(t); since it
is subject to a sum of several harmonic oscillators, this effect is amplified
every step, which causes the molecule to explode after a short time. This is
illustrated with a simple quadratic harmonic oscillator in figure 3.4.

As such, we see ourselves forced to use a timestep that is smaller by
more than a magnitude. Apart from slower gold motion in general, this has
a noticeable consequence, namely that the tip atoms bound to the skeleton
cannot keep up with its movement, which is controlled with the input device.
Although one could argue that moving the tip boundary at a lower speed
would circumvent this issue, the goal of the original project was to make
molecular dynamics simulation interactive and useful as an auxiliary tool for
conducting stm experiments. In short, simply scaling down the timestep is
not an acceptable way of dealing with the problem, and we must find another
solution.

18

3.4 The timescale problem 19

x

V(x)

x

V(x)

x

V(x)

A B

C

Figure 3.4. Approximate trajectory of a particle in a simple harmonic potential,
for three different values of ∆t. Displacements after each timestep are marked with
green arrows, while the forces at each position are shown with red arrows. The
initial force is equal for all three cases. (A) When ∆t is small, the atom descends the
potential well in many small steps, taking a long time to reach the minimal energy
position. (B) At a larger timestep, the particle experiences a damped oscillation,
arriving at the bottom more quickly. (C) For a too large timestep, the atom ends
up in a position with a higher potential energy, causing a snowball effect and
eventually launching it into oblivion.

19

Chapter 4
Graphics card programming with Cuda

4.1 Motivation

Originally, video cards were invented for the purpose of lifting some of the
heavy work that comes with graphics processing from the cpu. What makes
these gpus so much better suited for these jobs, then, is that they exploit their
parallellism, or better to say, ‘parallellisability’, by running relatively small
pieces of code on thousands of processing cores, as opposed to cpus which
currently only have 4 to 32. For example, most graphics processing activities
include algorithms for rendering, linear algebra calculus or raycasting, all of
which consist of a large number of mutually independent computations, that
may be executed simultaneously. It was this observation that led to the in-
troduction of general purpose gpu (gpgpu) programming, which generalised
this concept for other applications, such as neural networking[17, 18], scien-
tific data processing and atomic simulations.
The feasibility of this approach for implementing molecular dynamics simu-
lations has been shown in numerous projects and experiments[19, 20]. This
is not surprising, as the bulk of the execution time is consumed by routines
calculating the interatomic forces, which do not in any way depend on one
another. After all, these forces are derived from potentials that are functions
only of atom positions and time. With that in mind, we have chosen to use
this technique in order to accelerate our own molecular dynamics simulation.

4.2 Cuda vs. Opencl

One of the first decisions that one has to make before starting to build a
gpgpu implementation is which programming framework to choose. At the

21

22 Graphics card programming with Cuda

current moment, the two most widely deployed apis in this field are the Com-
pute unified device architecture (Cuda), which was developed by Nvidia, and
the Open compute language (Opencl) api, maintained by the Khronos group.
While Opencl has a number of advantages over Cuda—most notably the
fact that it is aimed at cross-platform development (extending to digital sig-
nal processors, field-programmable gate arrays (fpgas) and others), whereas
Cuda only runs on gpus manufactured by Nvidia—, recent studies[21] have
shown that Opencl is much more verbose, and has a steeper learning curve
than Cuda. For us, this is a significant drawback, seeing as the development
of this program is expected to be continued by others, who might not be
experienced in this field. The requirement for more easily readible and un-
derstandable code, therefore, has lead us to choose for the Cuda framework.

4.3 Programming in Cuda

The Cuda programming interface provides an abstraction to gpu program-
ming through the use of a number of models, most importantly the program-
ming model and the memory model [22]. The programming model drives
the programmer to follow a certain structure in writing his code, which is
then mapped to the gpu architecture. This allows for optimising code at a
low level, while retaining the functionality and high flexibility of the C++

language. The memory model obeys this same principle, requiring to some
extent manual memory management—that is, manual memory allocation
and deallocation on the gpu, and explicit data copying—without having to
interfere with the details of transfers at assembly level.

4.3.1 Programming model

The basic building block of any Cuda application is a kernel, which is basi-
cally a function running on the gpu that may be called either from the cpu
or the gpu. It differs from usual functions in that many instances of the
same instructions defined in kernels are executed by what are called threads.
Threads are chunks of sequential code that run on the gpu processing core
on the gpu that they were assigned to. A high level of parallellism, then,
comes from having many threads running on many cores at the same time.
These threads are grouped in thread blocks. For convenience, these blocks
can be defined in up to three block dimensions, thus giving each thread an
index vector [тx, тy, тz]. While the execution of these threads happens in
the same way irrespective of whether one uses multiple thread dimensions or
not, doing so can ease the design of algorithms that have to handle multi-

22

4.3 Programming in Cuda 23

))

 grid

 block (1 , 1)

 thre ad (0 , 0) thre ad (1 , 0) thre ad (2 , 0) thre ad (3 , 0)

 thre ad (0 , 1) thre ad (1 , 1) thre ad (2 , 1) thre ad (3 , 1)

 thre ad (0 , 2) thre ad (1 , 2) thre ad (2 , 2) thre ad (3 , 2)

 block (2 , 1) block (1 , 1) block (0 , 1)

 block (2 , 0) block (1 , 0 block (0 , 0

Figure 4.1. A twodimensional grid of blocks, where each thread block also has
two dimensions. Typical thread blocks will in reality contain more than twelve
threads, since threads are dispatched in groups of 32 on the gpu.

dimensional data, such as matrices. In the same fashion, groups of thread
blocks are packed together into a block grid, which may again have up to
three dimensions. An example is shown in figure 4.1[22]. The size of each
block grid is normally dictated by the size of the data set to be processed
by the kernel, while block size is often algorithm-specific. Depending on the
algorithm, it may occur that calling a kernel with a certain block size may
result in better performance than other sizes, and the optimal block size may
depend on many variables[23]; hence, this size is often chosen empirically.

