
Universiteit Leiden

Opleiding Informatica

Graph Isomorphism in

Quasi-polynomial Time

Name: D.M.H. van Gent

Date: 2016-06-24

1st supervisor: dr. O. Biesel
2nd supervisor: dr. H.J. Hoogeboom

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)

Leiden University

Niels Bohrweg 1

2333 CA Leiden

The Netherlands

Graph Isomorphism in Quasi-polynomial Time

D.M.H. van Gent

Contents

1 Introduction 1

2 Prerequisites 1

2.1 Quasi-polynomial Functions . 1

2.2 The Reduction of Graph Isomorphism to String Isomorphism . . 3

2.3 Basic Group Theoretic Algorithms 4

2.4 Luks’ String Isomorphism Algorithm 6

3 Canonicity 8

3.1 Relative Canonicity . 9

4 Cameron Groups 10

4.1 Cameron Schemes . 12

4.2 Retrieving the Structure . 14

Intermezzo 15

5 Algorithmic Setup 16

5.1 Going Down . 17

5.2 Going Up . 18

5.3 Alignment of Strings . 19

6 Configurations 22

6.1 Coherent Configurations . 24

6.2 Binary Configurations and UPCCs 27

7 Concluding Remarks 28

Appendix A 30

Appendix B 31

References 32

i

1 Introduction

On the 11th of December 2015, László Babai made public the manuscript for his
upcoming paper ‘Graph Isomorphism in Quasi-Polynomial Time’ on arXiv.org,
in which he claims to have found an algorithm for deciding whether two graphs
are isomorphic in quasi-polynomial time [1]. At the time of this writing, the
paper in question has not yet been peer-reviewed. Even so, the manuscript
presents new interesting ideas and the build-up to what is actually new would
be enough to fill this thesis regardless.

The goal of this thesis is to present parts of Babai’s new work, together with
previously published results from him and authors like Peter Cameron, Mer-
rick Furst, John Hopcroft, Eugene Luks and Ákos Seress. With this we hope
to present an introduction to the to be published paper for a reader with no
previous knowledge on the graph isomorphism problem.

We remark that all results in this thesis, unless otherwise stated, are results
from Babai’s manuscript and are implicitly credited to him. Any proofs of
which we could not find a good reference are, although unremarkable, written
by the author of this thesis and marked by a dagger (†).

Besides the content of this thesis, we also supply C++ source-code for most of
the algorithms we encounter. For this we refer to Appendix B for an overview.

2 Prerequisites

All algorithms in this thesis will concern operations on permutation groups. We
assume the reader is familiar with basic group theory and complexity analysis
of algorithms. Regardless we present some notation and terminology quickly.

All groups we consider are permutation groups, which is a non-empty set of
bijections Ω↔ Ω closed under composition and taking inverses. We write S(Ω)
and A(Ω) for the symmetric and alternating group on the set Ω respectively.
We denote subgroups by H ⊆ G, leaving implicit that H is also a group. We
call |G| and |Ω| the order and degree of G ⊆ S(Ω) respectively, and write
[G : H] = |G|/|H| for the index of H in G. A set ∆ ⊆ Ω is called G-stable
if g(x) ∈ ∆ for all g ∈ G and x ∈ ∆. The finest partitioning of Ω into G-
stable sets is called the orbits of G. We call G transitive if it has only one
orbit. Given a set ∆ ⊆ Ω, we write Sstab∆(G) = {g ∈ G | g∆ = ∆} and
Pstab∆(G) = {g ∈ G | (∀x ∈ ∆) gx = x} for the set-wise and point-wise
stabiliser of ∆ respectively.

We write O(f(x)) = {g : R>0 → R>0 | lim supx→∞ g(x)/f(x) exists} for the
set of functions asymptotically bounded above by f : R>0 → R>0. We also write
2S and

(

S
t

)

for the power set and set of size t subsets of S. For a function
f : A→ X and B ⊆ A, we write f |B : B → X for the restriction of f to B.

2.1 Quasi-polynomial Functions

Babai’s algorithm is quasi-polynomially bounded in time complexity. Before
we can start with anything related to the algorithm, we should first define this

1

http://arxiv.org/abs/1512.03547

properly.

Definition 2.1. We call R[log(x)] the ring of poly-logarithmic functions in the
indeterminate x. For f ∈ R[log(x)], we call exp(f) a quasi-polynomial function.

Through abuse of notation, we can write the set of quasi-polynomially bounded
functions in x as exp(log(x)O(1)). Note that if f in the above is linear (in
log(x)), then exp(f) is merely a polynomially-bounded function. However, for
higher powers, exp(f) becomes super-polynomial, yet sub-exponential.

Remark 2.2. Like xO(1), the set exp(log(x)O(1)) is closed under addition, mul-
tiplication and composition.

Polynomial algorithms arise from statements of the form ‘for all x ∈ Ω do’.
Logarithms occur when applying divide-and-conquer strategies and walks in
binary trees. The factorial appears when working with permutation groups. A
natural environment for the somewhat unfamiliar quasi-polynomial complexity
class is found through the following:

Lemma 2.3. For fixed m ∈ N0, the function log(x)m! is quasi-polynomially
bounded in x.

Proof. Note that log(x)m! ≤ log(x)m log(x)m ≤ exp(m log(x)m+1), which is
quasi-polynomial.

We could therefore expect quasi-polynomial algorithms to pop up when applying
divide-and-conquer strategies to permutation groups. For proving an algorithm
has this complexity, we often use the following lemma.

Lemma 2.4 (†). Let f, g : R>0 → R>0 be weakly increasing functions and let
α ∈ (0, 1). If f(x) ≤ f(αx)g(x) for all x > 0, then f(x) ≤ Mg(x)c log(x)+1 for
some M, c ∈ R>0.

Proof. Let M = f(1) and c = −1/ log(α). Then for all k ∈ N0 we have

f(x) ≤ f(αx)g(x) ≤ . . . ≤ f(αkx)

k−1
∏

i=0

g(αix) ≤ f(αkx)g(x)k.

Now pick k = ⌈c log(x)⌉, then

f(αkx)g(x)k ≤ f(αc log(x)x)g(x)c log(x)+1 ≤ f(1)g(x)c log(x)+1 ≤Mg(x)c log(x)+1

for all x ∈ R>0.

Corollary 2.5. Let f, g : R>0 → R>0 be weakly increasing functions and let
α ∈ (0, 1). If f(x) ≤ f(αx)g(x) for all x > 0 and g is quasi-polynomially
bounded, then so is f .

This g occurs in the form of ‘multiplicative cost’. In divide-and-conquer strate-
gies, one reduces an instance of the problem to a number of smaller ones. This
reduction itself costs some operations, which we call additive costs. The num-
ber of instances we reduce to is the multiplicative cost. The motivation be-
hind this name becomes clear when we take a complexity function T . Then
T (x) = q(x)T (αx) + f(x), where q and f are the multiplicative and additive
cost respectively, and α the reduction factor.

2

2.2 The Reduction of Graph Isomorphism to String Iso-

morphism

Instead of solving the graph isomorphism problem directly, we solve the string
isomorphism problem to which graph isomorphism polynomially reduces.

Definition 2.6. A string is a map x : Ω → Σ, where |Ω| ∈ N1. We call Ω the
places and Σ the alphabet.

Definition 2.7. A bijection σ : Ω ↔ Ω′ is an isomorphism of x : Ω → Σ and
y : Ω′ → Σ if x ◦ σ−1 = y. We write σ(x) = x ◦ σ−1, Iso(x, y) for the set of
isomorphisms, and IsoG(x, y) := G ∩ Iso(x, y) for any G.

Example 2.8. We intuitively write x = abcd and y = bcda for strings x, y :
{1, 2, 3, 4} → {a, b, c, d}. Then in cycle-notation (1 4 3 2)x = y.

Consider the following problems:

Graph Isomorphism (GI):
Given graphs X = (Ω, E) and Y = (Ω, F), determine Iso(X,Y).

String Isomorphism (SI):
Given strings x, y : Ω→ Σ and group G ⊆ S(Ω), determine IsoG(x, y).

The complexity of the above problems is measured in |Ω|, which from here on
will be called n. Since |S(Ω)| = n!, we cannot, in general, store all elements
of a group in memory without exceeding a quasi-polynomial limit of operations
in n, let alone polynomial. All groups and cosets we consider are therefore
represented by a list of m generators, and the complexity of our algorithms
should also take into account this m. However, at cost polynomial in m, we can
reduce the number of generators to at most n2 (Theorem 2.11). Because of this,
we can assumem ∈ O(n2) and disregard the contribution ofm to the complexity
of the algorithms. Note that membership testing in groups becomes non-trivial
when considering only generators of a group. More on this in Subsection 2.3.

Lemma 2.9. If SI is O(f(n)), then GI is O(f(n2) + n2).

Proof. Let X = (Ω, E) and Y = (Ω, F) be given. Define x, y : Ω2 → {0, 1}
as the indicator functions x = ✶E and y = ✶F . Consider the natural action
S = im(S(Ω) → S(Ω2)) of S(Ω) on Ω2, and determine using SI the group
I = IsoS(x, y). Then g ∈ I if and only if (e1, e2) ∈ E ⇔ (ge1, ge2) ∈ F , so
I = Iso(X,Y). The complexity claim follows trivially.

Babai’s actual result is the following.

Theorem 2.10 (Babai). SI is in exp(log(n)O(1)).

From this point on the reader is allowed to forget anything they know about
the graph isomorphism problem.

3

2.3 Basic Group Theoretic Algorithms

Before we can start properly, we need polynomial algorithms for some basic
group operations, which we will present in this section.

Theorem 2.11 (Furst, Hopfcroft, Luks [2]). Let G = 〈g1, . . . , gm〉 ⊆ Sn be
a group represented by its generators and let 1 = G0 ⊆ . . . ⊆ Gk = G be a
chain of subgroups where the Gi with i < k are represented by a O(f(n))-time
computable membership-testing function and [Gi+1 : Gi] ∈ O(g(n)). Then one
can determine in O((k2g(n)2 +m)kf(n)g(n)) time:

1. the order of a Gi;
2. whether σ ∈ Sn is an element of G;
3. generators for a Gi and coset representatives of Gi+1/Gi.

Proof. We do not present the entire proof, since a great reference is available.
The idea is that we create the set of coset representatives Ci+1 of Gi+1/Gi for
each i. We do this by taking a g ∈ G and finding a ci ∈ Ci for each i such that
g = c1 · · · ck, which we call filtering. If we can’t find such ci at some point we
add c−1

k · · · c
−1
i+1g to Ci. It turns out it is sufficient to filter all g ∈ {g1, . . . , gm}

and then all g ∈ CiCj until the Ci become stable.

Using basic group theory, generators (3) for Gi are just C1 ∪ · · · ∪ Ci, and the
order (1) is |C1| · · · |Ci|. For membership testing (2) of g ∈ Sn, we filter g and
find ci ∈ Ci such that g = c1 · · · ck if and only if g ∈ G.

