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Abstract

The Forelem framework was first introduced as a means to optimize database queries
using optimization techniques used by compilers. Since its introduction, Forelem has
proven to be more versatile and to be applicable beyond database applications. In this
paper we show that the original Forelem framework can be used to express and opti-
mize k-means clustering, thereby yielding four automatically generated implementations.
These four implementations improve standard MPI C/C++ implementations of k-means
as well as outperform state-of-the-art Hadoop implementations.

1 Introduction

When the Forelem framework was first introduced, it addressed the optimization of (embed-
ded) database queries together with the wrapping C/C++ code and its associated API layer. In
order to do this, database queries were automatically transformed into explicit loop structures
(forelem loops), which together with the wrapping C/C++ code allowed for integral opti-
mization. This integral optimization led to significant performance improvements of database
applications [11].
The basic loop structure in the Forelem framework is the forelem loop, which iterates over a
collection of tuples. Each iteration is seen as a tuple based, atomic operation, allowing the
specification to be inherently parallel. In essence this yields a program specification which is
free from common artifacts, like explicit data and loop structures, and associated data depen-
dencies. For database applications this restriction proved to be very natural, but suprisingly
this restriction has also proven to be natural for other applications. This is mainly caused by a
side effect of an inherent property of the Forelem framework to generate data structures au-
tomatically at the end of the compile chain, so that specific characteristics of the applications
are taken into account. Previous work has already shown that the Forelem framework was suc-
cessful in optimizing (sparse) matrix computations [10], LU factorization [12] and PageRank
[14].
In this paper, we apply the Forelem framework to k-means clustering. K-means clustering was
first introduced in the fifties [13]. There are many known clustering algorithms [5], but k-means
is still widely used. The algorithm provides an intuitive way to detect clusters in a set of data
points. It should be noted that the number of clusters, k, is specified beforehand.
As a baseline for the experimental evaluation we used a Hadoop implementation which was
developed for the scalable machine learning and datamining project: Apache Mahout [1].
This implementation is also present in the BigDataBench benchmark [6]. This benchmark
contains implementations for a wide variety of problems in big data. Next to the Apache
Mahout implementation we also use as a second baseline a C/C++ MPI implementation
originally developed by W.-K. Liao from Northwestern University [8] and adapted for the
BigDataBench benchmark by the same author. Using the Forelem framework we show that
four implementations of k-means clustering can be automatically generated, which improve
the latter C/C++ implementation and outperform the Apache Mahout implementation.
The Forelem framework is described in Section 3 and the k-means clustering algorithm is
explained in Section 4. The k-means specification within the Forelem framework will be given
in Section 4 and a proof that this specification will converge and therefore the resulting
implementations will terminate is given in Section 4.2. The four implementations derived from
the Forelem specification are described in Section 5 and their performance is evaluated in
Section 6.
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2 Related work

As the Forelem framework is based on automic, tuple based operations, it may appear similar
to Linda, the tuple space coordination model [4]. Linda was introduced by David Gelernter in
the eighties, using tuples as a basic operation for coordination and communication of parallel
processes. The basic enabler for these operations was the fact that all tuples were stored in
a physical, shared, virtual, associative memory. All these operations retrieved tuples from this
memory, operated on these tuples, and stored the result tuple back in this memory. Unlike this
approach, the Forelem framework does make any assumption on where these tuples are stored,
instead tuples are a conceptual notion and act as a placeholder for the software optimization
process of Forelem. It is this difference which enables Forelem to automatically generate data
structures and their mapping into physical memory later in the optimization process. Whereby
Linda suffered from performance limitations thereby hindering the widespread use for high
performance parallel applications, the Forelem framework is far more versatile allowing highly
efficient implementations to be derived for multiple applications.
The Forelem framework also resembles Dataflow computing. Dataflow has been a major topic
in computer architecture research in the seventies and early eighties [3]. Dataflow computing is
token based and at runtime these tokens are matched and computed on. Several architectures
for Dataflow computing were proposed, both for the storage of tokens as well as the matching
unit. For the token storage mostly a content addressable memory was foreseen. As with Linda,
Dataflow computing suffered from performance issues for general use and its application,
although influential, was limited to specific areas in computer hardware and software design. As
such the Forelem framework can be seen as a generalization of Dataflow computing, enabling
a full optmization chain for general applications.

3 Forelem

Within Forelem operations are tuple based and atomic, and are organized by the use of two
different loop structures: the forelem and whilelem loops. Both structures iterate over the
tuples in a tuple reservoir. These tuple reservoirs are neither physical nor virtual, but are
defined on a conceptual level without specifying any order in which tuples are stored. Tuples
contain either data fields or index fields.

〈DATA, I, J〉

Index fields can be used for reference to other tuples (think of indices in database tables) or
can be used to address data stored in shared spaces. As with the tuple reservoir, these shared
spaces consist only at a conceptual level. With each shared space A an address function FA
is associated which maps tuple indices to a unique “location” in this shared space, in which
data can be stored. For the purpose of readibility, in this paper we use simple array notation
[...] to denote these address functions. Note that actual data structures are automatically
generated and optimized by the Forelem transformation engine without involvement of the
programmer, therefore this notation of array indexing should not be confused with actual array
data structures.
The forelem loop from which the framework derives its name, traverses all tuples in a given
tuple reservoir, performing the calculation specified in the loop body. It executes the loop body
exactly once for each tuple. For example, the following forelem loop computes the product of
two matrices located in shared spaces A and B:
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forelem (〈i,j,k〉 ∈ X)
C[i,j] += A[i,k] * B[k,j]