23

24 Graphics card programming with Cuda

4.3.2 Memory model

Similar to a cpu having various types of memory—drive memory, random ac-
cess memory (ram), register memory and others, depending on the system—,
memory on the gpu is modelled into certain levels. Data is transferred be-
tween cpu and gpu via the pci-e bus, connecting the cpu ram with the global
gpu memory, also dubbed device memory. Global memory in turn can be
accessed by all threads, through an L2 cache. Within each thread block,
threads can write to a chunk of so-called shared block memory, which may
vary in size as defined by the user upon calling a kernel. This shared mem-
ory is an abstraction of L1 cache equipped memory within each streaming
multiprocessor (simply put, a group of processing cores put together with a
number of other functional units), which can be dynamically allocated. Since
this shared memory is located closer to the cores, and uses a smaller cache,
shared memory latency is a lot smaller than global memory latency; as such,
it is the fastest route for communication between threads. A lot of perfor-
mance optimisation involves maximising shared memory usage above global

cpu memory (ram)

global gpu memory

pci-e bus

grid of blocks

sh
ar

ed
m

em
or

y
sh

ar
ed

m
em

or
y shared

m
em

ory
shared

m
em

ory

thread
memory

Figure 4.2. The Cuda memory arrangement. Each grid of blocks (that is, all
threads within a grid of thread blocks) is connected to the global memory, which
is bridged to the cpu ram via a pci-e bus. Each thread block has a separate chunk
of block memory, and each thread can also use its own thread memory.

24

4.4 Plan of action 25

memory. One must keep in mind, though, that shared memory is limited,
and using too much of it per block will reduce the number of blocks that can
run in parallel.

Lastly, each thread can store its local variables in thread memory, which
is implemented as a number of 32-bit register files. These are the fastest
parts of gpu memory, but cannot be shared with other threads. A schematic
view of the Cuda memory model is shown in figure 4.2.

4.4 Plan of action

As mentioned in the first section of this chapter, the benefit of implementing
a molecular dynamics simulation on a graphics card lies in the high degree
of parallellism that can be achieved when many independent tasks are exe-
cuted simultaneously. Therefore, our goal should be to select exactly those
segments of the program that are most suitable for being parallellised, and
redesign the algorithms for these respective tasks. After all, not every com-
ponent is suitable for running on a gpu: while the graphics chip may contain
many more processing cores than the cpu, they run at a lower clock speed
and lack an interface for correspondence with any other devices.

Taking all this in consideration, we decided to reimplement on the gpu
the following parts:

1 force calculations;

2 velocity Verlet integration;

3 the thermostat (i.e. the constant friction factor mentioned in chapter 2).

The elements remaining on the cpu, then, include handling the data from
the input apparatus, moving any recorded force values to a small LabView
graphing program for real-time plotting, and controlling the visualisation of
the atoms on the screen. One might now be wondering why the latter is as-
signed to the cpu even though drawing atoms on the screen is clearly a matter
of graphics processing. The answer to this question is that we use a graphics
library[24] which has been implemented in terms of cpu-callable methods,
but in fact lets the bulk of the work be done by the integrated graphics chip
(which is different from the card that we use for gpu programming).

Shown in figure 4.8 at the end of this chapter is a flowchart that includes
all core tasks performed by the program.

25

26 Graphics card programming with Cuda

4.4.1 Tackling the timescale problem

In this section we propose a solution to the problem of different timesteps,
as we described in section 3.4. Since the amount of operations required to
compute the interaction forces between gold atoms in the substrate is much
higher than for the other forces (especially in the case of large substrates),
any attempt to accelerate these calculations by such a large factor that would
completely bridge the gap between the two timesteps—that means having
this kernel run at the same speed as the kernels computing the gold-molecule
interactions and intramolecular forces, while retaining the speed to run the
simulation in real-time—is very likely to fail. Fortunately, it’s precisely the
gold-gold forces that have proven to work with the large timestep; therefore,
we will keep this timestep and focus on the forces involving the molecule
instead. In order to overcome the difference in elapsed (simulation) time
between the inertial system of the molecule and that of the gold atoms,
we repeat the whole procedure of calculating forces, integrating them and
applying the thermostat a number of α times, where α = ∆tgold/∆tmolecule.
We seek to maximise performance by letting the kernel that is responsible for
the substrate interaction forces execute simultaneously with the sequence of
α molecule relaxation steps. The tool that the Cuda specification provides
to achieve this is the structure of streams which can be defined to run in
parallel on the gpu.

It is not immediately clear whether this method preserves correctness
and the accuracy associated therewith. After all, the motion of the gold
atoms, which occurs with a high timescale, carries an error with respect to
a molecule system that is updated at a higher frequency and thus with a
higher degree of precision. Note that since the molecule exerts a force on
nearby substrate and tip atoms, these have to be integrated with the small
timestep as well. This leads to a bit of an awkward situation where each gold
atom moves multiple tiny distances, followed by a larger leap from the gold-
gold interactions. These displacements are however still very small for each
iteration—between twentieths and hundredths of Ångströms. Moreover, the
mostly convex potentials that the forces were derived from generally create
negative feedback and relax the system rather than bringing it to a chaotic
state; because of this, small changes and errors usually go unnoticed. It
remains an open question though whether this approximation is theoretically
justifiable, as the equations of integration become large and confusing very
quickly as soon as one tries working out the difference in atom positions
between α smaller timesteps and one big timestep. Hence, we will leave the
formulae behind for now, and accept a qualitative argument as a basis for
our approach.

