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Abstract

In 1999, Page et al. described their algorithm — PageRank — for
scoring pages in their web search engine, Google. Already from the start
it was clear that due to the large number of pages to be ranked, the
PageRank algorithm’s efficiency and optimal performance was and is a
critical feature. One method of increasing the efficiency of calculations
is based on MapReduce, also originally published by Google. In this
paper, we use the forelem framework to go from an initial specification of
PageRank to a much more performant implementation.
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1 Introduction

The forelem framework was developed to optimise database queries using tra-
ditional compiler optimisations [1]. The same framework can also be applied
to distributed parallel programs. In this paper we use an extended forelem
framework to optimise a Hadoop MapReduce application for determining its
effectiveness on non-database applications. Although a single application was
chosen, the methods described are largely generic, and thus applicable to many
other applications.

Our application of choice is PageRank [2], a graph ranking algorithm origi-
nally developed to find the most important web pages in a web graph. Recently,
it has seen use in other fields, such as Social Network Analysis. It is a well-
understood algorithm, that has undergone a lot of research, and has seen a lot
of optimisation attempts. Additionally, it has been used in several benchmarks,
amongst which the BigDataBench [3] benchmark. The specific implementation
used, using Hadoop MapReduce, is the one from the Pegasus [4] project. It was
selected both for its easily understood implementation (see Section 3.2) and its
use in the aforementioned benchmark.

We start with an introduction to forelem in Section 2, followed by an intro-
duction to PageRank in Section 3. Section 3.3 presents a simple specification of
PageRank in forelem. In Section 3.4 we show this specification yields a valid so-
lution to PageRank, and prove its termination. Using this specification, we then
derive multiple implementations in Section 4, and we analyse their performance
in Section 5. Section 6 concludes the paper.

1.1 Related work

Various studies have been done to improve PageRank in the past. Much like the
parallel implementation by Kang et al. in [4], other parallel implementations ex-
ist. In [5], Gleich et al. describe an implementation based on linear systems, that
shows faster convergence. Kohlschütter et al. use an implementation based on
Gauß-Seidel in [6] to improve convergence speed. Similarly, methods to approx-
imate the PageRank values have been proposed, like in [7]. In contrast to these
previous attempts, where the implementations have been fully human-derived,
this paper strives to find implementations through a step-by-step mechanical
derivation process using simple transformations.

The forelem framework was introduced, applied and extended by Rietveld
and Wijshoff in [8], [1] and [9]. In many respects this paper can be viewed as a
successor to [9], which describes a forelem implementation of LU-factorisation.

1.2 Definitions

In this paper we write VG and EG for the vertices and edges of a graph G =
(V,E), respectively. We also define the out-neighbourhood — or successors
— of a vertex v as nbh+G(v) = {u ∈ VG|(v, u) ∈ EG}. We also call the size
of the out-neighbourhood the outdegree deg+G(v) = |nbh+G(v)|. We have an
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analogous definition of the in-neighbourhood — or predecessors — of a vertex
v as nbh−G(v) = {u ∈ VG|(u, v) ∈ EG}.

In case the target graph is obvious from its context we will forego the sub-
script, for succinctness. To disambiguate, in this paper “vertices” will be only
used to refer to VG, and “nodes” will only be used to refer to computing nodes.

2 forelem

The forelem framework was originally devised for the optimization of database
queries [1]. At the core is the forelem loop which traverses a subset of a collection
of tuples (referred to as a tuple reservoir) in an unspecified order. Because the
forelem loop only loosely specifies how the traversal is to be performed, a large
number of loop transformations is enabled that can potentially improve the
performance of the loop. For instance, forelem loops are inherently parallel as
no loop order is defined and no loop carried dependencies exist. All tuples in a
tuple reservoir have an equal number of fields. These tuples are used to specify
operands that reside in shared spaces. Accesses to shared spaces using tuples
are written as simple array accesses.