Remark 2.12. For any G ⊆ Sn, we can pick the point-wise stabilisers G ⊇
Pstab{1}(G) ⊇ Pstab{1,2}(G) ⊇ . . . ⊇ 1 as chain of subgroups, since they have
index ≤ n and membership is testable in constant time. This degenerate case
admits some optimizations in which we lose the factor g(n), and an implemen-
tation of this algorithm is provided.

Corollary 2.13. Let φ : G → H be a homomorphism that is computable in
polynomial time and let I ⊆ H be a subgroup such that [G : φ−1(I)] ∈ nO(1), then
we can find generators for φ−1(I) in polynomial time using the above algorithm,
since membership to φ−1(I) is testable through φ in polynomial time.

Lemma 2.14 (†). Let G ⊆ Sn and H be groups, and let φ : G → H be
a surjective homomorphism that is computable in nO(1) time, defined on the
generators 〈g1, . . . , gm〉 = G and let h ∈ H. Then we can find a pull-back
g ∈ φ−1(h) in nO(1) time.

Proof. We apply an extended version of Theorem 2.11 to 〈φ(g1), . . . , φ(gm)〉.
Append to the algorithm maps fi : Ci → G, in which we store fi(φ(g)) = g
for each φ(g) we filter. Then for each element h ∈ CiCj we filter subsequently,
we know a pull-back. With minimal bookkeeping we can then update the fi
with a pull-back for the filtrate. Then all coset representatives have a pull-back
associated with them, which can be retrieved when doing an H membership
test. Again an implementation is provided.

Another algorithm we need is one for finding block-systems in transitive groups.
For this we need some definitions first.

4

Definition 2.15. Let N ⊆ S(Γ) and G ⊆ Sp for some r ∈ N≥1 be permutation
groups. Then the imprimitive wreath product of N and G is

N ≀G := {(γ, i) 7→ (ngiγ, gi) | (ni)i ∈ N
p, g ∈ G} ⊆ S(Γ× {1, . . . , p}).

Whenever we have disjoint sets P1, . . . , Pp of equal size, we often write A(Pi)≀iSp

or S(Pi) ≀i Sp for the obvious subgroups of S(P1 ⊔ · · · ⊔ Pp).

Definition 2.16. Let G ⊆ S(Ω) be a group and let P1 ⊔ . . . ⊔ Pm = Ω be a
partitioning. If for all g ∈ G and i there exists a j such that gPi = Pj , we say
that G respects the partitioning {Pi}i and we call {Pi}i a block-system for G.
The trivial block-systems are {Ω} and {{ω} | ω ∈ Ω}, and we call G primitive if
it admits only trivial block-systems. A block-system is maximal if it is not {Ω}
and cannot be made coarser into a block-system other than {Ω}.

Remark 2.17. If G is transitive, then the blocks in a block-system are neces-
sarily of equal size. Then saying that P1 ⊔ · · · ⊔ Pp is a block-system of G is
equivalent to saying that G ⊆ S(Pi)≀iSr. Also note that maximal block-systems
are not unique. For example, the cyclic group C6 has maximal block-systems
{1, 4} ⊔ {2, 5} ⊔ {3, 6} and {1, 3, 5} ⊔ {2, 4, 6}, which become evident when we
write C6 as C2 × C3.

Theorem 2.18 (Atkinson [3]). Given a group 〈g1, . . . , gm〉 ⊆ S(Ω), we can find
a maximal block-system in O(n2 log2(n)mα(n)) time, where α is the inverse of
A(n, n) with A the Ackermann function. (For all practical purposes, α(n) ≤ 5.)

Proof. Again we present no proof due to the page limit of this thesis, but a
good though slightly old reference exists. We note that the paper describes an
O(n2m log(n)) algorithm for finding minimal block-systems, which we apply at
most log2(n) times iteratively to obtain maximal block-systems. The n log(n)
in O(nm log(n)) improves to nα(n) when we replace its main data-structure by
a union-find [4]. We provide an implementation.

Now that we can find block-systems, we also need some algorithms to work with
them.

Definition 2.19. Let φ : A→ B be a function and B′ ⊆ B be a subset. Then
a subset A′ ⊆ A is called an improper pull-back of B′ in φ if φ(A′) = B′.

Remark 2.20. In the case φ is an injective function, the improper pull-back is
necessarily φ−1(B′), called the (proper) pull-back. Through Lemma 2.14, we can
always find an improper pull-back of a subgroup in polynomial time by finding
a pull-back for each of the generators of B′.

In the special case where φ is a projection onto a quotient group, we do not
need the index of the subgroup to be bounded as in Corollary 2.13. We only
require generators for the divisor group.

Lemma 2.21. Given G ⊆ S(Ω) and block-system P = {P1, . . . , Pp} of Ω, we
can find SstabPp

(G) =: H in polynomial time.

5

Proof. Again apply Theorem 2.11 as in Remark 2.12. That is, using the chain
1 ⊆ · · · ⊆ Pstab{ω1,ω2}(H) ⊆ Pstab{ω1}(H) ⊆ H ⊆ G after choice of some
arbitrary ordering {ω1, . . . , ωn} = Ω. Note that

[G : H] = [G ∩S(Pi) ≀i Sp : G ∩S(Pp)× (S(Pi) ≀i Sp−1)]

≤ [S(Pi) ≀i Sp : S(Pp)× (S(Pi) ≀i Sp−1)] = p,

and is thus linearly bounded in n, so the algorithm is polynomial.

Lemma 2.22. Let G ⊆ S(Ω) be a group with block-system P = {P1, · · · , Pp},
and let π : G→ S(P) be the induced action on the blocks. Given generators for
any I ⊆ im(π), we can find generators for the pull-back π−1(I) in polynomial
time.

Proof. Let H =
⋂p

i=1 SstabPi
(G) the set-wise stabiliser of all blocks. We can

find H by iteratively applying Lemma 2.21 to G for each of the blocks. Then
π−1(I) = 〈H,X〉, where X is an improper pull-back of I.

We could also, for efficiency, apply Theorem 2.11 once to the chain 1 ⊆ H ⊆
⋂p−1

i=1 SstabPi
(G) ⊆ · · · ⊆

⋂1
i=1 SstabPi

(G) ⊆ G.

Lemma 2.23. Let G ⊆ S(Ω) and let ∆ ⊆ Ω be G-invariant with projection
map π∆ : G → S(∆). Given I ⊆ im(π∆), we can find the pull-back π−1

∆ (I) in
polynomial time.

Proof. Again it is sufficient to find generators for Pstab∆(G) using Remark 2.12.

With all this we are sufficiently equipped to properly start with the string iso-
morphism problem.

2.4 Luks’ String Isomorphism Algorithm

In this subsection we introduce the base algorithm used by Luks in his treatment
of SI for a special class of groups [5]. We will see that this algorithm does not run
in polynomial time in the general case, and identify what is needed to extend
the algorithm to a quasi-polynomial one. Unlike of the rest of this thesis, this
subsection is entirely due to Luks.

Assuming we can find isomorphisms in G, we extend our capabilities of solving
SI to cosets using

IsoσG(x, y) = {σg ∈ σG | σgx = y} = σ IsoG(x, σ
−1y). (Shift identity)

When ∆ ⊆ Ω is G-invariant, we get using Lemma 2.23 that

IsoG(x, y) = π−1
∆ Isoπ∆G(x|∆, y|∆) ∩ π

−1
∆c Isoπ∆cG(x|∆c , y|∆c)

= π−1
∆c Isoπ∆cπ−1

∆
Isoπ∆G(x|∆,y|∆)(x|∆c , y|∆c).

(Chain rule)

Note that in the last equality π∆c is a map π−1
∆ Isoπ∆G(x|∆, y|∆) → S(∆c)

instead of G → S(∆c). The above works because Isoπ∆G(x|∆, y|∆) is either
empty or a coset of Autπ∆G(x|∆).

6

With the chain rule we reduce the problem to transitive groups. We can even
generalise this concept from G-stable sets to block-systems.

Consider a subgroup H ⊆ G. Using the shift identity we get

IsoG(x, y) = Iso⋃
σH∈G/H

σH(x, y) =
⋃

σH∈G/H

σ IsoH(x, σ−1y). (Weak Luks reduction)

Now finding IsoG reduces to [G : H] times finding IsoH . The only caveat is that
we need to compute the union of these sets.

Lemma 2.24. Given each IsoH(x, σ−1y) with σH ∈ G/H, we can compute
IsoG(x, y) in O([G : H] · n) time.

Proof. Enumerate the non-empty σiIi := σi IsoH(x, σ−1
i y) by 1 ≤ i ≤ m for

σiH ∈ G/H. If all are empty, IsoG(x, y) = ∅. Otherwise, write σiIi = ci AutH(x)
and di = c−1

m ci for all i ≤ m. Now consider J = 〈d1, . . . , dm−1,AutH(x)〉.
Clearly each element of J is a G-automorphism of x, and thus cmJ ⊆ IsoG(x, y).
Conversely, σiIi = cmdi AutH(x) ⊆ cmJ for all i. We conclude that IsoG(x, y) =
cmJ .

Now, if we have a block system P, we can let H be its set-wise stabiliser, such
that the blocks become orbits. If we combine this with weak Luks reduction and
the chain rule, we reduce these transitive groups as well. This is called strong
Luks reduction. The result is the following:

Algorithm 2.25. LuksStringIsomorphism

input : A permutation group G ⊆ S(Ω) and strings x, y : Ω→ Σ.
output: IsoG(x, y)

1 if G ⊆ Aut(x) then (Recursion base)
2 if x = y then return G;
3 else return ∅;

4 Find maximal block-system P = {P1, . . . , Pp} of G ; /* Thm 2.18 */

5 Determine set-wise stabiliser H ⊆ G of the blocks ; /* Lem 2.21 */

6 Let C be a set of coset representatives of G/H;
7 R← ∅;
8 foreach σ ∈ C do (Strong Luks reduction)
9 τ ← σ, I ← H;

10 foreach P ∈ {P1, . . . , Pp} do (Chain rule)
11 Let π : I → S(P) be the restriction to the block;
12 τI ← τπ−1(LuksStringIsomorphism(π(I), x|P , (τ

−1y)|P));

13 R← R ∪ τI ; /* Lem 2.24 */

14 return R;

An implementation of this algorithm is provided.

Luks described this algorithm when solving GI for graphs of bounded degree d.
Using this restriction he considered a special case of SI, where he could bound
the index [G : H] by a constant depending on d. This results in a constant
multiplicative cost in the recursive step, and in turn this gives a polynomial

7

algorithm. It is clear that in the general case, this algorithm becomes super-
polynomial. Take for example the primitive group G = S(Ω) with x non-
constant. Then the maximal block-system we find are the the singletons in Ω,
and its stabiliser is the trivial group. It follows that C = S(Ω) and thus the
loop on line 8 repeats n! times.