26

4.5 Gold-gold forces 27

4.4.2 Key assumptions

In the act of constructing the algorithms as efficiently as the resources of the
graphics card and our imagination allow, it turned out necessary to make a
number of critical presuppositions. Each of these constrain the amount of
atom configurations that the program supports, but were made for efficiency
and simplicity purposes.

We assume the following:

1 the molecule in question is planar—in other words, all atoms in the
molecule, including the carbon atoms, are bonded to at most three other
molecule atoms, and any nitrogen atom has a bond with no more than two.
This is merely a restriction on the number of atom bonds, and vibrations
out of this plane may still occur;

2 the kernels that are responsible for calculating the intramolecular forces
can take at most 32 molecule atoms per thread block;

3 the size of the cells that we use in our neighbour cell data structure, as
described in section 4.5, is restricted to 32 atoms;

4 covalent bonds are immutable, and cannot be broken, formed or changed
over the course of the simulation. Since we are dealing with only one
molecule that is not undergoing any chemical reactions, and the intramolec-
ular bond forces are much stronger than the attractive forces between the
molecule and the other atoms, we decided to keep these bonds fixed.

The rationale behind these assumptions, in terms of implementation practi-
cality, is explained in the sections describing the algorithms below.

4.4.3 Technical specifications

The machine we use for simulating the experiment is equipped with an Intel
i7-3770 cpu, which has 8 logical cores, and 16GB of ram at its disposal.
Rendering on the screen is done by an Intel hd graphics 4000 integrated
graphics chip. The graphics card that accelerates the program is an Msi
GeForce GTX 960, with 4GB of gddr5 device memory. This gpu is of the
Nvidia Maxwell architecture, and supports Cuda compute capability 5.2.

4.5 Gold-gold forces
The algorithm that we use for calculating the interaction forces between the
gold atoms in the substrate and the tip is to a large extent based on the cell

27

28 Graphics card programming with Cuda

0 1 2 ... n – 1 n

0

1

2

...

m – 1

m

Figure 4.3. Gold substrate divided in cells. For the atom coloured in red, the
cut-off radius is indicated as a red, dashed circle, while its own cell is depicted
in green and its neighbouring cells are coloured in blue. Atoms whose positions
are outside the cut-off sphere of the indicated atom are not taken into account in
calculating the total force on said atom. Note that the outermost cells have no
boundary; this measure was taken to fit all of 3D space—an atom may end up
anywhere, after all—into a finite number of cells.

list method[25]. This approach differs from others such as the neighbour list
method[26] in that it places each atom in one of many cells that together
make up the whole substrate and, in this case, the tip structure. The size
of these cells is fixed and depends only on the cut-off radius. Indeed, in our
implementation, the dimensions of these cells are set to equal this cut-off
distance. This way, we can guarantee that all neighbouring atoms that are
located within the cut-off radius of atom i, must lie in one of the cells directly
neighbouring the cell that atom i was placed in. See figure 4.3.

This method has several significant advantages:

1 it imposes a data structure on the atom objects according to their position,
something which is not practically achievable with a simple atom list;

28

4.5 Gold-gold forces 29

2 since we know that all atoms interacting with atom i must be in one of the
neighbouring cells, only few instead of all distances between atoms now
have to be calculated. Furthermore, the worst case amount of distances
to be computed for each cell does not depend on the size of the substrate.
This fact reduces the complexity of the algorithm from O(N2) to O(N).

It must be mentioned that we chose to let all cells stretch from negative
infinity to positive infinity in the z direction. This was done primarily to
ease implementation. However, it constrains the substrate geometry in that
the 32-atom cell limit, which is imposed by the size of the shared memory
used for each cell, must be satisfied for the simulation to work properly—any
atoms exceeding this limit are not taking into account in the force calculation.
Because of this, the substrate may consist of only up to about five layers,
depending on the cut-off radius.

Setting up and maintaining this cell structure over the course of the sim-
ulation requires another few steps. First of all, the cell index of each atom, a
function of position, must be determined. Then, in order for the kernel that
will compute the forces to find the atoms belonging to a particular cell, the
atom list must be sorted, using the cell indices as sorting keys. As developing
our own parallel sorting algorithm falls out of this project’s scope, we use the
function sort_by_key() from the Thrust library[27] to do this. However, it
also needs to know how many atoms are present in any given cell. A new list
of cell counts is filled by a function which determines these values from the
cell indices list. This is depicted in figure 4.4.

It goes without saying that all the functions accounting for this data
structure management can run for all atoms in parallel. This ensures that
the caused overhead stays small relative to the total force computation time.
However, it appeared that refreshing the cell index and cell count lists only
once every 20 iterations had barely any effect on the accuracy of the simula-
tion; thus, we chose not to call this routine every iteration.

What makes the cell list approach even better is the fact that it offers a
nice way to make use of thread blocks and, more importantly, shared block
memory. When handing over each atom cell to one thread block, which runs
one thread for each atom that executes a loop over all neighbouring atoms,
we can see a lot of data reuse occurring. Indeed, the positions of all atoms
in the neighbouring cells must be known to each thread. Following this
observation, it makes sense to have the threads in each block first load all
of these positions into shared memory, before going on to check whether the
distance falls within the cut-off radius and eventually calculating the force.
Note that this would not have worked out without the cell structure, since
the atom positions of the whole substrate would require such a large chunk of

29

30 Graphics card programming with Cuda

i

1 3 1 5 2 5 0 3 ...

