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Abstract

Network analysis is a frequently applied method of studying relations in a dataset.
Many network measures assume that each edge in the network conveys the same
information. This allows us to express measures such as distance, but can also lead
to an incomplete or incorrect view of the data as only one relation in the data
can be taken into account. In this thesis we study motif detection on multiplex
networks, in which multiple types of interaction occur at the same time. Motifs are
subgraphs that occur more frequently in an empirical network than they would do
in a synthetically created network. As such they are the basic building block of the
network, and can express important structures for a specific type of network.

We create a multiplex network from a corporate database by joining two uni-
plex networks: an ownership network and a board interlock network. By comparing
the motifs from uniplex networks to multiplex networks we show the difference in
information between the two types of networks. To do so we first define what type
of motif is needed to best capture important corporate structures. Then we extend
that definition to multiplex motifs. We augment an existing algorithm for motif
detection to multiplex motif detection and compare the frequency of motifs in the
empirical network to their frequency in a collection of synthetic graphs. We find that
multiplex motifs provide information on certain industry sectors, as several motifs
contain significantly higher concentrations of a certain sector compared to the full
dataset.

1 Introduction

Social networks have been around since as early as the 1930’s [12]. They provide us with
a way to visualize data and the connections that link different instances of that data.
By depicting data instances as nodes, and drawing relations between them as lines, a
graph is created. This helps us understand the underlying structure and enables us to
analyze the data in a new way. For example, social networks have been used to model
disease outbreaks [19], explain social behavior [39], and analyze economical business struc-
tures [38, 35]. Likewise social networks have been used to better understand how the
real-world data came to be. By defining a set of rules, called a model, synthetic networks
can be created that show similar properties to a real-world network, thus explaining how
this data could occur.

Often analysis is only applied to a single kind of relation. Such a network is called a
uniplex network. Think for example of an online social network, where everyone you know
is classified as a friend. This network is easy to analyze as every relation has the same
meaning. This gives the properties of a network, such as density and distance, a clear
meaning, which can easily be interpreted by researchers. When two people A and C have
a mutual friend B, but A and C are not friends, we can state that the distance between A
and C is exactly 1 friend and thus that they are closely related in a network of friendship.
We can imagine an implied relation. A and C might meet in real life, or could become
friends themselves. This situation is measurable and understandable.

However, in the real world there are often multiple relations to consider. People are
not only friends with each other. They are also family, neighbors or colleagues. Each
of these relations explains how data instances relate, but all do so in a different way.
This complicates network analysis. Different relations may be incomparable with each
other and thus it is unclear how to express most network properties. Are two people who
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are friends just as strongly related as two people who are colleagues? To simply regard
all relations as equally important or to leave out some relations could lead to wrong
conclusions [16, 17, 23]. Thus we have a need to extend network analysis to networks that
reflect all relations of the data.

A network with multiple types of relations is called a multiplex network. It is also
referred to as a multi-relational, multi-dimensional or multi-layered network. Each type
of relation is shown using a different edge color in the network visualization. Instances
of data are not restricted to only one type of relation. Any node in a multiplex network
can have multiple different relations with any other node in the network. A person can
be both a friend and a colleague. See Figure 1 for an example.

A B

C

D E

FG

(a) Uniplex network

A B

C

D E

FG

(b) Multiplex network

Figure 1: Uniplex and multiplex example

There are many examples of datasets with multiple types of relations which have
been studied. A scientific collaboration network contains data on researchers and their
published papers. Each node represents a researcher, and each relation between two nodes
expresses those researcher’s collaboration on a paper. The different scientific fields are
translated into different types of relations. Similarly an actor network contains information
on actors and the movies they starred in. Each node is an actor, and each relation between
two nodes means those actors co-starred in a movie. The different movie genres are used
as different types of relations. Such networks can reveal the preference of researchers or
actors to collaborate with people already close to them, even if that person has done work
in a different field or genre [3].

In this study we will focus on a corporate database. This corporate database con-
tains information on companies such as revenue, directors, location, industry, and stock
ownership. From this database we can extract multiple relations. It is possible to relate
companies that share a board member in the board of directors, or to relate a company
to another company in which it owns stock. We call these relations board interlock and
ownership relations respectively.

Note that many of the given network examples are inherently bipartite, i.e., based on
two different node types. Scientific collaboration is done via a paper, co-starring is done
via a films, board interlocks are realized via directors. In all these situations a relation
between two nodes is realized by a common node in a bipartite layer. This drastically
changes the interpretation of node properties. An actor with many co-star relations might
have starred only in one movie, which happened to include a lot of actors. The bipartite
aspect of a network is important to keep in mind when explaining phenomena in a network.

The main analysis technique in this thesis is the detection of network motifs [26]. A
network motif is a pattern in a network that describes a relation between multiple nodes
that is unlikely to happen at random. These motifs are thus probably the results of real-
world events, and can tell us more about the way data is linked. This information is
neither a feature of the whole network nor a feature of a single node. Macro-level network
features, such as density and diameter, provide information on the network as a whole.
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Micro-level network features, such as degree and centrality, provide information on single
nodes from a network. Instead motifs are a meso-level network feature and as such they
provide information on a small group of nodes. Because motifs can be expressed using
only structural properties, they can be extended to multiplex networks.

Motifs express those parts of a graph that are characteristic for that graph. In effect
they also indicate the difference between networks as each network has a different set of
motifs [24]. In a gene regulation network motifs tell which pathways are important for
this specific gene. In a food web, a network visualizing hunter-prey relations, motifs can
describe which species are dependent on each other [26]. The motifs describe a structure
that is important for the dataset. In case of a corporate network, a motif can describe the
structure that a company uses to regulate their subsidiaries, protect itself from bankruptcy
or hostile and strategic takeovers, or create a diverse portfolio. With the recent economic
turmoil in mind, motifs might prove very effective in indicating which corporate structures
are hazardous in regards to financial stability. Since financial security between companies
is not solely dependent on one type of relation, but on many, such as ownership, loans,
transactions, and contracts. It is important to take into account the multiplex aspect of
corporate data.

To discover the difference in information provided by a multiplex network as opposed
to a uniplex network, we compare the motifs found in both types of networks and ask the
question if multiplex motifs provide a better understanding of the basic building blocks
of a corporate network compared to uniplex motifs and if so, does this indicate that in
general multiplex motifs provide a better view of a network compared to uniplex motifs?

In Section 3 we discuss other studies on the topics of motif discovery and multiplex
networks. In Section 4 we explain how to gather motifs and how to extend the existing
motif recognition algorithms to find multiplex motifs. In Section 5 we introduce the em-
pirical data. In Section 6 we expand on how to analyze and compare both the uniplex
motifs and the multiplex motifs. In Section 7 we examine the found motifs, and apply
previously discussed analysis and comparison methods. Finally in Section 8 we present a
conclusion and provide leads for further research.

2 Notation

For the sake of clarity throughout this thesis, we will first define our notations. This keeps
our definitions more concise and structured.

A network, or graph, is noted as G. A graph G consists of a set of nodes V and a set of
edges E. Likewise V (G) and E(G) are the nodes and edges of graph G. There may only
be one edge in the same direction between any two nodes.

A graph g is a subgraph of G if and only if E(g) ⊆ E(G) and V (g) ⊆ V (G), where
all nodes incident with an edge in E(g) occur in V (g). The size k of a subgraph g is the
number of nodes in V (g).

The pattern of a graph is its abstract representation without node labels or ID’s. All
isomorphic graphs thus have the same pattern. We say I is the collection of all patterns.
S i
k(G) is the set of subgraphs of pattern i ∈ I and size k in graph G. Thus |S i

k(G)| is
the number of occurrences of pattern i ∈ I of size k in graph G, which we call this the
frequency of pattern i.

Motifs are based on subgraphs. A motif M is a pattern that is considered important
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according to a statistical metric. M(G) denotes the set of subgraphs that form motif M
in graph G.

An overview can be seen in Figure 2. Figure 2a shows an example graph. From this
graph we take two size 4 subgraphs (Figure 2b). These subgraphs have the same pattern
(Figure 2c). If this pattern is considered significant, then it is a motif (Figure 2d). Note
that a pattern and motif are both abstract representations of a subgraph, and are in all
aspects identical except that a motif has been deemed important.

A multiplex graph G contains multiple types of edges. The collection of edge types is
called J . We use Ej(G) with j ∈ J to refer to a specific type of edge. There may only
be one edge in the same direction of any type between any two nodes. Throughout this
paper we will use different colors to show different types of edges. See Figure 1b for an
example. Subgraphs of multiplex graphs are also noted as g.

Every graph has a degree sequence D, which is a list of all degrees per node. The
function D(v) with v ∈ V (G) is the degree of node v in graph G. When the edges of a
graph are directed, the degree sequence D is split into Din and Dout, to specify in-degree
and out-degree. When the graph is a multiplex graph, each type of edge has its own
degree sequence Dj with j ∈ J . A degree sequence of edge type j ∈ J that is directed
is noted as Dj-in and Dj-out. An example of a degree sequence for Figure 2a would be
[2, 2, 4, 2, 4, 2, 2, 2, 2], given the nodes are alphabetically ordered.

A B

C D

EI F

G H

(a) Graph

A B

C D

E F

G H

(b) Subgraphs

A B

C D

(c) Pattern

A B

C D

(d) Motif

Figure 2: Breakdown of motifs

We also make use of bipartite networks. A bipartite network is a graph where the
nodes can be divided into two groups. Edges may only exist between nodes of different
groups. See Figure 3a for an example. We express the degree sequence of such a network
as a directed graph. For the example in Figure 3a this results in an in-degree sequence
of [0, 0, 0, 0, 1, 3, 1, 2], and and out-degree sequence of [2, 1, 3, 1, 0, 0, 0, 0], given that the
nodes are ordered as A,B,C,D, 1, 2, 3, 4.

A B C D

1 2 3 4

(a) Bipartite Network

1 2 3

4

(b) One-mode projection

Figure 3: Transforming a bipartite network to a one-mode projection.

A bipartite network can be transformed into a one-mode projection. This projection
shows only one of the node groups, and draws edges between those nodes which are related
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via a node in the other group. In the example Figure 3a, node 1 and 2 would be related
through node A. A complete one-mode projection of Figure 3a can be seen in Figure 3b.

The degree sequence can be used as basis to generated a random graph. A model that
generates a graph with a similar, but not equal, degree sequence is called a canonical
model. A model that strictly generates graphs with equal degree sequence is called a
micro-canonical model.

3 Related work

In this section we will look at several studies in the field of motif recognition, network
modeling and multiplex networks. We end this section with a discussion on how the
presented studies relate to our study.

3.1 Pattern recognition

Motif recognition is a #P-hard task [33]. The most computationally expensive part of
motif recognition is counting the frequency of all patterns. To do so each subset of nodes in
a graph has to be compared against all known (possibly isomorphic) subgraphs. Therefore
any motif recognition algorithm must be provided with a small enough input to finish in
exponential time, or give an approximation of the frequency of motifs [33]. Many motif
recognition algorithms work around these limitations by only finding a specific subset of
patterns, or accepting only a specific type of graph.

CODENSE [14] is an algorithm that discovers only coherent dense subgraphs. CO-
DENSE also uses graph specific information, such as node labels, to circumvent the “sub-
graph isomorphism proble”, whose complexity is still unresolved. This reduces both the
total number of subgraphs that should be analyzed and the time needed to analyze a
subgraph, thus greatly reducing computational time.

SEuS [13] uses a summary method to reduce the size of a graph. This summary method
combines nodes of the same type, and thus requires node labels to work. During subgraph
frequency counting SEuS asks for input if a discovered subgraph should be counted or
not. By doing so SEuS reduces the input and total number of subgraphs that should be
analyzed.

G-Tries [31], FANMOD [37], and Subenum [34] find only induced subgraphs. Induced
subgraphs contain all edges between its nodes, if those edges are present in the graph:

Definition 1 Induced Subgraph
Subgraph g is an induced subgraph of G if for any pair of nodes u, v ∈ V (g), it holds that
if (u, v) ∈ E(G) then (u, v) ∈ E(g).

This prevents counting the same set of nodes but with fewer edges, as a different sub-
graph, thus reducing the number of possible subgraphs.

Another method to reduce computational complexity is to only determine if the fre-
quency of a subgraph passes a certain threshold. Because SEuS uses graph summaries,
SEuS can use the downwards closure property to quickly determine if the frequency of a
subgraph passes the threshold. The downwards closure property states that the frequency
of a subgraph does not increase as the size increases.
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Similarly to SEuS, hSiGraM and vSiGraM [20] also use the downwards closure prop-
erty to determine if the frequency of a subgraph passes a threshold. Instead of using a
graph summary like SEuS, these algorithms search only for edge-disjoint subgraphs. The
edge disjoint property states that no subgraphs shall contain the same edge. Thus each
counted subgraph contains a unique set of edges. This allows for the downwards closure
property to be used.

SUBDUE [15] finds many similar structures in a graph, and replaces them with a
smaller description of the original structure. This compresses the graph and makes it
easier to visually interpret, but it does not count the frequency of a subgraph. Replacing
structures also prevents structures from overlapping. This is a similar restriction as the
edge-disjoint property.

3.2 Multiplex Networks

With the multiple dimensions in a multiplex network a big problem arises: many of the
properties used to describe a network must be redefined to include every dimension of
a multiplex network. Some edge types might indicate a very significant relation, while
other edge types provide no useful information on relations at all. In order to interpret
any network property of a multiplex network, it is necessary to know how the edge types
relate to each other. We are not aware of any study that solves this problem for the gen-
eral case. However, motifs do not require network measures based on the information of
edges. A motif can be extracted regardless of edge type. It matters only if there is an edge.

One study solves this problem for community detection [32]. The proposed solution is
to combine all dimensions into one. With a linear equation the weight of each dimension is
summed up. The linear equation is chosen in such a way that the quality of the resulting
communities is maximal. For community detection such an approach can work. Commu-
nities have clear measures of quality, such as modularity. Other network properties such
as diameter do not have a comparable quality measure.

Multiplex networks also offer new possibilities. One study aimed to create a feature
vector for each node in a multiplex network [9]. These vectors could then be used to
compare and analyze the nodes to find similar nodes, or make predictions about missing
or future links. Likewise the authors of [17] created a multiplex network relating movies
based on viewer ratings by selecting significant edges from a bipartite multiplex network.

3.3 Corporate network analysis

This study is not the first research to apply automatic motif recognition on a large cor-
porate networks. In 2009 a study was done on size 3 motifs in a corporate transaction
network [30]. By linking companies that provided services or materials for each other, a
network of process chains is created. The size 3 motifs show which parts of the chains are
interesting and can be used to classify companies based on their position in the motif.

Corporate networks have also been studied using others techniques. It is suggested
that social network analysis can help improve economic models, and it has been shown
that network models could have predicted the 2008 economic crisis [5]. More specifically
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a large scale ownership-network structure analysis provides a global overview of where
influential companies are located in a corporate network [36]. Likewise a study on board
interlock networks has shown that board member decisions can be explained by the links
in a network [4].

3.4 Relations to this study

We have discussed many studies regarding our field of interest, and have seen that both
ownership and interlock networks hold interesting information with regards to economic
events. In this section we will conclude which of these studies would best suit our needs
for motif recognition and analysis.

For motif discovery we have seen many algorithms that apply restrictions and bound-
aries to speed-up pattern recognition [13, 14, 20]. We consider these algorithms to be
too restrictive. In this study we are interested in relations between all nodes. The algo-
rithms that find induced subgraphs would therefore fit best. Especially the very recently
published Subenum [34] is promising as it claims to outperform the other algorithms.
SUBDUE [15] is also very promising. SUBDUE might detect similar patterns instead of
just identical patterns. This could uncover other structures that help to better understand
the network as a whole. However, because SUBDUE does not count frequencies and is
also too restrictive on the patterns found, we will not use it. Thus the first point of action
is to expand Subenum to work with multiplex networks.