A quasi-polynomially bounded index is enough to make the algorithm quasi-
polynomial by Corollary 2.5. It remains to solve the case of groups ‘primitive
enough’ to exceed such bound.

3 Canonicity

In this thesis we consider a number of categories with which we need to become
familiar. Furthermore, in this section we present some concepts from category
theory that will help in describing the coming algorithms. Since we are only
interested in isomorphisms, we define our categories such that they are the only
morphisms. We remark that broader definitions of the following categories exist,
that admit non-bijective morphisms as well. A non-exhaustive list is as follows:

Str: the category of strings (Definitions 2.6 and 2.7).

SGph: the category of simple graphs.
The objects are (V,E) with V a finite set and E ⊆

(

V
2

)

. The morphisms
are bijections f : V ↔ V ′ such that {a, b} ∈ E ⇔ {f(a), f(b)} ∈ E′.

BiGph: the category of bipartite simple graphs.
The objects are (V1, V2;E) with V1, V2 finite disjoint and E ⊆ V1 × V2.
The morphisms are bijections f : V1 ⊔ V2 ↔ V ′

1 ⊔ V
′
2 such that f(Vi) = V ′

i

and (a, b) ∈ E ⇔ (f(a), f(b)) ∈ E′.

ColEq: the category of coloured equipartitions (on finite sets).
The objects are (P1, . . . ,Pr) where the Pi partition disjoint finite sets, and
A,B ∈ Pi ⇒ |A| = |B|. The morphisms are bijections f :

⊔

i

⊔

P∈Pi
P ↔

⊔

i

⊔

P ′∈P′

i
P ′ such that a, b ∈ P ∈ Pi ⇔ (∃P ′)(f(a), f(b) ∈ P ′ ∈ P ′

i).

CoCnf: the category of coherent configurations (Definitions 6.8 and 6.3).

All categories C we consider come equipped with a faithful functor � : C →
FinSet we call the underlying (finite) set, meaning that it is injective on mor-
phisms between two given objects. For Str the underlying sets are the places
and for graphs the vertex sets. Often the objects under consideration all share
the same underlying set, which we then denote by Ω. In these categories the only
morphisms we consider are isomorphisms, which makes the categories groupoids.
As a consequence of the functorial properties of �, the endomorphisms in C in-
duce bijections on the underlying set. The set of endomorphisms of an object
from C can therefore be interpreted as a permutation group on Ω. For this
reason it makes sense to speak of automorphism groups and isomorphism cosets
in these categories. Since we make this identification with permutation groups,
we make no distinction between morphisms of different categories that induce
the same permutation.

8

3.1 Relative Canonicity

In the coming sections we describe constructions of an object B from another
object A, like the construction of a graph from a coherent configuration. These
constructions are always canonical in the sense that isomorphic objects A give
rise to isomorphic objects B. This is the same as saying that the construction is
a functor between the categories of A and B. We will describe a more nuanced
concept of canonicity, called relative canonicity.

Example 3.1. Consider the category SGphΩ of graphs with underlying set Ω =
{1, . . . , n}, and let G,H ∈ obj(C). Furthermore, let SGphPΩ be the category
of such graphs equipped with a special point that needs to be preserved by
morphisms. If we define Fa : SGphΩ → SGphPΩ that assigns a ∈ Ω as special
point to a graph, then this is not a functor if n > 1. Morphisms in SGphΩ
can move a to a point that is not a, an operation that does not commute with
Fa. However, Fa is ‘almost canonical’. Namely

⊔

a∈Ω IsoSGphP(F1(G), Fa(H)) =
IsoSGph(G,H), since any graph isomorphism must map 1 to precisely one point.

We make this concept more rigorous with the following definition.

Definition 3.2. A reduction from category C to D is a functor F : D → C,
surjective on objects, such that the triangle

D C

FinSet

F

� �

commutes, and for every f ∈ IsoC(A,B) and D ∈ F−1(A) there exists a unique
E ∈ obj(D) and g ∈ IsoD(D,E) such that F (g) = f . For any A ∈ obj(C) we
call |F−1(A)| the multiplicative cost of the reduction of A.

Lemma 3.3. If F : D → C is a reduction, then

IsoC(A,B) = F
⊔

E∈F−1(B)

IsoD(D,E) for all D ∈ F−1(A).

Proof. Since F is a functor, we clearly have that F (g) ∈ IsoC(A,B) for all
g ∈ Iso(D,E) such that F (D) = A and F (E) = B, so the inclusion ‘⊇’ holds.
Conversely, for each f ∈ IsoC(A,B) there exist objects D ∈ F−1(A) and E ∈
F−1(B) since F is surjective on objects, and a map g ∈ IsoD(D,E) such that
F (g) = f , so the inclusion ‘⊆’ holds as well. By the uniqueness, the union is
disjoint.

The construction of D,E from A,B in the above is called canonical with re-
spect to choice of E or canonical relative to E. These reductions will play the
role of division in the coming divide-and-conquer algorithms. Note that it fol-
lows immediately from Definition 3.2 that the composition of reductions is a
reduction.

9

Example 3.4. In Example 3.1, the functor we would construct for a proper
reduction would be the forgetful functor from SGphPΩ to SGphΩ. Note that
Weak Luks reduction is a reduction at multiplicative cost [G : H] as well, when
we consider the allowed isomorphisms σH in IsoσH(x, y) to be a property of the
objects instead of the morphisms.

We also need to consider the computational aspect of reduction at multiplicative
cost. We can say an algorithm reduces an A ∈ obj(C) at multiplicative cost if it
returns all objects in F−1(A) as in the above. Subjectively, this becomes rather
unwieldy and unreadable when we want to compose such reductions and apply
recursive strategies to them. Instead, we define it as follows:

Definition 3.5. We say an algorithm X reduces input A,B ∈ obj(C) at mul-
tiplicative cost q(n) if it also takes an algorithm Y as input that computes
IsoD(A

′, B′) for any A′, B′ ∈ obj(D) with the same underlying sets as A,B,
which X calls at most q(n) times to compute IsoC(A,B).

In this thesis and the code provided we will use anonymous functions, also called
lambda abstractions, to construct and pass around our algorithm Y to X. This
is syntactic sugar supported by many old and modern programming languages,
for example Haskell, Lisp, C++ and Java. A property they have we make liberal
use of is their ability to capture any variable in the scope of their definition by
reference automatically.

Example 3.6. Continuing Example 3.1, we construct a simple reduction at
multiplicative cost |V ′|, called X:

input : Simple graphs G = (V,E) and G′ = (V ′, E′) and an algorithm Y

that computes the isomorphisms of pointed graphs.
output: Iso(G,G′).

1 I ← ∅;
2 Take any x ∈ V and let Gx = (V, x,E) be its pointed graph;
3 foreach y ∈ V ′ do

4 G′
y ← (V ′, y, E′);

5 I ← I ∪ Y(Gx, G
′
y);

6 return I;

We could then call X(G,G′, Y) with for example the function Y that computes
the isomorphisms by brute force.

4 Cameron Groups

Our current objective is to deal with the groups that Luks’ algorithm cannot
handle in quasi-polynomial time. In this case we have a block-system P on
which G acts as a primitive group, since P is a coarsest block-system. For now
we only consider the action on this block system, and thus treat the blocks as
points and G as the permutation group on those points. In this chapter we
characterise the groups that can arise and present algorithmic tools to uncover
their structure. First we will define a class of groups.

10

B1 B2 B3

X ∩B1 Y ∩B1

Figure 1: Visual representation of two transversals intersecting.

Definition 4.1. Let k, r, t ∈ N1 be parameters. Let B be a set of size k and
let C = B × {1, . . . , r} =: rB be the disjoint union of r copies of B, with
Bi := B×{i}. Then A = {X ⊆ C | (∀i)|X ∩Bi| = t} is the set of t-transversals
in C.

Definition 4.2. Given t-transversals X,Y of C = rB, the intersection pattern
is the sorted sequence f1 ≤ . . . ≤ fr of intersection numbers di := |Bi ∩X ∩ Y |.

Example 4.3. In Figure 1 we have k = 120, t = 20 and r = 3. We consider
two transversals X,Y ∈ A in blue and red with intersection numbers 0, 10, 2
and intersection pattern 0, 2, 10.

In the language of the coming sections, the t-transversals form a binary rela-
tional structure on A with relations Rp ⊆ A2 that contains all pairs with a
given intersection pattern p. Note that the relations can be canonically or-
dered, for the example using the lexicographical order on intersection patterns.
Such a structure is called a Cameron scheme, where a scheme is a homogeneous
symmetric binary coherent configuration. The following group turns out to be
interesting:

Definition 4.4. Let A be the set of t-transversals on the set C = rB, with
|B| ≥ 2t. Let H be such that A(B1)×· · ·×A(Br) ⊆ H ⊆ S(Bi) ≀iSr. Then the
image G = im(H → S(A)) of the natural H-action on A is called a Cameron
group.

Note that the A(Ω) and S(Ω) are themselves Cameron groups, and that the Bi

form a block-system for H in the definition. That there are primitive groups
with super-quasi-polynomial order with respect to their degree comes as no
surprise (take for example S(Ω)). What does, however, is that Cameron groups
and some sporadic groups turn out to be the only ones.

Theorem 4.5 (Cameron [6], Maróti [7]). Let G ⊆ S(Ω) with |Ω| = n ≥ 25 be
a primitive group of order |G| ≥ n1+log2 n. Then G is a Cameron group.

Note that given a Cameron group, the identification of Ω with t-transversals
containing points from some C = rB is a priori unknown. An older result of
Babai, Luks and Seress [8] is that we can recover this structure in O(log(n))
time on nO(1) processors. Here it is enough that this implies the algorithm is
polynomial on a single processor. This identification comes through the follow-
ing.

Definition 4.6. Let G ⊆ S(Ω) act naturally on some G-stable subset A ⊆ 2Ω

such that
⋂

X:x∈X∈AX = {x} for all x ∈ Ω. Then for x ∈ Ω, we define
its A-dual point as dualA(x) := {X | x ∈ X ∈ A}. For a S ⊆ Ω we write
dualA(S) := {dualA(x) | x ∈ Ω}.

11

Lemma 4.7. The map Ω→ dualA(Ω) given by x 7→ dualA(x) is a bijection and
induces a permutation group isomorphism between the action of G on Ω and on
dualA(Ω).

Note that the set of t-transversals satisfy the requirements of A, with m = rt
and Ω = rB. Even though H and G are isomorphic as groups in Definition 4.4,
they are generally not as permutation groups. This is where the dual points
come in. Given an anonymous set of points corresponding to the t-transversals,
we will construct the dual points of those in rB, yielding an action of G on the
dual points isomorphic to the non-existing points in rB.

Lemma 4.8 (Babai, Luks, Seress). If k < 2rt2, then |G| is quasi-polynomially
bounded.

Proof. Note that n =
(

k
t

)r
≥ (k/t)rt ≥ 2rt, so

|G| ≤ |Sk ≀Sr| = (k!)rr! < (2rt2)2r
2t2r! < 2 log2(n)

4 log2(n)
2

(log2(n)!),

which is quasi-polynomially bounded by Remark 2.2 and Lemma 2.3.

