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Abstract

The efficacy of conventional reinforcement learning methods on an infinite time
horizon inventory management problem with finite shelf life and a lead time
for orders is evaluated. Using optimizations, the effective size of |S| is greatly
reduced, extending the boundaries of the parameters for which these methods
perform well. By further analyzing the value propagation and state transition
dynamics, a heuristic approach is developed that performs near optimally after
a single pass. Still running into the complexity wall, a turn to DQN is made.
This is shown to perform well and scale far beyond the limits of the conventional
methods.
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1 Introduction

1.1 Newspapers

One of the simplest inventory management problems is the newspaper vendor problem,
where a vendor has to decide how many newspapers to order for the next day at cost
c, which will be sold for price p. The vendor can order any number of newspapers a
(for action), but any unsold newspapers are worthless at the end of the day, as there
will be a new edition the next day. The reward R (i.e. profit) in a given day will be
equal to

R = p ·min{a,D} − c · a,

as the vendor cannot sell more than the inventory a, nor more than the demand D.
The price for stocking the chosen amount of inventory always has to be paid.

The question is then: how many newspapers should the vendor order? Assuming
the vendor knows the probability distribution of the number of newspapers sold (for
example, D ∼ Pois(λ) for some λ > 0), it is possible to calculate the expected reward
for any given amount a they order. In the case of a Poisson distribution, for example,
the expected reward is found to be

E(R(a)) =
∞∑
d=0

[p ·min{a,D} · P(D = d)]− c · a

=
a∑

d=0

[p · d · P(D = d)] + p · a · P(D > a)− c · a

=
a∑

d=0

[
p · d · λ

d

d!
e−λ

]
+

(
1−

a∑
d=0

λd

d!
e−λ

)
· p · a− c · a

which, although complicated at first sight, is simply a concave function in the variable
a. An example of such a function is given in Figure 1 for p = 3, c = 2, λ = 5.

In Figure 1, the optimal solution is to order a∗ = argmaxa E(R(a)) = 4. Numerical
methods excel at finding the maximum of such a function, even managing sub-linear
time for concave functions, and the problem is easily solved. In addition, because
every time period is independent, the optimal value a∗ is the same for every day.
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Figure 1: Expected reward for the newspaper vendor problem with p = 3, c = 2, λ = 5;
due to the concave nature of the function, the optimal solution is easily found

1.2 Finite Time Horizons

Now consider a situation in which a vendor sells non-perishable products, but with
a final day of sales, such as may be the case with holiday decorations. At the start
of each period, the vendor may decide how many items to order, which will arrive
only the next period. Any unsold goods, however, may be kept for future periods up
to but excluding the final, terminal period T at a holding cost of h per period per
product, after which they are worthless.

At the start of each time period, the vendor must now consider their current inventory
I before deciding how many items to order. With a well-stocked inventory, ordering
a lot of items may leave the vendor with large holding costs. With a low inventory,
however, ordering too few items may lead to lost sales. As the terminal period T
approaches, the amount of time to sell leftover inventory also decreases, potentially
leaving the vendor with unsold goods.
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The value of carrying a certain amount of inventory I at the start of time period t may
be expressed using Vt(I), which is the (discounted) maximum expected reward over
the remaining time periods starting with an inventory I, assuming proper inventory
management. At time period T , it holds that VT (I) ≡ 0 for all inventory levels, as no
more sales can be made. Vt−1(I) may now be defined recurrently as follows:

Vt−1(I) = max
a

[
∞∑

I′=0

P(I ′|I, a) (R(I, a, I ′) + γVt(I
′))

]
, (1)

where P(I ′|I, a) is the probability of ending up with I ′ items in inventory at the start
of time period t given an inventory of I at the start of time period t− 1, and subse-
quently ordering a items. R(I, a, I ′) is the (expected) reward for transitioning from
inventory I to inventory I ′ after ordering a items. Future profits may be discounted
using γ, which may also be left at γ = 1 for now.

In most cases, a maximum inventory Imax will be imposed, either due to real-life
constraints or for computational reasons. Because the set of all possible inventories is
now finite, in addition to the finite number of time periods T , this problem is now
exactly solvable using dynamic programming as in Equation 1.