0 1 2 3 4 5 6 7 ...

cell_index

0 1 1 2 3 3 5 5 ...cell_index

0 1 3 4 6 8 ...

sort array cell_index

generate array counts

counts 6

Figure 4.4. Procedure for setting up the cell data structure. For every ‘jump’
in the cell index list—that is, every pair of successive entries that have different
values—the number of atoms in this cell plus those in the previous cells is inserted
at that index in the cell counts list.

shared memory that it would severely limit the number of blocks that could
run on the gpu at the same time.

4.6 Gold-molecule forces

For computing the interaction forces between the molecule atoms and the
gold atoms, roughly the same principle is followed. However, keeping the
molecule atoms and gold atoms in one list, thus losing the consecutiveness
of the molecule atoms through sorting by cell indices, is impractical for a
number of reasons. First of all, having to find out which of the atoms belong
to the molecule every time before calculating the intramolecular forces would
hurt performance and readability. Secondly, one may want to perform some
processing on the cpu, such as graphing, and having two separated lists for
the gold part and the molecule makes that considerably easier. This choice
introduces the need for another cell index and cell count list; this is not a
problem though, because the size of the working space, which is the number
of atoms, does not change.

Unfortunately, we found no obvious way to use Newton’s third law of
action and reaction. The issue with this law is that it is very likely to
produce many data race conditions, since the force applied to one atom is a
sum of many force terms, one for each atom with which it interacts. Data
races are a common problem in parallel programming, and happen when two

30

4.6 Gold-molecule forces 31

threads try to change some value in the same memory address: both read and
change the value at the same time, which causes the returned value of the
fastest thread to be overwritten by the other thread, thus giving the wrong
result. Because of this, we need to employ two different kernels, where one
computes the force applied to the gold atoms, and the other the force applied
to the molecule atoms. In order to decide, then, for any molecule or gold
atom, which atoms from the other structure are close enough to be taken
into account for the force computation, the function must look at the other
cell index and count list.

Another difference in these kernels as compared to the gold-gold force
kernel is the use of a second thread dimension instead of a single for loop.

i

22

1

step 0 6

2

3

3

9

4

12

5

11

6

8

7

15

8

17

0

2

10

4

...

13

9

35step 1 22 7 9 12 11 8 1532 2 413

47step 2 33 15 9 12 11 8 1541 2 413

62 33 15 9 12 11 8 1574 2 413step 3

62 33 15 9 12 11 8 15136 2 413step 4

Figure 4.5. Parallel data reduction. The idea here is to sequentially add pairs of
variables that reside in shared memory, thus creating a ‘waterfall’ of additions that
ends up as a sum stored in one value. Explicit thread synchronisation is required
between addition steps. Intermediate values are shown in yellow, and the end result
is coloured in green.

31

32 Graphics card programming with Cuda

This was done as we noticed that there was a lot of room for improvement
in terms of occupancy. Adding another thread dimension means launching
blocks of 32 × 27 threads instead of simply 32 threads. Why 27? Because it
is the largest multiple of 9 (the number of cells that need to be considered
for each atom) smaller than 32, thus bringing the amount of threads per
block as close as possible to the limit of the Maxwell architecture, which is
1024 = 32 × 32. Each of these 27 threads still executes a (much shorter) for
loop in order to cover all atoms in its own cell. One might be wondering,
then, how we deal with the problem of race conditions that this method
certainly causes. However, the fact that these data races happen only within
the block makes them much more manageable, and enables us to use (a one-
block version of) the so-called parallel reduction method [28]. This method is
described in figure 4.5.

4.7 Intramolecular interactions

The last part of the force calculation consists of intramolecular interaction
forces, which in turn are divided into bond forces, angular forces and torsional
forces, as detailed in chapter 2. Since these interactions in reality happen
between atoms that share a covalent bond, whose length may vary over time,
we cannot use the cell list to model them; another data structure is necessary.
In our case, all molecule atoms have up to three references (which are not
references in the strict sence of C++, but merely index numbers) to another
molecule atom. An additional kernel redefines these references after sorting
the atoms for the cell list, to ensure that they point to the correct atoms after
their index in the list has changed. In this way, we can treat the molecule as
an undirected graph.

The force on each atom is then computed by finding all bond pairs, an-
gular groups and dihedral groups which the atom is part of, and summing
up the force contributions from each of these groups. Again, we use a second
thread dimension in order to maximise occupancy, and apply parallel reduc-
tion to obtain the correct sum. We pick the size of the thread y dimension
to be the theoretical maximum amount of these groups, and each thread y
coordinate тy is mapped to its respective group. Since the maximum amount
of bond pairs plus the maximum number of angular groups is less than 32,
we merge these two routines into one kernel, so as to reduce kernel launch
and stream synchronisation overhead.

32

4.7 Intramolecular interactions 33

4.7.1 Bond and angular forces

Since the bond forces and the angular forces are computed by the same kernel,
it is necessary to separate the threads according to the task they need to
perform. In our implementation, the first three threads in the y dimension
(тy = 0, 1, 2) are assigned the duty of calculating the bond forces, while
the rest is set to work out the angular forces. Whereas the routine for the
bonds is very straightforward—simply look at all neighbours and calculate a
spring-like force—, resolving the angular forces is a bit more delicate. This
stems from the fact that for each group we need to consider multiple different
atoms, some of which are not direct neighbours of the atom in question. On
top of that, we must distinguish between two types of angular groups:

I inner groups are those triples where atom i, for which we are calculating
the force contribution, is the middle atom;

II outer groups are the angular groups that have atom i at one of the ends.