It is therefore sufficient to consider the case where k ≥ 2rt2.

4.1 Cameron Schemes

First we will prove some statements about Cameron schemes C and the Cameron
groupsG acting on it. We thus assume we already have an identification between
the domain of G and the set of transversals. These lemmata will then be used
in the algorithm to recover such identification when it is not known a priori.

We call the orbits of the G ⊆ S(A)-action on A2 the orbitals of G. As it turns
out some relations in the Cameron scheme turn up as orbitals of G. Let Φ ⊆ A2

be the relation of the Cameron scheme corresponding to intersection pattern
(0, . . . , 0) and Σi that of (t− i, t, t, . . . , t). For ∆ ⊆ A

2 let ∆(X) denote the set
{Y | (X,Y) ∈ ∆}.

Lemma 4.9 (Babai, Luks, Seress). The Σi and Φ are orbitals of G.

Proof. First note that G preserves intersection patterns, so the orbitals are a
refinement of the relations. Conversely, any pair of orbitals with given intersec-
tion numbers can be reached by G action from any other such pair, since the
alternating group is t-transitive.

However, we have to take into account all permutations of the blocks and there-
fore the intersection numbers as well, since they give rise to the same intersection
pattern. For Φ we are already done, since all intersection numbers are equal.
For Σi, we note that there is just one intersection number we have to be able
to move around, namely t− i. Here the transitivity of G acting on the blocks is
sufficient.

12

Using the argument in the above proof it is not difficult to find a relation of
C that is not an orbital of G. Continuing Example 4.3, if the action of G on
the blocks is the cyclic group C3, then we cannot change (X,Y) ∈ A2 with
intersection numbers (0, 10, 2) into a pair with intersection numbers (0, 2, 10),
so the relation with the corresponding intersection pattern is the disjoint union
of two orbitals.

Lemma 4.10 (Babai, Luks, Seress). If k ≥ 2rt2, the largest and second smallest
orbital of G are Φ and Σ1 respectively.

Proof. Note that Σ0 is the smallest orbital, with |Σ0(X)| = 1. For any i > 1,

|Σi(X)| = r

(

t

t− i

)(

k − t

i

)

> rt(k − t) = |Σ1(X)|.

For any orbital Θ with intersection pattern i, j, . . . and i ≤ j < t we have

|Θ(X)| ≥

(

t

i

)(

k − t

t− i

)(

t

j

)(

k − t

t− j

)

≥ t2(k − t)2 > rt(k − t) = |Σ1(X)|

by just counting the images of (X,Y) under G in the blocks with intersection
numbers i and j. We conclude that Σ1 is the second smallest orbital. The proof
for Φ is analogous.

Lemma 4.11 (Babai, Luks, Seress). Let (X,Y) ∈ Σ1, P = Φ(Y) \ Φ(X) and
Q = Ω \

⋃

R∈P Φ(R). If k ≥ 2rt2, then Q = dualA(x) where {x} = X \ Y .

Proof. Since (X,Y) ∈ Σ1, X and Y are equal in all but one of the copies of B,
and share t−1 points in some other B. Call this block B1, and let {x} = X \Y .
Note that R ∈ P if and only if x ∈ R and Y ∩ R = ∅, since the only way for
R to be disjoint from Y but not from X is to contain x. When r = t = 1, the
statement is trivial, so assume rt ≥ 2.

Let Z 6∋ x be a transversal. Since k ≥ 2rt2 ≥ 4t, we can then find a transversal
R containing x that is disjoint from both Z and Y . It follows that R ∈ P , so
Z ∈

⋃

R∈P Φ(R). Furthermore, if Z ∈ Φ(R) for some R ∈ P , then R cannot
contain x. We conclude that

⋃

R∈P Φ(R) is the set of transversals not containing
x, which proves the claim.

Now that we can recover rB as a whole, we finish off with identifying the
individual Bi.

Lemma 4.12 (†). Let x ∈ rB be given and let E be the set of dual points that
intersect minimally with the dual point of x. Then E ∪ {dual(x)} = dual(Bi)
for some i.

Proof. Let y ∈ rB be given and let x′, y′ be the duals of x, y respectively. If x
and y are in the same block, then |x′∩y′| is a maximal intersection when x = y.

If they are not equal, |x′ ∩ y′| =
(

k−2
t−2

)

·
(

k
t

)r−1
if t ≥ 2 and 0 otherwise. If x, y

13

are in different blocks, then r ≥ 2 and |x′ ∩ y′| =
(

k−1
t−1

)2
·
(

k
t

)r−2
. Since t < k,

we have
(

k−2
t−2

)

·
(

k
t

)r−1

(

k−1
t−1

)2
·
(

k
t

)r−2 =
k(t− 1)

t(k − 1)
< 1,

so the dual points minimally intersecting x′ are the others in the same block.
It follows that E ∪ {x′} is the dual of some B.

With this we can present the entire algorithm.

4.2 Retrieving the Structure

Here we assume again that the identification of Ω with some set of transversals
A is unknown, as is the case in the main algorithm, and that |G| is sufficiently
large. Instead of using relations of an unknown Cameron scheme to find our
dual points, we use the orbitals instead. From the above lemmata, the algorithm
follows trivially.

Algorithm 4.13 (Babai, Luks, Seress). Retrieve Cameron structure of G.

input : Cameron group G ⊆ S(Ω).
output: The set Γ of dual points of a block of the Cameron group.

1 Calculate the orbitals and identify Φ and Σ1 by size (Lemma 4.10);
2 for (X,Y) ∈ Σ1 do

3 P (X,Y)← {W ∈ Ω | (Y,W) ∈ Φ ∧ (X,W) 6∈ Φ};
4 Q(X,Y)← Ω \

⋃

Z∈P (X,Y){W ∈ Ω | (Z,W) ∈ Φ};

5 D ← {Q(X,Y) | (X,Y) ∈ Σ1};
6 Pick any d ∈ D;
7 for e ∈ D do E(|e ∩ d|)← E(|e ∩ d|) ∪ {e};
8 return E(k) ∪ {d} with k minimal such that E(k) 6= ∅;

Theorem 4.14. Algorithm 4.13 terminates in polynomial time and returns the
correct result.

Proof. Correctness follows from lemmata in the previous section and complexity
is obvious.

The algorithm returns only the dual points Γ of one block B1. We can then
find the other blocks by simply constructing the transitive closure of G acting
on {B1}, since G is transitive. We make a final remark on the Cameron group.

Lemma 4.15. The set-wise stabiliser H of B1 in G has [G : H] ≤ r ≤ log2 n,
where we consider G,H as permutation groups on C.

Proof. First note that n =
(

k
t

)r
≥ 2r, so r ≤ log2(n). Then

[G : H] = [G : G ∩S(Bi) ≀i Sr−1]

≤ [S(Bi) ≀i Sr : S(Bi) ≀i Sr−1] =
(k!)rr!

(k!)r(r − 1)!
= r.

This completes our quest of finding the Cameron scheme.

14

Intermezzo

In this intermezzo we review the general outline of Babai’s algorithm. Provided
for the reader is a small diagram of the parts of the algorithm we treat in this
thesis, to be found in Appendix A. It is advised to read this intermezzo with
the diagram on hand.

We enter the algorithm through the incoming arrow at the top, and exit it
through the outgoing dotted arrow when G ⊆ Aut(x).

In the top-left corner of the diagram we have Luks’ algorithm from Section 2.4.
We find a block-system P of G which we stabilise, in Babai’s algorithm only
when the action H of G on P is sufficiently small. We apply weak reduction
to the stabiliser and Ω splits into orbits. This is then followed by the Chain
rule and a recursive call to the algorithm itself, collectively known as strong
reduction.

If the action on the blocks is sufficiently large, Theorem 4.5 guarantees us that
this must be a Cameron group. Using Algorithm 4.13, we then recover the
bijection with transversals. Note that this bijection is with the blocks, since it
is H that is the Cameron group, not (necessarily) G.

In Section 5 we will discuss the Going Down and Going Up arrows in the dia-
gram. Using the Cameron scheme we obtain a group homomorphism φ : G →
S(Γ) with A(Γ) ⊆ im(G), which we call a giant representation. This allows
us to forget the group G for a while and focus only on the strings, which have
not received any attention up until now. Furthermore we construct a natural
partitioning of Ω with respect to this φ, called the standard blocks. Collectively,
we call this procedure ‘going down’; we move our information in Ω, the strings,
to Γ.

The algorithm considers the cases whether G is primitive or not separately.
However, we won’t consider this part of the algorithm in this thesis. In the first
case, we can abuse the fact that our Cameron scheme on P becomes a Cameron
scheme on Ω, since P is the singleton partitioning. This is the TopAction. In
the second case, a lot more work is needed. In AggregateCertificates is where,
according to himself, Babai’s ‘eureka moment’ happened, and is probably the
last part of the algorithm he completed.

In either case, we end up with a k-ary configuration (Section 6), from which
we produce an embedded Johnson scheme J : Γ ↔

(

M
m

)

, a special case of the
Cameron scheme with only 1 block. That, or along the way we produced a
coloured α-partition of Γ.

Then, we are back in Section 5, where we move the information we obtained
in Γ back to Ω, which we call Going Up. This produces a reduced G and
partitioning of Ω into orbits, to which we apply the chain rule again. However,
one colour-class may be too large for this to become an effective reduction.
For this colour-class we produce a smaller giant representation and enter the
algorithm slightly differently.

15

5 Algorithmic Setup

In this section we treat the Going Down and Up part of the algorithm as dis-
cussed in the intermezzo. But first, we will need to obtain the giant represen-
tation.

Definition 5.1. For a general permutation group G ⊆ S(Ω), a homomorphism
φ : G → S(Γ) with A(Γ) ⊆ im(φ) of which pull-backs can be computed in
polynomial-time is called a giant representation.

The reason such morphisms are interesting, is because finding IsoC(A,B) ∩
φ(G) for objects A,B with underlying set Γ and category C is generally easy.
For example, it is easy to describe all string isomorphisms Iso(x, y), but not
Iso(x, y) ∩ G. However, it is easy once we know G = S(Ω) or G = A(Ω). This
giant representation allows us, to a certain extent, to forget the group G. We
will find canonical structures with respect to x and y on Γ, and compute their
φ(G)-isomorphisms. The pull-back of this coset then reduces G if we choose
interesting structures to find.

We obtain the giant representation from the Cameron scheme as follows.

Proposition 5.2. Let G ⊆ S(Ω) be a permutation group with block-system
P = {P1, . . . , Pp} such that the natural action I = im(G→ S(P)) on the blocks
is a Cameron group. We can then produce a giant representation at quasi-
polynomial multiplicative cost.