This in turn gives rise to a policy πt(I), which maps an inventory I at the start of
time period t to the number of items a to order. The optimal policy π∗

t : I 7→ a∗

is the policy that maximizes the right-hand side (i.e. a∗ = argmaxa) of Equation 1.
Following this policy will maximize the expected long-term reward (profit) for the
vendor and corresponds to ideal inventory management.

Evaluating this policy in the case described above, while imposing Imax = 15, with
the parameters T = 16, p = 10, c = 6, h = 2 and λ = 8, the policy can be showcased
as is in Figure 2.

The behaviour as previously described is clearly visible: on the last time period
(t = 15), the vendor orders zero items regardless of the inventory level, as any ordered
items will be worthless in the next period. On the second-to-last time period and
the preceding one (t = 14, t = 13), the vendor orders fewer items than all preceding
time periods, as there are fewer periods left to sell the items, and as the inventory
increases, fewer items are ordered.

For t ≤ 12, the policy stabilizes. This behaviour will be considered next.
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Figure 2: The optimal policy for the finite time horizon vendor problem with Imax = 15,
T = 16, p = 10, c = 6, h = 2 and λ = 8. Lighter green colors correspond to ordering
more items, while darker blue colors correspond to ordering fewer items. The optimal
policy is stable for t ≤ 12, and is shown for t = 0 to t = 15.

1.3 Infinite Time Horizons

As T → ∞, the optimal policy π∗
0 at time t = 0 converges to a stationary policy

π∗. This was visible in Figure 2, where π∗
t was already stable for 0 ≤ t ≤ 12, or

equivalently π∗
0 for T ≥ 4. The optimal policy is not necessarily unique, as multiple

actions may exist with equal (optimal) expected values.

When generalizing the concept of an inventory level I to the broader concept of a
state s in the state space S (assumed to be finite), such as the pair (I, t) in the
previous section, with actions a in the action space A, the value V ∗(s) of a state s
under the optimal policy π∗ satisfies the following equation:
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V ∗(s) = max
a∈A

[∑
s′∈S

P(s′|s, a) (R(s, a, s′) + γV ∗(s′))

]
. (2)

Equation 2 is known as the Bellman equation, of which Equation 1 was a special
case. If any of the states are recurrent with non-zero rewards, γ < 1 is required for
the above equation to be solvable. In that case, the solution is necessarily unique.
Actually solving the Bellman equation is not always straightforward, and was only
easily done in Section 1.2 due to the lack of cycles in the state space.

Various methods exist to numerically solve the Bellman equation. The rest of this
document will discuss these and other methods in more detail on a broader class of
inventory management problems.

Specifically, the primary goal is to evaluate the efficacy of these methods in finding
an optimal policies for inventory models that incorporate finite shelf life and lead
time within an infinite time horizon setting.

In this, the main focus will be placed on exploring and applying problem-specific
optimizations to conventional methods such as policy iteration, value iteration and
Q-learing, which will then be compared against a heuristic approach, as well as their
ability to scale.

Finally, the ability of deep reinforcement learning to scale beyond the limits of con-
ventional methods will be examined.
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2 Extended Inventory Model

In Section 1, the concept of inventory models was introduced. The two main differen-
tiating factors between problems were the Shelf Life (S) of inventory and Lead Time
(L) of orders. In this section, a generalized model covering the broader class of these
inventory models using an infinite time horizon will be introduced.

2.1 The Model

For the rest of this document, the following model will be used:

� A vendor selling a single product is considered. At the start of each time period
t, the vendor may order any number of items a ∈ A, which will arrive at the
start of time period t+L for some L ∈ N, zero (instantaneous arrival) included.

� Any items that arrived at the start of time period t, yet remain unsold at the
end of period t + (S − 1) for S > 0 are discarded. S = 0, for computational
reasons, is used to denote a product with indefinite shelf life, meaning no items
are discarded unless Imax is exceeded.

� Products can be ordered at cost c, to be paid immediately upon ordering, and
are sold at price p. The inventory may not exceed Imax items at any time; should
items arrive while the inventory is full, the items with the shortest remaining
shelf life are discarded. Items are also sold in the order they arrive, i.e. the
oldest items are sold first.

