

Universiteit Leiden

Opleiding Informatica

Grover's Quantum Search Algorithm

Name: Alexandros Kavvadias
Studentnr: s1252194

Date: February 29, 2016

Supervisor: André Deutz
2nd Reader: Jeannette de Graaf

MASTER'S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

2

Abstract

Quantum computation is a �eld of computation theory that focuses on �nding what

computational tasks can be performed, while taking into account the quantum nature

of the physical world. A very popular quantum search algorithm is Grover's search

algorithm that �nds a single element of an unstructured database in time which is in

the order of the square root of the size of that database. In the present study, the issue

under scrutiny is the aforementioned search algorithm and its basic concepts and func-

tions.

We commerce this Master Thesis with a brief introduction to quantum computing, dis-

cussing why quantum information theory is so important compared to classical informa-

tion theory and why this �eld of research draws our attention [1]. Then, we formsulate

the basic mathematical background of quantum computing, presenting the most essen-

tial mathematical concepts involved in quantum information theory [2]. Next, we provide

a deeper understanding of quantum mechanics, introducing its basic principles: the pos-

tulates of Quantum Mechanics [3]. Here, we give the de�nitions of a state space, the

evolution of a closed quantum system and how the quantum measurements can be de-

scribed as quantum operators.

The parameters of the algorithm have been de�ned by various authors in the literature.

We describe these parameters in every detail, using the conventional bra-ket notation

and we present how Grover's search algorithm works [4]. Next, we generalize by

discussing some essential research questions regarding the algorithm's performance and

optimality. After having performed the mathematical analysis of the algorithm, a classical

implementation of the algorithm has been attempted [5]. We run several experiments in

a classical computer in order to verify the correctness of our analysis. The results are

presented and discussed providing valuable insight into the nature of the algorithm, which

may be considered as an evidence about the algorithm's accuracy. Finally, we discuss the

potentials of further research in this direction [6].

Key words: Grover search algorithm; Quantum Algorithm; Quantum search;

Abbreviations: QC � Quantum Computing; QM � Quantum Mechanics;

3

Contents

1 INTRODUCTION AND OVERVIEW 5

1.1 Motivation and Goals . 5

1.2 Why Quantum Computing? . 6

1.3 A Premature Conclusion . 7

2 INTRODUCTION TO QUANTUM COMPUTATION THEORY 8

2.1 Qubit:A Quantum Chunk of Information . 8

2.2 The Dirac Notation . 10

2.3 A Brief Introduction to Complex Numbers 12

2.4 A Brief Introduction to Matrices . 14

3 POSTULATES OF QUANTUM MECHANICS 18

3.1 State space . 18

3.2 Evolution . 19

3.3 Measurement . 23

4 GROVER'S SEARCH ALGORITHM BASICS 26

4.1 Setting up the Search Problem . 26

4.2 The Procedure . 29

4.3 The Grover's Algorithm Steps . 31

4.4 Geometric Visualization of Grover's algorithm 38

5 A CLOSER VIEW ON GROVER'S ALGORITHM 47

5.1 Performance . 47

5.2 Optimality . 49

5.3 Grover's Algorithm Implementation . 55

5.3.1 Grover's algorithm simulation on a classical computer 55

5.3.2 Generalization for very big search space 60

5.4 Searching using Grover's algorithm: a worked example for N=8 69

6 SUMMARY AND CONCLUSIONS 80

6.1 Summary . 80

6.2 Conclusions . 81

References 82

A First Appendix 84

4

1 INTRODUCTION AND OVERVIEW

The key aspect of this chapter is an introduction to Quantum Mechanics and the discussion

of some general concepts involved in this �eld. We discuss some of the main aspects of

Quantum Computing and explain where our motivation in studying in this �eld of research

originates. Thus this chapter serves as a brief overview of the current Master Thesis, explains

the reasons why we chose this �eld of research and then, draws a premature, yet accurate

conclusion on the topic of the current study. The reader will get a bird's eye view about key

ideas and concepts involved in quantum information theory. This chapter is the �rst step for

someone to study and understand quantum computing and quantum algorithms.

1.1 Motivation and Goals

In the present study the issue under scrutiny is Grover's search algorithm. This quantum

search algorithm is being introduced and it's main concepts are being presented. The purpose

of this research is twofold. We �rst present how Grover's algorithm operates, providing all

the mathematical background needed to study and understand the algorithm and secondly, we

discuss how successful such a quantum search algorithm can be, focusing on its performance

and optimality. Thus through this research we achieve our two main goals: to present in detail

Grover's search algorithm and prove that it performs a quadratic speedup, so this algorithm

is faster, and yet optimal in comparison to any known algorithms performing on the same task.

This research is motivated by two research questions: "What is the performance of Grover's

algorithm?" and "Is this algorithm performing better compared to other search algorithms?".

Previous research [8], [22], [22] o�ers a descriptive account of Grover's algorithm and might

answer our questions. However, our interest is based on a simpler approach on the algorithm

which is a detailed mathematical analysis combined with some experimental results. This way

we provide and answer to the aforementioned questions from our point of view, being able to

draw some important remarks about this quantum search algorithm.

We do not imply the development of a better performing algorithm however, a simpler and

more intuitive way of understanding Grover's algorithm is being presented and at the same

time many aspects of the algorithm are under question. Thus this study might advances some-

one's understanding of Grover's search algorithm and illustrates how the algorithm performs

and why is it considered to be optimal compared to any other search algorithms. Of course

there might be some other research questions regarding Grover's algorithm, that are not

answered in the present work. However we aim on presenting an intuitive point of view for

studying in depth and in more detail Grover's algorithm.

5

1.2 Why Quantum Computing?

Before answering why, someone has �rst to understand what is quantum computation. It

is a �eld of research that studies theoretical computational systems, uses quantum properties

to represent data and performs operations on these data. The most fundamental chunk of

information is called a qubit and in contrast to the classical bit it can be in classical 0 and 1

states and in a in�nite combination of those states (superposition). This can be thought as

being in two di�erent universes at the same time, in the �rst universe in state 0 and in the

other universe in state 1. When operating on such a qubit, the operation acts on both values

at the same time, that is; a single operation on a qubit operates on two di�erent values at the

same time. This property gives the system an exponential quantum parallelism which makes

quantum data processing faster and more e�cient than the classical. Later on, we provide a

compact and more friendly to the physicists way of representing qubits. At that point we take

a closer look and present some properties of the qubits, studying the mathematics involved.

Quantum properties supports the claim that quantum computing can deliver a new level of

computational power unreachable by classical computers. A whole new theory of computation

incorporates the strange e�ects of quantum mechanics and studies the computational systems

that make use of those strange e�ects. A quantum computer thus has the theoretical capability

of simulating any �nite physical system performing calculations across a multitude of parallel

universes giving them the ability to perform tasks more e�cient and in polynomial time. This is

what makes quantum algorithms faster and more e�cient than their classical analogue. Later

on we study the special case of Grover's search algorithm which outperforms other classical

search algorithms.

The computational power of classical computers is restricted due to space and time limi-

tation, that is; there are no classical algorithms that are able to solve in polynomial time a

variety of computational tasks. However quantum algorithms can perform e�ciently on the

same problems and outmatch their classical analogue. The most popular quantum algorithms

that can solve such problems are Shor's algorithm [20] for factoring, and Grover's algorithm

[8], [9] for searching an unstructured database or an unordered list. Both of these algorithms

run exponentially and quadratically, respectively, faster than the best known classical algorithm

for the same task.

On these grounds, we can argue that every quantum algorithm outperforms its known

classical analogue, providing us unlimited computational power. This is where my own interest

for this �eld originates from and motivated me to conduct research on this �eld of study. It is

fascinating how an algorithm can �nd a solution in such a complicated problem and how wide

the �eld of application of such an algorithm is. The above inspired me and made me want to

study Grover's search algorithm, describe it in every detail and understand how to use and

manipulate it.

6

This study might not advance our understanding of quantum world but it provides the

concepts and mathematical representations needed to study in depth a very popular quantum

algorithm. The following chapter introduces these mathematical concepts and introduces the

essential mathematical framework for quantum computing.

1.3 A Premature Conclusion

This research propounds the view that Grover's algorithm provides a quadratic speedup

and performs better over the best possible classical algorithm. Another important remark is

the fact that the ratio of amplitude of the solutions and the non-solutions after each iteration

of the algorithm follows a speci�c pattern. Our last remark is that the larger a search space is,

the probability of �nding a solution gets closer to 1. Thus, this Master thesis demonstrates the

importance of this algorithm without implying the existence of a new or improved quantum

search algorithm. It introduces an algorithm that already exists, describes and manipulates

it and draws some important remarks about its performance and optimality. The later part

of the current work supports the mathematical analysis we perform on algorithm, with the

experimental results of Grover's algorithm simulation on a classical computer. Our �ndings are

not surprising however, they can be generalized providing a better understanding of Grover's

algorithm.

The ground covered in the introductory chapter can be summarized in the following sentence

claimed by T . D. Kieu [13]: A quantum computing procedure could solve a classically

unsolvable problem. This is what someone should keep in mind before starting to explore the

quantum world.

7

2 INTRODUCTION TO QUANTUMCOMPUTATION

THEORY

All the basic knowledge and the concepts that are closely related to quantum information

theory and quantum computing are presented, in a simple and very easy to comprehend way.

The chapter begins with an introduction of the most fundamental building block, the qubit

and then the Dirac notation is being presented. Next a review on some basic mathematics

follows, where the most essential mathematical tools of manipulating quantum computing are

discussed. The main objective of this chapter is to provide the knowledge needed to understand

quantum logic and introduce the mathematics needed to manipulate it.

2.1 Qubit:A Quantum Chunk of Information

As already discussed, the qubit is the fundamental unit of quantum information just like the

bit is the fundamental unit of classical information. This subsection introduces the quantum

bit and studies its properties. Although someone could think of a qubit as a physical object,

that is; a two state quantum-mechanical system such as a vertical and a horizontal polarization

of a photon, the alignment of a nuclear spin in a uniform magnetic �eld or the two states of

an electron orbiting a single atom, it is more handy to describe and treat it as an abstract

mathematical object with speci�c properties. Treating qubis this way has two main advantages

over their "physical object" view. First, our human brain understands only the classical world

and thus our intuition comes form our "classical" point of view and secondly we have the

freedom to construct a general theory of quantum computation which is not rooted on the

way we perceive the world.

In the introduction we refer to the qubit and the states in which it can be found. We remind

that just like the classical bit can be in states 0 and 1, a qubit can also be either in |0〉 or |1〉,
which are the quantum analog of the classical states 0 and 1. The notation used to describe

those quantum states is the Dirac notation, a very compact way to describe qubits. The next

subsection is meant to present and study the Dirac notation, however we use this notation

�rst to describe and study the properties of quantum bits and then explicitly present it. This

is done in order to keep simple the structure of this work and make it easier for the reader to

follow.

The main di�erence between bits and qubits lays in the fact that quantum mechanics allows

the qubit to be in a superposition of both states at the same time. The superposition is the

linear combination of those two states and so a general state |ψ〉 can be written as

|ψ〉 = α|0〉+ β|1〉, (1)

8

where α and β are complex numbers. So we can think of a state of a qubit as a vector in a

two-dimensional complex vector space

(
α

β

)
. The most intriguing fact about qubits is that, in

contrast to classical bits where we can determine in which state they are, we can not determine

their quantum state. This means that we can not determine the values of α and β. However,

we can measure a qubit and tell that it is in state |0〉 with probability |α|2 or in state |1〉 with
probability |β|2. Due to the fact that probabilities sum up to one, |α|2+ |β|2 = 1 is true. Thus,

taking a look back to the two-dimensional complex vector space we can tell that the state of

a qubit is a unit vector in this space.

It can be said that the above is one of the most fundamental properties of Quantum Mechan-

ics. The fact that we can not observe the state of a qubit in combination with our "classical"

perspective of the world makes it quite hard for us to intuitively think about Quantum Me-

chanics. However, we have the mathematical tools to study, measure and manipulate these

quantum states. The fact that a qubit can be in a superposition of states |0〉 and |1〉 can be de-
scribed as the result of an "imperfect" coin being tossed. The result of tossing an "imperfect"

coin will be neither heads nor tails which would be the result of a "perfect" coin being tossed.

Rather, the result would be the coin being balanced on its edge which could be described as a

"superposition" of the two states. Note that in the above theoretical experiment the results:

head and tails represent state |0〉 and state |1〉 respectively, while the "balanced" state is the

supeposition of these states. Keep in mind that when measuring the state of a qubit, we only

get 0 or 1 in a probabilistic way. For example, a qubit can be in state

|ψ〉 =
1√
2
|0〉+

1√
2
|1〉,

which when measured is either in state |0〉 or in state |1〉 with probability 50%.

A geometrical way to represent the pure state space of a qubit is by considerings them as

points on the surface of a unit sphere, the Bloch sphere 1. Since |α|2 + |β|2 = 1 we can write

|ψ〉 = eiγ
(

cos
θ

2
|0〉+ eiφ × sin

θ

2
|1〉
)
, (2)

where γ, θ and φ are real numbers. Qubit states with arbitrary values of γ can all be represented

by the same point on the Bloch sphere because the factor eiγ has no observable e�ects, so

we can write

|ψ〉 = cos
θ

2
|0〉+ eiφ × sin

θ

2
|1〉. (3)

9

Figure 1: Bloch sphere.

Since this chapter o�ers an overview of some basic concepts of QM we don't discuss qubits

and their states further . All the above was just a glimpse on these strange, mathematical

objects but at the same time it was everything someone should know. We present next a

simple and compact notation to describe and manipulate qubits and their states, the Dirac

notation.

2.2 The Dirac Notation

A concise and convenient way to describe states in a linear space is to represent each state

in a way which is free of the choice of coordinates but allows us to insert a particular choice

of coordinates easily and to convert from one choice of coordinates to another conveniently.

Such a way of representing was introduced by Paul Dirac and is known as Dirac or bra -

ket notation [3] [7]. Next we introduce this notation and discuss some advantages of this way

of representation.

The bra - ket notation is a compact way to describe quantum states where kets and bras

are simply column vectors and row vectors, respectively, and linear operators are simply square

matrices. The elements of these vectors and matrices are generally complex numbers. For

convenience we express ourselves in terms of vectors and matrices of size 3, but they may be

of any size, and in fact they are usually of arbitrarily large size. A bra is denoted as 〈ψ| while
a ket is denoted as |φ〉. So we can write them in their vector form as

10

〈ψ| =
[
ψ1 ψ2 ψ3

]
|φ〉 =

φ1

φ2

φ3

 .
The symbol 〈ψ|φ〉 represents a complex number which is equal to the value of the inner

product of the bra 〈ψ| with the ket |φ〉, and it is simply the ordinary multiplication of a row

vector and a column vector in the usual way,

〈ψ|φ〉 =
[
ψ1 ψ2 ψ3

]φ1

φ2

φ3

 (4)

= ψ1φ1 + ψ2φ2 + ψ3φ3.