Proof. Let c : P ↔
(

B
t

)r
be the Cameron scheme, which we extend with the

projection π1 : Ω → P onto the blocks to f : Ω →
(

B
t

)r
. Consider the action

ψ : G→ S(Bi) ≀i Sr induced by f , and let M = im(ψ) ∩S(B1)× · · · ×S(Br).
Note that M is normal in im(ψ), and that by extension N = ψ−1(M) is normal
in G. Furthermore, Lemma 4.15 tells us that [G : N] ≤ log2(p)!, which is quasi-
polynomially bounded in n. We apply Weak Luks Reduction to N , which incurs
the mentioned multiplicative cost and makes N the group for which we need to
give a giant representation. Let J = im(π1 : N → S(P)) be the natural action.
Now, consider the composition φ of the maps

N
π1

։ J
ϕ
−֒→×

i≤r

S(Bi)
π2→ S(B1)

with ϕ the morphism induced by the Cameron scheme, and π2 the restriction
to the first block. We have by definition of the Cameron scheme that A(B1) ⊆
φ(N). Furthermore, we can compute pull-backs of φ in quasi-polynomial time,
since we can for π1 by Lemma 2.21, for ϕ by Lemma 2.20, and for π2 by
Lemma 2.22. Hence φ is the claimed giant representation.

Now that we are in the possession of a giant representation φ : G → S(Γ), we
continue by moving our information of string x and y through this φ.

16

5.1 Going Down

In this subsection we move the information in Ω, the strings x, y, to Γ.

For arbitrary giant representation φ : G→ S(Γ) with G ⊆ S(Ω), Babai defines
the following.

Definition 5.3. Assume |Γ| > 4 log2 |Ω|. For x ∈ Ω, let T (x) ⊆ Γ be the unique
subset such that |T (x)| < |Γ|/4 and

PstabT (x)(A(Γ)) ⊆ φ(Pstab{x}(G)) ⊆ SstabT (x)(S(Γ)).

Then the classes Ξ of the equivalence relation ∼ ⊆ Ω2, where x ∼ y ⇔ T (x) =
T (y), are the standard blocks of G in Ω.

It is not obvious that such T (x) exist, nor that they are unique, and we will
not prove the fact. Babai presents it in his Main Structure Theorem. The
proof depends on a theorem of Jordan, which is treated in a book by Dixon and
Mortimer [9].

However, in our case the standard blocks of φ as constructed in Proposition 5.2
are more easily characterised. For each R ∈

(

B1

t

)

there is a standard block
S(R) ⊆ Ω such that x ∈ S(R) if and only if x when interpreted as a transversal
has x ∩ B1 = R. These S(R) are, with the work done in Section 4, certainly
computable in polynomial time. Even though standard blocks are not defined
when |B1| 6≥ 4 log2 |Ω|, we can always find the S(R).

Lemma 5.4 (†). Assuming |B1| > 4 log2 |Ω| and the soundness of Defini-
tion 5.3, the standard blocks of φ are the S(R) as claimed.

Proof. For R ∈
(

B1

t

)

, take any x ∈ S(R). Firstly |Ω| ≥
(

k
t

)

≥
(

k
t

)t
≥ 2t,

so |R| = t ≤ log2 |Ω| < |B1|/4. Note that stabilisation of x in G stabilises
the block R of x set-wise in B1. Therefore φ(Pstab{x}(G)) ⊆ SstabR(S(B1)).
Secondly, a point-wise stabilisation of R in B1 will certainly contain the set-wise
stabilisation of S(R), which is Pstab{x}(G). We conclude by uniqueness that
R = T (x), so S(R) is the standard block of x.

In the above proof, we find that |T (x)| = t, which does not depend on x. In
general, if x, y are in the same orbit of G, then |T (x)| = |T (y)|, which is another
consequence of the proof we did not present.

Now, using the standard blocks we obtain strings x′, y′ :
(

Γ
t

)

→ N
Σ
0 as follows.

Definition 5.5. Given a giant representation φ : G → S(Γ) with G ⊆ S(Ω)
and a string u : Ω→ Σ, we define u′ :

(

Γ
t

)

→ N
Σ
0 the string induced by φ as

R 7→ (#{x ∈ S(R) | u(x) = c})c∈Σ.

This concludes the objective of this subsection.

17

5.2 Going Up

Babai considers separately the case whetherG is primitive or not, or equivalently
whether or not the block-system P consists of singletons. Although both will
not be treated in depth, the eventual goal will be the same; We want to find
(relative) canonically embedded structures on Γ, specifically either a coloured
α-partition or an embedded Johnson scheme. In this section we will define these
structures and we will see how to move this information on Γ to Ω.

Definition 5.6. Let α ∈ (0, 1] and P a coloured equipartition of Γ = �(P)
(Section 3). Then P is a coloured α-partition if for all partitions A ∈ P ∈ P we
have |A| ≤ α|Γ| and |A| = 1 only if |P | = 1.

Remark 5.7. Note that given a coloured equipartition

P = ({P11, . . . , P1q1}, . . . , {Pp1, . . . , Ppqp}),

we have Aut(P) =×1≤i≤p
S(Pij) ≀j Sqi , for which we can find generators

trivially.

We define analogously:

Definition 5.8. A colouring of Γ is a tuple (C1, . . . , Cc) such that Γ = C1 ⊔
· · · ⊔Cc. The morphisms are bijections f : Γ→ Γ′ such that f(Ci) = C ′

i for any
other colouring (C ′

1, . . . , C
′
c) of Γ

′. We call this an α-colouring if |Ci| ≤ α|Γ| for
all i.

Note that we have an obvious forgetful functor from coloured equipartitions to
colourings that forgets the partitioning.

Definition 5.9. Let Γ,M be finite sets and let 2 ≤ m ≤ |M |/2. Then a
bijection J : Γ ↔

(

M
m

)

is called a Johnson scheme, and it has underlying set

�(J) = Γ. Given another Johnson scheme K : Γ′ ↔
(

M ′

m

)

, its morphisms are
functions f : Γ → Γ′ for which there exists a map g : M → M ′, such that the
following diagram commutes.

Γ Γ′

(

M
m

) (

M ′

m

)

f

J K

∃g

Again we actually only consider bijective morphisms, with as consequence that
g in the above is unique if it exists. Finding a Johnson scheme with underlying
set Γ is too much to ask. We are happy with an embedded Johnson scheme.

Definition 5.10. A functor F : C → D is a canonical embedding of D in C if
�(F (X)) ⊆ �(X) for all X ∈ obj(C) and F (f) : F (X)→ F (Y) is the restriction
of f to �(F (X)) for all f ∈ HomC(X,Y).

This simply means that we want a Johnson scheme on a (large enough) subset
of Γ that behaves on morphisms over Γ.

18

Both these structures induce a colouring of Γ; The coloured equipartition quite
trivially by ignoring the partitioning of each colour, and the embedded Johnson
scheme on Γ′ ⊆ Γ colours Γ as (Γ′,Γ \ Γ′). We can move these colourings from
Γ to Ω through φ analogously to Definition 5.5.

Definition 5.11. Given a giant representation φ : G → S(Γ) with G ⊆ S(Ω)
and a colouring C = (C1, . . . , Cm) of Γ, we define the colouring of Ω induced by
φ to be such that the colour of x ∈ S(R) is (#(R ∩ Cr))1≤r≤m.

Note that again this colouring is canonical, and that this colouring is actually
a colouring of the standard blocks.

The following lemma will be used, though we consider the proof to be insuffi-
ciently interesting to present and refer to Babai’s manuscript.

Lemma 5.12. If C is an α-colouring, then the induced colouring of Ω is a
max(2/3, α)-colouring. For an arbitrary (non-α) colouring (C1, . . . , Cc) the only
induced colour ∆ that can exceed the 2/3 bound is of the form (0, . . . , 0, t, 0, . . . , 0).
We then call Ci the colour associated to ∆, where i is the place of t.

Any g ∈ G preserving the colouring on Γ preserves the induced colouring on Ω.
More specifically, AutG(x) ⊆ φ−1 Autφ(G)(X) =: I where X is our coloured α-
partition or Johnson scheme. Informally, we could replace G by I when looking
for AutG(x), and since I has orbits ∆1, . . . ,∆d we can apply the Chain rule. We
will make this more rigorous in the next subsection. However, this reduction
is not necessarily a good reduction, because we need |∆i| ≤ β|Ω| for all i and
some predetermined constant β for Corollary 2.5 to apply. If we take β > 2/3,
there is at most one ∆ that can violate this restriction on size.

Lemma 5.13. If ∆ is an induced colour-class such that |∆| > β|Ω|, we can
find a giant representation I → S(Γ′) where |Γ′| ≤ (1/2)|Γ|.

Proof. By Lemma 5.12, ∆ corresponds to
(

Ci

t

)

for some i. Therefore the induced

action ψ : I → S(Ci) is well defined. If Ci ↔
(

M
m

)

was the colour of a Johnson
scheme J , then we get in turn a map ψ+ : I → S(M), where |M | ≤ (1/2)|Γ|
certainly holds. This is a giant representation since A(Ci) ⊆ φ(I) and thus
Autφ(I)(J) is the induced action of A(M) on Ci. Otherwise, our canonical
structure must have been a coloured α-partition, and Ci must have been non-
trivially partitioned into P = {P1, . . . , Pp}. In this case the induced action on
the blocks ψ+ : I → S(P) is a giant representation, and since each |Pi| ≥ 2, we
have |P| ≤ (1/2)|Ci| ≤ (1/2)|Γ|.

We conclude that either we can reduce Ω to small orbits, or we have a large
orbits with a significantly reduced giant representation.

5.3 Alignment of Strings

Here we will see why finding canonically embedded coloured α-partitions or
Johnson-schemes in quasi-polynomial time is sufficient to complete the algo-
rithm.

19

We assume functions StringIsomorphism and StrIsoFromGiant are declared,
which the following algorithm is a part of by recursive calls to one another.
We assume that StrIsoFromGiant can split G ⊆ S(Ω) into equal sized orbits
when Γ in φ : G→ S(Γ) is smaller than some poly-logarithmic function of |Ω|.
This makes reducing Γ an alternative strategy to obtaining a good reduction.
Formally, we use the following lemma.

Lemma 5.14. Let T : R2
>0 → R>0 be a function where T (n,) and T (,m) are

weakly increasing for fixed n,m. Let α, β ∈ (0, 1) and let p, q be quasi-polynomial
where q : R

2
>0 → R>0. Assume T (n,m) ≤ q(n,m)T (n, βm) and T (n, 1) ≤

p(n)T (αn, αn) for all n,m. Then T (n, n) is quasi-polynomially bounded.

Proof. By Lemma 2.4 T (n,) is quasi-polynomially bounded by some function
r. Then T (n, n) ≤ r(n)T (n, 1) ≤ r(n)p(n)T (αn, αn) for all n, so T (n, n) is
quasi-polynomially bounded.

Take T to be the complexity of the algorithm expressed in |Ω| and |Γ|. Then
by the lemma, besides splitting Ω into orbits of size ≤ α|Ω|, it is also sufficient
to reduce Γ by a constant factor β at quasi-polynomial multiplicative cost.