� Inventory that is left over at the end of a time period and not discarded due to
shelf life or exceeding Imax in the next time period after receiveing the order
that is next due, is kept for the next time period. This incurs a holding cost of
h per item per time period.

� Demand arrives during each time period t according to a Poisson distribution
with parameter λ. The demand for each time period is independently and
identically distributed.

As a practical consideration, the action space is limited to A = {0, . . . , Imax}, as any
extra items are guaranteed to be discarded. For reasons that will become apparent in
Section 2.2, Imax is also limited to values of the form 2n − 1 for some n ∈ N.
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This model belongs to an even broader class of problems known as Markov Decision
Processes (MDPs), the methods for solving which will be discussed in Section 3.

In implementing this model, there are some considerations to take into account beyond
the simple rules of the model as outlined above.

2.2 Implementation Considerations

In all of the following sections, N≤ will be used to denote the set of all natural numbers
including zero, but less than or equal to Imax.

The state spaces resulting from the introduction of lead time (SL) and shelf life (SS,
which is simply I for S = 0) will also be considered seperately, resulting in a total
state space of S = SL × SS.

2.2.1 Lead Time

The lead time L corresponds to the number of time periods between ordering and
receiving inventory. For any value L (including L = 0), there may be L outstanding
orders at any given time. Keeping track of these orders (which range from 0 to Imax)
leads to an order state space of SL = NL

≤, with order states taking on the form
sL = (OL, . . . , O1), where Oi represents the number of items that will arrive in i time
periods.

The order states may thus be stored in an array unsigned int s[L], with V-values
in an L-dimensional array. The methods described in Section 3, however, benefit
greatly from the states having a single integer as representation too, as this allows
for easy indexing of the state space. For this, it would be preferable to find an index
function iL : SL → N, where iL is necessarily injective. If possible, it would also hold
that iL(s) ∈ {0, . . . , |SL| − 1} for all sL, as this would fit exactly in an array of size
|SL| and be a bijection between S ↔ N<|SL|, resulting in perfect memory utilization.

Due to the fact that Imax < ∞, one such mapping is equivalent to the internal
representation of the value tensor V[I max]...[I max] (with L dimensions), which is
already stored linearly in memory. Seperating the inventory and outstanding orders,
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the index function iL may be defined as follows:

iL(sL) =
L∑

j=1

Oj · (Imax + 1)j−1, (3)

which evaluates to 0 for L = 0, and, with S = 0 for now, the general index function

i(s) = I + iL(s) · (Imax + 1), (4)

for s = (OL, . . . , O1, I), which is identical to the internal lookup methods used by
processors, and in the model’s case equivalent to concatenating all order and inventory
fields into a single base-(Imax+1) number. For example, in the case of L = 2, Imax = 9,
the state (O2, O1, I) = (2, 1, 3), when concatenated in base-10, would simply yield
the index 21310. Likewise, the same state with Imax = 15 would yield the index
21316 = 53110.

Given the base-2 representation of integers in computer memory, the indices iL of
states with Imax = 2n − 1 for some n ∈ N are actually the values OL, . . . , O1 stored
in a bitfield. This means that, by storing order states not as an array unsigned

int S[L] with the regular operations, but as a zero-padded bitstring embedded in
an unsigned integer (such as uint32 t in C(++)), the state sL may be mapped to
an index iL(sL) with a simple cast, and back. Advancing a time period no longer
involves copying arrays, but simply bitshifting them by log2(Imax+1) = n. Some book-
keeping has to be done for the inventory, which is unavoidable even with regular arrays.

For this reason, Imax will be limited to values of the form 2n − 1 for n ∈ N for the
rest of this document.

It turns out this index has several nice properties, such as respecting the lexicograph-
ical ordering of states, meaning that sL <lex s′L ⇔ iL(sL) < iL(s

′
L). The fact that

this holds for all states means it is possible to iterate over the entirery of S in this
lexicographical order using a simple for (uint s = 0; s < |S|; s++)-loop, which
will prove itself to be very useful in Section 4.

For S > 0, this becomes more complicated, but all the more important.