In a forelem loop, each tuple that is part of the reservoir to be traversed is
visited exactly once. Another loop construct with the name of whilelem further
generalizes this by visiting each tuple in a reservoir an unspecified number of
times in an unspecified order. The body of a whilelem loop typically consists of
an if-condition, which indicates whether an action is to be performed for a given
tuple. A whilelem loop terminates when no tuple exists within the specified
reservoir for which the if-condition evaluates to true. Simply put: there is no
more work left to do.

Forelem and whilelem loops are written in a pseudocode with a C-inspired
syntax. Syntactically, they are fairly simple and an example of their syntax can
be seen in Algorithm 1. Note that these loops operate on an abstract data set.
During the transformation and code generation process a suitable data structure
will be automatically derived, see also the discussion on Materialisation further
on in this paper.

Algorithm 1 A syntax example of forelem and whilelem.

forelem (t; t ∈ T )
X[t.i] = f(t) . Some calculation for tuple “t”

whilelem (t; t ∈ T ) {
if (X[t.i] > 0)

X[t.i] = f(t)
}
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3 PageRank

PageRank [2] is an algorithm to rank a set of web pages based on an objective
notion of importance. Intuitively the ranking models random surfers, who, after
arriving on a web page, follow a random link until they get bored. Once they are
bored, they pick a random website and continue from there. Equation 1 shows
the definition of the PageRank of a vertex, where the “boredom” is modeled
using a constant 0 < d < 1, also referred to as the damping factor.

PR(v) =
1− d
|V |

+ d
∑

u∈nbh−(v)

PR(u)

deg+(u)
(1)

Usually PageRank is calculated in a generational fashion, where in every
generation a vertex “donates” all its PageRank to its successors, and receives it
from its predecessors. As an example, a vertex with a PageRank of 0.2, and an
outdegree of 5, yields a rank of 0.2

5 = 0.04 to all its successors. Additionally, the
damping factor is applied to all incoming rank, and the (graph-)constant value
1−d
|V | is added.

The authors [10] suggest a damping factor of approximately 0.85 yields the
best results. In the rest of this paper we will assume d = 0.85, unless stated
otherwise.

3.1 Sink vertices

Since the random surfers get stuck if a page (vertex) has no outgoing links,
whenever they reach such a page, they start over at a random other page. To
model this, we can either view these vertices as a special case in our calculations,
or somehow modify the graph to represent this behaviour. To do the latter, we
define a modified graph G′, which is constructed from G as follows:

G = (V,E)

G′ = (V,E′)

E′ = E ∪
⋃

v∈V ∧deg+(v)=0

{(v, u)|∀u ∈ V }

That is, we connect every vertex v for which deg+(v) = to every other vertex.
This is trivially equivalent to randomly selecting another vertex, our desired
behaviour. Since web graphs tend to be relatively sparse, applying this technique
can contribute significantly to the size of the graph. As we will see in Section 4.1,
it may instead be beneficial to model the effect of these vertices differently.

3.2 PageRank in BigDataBench

The PageRank implementation in the BigDataBench benchmark [3] is the one
as implemented in the Pegasus [4] project. It is a fairly straight-forward MapRe-
duce version of the original algorithm. Each iteration evaluates the contributions
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of each edge, then all those contributions are summed up to produce the next
PageRank values. The implementation stops when the change between itera-
tions in smaller than a given error bound ε. In [2] empirical evidence is given
this algorithm tends to converge in a small number of iterations.

3.3 forelem specification of PageRank

To come to a simple forelem specification of PageRank, we first observe that
Equation 1 describes a stop condition. That is, once Equation 1 holds for all
v ∈ V , we have found an assignment of values to vertices.

We can assume, without loss of generality, that there are no duplicate edges
in E. Thus, iterating over the predecessors of a vertex is equivalent to iterat-
ing over a subset of E. Using this, we can then find an alternate, equivalent
definition of PageRank which iterates over the edges, rather than the vertices.