An example of each group is depicted in figure 4.6. The maximum amount
of angular groups in a planar molecule is 9; this follows from the observation
that for a maximum of n bonds, the number of inner bonds is at most 1

2
n(n−

1), while the number of outer bonds is capped at n(n − 1), giving a total
of 9 for n = 3. The atom indices j and k, as shown in figure 4.6, are then

i

j k

j

k

Figure 4.6. A planar atom structure whose atoms all have to be taken into
consideration in order to find which angular groups an atom i interacts with. An
inner angular group is shown in red, and one outer group is displayed in blue. Atom
i is also a member of both groups; hence, it appears in purple.

33

34 Graphics card programming with Cuda

obtained by traversing the graph. Index j may be picked as one of the direct
neighbours of atom i; for inner groups, k is selected to be one of atom i’s
neighbour which is unequal to j; for outer groups, we choose k as one of atom
j’s neighbours which is different from atom i. Each pair of indices (j, k) can
be chosen uniquely for every тy between 3 and 11. Once the angle groups
are found, we apply the force derived in chapter 2 to atom i.

4.7.2 Torsional forces

The procedure for finding the torsional groups is similar to finding the angle
groups, with the only distinction being that we now have to deal with groups
of four atoms instead of three. Fortunately, we still need to consider only
two types of torsional groups, just like the case of the angle groups:

I in the inner groups, atom i is one of the two middle atoms in the chain
of four;

II for the outer torsional groups, atom i is at one of the ends and as such
has only one connection to another atom in the same group.

i

j k

l

j

k

l

Figure 4.7. A schematic planar atom structure with torsional groups. An instance
of an inner group is shown in red, and an outer group is indicated in blue. Note
that pairs of atoms like the two coloured grey may happen to be one and the same
atom; this occurs very often in hexagonal aromatic structures.

34

4.7 Intramolecular interactions 35

The presence of this extra atom requires us to traverse the graph one more
level in order to complete the group. Determining indices j and k happens
in exactly the same fashion as for the angular groups; indices l are picked as
one of atom k’s neighbours that are not a reference to either atom i (inner
groups) or atom j (outer groups). See figure 4.7.

One can understand now why constraining the number of bonds per atom
to three is so important. Again letting n be the maximum number of bonds
per atom, we have n options for picking index j and n − 1 choices for both
k and l, in the case of the inner groups as well as the outer groups. This
leads to a maximum number of groups Gmax = 2n(n − 1)2. Taking n = 3,
we find Gmax = 24, a number nicely smaller than 32. However, a change
to n = 4 increases this amount to 72, which is problematic. For one, we
would need to launch the kernel with thrice the number of thread blocks;
secondly, since many atoms in the molecule are likely to be hydrogen atoms
with only one bond (thus only allowing for four groups), we may end up
wasting a lot of threads. In short, the drop in efficiency renders this method
much less suitable for n larger than 3. One could argue that this may be
solved by precalculating the groups and having the kernels load them from
the memory; however, this would require redefining all groups after sorting,
and would also sternly increase global memory traffic.

The last thing that should be mentioned is the following. Throughout
this project, we have used 1,4-bis(4-pyridyl)benzene as our organic molecule,
which consists of 30 atoms. Because of this, one thread block was sufficient
for the kernels that compute the intramolecular forces. However, a new
experiment might create a demand for a larger molecule, thus requiring more
thread blocks to take care of certain parts of the atoms. While this does not
change the total amount of work done per thread block, it does increase the
total shared memory allocated per block. After all, the data of all molecule
atoms needs to be known to each thread block, since the atom indices are
changed every time the cell list is updated which means it is not obvious
beforehand which atoms will and which will not occur in the bond groups,
angular groups or dihedral groups. As such, n times more atoms will require
n2 more bytes of shared memory to be allocated. For very large molecules,
this could have a noticable impact on performance, and efficient pruning may
be needed to address this problem.

35

36 Graphics card programming with Cuda

Define global variables

Read setup file and atom parameters

Allocate memory on gpu

Copy constants and parameters to gpu

Draw atoms on screen

Read device input + calculate tip displacement

Copy atom objects to gpu

K
 iterations

as m
any tim

es as needed

Make cell lists and sort atoms

Redefine molecule atom bonds

if K mod 20 = 0 else

Calculate s values

Gold-gold forces

α iterations

Gold-
molecule force,

on gold

Integrate with timestep Δt

Thermostat

Integrate gold with
timestep αΔt

Thermostat, gold

Send force data to LabView program for plotting

Measure execution time

Deallocate memory on gpu

Gold-
molecule force,
on molecule

Bond and
angular
force

Torsional
force

Figure 4.8. Flowchart showing the execution scheme of the program. Time runs
in the vertical direction, thus subroutines placed next to eachother run in parallel.
Parts of the chart contained in dashed boxes run as many times as stated to the
right of said box.

36

Chapter 5
Results and discussion

In chapter 3 we set out our objectives for this project, which to an extent
boil down to one common goal: accelerating the simulation program. In this
regard, we begin by presenting and discussing the results of our performance
measurements, together with several general notes on gpu programming in
this light. Subsequently, we discuss the accuracy of our gold-molecule inter-
action model, in order to determine its feasibility as a sufficient description
of our experiment.