2.2.2 Shelf Life

For S = 0, the inventory may simply be stored as an integer, or equivalently unsigned

int s[1]. In cases where S > 0, the array representation of inventory states is
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unsigned int s[S], but for S > 1 the state space is not exactly equal to NS
≤, as the

additional requirement that
∑

k Ik ≤ Imax must hold, which means NS
≤ contains many

invalid states.

As a result, simply casting the base-2-embedded state to an integer does not map
SS → N<|SS | in cases where S > 1. Using the stars-and-bars method, where, in
addition to the S > 1 fields representing the inventory, an additional ’bin’ to represent
the unassigned inventory is added, a total of

|SS| =
(
Imax + (S + 1)− 1

(S + 1)− 1

)
=

(
Imax + S

S

)
=

(Imax + S)!

S! · Imax!

possible valid states are found to exist. Compared to NS
≤, this quickly becomes a very

small fraction of the allocated memory. For example, with Imax = 15, and S = 3, a
memory efficieny of (

15+3
3

)
(15 + 1)3

≈ 0.199,

is found, i.e. only 20% of the memory is used to store valid states, which dete-
riorates very quickly as S and Imax increase due to the difference in complexity
between the enumerator and denominator. For Imax = 31 and S = 4 (i.e. one step up
for each), this already drops to about 5%, with a further drop to about 1.1% for S = 5.

This quickly becomes the limiting factor in deciding the practical upper limit of
Imax and S. For this reason, a comparable index function iS is desirable, preferably
respecting the lexicographical ordering as well.

To achieve this, the index of an inventory state sS should be equal to the number of
states that precede it in lexicographical ordering. Consider the following inventory
state with S = 3 and Imax = 7:

3 2 1

Changing the first field to either 2, 1 or 0 would, in lexicographical ordering, result in
a smaller state regardless of the values of the other fields. If set to 2, up to 7− 2 = 5
items can be distributed over the remaining two fields to the right. Their current
values of 2 and 1 are irrelevant. This means that there are

(
5+2
2

)
= 21 possible states

of the form (2, . . .) smaller than the state above. Similarly, there are
(
6+2
2

)
= 28 states

of the form (1, . . .) that are smaller (as there are now 6 items to distribute over the
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two fields to the right).

Using this method, all of the following states must be iterated over:

2 ? ?

1 ? ?

0 ? ?

3 1 ?

3 0 ?

3 2 0

while keeping in mind that in cases such as (3, 1, ?) there are 7− 3− 1 = 3 items that
may be assigned to the single remaining field (for a total of 4 states that are smaller).

It is possible to express this for all S as

iS(sS) =
S∑

k=2

Ik−1∑
i=0

(
Imax − (i+

∑S
j=k+1 Ij) + (k − 1)

k − 1

)
+ I1 (5)

where the outer sum goes through the fields Ik of the inventory, and the inner sum
goes through the possible (lower) values i of that field. Imax − (i+

∑S
j=k+1 Ij) is the

number of items that can be distributed over the remaining fields, and (k − 1) is the
number of remaining fields. For S = 0, it holds that I1 = I.

When implemented, as shown in Figure 3, the complexity is not as bad as three
summations would suggest due to the fact that

∑
k Ik ≤ Imax, and the ability to

accumulate
∑S

j=k+1 Ij if the outer sum is evaluated from k = S to k = 2.

In addition, one may even use the fact that
(
n+k−1

k

)
=
(
n+k
k

)
· n
n+k

to reduce the
number of operations even further (not shown). Furthermore, the sum evaluates to 0
for S = 0, as well as S = 1.

This provides us with the sought-after bijection iS with respect to the number of
shelf life states. The two indices may be combined to an updated and generalized
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i_S(s):

count = 0

already_assigned = 0

for k = S, ..., 2:

for i = 0, ..., I_k - 1:

distributable = I_max - already_assigned - i

leftover_fields = k - 1

count += binom(distributable + leftover_fields,

leftover_fields)

already_assigned += I_k

count += I_1 # edge case for last field

return count

Figure 3: Pseudocode for the index function iS

version of Equation 4:
i(s) = iL(sL) · |SS|+ iS(sS), (6)

where, for any state s = (OL, . . . , O1, IS, . . . , I1), sL = (OL, . . . , O1) and sS =
(IS, . . . , I1) or I.