Here the tuple reservoir X would contain tuples for every i, j, and k for which Ai,k 6= 0 and
Bk,j 6= 0. Note that although this closely resembles a C-like implementation of matrix A*B
multiplication, this specification is different although array notation is used to indicate the
accesses to shared spaces A, B and C, see above.
The whilelem loop is an extension of the forelem loop, which continues to execute the loop
body for different tuples until all of the tuples in the reservoir result in no-op operations.
The loop body may consist of one or more if-statements, guarding the execution of the tuple
operations. An example of a whilelem loop is shown below, which sorts the elements in a given
shared space X:

whilelem (〈i,j〉 ∈ Y) {
if (X[i] > X[j])

swap(X[i],X[j])

}

Here tuple reservoir Y could contain all tuples 〈i,j〉 for which 0 ≤ i < j < N with N the total
number of elements to be sorted. Note that a smaller reservoir which contains only 〈i,j〉
such that i = j − 1 would also suffice, in which case the resulting implementation would
closely resemble bubblesort. In fact, by choosing a specific reservoir and order in which tuples
are scheduled, many existing sorting algorithms can easily be derived from this specification.
Again note that X is not an array.
Note that neither of the loops specifies a specific order in which the tuples are traversed. All
tuple operations are assumed to be atomic, i.e., without interference by the execution of other
tuples. Also both loop structures are inherently parallel, so tuples can be visited in any order
and in parallel. For the whilelem loop structure a tuple can even be executed multiple times
in a row. The actual scheduling of tuple selection relies on Just Scheduling [7] (not to be
confused with Just-in-Time Scheduling) on which we will not elaborate further in this paper
because of page limitations. The reader is referred to a forthcoming paper which describes the
formal aspects of this type of scheduling.
Once a specification is given, several transformations are applied to derive different implemen-
tations [9]. During the code generation process, the data structures used for the shared spaces
will be derived automatically. Examples of these transformations will be given in Section 5,
when deriving the final four implementations of the k-means clustering algorithm.

4 K-means Clustering

The k-means clustering algorithm divides a given set of data points of dimension d into k
clusters. The number k is specified beforehand by the user. To start, the algorithm first
initializes the k cluster centers. This can be done in various ways. A standard distribution
consists of randomly assigning data points to one of the k clusters, then calculating the mean
of the assigned data points to obtain the cluster center.
The algorithm consists of several iterations. During each iteration the algorithm loops over
each data point, calculating the Euclidean distance to each cluster center. After each iteration,
the data points are assigned to the cluster whose center was closest. After reassigning all data
points, the cluster centers are set to the mean of all data points that were assigned to this
cluster during this iteration. Then the next iteration starts. This can be written in pseudocode:
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change = true

while (change) {
change = false //assume there is no change

//reassign data points to clusters

for (x = 1 to N) {
mindist = LARGE

for (m = 1 to k)

if (dist(DATA[x],VAL[m]) <= mindist) {
a = m

mindist = dist(DATA[x],VAL[m])

}
if (a != M[x]) {
M[x] = a

change = true

}
}

//recalculate cluster centers

if (change) {
for (m = 1 to k) {
mean, count = 0

for (x = 1 to N)

if (M[x] == m) {
mean = mean + DATA[x]

count = count + 1

}
VAL[m] = mean/count

}
}

}

Here x is a data point with N the total number of data points, m is a cluster with k the total
number of clusters, dist a function that calculates the Euclidean distance, M[x] the cluster
data point x is currently assigned to, DATA[x] the coordinates of data point x and VAL[m] the
coordinates of the cluster center of cluster m. Note that DATA[x] and VAL are n-dimensional,
and any operations involving them, including the distance function, are in fact n-dimensional
operations.
Note that this algorithm will converge because the sum of all distances between data points
and the center of their assigned cluster will decrease with each iteration. However, it can
converge to a local minimum instead of the global minimum. A proof that the algorithm as
specified within the Forelem framework converges, and therefore the whilelem loop used will
terminate, is given in Section 4.2.

4.1 Forelem Specification of K-means

Recall that the Forelem framework allows “random” execution of the (tuple) operations in
any order and for an arbitrary amount of times, in contrast to this classic implementation of
k-means which explicitly determines the order of operations. The key difference between the
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Forelem implementations and other parallel implementations for k-means clustering will be
that to arrive at the Forelem specification, the computation must be reduced to its core.
To do so we first note that the classic algorithm consists of a main while loop which continues
operations until no change is made. This naturally corresponds to using a whilelem loop in the
Forelem specification, which by definition terminates as soon as all tuples result in a no-op
operation. In fact, the resulting Forelem specification will use only a single outer whilelem loop.
Next we note that the loop body of the classic algorithm is split into two separate steps:
reassigning the data points and recalculating the cluster centers. For both steps the classic
algorithm contains a 2-dimensional for loop, looping over each possible combination of a data
point and a cluster. In the first step, the distance between the data point and the cluster
is compared to the best recorded distance and if this distance is smaller, the best recorded
distance is updated. In the second step, the data point is then taken into account when
recalculating the cluster center, only if the distance to the given cluster is the best recorded
distance.
For the specification of the whilelem loop these two steps are merged into one, thereby remov-
ing the necessary bookkeeping such as the change variable seen in the classic algorithm. After
all, these variables do not contribute to the essence of the computation in the classic algorithm.
At the same time this merger results in the removal of the artificial barrier between the two
steps, resulting in a single whilelem loop in which all steps of the two separate inner for loops
are combined into single point operations. In order to ensure that these point operations can
be executed in a random fashion and independetely of each other, the following observations
are used:

1. The first step we need for the whilelem loop body can be captured as a simple if-
statement: if the distance between a data point x and a cluster m is smaller than the
best recorded distance, i.e., the distance to the cluster a data point is currently assigned
to (M[x]), then we must reassign this data point. If not, then no operation is needed,
as is also captured by the use of a boolean recording whether a change occurred in the
classic implementation.