4 Approach: Motif Recognition

In this section we will discuss the expansion of motif recognition to multiplex motif recog-
nition. First we define what a multiplex motif is. Second we closely study the original
Subenum algorithm. Finally we implement a multiplex version of the Subenum algorithm.

4.1 Multiplex Motifs

In Section 1 we have seen a brief introduction of a motif. However, in Section 3 we
have seen that there are several different types of subgraphs to be found. Many motif
recognition algorithms find induced subgraphs (see Definition 1). An induced subgraph
captures all the available information between the set of nodes of a subgraph. We reason
that leaving out information (edges) does not reflect on a real situation. An example is
given in Figure 4, showing graphs with the same nodes. Figure 4a leaves out the edge
between node A and C. Both graphs contain the subgraph A − B − C. In Figure 4a
this subgraph makes sense as it conveys the way node A and C are related. However in
Figure 4b the subgraph suggests that node A and C are not directly related, which is
wrong. Not taking into account all the edges could give a wrong impression of the graph.
For this reason we argue that all edges of every type must be taken into account for a
multiplex subgraph. The graphs in Figure 5a and 5b therefore do not contain the same
triangle subgraph A,B,C. With knowledge of the domain information represented by the
graph, one could still determine for every edge type if it is important for a motif or not,
and thus that the triangles shown in Figures 5a and 5b are actually the same. However
we do not always have domain knowledge, and in the general case we can only be sure
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that two subgraphs are equal if and only if all edges of all types match. Therefore we need
multiplex induced subgraphs.

We adjust Definition 1 of an induced subgraph to the definition of a multiplex induced
subgraph.

Definition 2 Multiplex Induced Subgraph
Let g be a subgraph of the multiplex graph G. Let J be all types of edges in G.
Let Ej(G) be all edges of type j ∈ J .
Then g is a multiplex induced subgraph if for any pair of nodes u, v ∈ V (g), it holds for
each type of edge j ∈ J that if (u, v) ∈ Ej(G) then (u, v) ∈ Ej(g).

Furthermore we only look at connected subgraphs.

A B

C

(a)
Line shaped

A B

C

(b)
Triangle shaped

Figure 4: Induced graph example

A B

C

(a)

Triangle shaped

A B

C

(b)
Multiplex
Triangle shaped

Figure 5: Induced multiplex graph example

4.2 Subenum

In order to change the Subenum algorithm to work on multiplex graphs, we must first
understand the exact mechanics of the algorithm. We briefly discuss the algorithm in this
section. For a more detailed description see [34].

The Subenum algorithm is based on the Enumerate Subgraph algorithm (ESU) pro-
posed in [37]. This algorithm counts subgraphs in directed unweighted graphs. To find all
subgraphs of size k, ESU labels all nodes with a unique numerical ID (Figure 6b). It then
loops over every node starting at the lowest ID node (Figure 6c), recursively expanding
on every neighboring node with a higher ID (Figure 6d). The expansion lasts until the set
of nodes is of size k (Figures 6e and 6f). The resulting set of nodes with all edges between
them is a subgraph. The subgraph is then given a canonical label with the Nauty [22]
algorithm. This label is guaranteed to be equal for all isomorphic subgraphs.
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A B

C

D

(a) Input:
A graph

1 2

3

4

(b) Step 1:
Numerical labels

1 2

3

4

(c) Step 2:
Start at lowest ID

1 2

3

4

(d) Step 3:
Expand

1 2

3

4

(e) Step 4a:
Expand and stop at size 3

1 2

3

4

(f) Step 4b:
Expand and stop at size 3

1 2

3

4

(g) Step 5:
Restart at next
lowest node

Figure 6: ESU algorithm example for subgraphs of size 3

Subenum aims to parallelize the ESU algorithm. Each recursive expansion per node
could be done in parallel, as they are unrelated to each other. However the load balance
per thread can be very uneven as the number of expansions is directly related to the
degree of a node being expanded. Therefore it expands on edges instead of nodes. Nodes
are given a unique numerical ID. For each edge, Subenum expands on the neighboring
nodes of both nodes of the edge, if and only if the numerical ID of the neighboring node is
higher than the lowest ID of the node of the edge. That node is then added to the subgraph
node set, and a new set of neighboring nodes is defined. Each edge can be analyzed in a
separate thread, achieving well balanced parallelism.

Subenum also changes the way subgraphs are checked for isomorphism. Keeping all
found isomorphic subgraphs in the main memory rapidly becomes inviable when the
number of subgraphs becomes large. This quickly happens when the input graph is large
or the subgraph size is large. Subenum uses a two phase isomorphism check to work round
the limited main memory. In the first phase when a subgraph is discovered, the nodes are
relabeled into an ordered form. The ordered form labels all nodes in the subgraph based on
their degree. The lowest degree node gets the lowest ID, the node with the highest degree
the highest ID. It is undefined what happens with nodes that have the same degree. This
does not matter as this can only create different node labels which Nauty will correct
later. Graphs that are isomorphic will likely result in the same ordered labeling and thus
result in identical adjacency matrices. When the memory limit is reached, all graphs
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(and their frequencies) are written to disk. Any subgraph added to memory will then
be seen as a new graph again. The resulting output can thus contain multiple entries of
graphs that are identical. Either because the ordered labeling was different or because
the memory has been written to disk. In the second phase Nauty is used to give each
subgraph (labeled in ordered form) a labeling in canonical form. This guarantees that any
isomorphic subgraphs receive the same label. See Figure 7 for an overview of all processes.
The input of the whole process is an edge list. Each line in an edge list is a tuple describing
an edge in the graph. Each tuple consisting of a source node, a target node, and an ID
for an edge type. The output is a motif list. A motif list is a file where each line specifies
a unique motif identifier, followed by the frequency of that motif.

Edge list

Subenum

Ordered form frequencies

Nauty

Canonical form frequencies

Merge identical canonical labels

Subgraph frequencies

Filter on significance

Motif list

Figure 7: Subgraph enumeration flowchart

11



4.3 Multiplex Adaptation

We now have a clear definition of multiplex motifs, and a good understanding of the Sube-
num algorithm. With this we can adapt the algorithm to work with multiplex networks.
The adaptation is a two step process. The first step is to adapt the motif recognition
algorithm Subenum, the second step is to adapt the isomorphism detector Nauty.

Subenum and Nauty can already process directed graphs. Thus they only have to be
adapted to handle multiple edge types. Any multiplex graph (without edge weights) can
be seen as a weighted graph. Instead of different edge types, a single edge is shown which
is given a binary label. This binary label is based on the edge types present between two
nodes. First we fix an order of all the edge types present in the network. We then create
a bit string for each edge in the weighted graph. The length of the string is equal to
the number of edge types. A 1 in the bit string indicates the type of edge that occurs
between the two nodes, according to the fixed order of the edge types and the location
of the 1 in the string. A binary label can be seen as an edge weight. This is illustrated in
Figures 11a, 11b and 11c. Note that by rewriting a multiplex network to a weighted graph,
the ability to express weighted multiplex networks is lost. We do not consider weighted
graphs in this thesis, so this does not pose a problem. However, for future studies this
could be problematic. To preserve weights, one could encode weight and edge type into
one number. This number should be unique for every weight and edge type combination.
Furthermore, this conversion to a weighted graph does not make the graph equal to an
actual weighted graph. The used weights only encode edge types, and do not express
actual weights.

The basic principle of the ESU algorithm is that it detects if there is an edge, regardless
of the type or weight. When a subgraph of size k is found, the label given to it is based
on the adjacency matrix of the subgraph. See Figure 8a for an example. This idea can be
extended to weighted graphs. The algorithm detects a motif, and then a label is created
based on the adjacency matrix with weights. See Figure 8b for an example. Both graphs
from Figure 8 are triangles (see Figure 4b), but their labels differ significantly due to
the edge weights. This means that to adapt Subenum for weighted graphs, we only have
to adapt the label constructor so that it accounts for the edge weights. The same holds
for directed graphs, for which an example can be seen in Figure 9. In this example we
see a directed multiplex graph, which would, if rewritten into a weighted graph, have an
adjacency matrix as shown in Figure 9b. This matrix can be converted into a graph label
just as the adjacency matrix in Figure 11c can be converted.


A B C

A 0 1 1
B 1 0 1
C 1 1 0

→ 011101110

(a) Graph label of Figure 4b


A B C

A 0 3 1
B 3 0 2
C 1 2 0

→ 031302120

(b) Weighted Graph label of Figure 11c

Figure 8: Graph Labels

Unfortunately Nauty is not as versatile as Subenum. Nauty does not support weighted
graphs, but does suggest a solution in its manual. We have seen that any unweighted
multiplex graph G can be transformed into a weighted uniplex graph G. Any weighted
uniplex graphG can be converted into a colored-node graphG′, which Nauty does support.
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A B

C

(a) Directed multiplex graph


A B C

A 0 3 1
B 0 0 2
C 0 0 0

→ 031002000

(b) Directed weighted Graph label of Fig-
ure 9a

Figure 9: Directed Graph Labels

Graphs with colored nodes are similar to multiplex graphs, but instead of multiple edge
types they have multiple node types (colors). Each node color represents a different kind
of node. In general this can be used to create a network where not every node is the same
data instance. For example, one can combine nodes that represent humans with nodes
that represent machines. See Figure 10 for an example.

H1

H2

H3

C1

C2

C3

S1

S2

S3

S4

Figure 10: Colored node network: Humans H on computers C connected to a server
cluster S.

Graphs with colored nodes can be used to express multiplex graphs. This method is
similar to Nauty’s suggestion for expressing weighted graphs. To do so we create a new
graph G′ from a graph G, where G is a graph with binary labels representing multiplex
graph G. For each node in V (G), a set of colored nodes is created in G′. The number
of colored nodes is equal to |J |, where J is the set of all edge types in G. So for every
node X ∈ V (G), a set {X1, X2, . . . , X|J |} with different colors is created in G′. Every Xj

is connected with Xj+1 with an undirected edge, for 0 < j < |J |. This creates a string
of colored nodes in G′ for every node in G. Each color is then used to express a single
edge type, according to the binary label. So an edge between two nodes Xj and Yj is
used to express the jth edge type encoded in the binary label. An example can be seen in
Figure 11d, where the multiplex graph from Figure 11a with two types of edges is shown
rewritten with two types of colored nodes.

5 Data and network properties

Before we apply the motif recognition algorithms to real-world data, we will first analyze
the general properties of the data. For this study we will use a database from the University
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A B

C

(a) Multiplex

A B

C

11

01
10

(b) Binary labels

A B

C

3

1
2

(c) Weighted edges

A1 B1

C1

A2 B2

C2

(d) Colored nodes

Figure 11: Equal graphs
There are 2 types of relations: Type 1, shown in black straight lines; Type 2, shown in

curved red lines. Each graph conveys the same network information.

of Amsterdam [1], made available through guest-membership of the CORPNET group.
This database is a corporate database containing information on corporations from all
over the world. As the entire world dataset would contain too much data to process, this
study focuses on Germany only.

5.1 Data properties

Germany, or rather the dataset, contains a total of 309 521 companies. For each company
the database provides information on the number of employees, revenue, total assets, and
sector, board composition and ownership. Most data is complete, but for 35 709 (11.5%)
companies the data on employees is missing, and for 34 753 (11.2%) companies the asset
value is missing. The data on sectors and revenue is complete.

Table 19 shows the division of companies amongst the sectors. It shows that most
German companies are in the industrial sector (91%), with the financial sector as the
second largest sector with 8% of all companies.

Figure 12 shows a scatter plot of companies based on their number of employees and
revenue. It shows that generally speaking the revenue increases when the number of em-
ployees increases. As the revenue increases, so do the total assets. Most sectors follow this
trend (Figure 13) except for the venture capital sector (Figure 13h), which is scattered
on the lower end of both revenue, employees and assets.
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Figure 12: Scatterplot of firms, based on employees and revenue. Symmetrical log scale.
Firms without data on employees are displayed with with −1 employees.

(a) Bank (b) Financial (c) Foundation/Research

(d) Industrial (e) Mutual & Pension Fund (f) Private Equity

(g) Public Authority (h) Venture Capital

Figure 13: Scatterplot of firms based on employees and revenue, per sector.

Table 14 shows three different top 10 companies, one ranked by employee count, one by
total revenue, and one by owned assets. The top 10 employers are responsible for 12.42%
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of the total employees in the database not counting those companies without data, and
80% of these companies are industrial. The top 10 earners account for 11.40% of all
revenue in the dataset. All these companies are industrial. When the data is ranked on
total asset value, the top 10 is almost entirely from the banking sector, with the exception
of DE2070000543 from the industrial sector. The top 10 asset owners hold one third of
all asset value not counting those companies without data.

Note that 60% of the top 10 employers and top 10 earners overlap.

Employees Revenue Assets
(12.42%) (11.40%) (33.25%)

1 DE2070000543 DE2070000543 DE13216
2 DE5030147191 DE7330530056 DE40257
3 DE2010000581 DE5050056484 DE13223
4 DE2010198197 DE8170003036 DE13190
5 DE4230120196 DE7290397825 DE13328
6 DE7290397825 DE2010000581 DE17881
7 DE7330000658 DE5050314384 DE2070000543
8 DE7330530056 DE5030147137 DE46802
9 DE5050314384 DE5110120872 DE40185
10 DE5030147137 DE2150004419 DE47734

Figure 14: Top 10 companies. Colors mark companies that appear in multiple top 10’s

5.2 Network properties

We use the data to create three networks:

1. An ownership-network. A directed network that shows which corporations own other
corporations. Ownership edges are drawn in red, as seen in Figure 15.

A B

Figure 15: Ownership network example: company A owns a share of company B

2. A board interlock network. An undirected network that shows which corporations
share board-members. Board interlock edges are drawn in black and as two directed
edges, as seen in Figure 16.

A B

Figure 16: Interlock network example: company A and B share a board-member

3. A multiplex network that contains both ownership and board interlock relations.
When a black interlock and red ownership overlap, we draw a single blue multiplex
edge, as seen in Figure 17.
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A B A B

Figure 17: Multiplex example: company A owns a share of B, and both share a board-
member. Drawn as separate edges and with a single blue edge.

The dataset contains many relations of ownership and board interlock, but not every
relation is of importance. First we filter out unrealistic cliques. These cliques are caused
by outliers of the data. In the board interlock network we see such a clique being formed
by a small group of directors. We notice that any of these board members works in at
least 85 different companies, whereas other directors work in no more than 50 companies.
Furthermore all these directors work for the same companies. As a result an unrealistically
large clique is created. This is likely an administrative structure of the same company,
and thus not of importance for this analysis. We thus remove any board members with 85
or more positions. For ownership we consider a relation when at least 3% of a company is
owned. This reduces the number of edges by half, and also limits the maximum in-degree
of any node to 33. After removing all ownership relations with less than 3% weight and
all directors with 85 or more positions, we remove all companies from the dataset that
have no relations left. This is the processed dataset used for this study.

In the multiplex network, an ownership edge and interlock edge between the same
two companies is combined. Of all edges in the multiplex network, 5.9% is a multiplex
edge, which connect a total of 17 679 (23.5%) firms. The total number of companies and
relations per network can be seen in Figure 18.

Network Nodes Edges
Ownership 37 724 31 506
Board interlock 61 209 175 108
Multiplex 75 224 195 0731

Figure 18: Network statistics
1 This includes multiplex edges.

