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Abstract

This thesis describes the working of quantum cryptography. The basis of quantum computing is explained

through the fundamentals of quantum mechanics. The working of the BB84 protocol, the B92 protocol and

Ekert’s protocol is described. Known ways of hacking the BB84 protocol are explored.
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Chapter 1

Introduction to Quantum Mechanics

Quantum mechanics is a mathematical framework or set of rules for the construction of physical theories [1,

Chapter1.1.1,p, 2]. In it’s core, quantum mechanics is a set op postulates on which theories can be built.

The building blocks of quantum computation and how they relate to the postulates will be explained. These

building blocks include: quantum bits, quantum gates and measurement.

Quantum bits or qubits differ from classical bits as they can be in a superposition. This means the value of the

bit is not determined until the quantum bit is measured. This act of measuring collapses the superposition.

Although the value of the bit is not known prior to measuring, the chance of measuring a particular value

can be calculated. The way these chances evolve is totally deterministic, but which value is measured for a

bit is totally indeterministic.

1.1 Quantum Bits

Just like a classical bit, a qubit has a state. In a classical bit this is represented as 0 or 1, in a qubit the states 0

and 1 are represented as |0〉 and |1〉. This ’| 〉’ notation is called the Dirac notation. The ’| 〉’ is called a ket and

the ’〈 |’ is called a bra. Inside the bra and ket a symbol is written down representing a vector with n entries.

For example |a〉 can also be written as the column vector:



a1

a2

...

an


The bra notation 〈a| of the same vector a represents a row vector with the entries of a complex conju-
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4 Chapter 1. Introduction to Quantum Mechanics

gated. Complex conjugation means negating the imaginary part of a complex number. Complex conjugation is

denoted by ∗. For example (1 + i)∗ = 1− i. So 〈a| can be written as the row vector:

(
a∗1 a∗2 ... a∗n

)

Together a bra and a ket can form a bracket written down as ’〈 | 〉’. This is the same as writing ’〈 || 〉’. This nota-

tion also represents the in-product of two vectors. For example the in-product of vector a and vector b is 〈a|b〉.

The in-product of vector a with itself is 〈a|a〉, which is the same as the length of vector a squared: 〈a|a〉 = |a|2.

Qubits written down in this Dirac notation also represent vectors:

|0〉 =

1

0

 , |1〉 =

0

1


The state of a qubit, written down as |ψ〉, is a linear combination of the states |0〉 and |1〉:

|ψ〉 = α|0〉+ β|1〉

The numbers α and β are complex numbers. The states |0〉 and |1〉 are known as computational basis states.

They form an orthonormal basis for the vector space C2.

When measuring a quantum bit, only a classical 0 or 1 is measured. The values α and β can not be measured,

but denote probabilities. The chance of measuring 0 is |α|2 and the chance of measuring 1 is |β|2. The α and

β information can not be retrieved by measuring one qubit. Because you will always measure either 0 or 1,

the chance of measuring a 0 or a 1 add up to 1. Thus |α|2 + |β|2 = 1. Geometrically this can be seen as the

qubit state being a normalised vector, so a vector with length 1 [1, Chapter 1.2,p, 13].

The two complex numbers α and β describe the spin of a quantum particle. The spin of a particle can be

represented as a point on the Bloch-sphere as seen in figure 1.1, this is a two-dimensional object embedded in

three dimensions. A point on a Bloch-sphere is described by two real numbers.

The state of a qubit α|0〉+ β|1〉, α, β ∈ C, |α|2 + |β|2 = 1 is also described by α′|0〉+ β′|1〉, α′, β′ ∈ C, |α′|2 +

|β′|2 = 1 if and only if ∃c ∈ C such that |c| = 1 and cα = α′ and cβ = β′.

If α 6= 0, we can pick |α|α as our c, we can rewrite α|0〉+ β|1〉 to:
|α|
α ∗ α|0〉+ |α|

α ∗ β|1〉 =

|α| ∗ |0〉+ |α|
α ∗ β|1〉 =

|α| ∗ |0〉+ |α|
α ∗

| βα |
| βα |
∗ β|1〉 =

|α| ∗ |0〉+ |α| ∗ |
β
α |
| βα |
∗ β

α |1〉 =
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|α| ∗ |0〉+ |α| ∗ | βα | ∗
β
α

| βα |
|1〉 =

|α| ∗ |0〉+ |α| ∗ |β||α| ∗
β
α

| βα |
|1〉 =

|α| ∗ |0〉+ |β| ∗
β
α

| βα |
|1〉

Since |α|2 + |β|2 = 1, therefore: 0 ≤ |α| ≤ 1 , 0 ≤ |β| ≤ 1

Therefore, for 0 ≤ θ ≤ π
2 :

|α| = cos θ

|β| = sin θ

This can be substituted in |α| ∗ |0〉+ |β| ∗
β
α

| βα |
|1〉:

cos θ ∗ |0〉+ sin θ ∗
β
α

| βα |
|1〉

Since
β
α

| βα |
is a complex number with length 1, it can be represented by:

cos φ + sin φ ∗ i, for 0 ≤ φ ≤ 2π

Substituting this, we get the formula:

cos θ ∗ |0〉+ sin θ ∗ (cos φ + sin φ ∗ i)|1〉, for 0 ≤ θ ≤ π
2 and 0 ≤ φ ≤ 2π.

If a = 0, α|0〉+ β|1〉 can be rewritten to:

0|0〉+ 1 ∗ β|1〉 =

cos π
2 |0〉+ sin π

2 ∗ β|1〉 =

β is a complex number with length 1, so:

β = cos φ + sin φ ∗ i

Substituting this gives us:

cos π
2 |0〉+ sin π

2 ∗ (cos φ + sin φ ∗ i)|1〉

This again conforms to the formula:

cos θ ∗ |0〉+ sin θ ∗ (cos φ + sin φ ∗ i)|1〉, for 0 ≤ θ ≤ π
2 and 0 ≤ φ ≤ 2π.

This shows α|0〉+ β|1〉 is determined by just two free variables; the angles θ and φ.