It is possible to contrive a method of inversing this index for S ≥ 2 (with S = 0, S = 1
being trivial to inverse, as iS(I) = I), although this suffers from inherent complexity
issues due to the many loops required for the inverse algorithm, as the state must
be built up field by field. For a one-off memory cost of O(|S|), which is already
matched or exceeded in memory complexity by, for example, the value function, it
is possible to store a reverse lookup table for i−1, which can be initialized with a
single pass and from then on allows for a constant-time lookup of the state s given i(s).

This may be reduced even further by storing only the lookup table for i−1
S , and recog-

nizing that, under integer division, sL = i(s)/|SS|, which can simply be left-shifted
n ·max{S, 1} bits for Imax = 2n − 1, and added to sS = i−1

S (s mod |SS|) to recover
the original state s in constant time with a memory complexity of O(|SS|). For L > 0,
this is a small (often tiny) fraction of the memory required for the value function.
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Last but not least, for L > 0, a significant reduction in computational and memory
complexity can be achieved by considering which states are actually observed.

2.2.3 Observable States

Although, up until now, L values have been assigned to keeping track of the outstand-
ing orders due to lead time, in the case of L > 0, the most significant value OL will
always be observed to be 0 in practice, as shown in Figure 4.

observed state︷ ︸︸ ︷
(0, OL−1, . . . , I)

(a,OL−1, . . . , I)︸ ︷︷ ︸
internal state

(a,OL−1, . . . , I −D≤I)︸ ︷︷ ︸
internal state

action a taken

demand D observed

discard and shift
= new state

Figure 4: The internal cycle of states during every time period in the case of L > 0;
only the observed state is encountered in practice.

Because of this, the policy for a large subset of states is irrelevant. Nothing prevents
the calculation of V (s) for states in which OL > 0, with an associated policy selecting
an action that increases the order to OL + a, but as these states are never observed,
and never result from taking any action a in any state s (except internally), these do
not influence V ∗(s) and may safely be left out of the equation.

This means that, for L > 0, the practical order state space is reduced from SL = NL
≤

to NL−1
≤ , resulting in a speedup of a factor Imax+1 = |A|, as well as an equal reduction

in memory footprint, which in many cases will be more than an order of magnitude.
This speedup is not affected by the value of S.
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Internally, however, the order state space is still represented as SL = NL
≤, as all

outstanding orders, especially after taking an action, are relevant for the transition
dynamics.
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3 Conventional Methods

In Section 1, application of dynamic programming to the finite time horizon problem
was discussed. Due to the acyclic nature of the state space, only a single pass was
required to find an exact solution. The infinite time horizon inventory problem suffers
from cycles, and thus requires numerical methods when using dynamic programming.

As an introduction to future sections, three of these methods will briefly be discussed
in this section, based on the work of Sutton and Barto [6]: two dynamic programming
methods (policy iteration and value iteration), each of which requires knowledge of
the distributions and rewards, as well as Q-learning, which learns through interactions
with the model and requires no knowledge.

The function that maps a state s to the set of all states that can be reached from
s in one time step after taking action a, or in other words, the forward states of s
under a such that P(s′|s, a) > 0, will be denoted as fw(s, a) : S → P(S).

Due to the different complexities of the methods, the number of iterations will not
be representative of the actual computational complexity. Instead, the number of
array references (be it Q-values or V-values) during the iterations will be used as
a measure of complexity, as this accurately represents the number of operations
required, properly scaling with the different parameters.

The default parameters, unless otherwise specified, are p = 10, c = 6, h = 1.5 and
λ = |A|

2
= Imax+1

2
, with a discount rate of γ = 0.99. Values (such as the V-table) are

also initialized to zero.

Although γ must be < 1, higher values of γ will result in a policy that maximizes
the total reward over a longer time horizon, albeit at a slower rate of convergence.
Lower values of γ lead to greedy behaviour (rewards ’now’ > rewards ’later’), which
may manifest itself in unwanted ways. For example, under the default parameters,
the maximum revenue for an ordered item is p = 10, but for L > 4 the present
value of this revenue is less than 0.95 ≈ 0.59, which means the optimal policy is
to never order anything, even though a reward of p−c = 4 may potentially be obtained.