Not every company is present in every network, as is evident from the number of nodes
shown in Table 18. Most companies are free to buy stock in other firms with which they
share no board members, and likewise most board members are free to work at other
companies regardless of the ownership relation with firms they are already employed at.
There might be legal issues that certain companies are not allowed to be be involved
with other companies, or that a person working in a certain sector is forbidden to work in
another sector, but this is not the general case. It is thus possible that some companies have
no interlock ties, and others have no ownership relations with any other firm. The interlock
and multiplex networks however contain all companies from Table 14. The ownership
network omits four companies: DE4230120196 from the top 10 employers, DE7290397825
from both the top 10 employers and earners, DE5110120872 from the top 10 earners and
DE40185 from the top 10 asset owners. Table 19 shows the percentage of each sector per
network. Note that the set of nodes in the multiplex network is equal to the processed
dataset.
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Sector Ownership Interlock Multiplex Dataset
count % count % count % count %

Bank 474 1.25% 865 1.41% 972 1.29% 1 493 0.48%
Financial 4 648 12.32% 6 250 10.21% 8 338 11.08% 25 239 8.15%
Foundation/Research 55 0.14% 51 0.08% 88 0.12% 199 0.06%
Industrial 32 350 85.75% 53 767 87.84% 65 484 87.05% 281 830 91.05%
Insurance 19 0.05% 26 0.04% 34 0.05% 103 0.03%
Mutual & Pension Fund 112 0.30% 175 0.29% 213 0.28% 489 0.16%
Private Equity 29 0.08% 30 0.05% 37 0.05% 44 0.01%
Public Authority 22 0.06% 31 0.05% 41 0.05% 98 0.03%
Venture Capital 15 0.04% 14 0.02% 17 0.02% 26 0.01%

Figure 19: Companies per industry sector per network

6 Approach: Motif Analysis

In this section we discuss how to analyze motifs found in the empirical network. In order
to do any further analysis on the data, we must first answer the question which motifs
are interesting. Second, we are interested in the extra information a multiplex network
contains compared to its single-edge-type network equivalents. Thus we compare the mo-
tifs from the multiplex network to the motifs from the ownership network and the board
interlock network.

6.1 Motif Selection

Thus far we have regarded motifs and patterns mostly as the same thing, but did refer to
them as motif. However [26] states that motifs are “those patterns for which the probability
of appearing in a randomized network an equal or greater number of times than in the real
network is lower than the cutoff value”. Any pattern should thus be tested for significance.
This ensures the pattern is not just the result of random chance, but represents a real-
world structure.

We apply two methods for declaring a pattern significant. The first method com-
pares the frequency of a pattern with the frequency in randomly generated graphs. This
method is suggested by [26]. The second method declares a pattern significant solely on
its frequency in a graph. By using an estimate of a random graph, the frequency can be
compared to a randomly generated network without actually generating one, as suggested
by [37] and [25]. Finally we consider a warning given in [26]. Some motifs could be func-
tionally interesting, but not significant. Therefore we will also compare significant motifs
to functionally interesting motifs, based on the opinion of experts.

6.1.1 Significant Subgraphs

In order to detect which patterns are significant in the empirical network, we will need to
compare their frequency in the empirical network to their frequency in a set of randomly
generated graphs. Modeling the ownership network is straightforward. This network con-
sists of one type of node, with one type of edge, where each edge represents a direct relation
between two companies. Unfortunately this is not the case for the interlock network and
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the multiplex network.

Bipartite modeling The interlock network is actually a one-mode projection of a bi-
partite network. It is a network of relations between companies, but the underlying data is
a bipartite set of board members and companies. A board member can only have relations
with companies and visa versa. A random model that does not take this into account can
easily create patterns that do not occur in the real world. Think for example of a trian-
gle, as shown in Figure 5a. A model that directly creates relations between companies
only needs three companies with a degree of two or higher to create a triangle. While a
model that takes into account the bipartite division would either need a board member
that manages three companies, or a set of board members that link the companies in a
triangular way. See Figure 20 for examples.

D1

A B C

(a) A single board member D1 forming an
interlock triangle between the firms A, B
and C.

D1 D2 D3

A B C

(b) Multiple board members D1, D2 and
D3 forming an interlock triangle between
the firms A, B and C.

Figure 20: Two examples how a bipartite network can form the triangle pattern in Fig-
ure 5a.

When the model is based on a degree sequence and uses the underlying bipartite
division, it follows the real world more closely. We can then use the one-mode projections of
the random bipartite network as a random interlock network for this study. Unfortunately
it proves difficult to model a bipartite network so that the resulting one-mode projection
resembles the original one-mode projection. The one-mode projection can easily end up
with too many edges or with only a specific selection of edges. We shall thus discuss
several methods for bipartite modeling that keep the one-mode projection in mind.

The first method is the simplest to apply. A random model creates edges between direc-
tors and companies. Then a one-mode projection is made. This preserves all information
and requires no special selection of edges or analysis of the random network. However,
in practice this method creates too many edges in a random configuration based on our
dataset. The average number of edges can be seen in Table 21 under empirical directors.

Bipartite network Avg. Edges in one mode projection
Empirical directors 235 996

Removal redundant directors 190 908
Minimal set of directors 125 190

Edge selection -

Original one-mode projection 175 108

Figure 21: Average edges over 20 randomly created networks created by the stub-matching
model, with different bipartite networks as base.
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In a real-world bipartite network, a layer can act in a non-random fashion, and pick edges
based on existing edges. In our dataset this can be seen as board members who enjoy
working together, and thus will likely work at the same companies. These board members
are redundant when creating a one-mode projection from the empirical data, but can
become non-redundant when a model randomly connects them to companies. An exam-
ple can be seen in Figure 22 and Figure 23. Both figures show a bipartite network with
equal degree sequence, but the one-mode projection of Figure 23 has one additional edge
compared to the one-mode projection of Figure 22. Overall this method creates a very
different number of edges in a one-mode projection from a random network, compared to
the one-mode projection from the real-world data.

D1 D2 D3

A B C D

(a) Bipartite network

A B

C D

(b) One-mode projection

Figure 22: One-mode projection of three board members and four companies.

D1 D2 D3

A B C D

(a) Bipartite network

A B

C D

(b) One-mode projection

Figure 23: One-mode projection of three board members and four companies.

To solve the problem of redundant board members, one can remove all board members
from the dataset that have no edges that are not also defined by other board members. In
Figure 22 this would be director D1. The number of edges created based on this network
resembles the original one-mode projection the most, as can be seen in Table 21, under
removal of redundant directors. Despite the good result, this method is not preferred. A
board member is only redundant if another board member provides identical information.
This can only happen with a director that has at least as many edges as the redundant
director. In this way a bias to larger directors is introduced.

Another way to solve the problem of redundant board members, is to create a fictional
set of board members such that the no fictional board member is completely redundant.
This method does not use the original bipartite network, but instead creates a new bipar-
tite network called a two-mode projection. This two-mode projection contains the smallest
number of nodes (board members in our case) necessary to create a bipartite network.
Figure 24 shows an example. Given a one-mode projection (Figure 24b) from a bipar-
tite network (Figure 24a), a minimal two-mode set is created (Figure 24c) such that its
one-mode projection is equal the one-mode projection of the original bipartite network.

To create such a minimal two-mode set, the largest possible clique for each edge needs
to be found. In the example network from Figure 24b we find two cliques. Edges A− B,
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B − C and A− C are all part of the clique ABC. Edge C −D is part of clique CD. For
each found clique, a two-mode projection node Dx (board member in our case) is created.
Then for every edge U − V from the one-mode projection, U − V is removed and a new
edge is created between U and Dx, and V and Dx. This two-mode projection is unlikely
to be similar to the original bipartite network.

D1 D2 D3 D4

A B C D

(a) Original Bipartite network

A

B C D

(b) Original One-mode projection

D1 D2

A B C D

(c) Minimal two-mode set

Figure 24: Creating a minimal bipartite set

In practice however, cliques overlap, and an edge between two nodes is often attributed
to multiple two-mode projection nodes. So while no board member is completely redun-
dant, many edges still are. Furthermore the randomness is limited with this technique. The
created artificial bipartite network contains no redundancy in director positions, and the
one-mode projection has exactly the correct number of edges. A random model could thus
only introduce redundancy, ensuring that any resulting random network has at most the
correct number of edges, but likely less. Hence modeling based on a minimum two-mode
set will result in a one-mode projection with a different number of edges. The average
number of edges can be seen in Table 21 under minimal set of directors.

A final method for bipartite modeling with interest in the one-mode projection is to
make a selection of edges to put in the one-mode projection. If information about the
edges is known, it is possible to select only those edges above a certain weight, or of a
certain type [17]. This would create a one-mode projection with the same number of edges
as the real data. However, the edge-selection process is not ideal in this situation. In our
case each edge is of equal importance, thus we cannot make a selection without losing
valuable information.

We do think that using a bipartite model with empirical directors is the correct choice,
as it follows the generative rules of the real data the most and introduces no bias. Thus
the goal is to closely resemble the original bipartite network. Since we do not want to
make a selection of edges, and simulating fictional board members provides no additional
benefits over using the actual board members, we use the first discussed method where a
bipartite network is modeled without any selection or synthetic data.

Multiplex modeling The multiplex network does not only deal with different types
of relations, but also with the dependencies between them. In many cases it is likely that
different types of edges are not created independently from each other. In a scientific col-
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laboration network one can see that researchers prefer to work with people from their field
of study that are close to them. This preference carries over when researchers collaborate
with researchers from another field of study. This property is called triadic closure. With
this knowledge one can create a multiplex preferential attachment model that resembles
the original network [3]. If every node in a network has at least one edge of every type,
it is always possible to apply a preferential attachment method such that the probability
of forming a triangle is high.

The dataset used in this study also shows dependencies between the different edge
types. A quick test shows that merging a random ownership network and a random
interlock network creates a multiplex network with very few edges that are both ownership
and interlock. In the real data we have 5.9% of all edges that are both ownership and
interlock. Unfortunately, not every node has an edge of every type, making the proposed
multiplex model from [3] not suitable for this case. In order to preserve the relation
between all edge types, we use a degree-sequence based model with three different degree-
sequences:

1. Ownership edge

2. Interlock edge

3. Combined edge

By specifically stating how many ownership and interlock edges are dependent on each
other, we force te model to create around 5.9% combined edges.

Model options The models used to generate random graphs have great impact on
which patterns are present in those graphs [24, 21]. Thus we must use a model that
describes our corporate networks best. Models such as the Erdős-Rényi model [10] (which
is used in [26]) and the Barabási-Albert model [2] are well established and studied, but
would generate a too generic network for comparison. The model used should also generate
graphs with the same degree sequence as the original network [37], as these kinds of graphs
fit a board interlock and ownership network very well [29]. Preferably the model should
also be stochastic, so that it does not enforce too harsh restrictions [27]. Therefore we
test three different graph models that are based on a degree sequence. These models are
the Chung-Lu model [8], the Park-Newman model [28], and the Stub-matching model [7].
With each model we generate 500 graphs. For each of these sets of graphs, we measure
the average number of nodes, edges, and degree distribution. For more information on the
implementation of the models, see Appendix A.1.

Table 25 and Table 26 show the average number of nodes and edges (and standard
deviation σ) for each model. We see that all models are very consistent as they have
relatively small standard deviations. The Stub-matching model is by far the most precise,
generating almost the exact number of edges. It also generates the exact number of nodes,
but this is enforced by the model itself as it is a micro-canonical model. Both Chung-Lu
and Park-Newman are canonical models, and thus have more freedom in generating nodes
and edges. However, in effect this means that with this specific degree distribution, the
number of nodes is much lower than desired.

Figures 27, 28, 29 (ownership) and 30, 31, 32 (interlock) show the difference in average
degree distribution of the models compared to the real-world network. The blue bars (best
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Interlock Model Avg. Nodes (σ) (%) Avg. Edges (σ) (%)
Stub-matching 101 095 (0) (100) 100 375 (2) (100)

Chung-Lu 51 307 (16) (51) 43 772 (14) (44)
Park-Newman 49 595 (16) (49) 40 419 (13) (40)

Real world 101 095 (100) 100 377 (100)

Figure 25: Network statistics of models generating random interlock networks.

Ownership Model Avg. Nodes (σ) (%) Avg. Edges (σ) (%)
Stub-matching 37 724 (0) (100) 31 498 (3) (100)

Chung-Lu 25 502 (40) (68) 42 070 (52) (134)
Park-Newman 21 702 (36) (58) 30 335 (43) (96)

Real world 37 724 (100) 31 506 (100)

Figure 26: Network statistics of models generating random ownership networks.

visible in Figure 29a) indicate the standard deviation of the average. Again we see that all
models are very consistent, as the standard deviations are relatively small. Both Chung-
Lu and Park-Newman generate far less nodes with an in-degree of 1 and out-degree of 0.
The Stub-matching model is again very similar to the real-world data, with an average
difference of at most 4 nodes.

These tests show that the stochastic models have relatively large errors compared to
the stub-matching model. The stub-matching model is by far the most similar to the real-
world data, and therefore the preferred model to test significance on. For motif recognition
we generate 1 000 random graphs, as suggested in [37].

(a) In-degree (b) Out-degree

Figure 27: Difference in degree distributions between Park-Newman generated graphs
(based on the ownership network) and the ownership network.

Significance Significance of a pattern will be determined using the ratio described
in [21]. The ratio R of a pattern i of size k in graph G is defined as seen in Equation 1:
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(a) In-degree (b) Out-degree

Figure 28: Difference in degree distributions between Chung-Lu generated graphs (based
on the ownership network) and the ownership network.

(a) In-degree (b) Out-degree

Figure 29: Difference in degree distributions between Stub-matching generated graphs
(based on the ownership network) and the ownership network.

(a) In-degree (b) Out-degree

Figure 30: Difference in degree distributions between Park-Newman generated graphs
(based on the interlocks network) and the interlocks network.

R(i, k, G) = |S i
k(G)| ∗

(∑
G∈Random Graphs |S i

k(G)|
|Random Graphs|

)−1
(1)

When the ratio is larger than 1, the probability of pattern i appearing in a random graph is
smaller than the probability of pattern i appearing in the empirical network. To determine
which patterns are significant, a cutoff value is used. Only patterns with a ratio larger
than a cutoff value are considered significant.
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(a) In-degree (b) Out-degree

Figure 31: Difference in degree distributions between Chung-Lu generated graphs (based
on the interlocks network) and the interlocks network.

(a) In-degree (b) Out-degree

Figure 32: Difference in degree distributions between Stub-matching generated graphs
(based on the interlock network) and the interlocks network.

6.1.2 Estimated Significant Subgraphs

Large networks of the same degree sequence contain similar concentrations of patterns [37,
25]. The concentration of a pattern i of size k is the percentage of pattern i compared to
all patterns of size k. With this we can estimate pattern significance based on information
of the empirical graph alone. We take the formula for concentration from [37], where the
concentration C of a pattern i of size k is defined as the ratio between its frequency and
the sum of all frequencies of patterns of the same size:

Cik(G) =
|S i

k(G)|∑
j |S

j
k(G)|

(2)

To determine which patterns are significant, again a cutoff value is used. Only patterns
with a concentration larger than a cutoff value are considered significant.

6.1.3 Experts opinion

For the expert’s opinion on significant motifs we take textbook examples provided by a
study on corporate network structures [38]. This study describes a set of patterns which
explain the interaction between different companies. These patterns are:

1. A reciprocal clique: A set of nodes where every node is connected to every other
node by a low weight edge.
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2. A star: One node connected to many other nodes with high weight edges. The other
nodes are not connected with each other.

3. An inverted star: A large group of nodes connected with one node through edges
with a low weight. None of the nodes in the large group are connected to each other.