2. The first observation combined with the observation that if M[x] == m then clearly the
distance will not be strictly smaller, gives us the condition of the if-statement in the
whilelem loop:

if (M[x] != m && dist(DATA[x],VAL[m]) < dist(DATA[x],VAL[M[x]])) { ... }

where dist calculates the Euclidean distance.

3. The reassigning of the data point x can then be captured in the body of the if-statement
by simply stating M[x] = m.

Therefore the whilelem loop in the Forelem specification will need to loop over each combi-
nation of a cluster m and a data point x, and take the same steps in the loop body as the
classic algorithm. Our reservoir T will therefore contain tuples 〈m,x〉. Note that the core idea
behind the k-means clustering algorithm is the fact that the cluster centers are equal to the
mean of all data points assigned to a cluster. In fact, this is where it derives its name. For
the classic algorithm, this is the case both at the start of each iteration of the outer while
loop. Assuming that this is true at the start of an execution of the whilelem loop body, we
can derive a simple formula for updating the cluster centers after reassigning a single point, to
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ensure that this will still be the case for the next iteration. Note that to regain the sum of all
data points assigned to a cluster, the current center can simply be multiplied by the number
of data points assigned to this cluster. From this sum we can then subtract the data point
that is being reassigned for M[x], the cluster it belonged to before, and add the data point
to the sum for the new cluster m. The result can be divided by the new size of the clusters to
obtain their new cluster centers.
In essence, k-means clustering can therefore be captured by the following Forelem pseudocode:

whilelem (〈m,x〉 ∈ T) {
if (M[x] != m && dist(DATA[x],VAL[m]) < dist(DATA[x],VAL[M[x]])) {
VAL[M[x]] = (VAL[M[x]]*SIZE[M[x]] - DATA[x]) / (SIZE[M[x]] - 1)

SIZE[M[x]] -= 1

VAL[m] = (VAL[m]*SIZE[m] + DATA[x]) / (SIZE[m] + 1)

SIZE[m] += 1

M[x] = m

}
}

Here x is a data point and m, M[x] is the cluster x is currently assigned to, dist calculates
the Euclidean distance, DATA[x] is the coordinates of data point x and VAL[m] and SIZE[m]
are the cluster center and size of a cluster m respectively. Note again DATA[x] and VAL[m]
are n-dimensional and all operations that involve them are in fact n-dimensional operations,
including the distance function dist. These operations have been abbreviated to improve
readibility.

Algorithm 1 The initial Forelem specification of k-means clustering.

whilelem (〈m,x〉 ∈ T) {
if (M[x] != m) {
distold = 0

forelem (〈n,y,i〉 ∈ Te.〈n,y〉[〈m,x〉])
distold += (VAL[M[y],i] - DATA[x,i])**2

distnew = 0

forelem (〈n,y,i〉 ∈ Te.〈n,y〉[〈m,x〉])
distnew += (VAL[M[y],i] - DATA[x,i])**2

if (distnew < distold)

forelem (〈n,y,i〉 ∈ Te.〈n,y〉[〈m,x〉])
VAL[M[y],i] = (VAL[M[y],i] * SIZE[M[y]] - DATA[y,i])

/ (SIZE[M[y]] - 1)

SIZE[M[x]] -= 1

forelem (〈n,y,i〉 ∈ Te.〈n,y〉[〈m,x〉])
VAL[n,i] = (VAL[n,i] * SIZE[n] + DATA[y,i]) / (SIZE[n] + 1)

SIZE[m] += 1

M[x] = m

}
}

}

Note that to capture both the reassigning of data points and the recalculation of the clus-
ter centers within a single whilelem loop, the recalculation of a cluster center is now done
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immediately after assigning a data point instead of after all data points are reassigned. All
computation that is done for a specific data point and cluster is thus executed together lead-
ing to a natural parallellization. There is no need for the programmer to further optimize the
implementation, since the Forelem framework will do so automatically. The compiler is now
no longer restricted to a certain order of operations, and artifacts of this restriction such as
the boolean recording whether a change occurred have been removed.
For the final, full Forelem specification we need to define how the shared spaces are initialized,
as well as extend the tuple reservoir T to allow operating on the coordinates of the data points
and cluster centers. The DATA shared space is initialized when reading the data points from
file. The M shared space is initialized uniform random for each data point. The SIZE and VAL
shared spaces are then initialized accordingly, setting the cluster centers to the mean of all
assigned data points.
The extension of tuple reservoir T is defined as tuple reservoir Te consisting of all tuples
〈n,y,i〉 where 0 ≤ n < k is one of the clusters, 0 ≤ y < N one of the data points with N
the total number of data points, and 0 ≤ i < d an index with d the dimension of the data
points. The main loop will traverse the reduced reservoir T consisting of all tuples 〈m,x〉 with
m a cluster and x a data point as before. We can then use the extended reservoir Te to iterate
over all coordinates of a vector, where Te.〈n,y〉[〈m,x〉] is notation for selecting those tuples
〈n,y,i〉 ∈ Te such that n == m and y == x.
Using all these elements we can specify the k-means clustering algorithm using a single whilelem
loop. The basic Forelem specification of k-means clustering is given in Algorithm 1.