First, we define 3 shared spaces:

• PR, the current PageRank values.

• Dout, the outdegrees.

• OLD, for a given edge (u, v) ∈ E, the old value of PR(u).

We initialise E as a tuple reservoir that contains a tuple for each edge in the
graph. For those vertices u without outgoing edges tuples < u, v > are added
for every vertex v in the graph (v 6= u). Dout is defined as the outdegree for
each vertex, note that the for nodes that had an outdegree 0, the outdegree has
become |V | − 1. Further we initialise PR to be equal to 1

|V | for every vertex

and OLD to be equal to 0 for every tuple of the reservoir:

PR =

{〈
v,

1

|V |

〉∣∣∣∣∀v ∈ V}
Dout =

{〈
v, deg+(v)

〉∣∣∀v ∈ V }
OLD = {〈u, v, 0〉|∀(u, v) ∈ E}

Our algorithm then becomes a single whilelem loop, updating the PageRank
on an edge-by-edge basis.

Algorithm 2 The initial forelem specification of PageRank.

whilelem (e; e ∈ E) {
if (PR[e.u] 6= OLD[e]) {

PR[e.v] += d (PR[e.u]−OLD[e]) 1
Dout[e.u]

OLD[e] = PR[e.u]
}

}
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3.4 Correctness

To prove this algorithm is a correct implementation of PageRank, we first prove
that Algorithm 2 terminates. To aid in our proof, we first define the concept of
“momentum”:

∀(u, v) ∈ E : m(u, v) = PR(u)−OLD(u, v) (2)

M(G) =
∑

(u,v)∈E

m(u, v)

deg+(u)
(3)

Now we observe that in our iterations we mutate the momentum twice. In the
first line, an edge “donates” its momentum to its target vertex.

Mi+1(G) = Mi(G) + d · mi(u, v)

deg+(u)
· deg+(v)

On the second line, the momentum of that edge is removed.

mi+1(u, v) = 0

Thus our global change is the combination of those two effects.

Mi+1(G) = Mi(G) + d · mi(u, v)

deg+(u)
· deg+(v)−mi(u, v)

= Mi(G)− (1− ddeg
+(v)

deg+(u)
) ·mi(u, v)

For a given path p = (v1, v2, . . . , vn), propagating momentum δ on v1 to

vn leads to a contribution of δ · d · deg
+(v2)

deg+(v1)
· d · deg

+(v3)
deg+(v2)

· . . . · d · deg+(vn)
deg+(vn−1)

=

δ · dn−1 deg+(vn)
deg+(v1)

.

If the algorithm loops infinitely — on a finite set of vertices — then there
must be at least one cycle that always remains enabled. Any cycle (v1, v2, . . . , vn, v1),

where m(v1, v2) = δ contributes exactly δ ·dn deg+(v1)
deg+(v1)

= δ ·dn back to vertex v1.

Since the momentum in vertex v1 is ever-decreasing, within a finite number of
iterations this vertex will no longer be enabled. Analogously, this holds for all
other vertices in the cycle, thus the cycle itself will no longer be enabled within
a finite numbers of iterations. Therefore the algorithm cannot loop infinitely
and must terminate.

Lastly, we need to prove our algorithm finds a valid approximation of the
PageRank. Our algorithm stops only when there are no edges for whichm(u, v) ≥
ε, hence M(G) < |E| · ε. Since M(G) represents the change in ranks in a “full”
iteration of the graph, and M(G) is strictly decreasing, a small value of M(G)
implies the algorithm is close to finding a solution. We also observe M(G) = 0
if the assignment of PageRanks is perfect. As M(G) can be arbitrarily small —
by choosing an arbitrarily small ε — we can thus state we can approximate the
PageRank arbitrarily close, if the algorithm terminates. We have proven above
that our algorithm always terminates, if ε > 0.
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4 Transformations and Implementations

In order to find an efficient parallel implementation of this PageRank-equivalent
algorithm, several implementations have been derived from Algorithm 2. As
a large number of forelem transformations exist, we have applied only those
transformations that looked promising. For brevity, this section will only discuss
those transformations that were used in our final selection of implementations.