We note, according to the above de�nition, that,

〈ψ|φ〉 = 〈φ|ψ〉, (5)

where 〈φ|ψ〉 denotes the complex conjugate of 〈φ|ψ〉. Dirac also de�ned something called an

outer product which is a convenient way to de�ne linear operators. The outer product of the

bra 〈φ| and the ket |ψ〉 is denoted by |φ〉〈ψ| and we can write

|φ〉〈ψ| =

φ1

φ2

φ3

[ψ1 ψ2 ψ3

]
(6)

=

φ1ψ1 φ1ψ2 φ1ψ3

φ2ψ1 φ2ψ2 φ2ψ3

φ3ψ1 φ3ψ2 φ3ψ3

 .

Now if we denote by α a linear operator, we can write it in its matrix form as

α =

α11 α12 α13

α21 α22 α23

α31 α32 α33

 ,
the operator α applied on a bra 〈ψ| is nothing more than their product and can be written

11

〈ψ|α =
[
ψ1 ψ2 ψ3

]α11 α12 α13

α21 α22 α23

α31 α32 α33

 (7)

=
[
ψ1α11 + ψ2α21 + ψ3α31 ψ1α12 + ψ2α22 + ψ3α32 ψ1α13 + ψ2α23 + ψ3α33

]
,

while the operator α applied on a ket |φ〉 is written as

α|φ〉 =

α11 α12 α13

α21 α22 α23

α31 α32 α33

φ1

φ2

φ3

 (8)

=

α11φ1 + α12φ2 + α13φ3

α21φ1 + α22φ2 + α23φ3

α31φ1 + α32φ2 + α33φ3

 .

The main advantage of such a way of representation is that as we already mentioned, is

coordinate free. Furthermore, it is oriented in a way that allows us to keep track of whether

we need to take complex conjugates or not, which is particularly useful if we are in an inner-

product space. To take the length of a complex vector, we have to multiply the vector by its

complex conjugate, otherwise we won't get a positive number. The orientation of the Dirac

representation allows us to nicely represent the inner product in a way that keeps careful track

of complex conjugation.

2.3 A Brief Introduction to Complex Numbers

In this subsection we introduce Complex Numbers as have been presented by several au-

thors [12] [14] [15] [21] [16], and discuss their importance in quantum mechanics.

Quantum systems exhibit both particle and wave-like behavior. The particle like behavior is

probabilistic for example, the detection of a photon is never certain but more or less likely. But

a stream of photons going through a di�raction grating will result in a wave-like interference

pattern. It would be possible but very clunky for someone to model this wave/particle behavior

with real numbers as reported by [5]. However, modeling this behavior with complex numbers

is a much more natural method due to the "duality" of real numbers. The real part of a

complex number calculates probabilities while its imaginary part models wave interference.

In particular the imaginary part of the complex number represents the phase, or more specif-

ically the phase di�erence that gives rise to interference patterns. Waves while in "phase" rise

and fall together and "out of phase" rise and fall at di�erent times, that is; a phase di�erence.

12

So phase di�erence determines whether waves interfere constructively (reinforce) or destruc-

tively (cancel) but how do complex numbers represent both probability and interference? The

answer to this question, is the key point of this chapter; complex numbers have more than

one dimensions (one real, one imaginary) that �ts well with quantum systems that have both

a real probability and an imaginary phase di�erence.

The complex conjugates are a pair of complex numbers both the same except with the =
part of equal magnitude and opposite signs. In the current study, the complex conjugate of

a complex number c is denoted as c. Be careful, because some times there is a confusion with

the notation for the conjugate transpose of a matrix, we see in a later part of this work. Thus

the complex conjugate of a complex number c = a+ bi can be written as follows

c = (a+ bi) (9)

= a− bi.

For any complex numbers c, d the following properties are true

(c+ d) = c+ d (10)

(c− d) = c− d (11)

(cd) = c d (12)(c
d

)
=

c

d+
, if

c

d
is de�ned (13)

(cn) = (c)
n

(14)

|c| = c (15)

(c) = c. (16)

The square magnitude of a complex number c is denoted |c|2 and is found by multiplying c

by its complex conjugate c. That is; if c = a+ bi then

|c|2 = c× c (17)

= (a+ bi)× (a− bi)
= a2 + b2,

we observe that the square magnitude of a complex number is always a real number.

13

Complex numbers are using a various properties [11]. The most essential properties of

complex numbers as in natural numbers, are the following

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i addition (18)

(a+ bi)− (c+ di) = (a− c) + (b− d)i subtraction (19)

(a+ bi)× (c+ di) = (ac− bd) + (ad+ bc)i multiplication (20)

(a+ bi)

(c+ di)
=

(a+ bi)

(c+ di)
× (c+ di)

(c+ di)
=

(ac+ bd)(bc− ad)i

(c2 + d2)
division (21)

Using the above relationships we can show that for the complex numbers z1, z2, z3 . . . zn
the following is true

(z1 × z2 × z3 × . . . zn) = (z1 × z2 × z3 × . . .×zn). (22)

An alternative representation of a complex number is to specify a distance r, of the point

from the origin and an angle θ between the real axis (x-coordinate) and the vector. Thus by

simple geometry it follows that

<[(a+ bi)] = a = r cos θ

=[(a+ bi)] = b = r sin θ.

In the above representation the square magnitude is |(a+ bi)|2 = a2 + b2. Using the identity

cos2θ + sin2θ = 1 we show that

|(a+ bi)|2 = a2 + b2 (23)

= (r cos θ)2 + (r sin θ)2

= r2(cos2θ + sin2θ)2

= r2.

All the above consist just a brief overview on complex numbers. However is all the knowledge

needed for someone to understand and manipulate qubits and their quantum states. Next we

present another useful mathematical tool and in the end of this chapter, we summarize all the

useful properties and notation in a table.

2.4 A Brief Introduction to Matrices

As discussed in a previous subchapter, the quantum state of a qubit can be described as a

vector in a two dimensional vector space. The linear operators working on qubits are often put

into mathematical objects called matrices when quantum calculations of probability and phase

di�erence are carried out. The purpose of this subsection is to introduce the matrices and dis-

cuss their basic properties. In [3] and [7] matrices are described as generally multidimensional

objects that can be added together or multiplied by each other [11].

14

An m × n matrix A = [aij] and an x = {xj} column vector of order n, when multiplied

they give us a y = {yi} column vector of order m. The matrix-vector product can be written

as:

Ax = y, (24)

to mean the linear transformation

yi =
n∑
j=1

aijxj, i = 1, . . . ,m.

In other words, if

A =

[
a1 a2 a3
a4 a5 a6

]

and

x =

x1x2
x3

 ,
then

Ax =

[
a1x1 + a2x2 + a3x3
a4x1 + a5x2 + a6x3

]
. (25)

Following we present three special forms of a matrix. The �rst is the complex conjugate of

a matrix A is denoted by A and it is obtained by replacing each entry of the matrix A by its

conjugate

if

A =

[
a1 a2 a3
a4 a5 a6

]

then

A =

[
a1 a2 a3
a4 a5 a6

]
. (26)

15

We have already seen the second special matrix, the transpose of a matrix. The transpose

of a matrix A denoted by AT can write

if

A =

[
a1 a2 a3
a4 a5 a6

]

then

AT =

a1 a4
a2 a5
a3 a6

 . (27)

The last special matrix is the conjugate transpose of a matrix which is given by the com-

position of the previous two operations, and for a given matrix A it is denoted by A†. Thus

we can write that A† = (AT).

The product of two matrices A and B is called the dot product of these two matrices, and

can we can write if

A =

a1 a2 a3
a4 a5 a6
a7 a8 a9

and

B =

b1 b2 b3
b4 b5 b6
b7 b8 b9

 ,
then

A ∗B =

a1b1 + a2b4 + a3b7 a1b2 + a2b5 + a3b8 a1b3 + a2b6 + a3b9
a4b1 + a5b4 + a6b7 a4b2 + a5b5 + a6b8 a4b3 + a5b6 + a6b9
a7b1 + a8b4 + a9b7 a7b2 + a8b5 + a9b8 a7b3 + a8b6 + a9b9

 . (28)

Note that matrix multiplication is associative

(AB)C = A(BC), (29)

and distributive,

(A+B)C = AC +BC. (30)

but non commutative.

16

Notation Description

z Complex conjugate of the complex number z.

|ψ〉 Vector or ket .

〈ψ| Vector dual to |ψ〉 or bra.
〈φ|ψ〉 Inner product between the vectors |φ〉 and |ψ〉 .
|φ〉 |ψ〉 Outer product of|φ〉 and |ψ〉.
A Complex conjugate of the A matrix .

AT Transpose of the A matrix .

A† Hermitian Conjugate or adjoint of the A matrix .

〈φ|A|ψ〉 Inner product between |φ〉 and A|ψ〉 .

Table 1: Summary of notation and linear algebra involved in Quantum Mechanics

We conclude by saying that the above concepts are the the �rst step for understanding

quantum mechanics. It might still be vague how all these mathematical tools are combined

and used to describe and manipulate qubits and quantum states. We now summarize all the

above in Table 1, and next we take a deeper look in the quantum world. For someone without

strong background in linear algebra, of for a more detailed study in this �eld we recommend

some of our references [2], [18], [1].

17

3 POSTULATES OF QUANTUM MECHANICS

The basic principles of quantum mechanics can be described by four axioms that consist the

postulates of quantum mechanics. Before presenting them, there must be a clear distinction

between quantum mechanics and and quantum computing. It could be said that quantum

mechanics is a mathematical language that is used to describe quantum physics just like cal-

culus is used to describe classical physics. So, quantum computing is the study of computation

systems that are using quantum mechanics as a mathematical language. One could claim that

there are more than three postulates for quantum mechanics, the truth is that more than three

principles exist, that describe QM. Some of them either derive from some basic principles or

rephrase them. We focus on three essential postulates as presented by our references in [17].

However there are some other approaches which could be found in [19], [4].

3.1 State space

The �rst postulate as presented by Nielsen and Chuang is the de�nition of a quantum

bit, or qubit.

Postulate 1. "Associated to any isolated physical system is a complex vector space

with inner product (that is; a Hilbert space) known as the state space of the system.

The system is completely described by its state vector, which is a unit vector in

the systems state space." [17]

As we already discussed, in a quantum computer a state is not a number but rather a

two-dimensional state vector |ψ〉. Suppose |0〉 and |1〉 form an orthonormal basis for that

state vector, then a qubit could be a linear combination of these states and can be written as

|ψ〉 = α|0〉 + β|1〉, where α and β are complex numbers. Note that |ψ〉 = α|0〉 + β|1〉 must

be a unit vector, which means that 〈ψ|ψ〉 = 1 or |α|2 + |β|2 = 1. The condition 〈ψ|ψ〉 = 1 is

often called the normalization condition for state vectors.

Having expressed a qubit as a two-dimensional state vector we can now take a closer look at

the superposition. As we mention above, a qubit can be in both states at the same time making

it for us impossible to say whether it is in state |0〉 or |1〉. So for a qubit |ψ〉 = α|0〉+β|1〉 any
linear combination

∑
i αi|ψi〉 is the superposition of the states |ψi〉 with amplitude αi for the

state |ψ〉. A useful superposition of the states |0〉 and |1〉 that will be used in a later chapter

of this Thesis, is the state |0〉−|1〉√
2

, with amplitude 1√
2
for the state |0〉 and − 1√

2
for the state

|1〉.

18

3.2 Evolution

The second postulate as presented by Nielsen and Chuang describes how qubits transform

and how they evolve through time.

Postulate 2. "The evolution of a closed quantum system is described by a unitary

transformation. That is; the state |ψ〉 of the system at time t1 is related to the

state |ψ′〉 of the system at time t2 by a unitary operator U which depends only on

the times t1 and t2" [17]

|ψ′〉 = U |ψ〉. (31)

As mentioned in a previous subsection, in quantum mechanics we are not able to tell in which

state a qbit is, the same applies with the unitary operator U . This operator is something that

we can apply to a qubit but we can not conditionally apply it. Time evolution is deterministic,

the state that occurs depends on the initial state of |ψ〉 of the system. For example, let's

consider the operator

U =

[
0 1

1 0

]
and apply it on the state |ψ〉 = α|0〉+ β|1〉. This produces

|ψ′〉 = U |ψ〉 =

[
0 1

1 0

][
α

β

]

=

[
β

α

]
= β|0〉+ α|1〉.

A very useful unitary operator that is used later, is the Hadamard operator denoted by H.

The Hadamard operator can be written in it's matrix form as

H =
1√
2

[
1 1

1 −1

]
. (32)

Let's now apply the H operator on the state |ψ〉 = α|0〉+ β|1〉. This produces

|ψ′〉 = H|ψ〉 =
1√
2

[
1 1

1 −1

][
α

β

]
(33)

=
1√
2

[
α + β

α− β

]

= α
|0〉+ |1〉√

2
+ β
|0〉 − |1〉√

2
.

19

In our �rst example above, it is easy to show that the operator U is unitary, that is; UU † = I.

For example

if

U =
1√
2

[
0 1

1 0

]
,

and it follows immediately from the de�nition that

U † =
1√
2

[
0 1

1 0

]
(34)

and thus

U †U =

[
0 1

1 0

][
0 1

1 0

]
(35)

=

[
1 0

0 1

]
= I.

It is also true that the H operator is unitary,

if

H =
1√
2

[
1 1

1 −1

]
,

so

H† =
1√
2

[
1 1

1 −1

]
, (36)

and thus

HH† =
1√
2

[
1 1

1 −1

]
1√
2

[
1 1

1 −1

]
(37)

=
1

2

[
2 0

0 2

]
= I.

20

As we already discussed, the second postulate of quantum mechanics, describes the evolution

of a closed system at two di�erent times t1 and t2. The evolution of the state of a closed

quantum system in continuous time can be described by the time-dependent Shrödinger's

equation,

i~
d|ψ〉
dt

= H|ψ〉 (38)

where ~ is Plank's constant and we usually consider it equal to 1 and H is the Hamiltonian

of the closed quantum system (which characterizes the total energy). Due to the fact that

H is a Hermitian operator it can be described by a number of stationary states |E〉 with
energy E. These stationary states form standing waves and they are very essential in our

understanding the correspondence between the Hamiltonian of the closed quantum system

described in Schrödinger's equation and the unitary operator as presented in the second

postulate of quantum mechanics.

A more general form of Schrödinger's equation states that when a Hamiltonian operator

is applied on a state |ψ〉, the state |ψ〉 is a stationary state if the result is proportional to the

same state. The proportionality constant that occurs is the energy of the state |ψ〉. This can
be written as a general form of the time-independent Schrödinger's equation as:

E|ψ〉 = H|ψ〉, (39)

where |ψ〉 is a stationary state, H is the Hamiltonian operator and E is the energy of the

state |ψ〉. Now if we plug into the time-dependent Schrödinger's equation the stationary

state |ψ〉, we get

i~
d|ψ〉
dt

= E|ψ〉, (40)

which describes how the state |ψ〉 varies in time. Because H is time independent the above

equation is true for any time t, thus its solution is

|ψ′〉 = e
−iH(t2−t1)

~ |ψ〉 (41)

= U(t1, t2)|ψ〉,

where we de�ne U(t1, t2) ≡ e
−iH(t2−t1)

~ . Note that in the above |ψ′〉 is the state of the

quantum system at time t2 while |ψ〉 is its state at time t1. In order to prove that the

above obeys the second postulates of quantum mechanics, we have to show that the operator

U(t1, t2) ≡ e
−iH(t2−t1)

~ is unitary.