4.2 Correctness

As mentioned before, the convergence of the k-means clustering algorithm relies on the fact
that the sum of all distances between data points and the center of their assigned cluster
decreases with each iteration. Since the cluster centers are recalculated with each reassignment
of a data point, we will prove that this sum will be strictly decreasing in this case as well. We
pose the theorem that the algorithm given in Algorithm 2 converges.
To prove this statement, first note that since the total number of data point is finite, and
therefore the total number of possible assignments to clusters is finite as well, if the sum is
indeed strictly decreasing this proves that the algorithm converges. Also note that it is possible
for the Forelem specification of k-means clustering to converge to a local minimum instead of
the desired global minimum. As is the case with all k-means clustering implementations, no
provisions are taken to prevent this.
Assume that the loop body in Algorithm 2 is being executed for a tuple 〈n, y〉 and the inner
conditional statement is satisfied, i.e., the data point y is being reassigned to cluster n. We
define several variable names as depicted by the following figure.

n0 n1n y mm0 m1

Xn
Xm

Let m be the cluster y is currently (at the start of the loop body) assigned to. Let n0 be the
current cluster center of n and m0 the current cluster center of m. Since the cluster centers
will change during the execution of the loop body, we denote their new values with n1 and m1
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respectively. Finally, let Xm be the set of data points currently assigned to cluster m, except
y. Let Xn be the set of data points currently assigned to cluster n.
We are interested in the sum of all distances between all data points and their associated
cluster centers. Let X be the set of all data points and denote the cluster center associated
with an x ∈ X as cx, then we can write the sum as:∑

x∈X

d(cx, x) (1)

where d is the Euclidean distance measure.
Note that after executing the loop body, only some of the distances in the sum given in
Equation 1 will change. Namely, the distance of y to its associated cluster center will change
and since the cluster centers of m and n will change, the distances for all points in the sets
Xm and Xn will change. Therefore, the part of the sum we are interested in can be written
as:

d(m0, y) +
∑
x∈Xn

d(n0, x) +
∑
x∈Xm

d(m0, x) (2)

Since the tuple 〈y, n〉 satisfies the condition of the inner if-statement in Algorithm 2, we know
that d(m0, y) > d(n0, y). Thus showing that Equation 2 is strictly greater than:

d(n0, y) +
∑
x∈Xn

d(n0, x) +
∑
x∈Xm

d(m0, x) (3)

Note that the mean of all data points minimizes the sum of Euclidean distances from the
data points to a single point. This is in fact the main reason that the Euclidean distance must
be used for the k-means clustering algorithm to converge. Since n1 is the mean of the set
Xn ∪ {y} we can thus conclude that:

d(n0, y) +
∑
x∈Xn

d(n0, x) ≥ d(n1, y) +
∑
x∈Xn

d(n1, x) (4)

And similarly: ∑
x∈Xm

d(m0, x) ≥
∑
x∈Xm

d(m1, x) (5)

Thus showing that Equation 3 is greater than or equal to:

d(n1, y) +
∑
x∈Xn

d(n1, x) +
∑
x∈Xm

d(m1, x) (6)

Therefore the sum in Equation 1 strictly decreases each time a data point is reassigned, showing
that Algorithm 2 converges.

5 Transformations and Implementations

The specification for the k-means clustering algorithm given in Algorithm 1 captures the
essence of the algorithm and is used as a starting point to derive several implementations. In
this section we will describe the transformations used to derive the final four implementations
used in Section 6 to evaluate the performance of the implementations derived using the Forelem
framework. It should be noted that more transformations, and many more implementations
are possible.
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5.1 Multi-tuple Operators

The Forelem framework includes three multi-tuple operators: map, reduce and assign. These
operators are designed to allow stating simple vector operations in a single line of code, instead
of using forelem loops. For example, for our k-means specification they can be used to calculate
the Euclidean distance between two vectors of any dimension and to update the cluster centers,
removing the four inner forelem loops shown in Algorithm 1.
These operators require an enumerator, which is a special function that will enumerate over
all tuples in a reservoir which satisfy a given condition. For k-means clustering, given the
tuple reservoir T containing tuples 〈m,x〉 and the tuple extended reservoir Te containing tuples
〈n,y,i〉, we define enumerator enumT(〈m,x〉) which enumerates over all 〈n,y,i〉 ∈ Te such
that n == m and y == x. Note that the order in which the tuples are given by the enumerator is
not fixed, similar to the forelem loop structure the multi-tuple operators are inherently parallel.
The map operator takes a (mathematical) function and an enumerator as its arguments. The
function provided should take a tuple returned by the enumerator as its input. The map
operator then maps each tuple returned by the enumerator to a corresponding value through
the function. For example, given the enumerator enumT(〈m,x〉), we define a map operator
that sends each tuple to their contribution to the Euclidean distance between m and x:

map(〈n,y,i〉 ∈ Te -> ((VAL[n,i] - DATA[y,i])**2), enumT(〈m,x〉))

The reduce operator takes an operation such as + and a map as its arguments, applying the
given operation to each value returned by the map. Given the map operation, we can use the
reduce operation to calculate the squared Euclidean distance between m and x in a single line
statement:

reduce(+, map(〈n,y,i〉 ∈ Te -> (VAL[n,i] - DATA[y,i])**2, enumT(〈m,x〉)))

The assign operator takes a function specifying shared space variables, a function specifying
values and an enumerator as its arguments. Again each function should take an element
returned by the enumerator as its argument, mapping it to a variable in a shared space and
a value respectively. The assign operator then assigns the corresponding value to the shared
space variable for each element returned by the enumerator. For example, updating the cluster
center of cluster m after reassigning data point x to it can now be written as:

assign(〈n,y,i〉 ∈ Te -> VAL[n,i], 〈n,y,i〉 ∈ Te ->
(VAL[n,i] * SIZE[n] + DATA[y,i]) / (SIZE[n] + 1), enumT(〈m,x〉))