First of all, we want to make a performance comparison between the cpu
functions that compute the gold interaction (including integration of motion
and velocity rescaling with a friction factor thermostat) and the correspond-
ing kernels that run on the gpu. This should give a solid idea of how well
gpgpu programming methods can be used for increasing the size of the sub-
strate to which we apply the simulation. The results, in the form of total
time that is needed to execute one hundred of these iterations on both cpu
and gpu, are summarised in figure 5.1, which also includes the graph in figure
3.3. We can immediately see a striking difference in performance between
the two: where the execution time of the cpu implementation quickly reaches
the order of seconds, the gpu stays under 100 milliseconds even at a much
higher number of atoms. What is interesting is that the linear dependence of
the execution time on the number of atoms, which is inherent to the use of
a cell list data structure, only appears to hold from about 2000 atoms on. A
possible explanation for this is that the gpu is not yet completely filled before
the next synchronisation point (which is the end of an iteration), and could
take on more threads. In short, it seems that the gpu is very well suited for
this task. Indeed, it runs one kernel spread over many threads to calculate
the forces for all atoms, and thus exploits the parallelism of the system.

The gold-molecule interactions, together with the intramolecular forces,

37

38 Results and discussion

0 500 1000 1500 2000 2500 30000

1000

2000

3000

4000

5000

6000
E
xe

cu
ti
on

 t
im

e,
 1

00
 i
te

ra
ti
on

s

Number of atoms
0 1000 2000 3000 4000 5000 6000 7000 800020

30

40

50

60

70

80

E
xe

cu
ti
on

 t
im

e,
 1

00
 i
te

ra
ti
on

s

Number of atoms

Figure 5.1. Total execution time, in milliseconds, for 100 iterations of atom
relaxation with only gold interaction and motion enabled. The left graph shows
the performance of the old cpu simulation, while the calculation speed of our gpu
simulation is displayed in the right graph. In addition to the notable difference
between the two implementations, we see that the time it takes the gpu to execute
100 iterations is nearly constant for a small number (less than 2000) atoms, while
a linear relation is observed in the cases with a higher number of atoms.

are however a completely different story. Our investigation of this matter was
done with the smallest setup that was used for measuring the performance of
the two implementations, which contains 206 atoms (including the tip and the
molecule). Running the small timestep loop α times together with the larger
timestep sequence, as explained in section 4.4.1, increased the total execution
time to around 82 milliseconds per 100 iterations. For testing purposes, we
also considered a serialised smaller timestep loop; this approximately doubled
the run time. What we can learn from this is that parallelising the small
timestep loop using streams does net a performance boost, which however
turns out to be smaller than we hoped given the amount of tasks that are
expected to be carried out simultaneously. We believe that the gpu getting
filled up is the primary reason for this, causing the rest of the operations to
be stalled. Another source of delay, revealed by a profiling tool that is part
of the Cuda development kit, is the kernel launching overhead. Since the
threads operate on little data and thus finish their job quickly, this overhead
becomes relatively large and can even dominate the execution scheme in
terms of latency.

In order to overcome this issue, one could suggest moving the computation
of the intramolecular interaction forces back to the cpu, since the cpu cores
have a much higher clock frequence and are therefore likely to execute these
seemingly sequential operations quicker than the gpu. There are however
several problems with this. For one, constantly sending back and forth the
molecule data (that is, the positions and possibly velocities and forces of the

38

39

molecule atoms) would introduce significant memory latency over the pci-e
bus, especially since the size of the data is so small that the peak bandwidth
is never reached. Secondly, one iteration of intramolecular relaxation is com-
puted so fast that synchronisation between the cpu and the gpu becomes an
issue. In the current Cuda implementation, concurrently running gpu kernels
can be efficiently synchronised (using Cuda events), while explicit cpu-gpu
synchronisation comes with a large delay, which effectively more than doubles
the execution time.

Another alternative to circumvent this shortcoming of the gpu could be
the use of field programmable gate arrays (fpgas), which have been proven
to be fruitful for accelerating molecular dynamics simulations, among other
applications[29]. An fpga, simply put, consists of a large number of func-
tional units, logic gates and connecting parts, all of which can be very pre-
cisely configured to build an application-specific processor. Here lies the main
difference between fpgas and gpus: gpus are programmed by writing snd com-
piling software, while fpgas need to be manually configured using a hardware
description language. A big advantage of fpgas is that while they can per-
form many tasks in parallel just like gpus, they are not single-instruction,
multiple-data (simd) machines and as such do not inherently suffer from a
high degree of branching or serialisation. That said, data transfer between a
cpu and an fpga is generally less flexible, and fpga programming (including
optimisations) usually takes way more time and effort than gpu program-
ming. Even though higher level interfaces, such as the Opencl C/C++ api,
are available, configurations constructed from such code tend to run at sub-
optimal performance. Given the size of this project, we therefore deemed the
fpga method unsuitable for our needs.

All in all, while acceleration by parallellisation, applied through gpgpu
programming, shows to be very promising, it must be noted that the compli-
cacy of such implementations quickly increases as we make relatively small
changes to the system that we want to simulate. Whereas in a sequential
cpu program adding new potentials and forces requires writing only a few
more loops and functions, we see that in the gpu case it was necessary to
revamp our algorithms and reconsider the required data structures. In other
words, parallel programming requires a new way of thinking, and in some
cases severly limits the programmer.

Naturally, our discussion would be incomplete without any comments
on the physical accuracy of the new simulation, especially the assumption
we made for solving the multiple-timestep problem and the validity of the
potentials that we have chosen to model the system. First off, it appears
that the atomic structure reacts to the presence of the molecule in quite the
same way as the old situation, albeit much faster. It is important to note

39

40 Results and discussion

that the system remains stable, despite the errors that were introduced by
keeping the gold atoms fixed while the small timestep interactions are being
computed. This suggests that these errors are small enough not to percep-
tibly disturb the ensemble, and thus may be neglected, something which is
facilitated by the constant damping from the thermostat. We however only
draw this conclusion from looking at the evolution of the visualised system;
a better way would be to check observables such as the extent to which en-
ergy is conserved[30], and how much this is affected by a multiple-timestep
approach[31].