Proof. We have

21

U(t1, t2) = e
−iH(t2−t1)

~

thus

U(t1, t2)
† = e

−iH†(t1−t2)
~ ,

we also know that H is Hermitian (H = H†) and thus UU † = I since H commutes with

itself. At this point we use the property eAeB = eA+B (where A and B are commuting

Hermitian operators) and we have

U(t1, t2)U(t1, t2)
† = e

−iH(t1−t2)
~ e

iH†(t1−t2)
~ (42)

= e

(
i
h
H(t1−t2)+−i

~ H
†(t1−t2)

)
= e

(
i
h
H(t1−t2)+−i

~ H(t1−t2)
)

= e0

= I.

This proof concludes the initial claim that the evolution of a quantum system depends

only on the time and can be described by a unitary operator.

In order to fully understand how the evolution of a closed quantum system depends only

on time, one should take a closer look at Schrödinger's equation. At this point there is an

attempt to unravel Schrödinger's equation and provide a more intuitive proof of it. So we

start with the equation (38),

i~
d|ψ〉
dt

= H|ψ〉,

where we already discussed the meaning of each symbol. Note that H is Hermitian so when

multiplied by a real number the product is also Hermitian. Thus if we write

i
d|ψ〉
dt

=
1

~
H|ψ〉 (43)

and de�ne G = 1
~H which is also Hermitian, we have

i
d|ψ〉
dt

= G|ψ〉 (44)

d|ψ〉
dt

=
1

i
G|ψ〉

d|ψ〉
dt

= −iG|ψ〉

22

The above could easily be simpli�ed to the following problem: �nd a function that satis�es

f ′(x) = f(x), where x ∈ R. The only function that is equal to its derivative is the exponential

function, that is

d

dx
ex = ex (45)

from basec clculus we know that the solution of df
dx

= f when f(0) = c is f(x) = cex so
df
dx

= αf has a solution f(x) = f(0)eαx. Thus the solution to (44) is

|ψ〉 = e−iGt (46)

3.3 Measurement

The third postulate as presented by Nielsen and Chuang describes how qubits transform

or evolve through time.

Postulate 3. "Quantum measurements are described by a collection Mm of mea-

surement operators. These are operators acting on the state space of the system

being measured. The index m refers to the measurement outcomes that may occur

in the experiment. If the state of the quantum system is |ψ〉 immediately before

the measurement then the probability that result m occurs is given by

p(m) = 〈ψ|M †
mMm|ψ〉, (47)

and the state of the system after the measurement is

Mm|ψ〉√
〈ψ|M †

mMm|ψ〉
. (48)

The measurement operators satisfy the completeness equation∑
m

M †
mMm = I. (49)

The completeness equation expresses the fact that probabilities sum to one:

I =
∑
m

p(m) =
∑
m

〈ψ|M †
mMm|ψ〉. (50)

see [17].

Some important measurement operators (on a 1-qubit system) are the following

23

M0 = |0〉〈0|

and

M1 = |1〉〈1|,

where

M0 =

[
1

0

] [
1 0

]
(51)

=

[
1 0

0 0

]
,

and

M1 =

[
0

1

] [
0 1

]
(52)

=

[
0 0

0 1

]
.

We observe that M †
0M0 +M †

1M1 = I, that is

M †
0M0 +M †

1M1 =

[
1 0

0 0

]† [
1 0

0 0

]
+

[
0 0

0 1

]† [
0 0

0 1

]
(53)

=

[
1 0

0 0

][
0 0

0 1

]
= I.

Let's now measure the state |ψ〉 = α|0〉 + β|1〉 using the above measurement operators. We

have p(0) = 〈ψ|M †
0M0|ψ〉, where M †

0M0 = M0 thus

p(0) = 〈ψ|M0|ψ〉 (54)

=
[
α∗ β∗

] [1 0

0 0

][
α

β

]

=
[
α∗ β∗

] [α
β

]
= α∗α

= |α|2,

24

which means that the probability of measuring |0〉 is related to it's probability amplitude

by |α|2. Similarly for the probability of measuring |1〉 we have p(1) = |β|2. Note that the

measurement process alters the state of the quantum system; that is, the outcome of the

measurement is the new state that occurs after the measurement process. For example, if the

outcome of the measurement is j, then following the measurement, the qubit is in state |j〉.
This means that you cannot collect any additional information about the amplitudes αj by

repeating the measurement.

The postulates of quantum mechanics as presented in this work, conclude our studying of

the mathematical rules and principles that describe quantum mechanics and thus quantum

computing. All the above could be treated as an introduction to the main topic of this Master

Thesis, describing general ideas and approaches. However, the reader should have acquired

a general understanding about how the quantum world works in order to study the rest of

this work. Next, we present, describe and analyze a quantum search algorithm, using all these

concepts we already have presented.

25

4 GROVER'S SEARCH ALGORITHM BASICS

Searching a search space that contains a very big number of elements is a very challenging

problem. We introduce a quantum algorithm that performs very e�ciently on such a problem

and then we prove that this algorithm is optimal compared to other classical or quantum

algorithms. Thus this chapters handles the main topic of this Thesis, preparing the ground

for our research questions to be answered in the following chapter. Note that much research

has been done previously on the topic we discuss here, we don't claim the creation of a new

algorithm or the design of any new features of it. We base our research on previous study as

being presented in [17]. Using this as a guideline we present the algorithm in some more detail

and explain some of its concepts.

4.1 Setting up the Search Problem

Grover's algorithm is a quantum algorithm suitable for a very broad category of computa-

tional tasks known as Algorithmic searching. Some of the most important uses of Grover's

algorithm are the following:

1. Approximate counting: Keep approximate counts of large numbers in small counters.

2. Find shortest path between 2 vertices in N -vertex graphs.

3. Graph problems: Minimum spanning tree, Traveling salesman problem.

4. Collision problems: The r − to− 1 collision problem.

5. Faster sorting when we have limited space.

6. Estimate the mean value and median value of a set of numbers.

The most popular use of Grover's algorithm is the search in an unsorted database, however

we will present the algorithm and discuss its properties in a more general form. Algorithmic

searching is the search for a number with a given mathematical property. Grover's algorithm

is used to perform an Algorithmic searching where there is a quick way of verifying that a

given number is the answer to a search problem but there is no easy way of constructing the

answer. In other words, we know only the criteria a number has to satisfy without knowing the

number. Note that Grover's algorithm is probabilistic in the sense that it gives the correct

answer with high probability, but not with complete certainty.

Imagine that we are given a search space of N elements and we are asked to �nd an

element x0 with a speci�c property; say f(x0) = 1. Classically the only way to do such a

search is to systematically examine all the possibilities until we �nd a solution, that is; we

examine one by one all the numbers until we �nd the number x0. When the search space has

N elements (entries in a database, cities in a TSP problem, etc) the time taken to complete

26

a search is O(N) (we have to check all the elements in the worst case, but on average N
2

have to be checked if we know that there is at least 1 element x0 that satis�es the condition

f(x0) = 1), which is the time needed for the best known classical algorithms to �nd a solution.

Thus, searching among N numbers, classically we should test N
2
of them in order to get a

50% chance to �nd the solution. It is true that quantum algorithms perform better than

that, Grover's algorithm for example needs O(
√
N) which is a quadratic speedup. Note that

this is not a huge improvement over the classical case compared to solving other problems

with quantum algorithms such as integer factorization problem that can be solved by Shor's

algorithm [10]. However this algorithm is very important not only because it is used in a variety

of applications but also it can be used to speedup algorithms for NP-complete problems [6].

Suppose we are searching a space of N elements, say, a phone book looking for name of a

person knowing only his phone number. To do so, we use an index x corresponding to those

elements where 0 ≤ x ≤ N − 1 as shown in Table 2, and we assume that we are looking for

27

Index Person's name Phone number

0 name0 393-221-27

1 name1 475-211-48

2 name2 967-435-12

3 name3 688-432-32

3 name4 323-223-61

5 name5 432-568-90

6 name6 234-922-11

7 name7 112-568-40

8 name8 398-213-66
...

...
...

N − 1 nameN-1 numberN-1

Table 2: A telephone directory to be searched by Grover's algorithm. The names are

alphabetically arranged, but the phone numbers are randomly assigned

the name x0 which corresponds to the number 398− 213− 66, that is f(x0) = 1.

There are N possible values that need to be searched and we assume for the sake of simplicity

that N = 2n, so we can encode each possible value uniquely in a register of n = lgN qubits.

We de�ne some function f which takes as an input some x where 0 ≤ x ≤ N − 1 and by

de�nition

f(x) =

{
1, if x = x0

0, if x 6= x0
. (55)

We assume that we have an Oracle that computes f as in Figure 2. It is some sort of a black

box device with the ability to recognize whether f(x) equals to 0 or 1. We also assume that

there is at least one x0 ∈ N such that f(x0) = 1; that is, we know for certain that there is at

least one solution to the search problem.

The Oracle is a black box function that computes f . When given an n bit input, it returns

an output whether it meets the criteria or not, but because of reversibility it must actually

have the same number of outputs as inputs. So it must operate as presented in Figure 2.

28

Figure 2: The Oracle is a black box that computes f . Note that ⊕ means addition

modulo 2

The Oracle as a whole, operates on n+ 1 qubits and it may also contain an unknown number

of internal qubits that we never see. An important question is: how many invocations of the

Oracle are we going to need in order to �nd the unique value x0 such that f(x0) = 1, or

how many evaluations of f do we need? Intuitively, we can answer that by saying that we may

invoke the Oracle as many as N − 1 times in order to be certain that we obtain the unique

solution, so after we have checked all but one elements we know that the last element is what

are we looking for (note that for the rest of this work we assume all the way that there is

exactly one solution x0 satisfying f(x0) = 1). Using quantum computation we can do a great

deal better than that and that is what Grover's algorithm is all about. The way to do it, is

by using some simple operators we introduce in the next subsection.

4.2 The Procedure

The goal of the quantum algorithm is to �nd a solution to the search problem using the

smallest possible applications of the Oracle. The quantum procedure initially puts the com-

puter in the equal superposition state |ψ〉 = H⊗n, and then works in the following way:

1. Application of the Oracle operator O

2. Application of a Hadamard transform H

3. Application of the Phase Shift operator P

4. Application of a Hadamard transform H

These steps form a quantum subroutine called Grover iteration or Grover operator G. So,

Grover's algorithm consists of consecutive applications of G. The schematic circuit describing

Grover's algorithm is being illustrated in Figure 3.

29

Figure 3: Shcematic circuit for the quantum search algorithm. After putting the com-

puter in the equal superposition state |ψ〉 a repeated application of Grover iteration G

follows until a solution is being meassured.

The input for this algorithm is |0〉⊗n qubits and after applying a Hadamard operator H to all

the input qubits we get the equal superposition state |ψ〉. The Grover operator G is applied

next, which can be studied in four individual steps as shown in Figure 4

Figure 4: Circuit for the Grover iteration G, where the numbers 1,2,3 and 4 refer to

each individual step of the algorithm.

At the �rst step in the above �gure, the input to the Oracle is |x〉 and the oracle qubit |q〉.
Note that Uf changes |x〉 into (−1)f(x) for g = 1√

2
(|0〉 − |1〉.

30

The e�ect of Grover iteration's on an arbitrary state is given by the unitary matrix G =

HPHO. The operators are in reverse order to the order they are performed in, because its

the rightmost factor that hits the ket �rst. What does all that do, and why does it work?

There is a geometric interpretation which explains of what it is doing, and we will discuss it

in paragraph 4.4. But �rst we will take a closer look at the Grover's algorithm operators.

4.3 The Grover's Algorithm Steps

Grover's algorithm begins with an application of a Hadamard gate H to each of the n

starting qubits. All the n qubits are in their blank initial state, where they have value 0. After

applying a Hadamard transform the computer is put into the superposition state |ψ〉.

H|0, 0, . . . , 0〉 = H⊗n|0, 0, . . . , 0〉 (56)

=
1√
2n

N−1∑
x=0

|x〉

= |ψ〉.

Hence if |x〉 is any computation basis state, the inner product of x with ψ is

〈x|ψ〉 = N−
1
2 =

1√
N
. (57)

The �rst operator used by the Grover's algorithm involves the Oracle, a unitary operator

Uf which acts on the states |x〉|q〉 as shown

|x〉|q〉
Uf7−→ |x〉|q ⊕ f(x)〉, (58)

where |x〉 is the index register, |q〉 is the Oracle qubit which is �ipped if f(x) = 1 and is

unchanged otherwise.In order to determine whether x is a solution to our search problem or

not, one can prepare |x〉|0〉, apply the Uf , and check to see whether the Oracle qubit |q〉
has been �ipped to |1〉. Note that if there are more than one solutions to the search problem,

more than one Oracle qubit are required, but for the sake of simplicity in this Thesis, we

assume that there is only one solution. The Oracle has as an input n qubits, on which we

have performed a Hadamard gate and one auxiliary qubit in state |0〉−|1〉√
2

. The e�ect of the

Oracle on x qubits can be expressed as

|x〉|q〉 = |x〉 1√
2

(|0〉 − |1〉
Uf7−→ 1√

2
(|xf(x)〉 − |x〉|1⊕ f(x)〉, (59)

31

where f(x) can be 0 or 1. Note that for f(x) = 1 from the above we get

1√
2

(|x〉|0〉 − |x〉|1〉) =
1√
2

(|0〉 − |1〉) = |x〉|q〉 (60)

For f(x) = 1 from the above we get

1√
2

(|x〉|1〉 − |x〉|0〉) =
1√
2

(|1〉 − |0〉) = −|x〉|q〉 (61)

So for the equation 64 we have

|x〉|q〉 = (−1)f(x)|x〉 (62)

Thus we can say that the net e�ect of the Oracle operator (denoted by O) on the n qubits

holding x can be summarized as

O|x〉 = (−1)f(x)|x〉, (63)

we observe that the Oracle marks with a "−" sign the solution to the search problem, this is

why sometimes the Oracle operator is referred as the marking operator.

After the application of theOracle, the search algorithm applies aHadamard transform and

then the Phase Shift operator followed by another Hadamard transform. The Hadamard

transform followed by the Phase Shift and a second Hadamard transform can be considered

as an operator by itself so we will describe it later, �rst we consider the Phase Shift operator.

The Phase Shift performs a conditional phase shift, with every computational basis state

except |0〉 receiving a phase shift of −1. This can be described by the unitary operator P =

2|0〉〈0| − I, where I is the identity matrix of size n (it corresponds to a n× n square matrix

with ones on the main diagonal and zeros elsewhere) and |0〉〈0| is the projection operator on

the basis state |0〉, where

|0〉 ↔

1

0
...