Note that while the order in which tuples are returned by the enumerator is not fixed, therefore
the order in which the multi-tuple operators operate is not fixed either, the assign operator
does guarantee that the same tuple will be used on both sides of each assignment. It is a basic
extension of the map operator, which only specifies a value to which a tuple is mapped, but
not a location to which this value is to be assigned.
Using these multi-tuple operators, we rewrite the Forelem specification given in Algorithm 1
to the Forelem specification shown in Algorithm 2. Note that the difference between these two
specifications is mainly syntactic, abbreviating the inner forelem loops to put more emphasis
on the core calculation.
Note that although the naming convention suggests similarity with the MapReduce framework,
the Forelem map and reduce operator are essentially different. The map and reduce operators
are merely used as a means to specify vector operations in a single line statement, eliminating
the need for a forelem loop. They are not used to specify separate tasks which are then to be
executed by separate processes.
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Algorithm 2 The Forelem specification of k-means clustering using multi-tuple operators.

whilelem (〈m,x〉 ∈ T) {
if (M[x] != m) {
distold = reduce(+, map(〈n,y,i〉 ∈ Te -> (VAL[M[y],i] - DATA[y,i])**2,

enumT(〈m,x〉)))
distnew = reduce(+, map(〈n,y,i〉 ∈ Te -> (VAL[n,i] - DATA[y,i])**2,

enumT(〈m,x〉)))
if (distnew < distold) {
assign(〈n,y,i〉 ∈ Te -> VAL[M[y],i], 〈n,y,i〉 ∈ Te -> (VAL[M[y],i]

* SIZE[M[y]] - DATA[y,i]) / (SIZE[M[y]] + 1), enumT(〈m,x〉))
SIZE[M[x]] -= 1

assign(〈n,y,i〉 ∈ Te -> VAL[n,i], 〈n,y,i〉 ∈ Te ->
(VAL[n,i] * SIZE[n] + DATA[y,i]) / (SIZE[n] + 1), enumT(〈m,x〉))

SIZE[m] += 1

M[x] = m

}
}

}

5.2 Loop Blocking

The Forelem framework provides an inherently parallel specification. To divide the tuples in
the tuple reservoir among processors, loop blocking can be used. Since this may cause certain
shared spaces to only be used by a single process, this can also be used to reduce the amount
of variables that need to be shared among processes. Given a tuple reservoir T, we split it in
parts, allowing each process to iterate over their part of the reservoir Tp. Ideally each process
is then executed in parallel. Note that the split should satisfy

⋃
k Tp = T. Depending on the

program that is to be executed, different splits may be optimal. Typically, this transformation
is used last and the split is chosen such that at least one of the shared spaces does not need
to be shared among processors. An example will be given in the next section.

5.3 Orthogonalisation

The orthogonalization transformation can be used to optimize the order in which tuples are
visited. It introduces an outer loop, which adds an order to the processing of the tuples.
The outer loop selects one or more fields of the tuples, the inner loop then loops over those
tuples in the original reservoir which contain the selected values for these fields. The loop
blocking transformation can then be applied to this outer loop. The result is that tuples are
now processed in particular groups, and the loop blocking split can be made based on the
values for certain fields of the tuple.
In our case, we choose to let the outer loop iterate over all data points and the inner loop
iterate over all clusters. This then allows us to apply loop blocking, which results in each
process needing only the DATA and M values that apply to its own data points. This leads to
the first implementation of the k-means clustering algorithm as shown in Algorithm 3.
Here we denote the tuple reservoir containing all data points as X, and the different parts
assigned to each process as Xp. Also note that T.〈x〉[〈y〉] is notation to select all tuples
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〈m,x〉 ∈ T such that y == x.

Algorithm 3 The Forelem specification of k-means clustering after using orthogonaliza-
tion and loop blocking. Note that the loop body is identical to the loop body of Algo-
rithm 2.

whilelem (〈y〉 ∈ Xp) {
forelem (〈m,x〉 ∈ T.〈x〉[〈y〉]) {
if (M[x] != m) {
distold = reduce(+, map(〈n,y,i〉 ∈ Te -> (VAL[M[y],i] - DATA[y,i])**2,

enumT(〈m,x〉)))
distnew = reduce(+, map(〈n,y,i〉 ∈ Te -> (VAL[n,i] - DATA[y,i])**2,

enumT(〈m,x〉)))
if (distnew < distold) {
assign(〈n,y,i〉 ∈ Te -> VAL[M[y],i], 〈n,y,i〉 ∈ Te -> (VAL[M[y],i]

* SIZE[M[y]] - DATA[y,i]) / (SIZE[M[y]] + 1), enumT(〈m,x〉))
SIZE[M[x]] -= 1

assign(〈n,y,i〉 ∈ Te -> VAL[n,i], 〈n,y,i〉 ∈ Te -> (VAL[n,i]
* SIZE[n] + DATA[y,i]) / (SIZE[n] + 1), enumT(〈m,x〉))