4.1 Tuple Reservoir Reduction

The tuple reservoir reduction transformation reduces the iterated tuple reser-
voir’s size by identifying common subsets (S) in the reservoir which can be
compacted when initialising the reservoir and expanded on demand. This re-
duction is only performed if this compression and expansion can be handled
efficiently.

In order to guarantee an efficient implementation, these subsets S of E are
only identified if the tuples corresponding to these subsets S can be enumerated
in linear (constant) time by a simple enumeration function GS . In the case
of PageRank these subsets Su originate from these vertices u which originally
had an outdegree of 0 and consist of all added tuples < u, v > (where u 6= v).
Assuming the vertices are numbered 1 to |V |, then each subset Su consists of
{< u, i >|1 ≤ i ≤ |V |} and the enumeration function ends up being a simple
for -loop from 1 to |V |.

Having identified subsets and their enumeration functions then the tuple
reservoir can be reduced by deleting all tuples of a subset and replacing them
by a simple stub to the corresponding enumeration function. Then at execution
time this subset is being generated one at a time and the loop body is replicated
for each of the tuples corresponding to this subset. So if we look at PageRank,
the transformation results in the following algorithm.

Algorithm 3 Algorithm 2 after applying Tuple Reservoir Reduction

whilelem (e; e ∈ E) {
if (PR[e.u] 6= OLD[e]) {

if (e.v = $S)
forelem (v; v ∈ V \ {e.u})

PR[v] += d (PR[e.u]−OLD[e]) 1
Dout[e.u]

else
PR[e.v] += d (PR[e.u]−OLD[e]) 1

Dout[e.u]

OLD[e] = PR[e.u]
}

}

Note that in contrast to the initial specification of the tuple reservoir E, for
which for every vertex with outdegree 0 additional tuples < u, v > were created
for every v 6= u, by using tuple reservoir reduction all these tuples were identified
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as reducible subsets and therefore deleted. In fact, the initial expansion of
the tuple reservoir was needed to obtain a clean and simple representation in
the forelem framework — thereby allowing a cleaner convergence proof and
facilitating other transformations to be applied to this specification, see below.
Instead of the generation of the forelem construct enumerating all the elements
of the subset also an arbitrary element of this subset could have been chosen. In
this case it is important that the enumeration function can produce an arbitrary
element of the subset in constant time.

4.2 Parallel execution through blocking the tuple reser-
voir

Similar to the loop blocking optimisation in various optimising compilers, forelem
can use blocking to parallelise execution. Given a set to iterate over, we split it
in parts, then iterate over these separately, ideally in parallel. Any partitioning
of E works, as long as

⋃
k Ek = E. Usually a fair partitioning is used, where

every Ek has roughly the same size. Some problems can benefit from different
schemes, for example to reduce intercommunication.

Since this is the transformation that yields a parallel program, we will typi-
cally apply it at the very end, when the program has already been fully restruc-
tured. Our first program might already seem obvious at this point, it is simply
the application of loop blocking to our initial specification, see Algorithm 4.
Note that although this variant is simple, in practice it will be suboptimal,
since it requires global synchronisation on the various writes to PR.

Algorithm 4 A parallelised implementation of Algorithm 2. Each processor k
has its own Ek.

whilelem (e; e ∈ Ek) {
if (PR[e.u] 6= OLD[e]) {

PR[e.v] += d (PR[e.u]−OLD[e]) 1
Dout[e.u]

OLD[e] = PR[e.u]
}

}

4.3 Orthogonalisation

A second important optimisation is Orthogonalisation, which adds an outer
loop to control the order in which tuples are visited. Algorithm 5 shows an
example application of this transformation. In this case, it causes the outer
loop to iterate over target vertices, and the inner loop over edges that have said
vertex as target. If we subsequently apply parallelisation, we get a program
specification in which every PR value has exactly one writer. Indeed, all other
implementations used in our experiments start with this Orthogonalisation step.