0

 = |00 . . . 0〉 (64)

and

〈0| ↔
[

1 0 . . . 0
]

= 〈00 . . . 0| = |00 . . . 0〉. (65)

If we apply the Phase Shift on the state (64) we get

(2|0, 0, . . . , 0〉〈0, 0, . . . , 0| − I)(|0, 0, . . . , 0〉) = (2|0, 0, . . . , 0〉〈0, 0, . . . , 0|)|0, 0, . . . , 0〉 − |0, 0, . . . , 0〉
= 2|0, 0, . . . , 0〉〈0, 0, . . . , 0||0, 0, . . . , 0〉 − |0, 0, . . . , 0〉
= 2 ∗ 1 ∗ |0, 0, . . . , 0〉 − |0, 0, . . . , 0〉
= |0, 0, . . . , 0〉, (66)

32

while if we apply it on the other states (65), we get

(2|0, 0, . . . , 0〉〈0, 0, . . . , 0| − I)(|0, 0, . . . , 1〉) = (2|0, 0, . . . , 0〉〈0, 0, . . . , 0|)|0, 0, . . . , 1〉 − |0, 0, . . . , 1〉
= 2|0, 0, . . . , 0〉〈0, 0, . . . , 0||0, 0, . . . , 1〉 − |0, 0, . . . , 1〉
= 2 ∗ 0 ∗ |0, 0, . . . , 0〉 − |0, 0, . . . , 1〉
= −|0, 0, . . . , 1〉, (67)

thus the Phase Shift does what it promised.

We now show its e�ect in a di�erent way, using the matrix representation. The projection

operator |0〉〈0| on the basis state |0〉 for a two qubit system, can be written on its matrix form

as

|0〉〈0| =

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 .
For a two qubit system, we can also write the unitary identity operator in its matrix form as

I =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ,
thus the Phase Shift operator is now written

P = 2|0〉〈0| − I = 2

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

−

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (68)

=

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 ,

With a closer look on the operator above, one can tell that the Phase Shift does exactly

what it promises. We provide a proof of how the operator P works in a 2-qubit system, which

helps later for a deeper understanding of Grover operator's geometry. This proof can easily

generalized to an n-qubit system.

33

Proof. Applying this operator on the state |0〉 we get:

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

1

0

0

0

 =

1

0

0

0

 = |0〉. (69)

Now, when we apply this operator on the state |1〉 we get:

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

0

1

0

0

 =

0

−1

0

0

 = −|1〉. (70)

The same holds for state |2〉 and |3〉. this concludes out proof for the 2-qubit case.

We have shown that when applying the phase shift operator P on any 2-qubit system, it

does the following. When applied on a state |0〉 it leaves it unchanged, while when applied on

any other state we receive a phase shift of −1. We can generalize and conclude that when

applying the Phase Shift operator in an n-qubit system there is a conditional phase shift,

with every computational basis state except the state |0〉 receiving a phase shift of −1.

As we have already discussed, the combination of the two Hadamard transforms and the

Phase Shift operator form a subroutine called Inversion about the mean (later on in this

chapter we give a more detailed description see 4.3) and can be described by the operator

HPH = H⊗n(2|0〉〈0| − I)H⊗n.

We want to show that:

H⊗n(2|0〉〈0| − I)H⊗n = 2|ψ〉〈ψ| − I. (71)

Proof. We write

|ψ〉〈ψ| = H⊗n|0〉(H⊗n(|0〉)† (72)

= H⊗n|0〉(|0〉)†(H⊗n)†

= H⊗n|0〉〈0|(H⊗n)†

= H⊗n|0〉〈0|(H⊗n)†

= H⊗n|0〉〈0|(H†)⊗n)

= H⊗n(|0〉〈0|)H⊗n.

34

Thus

|ψ〉〈ψ| = H⊗n(|0〉〈0|)H⊗n

and

2|ψ〉〈ψ| − I = H⊗n(2|0〉〈0| − I)H⊗n.

which concludes our proof.

In our proof we used the statement (A
⊗

B)† = A†
⊗

B† from [17] (page 74, Equation

(2.53)). We have also used linearity for the factor 2, the fact that the Hadamard is hermitian

and also the fact that H = H†.

The above can be also expressed as the product of three unitary matrices (two Hadamard

matrices separated by the conditional phase shift matrix, we de�ned in the previous subsection).

So the operator HPH is also a unitary matrix. Next we present how we come up with this

unitary matrix.

For the left part of the Equation (71) we know that the Hadamard transform, can be written

in its matrix form:

H =
1√
2

[
1 1

1 −1

]
For n = 2 we have

H⊗2 = H ⊗H =
1√
2

[
1 1

1 −1

]
⊗ 1√

2

[
1 1

1 −1

]
=

[
1√
2

1√
2

1√
2
− 1√

2

]
⊗

[
1√
2

1√
2

1√
2
− 1√

2

]

=

1
2

1
2

1
2

1
2

1
2
−1

2
1
2
−1

2
1
2

1
2
−1

2
−1

2
1
2
−1

2
−1

2
1
2

 =
1

2

1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

(73)

35

We have already written |0〉〈0| and I in their matrix form so for n = 2 we have:

H⊗2(2|0〉〈0| − I)H⊗2 = H⊗2(2|0〉〈0|)H⊗2 − I

=
1

2

1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

2

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 1

2

1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

−

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

=

1
2

1
2

1
2

1
2

1
2
−1

2
1
2
−1

2
1
2

1
2
−1

2
−1

2
1
2
−1

2
−1

2
1
2

2 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1
2

1
2

1
2

1
2

1
2
−1

2
1
2
−1

2
1
2

1
2
−1

2
−1

2
1
2
−1

2
−1

2
1
2

−

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

=

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

1
2

1
2

1
2

1
2

1
2
−1

2
1
2
−1

2
1
2

1
2
−1

2
−1

2
1
2
−1

2
−1

2
1
2

−

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

=

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

−

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

=

−1

2
1
2

1
2

1
2

1
2
−1

2
1
2

1
2

1
2

1
2
−1

2
1
2

1
2

1
2

1
2
−1

2

.

(74)

For the right part the Equation (71), we know that:

|ψ〉 ↔

1√
N
...
1√
N

and

〈ψ| ↔
[

1√
N

. . . 1√
N

]
,

thus

|ψ〉〈ψ| =

1
N
· · · 1

N
1
N
· · · 1

N
...

. . .
1
N
· · · 1

N

 . (75)

36

Now for n = 2, where N = 2n, we have:

|ψ〉〈ψ| =

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

 , (76)

so we can write:

2|ψ〉〈ψ| − I = 2

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

−

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (77)

=

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

−

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

=

−1

2
1
2

1
2

1
2

1
2
−1

2
1
2

1
2

1
2

1
2
−1

2
1
2

1
2

1
2

1
2
−1

2

 ,
We have shown that H⊗n(2|0〉〈0| − I)H⊗n = 2|ψ〉〈ψ| − I. This means that the Grover

iteration G can be written as

G = (2|ψ〉〈ψ| − I)O (78)

where 2|ψ〉〈ψ| has no e�ect on state |ψ〉 while O changes the sign to any state perpendicular

to |ψ〉.

The reason why the operator 2|ψ〉〈ψ| − I is sometimes referred as the Inversion about

the mean is very simple. We know that: |ψ〉 = 1√
N

∑N−1
x |x〉 and hence 〈ψ| = 1√

N

∑N−1
x 〈x|.

Therefore if we apply this operator to a general state
∑

k ak|k〉, it produces:
∑

k

(
− ak +

2〈a〉
)
|k〉, where 〈a〉 ≡

∑
k
ak
N

is the mean value of the ak. Let's now prove what we claim

Proof.

(2|ψ〉〈ψ| − I)
(∑

k

ak|k〉
)

=
2

N

((N−1∑
x

|x〉
)(N−1∑

x

〈x|
)
− I
)(∑

k

ak|k〉
)

(79)

=
2

N

(N−1∑
x

|x〉
)∑

k

ak −
∑
k

ak|k〉

=
∑
k

(
− ak + 2〈a〉

)
|k〉,

which proves what we claim.

37

From the above we observe that:

(2|ψ〉〈ψ| − I)
(∑

k

ak|k〉
)

=
∑
k

(
− ak + 2〈a〉

)
|k〉 (80)

=
∑
k

(
(−ak + 〈a〉+ 〈a〉

)
|k〉.

Note that the term (−ak + 〈a〉+ 〈a〉) is the di�erence between the mean value of the ak and

the state
∑

k ak|k〉; hence after adding this to the mean the state
∑

k ak|k〉 has been inverted

about the mean.

Summarizing, we can tell that the main ingredients ofGrover's algorithm are the Inversion

about the mean operator and the Oracle operator. Both of these operators can be visualized

as re�ections about vectors in the same 2-dimensional space. This means that the Grover

operator G is a rotation in a 2-dimensional space due to the fact that the product of two

re�ections is a rotation. The geometric representation of G operator will be discussed later.

For now, it is important to keep in mind that the Grover s algorithm is trying to �nd a

solution to a search problem, using the smallest applications the Grover operator G and thus

using the minimum number of Oracle applications.

4.4 Geometric Visualization of Grover's algorithm

We are given a search space on N elements where M of these elements are solutions to

the search problem, and for the sake of simplicity we assume that N = 2n. We can imagine

Grover's algorithm as a wave function in a 2-dimensional search space. The algorithm tries

to evolve this function starting from a starting state |ψ〉 into the solution state |β〉. An
orthonomal basis |β〉 ⊥ |α〉 is de�ned, where |α〉 represents the set of all non solutions to the

search problem while |β〉 represents the set of all solutions.

The two normalized states can be de�ned as:

|β〉 =
1√
M

∑
x∈M

|x〉, (81)

and

|α〉 =
1√

N −M

∑
x 6∈M

|x〉. (82)

It is easy to that |β〉 ⊥ |α〉 by showing that the inner product between those two states is

equal to zero; that is 〈β, α〉 = 0

38

Proof. We can write β and α as

|β〉 = c1
∑
f(x)=1

|x〉, (83)

and

|α〉 = c2
∑
f(y)=0

|y〉, (84)

where f(x) and f(y) are a solution and a non solution respectively, while c1 and c2 are

constants with c1 = 1√
M

and c2 = 1√
N−M . So for their inner product we have

〈β, α〉 = 〈c1
∑
f(x)=1

|x〉, c2
∑
f(y)=0

|y〉〉

= c1 ∗ c2〈
∑
f(x)=1

|x〉,
∑
f(y)=0

|y〉〉

= c1 ∗ c2
∑

x∈f−1(1),y∈f−1(0)

δxy

= 0 (85)

which concludes our proof. Note that in the above we used δxy which is called the

Kronecket delta and it is a function of 2 variables x and y. If x and y are equal, then

the function is 1, otherwise it is 0.

Thus we can de�ne the starting state |ψ〉 in terms of |β〉 and |α〉

|ψ〉 =
1√
N

N−1∑
x=0

|x〉 (86)

=
1√
N

(∑
x∈M

|x〉+
∑
x 6∈M

|x〉
)

=
1√
N

∑
x∈M

|x〉+
1√
N

∑
x 6∈M

|x〉

=
1√
N

√
M |β〉+

1√
N

√
N −M |α〉

=

√
M

N
|β〉+

√
N −M
N

|α〉,

this means that the starting state |ψ〉 is in the 2-dimensional space, spanned by |α〉 and |β〉
as shown in Figure 5.

39

Figure 5: Geometry of starting state |ψ〉, where α 6=
√

M
N

and β 6= 1−
√

M
N
.

Note that, in the �gure both states |α〉 and |β〉 are normalized superpositions of basis states,

they have unity length and they are orthogonal to each other. Referring to the Grover's

operator G de�ned in equation (78), initially we apply the Oracle and then the Inversion

about the mean operator. In the general case where |α〉 ⊥ |β〉, applying the Oracle we have:

O(a|α〉+ b|β〉) = a|α〉 − b|β〉. (87)

Proposition.

1. O is a re�ection about |α〉 in the plane spanned by |α〉 and |β〉.

2. 2|0〉〈0| − I is a re�ection about |ψ〉 in the plane spanned by |α〉 and |β〉

3. G = (2|ψ〉〈ψ| − I
)
O is a rotation over an angle twice the angle between |α〉

and |ψ〉 and the matrix of G with respect to |α〉 and |β〉 is:

G =

[
cosθ −sinθ
sinθ cosθ

]
. (88)

Proof.

1. As we already presented in the previous section the Oracle operator O marks the

target term in the superposition by changing its sign. So when applying the O

operator on the general state |φ〉 we get

40

O|φ〉 =O
(
λ1|α〉+ λ2|β〉

)
=λ1|α〉 − λ2|β〉.

Thus, the application of the Oracle operator O on our starting state |ψ〉 (note
that θ

2
is the angle between the starting state |ψ〉 and the vector |α〉), is given by

O|ψ〉 = cos θ
2
|α〉 − sin θ

2
|β〉 and it can be visualized as a re�ection about the vector

|α〉 as shown in Figure 6.

Figure 6: The Oracle operator O applied on a general state |φ〉.

So we can write

sin
θ

2
=

√
M

N

and

cos
θ

2
=

√
N −M
N

.

Thus the starting state |ψ〉 may now be re-expressed by the angle θ
2
as

|ψ〉 = cos
θ

2
|α〉+ sin

θ

2
|β〉, (89)

this means that the state of the x-register is in the 2-dimensional space spanned

by |ψ〉 and |α〉.

41

2. We can work in a space spanned by |ψ〉 and a perpendicular state to this, |ψ⊥〉.
Thus the general state |φ〉 can be written in terms of |ψ〉 and |ψ⊥〉 as

|φ〉 = λ1|ψ〉+ λ2|ψ⊥〉, (90)

where λ1 and λ2 some constants. So when applying the 2|ψ〉〈ψ| − I operator on

the state φ we have

(
2|ψ〉〈ψ| − I

)
|φ〉 =

(
2|ψ〉〈ψ| − I

)(
λ1|ψ〉+ λ2|ψ⊥〉

)
= 2|ψ〉λ1 − λ1|ψ〉 − λ2|ψ⊥〉
= λ1|ψ〉 − λ2|ψ⊥〉 (91)

from the above it is easy to see that the 2|ψ〉〈ψ| − I operator re�ects a general

state about the vector |ψ〉, which concludes our proof.

3. We have shown that both O and 2|ψ〉〈ψ|−I act as a re�ection. It is also known that
the product of two re�ections is a rotation, so the operator G acts as a rotation

and its rotation matrix is given by: G =

[
cosθ −sinθ
sinθ cosθ

]
.

The above is a matrix that rotates points in the plane de�ned by |α〉 and |β〉
counter-clockwise through an angle θ as shown in Figure 5.

We can conclude that the Grover's algorithm rotates some initial state |ψ〉 de�ned
in a 2-dimensional space spanned by |α〉 and |β〉, each time closer to the target

state |β〉 which is the solution to the search problem by an angle θ. Note that θ
2

is the angle between the starting state |ψ〉 and the state |α〉.

Proposition.

4. The �rst application of G on the state |ψ〉, gives:

G|ψ〉 = cos

(
θ+ θ

2

)
|α〉+ sin

(
θ+ θ

2

)
|β〉 = cos3θ

2
|α〉+ sin3θ

2
|β〉 See also Figure 5.