4. A pyramid: A set of nodes with a clear hierarchical structure, where each layer is
connected to the layer below by high weight edges.

5. A circle: A set of nodes with a directed path from each node to itself through every
other node.

As we do not make use of weights, and therefor we will use these definitions without
weight.

6.2 Comparing Motifs

Our goal is to better understand the information provided by multiplex motifs compared
to uniplex motifs. In order to compare uniplex and multiplex motifs we must first define
what information we seek, and how to extract it from a set of motifs.

Without looking at the underlying data, we compare motifs based on network structure
and properties. Doing so tells us more about what kind of motifs are found. The average
density of the motifs tells if a network contains structures that are sparse, or if it contains
structures that are tightly connected with many edges. Density is defined as the number
of relations between nodes in a pattern versus the maximum number of relations possible
in a pattern. For this measurement the direction and type of an edge are disregarded. It
is only important if two nodes are connected, not how they are connected. The average
density is the average of the density of each motif of the same size.

Using the textbook examples from Section 6.1.3, each motif is categorized into a type
of pattern. This tells us if a network has a preference for a certain type of pattern, or if it
produces motifs that cannot be classified and are more complex. This measurement counts
the number of occurrences of textbook example patterns in a set of motifs. As multiplex
motifs contain both directed and undirected edges, a multiplex motif will be regarded
as undirected when recognizing textbook examples. Many patterns are very similar to
textbook example patterns, but are different because they contain a small number of
extra edges. To count the textbook examples, all nodes with a degree of one are removed
simultaneously from a pattern until a textbook example pattern is recognized, or no more
one-degree nodes exist. Figure 33 shows an example of two graphs that are very similar.
Figure 33a shows a graph that is a textbook example of a cluster. Figure 33b is almost a
cluster, except for the extra node E. For this measurement, both graphs would be counted
as a cluster.

The multiplicity of motifs is taken into account separately for the multiplex network,
as any measure that expresses multiplicity of motifs will result in 0 for uniplex motifs.
The multiplicity of a multiplex graph is the division of each edge type. It is calculated
by dividing the number of edges of the same type by the total number of edges in the
motif. The average multiplicity is expressed as an average over each edge division of all
motifs of the same size. Recall that multiplex edges are edges that are both interlock and
ownership.
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A B

CD

(a) Cluster

A B

CD

E

(b) Similar to cluster

Figure 33: Two similarly shaped graphs

When the underlying data is taken into account, we can detect what sort of nodes and
edges the motifs contain. For each firm we know their industry sector, number of employ-
ees, value of assets, and revenue. By counting the number of occurrences of each company
in each motif, we can calculate the relation between the motifs and asset value, employ-
ees, or revenue. The correlation is expressed both as Pearson correlation and Spearman
correlation [11, pp. 177–181]. The Pearson correlation tells us if there is a linear relation
between the frequency of a firm in motifs and any of its properties. The Spearman cor-
relation does not check for a linear relation, but rather a ranking correlation. A ranking
correlation means that if the frequency of firms in motifs decreases or increases, with
regards to the other motifs, then so does its property.

Furthermore the division between sectors of a motif becomes apparent by analyzing
underlying data. We call this the company division. The company division of a single
motif is the average over all subgraphs of that motif. The average company division is
the average over all motif company divisions. Note that this means that the average
company division is an average over averages. This could lead to potentially interesting
motifs not becoming apparent right away. A single motif with a company division unlike
all other motifs will not change the average company division. We therefore also look at
the company division of single motifs.

Just as we can count the occurrence of a certain sector, we can count the number of
edges linking different sectors. Each edge can be classified by the companies that it links.
This shows if a motif contains information between companies of the same industry, or
different industries. An edge between two companies of different industries is called an
heterogeneous edge. Likewise an edge between two companies of the same industry is called
a homogeneous edge. The percentage of heterogeneous edges is a measurement for motif
complexity. We say that motifs with a high percentage of heterogeneous edges contain
more complex business structures. The complexity of a motif is the average complexity of
its subgraphs. The average complexity is the average over all motif complexities. Again,
this is an average over averages. Thus we also look at single motifs. For each network we
count the number of motifs with a complexity of more than 0.4, and the number of motifs
that on average contains no single type of homogeneous edge that takes up more than
60% of all edges. Exploratory experiments show that most companies in a motif are from
the same sector and thus have a high share of homogeneous edges from that sector. A
cut-off of at least 40% heterogeneous edges captures those motifs that stand out with their
complexity. The complexity of the entire network is used as a baseline for complexity.

To understand what all these properties mean, an overlap of subgraphs is calculated.
Overlap is calculated as the number of subgraphs in a motif from which the nodes also form
a subgraph in another network. If there is much overlap in subgraphs between networks,
then the motifs are derived from the same nodes from the dataset. Thus the properties
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provide information on the same structures, viewed from different networks. If there is
little overlap, then the motifs from different networks consist of different combinations of
nodes. The properties then provide information on different structures originating from the
same dataset. A motif M1 of graph G1 contains subgraphs M1(G1), and each subgraph
g1 ∈ M1(G1) consists of a set of nodes V (g1). When these nodes form a subgraph for
another motif M2 in another network G2, we say that motif M1 of graph G1 has overlap
with graph G2. Mathematically this is defined as seen in Equation 3.

overlap(M1(G1), G2) =
∑

g1∈M1(G1)

∑
M2∈G2

∑
g2∈M2(G2)

{
1, if |V (g1) ∩ V (g2)| = |V (g1)|
0, otherwise

(3)

Overlap is computationally a very expensive feature to calculate, as each motif can contain
thousands of subgraphs. Except for size 3 motifs, overlap cannot be calculated within our
time constraints. Therefore an estimate is used for size 4 motifs. The estimation compares
1% of all subgraphs. This means that for motifs of size 4, 1% of subgraphs is read and
each subgraph is compared to 1% of subgraphs of other networks. Overlap is then no
longer guaranteed to be detected. Instead the chance of detecting overlap is reduced by
a factor 10 000 (0.01 ∗ 0.01 = 0.0001). Size 5 motifs contain too many subgraphs for an
accurate estimation and thus will not be calculated or estimated.

7 Motif Results

In this section we analyze the patterns found by the motif detection algorithm. First a
general overview of all motifs is analyzed. Suitable cut-off values need to found for both
ratio and concentration values. A general overview is not sufficient to provide insight
in the difference between uniplex and multiplex motifs. Therefore we also take a more
in-depth look at the properties discussed in Section 6.2, for each size of motif.

7.1 Overall Results

In Section 6.1 we have discussed three methods to declare a motif significant. We must
select which method fits our needs best. Table 34 shows the number of different patterns
found for each network. We see that as the possible number of patterns increases, so
does the number of encountered patterns. Most of the patterns have a very low ratio and
concentration, as seen in Figure 36. This same figure shows that neither ratio nor concen-
tration alone gives a good representation of important patterns. Using only concentration
as a measure of significance will cause many basic patterns to be seen as motifs. Basic
patterns are those patterns which are always likely to frequently appear in any network
and are not characteristic for our network. Likewise, using only ratio as a measure of sig-
nificance will result in some very unique patterns as motifs, that are also not characteristic
for the network. These patterns might have a high ratio, but have a very low frequency
in the empirical network.

To find those patterns that are the basic building blocks of the corporate network, we
will need to find those patterns that appear more frequently than in a random network,
but also have a high frequency in the empirical network. These patterns are located in
the top right corner of Figure 36. For ratio we set the cut-off value to 5, for concentration
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Pattern size
3 4 5 All

Ownership 11 63 391 465
Interlock 2 6 21 29
Multiplex 58 1 132 21 858 23 048

Figure 34: Patterns per network

we set the cut-off value to 0.0001. We also include those patterns which are unique to the
empirical data and have a concentration of at least 0.0001. These patterns are shown in
Figure 36 with a ratio of 0. Table 35 shows the number of pattens deemed significant by
these cut-off values.

Motif size
3 4 5 All

Ownership 3 4 6 13
Interlock 0 2 10 12
Multiplex 14 48 73 135

Figure 35: Motifs per network

This does not mean that other patterns are not of interest. Patterns with a low con-
centration but high ratio are for some reason very unique. These patterns might reveal
certain business practices, used only by very few companies. Thus these patterns might
prove useful for uncovering business structures not used by many companies, such as
malicious structures with the intend of tax evasion. Likewise the exact opposite of mo-
tifs could also provide valuable information. Patterns which have a very low ratio and
concentration, also called anti-motifs, indicate structures which are actively avoided by
businesses.

We finally look at the complexity of all networks. The definition of complexity for a
network is the same as for a subgraph: the percentage of heterogeneous edges in all edges
in the network. The complexity of the networks can be seen in Table 37. All networks
have identical complexity measures. This is because all networks have an almost identical
division of edges when edges are categorized based on which industry sectors they link. If
the edge division is seen as a vector, the Euclidean distance between each network is in the
order of 10−16. For each network, 74% of all edges link two industrial companies, another
15% of edges link industrial and financial companies, and only 4% of all edges involves a
bank. Together with the company division shown in Table 19, this hints that all networks
are similar to each other. Motif metrics such as company division and complexity could
be influenced by this. If motifs are chosen independently of these properties, then motifs
across all networks would have the same values for these metrics.

7.2 Motif Properties

In Section 6.2 several measurements are discussed. Here we report the resulting value per
motif size.
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Figure 36: Ratio versus Concentration. Black lines indicate Cut-off values: ratio 5, con-
centration 0.0001. Non-symmetrical log scale. Patterns that are unique to the empirical
data have a ratio of 0.

Network Complexity (%)
Ownership 19.93
Interlock 19.59
Multiplex 19.88

Figure 37: Network complexity

7.2.1 Size 3

Size 3 is the smallest possible motif size and as such is the fastest to extract from a network.
Given the small number of nodes, only very few possible patterns exist. An undirected
size 3 pattern only has two variants: a wedge or a triangle. Both of these patterns are
relatively easy to create with a bipartite random model and a triangle is even forced into
the network when a director works at three companies (Figure 20a). This has caused all
size 3 patterns in the interlock network to be deemed insignificant.

Both ownership and multiplex network do have patterns that are deemed significant.
These motifs can be seen in Tables 52, 53 and 54. The ownership network contains a
total of 37 724 companies, 7% (2 508) of those companies appear in at least one motif. In
effect, the ownership motifs contain only 3.33% of all 75 224 companies in the dataset. For
multiplex motifs, this number is much higher. Out of all 75 224 companies, 40% (29 937)
appear in at least one motif. The multiplex motifs are also denser than the ownership
motifs. The average density of ownership motifs is 0.78. The average density of multiplex
motifs is 1.0. Both sets of motifs are very dense, but multiplex motifs score a maximum
density. This means that for any multiplex motif, each node has at least one relation with
all other nodes.
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Although the multiplex network contains much more companies, there is not a lot
of overlap with the ownership network. The ownership network has one motif that has
90% overlap with motifs from the multiplex network. This is motif 1 from Table 52, which
overlaps with motifs 7, 10, 11 and 12 from Table 53. From the perspective of the multiplex
network, each of these motifs has 100% overlap. No other motifs have any overlap. The
ownership and multiplex motifs are thus mostly unique sets of subgraphs that provide
information on different combinations of companies.

The multiplicity of the multiplex motifs can be seen in Table 38a. On average each
motif is a mix of every type of edge. There are only two motifs that contain only one type
of edge. Every other motif contains both ownership and interlock edges. For 5 out of 14
motifs, ownership edges appear only in combination with interlock edges, thus forming
a multiplex edge. The average multiplicity can be seen in Table 38a. This table shows

Edge type Mean (σ)
Ownership 27.86% (29.8%)
Interlock 55.24% (25.09%)
Multiplex 16.9% (16.39%)

(a) Multiplicity mean

(b) Multiplicity per motif (random jitter of
[−2, 2]% added for visibility)

Figure 38: Size 3: Multiplex motif multiplicity

that on average each subgraph contains every type of edge, but that there is a large
difference between the subgraphs. Figure 38b shows this difference by plotting the division
of ownership versus interlock edges per motif. We can see that, with the exception of the
two motifs that consist of only one type of edge, no motif exists for more than 85% of
a single edge type. The multiplex motifs are thus focused on patterns that incorporate
every type of edge.

The company division in both sets of motifs is almost equal, with the exception of the
ownership motifs containing 2% Private Equity firms and 4% less Financial companies.
See Figure 39. The average company division of ownership motifs is also very consistent.
All motifs contain at least 73% industrial companies and as the percentage of indus-
trial companies rises, the percentage of financial firms drops. Each motif also contains a
small percentage of banks. The multiplex motifs show the same trend, but are even more
consistent. The standard deviation is at most 4.6% for any sector.

The average complexity of both the ownership and the multiplex network is almost
equal. Ownership motifs have an average complexity of 0.202, and multiplex motifs have
an average complexity of 0.207. However the multiplex motifs are much more consistent.
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(a) Ownership: 3 different patterns
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(b) Multiplex: 14 different patterns

Figure 39: Size 3: Company division

No single multiplex motif has more than 40% heterogeneous edges. Multiplex motifs have
on average 73% edges between two industrial companies, with only 6% standard deviation.
This effectively causes the low complexity of multiplex motifs. The ownership motifs have
one motif that can be considered complex. Motif 2 from Table 52 has on average 54% of
edges between two industrial companies, while the whole ownership network has 75% of
edges between two industrial firms. This motif contains many more edges between financial
and industrial companies (23% versus 7%) and between banks and private equity firms
(12% versus 0.1%).

Metrics such as the number of textbook examples and the correlation do not show very
interesting results. Size 3 patterns can not create many shapes. A circle and a clique are
identical, as are a star and a pyramid. A star and pyramid would also be a simple line
of three nodes and two edges, a pattern highly unlikely to be deemed significant. The
multiplex motif contains 14 (out of 14) motifs that are similar to a clique or circle. The
ownership motifs contain no shapes resembling textbook examples. Likewise there is also
no significant correlation. Table 40 shows the Pearson and Spearman correlation between
employees, revenue and assets and the number of times a company appears in motifs of
size 3. Companies that do not appear in any size 3 motif are not taken into account. The
correlation values are higher for the ownership network, but not high enough to claim any
significant correlation.

Employees Revenue Assets
Motifs P S (p) P S (p) P S (p)

Ownership 0.252 0.226 (0.0) 0.362 0.250 (0.0) 0.143 0.349 (0.0)
Multiplex 0.023 0.130 (0.0) 0.026 0.051 (0.0) 0.014 0.107 (0.0)

Figure 40: Size 3: Correlation between appearance in motifs versus several company prop-
erties. P = Pearson correlation, S = Spearman correlation with p value.

In general we see that it is difficult to capture interesting information with size 3 motifs
as not every network produces motifs, and the multiplex motifs are all similar.

7.2.2 Size 4

With one more node in a subgraph, size 4 motifs offer a much larger variety of possible
patterns. Every network contains motifs of size 4, some of which are unique to the empirical
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data. The motifs can be seen in Tables 55, 56, 57, 58 and 59. Size 4 is also the smallest
size where motifs appear in the interlock network. The interlock network contains a total
of 61 209 companies, 11% (6 844) of those companies appear in motifs. This is 9% of all
companies in the dataset. The ownership motifs contain 15% (5 642) of companies in the
ownership network, but this is only 8% of all companies in the dataset. The multiplex
motifs contain the most companies, both in percentages and absolute value. A total of
42% (31 938) of all companies appears in multiplex motifs.