Here we reap the rewards from the previous subsection in the form of an al-
gorithm that computes IsoG(x, y) given canonical structures relative to choices
made to obtain them.

Besides the input to the function itself the algorithm has access to other data
not given as parameters, which it was passed by currying, capturing from scope
when we consider the function as lambda abstraction, or similar methods.

20

Algorithm 5.15. Align

input : Relative canonical coloured equipartitions Su of Γ or embedded
Johnson-schemes Su = ((Γ′)u ↔

(

Mu

m

)

) with |(Γ′)u| ≥ (2/3)|Γu|
for both u ∈ {x, y}.

data : Strings x, y : Ω→ Σ, a giant representation φ : G→ S(Γ) with
G ⊆ S(Ω)

output: IsoG(x, y)
1 if Sx 6∼= Sy then return ∅;
2 Find any σ ∈ Isoφ(G)(S

x, Sy) ; /* Lem 5.7 */

3 Find any pull-back σ ∈ φ−1(σ);
4 G← φ−1(Autφ(G)(S

x));
5 Let (∆1, . . . ,∆d) be the colouring of Ω induced by Sx;
6 foreach ∆i in order of decreasing size do (Chain rule)
7 if |∆| ≤ (2/3)|Ω| then
8 σG← σπ−1

∆ (StringIsomorphism(π∆(G), x|∆, σ
−1(y)|∆));

9 else

10 Let C be the colour of Sx associated to ∆ ; /* Lem 5.12 */

11 if Sx is a coloured equipartition then

12 Let Γ+ be the partitioning of C in Sx;
13 Let φ+ : π∆(G)→ S(Γ+) the induced action on the blocks;

14 else (Sx is a Johnson scheme)

15 Let C ↔
(

Γ+

m+

)

the Johnson scheme;

16 Let φ+ : π∆(G)→ S(Γ+) the induced giant representation;

17 σG← σπ−1
∆ StrIsoFromGiant(x|∆, σ

−1(y)|∆, φ
x

+, φ
y

+);

18 return σG;

Lemma 5.16. Algorithm 5.15 returns IsoG(x, y) relative to choices made to
obtain the structures, at quasi-polynomial multiplicative cost.

Proof. First we note that it is easy to find φ(G) isomorphisms of coloured
partitions or Johnson schemes, since φ(G) = A(Γ) or φ(G) = S(Γ), so line
1 and 2 are executed in polynomial time. If Sx and Sy are not isomorphic
(1), then clearly IsoG(x, y) = ∅ with respect to choices made to obtain Sx, Sy.
Clearly every relative isomorphism x ∼= y is an isomorphism of Sx ∼= Sy, so
IsoG(x, y) ⊆ σφ−1(Aut(Sx)), justifying mathematically the reductions on line 3
and 4. Since φ is a giant representations, lines 3 and 4 execute in polynomial
time as well.

With the updated G (4), the ∆i ⊆ Ω are now G-stable. If each ∆i is small
enough (7), then we reduce string isomorphism on Ω to d ≤ n instances of
string isomorphism on the ∆i with |∆i| ≤ (2/3)|Ω|. If there is a larger ∆ (9),
then there is a large colour-class in C in Sx associated to ∆ (10) by Lemma 5.12,
which must then either be partitioned if Sx is a coloured α-partition (11), or a
Johnson scheme (14). In either case we obtain a giant representation when we
consider the action of G on Γ+ by Lemma 5.13. Again in either case we reduce
Γ by a constant factor.

Here it is important we start with the large orbital. If we considered a small
orbit first, we reduce G, after which φ might not be a giant representation
anymore.

21

If StringIsomorphism takes multiplicative cost p(|Ω|) to arrive at Align and
StrIsoFromGiant multiplicative cost q(|Ω|, |Γ|), then

T (n,m) ≤ np(n)T (2n/3, 2n/3) + q(n,m)T (n,m/2) + a(n,m),

where T is the worst-case time complexity of StringIsomorphism taken over
all problem instances with |Ω| ≤ n and |Γ| ≤ m. If p, q, a are quasi-polynomial,
then so is T by Lemma 5.14.

With this algorithm in place, the only thing we need to do now is provide the
algorithm StrIsoFromGiant that finds the relative canonical structures at quasi-
polynomial additive and multiplicative cost. This however, will mostly be left
untreated in this thesis. The next section will introduce an important structure
used in the Extended Design Lemma, which is a part of StrIsoFromGiant.

6 Configurations

A powerful tool used in the treatment of the graph isomorphism problem is
the coherent configuration. From the refinement of a graph to a coherent con-
figuration one can often confirm or reject isomorphism for random graphs in
polynomial time [10]. An extension of this refinement procedure, called Indi-
vidualisation/Refinement, works for all graphs, but was shown to require expo-
nential time on some family of graphs [11]. Despite this, we can make use of
configurations.

Definition 6.1. Let Ω be a set and let k ∈ N1. Then X = (Ω;R1, . . . , Rr) is a
k-ary relational structure if no Ri is empty and the Ri partition Ωk. Each Ri is
called a k-ary relation of X and for each ~x ∈ Ri we call i the colour of x, written
as c(~x) = i.

Definition 6.2. A k-ary relational structure X = (Ω;R1, . . . , Rr) is called a
(k-ary) configuration if

1. (Shape axiom) for some (x1, . . . , xk) ∈ Rm we have xi = xj , then for all
(y1, . . . , yk) ∈ Rm we have yi = yj ;

2. (Permutation axiom) for each σ ∈ Sr and i we have Rσ
i = Rj for some j.

Here Sσ := {(xσ−1(1), . . . , xσ−1(k)) | (x1, . . . , xk) ∈ S}. We call X homogeneous
if the diagonal diagk(Ω) := {(x, . . . , x) | x ∈ Ω} has a unique colour.

Configurations come up as generalisation of various concepts. A simple graph
G = (V,E) for example can be interpreted as a homogeneous binary configura-
tion XG = (V ; diag2(V), E, V 2 \ (E∪diag2(V))), where we have a colour for the
diagonal, which is interpreted as the set of vertices, a colour for the edges, and
a colour for everything else. For a group acting on Ω the orbits of the action on
Ωk form a k-ary configuration. The other way around, we can interpret a binary
configuration as a coloured complete digraph, where the edges and vertices have
different colours. For k = 1, a k-ary relational structure is just a coloured set.
For larger k, the interpretation of ~x ∈ Ri becomes that of a coloured path in
the complete graph on Ω.

22

Definition 6.3. A weak isomorphism between two k-ary configurations X =
(Ω;R1, . . . , Rr) and X′ = (Ω′;R′

1, . . . , R
′
r) is a bijection f : Ω↔ Ω′ such that for

each i there exists a j such that (f× . . .×f)(Ri) = R′
j . A (strong) isomorphism

is a weak isomorphism that preserves colour, i.e. i = j.

Definition 6.4. A refinement of a k-ary relational structure is a refinement of
the relations.

Remark 6.5. For strong isomorphism, the order of the relations is relevant,
so when giving a refinement of the relations, an order for these is needed. Fur-
thermore, when constructing a canonical refinement this must also be done
independently of the specific elements the partition contains.

In this thesis we only consider strong isomorphisms, continuing the convention
that isomorphisms preserve colours. For our purposes it is sufficient to consider
the isomorphisms where the underlying sets are equal, and again bijections
become permutations. Note that the strong isomorphisms on the configuration
corresponding to a graph are exactly the graph isomorphisms.

In the case of graphs, each isomorphism preserves vertex degree. For configu-
rations, an analogous statement holds for the for each relation when we extend
the concept of degree. A refinement of the colours of the vertices such that
they all have the same degree in a specific relation will therefore have the same
automorphism group. This inspires the following definition:

Definition 6.6. Let X = (Ω;R1, . . . , Rr) be a configuration. For any i1, . . . , ik ∈
{1, . . . , r} and ~x ∈ Ωk we write

P~x(i1, . . . , ik) := {y ∈ Ω | (∀j) c(~xyj) = ij},

where ~xyj is ~x with y substituted on the j-th place.

Remark 6.7. For each σ ∈ Aut(X) we have that #P~x(~ı) = #Pσ(~x)(~ı).

Definition 6.8. We call a configuration coherent if #P~x(i1, . . . , ik) is equal for
all ~x of the same colour i0. We then write p(i0; i1, . . . , ik) = #P~x(i1, . . . , ik).
These p are called the structure constants of X.

Proposition 6.9. For each configuration X = (Ω;R1, . . . , Rr) there exists a
canonical refinement X∗ of X that is a coherent and Aut(X) = Aut(X∗).

Proof. Let n = |Ω| and for each map M : {1, . . . , r}k → {1, . . . , n} define

S(j,M) := {~x ∈ Rj | (∀~ı ∈ {1, . . . , r}
k) #P~x(~ı) =M(~ı)}.

The non-empty S form a refinement X∗ of X, so Aut(X∗) ⊆ Aut(X), and by
Remark 6.7 Aut(X) ⊆ Aut(X∗). Repeating this construction with X∗, X∗ must
eventually stabilise, and this stable configuration is coherent. If in each step we
order the j and M lexicographically, the S(j,M) have a canonical order, so X∗

is a canonical refinement of X.

The refinement obtained is called the Weisfeiler-Leman refinement of X [12].
When k is a constant, the construction of X∗ as in Proposition 6.9 is polynomial

23

in n, as the number of iteration steps is bounded above by nk; In each non-final
step a new relation must be introduced, and each step is clearly polynomial if
we only consider the functions M for which a S(j,M) will be non-empty. A
non-näıve approach to constructing this refinement is given by Immerman and
Lander.

Theorem 6.10 (Immerman, Lander [13]). Given a k-ary configuration X over
Ω, where |Ω| = n, we can find X∗ in O(k2nk+1 log(n)) time.

Note that if k ∈ O(log(n)), then the algorithm runs in quasi-polynomial time.

Remark 6.11. Sometimes when working with structure constants, we require
that ~xyj can be in any relation. We can simply take

⊔

a≤r P~x(~ı
a
j) and write a

question mark for any such place, like P~x(i1, . . . , ik−1, ?). Since the union is
disjoint, we may define p(i0; i1, . . . , ik−1, ?) analogously.

6.1 Coherent Configurations

In this subsection we will prove some properties of coherent configurations that
are more substantial than the structure constants. This requires some defini-
tions.

Definition 6.12. Given a relation R in a k-ary configuration, we define its shape
to be the unordered partitioning of {1, . . . , k} such that i, j share a partition if
and only if ~xi = ~xj for all ~x ∈ R. We call the colours with shape {1, . . . , k} the
primary colours, those with shape {1}, . . . , {k} the k-ary colours.

Note that by the shape axiom, the shape of a relation in a configuration is
well-defined.