5. The kth application of G on the state |ψ〉, gives:

Gk|ψ〉 = cos

(
2k+1
2
θ

)
|α〉+ sin

(
2k+1
2
θ

)
|β〉.

Proof.

42

4. In order to prove this proposition, we focus on the matrix notation and we have:

G|ψ〉 =

[
cosθ −sinθ
sinθ cosθ

][
cos θ

2

sin θ
2

]
(92)

=

[
cosθcos θ

2
− sinθsin θ

2

sinθcos θ
2

+ cosθsin θ
2

]

=

[
cos
(
θ + θ

2

)
sin
(
θ + θ

2

)] .
5. Same as before we focus on the matrix notation, we assume that the above is true

for k = k0 and in order to generalize we have to show that it is also true for k0 +1.

GGk0|ψ〉 =

[
cosθ −sinθ
sinθ cosθ

][
cos
(
k0θ + θ

2

)
sin
(
k0θ + θ

2

)]

=

[
cosθcos

(
k0θ + θ

2

)
− sinθsin

(
k0θ + θ

2

)
sinθcos

(
k0θ + θ

2

)
+ cosθsin

(
k0θ + θ

2

)] (93)

=

[
cos
(
θ + k0θ + θ

2

)
sin
(
θ + k0θ + θ

2

)] =

 cos

(
(k0 + 1)θ + θ

2

)
sin

(
(k0 + 1)θ + θ

2

)
 ,

which concludes our proofs.

Let's now present an alternative way of what the two operators of Grover's algorithm

mean in a two dimensional plane. Recall that we are given an unsorted list containing N

elements and we are looking for exactly one element x0 which is the solution to the search

problem. Or we can write: Given f : {0, 1, 2, . . . , N − 1} 7→ {0, 1} such that f(x0) = 1 for

exactly one x0. The algorithm maintains a superposition of all x, that is
∑N−1

x |x〉. Initially
we don't know anything about the element x0 and so we start with all our amplitudes equal

to 1√
N

see Figure 7

The Oracle has the ability to recognize a solution and promises us that it will mark the

solution with a "−" sign. This means that in our starting state (the superposition of all states)

the Oracle changes the sign of the solution and leaves the rest unchanged, that is

1√
N

N−1∑
x

|x〉 7→ 1√
N

N−1∑
x6=x0

|x〉 − 1√
N

N−1∑
x=x0

|x0〉. (94)

43

Figure 7: The search space before the application of the Oracle.

In a 2-dimensional space the application of the Oracle the element x0 will be �ipped with

respect to the axis x which means that now, the solution of the search problem instead of

having amplitude 1√
N
, it has amplitude − 1√

N
. So now the "distance" between the amplitude

of the solution x0 and the amplitude of the rest elements is 2√
N

as shown in Figure 8.

Figure 8: The search space after the application of the Oracle on the element x0.

Note that after the Oracle invocation, the mean value of the elements except for the marked

element drops by a little, but will we see next what it means.

Next the Inversion about the mean operator follows. Now the marked element x0 is �ipped

with respect to the mean value; that is, its amplitude goes above the mean value as much as

it was below it

44

1√
N

N−1∑
x

|x〉 7→ 1√
N

N−1∑
x

(2〈α〉 − x0)|x〉, (95)

where
∑

x αx

N
is the mean value of αx and

∑
x αx|x〉 is a general state.

The new amplitude of the marked element after the �rst Inversion about the mean is very

close to 3√
N

Figure 9, because as we discussed, the mean value drops by a little . So every

time the Oracle operator is applied followed by the Inversion about the mean operator the

amplitude of the solution is increased by at most 2√
N
.

Figure 9: The search space after the Inversion about the mean.

At this point we prove what intuitively claim, that is; at each step the amplitude get increased

by 2√
N
. For the sake of simplicity we assume that in the search problem there is exactly one

solution, so the superposition of all states |ψ〉 = 1√
N

∑N−1
x |x〉 can be written as the sum of

the non solutions plus the solution to the search problem

1√
N

N−1∑
x

|x〉 =
1√
N

N−1∑
x 6=x0

|x〉+
1√
N

N−1∑
x=x0

|x0〉, (96)

For the amplitude of the state
∑N−1

i=0 ai|x〉 the mean value of the amplitudes is written as

〈α〉 =
(N−1∑
i=0

ai
) 1

N
(97)

=

∑N−1
i=0 ai
N

(98)

45

After the �rst Oracle application the superposition of the states will be

O

(
1√
N

N−1∑
x6=x0

|x〉+
1√
N

N−1∑
x=x0

|x0〉
)

=
1√
N

N−1∑
x 6=x0

|x〉 − 1√
N
|x0〉, (99)

so after the application of the Oracle the average value is

µ =
1

N

(
N − 1√
N
− 1√

N

)
=

(
N − 2√
N

)
1

N
.

Recall that when we apply the Inversion about the mean to a general state
∑

x ax|x〉, it
produces

∑
x

(
− ax + 2〈a〉

)
|k〉, so the amplitude of the state x0 after the Inversion about

the mean operator is 2〈α〉 −αx0 = 2

(
N−2√
N

)
1
N

+ 1√
N

and the amplitude of any other state x

is 2〈α〉 − αx = 2

(
N−2√
N

)
1
N
− 1√

N
. From this we see that the di�erence of amplitudes of |x0〉

and |x〉 is 2√
N
; that is, after the �rst step of the algorithm; that is, the Oracle application

followed by the Inversion about the mean, the amplitude of the solution is increased by 2√
N

as we claimed.

A very interesting question that follows, is regarding the improvement of the algorithm; what

is the improvement per step? Answering this question we can easily calculate how many steps

are needed to get a solution with a high probability; that is the number of Oracle invocations

followed by the Inversion about the mean. We can focus on the case, where the amplitude

of the solution x0 equals to
1√
2
, which means that with a probability of 50% there is a solution

to the search problem.

In this case there is another 50% chance for the algorithm to �nd one of the rest elements

of the search space. So the amplitude of the rest N −1 elements is also 1√
2
equally distributed

among them; that is, each other element has amplitude 1√
2(N−1)

. When the search space

of the problem is very big, N � 1 we can say that the amplitude of each other element is

equal to 1√
2N

. In the next chapter after running some experiments we compare the results and

generalize them for any given N .

46

5 A CLOSER VIEW ON GROVER'S ALGORITHM

This chapter serves an important role for this Thesis. After the theoretical analysis of the

steps of Grover's algorithm, this chapter takes a deeper look on more important concepts

of the algorithm. Thus the performance and the optimality of Grover's algorithm are under

question and then an intuitive approach of how someone came up with such an algorithm is

presented. The second part of this chapter serves also another important scope of this work.

We present experimental results after simulating the algorithm in a classical computer and

compare them to those results that come from the theoretical analysis.

5.1 Performance

How many Oracle invocations do we need to �nd a solution to our search problem? This

subchapter tries to give an answer to that question. We could say that we are looking for a

number R that rotates the initial state |ψ〉 as nearest to the target state |β〉. Focusing on the

geometric visualization of the algorithm and driven by our intuition, we say that the number R

can be de�ned as the ratio between the unknown angle φ and the angle 2 θ
2
Figure 10, where

φ is the angle between the starting state and the solution.

Figure 10: Grover's algorithm generalization, where φ is the angle between starting

state and solution.

From the above �gure, we see that the only information about the angle φ we can get, is its

sine and cosine; that is sinφ =
√

N−M
N

and cosφ =
√

M
N
. Another way to de�ne the angle φ

47

is by de�ning the arccos
(

sin θ
2

)
, which means that φ= arccos

√
M
N
. Now that we have enough

information about the angle we are interested in, we can go back and calculate R. Let CI(x)

denote the integer closer to the real number x, where by convention we round halves down, so

CI(4.4) = 4, CI(4.5) = 4 and CI(4.6) = 5. Then after a number of iterations R the state

|ψ〉 is being rotated closer to the state |β〉. Now we can bound this intuitive approach to the

number R, so we can write

R = CI

(
φ

2 θ
2

)
(100)

=
arccos

√
M
N

θ
.

Thus R gives us the maximum iteration after which we have a solution to the search problem

with a high probability. Note that, a lower bound on θ will give an upper bound on R.

R ≤
π
2

θ
(101)

R ≤ π

2θ
.

Assuming that M 6 N
2
we have

θ

2
> sin

θ

2
=

√
M

N
(102)

thus

sin
θ

2
=

√
M

N
,

which yields that θ
2
≥
√

M
N

and thus θ ≥ 2
√

M
N
. We observe that that a lower bound on θ

will give an upper bound on R. Thus, we can write

R ≤
⌈ π

2

θ

⌉
(103)

R ≤
⌈ π

2

2
√

M
N

⌉

R ≤
⌈
π
√
N

4
√
M

⌉
R ≤

⌈
π

4

√
N

M

⌉
.

48

From the above we conclude that R = O

(√
N
M

)
iterations must be performed so we can

obtain a solution to the search problem with high probability.

Up to this point for the sake of simplicity we where assuming that the number of solutions

to the search problem is M � N , but what happens when this condition is not satis�ed?

What happens for example when M ≥ N
2
? In order to answer this question we break it into

two parts. First we check what happens if we know in advance that M ≥ N
2
and secondly

we check what happens when we don't know whether is M ≥ N
2
or not. The answer of the

�rst question is pretty straightforward. If there are M solutions with M ≥ N
2
then there is a

probability of 50% when picking a random item to be able to recognize if it is a solution to

the search problem.

When we don't know if M ≥ N
2
we make use the following trick. We simply add N new

entries in the search space that non of them is a solution to the search problem. By doubling

the number of elements in the search space and leaving the number of solutionsM unchanged,

we end up with a new search space consisting of N ′ = 2N elements and M solutions where

M ≥ N ′

2
and thus M ≥ N

2
. In order to achieve this, we use an extra qubit |q〉, which doubles

the search space to 2N . Now a new augmented Oracle O′ can be invoked which marks the

searched element only if its a solution and the extra qubit is equal to zero. Using this simple

approach, we fall back to the case we explained in the previous paragraph.

We showed that what we have claimed is true; when using Grover's algorithm the number

of Oracle calls is O

(√
N
M

)
in order to obtain a solution with a high probability. So we have

shown that Grover's algorithm provides a quadratic speedup compared to a classical search

algorithm. Next we discuss about the optimality of the algorithm and try to answer if this is

the optimal speedup we can obtain when using a search algorithm in a quantum computer.

5.2 Optimality

We have discussed in a previous subsection that the complexity of Grover's algorithm is

O(
√
N), that is; there is an upper bound of

√
N Oracle invocations in order to obtain a

solution, in a quantum computer. This subsection proves that there is no quantum algorithm

for the same search problem, that uses less than
√
N Oracle invocations and thus the quadratic

speed up Grover's algorithm provides is optimal.

The starting state of the algorithm is the state |ψ〉 and for the sake of simplicity we assume

that there is exactly one solution x. In order to �nd this solution we are able to apply a search

Oracle Ox. As shown in previous subsection, the Oracle Ox marks the solution |x〉 with a "−"
sign and leaves all the other states intact, that is; Ox = I − 2|x〉〈x|. Suppose the algorithm

49

uses k invocations of the Oracle Ox with unitary operations U1U2 . . . Uk between each Oracle

operation. Intuitively one could de�ne the two states

|ψxk〉 ≡ UkOxUk−1Ox . . . U1Ox|ψ〉, (104)

|ψk〉 ≡ UkUk−1 . . . U1|ψ〉, (105)

where the state |ψxk〉 is the starting state |ψ〉 after a number of Oracle calls followed by a

number of unitary operators applied on that state, and the state |ψk〉 is the state that occurs
when the unitary operators applied on the starting state without considering the Oracle calls.

This second state is an auxiliary state as we see next.

Figure 11

In order to prove the optimality of the algorithm, we only need to calculate the boundaries

of the quantity

Dk ≡
∑
x

||ψxk − ψk||2, (106)

where for the sake of simplicity we use ψkx, ψx instead of |ψkx〉 and |ψx〉 respectively. We can

imagine Dk as the value of the deviation after k steps between the Oracle and the evolution

that has occurred, as shown in Figure 11. At this point our main goal; to prove the optimality

of the algorithm, can be considered as two equal sub-goals. We prove �rst that Dk can not

50

grow faster than O(k2) and then we prove that Dk is Ω(N). The combination of these two

sub-goals supports our initial claim and thus concludes the proof.

Proof. It is easy to see that for k = 0, Dk = 0. This is something that might not seem

very useful but we make use of it later in our proof. We now compute the value of

Dk + 1, which is nothing more than the value of Dk followed by an extra application of

the Oracle.

Dk + 1 =
∑
x

||Oxψ
x
k − ψk||2, (107)

at this point we need to use the identity ||b+c||2 ≤ (||b||+ ||c||)2 ≤ ||b||2+2||b||||c||+ ||c||2
and in order to do so, we add the Oxψk −Oxψk in equation (6.41) so we have

Dk + 1 =
∑
x

||Oxψ
x
k − ψk||2 (108)

=
∑
x

||Oxψ
x
k +Oxψk −Oxψk − ψk||2

=
∑
x

||Ox(ψ
x
k − ψk + ψk(Ox − 1))||2

=
∑
x

||Ox(ψ
x
k − ψk) + ψk(Ox − I)||2,

now we can use the identity we mention above, with b = Ox(ψ
x
k−ψk) and c = (Ox−I)ψk

at this point it is very handy to replace Ox with its equivalent I − 2|x〉〈x| but only in c

so the inner product of 〈x| and |ψ〉 occurs.

c = (Ox − I)ψk (109)

= (I − 2|x〉〈x| − I)ψk

= (−2|x〉〈x|)ψk
= −2〈x|ψk〉|x〉.

Thus applying the identity ||b+ c||2 ≤ ||b||2 + 2||b||||c||+ ||c||2 on Equation (108) we get

Dk + 1 ≤
∑
x

||ψxk − ψk||2 + 4
∑
x

||ψxk − ψk|||〈x|ψk〉|+ 4
∑
x

|〈ψk|x〉|2. (110)

We ended up with Equation (110) which consists of three terms. It is obvious for the �rst

term that
∑

x ||ψxk−ψk||2 ≡ Dk. We also observe for the third term that 4
∑

x |〈ψk|x〉|2 =

51

4, note that
∑

x |〈x|ψk〉|2 = 1 and due to the inner product symmetry
∑

x |〈ψk|x〉|2 =

1. Now we apply the Cauchy − Schwarz inequality to the second term 4
∑

x ||ψxk −
ψk|||〈x|ψk〉| and we have

4
∑
x

||ψxk − ψk|||〈x|ψk〉| ≤ 4

(∑
x

||ψxk − ψk||
)(∑

x′

|〈ψk|x′〉|
)
, (111)

we now raise to the power of 2 and next we raise to the power of 1
2
and we get

4
∑
x

||ψxk − ψk|||〈x|ψk〉| ≤ 4

(∑
x

||ψxk − ψk||2
) 1

2
(∑

x′

|〈ψk|x′〉|2
) 1

2

, (112)

combining the the calculations on the three terms of inequality (110) we get the following

inequality

Dk + 1 ≤ Dk + 4

(∑
x

||ψxk − ψk||2
) 1

2
(∑

x′

|〈ψk|x′〉|2
) 1

2

+ 4 (113)

≤ Dk + 4
√
Dk + 4,

by the hypothesis that Dk ≤ 4k2 we made previously, we get that

Dk + 1 ≤ Dk + 4k2 + 4
√

4k2 + 4 (114)

≤ 4(k + 1)2,

which is the lower bound and thus completes the proof of our �rst sub-goal.