Not only do the multiplex motifs contain many more companies, but the companies
are also from different sectors. Ownership motifs contain many more financial companies,
whereas interlock motifs contain more banks. Both networks contain a small percentage of
Mutual & Pension Funds (MP), something that the multiplex motifs do not reflect. Most
ownership motifs share the same division of companies: a high percentage of industrial
companies (80–95%) and a small percentage of financial companies (2–9%), with the
rest of the companies as Mutual & Pension Funds. This is remarkable, as only 0.3% of all
companies in the ownership network is a Mutual & Pension Fund. The exception is motif 2
from Table 55. This motif has a much smaller percentage of industrial companies (43%)
and a much larger percentage of financial firms (56%). The company division for interlock
motifs is mostly identical. The largest difference is that one motif has 15% financial
companies and only 2% banks, while the other motif has only 8% financial companies and
8% banks. This division corresponds with the division of the entire interlock network.

Multiplex motifs have a much more diverse share of industrial companies. The average
percentage of industrial companies is 76%, but with a standard deviation of 14%. This
average is lower than the average of the entire multiplex network. The financial sector
makes up for this difference. For any multiplex motif it holds that industrial and financial
companies make up at least 85% of the nodes. The rest of the companies are banks. Thus
there is a split in the motifs: those motifs with a high industrial share and low financial
share of firms, and those with a low industrial share and high financial share of firms.

As this is the smallest size where interlock motifs are encountered, we can now plot for
each company the number of times it appears in interlock motifs and ownership motifs.
The plot can be seen in Figure 42. We can see that there is no clear preference of certain
sectors for a specific network.

Contrary to size 3 motifs, it is estimated that the interlock and ownership motifs have
very little overlap with each other, but that both do have overlap with the multiplex
network. Only ownership motif 4 from Table 55 is estimated to have no overlap. When we
compare this motif to all multiplex motifs in Tables 57, 58, 59, and 60, there is indeed no
pattern that could contain motif 4. The other ownership motifs are likely to overlap almost
completely, based on the counted number of overlapping subgraphs and the correction
factor of 10 000. The multiplex motifs thus contain information about almost all companies
in the ownership motifs.

The interlock motifs have two different patterns. Motif 1 from Table 56 is likely to
overlap completely with multiplex motif 7 from Table 57, as this is the same pattern.
The other interlock motif has no overlap, as no pattern from the multiplex network can
contain this motif. Because interlock motif 1 contains the most subgraphs, indicated by
its concentration value in Table 56, most of the information in the interlock motifs is also
present in the multiplex motifs.

Despite the large overlap, there are considerable differences between the motif sets.
Not only is the company division different, the complexity also shows significant contrast
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(c) Multiplex: 48 different patterns

Figure 41: Size 4: Company division

Figure 42: Frequency of firms in size 4 motifs from ownership and interlock networks, that
appear in at least one motif. Of these companies 29.91% appears only in the ownership
networks, and 48.82% of these companies only appear in the interlock networks.

between the motif sets. Of the two interlock motifs, none is considered to be complex.
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Both patterns have 70% of all edges between two industrial companies. However in the
ownership motif set there is one motif that is considered complex. Three out of the four
ownership motifs have a high percentage of edges between two industrial companies (70–
85%). The exception is motif 2 from Table 55, which has on average only 10% of edges
between two industrial companies. This motif is much more focused on financial compa-
nies, with 65% of edges between a financial firm and an industrial company, and 23% of
edges between two financial firms.

The multiplex motifs have a wider distribution of complexity, as the standard deviation
of the average complexity is 0.123. Out of all 48 motifs, 14 contain less than 60% of edges
between two industrial companies. Out of those 14, only 7 are considered complex. These
7 motifs are more focused on financial firms, as on average for these 7 firms 47% of edges
is between a financial firm and an industrial company and 16% is between two financial
firms. Two motifs stand out, as they contain many more edges between sectors other than
industry and financial. Motif 4 in Table 57 has 30% of edges involving banks, and motif 40
in Table 60 has 15% of edges involving mutual and pension funds.

This shows that the multiplex motif set has several motifs with a remarkably high
share of smaller sectors, and several motifs that stipulate the relation between the two
largest sectors: industry and finance. The later is also achieved by ownership motifs, but
this motif set does not involve any of the smaller sectors.

This difference is not reflected by the average complexity measure. On average the
complexity of each set of motifs is very similar. Ownership motifs have an average com-
plexity of 0.277, interlock motifs an average of 0.246, and multiplex motifs an average of
0.263. These values are 0.05 to 0.07 above their respective network complexity shown in
Table 37.

The multiplicity of size 4 multiplex motifs can be seen in Table 43a. The size 4 multiplex
motifs have on average less multiplex edges than the size 3 motifs, meaning that a smaller
share of companies are related by both ownership and interlock. There is a preference
for interlock edges, as 73% of motifs contains at least 60% interlock edges. This is not
surprising, as there are many more interlock edges than there are ownership edges in the
multiplex network.

Even though the multiplex motifs contain many more motifs, with a different company
division and complexity, some measures fail to express this. The average density of each
set of motifs is almost equal. Ownership motifs have a density of 0.71, interlock motifs
have a density of 0.75, and multiplex motifs have a density of 0.73. As can be seen in
Tables 55, 56, 57, 58, 59 and 60, there is only one motif with a density of below 0.6
(multiplex motif 4, Table 57).

The number of textbook examples also shows little difference between each set. Just
as with size 3 motifs, no ownership motif is recognized as a textbook example. Off all
48 multiplex motifs, 38 are similar to the textbook examples. Of those 38, 30 are size 3
cliques with one extra node. These shapes are of little interest, as we have already seen
that multiplex motifs contain a lot of triangles. The interlock motifs have one motif that
is a circle, but as there are only two motifs, we cannot claim that interlock motifs form
more textbook example shapes than other motif sets do.

Correlation does not show a large difference between the sets. Table 44 shows the
correlation of size 4 motifs. In contrast to the correlation of size 3 motifs, the frequency
of companies in multiplex motifs now has the highest correlation with every property.
However, no value is high enough to consider any of the aspects correlated.
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Edge type Mean (σ)
Ownership 27.44% (29.03%)
Interlock 62.7% (27.59%)
Multiplex 9.86% (9.81%)

(a) Multiplicity mean

(b) Multiplicity per motif (random jitter of
[−2, 2]% added for visibility)

Figure 43: Size 4: Multiplex motif multiplicity

Employees Revenue Assets
Motifs P S (p) P S (p) P S (p)

Ownership 0.195 0.051 (0.0) 0.151 -0.025 (0.1) 0.046 -0.037 (0.0)
Interlock 0.076 0.095 (0.0) 0.066 0.019 (0.1) 0.036 0.080 (0.0)
Multiplex 0.211 0.194 (0.0) 0.186 0.104 (0.0) 0.156 0.172 (0.0)

Figure 44: Size 4: Correlation between appearance in motifs versus several company prop-
erties. P = Pearson correlation, S = Spearman correlation with p value.

7.2.3 Size 5

This is the largest size motif that can be extracted within a time-span fitting in the scope
of this study. Size 5 motifs contain the largest number of different motifs for any network,
and they span over the most companies. There are 6 ownership motifs that contain 16%
(6 086) of companies of the ownership network. This is 8% of all companies in the dataset.
The interlock motifs have surpassed the ownership motifs in numbers, and contain 10
different motifs. This is remarkable as the number of interlock motifs for smaller sizes is
extremely small. These 10 motifs provide information on 16% (61 209) of all companies
in the interlock network. This is 13% of all companies in the dataset. Just as with the
smaller size motifs, the multiplex motif set is the largest set. The 73 motifs cover 35%
(26 654) of all companies.

Due to the vast amount of subgraphs, no overlap could be calculated or estimated.
However, looking at the the overlap of size 3 and size 4 motifs, we can expect that
the ownership and interlock motifs have very little overlap. We can also expect that
motifs from either the ownership or interlock network have much overlap with those
multiplex motifs that contain the same pattern, as we have also seen with size 3 and 4
motifs. Furthermore, we can state that multiplex motifs that are identical to ownership or
interlock motifs, must have 100% overlap with those motifs. The reverse is not necessarily
true, an ownership or interlock motif that is identical to a multiplex motif might not
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have 100% overlap. This is because when multiple edge types are taken into account, the
original subgraphs of these ownership or interlock motifs might form different multiplex
subgraphs.

Keeping this in mind, it is reasonable to assume that ownership motif 1 (Table 61)
has much overlap with multiplex motifs 5 (Table 64), 34 (Table 68), and 54 (Table 71).
Ownership motif 2 (Table 61) has overlap with multiplex motif 10 (Table 65) and 17 (Ta-
ble 66). Motif 3 (Table 61) has overlap with multiplex motifs 13 (Table 65), 14 (Table 65),
46 (Table 70) and 52 (Table 71). Motif 4 (Table 61) has overlap with multiplex motifs
28 (Table 67) and 35 (Table 68). Finally ownership motif 5 (Table 61) has overlap with
multiplex motif 61 (Table 72). No multiplex motif matches ownership motif 6 (Table 61),
thus ownership motif 6 has no overlap.

Similarly, the overlap between interlock and multiplex motifs can be determined. Inter-
lock motif 1 (Table 62) is identical to multiplex motif 44 (Table 70), motif 2 (Table 62) is
equal to multiplex motif 42 (Table 69), motif 3 (Table 62) is the same as multiplex motif
67 (Table 73), and motif 4 (Table 62) is equal in pattern to multiplex motif 57 (Table 72).
The other six interlock motifs have no overlap with multiplex motifs.

The multiplex network contains patterns that exist solely out of interlock edges. These
multiplex motifs are motifs 9, 19, 23, 24, 25 and 39 (Table 64 to 69). These patterns are
also present in the interlock network, but are not regarded a motif there. This means
that these patterns are easily created in a random interlock network, but when ownership
data is taken into consideration most of the randomly created subgraphs have at least
one ownership edge. A subgraph consisting of only interlock edges becomes much rarer,
and is thus considered a motif. The same effect is not observed for multiplex motifs with
only ownership edges. Any multiplex motif with only ownership edges has an identical
counterpart in the ownership motifs.

Given that it is likely that such a large share of the motifs overlap, it is noteworthy
to mention that the company division of the different motif sets does not look alike. The
motifs from the ownership network contain mostly industrial and financial companies, as
can be seen in Figure 45. They have a very large share of financial companies compared
to smaller motifs. This large share of financial companies can also be seen in the mul-
tiplex network. The interlock motifs have an average company division with many more
industrial companies.

Not surprisingly, the complexity is likewise very different. The ownership motifs have
an average complexity of 0.270, very similar to their size 4 counterpart. Out of the 6
ownership motifs, two are complex: motif 1 and 3 from Table 61. Both these motifs have
a very low share of edges between two industrial companies: 7% and 10% respectively.
Instead these two motifs have a much larger share of edges between financial and industrial
companies, and between two financial companies.

Interlock motifs also have similar complexity to that of their size 4 counterparts. With a
0.262 complexity measure, the interlock motifs are on average just as complex as ownership
motifs. However the interlock motifs are much more consistent in complexity. No single
pattern stands out with a higher or lower percentage of a certain edge. All motifs have
between 63% and 75% of edges between industrial companies, and between 10% and 24%
of edges between a financial firm and an industrial firm. Thus none of the interlock motifs
is considered complex. Even though interlock motifs have a relatively large share of banks
(6%), presence of banks in motifs is small. There is one motif that contains on average
20% of edges that involve a bank, be it a homogeneous edge between two banks, or an
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Figure 45: Size 5: Company Division

edge between a bank and another sector. This is motif 10 from Table 63.
The multiplex motifs have an average complexity of 0.322. This is the highest average

complexity of any motif set of any size. Of the 73 motifs, 22 contain no more than 60% of
edges between companies of the same sector and are thus complex. For 37 companies it
holds that no single homogeneous edge type makes up 60% of all edges. This suggests that
multiplex motifs have a large variety in complexity. Closer inspection of how edges are
divided reveals that many motifs have very different divisions. In interlock or ownership
motifs edges between two industrial firms often make up either a very large part or a
very small part of a motif. This is not the case for multiplex motifs. On average only 54%
of edges is between two industrial companies, and there is a standard deviation of 26%.
Despite having a smaller share of banks than the interlock motifs, there are more motifs
which a large share of edges involving a bank. Motifs 2 and 6 (Table 64), 16 (Table 66),
22 (Table 67), 43 (Table 70) and 58 (Table 72), all have at least 30% of edges involving
a bank. Motif 22 stands out with 41% of edges involving a bank. Furthermore motif 70
(Table 73) has 14% of edges involving mutual and pension funds. This is remarkably high
compared to the entire multiplex network, which has 0.8% of edges involving mutual and
pension funds.

Size 5 motifs have the smallest percentage of edges that are both interlock and owner-
ship, compared to smaller sized multiplex motifs. Instead, they have the largest share of
ownership edges of all measured sizes. See Table 46a. These motifs have less preference for
interlock edges, compared to size 4 motifs. Of all motifs, 56% have at least 60% interlock
edges.

38



Edge type Mean (σ)
Ownership 35.29% (28.82%)
Interlock 58.32% (30.09%)
Multiplex 6.4% (8.06%)

(a) Multiplicity mean

(b) Multiplicity per motif (random jitter of
[−2, 2]% added for visibility)

Figure 46: Size 5: Multiplex motif multiplicity

Just as with size 4 motifs, no industry sector has a preference for either ownership or
interlock motifs. This can be seen in Figure 47.

Figure 47: Frequency of firms in size 5 motifs from ownership and interlock networks, that
appear in at least one motif. Of these companies 25.63% appear only in the ownership
networks, and 56.92% of these companies appear only in the interlock networks.

The other metrics, density, textbook examples and correlation, provide little informa-
tion. The average motif density for ownership and multiplex networks is almost equal with
0.57 and 0.55 respectively. The density of interlock motifs is higher with 0.66. In respect
to the size 3 and 4 motifs, the density of size 5 motifs is much lower, but it does not reveal
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the difference between motif sets from different networks.
Likewise, and just as with smaller motif sizes, the number of textbook examples ex-

presses little information. Again no ownership motif is recognized as a textbook example.
The interlock network contains two motifs (motif 5 Table 62, motif 10 Table 63) that fit
the description of a circle. The multiplex motifs have, just as with size 4 multiplex motifs,
a large number of patterns that contain 3 nodes that are all connected, with two one-
degree nodes extra. These motifs are recognized both as circle and clique. This situation
appears 38 times. Apart from these 38 motifs, there are 6 motifs classified as a pyramid,
4 as a circle, and 7 as a clique. There are more different shapes than in smaller motifs,
but still a very small number compared to the total 73 different motifs.

Table 48 shows the correlation of size 5 motifs. Just as with size 3 and 4 motifs, no
correlation is found between the frequency at which companies appear in motifs, and their
attributes.

Employees Revenue Assets
Motifs P S (p) P S (p) P S (p)

Ownership 0.166 0.070 (0.0) 0.067 -0.027 (0.0) 0.015 -0.032 (0.0)
Interlock 0.140 0.156 (0.0) 0.151 0.084 (0.1) 0.099 0.170 (0.0)
Multiplex 0.222 0.184 (0.0) 0.148 0.107 (0.0) 0.143 0.170 (0.0)

Figure 48: Size 5: Correlation between appearance in motifs versus several company prop-
erties. P = Pearson correlation, S = Spearman correlation with p value.

8 Conclusion and Discussion

In this paper we study network motifs, the basic building block of a network, with the aim
to understand the difference between uniplex and multiplex networks. We base our motifs
on induced subgraphs, for which we extend the definition to include multiplex networks.

As empirical data we use a corporate dataset with information on companies and their
board members. We split the dataset into three different networks: the ownership network
with directed edges showing which companies own other companies, the interlock network
with undirected edges showing which companies share a board member, and the multiplex
network that contains both ownership and interlock edges.