10



Algorithm 5 Orthogonalisation applied to Algorithm 2.

whilelem (v; v ∈ E.v)
forelem (e; e ∈ E.v[v]) {

if (PR[e.u] 6= OLD[e]) {
PR[e.v] += d (PR[e.u]−OLD[e]) 1

Dout[e.u]

OLD[e] = PR[e.u]
}

}

4.4 Encapsulation

When iterating over a subset of the data, Encapsulation replaces this with a
larger subset, designed to simplify iteration. In this case, our implementations
generally iterate over the set of target vertices. Typically, this set is mostly
equivalent to the set of vertices in the graph, and by definition, it is subset of all
vertices. Since the set of vertices is already known, encapsulation allows us to
iterate over all vertices, rather than selecting all target vertices from the set of
edges. If a vertex is iterated that has no corresponding edge, that iteration is a
no-op, therefore it does not alter the calculation. From a mathematical stand-
point, this is merely a renaming, but algorithmically it might lead to different
data structure selection. See Algorithm 6 for an example.

Algorithm 6 Encapsulation applied to Algorithm 5.

whilelem (v; v ∈ V )
forelem (e; e ∈ E.v[v]) {

if (PR[e.u] 6= OLD[e]) {
PR[e.v] += d (PR[e.u]−OLD[e]) 1

Dout[e.u]

OLD[e] = PR[e.u]
}

}

4.5 Localisation

Since we are targeting modern computers, cache effects play an important role
in the performance of our applications. One way to improve cache utilisation is
by increasing data locality, as done by the Localisation transformation. Where
shared space data is initially stored separate from tuples, localisation causes
shared space data to be stored — or localised — in the tuples directly. Within
our example, the values of OLD are stored per-edge, but separate from the
edges. We can use the Localisation transformation to interleave the OLD data
with the edge data, yielding Algorithm 7.
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Algorithm 7 Localisation applied to Algorithm 2.

whilelem (e; e ∈ E) {
if (PR[e.u] 6= e.old) {

PR[e.v] += d (PR[e.u]− e.old) 1
Dout[e.u]

e.old = PR[e.u]
}

}

4.6 Materialisation

So far we have been iterating over tuple reservoirs, without specifying the rel-
evant data structure. Materialisation is the first step in the process of deriv-
ing different data structures, including array-of-structs and struct-of-array data
structures. In this first step, a particular order is chosen for the tuples in the
initially unordered tuple reservoirs. Algorithm 8 uses an array of structures
instead, opting to give every edge its own struct.

Algorithm 8 Materialisation applied to Algorithm 2.

whilelem (e; e ∈ PE len) {
if (PR[B[e].u] 6= OLD[B[e]]) {

PR[B[e].v] += d(PR[B[e].u]−OLD[B[e]])
Dout[B[e].u]

OLD[B[e]] = PR[B[e].u]
}

}

4.7 Composing transformations

The transformations as described in the previous section can be composed so
that their effect is multiplied. Note, that the transformations have forelem code
as input and produce forelem code as output, so they are inherently composable.
The composition of multiple transformations allowing different orders of applica-
tion — including re-use of transformations — leads to many different variations
of the same program. Indeed, the same transformation may be applied multiple
times.