These two angles represent a point on the Bloch-sphere. The coördinates x, y and z can be expressed in

terms of θ, φ:

• x = sin(2 ∗ θ) ∗ cos φ

• y = sin(2 ∗ θ) ∗ sin φ
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Figure 1.1: The Bloch-sphere [1, Chapter1.2,p, 15]

• z = cos(2 ∗ θ)

The angle θ is multiplied by 2 in these formula to make sure all points on the whole sphere can be reached

while maintaining 0 ≤ θ ≤ π
2 . The range of the angle φ is 0 ≤ φ ≤ 2π. This way it becomes clear that the

two complex number α and β form two angles that describe a point on a sphere, which is embedded in three

dimensional space.

1.2 Quantum Gates

Classical bits can be sent through gates. These gates change the state of the bits allowing logical operations

and computation. For example a NOT gate takes an input bit and gives the inversion of this bit as an output.

A 0 input bit outputs a 1 bit and a 1 input bit outputs a 0 bit.

A quantum NOT gate should take a qubit as input and give it’s inversion as output. A |0〉 input qubit should

give a |1〉 output qubit and a |1〉 input qubit should give a |0〉 output qubit.

A quantum NOT gate receiving an input α|0〉 + β|1〉 produces an output α|1〉 + β|0〉. Quantum gates can

be represented by matrices, in this case, the quantum NOT gate, here named ”X”. It is represented as a

2-dimensional matrix:
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X =

0 1

1 0


To clearly demonstrate the way this matrix operates on a superposition, the superposition is rewritten from

the Dirac notation into it’s vector notation. Then the matrix X is applied to the vector, and the resulting vector

is rewritten in Dirac notation:

α|0〉+ β|1〉 = α

1

0

+ β

0

1

 =

α

0

+

0

β

 =

α

β



X

α

β

 =

0 1

1 0


α

β

 =

β

α


β

α

 =

0

α

+

β

0

 = α

0

1

+ β

1

0

 = α|1〉+ β|0〉

[1, Chapter 1.3.1,p, 18]

1.3 Pauli matrices

The following four matrices are extremely useful. They are called Pauli matrices and correspond to quantum

gates.

• σ0 =

1 0

0 1



• σ1 =

0 1

1 0



• σ2 =

0 −i

i 0


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• σ3 =

1 0

0 −1



Alternatively, σ0 is also denoted as I, σ1 is also denoted as σx or X, σ2 is also denoted as σy or Y, σ3 is also de-

noted as σz or Z. This is due to their relation of measuring a quantum bit in the X, Y or Z direction [1, Chapter

2.1.3,p, 65].

σ1, σ2 and σ3 are Hermitian matrices, which means they are equal to their conjugate transpose. Performing

a conjugate transpose on a matrix means first flipping all elements across the diagonal (transposing the ma-

trix), so that Mij becomes Mji and then complex conjugating all entries.

A complex transpose operation is denoted by a ’†’. For a matrix M it’s conjugate transpose is denoted by M†.

For example let’s consider matrix M.

M =

 1 + 2i 2

−5 + i 3i


M† =

1− 2i −5− i

2 −3i


Because σ1, σ2 and σ3 are all equal to their conjugate transpose, e.g. σ1 = σ†

1 , σ2 = σ†
2 and σ3 = σ†

3 , they

are Hermitian matrices.

σ1, σ2 and σ3 all have the same two eigenvalues λ1 = 1 and λ2 = −1. To demonstrate this, the eigenvectors

corresponding to the matrices and eigenvalues give the same result when multiplying the eigenvectors by the

matrix as with multiplying the eigenvector with it’s associated eigenvalues:

For σ1:0 1

1 0


 1√

2
1√
2

 =

 1√
2

1√
2

 = 1 ∗

 1√
2

1√
2

 = λ1 ∗

 1√
2

1√
2


0 1

1 0


− 1√

2
1√
2

 =

 1√
2

− 1√
2

 = −1 ∗

− 1√
2

1√
2

 = λ2 ∗

− 1√
2

1√
2



For σ2:0 −i

i 0


− 1√

2
i

1√
2

 =

− 1√
2

i

1√
2

 = 1 ∗

− 1√
2

i

1√
2

 = λ1 ∗

− 1√
2

i

1√
2


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0 −i

i 0


 1√

2
i

1√
2

 =

− 1√
2

i

− 1√
2

 = −1 ∗

 1√
2

i

1√
2

 = λ2 ∗

 1√
2

i

1√
2



For σ3:1 0

0 −1


1

0

 =

1

0

 = 1 ∗

1

0

 = λ1 ∗

1

0


1 0

0 −1


0

1

 =

 0

−1

 = −1 ∗

0

1

 = λ2 ∗

0

1



These eigenvalues correspond to the possible measurable values when observing a quantum particle in a

certain direction. The matrices σ1, σ2 and σ3 correspond to measuring in the X, Y and Z directions. When

measuring, the out-coming value can be either λ1 = 1 or λ2 = −1.The matrices σ1, σ2 and σ3 are called the

observables which have their own eigenvectors.

The H-gate or Hadamard-gate is useful for preparing states in a Hadamard-base.

• H =

 1√
2

1√
2

1√
2
− 1√

2



The Hadamard-gate chances |0〉 to |0〉+|1〉√
2

and |1〉 to |0〉−|1〉√
2

.

These matrices are unitary matrices. This means they are norm preserving and therefore in-product preserv-

ing. This way they do not change the length of any vectors they operate on, nor the angle between two vectors.

1.4 Postulates of quantum mechanics

Postulate 1: Associated to any isolated physical system is a complex vector space with inner product (that

is, a Hilbert space) known as the state space of the system. The system is completely described by its state

vector, which is a unit vector in the system’s state space.

Moreover, two unit vectors v1, v2 in the system’s state space describe the same state if and only if there exists

a complex number c of unit length such that the first vector, v1, is a c-multiple of the second vector, v2, i.e.,

v1 = cv2.
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Postulate 2: The evolution of a closed quantum system is described by a unitary transformation. That is,

the state |ψ〉 of the system at time t1 is related to the state |ψ′〉 of the system at time t2 by a unitary operator

U which depends only on the times t1 and t2,

|ψ′〉 = U|ψ〉.