The first step in motif recognition is subgraph enumeration. Subgraph enumeration
lists all patterns in a graph, together with the number of times they appear. For this task
we use Subenum, an algorithm developed to enumerate induced subgraphs in unweighted
directed graphs. To extend subgraph enumeration to multiplex networks, we transform
the multiplex network into a weighted graph and extend the algorithm so that it can
handle weights.

The second step is to determine which patterns are significant. We take a combination
of two measures to determine which patterns are motifs. The first measure is the ratio
between the frequency of a pattern in a network versus the average frequency of the pattern
in a set of random graphs. The random graphs are generated with a stub-matching model.
As the interlock network is inherently a bipartite network between board members and
companies, this network is also modeled as bipartite. Only those patterns with a ratio of
at least 5 can be significant. The second significance measure is the concentration of a
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pattern. Only patterns that make up least 0.01% of all subgraphs, of the same size, can
be considered significant. The resulting motifs are compared to textbook examples.

The third step is defining which properties of the motifs must be compared. We compare
density, multiplicity, company division, correlation and complexity. To further support the
comparison we measure overlap between motif sets of different networks. We extract three
sizes of motifs: size 3, 4 and 5. For each size the properties of the motifs of each network
are compared.

8.1 Conclusion

In Section 7 we show the properties of each network’s motifs, for three different sizes.
In this section we discuss results for each size and end with an answer to the research
questions posed in Section 1.

There are many different motifs found throughout all networks. We briefly review one
motif as an example. The motif is shown in Figure 49. This motif, of size 4, is found in
the multiplex network, and depicts a business structure where three companies all share
board members. One of the companies owns a share in a company with which it shares
a board member, and it downs a share of another company that is not related to the
others. This motif appears 1 600 times more often in the empirical data than it does in
the random graph ensemble. It also makes up 0.5% of all size 4 subgraphs in the multiplex
network.

1 2

3 4

Figure 49: Size 4 multiplex motif 6 from Table 57.

In size 3 motifs we see that there is very little overlap between ownership and multi-
plex motifs. Thus both sets provide information on different combinations of firms. This
is not reflected by the average statistics of both motifs. Density, company division and
complexity are all similar, and neither set of motifs appears related to any of the com-
panies’ properties. Yet there is one clear distinction between the two sets. The ownership
motifs have a greater variety in company division and complexity. There is one owner-
ship motif that contains on average more financial companies and more edges involving
a financial company. This same motif also involves much more private equity firms. This
is a property that the multiplex motifs do not show. Multiplex motifs however contain
many more companies. Where ownership provides information on 7% of the companies
of an ownership network, multiplex motifs provide information on 40% of companies in
its network. Size 3 multiplex motifs are certainly different from the ownership motifs, but
with the given metrics do not provide a clear view of what information they hold.

Size 4 motifs provide a better overview of the difference between uniplex and multiplex
networks, as it was possible to extract motifs from both the uniplex networks and the
multiplex network. The ownership and interlock motifs contain much less companies than
the multiplex motifs. The overlap between ownership and interlock networks is estimated
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to be negligible, but the overlap between ownership and multiplex is estimated to be
large. All except one ownership motif have high overlap. Most of the subgraphs present
in the ownership motifs are thus also present in the multiplex motifs. The same holds for
the interlock motifs, where the motif with the most subgraphs is estimated to have high
overlap with the multiplex motifs. This means that multiplex motifs provide for a large
part information on the same combinations of nodes.

Just as with size 3 motifs, we see that size 4 ownership motifs have one pattern that
deviates from the average. Ownership motif 2 (Table 55) has many more financial com-
panies, and thus also many more edges involving a financial firm. We can see the same
division in several multiplex motifs. There are multiplex motifs with very different com-
pany and edge divisions than that the average would indicate. Size 4 multiplex motifs are
able to better indicate which motifs are characteristic for certain industry sectors.

The motifs of size 5 show properties similar to size 4 motifs. The multiplex motifs again
contain the most companies, and likely overlap with with five out of six ownership motifs
and four out of ten interlock motifs. We can only assume that the overlap between both
uniplex motif sets is small. The company division and complexity do tell us more about
the difference between the motif sets. The motifs from the interlock network are all similar,
but motifs from the ownership network have many more motifs involving industrial and
financial companies. Just as with size 4 ownership motifs, the size 5 ownership motifs can
distinguish motifs that are focused on the financial sector. The multiplex motifs extend
upon this, and are able to detect motifs which are more focused on not only financial
firms but also banks or mutual and pension funds.

So to answer the first part of our research questions: do multiplex motifs provide
a better understanding of the basic building blocks of a corporate network compared
to uniplex motifs? Size 4 and 5 multiplex motifs certainly provide different information
compared to uniplex motifs. They are able to detect different structures that can be
attributed to different industrial sectors. This provides a better overview of a corporate
network than ownership or interlock networks show. Ownership is able to find motifs for
the two largest sectors, and interlock motifs do not provide any motif characteristic for
any sector. Size 3 motifs differ from these results. Size 3 appears to be too small for
multiplex motifs to distinguish between different industry sectors.

These results are made apparent when looking at the properties company division and
complexity, of individual motifs. These metrics show that different motifs contain different
firms from distinct sectors, and that multiplex motifs distinguish the most interesting
motifs. However the average values of these properties provide little information. The
difference in average complexity is almost equal for any set of motifs of the same size, and
the overall company division shows only small differences for each motif set.

Overlap and multiplicity support this result by showing that multiplex motifs contain
many of the same companies that the uniplex motif sets contain. For all sizes we also
see that multiplicity is high. Only very few multiplex motifs consist of only one type of
edge. Multiplex motifs are thus a new set of motifs and not just a union of both uniplex
sets. However, overlap shows that many of the same company combinations from uniplex
motifs can also be found in the multiplex motifs. The multiplex motif set is also much
larger than the union of the two uniplex motif sets. Thus multiplex motifs not only provide
a new view on the same set of companies, but also on a larger set of companies.

As for the second part of the question: does this indicate that in general multiplex
motifs provide a better view of a network compared to uniplex motifs? We cannot answer
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this question. The difference in motifs only becomes apparent after taking into account
the underlying data. We can not state that for every network it holds that multiplex
motifs provide a better, or even different, view of the data.

The metrics that would have shown this are density and the number of textbook
examples. Two motif sets with largely different densities indicate a clear preference for
different structures in their respective networks. The number of textbook examples would
digress on such a result by specifying which structures there are. However, the density of
motifs and the number of textbook examples in motifs did not provide any useful insights
on the network. The density of every motif set of equal size is very similar. Furthermore,
for all sizes of motifs, and every motif set, the number of textbook examples is low.
Most textbook examples that are found are both a clique and circle, meaning that the
pattern contains an undirected triangle. The other textbook examples are not encountered
or only very rarely. From this we must conclude that the textbook examples are not a
good indicator of significant motifs, either because the textbook is dated and companies
now behave differently and form different patterns, or because the provided examples
are not statistically significant but are significant according to a different measure. From
these results we must conclude that network properties extracted without knowledge of
underlying data, such as density and textbook examples, do not provide a good overview
of the characteristics of different motif sets.

Lastly we discuss the correlation. No motif set has shown a significant relation with any
of a company’s properties. Though motifs certainly express interesting business structures,
they do not do so in regards to their number of employees, assets or revenue. This is
surprising, as large companies are surely able to construct many business structures,
which would result in a high frequency in a motif set.

8.2 Possible limitations of motifs

During this study on multiplex motifs, we have discovered several pitfalls and difficulties
with motifs and how to compare them. The first is the selection of motifs. There are many
different types of motifs, and selecting the right one for a particular study is more of an
art than a science. It is hard to reason which motif type would contain the information
that is needed for a specific research.

Second is the time required to enumerate subgraphs. Our results show that as size
increases, different motifs appear. It is interesting to see how this trend progresses with
larger size motifs, but due to the time required to extract larger size motifs this is not
an option. Computation time might be reduced with the use of different algorithms, but
these algorithms might not enumerate all desired subgraphs.

Third is the comparison of motifs. Comparing two uniplex motifs is possible with
generic network measures. But as the size of a motif is small, many measures will be
nearly identical and with multiplex motifs it becomes impossible to use generic measures.
Thus comparison must then rely on underlying data of the network. As a motif is a
collection of subgraphs, the underlying data can only be expressed as an average of all
these subgraphs. Comparison between two motifs is thus a comparison of averages over
a set of subgraphs. However, to compare entire sets of motifs, the comparison becomes a
comparison between an average over an average, which complicates the interpretation of
the result.
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8.3 Future Work

For future studies, we first recommend to expand upon certain aspects of this study.
This study focuses on unweighted multiplex subgraphs. It would be interesting to see the
effect of weights on motifs. Different weights indicate different corporate structures. A
structure with high weight ownership edges indicates complete control, while many low
weight ownership edges show stock diversity. Weight can also be used to extract network
properties that do not rely on the underlying data. Think for example of the average
weight per edge type. This could show if a motif is used to tightly connect nodes via
the respective edge type. Expanding our proposed algorithm to include weighted graphs
could elaborate on the differences between motif sets by providing a more fine-grained
motif selection.

Furthermore, the current algorithm enumerates induced subgraphs. These subgraphs
have shown to be useful for detecting motifs related to specific industry sectors. Using a
different type of subgraph can provide information on other aspects of a network.

The selection of the random graph model used to generate random graphs is also
of great importance. A model that is completely random will generate graphs with little
similarity to a real-world network. A model too restrictive will generate graphs too similar
to a real-world network. Neither of these models is fit for motif recognition. A good middle-
ground must be found: one that is sufficiently random to indicate which structures are
the result of randomness and which structures are the result of human intervention, yet
restrictive enough to filter out generic human behavior in the given setting of the real-
world data. In this study we have used the stub-matching model, as it is sufficiently
random with restrictions on the number of edges, and keeps in mind the behavior of
companies. However, we have not solved the model-selection problem for the general case.
To select a model for a network where no underlying data is known, such as a completely
abstract network, the techniques describes in [18] may be used to compare the generated
random graph with the empirical network.

Bipartite modeling will remain a difficult topic, regardless of model. Creating a bipar-
tite model such that the one-mode projection will be similar to the one-mode projection
of an empirical bipartite network is no trivial task. Such a model requires more rules to
follow than only a degree-sequence, but not so much rules that the model would no longer
be random.

The random models are used to calculate significance of a pattern, but significance is
also estimated without the need for random models. In this study we use the concentration
of a pattern. As it turns out this measure alone is not enough to indicate significance.
A better estimate of importance might indicate significance better and even remove the
need for random models. The methods discussed in [6] and [7] could help to estimate the
number of times a pattern appears in a graph, and thus can indicate significance without
random graph models.

A final point to expand upon this study is an improvement on measuring overlap. Size 4
and 5 motifs contain too many subgraphs to do an all versus all comparison. Overlap is ba-
sically the same as Jaccard similarity, and as such a min-hashing technique could provide
a better estimate of overlap than the method used in this paper. Furthermore, overlap
between a uniplex and multiplex motif set can be calculated faster by first comparing
the pattern’s adjacency matrices. The uniplex pattern’s matrix must be contained in the
multiplex matrix, otherwise no overlap can exist. This reduces the number of patterns to
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compare.
Besides these points that would expand this study, we also suggest a new study. This

research has not answered the question whether multiplex motifs provide a better under-
standing of networks compared to uniplex motifs in the general case. In order to study
this, the results of this study should be compared to similar studies on different datasets.
How do the results compare to corporate data from different countries, or from different
networks types such as a social network?
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A Apendix

A.1 Graph models

The pseudo-code for the graph models discussed in Section 6.1.1.

A.1.1 Chung-Lu models

Algorithm 1 Directed Chung-Lu

INITIALIZE Lu = number of edges in the original graph
INITIALIZE in-degree = in-degree of each node in the original graph
INITIALIZE out-degree = out-degree of each node in the original graph
INITIALIZE edges = empty list
for i ∈ all nodes do

for j ∈ all nodes do

add edge(i, j) to edges with probability:
out-degree(i) ∗ in-degree(j)

Lu
end for

end for
return edges

A.1.2 Park-Newman models

We choose adjuster α = 33500, as this fits our empirical data best.

Algorithm 2 Directed Park-Newman

INITIALIZE in-degree = in-degree of each node in the original graph
INITIALIZE out-degree = out-degree of each node in the original graph
INITIALIZE adjuster = α
INITIALIZE edges = empty list
for i ∈ all nodes do

for j ∈ all nodes do

add edge(i, j) to edges with probability:
out-degree(i) ∗ in-degree(j) ∗ adjuster−1

out-degree(i) ∗ in-degree(j) ∗ adjuster−1 + 1
end for

end for
return edges

A.1.3 Stub-matching model

The stub matching model is implemented by the Python package networkx, in Python 3.5.
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Algorithm 3 Directed Stub-matching

INITIALIZE in-degree = in-degree of each node in the original graph
INITIALIZE out-degree = out-degree of each node in the original graph
D =networkx.directed configuration model(in-degree,out-degree)
Remove parallel edges from D
Remove self loops from D
Return edges(D)

A.1.4 One-mode projection

If the model produces a bipartite graph, a one-mode projection must be made. The fol-
lowing algorithm creates this projection. It assumes two sets of nodes, one of which has
only outgoing edges, and one has only incoming edges. The one-mode projection is made
of the node set that has incoming edges.

Algorithm 4 One mode projection

INITIALIZE G = bipartite graph, as networkx graph object
INITIALIZE bipart-set = empty list
INITIALIZE edges = empty list
for edge ∈ G do

bs = edge[0]
if bs in bipart-set then

continue
end if
bipart-set.add(bs)
for source in G[bs] do

for target in G[bs] do
if source 6= target and source < target then

add edge(source, target) to edges
end if

end for
end for

end for
return edges

A.1.5 Multiplex Model

The multiplex stub-matching algorithm creates a separate network for each type of edge,
and then merges all networks into a multiplex network. However this creates a problem
with the interlock edges. When two nodes have both an interlock and an ownership rela-
tion, the relation becomes a directed multiplex relation. This leaves one directed interlock
relation instead of an undirected interlock edge because half of the undirected relation
is merged into a multiplex relation. An example is given in Figure 50. Figure 50a shows
two companies, A and B, where A owns B (blue directed edge), and both share board
members (two black directed edges). Figure 50b shows the same two companies A and B,
but now the ownership and interlock relations from A to B have been merged into one
combined relation (red directed edge).
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A B

(a) As multiple relations:
Black: Interlock, undirected relation.
Red: Ownership, directed relation.

A B

(b) As multiplex relations:
Black: Interlock, undirected relation.
Blue: Combined, directed relation.

Figure 50: Two companies with interlock and ownership ties

Furthermore a choice must be made on how to model a combination edge. Part of the
multiplex edge (ownership) is a direct relation between two companies. The other part
(interlock) is a bipartite relation between one or more board members and two companies.
Since a combined edge can not exist without an interlock edge, it must follow the rules of
an interlock edge. Therefore multiplex edges are also modeled bipartite. This means that
a board member can be seen as responsible for the multiplex relation. If two companies
A and B have a multiplex relation from A to B, we select a single board member P
to be responsible for the combined relation. P loses its interlock edges with A and B,
and gains a multiplex relation with both A and B. To keep track of the direction of the
original multiplex edge from A to B, we split the combined relation into two parts: one
part is a directed edge from a company to a board member (from A to P ), and one part
is a directed edge from a board member to a company (from P to B). A also loses its
ownership out-edge, and B loses its ownership in-edge. This edge is already taken into
account with the combination edge. See Figure 51 for an example.