Definition 6.13. Let 1 ≤ s ≤ k and let X = (Ω;R1, . . . , RN) be a k-ary
configuration. Let R′′

i = {(x1, . . . , xs−1, y) | (x1, . . . , xs−1, y, . . . , y) ∈ Ri}. Then
skels(X) := (Ω;R′

1, . . . , R
′
M) is the s-skeleton of X, where R′

1, . . . , R
′
M is the

subsequence of R′′
1 , . . . , R

′′
N of non-empty sets.

Here we define the skeleton by the elements such that the last couple of places
are equal. However, if we chose a different set S of k−s+1 places that need to be
equal, then by the permutation axiom the resulting configurations would differ
only by a reordering of the colours, i.e. they are weakly isomorphic through the
identity map. For this we use the notation skel(X, S).

Lemma 6.14. If X is coherent, then so is skel(X, S).

Proof. Since each relation in the original configuration has a well defined shape,
it is either not included in the skeleton at all, or in its entirety modulo some
equal places. It follows that skel(X, S) is coherent when X is, since we can just
use the structure constants from X in the skeleton.

Definition 6.15. Let C ⊆ Ω be a subset and X = (Ω;R1, . . . , RN) be a k-ary
configuration. Then ind(X, C) := (C;R′

1, . . . , R
′
M) is the induced configuration

in C, where the R′
1, . . . , R

′
M is the subsequence of R1 ∩ C

k, . . . , RN ∩ C
k of

non-empty sets.

24

Lemma 6.16. Assume X is coherent. For (x1, . . . , xk) ∈ Ri, the colour of
(x1, . . . , xk−2, xk, xk) only depends on i.

Proof. Let ~x ∈ Ri be given and define u = xk and j = c(~xuk−1). Note that
p(i; ?, . . . , ?, j, i) ≥ 1, since u ∈ P~x(?, . . . , ?, j, i). Then by coherence, for any
~y ∈ Ri, there exists a v ∈ P~y(?, . . . , ?, j, i). Since ~yvk−1 ∈ Rj , it follows from its
shape that v = yk, so c((x1, . . . , xk−2, xk, xk)) = c((y1, . . . , yk−1, yk, yk)) for any
two ~x, ~y ∈ Ri.

Corollary 6.17. For (x1, . . . , xk) ∈ Ri, the colour of (xj , . . . , xj) only depends
on i and j.

Proof. By the permutation axiom, we can assume without loss of generality that
j = k. When k = 1 the statement is trivial. Otherwise, we use Lemma 6.16 and
reduce to the (k − 1)-skeleton and apply induction.

It follows that all colours have an associated sequence of primary colours.

Corollary 6.18. If X = (Ω;R1, . . . , Rr) is coherent and C ⊆ Ω is a union of
vertex colour-classes, then ind(X, C) is coherent.

Proof. As for the skeleton, each relation is included entirely or not at all.

Note that the construction of the skeleton is canonical, and the same holds for
the induced configuration if we choose C canonically.

Definition 6.19. Let X = (Ω;R1, . . . , Rr) be a k-ary configuration. Then
dm(v, i) := |{~x ∈ Ri | xm = y}| is called the m-th visit degree of v in Ri.

Lemma 6.20. Let X = (Ω;R1, . . . , Rr) be a coherent k-ary configuration. For
v ∈ Ω the size of dm(v, i) depends only on i, m and c(v).

Proof. We assume without loss of generality that m = k. For k = 1 the state-
ment is trivial. Now assume k > 1 and that the statement holds for k − 1. Let
j = c(x1, . . . , xk−2, xk, xk) for all ~x ∈ Ri, which depends only on i and m. Then
the size of I(v) = {(x1, . . . , xk−2, v, v) ∈ Rj} only depends on i, m and c(v)
when we apply the induction hypothesis to the (k − 1)-skeleton. Then

|dm(v, i)| =
∑

~x∈I(v)

|P~x(?, . . . , ?, i, ?)| = |I(v)| · p(j; ?, . . . , ?, i, ?)

depends only on i, m and c(v).

Definition 6.21. A coarsest configuration on Ωk is called a clique.

Lemma 6.22. X is a clique if and only if Aut(X) = S(Ω) if and only if for
each shape there is a unique relation in X with that shape.

Proof. Easy.

The following proposition is used by Babai in his proof on the correctness of
the Design Lemma, and he calls it twin awareness. However, he only presents a
proof for the case k = 2. We extend it to hold in the general case.

25

Proposition 6.23 (†). Let X = (Ω;R1, . . . , Rr) be a k-ary configuration and
let x, y ∈ Ω with e = c(x, . . . , x, y). If (x y) ∈ Aut(X), then (u v) ∈ Aut(X) for
all (u, . . . , u, v) ∈ Re.

Proof. When X is unary, then the statement is trivial. In the case X is binary,
the statement is proven by Babai. We will prove the statement for larger k by
induction, so let k > 2 be given and assume the statement holds for k − 1.

Assume (x y) ∈ Aut(X) with (x, . . . , x, y) ∈ Re, and let (u, . . . , u, v) ∈ Re

be given. We need to prove that (u v) preserves the colour of each ~a =
(a1, . . . , ak) ∈ Ωk.

If ~a ∈ Ri is not of k-ary colour, we assume without loss of generality that ak−1 =
ak. We reduce to the (k−1)-skeleton, where the statement holds by assumption.
There c((u v)(a1, . . . , ak−1)) = c((a1, . . . , ak−1)), hence (u v)(a1, . . . , ak) ∈ Ri.
We conclude that (u v) respects the non-k-ary colours.

We now consider a relation Ri with k-ary colour. For any ~b = (b1, . . . , bk) ∈ Ri

with u, v 6∈ {b1, . . . , bk}, we certainly have (u v)~b = ~b ∈ Ri. Therefore assume
without loss of generality bk = u.

Let Rl be the relation corresponding to Ri where the (k−3)-th place equals the
(k − 2)-th, which only depends on i by Lemma 6.16. Write

Ju,v = {(a1, . . . , ak−1) | c(a1, . . . , ak−1, u) = i},

Ku,v = {(a1, . . . , ak−1) | c(a1, . . . , ak−1, u) = c(a1, . . . , ak−1, v) = i},

Lu,v = {(a1, . . . , ak−1) | c(a1, . . . , ak−1, u) = i ∧ v ∈ {a1, . . . , ak−1}},

Mu,v = {(a1, . . . , ak−3) | c(a1, . . . , ak−3, u, u, v) = l},

Nu,v = {(a1, . . . , ak−2) | c(a1, . . . , ak−2, u, v) = i}.

Note that |Ju,v| = mk(u, j) only depends on the colours of u by Lemma 6.20. For
each (a1, . . . , ak−3, u, u, v) ∈ Rl we have a (u x)(v y)(a1, . . . , ak−3, u, u, v) ∈ Rl

and vice versa by the non-k-ary case, so |Mu,v| only depends on the colour of
(u, . . . , u, v). Then

|Nu,v| =
∑

(a1,...,ak−3)∈Mu,v

∣

∣P(a1,...,ak−3,u,u,v)(?, . . . , ?, i, ?, ?)
∣

∣

= |Mu,v| · p(l; ?, . . . , ?, i, ?, ?).

and |Lu,v| = (k− 1)|Nu,v| both only depend on the colour of (u, . . . , u, v). Now

let j be such that R
(k−1 k)
i = Rj . Lastly

|Ku,v| =
∑

(a1,...,ak−2)∈Nu,v

∣

∣P(a1,...,ak−2,u,v)(?, . . . , ?, i, j)
∣

∣

= |Nu,v| · p(i; ?, . . . , ?, i, j)

only depends on the colour of (u, . . . , u, v).

Note that Ku,v ⊔ Lu,v ⊆ Ju,v. By definition of these sets, the equality holds
for Kx,y ⊔ Lx,y = Jx,y. Therefore |Kx,y|+ |Lx,y| = |Jx,y|. But since these sizes

26

only depend on the colour of (x, . . . , x, y), we get |Ku,v|+ |Lu,v| = |Ju,v| as well.
Hence the inclusion we had must be an equality, so Ku,v ⊔ Lu,v = Ju,v.

Since ~b ∈ Ju,v, either ~b ∈ Ku,v, in which case (u v)~b = (b1, . . . , bk−1, v) ∈ Ri, or
~b ∈ Lu,v. In this case there also exists an ~a = (a1, . . . , ak−1, x) ∈ Ri with y on

the same place p as v in ~b, because the size of Nu,v only depends on the colour

of (u, . . . , u, v). But then (x y)~a ∈ Ri, so R
(p k)
i = Ri, and thus (u v)~a ∈ Ri. In

all cases, (u v) respects the colouring, so (u v) ∈ Aut(X).

6.2 Binary Configurations and UPCCs

In this subsection we consider the binary subspecies of configurations and their
relations to the other categories we consider.

Lemma 6.24. Let X = (Ω;R1, . . . , Rr) be a binary coherent configuration and
i ≤ r. Let A,B ⊆ Ω be the colour-classes of the first and second place of Ri

respectively. If A = B, then (A,Ri) is a regular graph. Otherwise, (A,B;Ri) is
a semi-regular bipartite graph.

Proof. This is a direct consequence of Lemma 6.20.

In either of the above cases, we refer to such graphs as the i-th constituent
digraph.

Definition 6.25. Let X = (Ω;R1, . . . , Rr) be a homogeneous binary coherent
configuration. Then X is called primitive if (Ω, Ri) is a strongly connected
digraph non-diagonal colours i. Additionally, X is called uniprimitive (or X is
a UPCC) if it is primitive and not a clique.

Remark 6.26. Let X be an imprimitive binary configuration. If it is non-
homogeneous, skel1(X) is a canonical non-trivial colouring of Ω. If there exists
a secondary colour with smallest index i such that the graph (Ω, Ri) is not
strongly connected, we find a canonical partitioning of Ω into the connected
components {B1, . . . , Bm} of this graph. Combining the two, X yields a non-
trivial canonical coloured equipartition of Ω.

Conversely, if we have configuration X and a canonical coloured equipartition
E, we may refine X with E by splitting the vertex colours by the colours of E,
and the edge colours by whether the pair of vertices are in the same partition
or not. If E is non-trivial, the resulting configuration is imprimitive.

Definition 6.27. A k-regular graph G = (V,E) is called (k, λ, µ)-strongly reg-
ular if every two vertices have λ common neighbours if they are adjacent, and
µ if they are not.

Lemma 6.28 (†). Let X = (Ω;R1, R2, R3) be a homogeneous binary coherent

configuration with primary colour 1 and secondary colours 2 and 3. If R
(1 2)
2 =

R2, then G = (Ω, R2) is a strongly regular graph.

Proof. By Lemma 6.24, G is regular. Note that the shared neighbours of u, v ∈ Ω

are P(u,v)(2, 2), using the fact that R
(1 2)
2 = R2. These numbers are λ = p(2; 2, 2)

if u, v are adjacent, and µ = p(3; 2, 2) if they are not, so G is (k, λ, µ)-strongly
regular.

27

Lemma 6.29 (†). Let G = (V,E) be a (k, λ, µ)-strongly regular graph. Then
the configuration XG induced by G is coherent.