Postulate 3: Quantum measurements are described by a collection {Mm} of measurement operators. These

are operators acting on the state space of the system being measured. The index m refers to the measurements

outcomes that may occur in the experiment. If the state of the quantum system is |ψ〉 immediately before the

measurement then the probability that result m occurs is given by

p(m) = 〈ψ|M†
m Mm|ψ〉,

and the state of the system after the measurement is

Mm |ψ〉√
〈ψ|M†

m Mm |ψ〉
.

The measurement operators satisfy the completeness equation,

∑
m

M†
m Mm = I.

The completeness equation expresses the fact that probabilities sum to one:

1 = ∑
m

p(m) = ∑
m
〈ψ|M†

m Mm|ψ〉.

[1, Chapter 2.2,p, 80]

1.5 Measurement

Postulate 3 states p(m) = 〈ψ|M†
m Mm|ψ〉 [1, Chapter 2.2.5,p, 85]. The |ψ〉 stands for the quantum state about to

be measured. The Mm are measurement operators. These measurement operators can be derived, for instance,

from Hermitian matrices or from an orthonormal base.

In the case of measuring in the X Y and Z axis, these operators can be derived from the matrices σ1, σ2

and σ3 respectively. In the case of measuring in the Hadamard-base, the operators can be derived from the
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orthonormal base (

 1√
2

1√
2

,

 1√
2

− 1√
2

).

For X, the measurement operators are derived from the outer product of the normalised eigenvectors of

σ1:

M1σ1 =

 1√
2

1√
2

( 1√
2

1√
2

)
=

 1
2

1
2

1
2

1
2


M−1σ1 =

− 1√
2

1√
2

(− 1√
2

1√
2

)
=

 1
2 − 1

2

− 1
2

1
2


For Y, the measurement operators are derived from the outer product of the normalised eigenvectors of

σ2:

M1σ2 =

− 1√
2

i

1√
2

( 1√
2

i 1√
2

)
=

 1
2 − 1

2 i

1
2 i 1

2


M−1σ2 =

 1√
2

i

1√
2

(− 1√
2

i 1√
2

)
=

 1
2

1
2 i

− 1
2 i 1

2


For Z, the measurement operators are derived from the outer product of the normalised eigenvectors of

σ3:

M1σ3 =

1

0

(1 0

)
=

1 0

0 0


M−1σ3 =

0

1

(0 1

)
=

0 0

0 1


For the Hadamard-base (

 1√
2

1√
2

,

 1√
2

− 1√
2

), we can use these orthonormal vectors to construct measure-

ment operators:

M1H =

 1√
2

1√
2

( 1√
2

1√
2

)
=

 1
2

1
2

1
2

1
2


M−1H =

 1√
2

− 1√
2

( 1√
2
− 1√

2

)
=

 1
2 − 1

2

− 1
2

1
2


For example if a state is prepared as an up-spin in the Y-direction, then it corresponds to the eigenvalue

λ1 = 1 of σ2 and thus to the corresponding eigenvector of σ2, this prepared state is:

− 1√
2

i

1√
2


The chance of measuring an up-spin in the X direction on this Y-up-prepared state, can be calculated by



12 Chapter 1. Introduction to Quantum Mechanics

using M1σ1 belonging to X:

p(m) = 〈ψ|M†
m Mm|ψ〉

p(1σ1) =

(
1√
2

i 1√
2

)
(

 1
2

1
2

1
2

1
2

)†

 1
2

1
2

1
2

1
2


− 1√

2
i

1√
2

 =

(
1√
2

i 1√
2

) 1
2

1
2

1
2

1
2


 1

2
1
2

1
2

1
2


− 1√
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i

1√
2

 =

(
1√
2

i 1√
2

) 1
2

1
2

1
2

1
2


− 1

2
√

2
i + 1

2
√

2

− 1
2
√

2
i + 1

2
√

2

 =

(
1√
2

i 1√
2

)− 1
2
√

2
i + 1

2
√

2

− 1
2
√

2
i + 1

2
√

2

 =

1
4 + 1

4 i− 1
4 i + 1

4 = 1
4 + 1

4 = 1
2

The chance of measuring an up-spin in the Y direction on this Y-up-prepared state, can be calculated by

using M1σ2 belonging to Y:

p(m) = 〈ψ|M†
m Mm|ψ〉

p(1σ2) =

(
1√
2

i 1√
2

)
(

 1
2 − 1

2 i

1
2 i 1

2

)†
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2 i
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2 i 1

2
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2 i

1
2 i 1

2


 1
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2 i

1
2 i 1

2


− 1√

2
i

1√
2
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(
1√
2

i 1√
2

) 1
2 − 1

2 i

1
2 i 1

2


− 1√

2
i

1√
2

 =

(
1√
2

i 1√
2

)− 1√
2

i

1√
2

 = 1
2 + 1

2 = 1

The chance of measuring an down-spin in the Y direction on this Y-up-prepared state, can be calculated

by using M−1σ2 belonging to Y:

p(m) = 〈ψ|M†
m Mm|ψ〉

p(−1σ2) =

(
1√
2

i 1√
2

)
(

 1
2

1
2 i

− 1
2 i 1

2

)†
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2

1
2 i

− 1
2 i 1

2
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− 1√

2
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2
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(
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2
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2

) 1
2

1
2 i

− 1
2 i 1

2


 1

2
1
2 i

− 1
2 i 1

2


− 1√

2
i

1√
2

 =
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(
1√
2

i 1√
2

) 1
2

1
2 i

− 1
2 i 1

2


0

0

 =

(
1√
2

i 1√
2

)0

0

 = 0

These examples show that when a spin-particle is prepared in a certain base, in these examples the Y-direction,

when it’s measured in that same base there is a chance of 1 measuring the spin the particle had when it was

prepared and a chance of 0 of measuring the spin the particle did not have when it was prepared. In other

words when measuring in the same base as the particle was prepared, the outcome of the measurement will

always be the spin of the particle at the time it was prepared.