A good approximation for the average performance of the optimal policy under these
parameters will be ≈ 75% · λ(p− c) = 3λ. This approximation will show itself to be
quite accurate in the following sections.

17



3.1 Policy Iteration

Policy iteration solves the Bellman equation (Equation 2) by iteratively improving
upon a policy πk until convergence. Given any policy πk, one may calculate the value
function V πk(s) for all states s ∈ S by iteratively applying the following update rule

∀s ∈ S : V πk(s)←
∑
s′∈S

P(s′|s, πk(s)) (R(s, πk(s), s
′) + γV πk(s′)) (7)

until sufficient convergence is achieved, often taken to be the point where the largest
update difference ∆ is smaller than a certain threshold ε. This phase is also known
as policy evaluation.

One may then proceed to determine an updated policy πk+1 by running through the
whole state space once more, also known as policy improvement, using the update
rule

∀s ∈ S : πk+1(s) = argmax
a

∑
s′∈S

P(s′|s, a) (R(s, a, s′) + γV πk(s′)) . (8)

In practice, only s′ ∈ fw(s, a) have to be considered, as P(s′|s, a) = 0 for all other s′.
In implementation, the associated rewards and probabilities can often be calculated
efficiently while determining the forward states.

It is a known result that the chain

π0 → V π0 → π1 → V π1 → . . .→ πk → V πk → . . .

converges to the optimal policy π∗ and value function V ∗ in a finite number of steps
for finite MDPs. For the case L = 2, S = 0 and Imax = 15 this process can be seen in
Figure 5 using the default parameters.

In the inventory management model, |fw(s, a)| is bounded by Imax+1 = |A|, resulting
in a complexity of O(|S| · |A|) for policy evaluation, and O(|S| · |A|2) for policy
improvement. The total complexity depends on the choice of ε.

For the case of L = 2, S = 3 and Imax = 15, the number of array references required
for policy iteration to converge for a logarithmically wide range of ε values is shown
in Figure 6.
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Figure 5: The initial policy with L = 2, S = 0, as well as the policy after 1 and 2
policy improvements, in addition to the optimal policy. Blue corresponds to ordering
zero items, green/yellow to ordering around 8 items, and red to ordering the maximum
amount of items.

In total, these differ by no more than a factor of 4, with the optimal value lying
somewhere between ε = 10−1 and ε = 10−2. Note that, for ϵ large enough, the policy
upon termination of the algorithm may not be optimal. Because of this, ε = 10−4 will
be used whenever full convergence is required for tests depending on the optimal policy.
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Figure 6: The number of array references required for policy iteration to converge for
different values of ε with L = 2, S = 3 and Imax = 15. Note the logarithmic x-axis, as
well as the fact that convergence to the optimal policy is not guaranteed for large ε.

3.2 Value Iteration

Like policy iteration, value iteration is a numerical method for iteratively calculating
the value function V ∗(s) for all states s ∈ S, but instead of periodically updating the
policy, the optimal action is evaluated on the fly. This is known as value iteration.
The update rule is given by

∀s ∈ S : V (s)← max
a∈A

∑
s′∈fw(s,a)

P(s′|s, a) (R(s, a, s′) + γV (s′)) (9)

until sufficient convergence (∆ < ε) is achieved. This approaches the fixed point of
Equation 2 iteratively.

The policy may be evaluated at any time using the same method as in Equation 8.

Compared to policy iteration, value iteration has a complexity of O(|S| · |A|2) as the
optimal action has to be evaluated for every state in every iteration. Consequently,
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value iteration converges in fewer iterations than policy iteration, but each iteration
is more expensive.