SIZE[m] += 1

M[x] = m

}
}

}
}

5.4 Localization

To take advantage of the cache used in modern computers, it can be beneficial to increase data
locality. Instead of storing the data points and their associated clusters separately in shared
spaces, the localization transformation allows us to include these as fields in the tuple.
Using the localization transformation (followed by orthogonalization and loop blocking) we
obtain a different specification shown in Algorithm 4. A tuple 〈x0, x1, ..., xd−1, cx〉 now contains
the value of a data point (x0, x1, ..., xd−1) with d the dimension, and the associated cluster as
cx.
The application of the localization transformation causes different data structures to be gen-
erated during the derivation of the implementations. For instance, for the implementations
derived from the specification shown in Algorithm 3 the different shared spaces will be stored
in separate arrays. For implementations derived from this new specification in Algorithm 4,
the information previously stored in the shared spaces DATA and M will be stored in an array of
structs instead. The loop blocking transformation still allows us to distribute this array over
processors.
Note that the tuples t’ in the extended reservoir Te now also consist of more fields: t’ =
〈n,y0,y1, ... ,yd−1, cy,i〉. They are abbreviated to t’ in Algorithm 4 to improve legibility.
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Algorithm 4 The Forelem specification of k-means clustering after using orthogonal-
ization, localization and loop blocking. Note that all t’ ∈ Te are abbreviated and
t’ = 〈n,y0,y1, ... ,yd−1, cy,i〉.

whilelem (〈z0,z1, ... ,zd−1,cz〉 ∈ Xp) {
forelem (t = 〈m,x0,x1, ... ,xd−1,cx〉 ∈

T.〈x0,x1, ... ,xd−1,cx〉[〈z0,z1, ... ,zd−1,cz〉]) {
if (cx != m) {
distold = reduce(+, map(t’ ∈ Te -> (VAL[cy,i] - yi)**2, enumT(t)))
distnew = reduce(+, map(t’ ∈ Te -> (VAL[n,i] - yi)**2, enumT(t)))
if (distnew < distold) {
assign(t’ ∈ Te -> VAL[cy,i], t’ ∈ Te -> (VAL[cy,i] * SIZE[cy] - yi)

/ (SIZE[cy] - 1), enumT(t))

SIZE[cx] -= 1

assign(t’ ∈ Te -> VAL[n,i], t’ ∈ Te -> (VAL[n,i] * SIZE[n] - yi)
/ (SIZE[n] - 1), enumT(t))

SIZE[m] += 1

cx = m

}
}

}
}

5.5 Communicating the Cluster centers

We have now given the two k-means clustering specifications used for our final implementations
in Algorithm 3 and Algorithm 4 respectively. In these specifications communication of partial
results between processors is explicitly not specified. In fact, this code is generated and inserted
automatically during the code generation process, in which a Forelem specification is translated
to an executable code. Any order of execution for the tuples that has been established during
the derivation of the Forelem specification is preserved and taken into account for further
optimization steps.
In both implementations, the (local) cluster center and size is updated each time the loop
body is traversed and a data point is reassigned. Based on this, we now describe two possible
communication codes that are generated during the code generation.
The first option simply recalculates the means of the clusters. In this case, the communication
is directly derived from the initialization procedure described for the VAL and SIZE shared
spaces:

forelem (〈x〉 ∈ X) {
SIZE[M[x]] += 1

forelem (〈n,y,i〉 ∈ Te.〈n,y〉[〈M[x],x〉])
VAL[n,i] += DATA[y,i]

}
forelem (〈m,i〉 ∈ M)
VAL[m,i] = VAL[m,i] / SIZE[m]

Here X and Te are the same tuple reservoirs as before and M is a tuple reservoir containing
tuples 〈m,i〉 with 0 ≤ m < k a cluster and 0 ≤ i < d the index of a coordinate of its center.
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Both the VAL and SIZE shared spaces are first initialized to 0, and the M shared space has
already been initialized.
This initialization procedure is inserted within the inner loop and made to operate on a partition
of the tuple rservroi Xp. By doing so, the loop is automatically parallelized, recalculating the
cluster centers and sizes using only the values of M and DATA stored locally by each processor.
Each processor adds the data vectors associated with each cluster to each other. Because
this computation was parallelized, a reduction code is inserted which makes all processors
communicate the sums and local sizes of each cluster. This ensures the results are equal to
the non-parallelized version and allows each processor to calculate the (global) mean. We will
refer to this as the recalculation communication scheme.
The second option utilizes the adapted cluster centers and is derived from the local calculations
made by each process. Each process makes (small) adaptations to the cluster centers during the
iteration. The processes communicate the new cluster centers by exchanging which data points
were reassigned and each process then mimicking the recalculation made by the process that
originally reassigned the data point. However, all these (small) recalculations can be optimized
by combining them with each other. From this a formula to calculate the new cluster centers
and sizes using only the old centers and sizes from the start of the calculation and the new
local cluster centers and sizes can be derived.
Let Ci and Si be the cluster center and size of cluster i before the iteration. Let Cij and Sij be
the local cluster center and cluster size for process j after the iteration. Then the new global
cluster centers C ′i and cluster sizes S ′i can be obtained through the following formulas:

S ′i =
∑
j

Sij − (p− 1) · Si0 (7)

C ′i =

∑
j(Sij · Cij)− (p− 1) · Ci · Si

S ′i
(8)

were p is the total number of processes. We will refer to this as the derived communication
scheme.
To obtain the four implementations used in the experiments, we combine these two differ-
ent communication schemes with the two different specifications given in Algorithm 3 and
Algorithm 4.

6 Experiments

To evaluate the performance of the derived k-means clustering implementations we ran several
experiments, using two implementations from the BigDataBench benchmark as a baseline.
We will first briefly discuss these implementations in Section 6.1. The experimental setup is
explained in Section 6.2 and the results are given in Section 6.3.