When measuring in a base perpendicular to the prepared base, as in the examples the X-axis is perpendicular

to the Y-axis, the chance is 1
2 of measuring an up-spin and 1

2 of measuring a down-spin.

The measured values of 1 for an up-spin can be associated with a classic 0 bit and the measured values of

−1 for a down-spin can be associated with a classic 1 bit, or the other way around, but this is the convention.

This way the spin of particles can be seen as binary information [2, Chapter4,p, 47].



Chapter 2

Cryptographic protocols

Cryptographic protocols can be divided into two groups. Those that use private key crypto systems and those

that use public key crypto systems [1, Chapter 1.1.1,p, 10].

Private key crypto systems use a private key to encrypt and decrypt information. This private key is only

known to the rightful sender and receiver, usually named Alice and Bob respectively. Distributing this private

key is problematic, since the private key can be intercepted by an eavesdropper, usually named Eve, compro-

mising the security of the encrypted information.

Public key crypto systems use the fact that some calculations are very hard for a computer. If Alice wants

to send a message to Bob, Bob first generates a private key. Based on this private key he generates a public

key. Bob keeps the private key hidden and distributes the public key free for anyone to be seen. Alice uses

the public key to encrypt the information. The public key can not be used to decrypt the information. This

can only be done using the private key the public key was based upon. Since the public key is based on the

private key it is possible to calculate the value of the private key knowing only the public key, but this is very

hard. So hard that it would take an unreasonable amount of time for an eavesdropper to calculate it. This

type of cryptography works like a snap lock. Bob creates an open snap lock and a snap lock key. Bob gives

this open snap lock to Alice and he keeps the snap lock key. Alice puts information in a box and locks it by

snapping the snap lock close. Alice sends the locked box to Bob. Only Bob can unlock the box since he is the

only one with the snap lock key. In this metaphor the snap lock key is the private key, the snap lock is the

public key and the locked box is the encrypted message. The Diffie-Hellman and RSA crypto systems use this

technique.

14
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2.1 RSA

Inverting the encryption stage of RSA is a problem closely related to factoring. Much of the presumed security

of RSA comes from the belief that factoring is a problem hard to solve on a classical computer. However,

Shor’s fast algorithm for factoring on a quantum computer could be used to break RSA [1, Chapter1.1.1,p, 11].

As it turns out quantum computers can potentially break the widely used public key crypto systems. On the

other hand, quantum computers and their quantum bits allow quantum key distribution protocols, which

are safer in theory.



Chapter 3

Quantum Key Distribution Protocols

Quantum key distribution protocols make use of the fact that quantum information can not be copied. Further-

more it relies on the fact that intercepting or measuring quantum information collapses the quantum state,

which can be detected.

In conventional cryptography and information theory it is taken for granted that digital communications can

always be passively monitored. Passively monitoring means an eavesdropper can intercept and copy the dig-

ital information without tampering with the data. The eavesdropper can intercept the entire sent bit-string,

without the sender or receiver being aware that any eavesdropping has taken place [6]. By contrast, digital

information can be encoded in elementary quantum systems such as single photons, creating a quantum chan-

nel. Transmissions over a quantum channel cannot in principle be reliably read or copied by an eavesdropper

ignorant of certain information used in forming the transmissions. The eavesdropper cannot even gain partial

information about such a transmission without disturbing it in a random and uncontrollable way very likely

to be detected by the channel’s legitimate users.

3.1 Bennett-Brassard 1984 (BB84)

The BB84 protocol uses two bases for preparing and measuring qubits. The identity matrix I and the

Hadamard matrix H operate on |0〉 and |1〉 to create these bases:

• I =

1 0

0 1


16
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• H = 1√
2

1 1

1 −1



The vectors |0〉 and |1〉 are left unchanged when I operates on them:

1

0

 and

0

1


These vectors can be written as |0〉 and |1〉 and represent 0 and 1 qubits respectively, in the base (|0〉, |1〉)

associated with I.

The vectors |0〉 and |1〉 change when H operates on them. They are transformed to:

 1√
2

1√
2

 and

 1√
2

− 1√
2


These vectors can be written as |0〉+|1〉√

2
and |0〉−|1〉√

2
, or |+〉 and |−〉. They represent 0 and 1 qubits respec-

tively, in the base (|+〉, |−〉) associated with H.

These bases are referred to as I and H from here on.

In the BB84 protocol, the sender Alice, the receiver Bob and the eavesdropper Eve exhibit the following

behaviour:

Alice produces a string of random classical bits she wants to transfer to Bob.

Alice picks a base I or H at random. She sends a 0 or 1 qubit prepared in the picked base depending on

whether she reads a classical 0 or 1 bit in her string.

Bob picks a base I or H at random and measures the received qubit. He stores the measured classical bit

into a string.

In case Eve decides to eavesdrop, she intercepts the qubit Alice has sent. She picks a base I or H at ran-

dom and measures the qubit in this base. This way Eve now has a classical bit of information. She now

makes a new qubit using the same base as she picked. If she measured a 0, she will send a 0 qubit prepared

in the base picked by her, if she measured a 1, she will send a 1 qubit in the base picked by her.

After Alice has finished sending her string of classical bits in the form of qubits, Bob and Alice compare

the bases they used for sending and measuring. For the bits where their bases match, Bob is sure to have
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measured the classical bits Alice intended, assuming Eve did not eavesdrop. For the bits where their bases

don’t match, Bob has a 50 % chance to have measured the correct bit. Because of this Alice and Bob discard

all the bits corresponding to the non matching bases. The remaining bits are kept in a string.

Alice and Bob now need to check if the strings indeed are the same, without sending the entire string

over the network, since this would make it easy for Eve to simply intercept the string.

That’s why Alice and Bob divide the string into a public and a private subset. They publicly communicate

about which bits should be in the public subset and which should be in the private subset. This does not

mean they announce the values of these bits in public, they only announce that the ith bit should be in the

public or private subset. The public subset is sent across a classical channel and can be compared. If the

public subset contains no errors, Alice and Bob can be sure no eavesdropping has happened and they can

use the private subset as a private key for classical encryption. If the public subset contains errors, this

means eavesdropping did happen. In this case Alice and Bob discard the entire private string and start over

again [1, Chapter 12.6.3,p, 588].