P

A B

(a) As multiple relations:
Black: Interlock.
Red: Ownership.

P

A B

(b) As multiplex relations:
Blue: Company to board member.
Green: Board member to company.

Figure 51: Bipartite projection of Figure 50

The degree sequence of the graph from Figure 51 thus makes many changes before the
modeling is done. These changes are as follows:

• The multiplex network of node A and B has the following degree sequences:

– Din-ownership = [0, 1]

– Dout-ownership = [1, 0]

– Dinterlock = [1, 1]

• The interlock part is made bipartite with the introduction of node P (Figure 51a).
The degree sequences of nodes A, B and P are now:

– Din-ownership = [0, 1, 0]

– Dout-ownership = [1, 0, 0]

– Din-interlock = [1, 1, 0]
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– Dout-interlock = [0, 0, 2]

• As the relation between A and B is multiplex, the ownership and interlock edge are
merged. The degree sequences of nodes A, B and P are now:

– Din-ownership = [0, 0, 0]

– Dout-ownership = [0, 0, 0]

– Din-interlock = [0, 0, 0]

– Dout-interlock = [0, 0, 0]

– Din-multiplex1 = [0, 0, 1]

– Dout-multiplex1 = [1, 0, 0]

– Din-multiplex2 = [0, 1, 0]

– Dout-multiplex2 = [0, 0, 1]

This means that after merging ownership and interlock into multiplex before modeling,
the degree sequence of the leftover interlock network does not represent an undirected
network. Therefore only interlock edges are considered where the reverse edge is not
condensed into a multiplex edge.

When all edge types have been modeled separately, the edges are then merged into
one edge-list which resembles the multiplex graph. Each multiplex edge is given a reverse
interlock edge, to correct for the removal of interlock edges that where condensed into a
multiplex edge.
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Algorithm 5 Multiplex Stub-matching

INITIALIZE G = original graph
INITIALIZE o-in-degree = in-degree of type1 edges for each node in G
INITIALIZE o-out-degree = out-degree of type1 edges for each node in G
INITIALIZE i-in-degree = in-degree of type2 edges for each node in G
INITIALIZE i-out-degree = out-degree of type2 edges for each node in G
INITIALIZE m-edges = all multiplex edges between nodes
INITIALIZE m-in-degree = in-degree of multiplex edges for each node in G
INITIALIZE m-out-degree = out-degree of multiplex edges for each node in G

for edge in m-edges do
pick random node connected to this edge, with non-zero i-out-degree
adjust degrees of this node and source and target of edge

end for

O =networkx.directed configuration model(o-in-degree,o-out-degree)
Remove parallel edges and self loops of O
I =networkx.configuration model(i-degree)
Remove parallel edges and self loops of I

M = empty list
for bm in rand-bm do

for i = 1 to size(m-in-degree[bm]) do
pick source at random out of all nodes with a m-out-degree
decrease m-out-degree[source] by 1

end for
for i = 1 to size(m-out-degree[bm]) do

pick target at random out of all nodes with a m-out-degree
decrease m-in-degree[target] by 1

end for
create an edge between every source and target, store in M

end for
all-edges= empty list
for edge in O do

all-edges[edge] = 1
end for
for edge in I do

all-edges[edge] = 2
end for
for edge in M do

all-edges[edge] = 3
if all-edges[reverse(edge)] 6= 3 then

all-edges[reverse(edge)] = 2
end if

end for
return all-edges
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A.2 Motif Combined Result Tables

A.2.1 Size 3

Adjacency
ID Matrix Motif Ratio Concentration Type

1
[
0 0 0
1 0 0
1 1 0

]
1

2 3

278 0.418%

2
[
0 0 0
0 0 1
1 1 0

]
1

2 3

26 0.026%

3
[
0 1 0
1 0 0
1 0 0

]
1

2 3

- 0.01%

Figure 52: Ratio and concentration of size 3 motifs in the ownership network
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Adjacency
ID Matrix Motif Ratio Concentration Type

1
[
0 2 2
2 0 2
2 2 0

]
1

2 3

1462 20.791% Circle,Clique

2
[
0 2 2
2 0 2
3 2 0

]
1

2 3

1858 1.918% Circle,Clique

3
[
0 2 2
2 0 2
3 3 0

]
1

2 3

- 0.945% Circle,Clique

4
[
0 2 0
2 0 0
1 1 0

]
1

2 3

1170 0.805% Circle,Clique

5
[
0 2 0
2 0 2
1 3 0

]
1

2 3

1032 0.118% Circle,Clique

6
[
0 2 2
2 0 3
3 2 0

]
1

2 3

- 0.104% Circle,Clique

7
[
0 0 0
1 0 0
1 1 0

]
1

2 3

97 0.078% Circle,Clique

8
[
0 2 0
2 0 2
1 2 0

]
1

2 3

65 0.075% Circle,Clique

9
[
0 0 0
1 0 2
1 2 0

]
1

2 3

516 0.059% Circle,Clique

10
[
0 0 0
1 0 2
1 3 0

]
1

2 3

- 0.056% Circle,Clique

11
[
0 2 0
3 0 0
1 1 0

]
1

2 3

- 0.021% Circle,Clique

12
[
0 2 2
3 0 2
3 3 0

]
1

2 3

- 0.018% Circle,Clique

Figure 53: Ratio and concentration of size 3 motifs in the multiplex network (part 1)
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Adjacency
ID Matrix Motif Ratio Concentration Type

13
[
0 0 2
1 0 0
2 1 0

]
1

2 3

- 0.017% Circle,Clique

14
[
0 2 2
3 0 2
3 2 0

]
1

2 3

- 0.016% Circle,Clique

Figure 54: Ratio and concentration of size 3 motifs in the multiplex network (part 2)

A.2.2 Size 4

Adjacency
ID Matrix Motif Ratio Concentration Type

1

[
0 0 0 0
0 0 0 0
1 0 0 0
1 1 1 0

]
1

2 3

4 100 0.436%

2

[
0 0 0 0
0 0 0 0
1 1 0 0
1 1 0 0

]
1

2 3

4 2024 0.351%

3

[
0 0 0 0
0 0 0 0
1 1 0 0
1 1 1 0

]
1

2 3

4 - 0.068%

4

[
0 0 0 0
0 0 0 0
1 1 0 0
1 0 1 0

]
1

2 3

4 29 0.016%

Figure 55: Ratio and concentration of size 4 motifs in the ownership network

Adjacency
ID Matrix Motif Ratio Concentration Type

1

[
0 0 1 1
0 0 1 1
1 1 0 1
1 1 1 0

]
1

2 3

4 171 3.802%

2

[
0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

]
1

2 3

4 42 0.104% Circle

Figure 56: Ratio and concentration of size 4 motifs in the interlocks network
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Adjacency
ID Matrix Motif Ratio Concentration Type

1

[
0 2 2 2
2 0 2 2
2 2 0 2
2 2 2 0

]
1

2 3

4 - 2.43% Clique

2

[
0 2 2 2
2 0 0 0
2 0 0 2
2 0 2 0

]
1

2 3

4 65 1.353% Circle,Clique

3

[
0 0 0 0
0 0 2 0
0 2 0 0
1 1 1 0

]
1

2 3

4 341 1.216% Circle,Clique

4

[
0 0 0 0
0 0 0 0
0 1 0 2
1 0 2 0

]
1

2 3

4 9 0.717% Pyramid

5

[
0 0 0 0
0 0 2 2
0 2 0 2
1 2 2 0

]
1

2 3

4 500 0.536% Circle,Clique

6

[
0 0 0 0
0 0 2 2
0 2 0 2
1 3 2 0

]
1

2 3

4 1632 0.468% Circle,Clique

7

[
0 0 2 2
0 0 2 2
2 2 0 2
2 2 2 0

]
1

2 3

4 18241 0.255%

8

[
0 0 0 0
0 0 2 2
0 2 0 2
1 3 3 0

]
1

2 3

4 7556 0.229% Circle,Clique

9

[
0 0 0 0
0 0 0 0
1 0 0 0
1 1 1 0

]
1

2 3

4 38 0.149% Circle,Clique

10

[
0 2 2 2
2 0 2 2
2 2 0 2
3 2 2 0

]
1

2 3

4 - 0.134% Clique

11

[
0 2 0 0
2 0 0 0
0 0 0 2
1 1 2 0

]
1

2 3

4 611 0.127% Circle,Clique

12

[
0 0 0 0
0 0 0 0
1 1 0 0
1 1 0 0

]
1

2 3

4 363 0.126% Circle

Figure 57: Ratio and concentration of size 4 motifs in the multiplex network (part 1)
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Adjacency
ID Matrix Motif Ratio Concentration Type

13

[
0 2 2 0
2 0 2 0
2 2 0 0
1 0 0 0

]
1

2 3

4 352 0.121% Circle,Clique

14

[
0 0 0 0
0 0 0 0
1 1 0 2
1 1 2 0

]
1

2 3

4 - 0.1%

15

[
0 0 0 2
0 0 2 0
0 2 0 0
3 1 1 0

]
1

2 3

4 986 0.096% Circle,Clique

16

[
0 0 2 2
0 0 0 2
2 0 0 2
3 2 2 0

]
1

2 3

4 334 0.092% Circle,Clique

17

[
0 0 0 0
0 0 0 0
1 0 0 2
1 1 3 0

]
1

2 3

4 776 0.089% Circle,Clique

18

[
0 0 2 2
0 0 2 0
2 2 0 2
3 0 2 0

]
1

2 3

4 178 0.087% Circle,Clique

19

[
0 0 2 2
0 0 0 0
2 0 0 0
3 1 1 0

]
1

2 3

4 181 0.081% Circle,Clique

20

[
0 2 2 0
2 0 2 0
2 2 0 0
1 1 1 0

]
1

2 3

4 - 0.077% Clique

21

[
0 2 2 0
2 0 2 0
2 2 0 0
1 1 0 0

]
1

2 3

4 - 0.07%

22

[
0 2 2 2
2 0 2 2
2 2 0 2
3 3 2 0

]
1

2 3

4 - 0.067% Clique

23

[
0 0 0 2
0 0 2 2
0 2 0 2
3 2 2 0

]
1

2 3

4 193 0.063% Circle,Clique

24

[
0 2 0 2
2 0 0 2
0 0 0 2
3 3 2 0

]
1

2 3

4 2683 0.044% Circle,Clique

Figure 58: Ratio and concentration of size 4 motifs in the multiplex network (part 2)
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Adjacency
ID Matrix Motif Ratio Concentration Type

25

[
0 2 2 2
2 0 0 0
2 0 0 2
3 0 2 0

]
1

2 3

4 160 0.044% Circle,Clique

26

[
0 2 2 2
2 0 2 2
2 2 0 2
3 3 3 0

]
1

2 3

4 - 0.043% Clique

27

[
0 2 0 2
2 0 2 2
0 2 0 0
3 3 0 0

]
1

2 3

4 551 0.033% Circle,Clique

28

[
0 0 2 2
0 0 0 0
2 1 0 2
3 0 2 0

]
1

2 3

4 1778 0.033% Circle,Clique

29

[
0 0 0 0
0 0 2 0
0 3 0 0
1 1 1 0

]
1

2 3

4 163 0.032% Circle,Clique

30

[
0 0 0 0
0 0 2 0
0 2 0 2
1 1 2 0

]
1

2 3

4 15 0.032% Circle,Clique

31

[
0 2 2 2
2 0 2 0
2 2 0 0
3 0 0 0

]
1

2 3

4 88 0.031% Circle,Clique

32

[
0 0 0 0
0 0 0 0
1 1 0 0
1 1 1 0

]
1

2 3

4 11490 0.027%

33

[
0 0 0 0
0 0 0 0
1 0 0 2
1 1 2 0

]
1

2 3

4 48 0.026% Circle,Clique

34

[
0 0 0 0
0 0 0 2
1 0 0 0
1 2 1 0

]
1

2 3

4 93 0.022% Circle,Clique

35

[
0 2 0 0
2 0 2 0
0 2 0 0
1 1 0 0

]
1

2 3

4 42 0.02% Circle,Clique

36

[
0 2 2 2
2 0 0 2
2 0 0 2
3 2 2 0

]
1

2 3

4 - 0.019%

Figure 59: Ratio and concentration of size 4 motifs in the multiplex network (part 3)
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Adjacency
ID Matrix Motif Ratio Concentration Type

37

[
0 0 0 0
0 0 2 2
1 2 0 2
0 2 3 0

]
1

2 3

4 1013 0.019% Circle,Clique

38

[
0 2 0 0
2 0 0 2
0 0 0 2
1 3 2 0

]
1

2 3

4 328 0.017% Circle,Clique

39

[
0 0 0 0
0 0 0 0
1 1 0 2
1 1 3 0

]
1

2 3

4 - 0.016%

40

[
0 2 2 0
2 0 0 0
2 0 0 0
1 1 1 0

]
1

2 3

4 - 0.014%

41

[
0 0 0 0
0 0 2 0
1 3 0 0
1 1 0 0

]
1

2 3

4 949 0.013% Circle

42

[
0 0 0 0
0 0 2 0
0 3 0 2
1 1 3 0

]
1

2 3

4 1374 0.013% Circle,Clique

43

[
0 0 2 2
0 0 2 2
2 2 0 2
3 2 2 0

]
1

2 3

4 - 0.013%

44

[
0 0 0 0
0 0 0 2
1 0 0 2
1 2 3 0

]
1

2 3

4 881 0.012% Circle,Clique

45

[
0 2 0 2
2 0 2 2
0 2 0 2
3 3 2 0

]
1

2 3

4 - 0.011%

46

[
0 0 0 2
0 0 2 2
0 2 0 2
3 3 2 0

]
1

2 3

4 139 0.011% Circle,Clique

47

[
0 0 2 2
0 0 0 0
2 1 0 2
2 1 2 0

]
1

2 3

4 - 0.01%

48

[
0 0 2 0
0 0 0 2
2 0 0 2
1 2 2 0

]
1

2 3

4 25 0.01% Circle,Clique

Figure 60: Ratio and concentration of size 4 motifs in the multiplex network (part 4)
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A.2.3 Size 5

Adjacency
ID Matrix Motif Ratio Concentration Type

1

[
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 0 0 0
1 1 1 0 0

]
1

2

3 4

5

642 0.623%

2

[
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
1 1 1 1 0

]
1

2

3 4

5

57 0.488%

3

[
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 1 0 0
1 1 1 0 0

]
1

2

3 4

5

584907 0.391%

4

[
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 0 0 0
1 1 1 1 0

]
1

2

3 4

5

28619 0.114%

5

[
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 1 0 0
1 1 1 1 0

]
1

2

3 4

5

- 0.029%

6

[
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 1 0 0
1 1 0 1 0

]
1

2

3 4

5

10 0.015%

Figure 61: Ratio and concentration of size 5 motifs in the ownership network
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Adjacency
ID Matrix Motif Ratio Concentration Type

1

[
0 0 0 0 1
0 0 1 1 0
0 1 0 1 1
0 1 1 0 1
1 0 1 1 0

]
1

2

3 4

5

66 2.133%

2

[
0 0 0 1 1
0 0 1 1 1
0 1 0 1 1
1 1 1 0 1
1 1 1 1 0

]
1

2

3 4

5

82 2.039%

3

[
0 0 0 0 1
0 0 0 1 1
0 0 0 1 1
0 1 1 0 1
1 1 1 1 0

]
1

2

3 4

5

20 1.362%

4

[
0 0 1 1 1
0 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

]
1

2

3 4

5

63435 1.007%

5

[
0 0 0 0 1
0 0 0 1 1
0 0 0 1 1
0 1 1 0 0
1 1 1 0 0

]
1

2

3 4

5

20 0.301% Circle

6

[
0 0 1 0 1
0 0 0 1 1
1 0 0 1 1
0 1 1 0 1
1 1 1 1 0

]
1

2

3 4

5

43 0.294%

7

[
0 0 0 1 1
0 0 0 1 1
0 0 0 1 1
1 1 1 0 1
1 1 1 1 0

]
1

2

3 4

5

11421 0.159%

Figure 62: Ratio and concentration of size 5 motifs in the interlocks network (part 1)
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Adjacency
ID Matrix Motif Ratio Concentration Type