6.1 K-means in BigDataBench

The BigDataBench benchmark [6] contains several parallel implementations of the k-means
clustering algorithm. For our first baseline we choose to use the Hadoop implementation, which
uses the implementation included in the Apache Mahout project [1]. Hadoop provides a way
to easily parallelize existing algorithms, which is something the Forelem framework also wishes
to achieve. We will refer to this implementation as the Hadoop implementation.
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Since the final implementations generated using the Forelem framework will use C/C++ code
and MPI, we also use the C/C++ MPI implementation from the BigDataBench benchmark.
This implementation is an adaptation of the implementation written by W.-K. Liao [8]. It takes
a more traditional approach to parallellizing k-means clustering, first all processes reassign the
data points in parallel, then they recalculate the cluster centers in parallel. Recall that the main
difference between this approach and the Forelem implementations, will be that Forelem has
interleaved the reassigning of data points and recalculation of the cluster centers. The Forelem
implementations are also derived and optimized automatically from the initial specification.
While the techniques used by this implementation and the Forelem implementations are similar,
the path to the implementations was not. We will refer to the C/C++ MPI implementation
from the BigDataBench benchmark as BigDataBench MPI.

6.2 Experimental Setup

For our experiments we have chosen to write a random data generator to exclude any bias
towards initial distributions or other artifacts. The generator is given a number of data points to
generate, a dimension of the desired data points and a number of clusters to generate the data
in. It first generates the intended cluster centers using a uniform distribution in the interval
[0, 10] and generates a standard deviation for each cluster, uniform random in the interval
[10
16
, 10

8
]. To generate a data point, the generator first uniform randomly chooses a cluster to

assign it to, then uses a normal distribution with the generated center as a mean and the
generated standard deviation. Note that it is possible for coordinates of the generated data
points to fall outside the interval [0, 10]. All data sets used in the experiment contained data
points of dimension 4, generated in 4 clusters. For each implementation the data is stored in
ASCII format, since the format for the BigDataBench MPI and Hadoop implementation differ
slightly the Forelem implementations can read both formats.
Throughout this section, we will refer to the implementation corresponding to Algorithm 3
using the recalculation communication scheme as Implementation 1. Implementation 2 also
corresponds to Algorithm 3, but uses the derived communication scheme. Similarly, Imple-
mentation 3 and Implementation 4 correspond to Algorithm 4 and use the recalculation and
derived communication scheme respectively.
Note that the Hadoop implementation uses a convergence delta to determine whether the
process has converged. If the change in the cluster centers during an iteration is less than this
convergence delta, the calculation terminates. To allow a fair comparison, this convergence
delta was added to Implementation 1 to 4. Similarly, the BigDataBench MPI implementation
uses a threshold to determine convergence. If the fraction of data points that are switched
to a different cluster center during an iteration is less than the given threshold, calculation
terminates. This was also added to Implementation 1 to 4.
The experiments ran on (up to) 8 nodes of the DAS-4 cluster [2]. A node in this cluster consists
of 2 CPU sockets, each containing a 4-core CPU with Hyper-Threading. This yields a total
of 8 physical cores and 16 virtual cores per node. Implementation 1 to 4 were run in several
different configurations, varying between 1 to 8 nodes and 1 to 8 threads per node. The Hadoop
implementation was run using the provided set-up on the cluster which allowed it to use up to
8 nodes. The BigDataBench MPI implementation was run on a configuration of 8 nodes each
containing 8 threads to provide a comparison with both the Forelem implementations and the
Hadoop implementation.
Note that due to the high influence of the initial cluster centers on the time needed for the
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Figure 1: The calculation time of Implementation 1 to 4 on the 8× 8 configuration, using
a convergence delta of 0.0001.

process to converge, the results for Implementation 1 to 4 and the Hadoop implementation
varied between runs. The BigDataBench MPI implementation uses a deterministic initialization,
selecting the first k data points in the input file as the inital cluster centers. Its results show
a similar variance when running on shifting the data points in an input file to force a different
choice for the initial cluster centers. To mitigate the influence of the initialization, all results
shown are averages over 10 runs.

6.3 Results

In our experiments, we first focus on the performance of the forelem framework implemen-
tations for different parameters such as input size and the number of threads. Then, we will
use the two implementations taken from the BigDataBench benchmark, the BigDataBench
MPI implementation and the Hadoop implementation, to provide a baseline to compare the
performance of Implementation 1 to 4 to.
For the first experiment, we ran Implementation 1 to 4 on the 8 × 8 configuration for data
sets containing 220 to 228 data points, the results are shown in Figure 1. These results show
that applying localization, as is done for Implementation 3 and 4, decreases the calculation
time. Similarly, for larger data sets, the calculation time is decreased by using the derived
communication scheme instead of the recalculation communication scheme, as shown by Im-
plementation 2 and 4 perfoming better than Implementation 1 and 3 respectively. Both effects
becomes more apparent on the larger data sets. Note that the calculation time shown excludes
the time needed for input and output. We focus our experiments on the part of the code that
was specified and optimized in the forelem framework: time is measured from the start of the
initialization of the cluster centers until the execution of the whilelem loop terminates.
In a second experiment, Implementation 1 to 4 were run on configurations containing 1 to 8
nodes, using 1, 2, 4 or 8 threads per node and the data set containing 226 data points. The
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Figure 2: The calculation time of Implementation 1 to 4 for varying numbers of threads,
using a convergence delta of 0.0001.