In order to be reasonably certain no eavesdropping has taken place, the public subset must be large enough.

The chance of any errors for n bits in the public string in case of eavesdropping is: 1− ( 3
4 )

n. Why this is the

case will be explained below.

If Alice and Bob’s bases are different, the bit is discarded, so there is no information gain for Eve and

also no chance of getting caught.

If all three parties measure in the same base, Eve measures the right bit, so her information gain is 1, since

she recreates the right qubit in the right base, her chance of getting caught is 0.

If Alice and Bob’s bases are the same, but Eve’s base differs, she has a chance of 0.5 of measuring the correct

bit. Since the bases of Eve and Bob don’t match, it doesn’t matter what Eve sends, Bob has a chance of 0.5

measuring 0 or 1, so there is a chance of 0.25 Alice’s and Bob’s bits don’t match meaning Eve gets caught.

Table 3.1 shows all possible combinations of different bases that can be picked by Alice, Eve and Bob. For

every particular combination the info gain and chance of Eve getting caught is shown in the table. The info

gain is the average number of bits that Eve can intercept per base-combination. In case of a I H I combination,

Eve will only measure the intended bit half of the time, so on average the info-gain is 0.5. From the table the

average info gain and chance of getting caught is derived by calculating the mean of the possible values.

If all three parties pick the same base, Alice and Bob will not throw out their results. Eve will measure the

right result, she will measure the right bit for sure, so her info gain will be 1 bit. Since Eve used the same

base as Alice and Bob, Eve creates a qubit in the same base as Alice and Bob. In this case the fact that Eve

collapsed the qubit Alice has sent and that she created a new qubit will go unnoticed. Hence, the chance
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Alice base Eve base Bob base info gain (bit) chance caught
I I I 1 0

I I H 0 0

I H I 0.5 0.5
I H H 0 0

H I I 0 0

H I H 0.5 0.5
H H I 0 0

H H H 1 0

Table 3.1: Possible bases that can be picked and the info gain Eve can achieve and her chance of getting caught in BB84

getting caught in this case is 0.

If Alice and Bob pick different bases, they will throw out their result, so it will not matter what Eve will

measure, the result is not used. Therefore her info gain will be 0 bits and her chance of getting caught will

be 0.

If Alice and Bob pick the same base, but Eve picks a different base, her chance of measuring the bit Alice

intended is 0.5. That’s why her info gain is 0.5 bits in this case. Since Eve’s and Bob’s bases don’t match,

Bob measures a result at random. He has a chance of 0.5 for measuring a 0 value and a chance of 0.5 for

measuring a 1 value. Therefore Bob has a chance of 0.5 measuring a value Alice did not intend. If Alice’s and

Bob’s values don’t match, this will be noticed and Eve will be caught. Therefore the chance of getting caught

is the same as Bob measuring a value Alice did not intend. So the chance of getting caught is 0.5 in this case.

Table 3.1 can be used to calculate an average info gain and chance of Eve getting caught. Since there are

m = 3 parties and 2 possible bases to be picked, there are a total of 2m = 23 = 8 possible combinations of

bases picked by the 3 parties, as seen in table 3.1. The average info gain for a base combination is the info

gain of all combinations summed up, divided by the number of possible combinations:

Average info gain = 3
8 = 0.375

The same goes for the average chance of Eve getting caught:

Average chance caught = 1
8 = 0.125

Another way of looking at this is only focussing on the cases where Alice’s and Bob’s bases match. These

are the successfully transferred bits, since Alice and Bob do not throw out these results. The average can

be calculated by only using the 4 cases in table 3.1 where Alice’s and Bob’s bases match and using them to

calculate the average:
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Alice base Eve base Bob base info gain (bit) chance caught
II II II 2 0

II II IH 1 0

II II HI 1 0

II II HH 0 0

II IH II 1.5 0.5
II IH IH 1 0

II IH HI 0.5 0.5
II IH HH 0 0

II HI II 1.5 0.5
II HI IH 0.5 0.5
II HI HI 1 0

II HI HH 0 0

II HH II 1 0.75

II HH IH 0.5 0.5
II HH HI 0.5 0.5
II HH HH 0 0

IH II II 1 0

IH II IH 1.5 0.5
IH II HI 0 0

IH II HH 0.5 0.5
IH IH II 1 0

IH IH IH 2 0

IH IH HI 0 0

IH IH HH 1 0

IH HI II 0.5 0.5
IH HI IH 1 0.75

IH HI HI 0 0

IH HI HH 0.5 0.5
IH HH II 0.5 0.5
IH HH IH 1.5 0.5
IH HH HI 0 0

IH HH HH 1 0

Table 3.2: Info gain and chance getting caught when measuring 2 bits in BB84

Info gain Eve for a successfully transferred bit = 3
4

Chance getting caught for successfully transferred bit = 1
4

When using 2 bits, the info gain is the sum of the info gain of the two situations of the 1 bit entry. The

chance caught is 1 minus the chance not getting caught 2 times, so: 1− (1− p1) ∗ (1− p2), where p1 is the

chance getting caught at the the first bit and p2 is the chance getting caught at the second bit.

Table 3.2 and 3.3 show the resulting info gain and chance of Eve getting caught.