Algorithm 9 shows one of our candidate implementations, obtained by ap-
plying orthogonalisation, encapsulation and loop blocking. If an additional lo-
calisation step is used, adding OLD to our tuples, Algorithm 10 is obtained.
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Algorithm 9 Orthogonalisation, encapsulation and loop blocking, applied to
Algorithm 2 in order.

forelem (v; v ∈ Vk)
forelem (e; e ∈ E.v[v]) {

if (PR[e.u] 6= OLD[e]) {
PR[e.v] += d(PR[e.u]−OLD[e])

Dout[e.u]

OLD[e] = PR[e.u]
}

}

Algorithm 10 Orthogonalisation, encapsulation, localisation and loop blocking
applied to Algorithm 2, in order.

whilelem (v; v ∈ Vk)
forelem (e; e ∈ E′.v[v]) {

if (PR[e.u] 6= e.old) {
PR[e.v] += d(PR[e.u]−e.old)

Dout[e.u]

e.old = PR[e.u]
}

}

An alternative derivation might use early materialisation to produce an im-
plementation that more closely matches an array-of-structs rather than a struct-
of-arrays approach, as seen in Algorithm 11. Finally, note that in addition to
(multiple) materialisation steps, orthogonalisation, encapsulation, localisation
and loop blocking also tuple reservoir reduction as described in Section 4.1 can
be applied to all resulting algorithms.

Algorithm 11 Multiple materialisation and localisations steps applied to Al-
gorithm 2.

whilelem (v; v ∈ PV len[k])
forelem (u; u ∈ B[v].len) {

if (PR[B[u].u] 6= B[v].old[u]) {
PR[v] += d(PR[B[u].u]−B[v].old[u])

B[u].dout

B[v].old[u] = PR[B[u].u]
}

}

5 Experiments

To determine the performance of the derived PageRank implementations we
used the implementation in and datasets of BigDataBench (see Section 3.2)
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as a reference. Due to its inclusion in an established Big Data benchmark,
this implementation should provide a good baseline performance. As we want
to minimise the effect of fixed overhead, all measurements are done on large
datasets. Since we use a data generator from the BigDataBench benchmark, we
can use arbitrarily large inputs. Given the work in [2] and runtime restrictions,
experiments have been performed with datasets between 220 vertices and 228

vertices, with approximately 4.6 million to 2 billion edges respectively.
In our final selection of tested implementations, Implementation 1 corre-

sponds to Algorithm 9, Implementation 2 corresponds to Algorithm 10, Imple-
mentation 3 corresponds to Algorithm 11 and Implementation 4 corresponds to
Algorithm 4. Additionally tuple reservoir reduction was applied to all these im-
plementations. The original Hadoop benchmark code is referred to as Hadoop.

Our experiments ran on (up to) 16 DAS-4 [11] nodes at Leiden University,
both for our MPI-based programs and the Hadoop-based benchmark code. Each
node has 2 CPU sockets, with in each a 4-core CPU with Hyper-Threading,
yielding 8 physical cores and 16 virtual cores. To determine the performance
characteristics of our implementations we used a number of different configu-
rations. Those configurations varied between 1–16 nodes and 1–8 threads per
node. For datasets of with 227 vertices or more, only configurations with 16
nodes were evaluated. The Hadoop benchmark was only run in one config-
uration, on all 16 nodes with 16 reducers, the recommended settings by the
BigDataBench benchmark.

5.1 Results

In Figures 1 and 2 the runtimes on the 16 × 4 and 16 × 8 configurations are
depicted. These configurations were chosen because they resulted in the best
runtimes for most implementations. Figure 1 shows that all implementations
have roughly the same runtime, with the exception of Implementation 4. This
shows that the transformations that were applied on the other implementations
to derive more efficient data structures are very beneficial.

Also on Figure 2 Implementation 1 and Implementation 2 are closely tied.
However, contrary to what is seen in Figure 1, Implementation 3 outperforms
the other implementations in various cases. This is because Implementation 3
more effectively uses the extra cores because its threads have a smaller memory
footprint. The other implementations reach peak performance on the 16 × 4
configuration.