calculation time for the four implementations using different numbers of threads are shown in
Figure 2. Note that when different configurations would yield the same number of threads, the
configuration using the lowest number of nodes was used. For example, configurations 2 × 4
and 1 × 8 both yielded 8 threads, and configuration 1 × 8 was used in Figure 2. The results
show that when the number of threads double, the calculation time becomes roughly half of
the calculation time, thus showing that the implementations scale very well. Due to the range
needed to show all results in Figure 2 the graph may appear to approach a limit for the higher
number of threads, but it in fact continues to go down at a similar rate as before. From 32 to
64 threads, the calculation time decreases with a factor 1.6 on average.
Finally, to further investigate the behaviour of Implementation 1 to 4 we also ran an experiment
using data sets with different dimensions and numbers of clusters. Both experiments were run
on data sets of size 226. The results for Implementation 1 to 4 when running on data sets with
k = 4 and different dimensions are shown in Figure 3. These results show that the calculation
time slightly increases when the dimension does, which is due to the increase in operations
needed to calculate the Euclidean distance and recalculate the cluster centers. However, the
increase in calculation time is very small compared to the increase in dimension: an increase
of a factor 8 in dimension only results in an increase of about a factor 2 in calculation time.
The results for Implementation 1 to 4 when running on data sets with dimension 4 and different
numbers of clusters k are shown in Figure 4. Similar to the experiment with different dimen-
sions, the calculation time appears to increase slightly as the number of clusters increases. This
is due to an increased amount of information needing to be communicated, when the processes
communicate the cluster centers. However, since the frequency of this communication does
not increase, only the length of the messages does, the increase in calculation time is small.
From these first experiments we can conclude that the Forelem framework implementations
scale well. The additional optimizations applied in Implementation 4 indeed improve the per-
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Figure 3: The calculation time of Implementation 1 to 4 for different dimensions, using a
convergence delta of 0.0001.
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Figure 5: The calculation time of Implementation 1 to 4 and BigDataBench MPI on the
8× 8 configuration, using threshold 0.0001.

formance, given that Implementation 4 is the best performing implementation in almost all
cases. To get a better understanding of the performance of Implementation 1 to 4, we will use
the BigDataBench MPI and Hadoop implementation as baselines.
For the comparison with the BigDataBench MPI implementation, we note that to allow a fair
comparison we will measure only the time taken by the core calculation, similar to how we
measure the time for Implementation 1 to 4 as noted before. The time measurement is taken
from the moment the BigDataBench MPI implementation calls the function that will execute
the iterations, until the moment the process has converged.
The performance of Implementation 1 to 4 and the BigDataBench MPI implementation on
data sets of different sizes are shown in Figure 5. A graph showing the speedup (or speeddown)
of Implementation 1 to 4 with respect to the BigDataBench MPI implementation is depicted
in Figure 6. It should be noted that switching to a threshold of 0.0001 instead of a convergence
delta caused outliers. For about 15% of the runs the number of iterations used became far
greater then normally seen (up to 490 iterations in a single run, where runs with 3 to 10
iterations were normal). The BigDataBench MPI implementation also exhibited this behaviour.
These outliers were excluded from the results shown.
The results show that the performance of Implementation 1 to 4 is close to the performance
of the BigDataBench MPI implementation. Implementation 1, the slowest of the four Forelem
implementations, proved to be slower than the BigDataBench MPI implementation. The fastest
Forelem implementation, Implementation 4, proved to be faster for the majority of input sizes.
Note that even though we take the average over 10 runs for each data point, the results still
show some random fluctuation. For input sizes 221 and 227 this random fluctuation causes the
BigDataBench MPI implementation to be slower than expected, therefore Figure 6 shows a
slight elevation in speedup for these input sizes.
Finally, a comparison with the Hadoop implementation was made. Figure 7 shows the execu-
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Figure 6: The speedup of Implementation 1 to 4 compared to BigDataBench MPI on the
8× 8 configuration, using threshold 0.0001.

tion times of Implementation 1 to 4 and Figure 8 shows the execution times of the Hadoop
implementation for different input sizes. Figure 9 shows the speedup of Implementation 1 to
4 compared to the Hadoop implementation for various input sizes. The Hadoop implementa-
tion was given a maximum number of iterations of 10. Note that Implementation 1 to 4 are
between 20 to 70 times faster than the Hadoop implementation. While the Hadoop imple-
mentation first becomes more efficient compared to the Forelem implementations as the data
size increases, it appears it then becomes less efficient for even larger data sizes. However,
since for most implementations this effect is only shown for the largest data set, this may be
coincidental (due to the randomness of the initialization and its influence on performance). It
was not possible to run the Hadoop implementation for a data set larger than 225 data points,
because it runs out of memory.
Note that since the input and output operations of the Hadoop implementation are an inher-
ent part of the implementation, we compare the Hadoop implementation with the Forelem
implementations based on the overall execution time. Although the Hadoop implementation
of k-means is compute intensive, we still have to take into account that the I/O overhead may
be extensive, skewing the results in our favor. However, given the large difference in perfor-
mance, we still conclude that the performance of the Forelem implementations is superior to
the Hadoop implementation.

7 Conclusion

The Forelem framework can be used to derive implementations for k-means clustering. The
application of a sequence of transformations to a simple specification of the algorithm leads to
the derivation of highly efficient implementations. The performance of these implementations
is shown to be superior to the performance of the Hadoop implementation provided by the
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Figure 7: The execution time of Implementation 1 to 4 on the 8× 8 configuration, using
a convergence delta of 0.0001.
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Figure 9: The speedup of Implementation 1 to 4 compared to Hadoop on the 8 × 8
configuration, using a convergence delta of 0.0001.

BigDataBench benchmark, being approximately 40 times faster. The most optimized imple-
mentation derived for the experiments is faster than the MPI implementation provided by the
BigDataBench benchmark.
The Forelem framework allows the creation of inherently parallel specifications. This ensures
that the specification must be created by reducing an existing algorithm to its core idea, and
leads to implementations which scale well when increasing the number of threads. Reducing an
algorithm to its core idea also allows the Forelem framework to generate codes using different
communication schemes mechanically.
The implementations used for this research were derived from the initial specification, but
ultimately were still programmed by hand. Future work will include the automation of this
process, and to demonstrate the effectiveness of this framework on various other examples
and algorithms.
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