Another matter is the process of individual molecule-gold bond breaking
that is often observed in related experiments, and is responsible for jumps
that can be seen in the corresponding conductance traces[32]. In our simu-
lation, this is not visible at all. Instead, the molecule slides smoothly off the
surface, as if it were a string being picked up from a table. This is illustrated
in figure 5.2. Additionally, we noticed some peculiar behaviour after switch-
ing off an artificial harmonic potential that we use to keep the tip atoms
together. Without this potential, the lowermost of these atoms are pulled off

A

B

Figure 5.2. Approximate reaction of the molecule (here drawn as a 1D chain of
atoms for simplicity) to the pulling force of the tip, in the expected scenario and
our observations. (A) In reality, we peel the molecule off the substrate atom by
atom, and we witness the breaking of each bond between a molecule atom and
the substrate. (B) In our simulation, the intramolecular forces appear to be much
stronger than the gold-molecule forces, creating a very stiff molecule that comes
off as a whole instead of sticking to the substrate.

40

41

the tip structure by the strong force derived from the Morse potential, which
is clearly not a correct imitation of reality.

Lastly, we felt the need to incorporate the coordination number in the
force calculations as it is a good explanation of increased reactivity of the
tip apex atom with respect to the other tip atoms and the substrate[33]. In
our case however, the 1/n dependency of the interaction strength between
tip and molecule, where n is the number of direct neighbours, was primarily
a measure taken to prevent the molecule from climbing up the tip. Yet, the
quantity n is ill-defined when forces are determined solely by interatomic
distances, which is the case for all forces that involve gold atoms in some
way. Therefore, we feel that a better definiton of this coordination number,
together with a reconsideration of the gold-molecule interaction potentials,
is necessary to mimic the atomic mechanics at this level in a more reliable
fashion.

41

Chapter 6
Conclusion

Overall, we can say that the application of gpgpu programming with Cuda
in order to accelerate the molecular dynamics simulation has been a success.
Most importantly, it is the gold-gold force computations that benefit the most
from this method, yielding a large speedup relative to the old simulation. For
large substrates, we find a relative speedup of up to two orders of magnitude.
The presence of the molecule, and the need for executing a greater number
of small timestep iterations in particular, somewhat attenuates this gain; the
simulation remains easily controllable though, be it at a lower refresh rate
(approximately 12 times per second) than what is normally considered to
be smooth (24 times per second). The high degree of serialisation is mainly
responsible for this.

Our proposal for bridging the two different timesteps required to run
the program efficiently seems to work out well in terms of accuracy at first
glance. We can however only conclude this from qualitative observations, and
thorough investigation of the quantitative physical consequences and the un-
derlying theory are necessary to make a well-founded judgment. As for the
rest, it is clear that work still needs to be done to give a more correct picture
of realistic motion of an organic molecule that is being pulled from a gold
substrate by an stm tip. It is especially the gold-molecule interaction po-
tentials that would benefit from a revision, taking into account coordination
numbers in a more decent way.

While we have not been able to finish the extension of the simulation to a
much more complex system, it goes without saying that we have made good
progress towards completion of the project. Moveover, we have demonstrated
the advantages and applicability of gpgpu programming in this context of
real-time molecular dynamics, and we wholeheartedly recommend anyone
developing their own simulation program to at least take it into consideration.

43

Chapter 7
Outlook

In this last chapter, we would like to make a number of suggestions regarding
further directions that could be explored.

On the background of electronics at nanoscale, graphene has fascinated
many a scientist ever since the discovery of its conductive properties. As
such, it would be very interesting to see how well we can modify the program
to support a graphite substrate instead of a gold substrate, and to what
extent this can contribute to the molecular electronics research in a broader
perspective. Creating a stable graphite substrate may not appear to be
as straightforward as with the gold substrate, since graphene is arranged
in a hexagonal structure held together by covalent bonds. Of course, one
could exploit the planar structure of graphene to implement a number of
approximations, but care should be taken not to oversimplify matters.

Secondly, one could take a closer look at thermostats so that the friction
factor, which has been defined rather arbirarily for now, can be replaced.
This would enable the reproduction of a canonical ensemble, as initially
intended and described in Jacob Bakerman’s thesis. One should be wary
though that this thermostat could cause a signnificant slowdown if not im-
plemented properly, for the following reasons. For one, this thermostat will
have to be applied every iteration, including the small timestep ones. Also,
since the thermostat and the temperature influence the whole system, the
thermostat function must depend on all present atoms. Certainly, the sever-
ity depends on the thermostat that is chosen, and perhaps a simple one could
to do the job for a small cost in efficiency; this is of course up to the next
person who is interested in continuing the project.

45

References

[1] A. Aviram and M. A. Ratner, Molecular rectifiers, Chemical physics
letters 29, 277 (1974).

[2] J. J. W. Bakermans, C. Wagner, S. Tewari, and J. van Ruitenbeek, A
novel way to control stm-based manipulation : motion tracking and rapid
molecular dynamics simulation, Bachelor’s thesis, Leiden university,
2014.

[3] B. J. Alder and T. E. Wainwright, Studies in molecular dynamics. I.
General method, The journal of chemical physics 31, 459 (1959).

[4] P. Hohenberg and W. Kohn, The inhomogeneous electron gas, Phys.
rev. 136, B864 (1964).

[5] W. Kohn and L. J. Sham, Self-consistent equations including exchange
and correlation effects, Physical review letters 140 (1965).

[6] W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, A
computer simulation method for the calculation of equilibrium constants
for the formation of physical clusters of molecules: application to small
water clusters, The journal of chemical physics 76, 637 (1982).