In addition to raw performance we are particularly interested in the scalabil-
ity of the implementations that were generated from our forelem specification of
PageRank. For every number of parallel threads except 128, Figure 3 shows the
runtime of all of the generated implementations for the dataset with 226 vertices.
In case multiple configurations yielded the same number of threads, for example
2× 8 (2 nodes with 8 threads each), 4× 4 and 8× 2, the configuration with the
fewest nodes was chosen, in this case 2× 8. As can be seen from Figure 3, the
reduction in execution time is linear with respect to the number of threads, i.e.
for Implementation 2 the execution time going 16 to 32 threads resulted in a

14



0

500

1000

1500

2000

20 21 22 23 24 25 26 27 28

R
u

n
ti

m
e

(s
ec

on
d

s)

Input size (log vertices)

Implementation 1
Implementation 2

Implementation 3
Implementation 4

Figure 1: The runtime of the various implementations on the 16× 4 configura-
tion. Hadoop was left out to improve legibility.

20% reduction and going from 32 to 64 threads a reduction of 25%, see Table 1
for detailed information on the execution times. Like the previous figures, this
figure shows that Implementation 1 and Implementation 2 match each other’s
performance very closely.

To compare the performance of our derived forelem-based implementations
with the original Hadoop implementation from BigDataBench, we show the
speedup of the various implementations compared Hadoop in Figure 4. As
Hadoop was unrestricted in the number of cores it could use on the 16 nodes,
we show the speedup achieved on the 16 × 8 configuration. The figure clearly
shows that all forelem-based implementations outperform the original bench-
mark implementation. As expected from the previous results, the performance
of Implementations 1, 2 and 3 are closely tied, whereas Implementation 4 per-
forms the worst. The minimum speedup achieved by Implementations 1, 2 and
3, at 227 vertices, is approximately a factor 60. Interestingly, for even larger
datasets the speedup of these three implementations starts to increase again.
It is likely that this is caused by the fact that for larger datasets, the I/O per-
formed by Hadoop to write intermediate results to disk is becoming a larger and
larger bottleneck.

The decrease in speedup that is seen from an input size of 220 to 223 for all
implementations demands an explanation. We have observed that for smaller
datasets Hadoop is not able to fully exploit the available parallelism in the
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Figure 2: The runtime of the various implementations on the 16× 8 configura-
tion.

system. For example, even though 16 nodes are available, Hadoop only performs
the mapping task on 7–9 nodes. The forelem-based implementations always use
all 16 nodes, even for smaller datasets, resulting in significantly faster runtimes.
As the size of the input grows, Hadoop is able to make more efficient use of all
available 16 nodes, catching up slightly.

Table 1 contains a summary of all results. From 222 vertices onwards, most
of the best solutions use 8 threads per node, and all of them use 16 nodes. In
all cases, the 16 × 8 configuration either performs best, or is very close to the
best-performing configuration. As Figure 3 hints at, at high thread counts the
difference becomes small, and other factors can come into play. One possible
cause for the outliers is partitioning differences: not every partitioning of vertices
requires the same amount of communication.

The worst configurations are slightly more regular, in all cases using a sin-
gle thread per node. Since intra-node communication is faster than inter-node
communication, this is in line with our expectations. Unlike the best configura-
tions, there is no point where 1×1 becomes consistently the worst configuration
possible. Once again, this could be caused by partitioning differences resulting
in large amounts of inter-node communication, negating the increased available
computing power.
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Figure 3: The runtime of each implementation for a given number of threads.

6 Conclusion

A specification of PageRank in the forelem framework has been derived and
proven to be correct. Using the forelem framework 4 parallel implementations
have been derived that significantly outperform an existing implementation of
PageRank, that is part of a published benchmark. We showed the derived
implementations to be approximately 60 times faster on the largest dataset
surveyed (reducing hours to minutes of computation), and the implementations
proved to be scalable.

In fact, the forelem methodology enforces the program specification to be
distilled to its essence, i.e. special cases cannot easily be specified, nor complex
case statements. As a consequence the programmer has to rethink the problem
statement in such a way that the computation can indeed be expressed in its pure
form. Having such a clean representation allows a very flexible application of
various program transformations as has been demonstrated in this paper. This
might very well be the underlying reason for the effectiveness of the forelem
approach in deriving such performant implementations.