Using table 3.2 and 3.3 the average info gain and chance of Eve getting caught can be found by calculating

the mean:
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Alice base Eve base Bob base info gain (bit) chance caught
HI II II 1 0

HI II IH 0 0

HI II HI 1.5 0.5
HI II HH 0.5 0.5
HI IH II 0.5 0.5
HI IH IH 0 0

HI IH HI 1 0.75

HI IH HH 0.5 0.5
HI HI II 1 0

HI HI IH 0 0

HI HI HI 2 0

HI HI HH 1 0

HI HH II 0.5 0.5
HI HH IH 0 0

HI HH HI 1.5 0.5
HI HH HH 1 0

HH II II 0 0

HH II IH 0.5 0.5
HH II HI 0.5 0.5
HH II HH 1 0.75

HH IH II 0 0

HH IH IH 1 0

HH IH HI 0.5 0.5
HH IH HH 1.5 0.5
HH HI II 0 0

HH HI IH 0.5 0.5
HH HI HI 1 0

HH HI HH 1.5 0.5
HH HH II 0 0

HH HH IH 1 0

HH HH HI 1 0

HH HH HH 2 0

Table 3.3: Info gain and chance getting caught when measuring 2 bits in BB84
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Average info gain = 48
64 = 0.75

By adding the values of all entries in the column chance caught of tables 3.2 and 3.3 and dividing it by

the number of entries in this column we get the formula:

Average chance caught = 15
64 = 0.234375

Using the chances calculated using table 3.1 the average info gain and chance of Eve getting caught can

be calculated for an arbitrary number n of bits sent.

For n bits sent, and g being the average info gain for one bit and gi the info gain for the ith bit and for every

bit the average info gain is the same: ∀i ∈ {1, 2, ..., n− 1, n} : gi = g. Since the average info gain for each bit

adds to the info gain of the previous bits, we have:

g1 + g2 + ... + gn = g ∗ n

Since g = 3
8 , the average info gain for n bits is 3

8 ∗ n.

The results of table 3.1 can also be used to calculate the average chance of Eve getting caught for an ar-

bitrary number n of bits sent.

For n bits sent, and p being the average chance of Eve getting caught when sending one bit and for every bit

the average chance getting caught is the same: ∀i ∈ [1 : n] : p = pi. The chance of Eve getting caught for

n sent bits is the negation of Eve not getting caught n times. The chance of Eve not getting caught for one

sent bit is the negation of Eve getting caught pi for one bit sent. Negating a chance p is the same as subtract-

ing a chance p from one. So the negation of p is 1− p. The chance of Eve not getting caught after n bits sent is:

(1− p1) ∗ (1− p2) ∗ ... ∗ (1− pn) = (1− p)n

So the chance of Eve getting caught after n sent bits is the negation of this formula:

1− (1− p)n

Since p = 1
8 , this results in the following formula:

Average chance caught for n bits = 1− (1− 1
8 )

n = 1− ( 7
8 )

n

In case the successfully transferred bits are used, then g = 3
4 . This can be substituted into g ∗ n, result-

ing in:

Infogain Eve for n successfully transferred bit = 3
4 ∗ n
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Figure 3.1: Chance of getting caught when eavesdropping a number of bits in BB84

In the same way the chance of Eve getting caught for n successfully transmitted bits by substituting the

corresponding p = 1
4 into 1− (1− p)n, resulting in:

Chance of getting caught for n successfully transferred bits = 1− (1− 1
4 )

n = 1− ( 3
4 )

n

To test the formula Average chance caught = 1− ( 7
8 )

n. The BB84 protocol was simulated using c++. The

number of times Eve got caught was documented for n transmitted bits ranging from 0 to 30. For each

n ∈ [0 : 30] the simulation was run 10000 times. From these the average times Eve got caught was taken. The

results can be seen in figure 3.1. This figure shows the theoretical results according to the formula Average

chance caught = 1− ( 7
8 )

n and the measured results. As can be seen the measured results show roughly the

same behaviour as the theoretical values.

The same test was done for the formula Chance of getting caught for n successfully transferred bits =

1− ( 3
4 )

n. The results can be seen in figure 3.2. Again the measured results show roughly the same behaviour

as the theoretical values.
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Figure 3.2: Chance of getting caught when eavesdropping a number of successfully transferred bits in BB84

3.2 Bennett 1992 (B92)

In the B92 protocol, the sender Alice, the receiver Bob and the eavesdropper Eve exhibit the following be-

haviour:

If Alice wants to send a bit 0, she sends a photon polarised by 0◦, if she wants to send a bit 1, she sends a

photon polarised by +45◦.

Bob has a photon detector behind a polariser. This polariser can be set at 90◦ or −45◦. He picks an ori-

entation at random.

A photon polarised at 0◦ has 0% chance passing through a 90◦ polariser, and 50% chance passing through a

−45◦ polariser. A photon polarised at +45◦ has 50% chance passing through a 90◦ polariser, and 0% chance

passing through a −45◦ polariser.

Alice and Bob synchronise their activity. If Bob detects no photon after Alice has sent a photon, Alice discards

the bit out of the bit string belonging to this photon. If Bob detects a photon using the −45◦ polariser, he
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knows Alice polarised using 0◦, should there be no eavesdropping. This means Alice wanted to send a 0, so

Bob concludes he received a 0. The same goes for Bob detecting he photon using the 90◦ polariser. He can

then conclude he received a 1.

If Eve wants to eavesdrop, for the input she picks at random a polarisation angle of −45◦ or 90◦. This

input polarisation happens before her detector. She synchronises her measurements with Alice and Bob.

If she detects no photon she sends a new photon using the polarisation orthogonal to her input polarisation

angle, so 0◦ for a 90◦ input and +45◦ for a −45◦ input.

If she detects a photon using −45◦ input she knows it was sent using a 0◦ polariser, so she outputs a 0◦

photon. In case of detection with a 90◦ input she outputs using a +45◦ polariser.

After these steps, Alice and Bob compare a public subset in the same way as the BB84 protocol. If an

error is found, that is a mismatch between Alice and Bob’s bit string, this means eavesdropping has oc-

curred [3] [4] [5].

The chance of an error in case of eavesdropping for n bits successfully transferred and intercepted by Eve is:

1− ( 3
4 )

n. This is explained below:

Table 3.4 shows all possible combinations of bases Alice, Eve and Bob can pick as well as taking into ac-

count the fact that Eve and Bob can detect and not detect a photon. This results in 32 entries, since there

are 2 bases, 3 parties and the chance of Eve detecting or not detecting and Bob detecting or not detecting:

23 ∗ 2 ∗ 2 = 32. If Eve or Bob detects a photon, they know it is a 0 if they picked an input base of −45◦ and a

1 if they picked an input base of 90◦. Not detecting a photon is represented in the figure as ”x”.