In order to achieve our second sub-goal and thus complete the proof on the algorithm's

optimality, we have to show that the probability of success is high only if Dk is Ω(N).

Proof. Let's assume that |〈x|ψxk〉|2 ≥ 1
2
which means that an observation yields a so-

lution to the search problem with probability at least 1
2
for every x. Without loss of

generality, we may assume that 〈x|ψxk〉 = |〈x|ψxk〉|, this is due to the fact that if we

replace |x〉 by eiθ the probability of success does not change. Thus we can write

52

|〈x|ψxk〉|2 ≥
1

2
(115)

|〈x|ψxk〉| ≥
1√
2

−2|〈x|ψxk〉| ≤ −
2√
2

−2|〈x|ψxk〉| ≤ −
2√
2

√
2√
2

2− 2|〈x|ψxk〉| ≤ 2−
√

2.

We now show that ||ψxk − x||2 = 2− 2|〈x|ψxk〉|. Recall that for the inner product of two
vectors the following properties are true

〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 and 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉 linearity (116)

〈x, y〉 = 〈y, x〉 conjugate symmetry (117)

〈−x, x〉 = −1〈x, x〉 = −1〈x, x〉 = 〈x,−x〉 sesquilinearity (118)

〈x, y〉 = 〈y|x〉 alternative notation (119)

thus for ||ψxk − x||2 we can write

||ψxk − x||2 = 〈ψxk − x, ψxk − x〉 (120)

= 〈ψxk , ψxk − x〉+ 〈−x, ψxk − x〉
= 〈ψxk , ψxk〉+ 〈ψxk ,−x〉+ 〈−x, ψxk〉+ 〈−x,−x〉
= ||ψxk ||2 − 〈ψxk , x〉+−1〈x, ψxk〉+ ||x||2

= ||ψxk ||2 − 〈ψxk , x〉 − 〈x, ψxk〉+ ||x||2

= ||ψxk ||2 − 2Re
(
〈ψxk , x〉

)
= 2−Re

(
〈ψxk , x〉

)
= 2− 2|〈x, ψxk〉|,

from the above, we can say that

||ψxk − x||2 ≤ 2−
√

2. (121)

Now we de�ne Ek ≡
∑

x ||ψxk − x||2 so we observe that Ek ≤ (2 −
√

2)N , this is true

because if a constant is smaller than a number, then the summation - x times - of this

constant for di�erent values of x - let's say N times - will be smaller or equal than N

53

times this number. In order to continue with the proof, we de�ne Fk ≡
∑

x ||x − ψk||.
Moreover in Equation (106) we add the terms x and −x in Dk so we have

Dk =
∑
x

||(ψxk − x+ x− ψk)||2, (122)

we observe that above, the inequality ||b + c||2 ≤ ||b||2 + 2||b||||c|| + ||c||2 can be used,

where b = ψxk − x and c = x− ψk. Thus

Dk ≤
∑
x

||ψxk ||2 − 2
∑
x

||ψxk − x||||x− ψk||+
∑
x

||x− ψk||2. (123)

Using the Ek and Fk we de�ned above, we get

Dk = Ek + Fk − 2
∑
x

||ψxk − x||||x− ψk||, (124)

applying the Cauchy − Schwarz inequality we get
∑

x ||ψxk − x||||x − ψk|| ≤
√
EkFk

observing Equation (124) we need to multiply by −2 so that −2
∑

x ||ψxk−x||||x−ψk|| ≥
−2
√
EkFk and thus

Dk ≥ Ek + Fk − 2
√
EkFk (125)

≥ (
√
Ek −

√
Fk),

we now show that for any normalized state vector |ψ〉 and set of N orthonormal basis

vectors |x〉 the following is true
∑

x ||ψ − x||2 ≥ (2N − 2
√
N .

∑
x

||ψ − x||2 =
∑
x

(||ψ2 − 2||ψx||+ ||x||2) (126)

=
∑
x

||ψ2 − 2
∑
x

||ψx||+
∑
x

||x||2

= 2N − 2
√
N.

The above is true, due to the fact that if a constant is smaller than a number then the

summation - x times - of this constant for di�erent values of x - let's say N times - will

be smaller or equal than N times this number.

Using the Cauchy − Schwarz inequality we get∑
x

||ψ − x||2 ≥ 2N − 2
√
N. (127)

54

Combining the above with the fact that Ek ≤ (2N − 2
√
N)N we obtain that Dk ≥ cN

for large N , where c is any constant less than (
√

2−
√

2−
√

2)2 ≈ 0.42. We have shown

that 4k2 ≥ Dk ≥ cN thus

4k2 ≥ cN (128)

k2 ≥ cN

4

k ≥
√
cN

2

We summarize that in order to �nd a solution to our search problem, with probability

at least one-half we must call the Oracle as many as Ω(N) times, which concludes our

claim.

5.3 Grover's Algorithm Implementation

In this subsection we present some experiments we performed, after implementing Grover's

algorithm on a classical computer. Our goal is to provide a better understanding on how the

algorithm operates, present its behavior in a 2-dimensional space and verify the results of the

mathematical analysis on the algorithm from previous sections. We will see that the results

strongly support the mathematical analysis of the algorithm and answer essential questions

regarding its performance. Another sub goal of this section is to generalize our results; if

possible, in bigger search spaces where N → ∞ and make remarks about what happens to

the amplitudes of the states and the probability of �nding the solution in these cases. Note

that just like in the theoretical analysis of the algorithm we presented before, also in our

experimental analysis we assume that there is only one solution to the search problem. This

might not seem realistic or close to an everyday problem but it serves our purposes and helps

to draw accurate conclusions about Grover's algorithm.

5.3.1 Grover's algorithm simulation on a classical computer

We have implemented Grover's algorithm in Matlab and performed some experiments for

various values of N . We use Matlab in order to classically implement the operators of Grover's

algorithm, and simulate a search in a database of N entries (where N is given as an input).

The results of our experiments show an amplitude ampli�cation after each iteration, that is;

the amplitude of the solution grows during each iteration. Moreover, we observe that the

probability of �nding a solution gets closer to 1 when the algorithm iterates near to π
4

√
N

times. All the results are summarized and presented in tables, where it is easier to compare

them with our �ndings of the mathematical analysis on Grover's algorithm and also study its

behavior.

55

The Matlab code that was used to implement Grover's algorithm in a classical computer,

can be found in Appendix A. Note that, for the sake of simplicity we assume that there is

exactly one solution x0 to the search problem. The software takes as an input the size of the

search space N and the target state x0, and as an output returns the probability of �nding

the solution after each iteration, where the maximum number of iterations has been proven

to be π
4

√
N . Also this software returns a plot of the amplitudes after each iteration, making it

easier to visualize the behavior of the algorithm. We simulate the algorithm for search spaces

of size 22 ≤ N ≤ 220 and the summary of the results can be found in tables 3 and 4.

In the �rst column is the size of the search space we used while in the second column is

the number of estimated iterations π
4

√
N , while in the third column are the numbers of last

iterations of our experiments. Ending, in the last column is the probability of �nding the correct

solution during the current iteration.

We observe that as we expected, the optimal number of iterations R needed to �nd x0, is

R ≤ π
4

√
N . Our experimental results show that the optimal number of iterations is bπ

4

√
Nc.

This means that the probability reached at the optimal iteration increases to 1 as N gets

bigger, which means that when we iterate more than π
4

√
N the probability decreases.

56

Size of search Theoretical Maximum Number of Probability of �nding

space: N number of iterations: R ≤ π
4

√
N iterations k the correct solution: p(x0)

N=4 1.57 1 100.00 %

N=8 2.22 1 78.120 %

2 94.530 %

3 33.008 %

N=16 3.14 2 90.840 %

3 96.132 %

4 58.170 %

5 12.549 %

N=32 4.44 3 89.694 %

4 99.918 %

5 85.964 %

6 54.589 %

N=64 6.28 5 96.352 %

6 99.659 %

7 90.745 %

8 71.804 %

N=128 8.18 7 94.199 %

8 99.562 %

9 94.199 %

10 91.944 %

N=256 12.46 11 79.908 %

12 99.995 %

13 98.619 %

14 94.216 %

15 87.060 %

N=512 17.77 16 98.753 %

17 99.825 %

18 99.579 %

19 97.667 %

20 94.268 %

N=1024 25.13 23 98.967 %

24 99.846 %

25 99.946 %

26 99.267 %

27 97.819 %

N=2048 35.34 33 99.189 %

34 99.789 %

35 99.990 %

36 99.820 %

37 99.252 %

Table 3: Number of iterations and probability of �nding the solution for the values of

N between 22 and 211

57

Size of search Theoretical Maximum Number of Probability of �nding

space: N number of iterations: R ≤ π
4

√
N iterations k the correct solution: p(x0)

N=4096 50.26 48 99.697 %

49 99.943 %

50 99.995 %

51 99.851 %

52 99.512 %

N=8192 71.08 69 99.877 %

70 99.973 %

71 99.992 %

72 99.902 %

73 99.715 %

N=16384 100.43 98 99.899%

99 99.984 %

100 99.998 %

101 99.977 %

102 99.905 %

N=32768 142.17 140 99.966 %

141 99.994 %

142 99.999 %

143 99.978 %

144 99.934%

N=65536 201.06 200 99.985 %

201 99.997 %

202 99.987 %

N=131072 284.34 283 99.975 %

284 99.998 %

N=262144 402.12 401 99.982 %

402 99.999 %

N=524288 568.18 567 99.992 %

568 99.999 %

N=1048576 804.24 803 99.999 %

804 99.999 %

Table 4: Expected number of iterations and probability of �nding the solution for the

values of N between 212 and 220

58

For each of our experiments the output is a graph showing the evolution of the amplitude of

the solution x0 = 4. Below we present schematically the results of one experiment for N = 32.

Figures 12 and 13 show how the amplitude of the solution evolves during each iteration. Note

that according to the formula that gives the optimal number of iterations R, the maximum

number of iterations needed is 4, indeed after the fourth iteration the probability of �nding

the solution is very high.

Figure 12: Evolution of the amplitudes for N = 32 and x0 = 4 in 1st and 2nd iteration.

Each second graph per iteration shows the situation after application of the Oracle and

the third graph shows the result after the application of the Inversion about the Mean.

59

Figure 13: Evolution of the amplitudes for N = 32 and x0 = 4 in 3rd and 4th iteration.

5.3.2 Generalization for very big search space

We claim that the probability of �nding a solution during the optimal iteration is closer to

1 when the search space grows, which means that when N →∞, p(x0)→ 1. We show that

the general math formula for �nding the probability of the solution of each iteration for all N,

supports our claim and also agrees with our experiments. In a previous chapter we proved that

the application of the Inversion about the mean on a general state
∑

k ak|k〉, produces:∑
k

(
− ak + 2〈a〉

)
|k〉, where 〈a〉 ≡

∑
k
ak
N

is the mean value of the ak. Thus we can easily

calculate the mean values and the amplitudes of each state after each iteration.

60

Consider Grover's algorithm for the case that exactly one solution in {0, . . . , N−1} satis�es
f(x) = 1. Without loss of generality we may assume that f(N − 1) = 1 and f(i) = 0, i =

0, . . . , N − 2. Denote the amplitudes of the starting state (0 Grover iterations) to be a(0) at

each |i〉, i = 0, . . . , N − 2 by b(0) at |N − 1〉. Furthermore denote by a(k) the amplitude of the

state after k Grover iterations at each |i〉, i = 0, . . . , N − 2 and by b(k) at |N − 1〉. We will

also denote by µk the mean of the amplitude of the state after k Grover iterations followed

by the Oracle. The starting state is equal to
∑N

i=0
1√
N
|i〉, that is, a(0) = 1√

N
and b(0) = 1√

N
.

Clearly,

µk =
(N − 1)a(k) − b(k)

N
.

Furthermore: {
a(k+1) = 2 · µk − a(k) = 2 · (N−1)a

(k)−b(k)
N

− a(k)

b(k+1) = 2 · µk + b(k) = 2 · (N−1)a
(k)−b(k)
N

+ b(k).

After tidying up we get:{
a(k+1) = a(k) − 2 · a(k)+b(k)

N

b(k+1) = 2 · (1− 1
N

) · a(k) + (1− 2
N

) · b(k)

As said before the base case is as follows:{
a(0) = 1√

N

b(0) = 1√
N
.

Thus the mean of the amplitude of the state µ0 at the starting point is

µ0 =
(N − 1)a(0) + b(0)

N
(129)

=
(N − 1) 1√

N
− 1√

N

N

=
N − 2√
N

1

N

=
N − 2

N
√
N
.

Let's now calculate the amplitudes when after 1 Grover iteration (k = 1):

a(1) = 2µ0 − a(0) (130)

= 2
N − 2

N
√
N
− 1√

N

=
2(N − 2)−N

N
√
N

=
N − 4

N
√
N
,

61

and

b(1) = 2µ0 − b(0) (131)

= 2
N − 2

N
√
N
− (− 1√

N
)

= 2
N − 2

N
√
N

+
1√
N

=
2N − 4 +N

N
√
N

=
3N − 4

N
√
N
,

(Note that the amplitude of the solution b(0) has been marked because of the application of

the Oracle).

Having found the amplitude of each element after the �rst iteration, we can calculate the

mean value of the amplitudes µ1 at that point. So

µ1 =
(N − 1)a(1) − b(1)

N
(132)

=

(
(N − 1)

(N − 4)

N
√
N
− (3N − 4)

N
√
N

)
1

N

=
N2 − 5N + 4− 3N + 4

N
√
N

1

N

=
N2 − 8N + 8

N2
√
N

,

Same way, for the amplitudes and the mean value after the second iteration (k = 2)we have:

a(2) = 2µ1 − a(1) (133)

= 2
N2 − 8N + 8

N2
√
N

− N − 4

N
√
N

=
2N2 − 16N + 16−N2 + 4N

N2
√
N

=
N2 − 12N + 16

N2
√
N

,

and the amplitude of the solution b(2) after the second Inversion about the mean

62

b(2) = 2µ1 − b(1) (134)

= 2
N2 − 8N + 8

N2
√
N

− (−3N − 4

N
√
N

)

= 2
N2 − 8N + 8

N2
√
N

+
3N − 4

N
√
N

=
2N2 − 16N + 16 + 3N2 − 4N

N2
√
N

=
5N2 − 20N + 16

N2
√
N

.