Of particular interest is the Tuple Reservoir Reduction transformation. In
order to obtain a clean forelem representation, an ideal, albeit computationally
expensive solution was needed to eliminate sink vertices. Thereupon this repre-
sentation allowed the Tuple Reservoir Reduction transformation to be applied
resulting in an efficient implementation. This shows that forelem has the poten-
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Figure 4: Speedup of the various implementations compared to Hadoop on the
16× 8 configuration.

tial to turn simple, almost mathematical definitions of algorithms into programs
that are competitive with human-derived implementations.

The methodology proposed by forelem and the corresponding language show
their applicability to large MapReduce-like applications. The implementations
were largely mechanically derived from a pre-defined set of “simple” transfor-
mations. In the future such transformations could be machine-assisted, or even
fully automated.
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Size Implementation
Best Worst

Nodes Threads per node Time (s) Nodes Threads per node Time (s)

220

Implementation 1 8 2 3.8 2 1 7.9
Implementation 2 5 4 3.9 1 1 8.4
Implementation 3 16 2 4.5 1 1 10.5
Implementation 4 16 2 5.4 2 1 19.3
Hadoop 16 - 1277.6 16 - 1277.6

221

Implementation 1 8 4 7.6 3 1 18.5
Implementation 2 8 4 7.8 1 1 22.4
Implementation 3 5 8 8.0 1 1 35.2
Implementation 4 16 2 10.6 2 1 46.7
Hadoop 16 - 1522.7 16 - 1522.7

222

Implementation 1 16 4 14.2 1 1 51.9
Implementation 2 16 4 14.4 2 1 51.1
Implementation 3 16 4 15.1 1 1 87.4
Implementation 4 16 4 21.5 1 1 143.5
Hadoop 16 - 1927.0 16 - 1927.0

223

Implementation 1 16 4 28.1 1 1 123.0
Implementation 2 16 8 30.5 2 1 119.1
Implementation 3 16 8 28.4 2 1 195.8
Implementation 4 16 4 44.0 1 1 324.9
Hadoop 16 - 2798.2 16 - 2798.2

224

Implementation 1 16 4 64.2 1 1 267.2
Implementation 2 16 8 63.2 1 1 295.5
Implementation 3 16 8 64.9 1 1 508.5
Implementation 4 16 4 88.1 1 1 729.3
Hadoop 16 - 4753.7 16 - 4753.7

225

Implementation 1 16 8 126.7 1 1 621.6
Implementation 2 16 8 125.7 1 1 631.9
Implementation 3 16 8 134.0 2 1 997.0
Implementation 4 16 4 180.2 1 1 1627.5
Hadoop 16 - 8502.0 16 - 8502.0

226

Implementation 1 16 4 264.5 1 1 1442.8
Implementation 2 16 8 277.8 2 1 1310.5
Implementation 3 16 8 295.8 1 1 2235.7
Implementation 4 16 4 363.3 1 1 3585.9
Hadoop 16 - 16662.5 16 - 16662.5

227

Implementation 1 16 8 446.4 1 1 1868.8
Implementation 2 16 8 447.2 1 1 1877.4
Implementation 3 16 8 437.2 1 1 2954.9
Implementation 4 16 4 871.0 1 1 9528.6
Hadoop 16 - 24824.1 16 - 24824.1
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Size Implementation
Best Worst

Nodes Threads per node Time (s) Nodes Threads per node Time (s)

228

Implementation 1 16 4 654.0 2 8 2838.1
Implementation 2 16 4 653.6 1 1 2301.9
Implementation 3 16 8 661.2 1 1 3580.0
Implementation 4 16 4 871.0 1 1 26415.8
Hadoop 16 - 56867.5 16 - 56867.5

Table 1: Summary of all results.

21