[7] L. V. Woodcock, Isothermal molecular dynamics calculations for liquid
salts, Chemical Physics Letters 10, 257 (1971).

[8] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, a. DiNola,
and J. R. Haak, Molecular dynamics with coupling to an external bath,
The Journal of Chemical Physics 81, 3684 (1984).

[9] R. Cortes-Huerto, T. Sondon, and A. Saúl, Role of temperature in the
formation and growth of gold monoatomic chains: a molecular dynamics
study, Physical review B 88, 235438 (2013).

47

48 REFERENCES

[10] D. Tomanek, A. A. Aligia, and C. A. Balseiro, Calculation of elastic
strain and electronic effects on surface segregation, Physical review B
32, 5051 (1985).

[11] F. Cleri and V. Rosato, Tight-binding potentials for transition metals
and alloys, Physical review B 48, 22 (1993).

[12] W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M.
Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman,
A second generation force field for the simulation of proteins, nucleic
acids, and organic molecules, Journal of the American chemical society
117, 5179 (1995).

[13] A. Markvoort, K. Pieterse, M. Steijaert, P. Spijker, and P. Hilbers,
PumMa molecular dynamics code, 2005.

[14] G. Binnig and H. Rohrer, Scanning tunneling microscopy, Surface sci-
ence 126, 236 (1982).

[15] J. a. Stroscio and D. M. Eigler, Atomic and molecular manipulation with
the scanning tunneling microscope., Science 254, 1319 (1991).

[16] F. Jensen, Introduction to computational chemistry, 2007.

[17] H. J. H. Jang, A. P. A. Park, and K. J. K. Jung, Neural network umple-
mentation using Cuda and OpenMP, Digital image computing tech-
niques and applications , 155 (2008).

[18] V. K. Pallipuram, M. Bhuiyan, and M. C. Smith, A comparative study
of GPU programming models and architectures using neural networks,
volume 61, 2011.

[19] J. van Meel, A. Arnold, D. Frenkel, S. Portegies Zwart, and R. Belleman,
Harvesting graphics power for MD simulations, Molecular simulation 34,
259 (2008).

[20] J. Anderson, C. Lorenz, and A. Travesset, General purpose molecular
dynamics simulations fully implemented on graphics processing units,
Journal of computational physics 227, 5342 (2008).

[21] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent, Productivity of GPUs under different pro-
gramming paradigms, Concurrency computation practice and experience
22, 685 (2010).

48

REFERENCES 49

[22] Nvidia, Cuda C programming guide, Programming guides , 227 (2014).

[23] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and
A. Moshovos, Demystifying GPU microarchitecture through mi-
crobenchmarking, (2010).

[24] L. Gomila, Simple and fast multimedia library, 2007.

[25] Z. Yao, J. S. Wang, G. R. Liu, and M. Cheng, Improved neighbor list
algorithm in molecular simulations using cell decomposition and data
sorting method, Computer physics communications 161, 27 (2004).

[26] A. A. Chialvo and P. G. Debenedetti, On the use of the Verlet neighbor
list in molecular dynamics, Computer physics communications 60, 215
(1990).

[27] J. Hoberock and N. Bell, Thrust: a parallel algorithms library, 2009.

[28] M. Harris, Optimizing parallel reduction in Cuda, Nvidia developer tech-
nology (2008).

[29] Y. Gu, M. Herbordt, R. Giles, W. Qin, and S. Vajda, Fpga acceleration
of molecular dynamics simulations, PhD thesis, Boston university, 2008.

[30] M. E. Tuckerman and B. J. Berne, Molecular dynamics algorithm for
multiple time scales: systems with disparate masses, Journal of chemical
physics 94, 1465 (1991).

[31] O. Teleman and B. Jönsson, Vectorizing a general purpose molecular
dynamics simulation program, J. comp. chem. 7, 58 (1986).

[32] M. Frei, S. V. Aradhya, M. Koentopp, M. S. Hybertsen, and
L. Venkataraman, Mechanics and chemistry: single molecule bond rup-
ture forces correlate with molecular backbone structure, Nano letters 11,
1518 (2011).

[33] R. Z. Huang, V. S. Stepanyuk, and J. Kirschner, Tip-induced atom ex-
traction: effect of tip geometry and its composition, New journal of
physics 10 (2008).

[34] W. Streett, D. Tildesley, and G. Saville, Multiple time-step methods in
molecular dynamics, Molecular physics 35, 639 (1978).

49

Acknowledgments

First of all, I would like to thank Sumit Tewari for helping me get started
with this project, guiding me through it, and for the valuable discussions we
had. Secondly, a thank you goes out to Jan van Ruitenbeek for giving me an
oppurtunity to do my bachelor research project in his physics group, as well
as supervising me, together with Fons Verbeek. Lastly, my gratitude goes
out to thank Kim Akius for helping me with setting up the hardware, and
of course all the group members, whose presence has definitely made this
project a joyful experience for me.

51

	Introduction
	Theoretical background
	Principles of molecular dynamics
	Interactions between gold atoms
	Gold-molecule interactions
	Intramolecular interactions

	Project goal
	Simulation of stm manipulation
	Extension to molecular electronics
	Increasing the substrate size
	The timescale problem

	Graphics card programming with Cuda
	Motivation
	Cuda vs. Opencl
	Programming in Cuda
	Programming model
	Memory model

	Plan of action
	Tackling the timescale problem
	Key assumptions
	Technical specifications

	Gold-gold forces
	Gold-molecule forces
	Intramolecular interactions
	Bond and angular forces
	Torsional forces

	Results and discussion
	Conclusion
	Outlook
	References
	Acknowledgments