(Note that the amplitude of the solution b(1) has been marked because of the application of

the Oracle). The mean value of the amplitudes µ2 after the second iteration can be written

as

µ2 =
(N − 1)a(2) − b(2)

N
(135)

=
(N − 1)N

2−12N+16
N2
√
N

+ 5N2+20N−16
N2
√
N

N

=
N3 − 18N2 + 48N − 32

N3
√
N

.

The amplitude of the non solutions a(2) after the third iteration can be written as

a(3) = 2µ2 − a(2) (136)

= 2
N3 − 18N2 + 48N − 32

N3
√
N

− N2 − 12N + 16

N2
√
N

=
2N3 − 36N2 + 96N − 64−N3 + 12N2 − 16N

N3
√
N

=
N3 − 24N2 + 80N − 64

N3
√
N

,

and the amplitude of the solution b(3) after the third Inversion about the mean is

63

b(3) = 2µ2 − b(2) (137)

= 2
N3 − 18N2 + 48N − 32

N3
√
N

+
5N2 − 20N + 16

N2
√
N

= 2
N3 − 18N2 + 48N − 32

N3
√
N

− (−5N2 − 20N + 16

N2
√
N

)

=
2N3 − 36N2 + 96N − 64 + 5N3 − 20N2 + 16N

N3
√
N

=
7N3 − 56N2 + 112N − 64

N3
√
N

.

(Note that the amplitude of the solution b(2) has been marked because of the application of

the Oracle). Now we calculate the amplitude of all the elements after the fourth iteration of

Grover's algorithm. For the mean value µ3 at after the fourth call of the Oracle we have

µ3 =
(N − 1)a(3) − b(3)

N
(138)

=
N4 − 32N3 + 160N2 − 256N + 128

N4
√
N

,

Using the recurrences (Equations 5.3.2) we calculate the amplitudes for after the 4th, 5th, 6th,

and 7th iterations. Table 5 summarizes the results.

Before using the above polynomials to verify the results of our experiments presented in

Table 6, we make an observation. Note that for large sizes ofN we can focus only on the highest

degree of those polynomials, because the value of the lower order terms can be considered

very small compared to the highest degree term.

64

Number of Iteration: k Amplitude of solutions: b(k)

0 3N−4
N
√
N

1 5N2−20N+16
N2
√
N

2 7N3−56N2+112N−64
N3
√
N

3 9N4−120N3+432N2−576N+256
N4
√
N

4 11N5−220N4+1232N3−2816N2+2816N−1024
N5
√
N

5 13N6−364N5+2304N4−9984N3+16640N2−13312N+4096
N6
√
N

6 15N7−560N6+6048N5−28800N4+70400N3+−921600N2+61440N−16384
N7
√
N

6 17N8−816N7+11424N6−71808N5+239360N4−452608N3+487424N2−278528N+65536
N8
√
N

Number of Iteration: k Amplitude of non solution: a(k)

0 N−4
N
√
N

1 N2−12N+16
N2
√
N

2 N3−24N2+80N−64
N3
√
N

3 N4−40N3+240N2−448N+256
N4
√
N

4 N5−60N4+560N3−1792N2+2304N−1024
N5
√
N

5 N6−84N5+1120N4−5376N3+11520N2−11264N+4096
N6
√
N

6 N7−112N6+2016N5−13440N4+422406N3+67584N2−53248N−163846
N7
√
N

7 N8−144N7+3360N6−29568N5+126720N4−292864N3+372736N2−245760N+65536
N8
√
N

Table 5: Mathematical representation of amplitudes after the �rst 8 iterations of the

algorithm.

65

Search Number of Amplitude of Amplitude of Probability of

space: N iteration: k non solutions: a(k) solution: b(k) solution: p(b(k))

N=4 1 0 1.000 100 %

N=8 1 0.176 0.883 78.125 %

2 -0.088 0.972 94.531 %

N=16 1 0.187 0.688 47.266 %

2 0.078 0.953 90.845 %

3 -0.05 0.980 96.132 %

N=32 1 0.154 0.508 25.830 %

2 0.113 0.776 60.242 %

3 0.057 0.947 89.694 %

4 -0.005 0.999 99.918 %

N=64 1 0.117 0.367 13.483 %

2 0.102 0.586 34.390 %

3 0.080 0.769 59.138 %

4 0.539 0.904 81.638 %

5 0.014 0.981 96.352 %

6 -0.016 0.998 99.659 %

Table 6: Theoretical values of the amplitude and probabilitis of �nding a solution after

each iteration, for search space 22 ≤ N ≤ 27.

The table above veri�es our experimental results and we can conclude that both the expected

optimal number of iterations and the probability of �nding the correct solution to the search

problem are what expected.

However, table 5 presents some other very interesting �ndings. The formulas that are used to

calculate the amplitudes of the solution and the non solutions appear to follow a very speci�c

pattern. With a closer look, one can tell that after each iteration the amplitudes are given in

a form of a fraction where the numerator is a polynomial of degree k and the denominator

is a number in the form of N (k+ 1
2
)
√
N . Also, the coe�cient of the leading term of the non

solutions polynomial is always 1, while the the coe�cient of the leading term of the solution

polynomial is of the form of 2k+1. Those observations imply an amplitude ampli�cation after

each iteration in Grover's algorithm and the ratio between the solution's amplitude and the

amplitude of the non solutions is equal to 2k + 1. This is what we will prove next.

Note that for the sake of the simplicity in this proof we use a di�erent notation than the one

used in the whole body of this work. Thus, just in order to prove our claims, the notation that

used is the following:

66

b(1) : amplitude of solution after �rst iteration of Grover's algotithm

a(1) : amplitude of non solutions after �rst iteration

b(k) : amplitude of solution after k iterations

a(k) : amplitude of non solutions after k iterations

Now we sum up our claims and use mathematical induction to prove their correctness. First,

let's see what we claim it is true for the amplitude of the solution to the search problem. The

amplitude of the solution is a fraction in the form of

b(k) =
(2k + 1)Nk + ck−1N

(k−1) + . . .+ c

Nk
√
N

(139)

and the amplitude of the non solutions is a fraction in the form of

a(k) =
Nk +N (k−1) + . . .+ 1 + . . .+ c

Nk
√
N

(140)

.

So we observe that the numerator of the �rst polynomial is of degree k with coe�cient of

the leading term 2k + 1 and the the denominator is Nk
√
N . The numerator of the second

polynomial is of degree k with coe�cient of the leading term k and the the denominator is

Nk
√
N

In order to prove (158) and (159), we use mathematical induction in three steps. First we

prove that (158) and (159) are true for k = 1 (�rst iteration), then we assume that they are

true for numbers up to and including k0 > 1 and we will prove that they are true for k0 + 1.

Proof. For the �rst step, we just solve the equations (158) and (159) for k = 1. The

resulting amplitude of the solution after the �rst iteration is

b(1) =
3N − 4

N
√
N
, (141)

while the resulting amplitudes of the non solutions are

a(1) =
N − 4

N
√
N

(142)

67

Now we assume that (158) is true for some k0 > 0 and we show that it is also true for

k0 + 1.

The amplitude of the solution after k0 + 1 iterations is

bk0+1 = 2
(N − 1)ak0 − bk0

N
+ bk0 (143)

= 2
(N − 1)ak0 − bk0

N
+
Nbk0

N

=
2Nak0 − 2ak0 + (N − 2)bk0

N

=
2Nak0 +Nbk0 − 2ak0 − 2bk0

N

=
2N (Nk0+...+1)

N(2k0+1)
√
N

+N

(
(2k0+1)Nk0+...+c

)
N(k0)

√
N

− 2 (Nk0+...+1)

N(k0)
√
N
− 2

(
(2k0+1)Nk+...+c

)
N(k0)

√
N

N

=
2N(Nk0 + ...+ 1) +N

(
(2k0 + 1)Nk0 + ...+ c

)
− 2(Nk0 + ...+ 1)− 2

(
(2k0 + 1)Nk + ...+ c

)
NN (k0)

√
N

=
(2k0 + 1)Nk0+1 + . . .+ c

N (k0+1)
√
N

,

thus, we only have to show that this is also true for the amplitude of the non solutions.

Indeed, in equation (159) we see that the amplitudes of the non solution after the k0 +1

iteration are

ak0+1 = 2
(N − 1)ak0 − bk0

N
− ak0 (144)

= 2
(N − 1)ak0 − bk0

N
− Nak0

N

=
Nak0 − 2ak0 − 2bk0

N

=
N (Nk0+...+1)

N(k0)
√
N
− 2 (Nk0+...+1)

N(k0)
√
N
− 2

(
(2k0+1)Nk0+...+c

)
N(k0)

√
N

N

=
N(Nk0 + . . .+ 1)− 2(Nk0 + . . .+ 1)− 2

(
(2k0 + 1)Nk0 + . . .+ c

)
NN (k0)

√
N

=
Nk0+1 + . . .+ c

N (k0+1)
√
N

,

which completes our proof.

The ratio between those amplitudes equals:

bk

ak
=

(2k + 1)Nk + ck−1N
(k−1) + . . .+ c

Nk +N (k−1) + . . .+ 1
(145)

≈ 2k + 1,

68

for very big search spaces, we can focus on the leading coe�cients of the higher degree of

those polynomials and neglect all the other terms. Thus, for N >> 1 the above ratio can be

written as

bk

ak
≈ 2k + 1

1
= 2k + 1. (146)

This makes clear that after each iteration in Grover's algorithm there is an amplitude ampli-

�cation as we claimed: the ratio between the amplitude of the solution and the amplitude of

non solutions increases when k increases.

5.4 Searching using Grover's algorithm: a worked example for

N=8

Now we have explained in detail how the algorithm works, we apply all of the above to a

simple example in order to get a better grip on the algorithm. Let's assume that we are given a

search space consisting of N = 23 = 8 elements; and we know that there is exactly one solution

to this search problem. For a classical computer it would take 4 trials to �nd the solution with

probability 50%. A quantum computer using Grover's algorithm can do better than that, it

would take less trials to �nd the solution with a much higher probability (almost precisely). We

use two di�erent approaches for this example. First we use the trigonometric approach, we work

with respect to the angles of the resulting states after each iteration in order to calculate the

optimal number of iterations and the probability of �nding a solution after the last iteration. In

the second approach, we work with respect to the amplitudes of the resulting states providing

their schematic representation after each iteration. We use the software that was created to

simulate the algorithm for the given example, and next we calculate the amplitudes and the

probability of �nding a solution using the formulas presented in Table 5 .

We present now the given example using our �rst approach. For the given example the

algorithm has 4 inputs and 1 output which is the solution to the search problem. Let's prepare

3 qubits in the state |000〉 as an input to the �rst register and one 1 qubit in the state |1〉 as
an input for the second. The initial state |ψ0〉; that is, the state before the application of the

Hadamard gate is

|ψ0〉 = |000〉. (147)

After the application of the Hadamard gate on both registers we have

69

|ψ〉 = H⊗3|ψ0〉 (148)

= H⊗3|000〉

=
1

N

N−1∑
x=0

|x〉

=
1

2
√

2

7∑
x=0

|x〉,

the state in the �rst register, and

H|1〉 =
|0〉 − |1〉√

2
(149)

the state in the second register.

Suppose that we are looking for the element x0 = 7; that is, the solution to the search

problem is the state |7〉 or |111〉 in binary. Thus the application of the Oracle results

O|111〉 = −|111〉 (150)

O|x〉| = −|x〉, x 6= x0 → x 6= 7 (151)

We can rewrite now |ψ〉 as a summation of all the non-solutions and the solution element as

|ψ〉 =
1

2
√

2

7∑
x=0

|x〉+
1

2
√

2
|111〉. (152)

In order to follow the notation we used in chapter 4.4 let's write the part that doesn't contain

the searched element as a separate normalized state |α〉 and the element solution to the search

problem as |β〉. So

|α〉 =
1√

N − 1

∑
|x〉 (153)

=
1√
7

7∑
x0

|x〉

=
|000〉+ |001〉+ |010〉+ |011〉+ |100〉+ |101〉+ |110〉√

7
,

70

and

|β〉 =
1√
M

∑
x∈M

|x〉 (154)

=
1√
1
|111〉

= |111〉.

So we can write |ψ〉 as

|ψ〉 =

√
7

2
√

2
|α〉+

1

2
√

2
|111〉. (155)

in Figure 14 we can see the geometric representation of the search problem. Since |α〉 and |β〉
form an orthonormal basis, we can put |α〉 on the horizontal axis and |β〉 on the vertical.

Figure 14: Grover's algorithm for n = 3.

71

Since we have shown that the algorithm operates as a number of re�ections that rotate the

initial state closer to the �nal state, if we can compute the angle of the re�ections we will be

able to tell geometrically how many Oracle calls are required. By de�nition, the inner product

of two vectors v1 and v2 can be written as

〈v1|v2〉 = ||v1|| · ||v2|| cosω,

where ω is the angle between the two vectors and ||v1||||v2|| is the product of their magnitude.

In our case the magnitude of the vectors |ψ〉 and |α〉 is equal to 1 so we can say that the

cosine of the angle between those to vectors is equal to their inner product. We can write

||ψ||α|| cos
θ

2
=〈α|ψ〉 (156)

cos
θ

2
=〈α|ψ〉

=〈α|
(√

7

2
√

2
|α〉+

1

2
√

2
|β〉
)

=

√
7

2
√

2
〈α|α〉+

1

2
√

2
〈α|111〉

=

√
7

2
√

2
,

where θ
2
is the angle between |α〉 and |ψ〉 So we can say for the angle between the states |ψ〉

and |α〉 that

θ

2
= arccos

√
7

2
√

2
(157)

= arccos
3

4

⇒θ ≈ 41◦.

Recall that

Uf |x〉 −→ (−1)f(x)|x〉,

so the state |ψ1〉, which is the state after the application of the Oracle on the state |ψ〉, can
be written as

72

|ψ1〉 =
1√
8

7∑
x=0

(−1)f(x)|x〉 (158)

=
|000〉+ |001〉+ |010〉+ |011〉+ |100〉+ |101〉+ |110〉 − |111〉

2
√

2

=
|000〉+ |001〉+ |010〉+ |011〉+ |100〉+ |101〉+ |110〉

2
√

2
− |111〉

2
√

2

=

√
7

2
√

2
|α〉 − 1

2
√

2
|111〉

= |ψ〉 − 2
1

2
√

2
|111〉

= |ψ〉 − 1√
2
|111〉

Having found |ψ1〉 we can calculate the angle φ1 between |ψ〉 and |ψ1〉. Since both ||ψ||
and ||ψ1|| are equal to 1 we have:

cos(φ1) = 〈ψ|ψ〉 − 1√
2
〈β|ψ〉 (159)

= 1− 1√
2

(

√
7

2
√

2
〈111|α〉+

1

2
√

2
〈111|111)

which means that φ1 = arccos 3
4
, so 41.4oθ as expected.