8

[
0 1 0 1 0
1 0 0 0 1
0 0 0 1 1
1 0 1 0 1
0 1 1 1 0

]
1

2

3 4

5

18 0.091%

9

[
0 1 1 0 0
1 0 0 1 1
1 0 0 1 1
0 1 1 0 1
0 1 1 1 0

]
1

2

3 4

5

- 0.021%

10

[
0 1 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 0 0 1
0 0 1 1 0

]
1

2

3 4

5

24 0.018% Circle

Figure 63: Ratio and concentration of size 5 motifs in the interlocks network (part 2)
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Adjacency
ID Matrix Motif Ratio Concentration Type

1

[
0 0 0 0 0
0 0 0 0 0
0 0 0 2 0
0 0 2 0 0
1 1 1 1 0

]
1

2

3 4

5

269 1.932% Circle,Clique

2

[
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 0 2
1 1 0 2 0

]
1

2

3 4

5

10 0.868% Pyramid

3

[
0 0 0 2 2
0 0 0 0 0
0 0 0 0 0
2 0 0 0 2
3 1 1 2 0

]
1

2

3 4

5

2346 0.673% Circle,Clique

4

[
0 0 0 0 0
0 0 0 0 0
0 0 0 2 2
0 0 2 0 2
1 1 2 2 0

]
1

2

3 4

5

873 0.559% Circle,Clique

5

[
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 0 0 0
1 1 1 0 0

]
1

2

3 4

5

172 0.361% Circle

6

[
0 0 0 0 0
0 0 0 0 0
0 0 0 2 0
0 1 2 0 2
1 0 0 2 0

]
1

2

3 4

5

9 0.3% Pyramid

7

[
0 0 0 0 0
0 0 0 0 0
0 0 0 2 2
0 0 2 0 2
1 1 3 3 0

]
1

2

3 4

5

8770 0.257% Circle,Clique

Figure 64: Ratio and concentration of size 5 motifs in the multiplex network (part 1)
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Adjacency
ID Matrix Motif Ratio Concentration Type

8

[
0 0 0 0 0
0 0 2 0 0
0 2 0 0 0
0 0 0 0 2
1 1 1 2 0

]
1

2

3 4

5

306 0.216% Circle,Clique

9

[
0 2 2 2 2
2 0 2 2 2
2 2 0 2 2
2 2 2 0 2
2 2 2 2 0

]
1

2

3 4

5

- 0.194% Clique

10

[
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
1 1 1 1 0

]
1

2

3 4

5

23 0.181% Circle,Clique

11

[
0 0 0 0 0
0 0 2 2 0
0 2 0 2 0
0 2 2 0 0
1 1 1 0 0

]
1

2

3 4

5

285266 0.158%

12

[
0 0 0 0 0
0 0 2 2 0
0 2 0 2 0
0 2 2 0 0
1 1 0 0 0

]
1

2

3 4

5

969 0.146% Circle,Clique

13

[
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 1 0 2
1 1 1 2 0

]
1

2

3 4

5

- 0.126%

14

[
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 1 0 0
1 1 1 0 0

]
1

2

3 4

5

40572 0.123%

Figure 65: Ratio and concentration of size 5 motifs in the multiplex network (part 2)
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Adjacency
ID Matrix Motif Ratio Concentration Type

15

[
0 0 0 0 2
0 0 0 0 0
0 0 0 2 0
0 0 2 0 0
3 1 1 1 0

]
1

2

3 4

5

316 0.104% Circle,Clique

16

[
0 0 0 2 2
0 0 0 0 0
0 0 0 0 0
2 1 0 0 0
2 0 1 0 0

]
1

2

3 4

5

10 0.092% Pyramid

17

[
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 2
1 1 1 3 0

]
1

2

3 4

5

468 0.089% Circle,Clique

18

[
0 2 0 0 2
2 0 0 0 0
0 0 0 0 0
0 0 0 0 0
3 1 1 1 0

]
1

2

3 4

5

110 0.086% Circle,Clique

19

[
0 0 2 2 2
0 0 2 0 0
2 2 0 0 0
2 0 0 0 2
2 0 0 2 0

]
1

2

3 4

5

33 0.081% Circle,Clique

20

[
0 0 0 0 0
0 0 0 2 0
0 0 0 2 2
0 2 2 0 2
1 0 2 2 0

]
1

2

3 4

5

112 0.077% Circle,Clique

21

[
0 0 0 0 0
0 0 2 2 0
0 2 0 2 0
0 2 2 0 0
1 1 1 1 0

]
1

2

3 4

5

- 0.077% Clique

Figure 66: Ratio and concentration of size 5 motifs in the multiplex network (part 3)
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Adjacency
ID Matrix Motif Ratio Concentration Type

22

[
0 0 0 0 0
0 0 0 0 2
0 0 0 0 0
0 0 1 0 2
1 3 0 2 0

]
1

2

3 4

5

7 0.076% Pyramid

23

[
0 0 0 2 2
0 0 0 2 0
0 0 0 0 2
2 2 0 0 2
2 0 2 2 0

]
1

2

3 4

5

11 0.069% Circle,Clique

24

[
0 2 2 2 2
2 0 0 0 0
2 0 0 2 2
2 0 2 0 2
2 0 2 2 0

]
1

2

3 4

5

2235624 0.069% Clique

25

[
0 2 2 2 2
2 0 0 0 0
2 0 0 0 0
2 0 0 0 2
2 0 0 2 0

]
1

2

3 4

5

13 0.056% Circle,Clique

26

[
0 0 0 0 0
0 0 0 0 2
0 0 0 2 2
0 0 2 0 2
1 2 2 2 0

]
1

2

3 4

5

156 0.052% Circle,Clique

27

[
0 0 0 2 0
0 0 0 0 0
0 0 0 0 0
2 0 0 0 2
1 1 1 2 0

]
1

2

3 4

5

12 0.047% Circle,Clique

28

[
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 0 0 0
1 1 1 1 0

]
1

2

3 4

5

3987 0.044%

Figure 67: Ratio and concentration of size 5 motifs in the multiplex network (part 4)
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Adjacency
ID Matrix Motif Ratio Concentration Type

29

[
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 1 0 2
1 0 0 3 0

]
1

2

3 4

5

7 0.039% Pyramid

30

[
0 0 0 0 0
0 0 0 0 0
0 0 0 2 0
1 1 2 0 0
1 1 0 0 0

]
1

2

3 4

5

305 0.039% Circle

31

[
0 0 0 0 0
0 0 0 0 0
0 0 0 0 2
1 0 0 0 0
1 1 2 1 0

]
1

2

3 4

5

47 0.037% Circle,Clique

32

[
0 0 0 0 0
0 0 0 0 0
0 0 0 2 0
0 0 3 0 0
1 1 1 1 0

]
1

2

3 4

5

91 0.036% Circle,Clique

33

[
0 0 0 2 2
0 0 0 0 0
0 0 0 0 0
2 1 0 0 2
2 0 1 2 0

]
1

2

3 4

5

2019 0.035% Circle,Clique

34

[
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 0 0 2
1 1 1 2 0

]
1

2

3 4

5

7664 0.034%

35

[
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 0 0 2
1 1 1 3 0

]
1

2

3 4

5

133710 0.033%

Figure 68: Ratio and concentration of size 5 motifs in the multiplex network (part 5)
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Adjacency
ID Matrix Motif Ratio Concentration Type

36

[
0 0 0 0 0
0 0 2 2 2
0 2 0 2 0
0 2 2 0 0
1 2 0 0 0

]
1

2

3 4

5

183 0.033% Circle,Clique

37

[
0 0 2 2 0
0 0 0 0 0
2 0 0 0 0
2 0 0 0 0
1 1 1 0 0

]
1

2

3 4

5

20 0.031% Circle,Clique

38

[
0 0 0 0 0
0 0 2 2 2
0 2 0 2 2
0 2 2 0 2
1 3 2 2 0

]
1

2

3 4

5

- 0.03% Clique

39

[
0 2 2 2 2
2 0 2 0 0
2 2 0 0 0
2 0 0 0 2
2 0 0 2 0

]
1

2

3 4

5

23978 0.027%

40

[
0 0 0 0 0
0 0 2 2 2
0 2 0 2 2
0 2 2 0 2
1 3 3 2 0

]
1

2

3 4

5

- 0.027% Clique

41

[
0 0 0 2 2
0 0 2 2 2
0 2 0 2 2
2 2 2 0 2
2 2 2 2 0

]
1

2

3 4

5

- 0.026%

42

[
0 0 0 0 0
0 0 2 0 0
0 2 0 0 0
0 1 0 0 2
1 0 0 2 0

]
1

2

3 4

5

8 0.025% Pyramid

Figure 69: Ratio and concentration of size 5 motifs in the multiplex network (part 6)
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Adjacency
ID Matrix Motif Ratio Concentration Type

43

[
0 0 0 0 0
0 0 0 0 0
0 0 0 2 0
1 0 3 0 0
1 1 1 0 0

]
1

2

3 4

5

527 0.022% Circle

44

[
0 0 0 2 2
0 0 2 2 2
0 2 0 0 0
2 2 0 0 2
2 2 0 2 0

]
1

2

3 4

5

2087 0.02%

45

[
0 0 0 0 0
0 0 2 2 2
0 2 0 2 2
0 2 2 0 2
1 2 2 2 0

]
1

2

3 4

5

- 0.019% Clique

46

[
0 0 0 2 0
0 0 0 0 0
0 0 0 0 0
3 1 1 0 0
1 1 1 0 0

]
1

2

3 4

5

200136 0.019%

47

[
0 0 0 0 0
0 0 0 2 2
0 0 0 2 0
0 2 2 0 2
1 3 0 2 0

]
1

2

3 4

5

198 0.019% Circle,Clique

48

[
0 0 0 2 2
0 0 0 0 0
0 0 0 0 0
2 1 1 0 2
2 1 1 2 0

]
1

2

3 4

5

- 0.017%

49

[
0 0 0 0 0
0 0 2 0 2
0 2 0 2 2
0 0 2 0 0
1 3 3 0 0

]
1

2

3 4

5

1534 0.016% Circle,Clique

Figure 70: Ratio and concentration of size 5 motifs in the multiplex network (part 7)
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Adjacency
ID Matrix Motif Ratio Concentration Type

50

[
0 0 0 2 0
0 0 2 0 0
0 2 0 0 0
2 0 0 0 0
1 1 1 0 0

]
1

2

3 4

5

202 0.016% Circle,Clique

51

[
0 0 0 0 0
0 0 0 0 0
0 0 0 0 2
1 0 0 0 2
1 1 2 3 0

]
1

2

3 4

5

606 0.016% Circle,Clique

52

[
0 0 0 2 2
0 0 0 0 0
0 0 0 0 0
3 1 1 0 2
3 1 1 2 0

]
1

2

3 4

5

- 0.016%

53

[
0 0 0 0 0
0 0 2 2 2
0 2 0 0 0
0 2 0 0 2
1 3 0 2 0

]
1

2

3 4

5

305 0.016% Circle,Clique

54

[
0 0 0 0 2
0 0 0 0 0
0 0 0 0 0
1 1 0 0 0
3 1 1 0 0

]
1

2

3 4

5

755 0.015% Circle

55

[
0 0 0 0 0
0 0 0 2 2
0 0 0 0 2
0 2 0 0 2
1 3 2 2 0

]
1

2

3 4

5

198 0.015% Circle,Clique

56

[
0 0 2 2 0
0 0 0 0 0
2 0 0 0 0
2 0 0 0 0
1 1 1 1 0

]
1

2

3 4

5

5851 0.015%

Figure 71: Ratio and concentration of size 5 motifs in the multiplex network (part 8)
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Adjacency
ID Matrix Motif Ratio Concentration Type

57

[
0 2 2 2 2
2 0 2 2 2
2 2 0 2 2
2 2 2 0 0
2 2 2 0 0

]
1

2

3 4

5

- 0.014%

58

[
0 0 0 0 0
0 0 0 2 2
0 0 0 0 0
0 2 1 0 2
1 3 0 2 0

]
1

2

3 4

5

3386 0.014% Circle,Clique

59

[
0 0 0 0 0
0 0 0 0 0
0 0 0 2 2
0 0 3 0 2
1 1 2 2 0

]
1

2

3 4

5

2011 0.013% Circle,Clique

60

[
0 0 0 2 2
0 0 2 0 0
0 2 0 0 0
2 0 0 0 2
3 1 1 2 0

]
1

2

3 4

5

- 0.013%

61

[
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 1 0 0
1 1 1 1 0

]
1

2

3 4

5

413857 0.013%

62

[
0 0 0 2 0
0 0 0 0 0
0 0 0 0 0
3 0 0 0 2
1 1 1 3 0

]
1

2

3 4

5

796 0.013% Circle,Clique

63

[
0 0 2 2 0
0 0 0 0 2
2 0 0 2 0
2 0 2 0 0
1 2 0 0 0

]
1

2

3 4

5

550 0.012% Circle,Clique

Figure 72: Ratio and concentration of size 5 motifs in the multiplex network (part 9)
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Adjacency
ID Matrix Motif Ratio Concentration Type

64

[
0 0 2 0 2
0 0 0 0 0
2 0 0 0 0
0 0 0 0 2
3 1 1 2 0

]
1

2

3 4

5

125 0.012% Circle,Clique

65

[
0 0 0 0 2
0 0 0 2 0
0 0 0 2 2
0 2 2 0 2
3 0 2 2 0

]
1

2

3 4

5

59 0.012% Circle,Clique

66

[
0 0 0 0 0
0 0 0 0 2
0 0 0 2 2
0 0 2 0 2
1 3 2 2 0

]
1

2

3 4

5

141 0.012% Circle,Clique

67

[
0 2 2 2 2
2 0 0 0 0
2 0 0 2 2
2 0 2 0 0
2 0 2 0 0

]
1

2

3 4

5

922 0.011%

68

[
0 2 0 0 0
2 0 0 0 0
0 0 0 2 2
0 0 2 0 2
1 0 2 2 0

]
1

2

3 4

5

469 0.011% Circle,Clique

69

[
0 0 0 0 2
0 0 2 2 0
0 2 0 2 0
0 2 2 0 0
3 1 1 1 0

]
1

2

3 4

5

- 0.011% Clique

70

[
0 2 0 0 0
2 0 0 0 0
0 0 0 2 0
0 0 2 0 0
1 1 1 1 0

]
1

2

3 4

5

113400 0.01%

Figure 73: Ratio and concentration of size 5 motifs in the multiplex network (part 10)
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Adjacency
ID Matrix Motif Ratio Concentration Type

71

[
0 0 0 0 0
0 0 2 0 2
0 2 0 0 2
0 0 0 0 2
1 3 3 2 0

]
1

2

3 4

5

1615 0.01% Circle,Clique

72

[
0 0 0 0 2
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
3 1 1 1 0

]
1

2

3 4

5

28 0.01% Circle,Clique

73

[
0 0 2 0 0
0 0 0 2 2
2 0 0 0 0
0 2 0 0 2
1 3 0 2 0

]
1

2

3 4

5

1571 0.01% Circle,Clique

Figure 74: Ratio and concentration of size 5 motifs in the multiplex network (part 11)
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