Info is gained by Eve if and only if Eve detected a photon and Bob detected a photon. These are the entries

in the column with value 1.

The chance of Eve getting caught under the column ”p-caught” has entries with value 1 in the cases that Bob

measures a bit that was not intended by Alice. When Alice and Bob compare their subset of bits they will

detect a mismatch and will conclude Eve was eavesdropping, so Eve will be caught.

The info Eve gains on average for n measured bits is the average info gain for one transmitted bit, times n:

Infogain for n measured bits = 2
32 ∗ n = 1

16 ∗ n

The chance of Eve getting caught after n sent bits, is the negation of Eve not getting caught n times:

p-caught for n measured bits = 1− (1− 2
32 )

n = 1− (1− 1
16 )

n = 1− ( 15
16 )

n

In case n stands for the number of successfully transmitted bits, only the entries where Bob detects a photon

are taken into account, this results in the formula:
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Alice send Alice base Eve in-base Eve detects Eve out-base Bob base Bob detects info gain p-caught
0 0◦ 90◦ x 0◦ 90◦ x 0 0
0 0◦ 90◦ x 0◦ 90◦ x 0 0
0 0◦ 90◦ x 0◦ 90◦ x 0 0
0 0◦ 90◦ x 0◦ 90◦ x 0 0
0 0◦ 90◦ x 0◦ −45◦ x 0 0
0 0◦ 90◦ x 0◦ −45◦ 0 0 0
0 0◦ 90◦ x 0◦ −45◦ x 0 0
0 0◦ 90◦ x 0◦ −45◦ 0 0 0
0 0◦ −45◦ x +45◦ 90◦ x 0 0
0 0◦ −45◦ x +45◦ 90◦ 1 0 1
0 0◦ −45◦ 0 0◦ 90◦ x 0 0
0 0◦ −45◦ 0 0◦ 90◦ x 0 0
0 0◦ −45◦ x +45◦ −45◦ x 0 0
0 0◦ −45◦ x +45◦ −45◦ x 0 0
0 0◦ −45◦ 0 0◦ −45◦ x 0 0
0 0◦ −45◦ 0 0◦ −45◦ 0 1 0
1 +45◦ 90◦ 1 +45◦ 90◦ x 0 0
1 +45◦ 90◦ 1 +45◦ 90◦ 1 1 0
1 +45◦ 90◦ x 0◦ 90◦ x 0 0
1 +45◦ 90◦ x 0◦ 90◦ x 0 0
1 +45◦ 90◦ 1 +45◦ −45◦ x 0 0
1 +45◦ 90◦ 1 +45◦ −45◦ x 0 0
1 +45◦ 90◦ x 0◦ −45◦ x 0 0
1 +45◦ 90◦ x 0◦ −45◦ 0 0 1
1 +45◦ −45◦ x +45◦ 90◦ x 0 0
1 +45◦ −45◦ x +45◦ 90◦ 1 0 0
1 +45◦ −45◦ x +45◦ 90◦ x 0 0
1 +45◦ −45◦ x +45◦ 90◦ 1 0 0
1 +45◦ −45◦ x +45◦ −45◦ x 0 0
1 +45◦ −45◦ x +45◦ −45◦ x 0 0
1 +45◦ −45◦ x +45◦ −45◦ x 0 0
1 +45◦ −45◦ x +45◦ −45◦ x 0 0

Table 3.4: Possible bases that can be picked and the info gain Eve can achieve and her chance of getting caught in B92

Infogain Eve for n successfully transferred bits = 2
8 ∗ n = 1

4 ∗ n

P-caught for n bits successfully transferred = 1− (1− 2
8 )

n = 1− (1− 1
4 )

n = 1− ( 3
4 )

n

These formula where tested by simulating the B92 protocol. For n sent bits, n ranging from 0 to 30, for every

n the protocol was run 10000 times and the average was taken. The results for n sent bits can be seen in

figure 3.3. The results for n successfully transferred bits can be seen in figure 3.4. Both results show a great

similarity between the measured results and the theorised formula.

3.3 EPR states and entanglement

Bell states, or EPR states or EPR pairs, can be made by sending a pair of qubits x and y through a CNOT

gate depicted in figure 3.5. But before sending the top qubit x through the CNOT gate, this qubit is passed

through a Hadamard gate.

A Hadamard gate turns a |0〉 into |0〉+|1〉√
2

and a |1〉 into |0〉−|1〉√
2
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Figure 3.3: Chance of getting caught when eavesdropping a number of bits in B92

Figure 3.4: Chance of getting caught when eavesdropping a number of successfully transferred bits in B92
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Figure 3.5: The CNOT gate [1, Chapter1.3.6,p, 26]

The CNOT will flip the bottom qubit y only if the the top qubit x is |1〉, since the top qubit x now is in a

superposition between |0〉 and |1〉, wether or not the bottom qubit y will be flipped is also in a superposition.

This way the outcome of measuring the top qubit x will affect the outcome of measuring the bottom qubit y

and visa versa. This means the two qubits have become entangled.

The four possible combinations for two qubits form the following EPR states:

|β00〉 = |00〉+|11〉√
2

|β01〉 = |01〉+|10〉√
2

|β10〉 = |00〉−|11〉√
2

|β11〉 = |01〉−|10〉√
2

[1, Chapter1.3.6,p, 25]

3.4 Ekert protocol

The Ekert protocol uses quantum entanglement to securely transfer a secret key between Alice and Bob. The

quantum channel consists of a source that emits pairs of spin- 1
2 particles. The particles fly apart along the z

axis, toward Alice and Bob. Alice and Bob have their own three directions to measure the particle. Alice can

measure in 0, 1
4 π and 1

2 π. Bob can measure in 1
4 π, 1

2 π and 3
4 π. Each measurement can yield two results: +1

(spin up) and -1 (spin down). When Alice and Bob pick the same base for measurement, their results will

be anti-correlated, because the two particles are entangled. When Alice measures a 1 in this case, Bob will

measure a -1 and vice versa.

After the transmission has taken place, Alice and Bob will announce in public which directions they picked.