Proof. We clearly have for i, j ∈ {1, 2} that

p(1; i, j) =

(

1 0
0 k

)

i,j

, p(2; i, j) =

(

0 1
1 λ

)

i,j

, p(3; i, j) =

(

0 0
0 µ

)

i,j

,

by similar arguments as in Lemma 6.28. Note that P(u,v)(?, j) is the neigh-
bourhood of v in Rj , which has sizes 1, k and n − k − 1 for colours 1, 2 and 3
respectively. But these are also the row sums and column sums of the 3 × 3-
matrices (p(h; i, j))i,j for all h. With this information, we can compute all
structure constants, and the configuration is coherent.

We see that coherent configurations can also be interpreted as a generalisation
of strongly regular graphs. With this correspondence, we can supply some
counterexamples to some common questions.

Example 6.30. The Chang graphs are three (12, 6, 4)-strongly regular graphs
on 28 vertices [14]. These graphs have a property rare among strongly-regular
graphs, namely that they have a non-trivial automorphism group [15]. Even
more striking is that it is not even transitive, as it has two orbits; one of size
4 and one of 24. Since the orbits have different sizes, they can be canonically
ordered to form a non-trivial colouring C of V . By Lemma 6.29, XG is both
coherent and homogeneous. However, we can refine XG with C and obtain
a coherent configuration X′ with Aut(XG) = Aut(X′). We conclude that for
any configuration X, the refinement X∗ is not necessarily the finest coherent
configuration with the same automorphism group.

Furthermore, the Chang graphs and their complements are connected and non-
trivial, meaning that XG is a UPCC. Since Aut(XG) is non-transitive, it is
certainly neither primitive nor uniprimitive, even though the naming might
suggest otherwise.

7 Concluding Remarks

In this section we make a small number of remarks about proofs in Babai’s
manuscript that we were not able to treat in this thesis. This is not intended
for readers of this thesis alone, but for those who have read or are also reading
Babai’s work. Mostly because some definitions will be used that have not been
treated in this thesis so far.

Design Lemma

Babai makes several claims, that the coherent configuration is ‘aware’ of certain
properties of elements in Ω. He does not prove them, which is justified by the
fact that we can extend the algorithm in the Design Lemma slightly to force
this ‘awareness’ either way, while maintaining polynomial additive cost. A proof
of these claims would be interesting regardless. For one we only need a small
extension of Babai’s ‘twin awareness’, which we give in Proposition 6.23.

28

Corollary 7.1 (†). Let X be a coherent configuration with SymDef(X) ≥ 1−α
and vertex colour-class C of size |C| ≥ α|Ω|. If skel2(ind(X, C)) is a clique,
then (x y) 6∈ Aut(X) for all different x, y ∈ C.

Proof. Assume for such x, y that (x y) ∈ Aut(X). Since skel2(ind(X, C)) is a
clique, we have c(x, . . . , x, y) = c(u, . . . , u, v) for all u, v ∈ C. From Proposi-
tion 6.23 it follows that S(C) ⊆ Aut(X). However, SymDef(X) ≥ 1 − α and
|C| ≥ α|Ω|, a contradiction.

UPCC-to-Bipartite

We are presented with a UPCC X = (Ω;R1, . . . , Rr), where we assume R1 is the
diagonal, and a point x ∈ Ω. In the proof we are required to find two relations
such that the following holds.

Lemma 7.2 (†). Let X = (Ω;R1, . . . , Rr) be a UPCC and let x ∈ Ω and
3 ≤ j ≤ r be given. Then there exists an i ≥ 3, canonical relative to x, such
that (x, z) ∈ R2, (x, y) ∈ Ri and (z, y) ∈ Rj for some y, z ∈ Ω.

Proof. Since R2 is not empty and X is homogeneous, there exists a w ∈ Ω such
that (x,w) ∈ R2. Because X is not a clique, Rj is a relation of X, and since X

is primitive Rj is connected. Let then w = a0 → a1 → . . .→ am = x be a path
in Rj . Because (x,w) 6∈ Rj , we have that m ≥ 2. Let l be maximal such that
(x, al) ∈ R2 and note that l ≤ m−2. Let z = al and y = al+1, then (x, z) ∈ R2,
(z, y) ∈ Rj and (x, y) ∈ Ri 6= R2 by the maximality of l. Now that such y, z
exist, we can take i to be minimal such that these y, z exist, and such a choice
is then canonical.

Reduce-Part2-by-Color

Given is a bipartite graph B = (V1, V2;E) such that |V2| ≤ α|V1| and there
are no twins in V1, and a colouring (C1, C2) of V1. From this the procedure
Reduce-Part2-by-Color returns B+ = (Ci, V2;E ∩Ci×V2) for some i ∈ {1, 2}
such that SymDefB+

(V1) ≤ α.

At many points in the Extended Design Lemma, we will consider the case where
B is biregular. However, when we call Reduce-Part2-by-Color, the resulting
graph generally not biregular anymore. We can only guarantee it when C1, C2

are colour-classes of the coherent configuration induced by B (Lemma 6.18).
This is not a problem when we intend to call Bipartite Split-or-Johnson

with this graph, since it takes general bipartite graphs as arguments. However,
at subcase 2 of the Block Design case and subcase (II) of the UPCC case,
we require biregularity. The author of this thesis was not able to prove the
correctness of these steps, nor does he propose a change to the algorithm that
does not require B+ to be biregular.

29

Appendix A

G ⊆ S(Ω);
x, y : Ω→ Σ.

Block-system P of G on Ω;
H = im(G→ S(P))

Is |H| small?

Set-wise stabiliser
I ⊆ G of the P.

Cameron scheme
f : P ↔

(

B
t

)r
.

Giant representation
φ : G→ S(Γ);

Standard blocks Φ.

Orbits (∆i)i of G.

Is G primitive?

f+ : Ω↔
(

B
t

)r
|Φ| ≤ (1/2)|Ω|

Coloured α-partition or
k-ary configuration on Γ

Coloured α-partition or
embedded Johnson scheme on Γ

Colouring (∆i)i of Ω;
Updated G respecting the colouring;

Giant representation φ+ : G∆1
→ S(Γ+)

Atkinson

yes no. Babai, Luks, Seress

Weak Luks reduction

Chain Rule

Going Down

yes

Extended Design Lemma

no

TopAction AggregateCertificates

Going Up

30

Appendix B

Several algorithms we considered in this thesis have been implemented in C++ by
the author of this thesis. The source-code is hosted at the on-line git repository
https://github.com/MadPidgeon/Babai-Graph-Isomorphism. The code com-
piles with GCC version 5.3.0. For compilation, simply call ‘make all’.

The folder misc/ contains some functions with no particular significance in their
ordering, and are characterised by having no theoretical value. The files there
are mainly to get C++ to work.

The folder examples/ contains examples to using the classes we define. For
example, examples/configurations.cc checks whether a Chang graph truly
induces a UPCC by applying Weisfeiler-Lehman refinement.

The files permutation.cc, group.cc, coset.cc and action.cc and their corre-
sponding header files give the basic definitions of the group-theoretical structures
that their names imply.

The file unionfind.cc is used by several parts of the algorithm to represent
a partitioning of a set. Its main use is in action.cc, where it is used in the
implementation of Theorem 2.18.

The file fhl.cc implements most of the algorithms from Section 2.3, most no-
tably Theorem 2.11.

The file luks.cc implements Luks’ part of Babai’s string isomorphism algo-
rithm, Algorithm 2.25.

The file cameron.h implements the recovery of the Cameron scheme, Algo-
rithm 4.13. It depends on multi.h to set up multi-threading.

The file datastructures.cc defines objects the other categories we consider,
like the coherent configuration and the bipartite graph. In this file, Proposi-
tion 6.9 is implemented.

The file design lemma.cc implements the Design Lemma. Though this al-
gorithm was not treated in this thesis, it is a good example of reductions at
multiplicative cost (Section 3).

31

https://github.com/MadPidgeon/Babai-Graph-Isomorphism

References

[1] László Babai. Graph isomorphism in quasipolynomial time. CoRR,
abs/1512.03547, 2015.

[2] Merrick Furst, John Hopcroft, and Eugene Luks. Polynomial-time algo-
rithms for permutation groups. In Proceedings of the 21st Annual Sympo-
sium on Foundations of Computer Science, SFCS ’80, pages 36–41, Wash-
ington, DC, USA, 1980. IEEE Computer Society.

[3] M. D. Atkinson. An algorithm for finding the blocks of a permutation
group. Mathematics of Computation, 29(131):911–913, 1975.

[4] Robert Endre Tarjan. Efficiency of a good but not linear set union algo-
rithm. J. ACM, 22(2):215–225, April 1975.

[5] Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested
in polynomial time. Journal of Computer and System Sciences, 25(1):42 –
65, 1982.

[6] Peter J. Cameron. Finite permutation groups and finite simple groups.
Bull. London Math. Soc, 13:1–22, 1981.

[7] Attila Marti. On the orders of primitive groups. Journal of Algebra,
258(2):631 – 640, 2002.

[8] L. Babai, E. Luks, and A. Seress. Permutation groups in NC. In Proceed-
ings of the Nineteenth Annual ACM Symposium on Theory of Computing,
STOC ’87, pages 409–420, New York, NY, USA, 1987. ACM.

[9] John D. Dixon and Brian Mortimer. Permutation Groups, chapter 5.2,
pages 147–151. Springer New York, New York, NY, 1996.

[10] L. Babai, P. Erdős, and S. Selkow. Random graph isomorphism. SIAM J.
Comput., 9(3):628–635, 1980.

[11] Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on
the number of variables for graph identification. Proc. 45th ACM STOC,
pages 271–280, 2013.

[12] B.J. Weisfeiler and A.A. Leman. Reduction of a graph to a canonical
form and an algebra arising during this reduction. Naucho–Technicheskaya
Informatsia, 2(9):12–16, 1968.

[13] Neil Immerman and Eric Lander. Describing Graphs: A First-Order Ap-
proach to Graph Canonization, pages 59–81. Springer New York, New York,
NY, 1990.

[14] L.C. Chang. Association schemes of partially balanced block designs with
parameters v = 28, n1 = 12, n2 = 15 and p211 = 4. Sci. Record, 4:12–18,
1960.

[15] Petteri Kaski and Patric Österg̊ard. The steiner triple systems of order 19.
Mathematics of Computation, 73(248):2075–2092, 2004.

32

	Introduction
	Prerequisites
	Quasi-polynomial Functions
	The Reduction of Graph Isomorphism to String Isomorphism
	Basic Group Theoretic Algorithms
	Luks' String Isomorphism Algorithm

	Canonicity
	Relative Canonicity

	Cameron Groups
	Cameron Schemes
	Retrieving the Structure

	Intermezzo
	Algorithmic Setup
	Going Down
	Going Up
	Alignment of Strings

	Configurations
	Coherent Configurations
	Binary Configurations and UPCCs

	Concluding Remarks
	Appendix A
	Appendix B
	References