The next state is the state |ψ2〉. This state occurs after the application of the Inversion

about the mean operator P = 2|ψ〉〈ψ| − I on the state |ψ1〉. We can write

|ψ2〉 = (2|ψ〉〈ψ| − I)|ψ1〉

= (2|ψ〉〈ψ| − I)

(
|ψ〉 − 1√

2
|111〉

)
= 2|ψ〉〈ψ|ψ〉 − |ψ〉 − 2√

2
|ψ〉〈ψ|111〉+

1√
2
|111〉

= 2|ψ〉 − |ψ〉 − 2√
2
|ψ〉
(√

7

2
√

2
〈111|α〉+

1

2
√

2
〈111|111〉

)
+

1√
2
|111〉,

but 〈α|111〉 = 0 and 〈111|111〉 = 1 , so we get

= 2|ψ〉 − |ψ〉 − 2√
2

1

2
√

2
|ψ〉+

1√
2
|111〉

=
1

2
|ψ〉+

1√
2
|111〉,

73

and thus, |ψ2〉 can be written in the orthonomal basis of |α〉 and |111〉 as

|ψ2〉 =
1

2
|ψ〉+

1√
2
|111〉 (160)

=
1

2

(√
7

2
√

2
|α〉+

1

2
√

2
|111〉

)
+

1√
2
|111〉

=

√
7

4
√

2
|α〉+

1

4
√

2
|111〉+

4

4
√

2
|111〉

=

√
7

4
√

2
|α〉+

5

4
√

2
|111〉.

Having found |ψ2〉 we can calculate the angle angle φ2 between |ψ〉 and |ψ2〉. Note that

this angle is the same angle as the one between |ψ〉 and |ψ1〉 as shown in Figure 14. We can

easily verify this as follows

cosφ2 =
1

2
+

1√
2
〈111|

(√
7

2
√

2
|α〉+

1

2
√

2
〈111|

)
=

1

2
+

1√
2

1

2
√

2

=
1

2
+

1

4

=
3

4
,

which means that φ2 = θ = 41.4o.

Now that we have completed one Grover iteration and we continue in order to get closer to

the solution. To obtain |ψ3〉 we re�ect |ψ2〉 in the vector |α〉 and following the same pattern as

above we �nd |ψ3〉 = 1
2
|ψ〉− 3

2
√
2
|111〉. Applying for the second time the the Inversion about

the mean operator, we get |ψ3〉 =
√
7

8
√
2
|α〉+ 11

8
√
2
|111〉. Again if we would like to calculate the

angle between |ψ3〉 and |α〉 we �nd that is the same angle θ. Now when we bring |ψ〉 closer
to |β〉 we observe that the amplitude of |111〉 increases while the other amplitudes decrease.

When we do the measurement to �nd the probability P|111〉 of |111〉 we take the square of the
absolute value of the amplitude of |111〉 after the second full Grover iteration

P|111〉 = | 11

8
√

2
|2

=
121

128

≈ 0.94. (161)

74

That is, in our example where N = 8 after 2 iterations of the algorithm, we have a probability

of 94% of �nding the desired element.

For our second approach, we use the Matlab code presented in Appendix A. The inputs of

this program are the size of the search space N = 8 and the solution x0 = 7. Then after each

step of the algorithm we present schematically the amplitudes of each state and after each

iteration we use the recursive formulas for the implementation of Grover's algorithm to verify

these results.

Initially all the states are given the same amplitude as shown in Figure 15. After the �rst

Figure 15: Starting state, for N = 8 and x0 = 7.

application of the Oracle the amplitude of the solution is �ipped as presented in Figure 16.

75

Figure 16: Amplitudes after the �rst Oracle, for N = 8 and x0 = 7.

The Inversion about the mean follows, and as a result all the states are �ipped with respect

to the mean value as presented in the following Figure 17

Figure 17: Amplitudes after the �rst Inversion, for N = 8 and x0 = 7.

Using the mathematical formulas presented in Table 5 we can calculate the amplitudes of

the states shown in the above �gure. So after the �rst iteration the amplitude of the state

corresponding to the solution a7 is given by

76

a10 =
3N − 4

N
√
N

(162)

=
3 ∗ 8− 4

8
√

8

≈ 0.883

and the amplitude of the states corresponding to the non solutions a1 are given by

a7 =
N − 4

N
√
N

(163)

=
8− 4

8
√

8

≈ 0.176

The probability of �nding a solution after the �rst iteration is nothing more than the square

of the amplitude of the state corresponding to the solution; that is p(a10) = a210 = 0.779689,

which equals to 77.9%. The probability of not �nding a solution after the �rst iteration,

equals the square of the amplitude of the state corresponding to the non solution; that is

p(a1) = (N − 1)a21 = 7 ∗ 0.030976 = 0.213862, which equals 21.3%.

We can even check if the probability of �nding a solution and the probability of not �nding a

solution after the �rst iteration, sum up to 1. We have p(a10) + p′ = 0.779689 + 0.2168 = 1.

Next the second application of the Oracle follows as presented in Figure 18

Figure 18: Amplitudes after the second Oracle, for N = 8 and x0 = 7.

The Oracle did what it promises, it marked the solution with a "-" sign, inverting the amplitude

of the solution. Next the second Inversion about the mean follows, and the new amplitudes

are presented in Figure 19

77

Figure 19: Amplitudes after the second Inversion, for N = 8 and x0 = 7.

The amplitude of the state corresponding to the solution a20 after the second iteration is given

by

a20 =
5N2 − 20N + 16

N2
√
N

(164)

=
5 ∗ 82 − 20 ∗ 8 + 16

82
√

8

≈ 0.972

and the amplitude of the states corresponding to the non solutions a2 are given by

a2 =
N2 − 12N + 16

N2
√
N

(165)

=
82 − 128 + 16

82
√

8

≈ −0.088

The probability of �nding a solution after the second iteration is the square of the amplitude

of the state corresponding to the solution; that is p(a20) = a220 = 0.944784, which equals

to 94.4%. The probability of not �nding a solution after the second iteration, equals to the

the square of the amplitude of the state corresponding to the non solution; that is p(a2) =

a22 = 0.007744, which equals to 0.7%. Because there are N − 1 states that are not solution

to the search problem the probability of not �nding a solution after the second iteration is

p′′ = (N − 1)p(a2) = 0.054208. Again we can check if the probability of �nding a solution

and the probability of not �nding a solution after the second iteration, sum up to 1. We have

p(a20) + p′′ = 0.944784 + 0.054208 = 1.

78

We observe that our result are as expected and are the same as those in the �rst approach.

We still need to tell why the algorithm stops after the second iteration. It is pretty straight-

forward that the algorithm stops because after the second iteration there is already a very big

chance to �nd the solution, but we can use the formula that gives the number of iterations in

Grover's algorithm. So for our example, where N = 8 we can write

R ≤ dπ
4

√
Ne (166)

= dπ
4

√
8e

= 2.2214

which means that for the given search space N = 8 the algorithm iterates only 2 times.

79

6 SUMMARY AND CONCLUSIONS

This chapter concludes our work, serving at the same time two important purposes. First it

summarizes the results and the remarks of the current work and then concludes it. Although

there is nothing new or innovating about Grover's algorithm in this Master Thesis, it can

be said that there is some contribution on understanding and analyzing the algorithm. The

approach we used and the experimental results are show that both our theoretical analysis

and implementation yell the same results. This Thesis presented two di�erent approaches on

Grover's algorithm and compared the results.

6.1 Summary

The main aspects of this Master Thesis are, a short overview on quantum computing and

the detailed description of Grover's algorithm. After introducing some essential concepts

involved in quantum mechanics and reviewing the mathematical tools used to describe them,

we the focused on the main topic of our research, Grover's quantum search algorithm. The

algorithm has been described in every detail, and has been analyzed as well as its performance

optimality.

The mathematical analysis we performed on Grover's algorithm was based on the literature,

but it was essential in our understanding of the algorithm. It proves the optimality of Grover's

algorithm, describes how many iterations of the algorithm are needed in order to �nd a solution

to the search problem and predicts the probability of �nding a solution after each iteration.

Our �ndings give a clear insight about how the algorithm works and why it is considered to

be optimal.

In order to verify the mathematical analysis, we implemented Grover's algorithm in a

classical computer and presented the experimental results for a given search space. This way, we

don't only support our claims regarding the number of iterations and the probability of �nding a

solution, but also we verify its performance and optimality. Although during the implementation

of Grover's algorithm there were some restrictions due to the limited computational power

of a classical computer, our results are quite accurate and realistic. We started running simple,

not realistic experiments with very few entries in the database N = 4 and gradually we kept

increasing their number until we run some more realistic experiments. Due to the restriction

of the computational power of the our classical computer, our last experiment involved N =

1048576 entries in our database. However these experiments where some realistic scenarios of

Grover's algorithm that helped us to draw some accurate conclusions.

80

6.2 Conclusions

In the introduction of this work we claim that Grover's quantum search algorithm provides

a quadratic speedup and performs better over the best possible classical algorithm. This claim

has been questioned and next proved in the current work. We also make some remarks and

generalizations regarding how the algorithm performs. After each iteration there is an ampli-

tude ampli�cation, and we don't only prove it, but also generalize it for any given space N .

Our approach regarding the implementation of Grover's algorithm on a classical computer,

helps for the better understanding on how the algorithm operates and also gives a schematic

representation of it. We were able to compute the probability of �nding a solution, and the

number of iterations that is needed in order to �nd this solution.

The main conclusion of the present study is that Grover's algorithm can be considered

not only accurate but also optimal. A further research can be conducted in order to verify

our generalization for any given space N and also to avoid any possible error rate due to

the restrictions of the classical computer that has been used. Moreover another step in this

direction, could be the implementation of this quantum search algorithm in the case where

there is more than one solutions to the search problem. Note that in the present study for the

sake of simplicity we restricted our research in the case where there is only one solution to the

search problem. It would be interesting to perform a mathematical analysis for this case and

compare this to experimental results.

81

References

[1] Je�rey A. Matrix Operations for Engineers and Scientists. An Essential Guide in Linear

Algebra. Springer, 2010.

[2] Harvey M. Anthony M. Linear Algebra: Concepts and Methods. Cambridge University

Press, 2012.

[3] P. A. M. Dirac. A new notation for quantum mechanics. Mathematical Proceedings of

the Cambridge Philosophical, pages 416�418, 1939.

[4] Riazuddin Fayyazuddin. Quantum Mechanics. World Scienti�c, 2013.

[5] Richard P. Feynman. The Strange Theory of Light and Matter. Princeton University

Press, 1983.

[6] Martin Furer. Solving np-complete problems with quantum search. page 6, 2008).

[7] Robert B. Gri�ths. Consistent Quantum Theory. Cambridge University Press, 2001.

[8] Lov K. Grover. A fast quantum mechanical algorithm for database search. 1996.

[9] Lov K. Grover. From schrodinger's equation to the quantum search algorithm. page 333,

2001.

[10] S. M. Hamdi. A compare between shor's quantum factoring algorithm and general number

�eld sieve. page 6, 2014.

[11] C J. L. Doran J. Lasenby, A. N. Lasenby. A uni�ed mathematical language for physics

and engineering in the 21st century. 2000.

[12] Reade John B. Calculus with Complex Numbers. CRC Press, 2003.

[13] Tien D. Kieu. An anatomy of a quantum adiabatic algorithm that transcends the turing

computability. page 7, 2004.

[14] Ahlfors Lars. Complex analysis. McGraw-Hill, 1979.

[15] John H. Mathews and Russell W. Howell. The Origin of Complex Numbers. Jones and

Bartlett learning publishers, 1979.

[16] Charles P. McKeague. Elementary Algebra. Brooks/Cole, 2011.

[17] Isaac L. Chuang. Michael A. Nielsen. Quantum Computation and Quantum Information.

Cambridge University Press, 2010.

[18] Axler S. Linear Algebra Done Right. Springer, 1997.

[19] Levin F. S. An Introduction to Quantum Mechanics. Cambridge University Press, 2001.

[20] P. W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring.

IEEE Computer Society Press, pages 124 � 134, 1994.

82

[21] Needham Tristan. Visual Complex Analysis. Clarendon Press, 1997.

[22] Xu Fanjiang Hu Haiying Zhuang Jiayu, Zhao Junsuo and Qiao Peng. Analysis and sim-

ulation of grover′s search algorithm. International Journal of Machine Learning and

Computing, page 3, 2014.

83

A First Appendix

function X = grover(N,x0)

X = zeros(1,N);

X(1, :) = sqrt(1 / N);

i = 1;

or_x = 1:N;

or_y = 0;

not_stop = true;

while not_stop

x = X(i, :);

figure(i);

subplot(1,3,1);

bar(1:N, x, 1e-5, 'b');

hold on;

plot(x, 'o');

hold off;

title('Start')

xlabel('States');

ylabel('Amplitude of states');

set(gca,'YTick',[-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

0.5 0.6 0.7 0.8 0.9 1]);

xlim([0, N+1]);

ylim([-1, 1]);

fprintf('Iteration %i, Initial amplitude the of solution: %.3f\n ', i, x(x0));

x = O(x, x0);

subplot(1,3,2);

bar(1:N, x, 1e-5, 'r');

hold on;

plot(x, 'ro');

hold off;

title('Oracle invocation')

xlabel('States');

ylabel('Amplitude of states');

set(gca,'YTick',

[-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

0.5 0.6 0.7 0.8 0.9 1]);

xlim([0, N+1]);

ylim([-1, 1]);

fprintf('Amplitude of the solution after Oracle: %.3f\n', x(x0));

84

x = I(x);

subplot(1,3,3);

bar(1:N, x, 1e-5, 'r');

hold on;

plot(x, 'go');

hold off;

title('Inversion about the mean')

xlabel('States');

ylabel('Amplitude of states');

set(gca,'YTick',

[-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

0.5 0.6 0.7 0.8 0.9 1]);

xlim([0, N+1]);

ylim([-1, 1]);

fprintf('Amplitude of solution after Inversion about the mean:

%.3f\n', x(x0));

X = [X; x];

fprintf('Probability of finding the solution at Iteration #%i:

%.3f\n', i, x(x0)^2*100)

fprintf('\n')

if (x(x0)^2 > 0.9999) && (x(x0)^2 <= 1)

not_stop = false;

end

i = i+1;

end

end

function x = O(x, x0)

x(x0) = x(x0) * -1;

end

function x = I(x)

mean_x = mean(x);

x = 2*mean_x - x;

end

85

	INTRODUCTION AND OVERVIEW
	Motivation and Goals
	Why Quantum Computing?
	A Premature Conclusion

	 INTRODUCTION TO QUANTUM COMPUTATION THEORY
	Qubit:A Quantum Chunk of Information
	The Dirac Notation
	A Brief Introduction to Complex Numbers
	A Brief Introduction to Matrices

	POSTULATES OF QUANTUM MECHANICS
	State space
	Evolution
	Measurement

	GROVER'S SEARCH ALGORITHM BASICS
	Setting up the Search Problem
	The Procedure
	The Grover's Algorithm Steps
	Geometric Visualization of Grover's algorithm

	A CLOSER VIEW ON GROVER'S ALGORITHM
	Performance
	Optimality
	Grover's Algorithm Implementation
	Grover's algorithm simulation on a classical computer
	Generalization for very big search space

	Searching using Grover's algorithm: a worked example for N=8

	SUMMARY AND CONCLUSIONS
	Summary
	Conclusions

	References
	First Appendix