Alice and Bob will separate their results into a set where they picked the same base and a set where they

picked a different base. In case one or both of them failed to detect a particle, this result is discarded.

The set of measurements where they both picked the same base will become their secret key, after one of

them flipped their results, because of the anti-correlation. They most important feature of this protocol is

that Alice and Bob do not need to send part of their secret key in order to check for the presence of an
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eavesdropper. They can use the subset where they picked different directions to detect an eavesdropper by

publicly comparing their results. In this way they will not leak any information about their shared secret key.

In order to detect the presence of an eavesdropper, the following procedure is used:

E(ai, bj) = P++(ai, bj) + P−−(ai, bj)− P+−(ai, bj)− P−+(ai, bj)

E(ai, bj) is the correlation coefficient of the measurements performed by Alice along ai and Bob along bj, where

i, j = 1, 2, 3 and ai, bj are unit vectors that represent the directions Alice and Bob can measure in respectively.

The vectors ai and bj lie in the x, y-plane, so perpendicular to the trajectory of the particles. They are charac-

terised by azimuthal angles: φa
1 = 0, φa

2 = 1
4 π, φa

3 = 1
2 π and φb

1 = 1
4 π, φb

2 = 1
2 π, φb

3 = 3
4 π. The superscript ”a”

and ”b” refer to Alice and Bob’s analysers, respectively.

A quantity S can be defined that is composed of correlation coefficients for which Alice and Bob picked

different directions:

S = E(a1, b1)− E(a1, b3) + E(a3, b1) + E(a3, b3)

Quantum mechanics requires that: S = −2
√

2. If this is not the case that means the particles Alice and

Bob measured where no longer entangled, indicating an eavesdropper intervened [6].
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Quantum Hacking

In theory the BB84 protocol is unbreakable in the sense that if a significant amount of photons is sent between

Alice and Bob, the chance of an eavesdropper getting caught approaches 1. When physically implicating the

protocol however, imperfections in the protocol come to light.

First of all realistic detectors have some noise, therefore, Alice’s and Bob’s data will differ even in the absence

of eavesdropping. Accordingly, they must be able to recover from a reasonably small error frequency.

Second of all it is technically difficult to produce a light pulse containing exactly one photon.It is much easier

to produce a pulse, which may be regarded as a superposition of quantum states with 0, 1, 2 ... photons. In

either case let µ be the expected number of photons per pulse. If µ is small (i.e., significantly less than 1),

there is a probability approximately µ2/2 that an eavesdropper will be able to split a pulse into two or more

photons, reading one and allowing the other(s) to go to Bob. This allows the eavesdropper to learn a constant

fraction of the bits shared between Alice and Bob without inducing errors [7].

4.1 Intercept/Resend

In practice errors in transmission always occur even without the presence of an eavesdropper. Therefore Al-

ice’s and Bob’s private key will always differ. To counteract this, Alice and Bob simply assume eavesdropping

has taken place. They will perform error correction on their private keys by communicating about the parity

of blocks of size l of their key. This l is chosen in such a way that the estimated amount of errors in the block

is smaller than 2. In this way disagreement on the parity of the block indicates an error. In order to find the

error. The error containing block of size l is split into smaller blocks. On these smaller blocks the parity check

is repeated. The block with non-matching parity is split again and the parity checking is repeated until the

30
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error is found. Each time a parity check is done on a block, the last bit of the block is discarded in order to

counteract information leakage.

After this error correction procedure, a procedure of privacy amplification is done. Alice and Bob use a hashing

function to map their private key unto a new smaller private key. This hashing function works in such a way

that different private keys will result in radically different new (smaller) keys. In this way the portion of the

initial private key that leaked via eavesdropping will be useless. This hashing procedure can be repeated as

many times as needed to amplify the privacy. The length of the key will be reduced every time this procedure

takes place, therefore it is desirable to amplify the privacy only as much as necessary. The amount of times

this procedure must be repeated can be calculated after estimating the number of bits an eavesdropper has

intercepted [7].

4.2 Beam-splitting

Because it is hard to produce a pulse of light containing exactly one photon, it might occur a pulse of light

contains more than one photon. Should this occur, an eavesdropper could intercept one photon using a

beamsplitter and let the other photon pass to Bob. The intercepted photon could be stored by trapping it

between two mirrors. Bob will receive his photon in the original superposition, so this will not introduce any

errors. The eavesdropper can store the photon until after Alice and Bob announced the bases they used for

measurement. In the cases where Alice and Bob used the same bases, Eve can pick this base to measure her

stored photon. In this way Eve will measure the correct result without a chance of being detected.

To counteract this the pulses of light are kept short with a chance of the pulse containing a photon µ being

significantly smaller than 1. This will often result in Bob not receiving a photon, but it will keep the chance

of a pulse containing multiple photons low.

Another way to counteract the beam-splitting is waiting an appropriate amount of time before announcing

the bases. Photons can not be stored indefinitely between two mirrors. So if Alice and Bob wait long enough

before announcing their bases, Eve will have no photons left to measure [7].

4.3 Time-shift attack

A Time-shift attack takes advantage of the fact that Bob uses separate detectors to detect a 0 or a 1 bit. The

detector sensitive for a 0 bit can detect photon at time t0 and the detector sensitive for a 1 bit can detect a

photon at time t1, with ∆T = t1 − t0, where t1 > t0. Eve can exploit this by randomly time-shifting the quan-
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tum signal by ∆T or −∆T, while keeping a log of the time-shifts used. Because Alice and Bob synchronise

their signal transmission and detection. This time-shifting allows Eve to blind the 0 or 1 detector of Bob.

Time-shifting with ∆T blinds the 0 detector and time-shifting with −∆T blinds the 1 detector. So by the time

Bob announces the bases he used and when he detected a photon, Eve can use her time-shift log to know

which detector was blinded at that time and thus which detector was unblinded. If Bob detected a pho-

ton at that time, this means this can only be done by the unblinded detector. Therefore Eve knows the value

of this bit. This way Eve can get information about the sent bits without measuring the quantum signal [8] [9].
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