3.3 Q-Learning

Whereas the dynamic programming methods described above require knowledge of
the transition probabilities P(s′|s, a) and the associated rewards R(s, a, s′) to evaluate
the best action, Q-learning does not. To do this, all state-action values Q(s, a) are
stored, which represent the future value of a state after taking the specific action a,
and improved upon through repeated observations. After choosing any action a in
state s, the value Q(s, a) is updated according to the rule

Q(s, a)← (1− α)Q(s, a) + α

[
R(s, a) + γmax

a′∈A
Q(s′, a′)

]
, (10)

where α is the learning rate, and s′ is the state reached after taking action a in state
s. Essentially, an exponentially weighted moving average is taken of the observed
reward R(s, a) and the discounted value V (s′) of the next state s′ (calculated using
the known Q(s′, a′)-values). Given enough iterations, this will converge to the optimal
value.

A common policy, as will be used in this case, is

πε(s) =

{
argmaxa Q(s, a) with probability 1− ε

random action with probability ε
(11)

where ε is a parameter that determines the probability of taking a random action
for the purpose of exploration, commonly equal to 0.1 or 0.2. During performance
evaluation, ε will be set to nearly 0, which chooses the best-known action almost
every time, but prevents the algorithm from potentially remaining in the zero state.

The memory complexity of Q-learning is O(|S| · |A|), as the Q-values must be stored
for every state-action pair. The computational complexity is variable, depending
on the amount of convergence required. The most visited state-action pairs will be
updated many orders of magnitude more often than the least visited ones.

Full convergence of the Q-values is generally not required for good performance, and
often also computationally infeasible. Because of this, some state-action pairs may be
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visited rarely (or even never), and the Q-values for these pairs after any reasonable fi-
nite amount of iterations may differ significantly from the true values. Checking policy
equality between Q-learning and the dynamic programming methods will thus result
in a negative result with a probability of practically 1 in all but the most simple models.

A brief comparison between the performance of the three methods for a given amount
of array references will be made in the next section, showcasing the previously men-
tioned dynamics.

3.4 Comparison

For reasons that will become apparent in Section 4, the order in which the states
are updated is important. In Section 2.2, the lexicographical ordering of the states
was discussed. For now, in the case of value and policy iteration, the states will be
updated from the highest to the lowest index. The impact of this will be discussed
later on.

Figure 7 shows the performance of the three methods up to 108 array references using
Imax = 15, L = 3 and S = 2. The fact that policy iteration improves in larger steps
as the policy is updated, in addition to the larger number of iterations required per
improvement is clear.

In addition, it should be noted that Q-learning iterates faster. While the number of
array references is used as a proper measure of complexity, this may differ by a linear
factor in actual performance between methods, especially between Q-learning and
value/policy iteration. As such, Q-learning may seem to significantly underperform
based on the array references, while being more comparable in actual performance
when Q-learning is allowed to run for the same amount of processor cycles, which
may for example result in 2 · 108 or 3 · 108 references.

The convergence to ≈ 3λ = 3 · 8 = 24 is also visible.

In the next section, the deeper dynamics of transitions, convergence and information
propagation will be considered, with the ultimate goal of deriving a method that
outperforms the conventional methods discussed above.
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Figure 7: The performance of policy iteraton, value iteration and Q-learning for
Imax = 15, L = 3 and S = 2. The discrete nature of policy iteration is clearly visible,
compared to the more continuous nature of value iteration and Q-learning. Note that
Q-learning requires less time per array reference and may thus perform better than
shown when given the same compute budget. Based on the rule of thumb, optimal
performance is expected to be ≈ 24.
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4 Heuristical Optimization

The methods described in the previous sections are all general methods developed
for solving any Markov Decision Process. In some cases, however, knowledge of the
problem may be used to significantly improve performance, be it in the rate of
convergence or even a reduction in complexity.

Two of these methods - disregarding the states that are never observed, and mapping
S → N≤|S| - have already been discussed in Section 2.2. For L > 0, this has resulted
in a speedup of a factor Imax + 1 = |A| for dynamic programming methods with
an equal reduction in memory for all methods, and a massive reduction in memory
footprint for S > 0, also for all methods. In this section, the transition dynamics
within the state space will be analyzed in an attempt to further improve performance.

4.1 Overcoming Cycles

Circular dependencies, that is to say P(st = s|s0 = s) > 0 for some t ≥ 1, were the
root of the problem when trying to solve cyclic graphs using dynamic programming.
In section 3, this problem was solved numerically by iterating through the state space
until the values had converged ’enough’.

In transient cases (i.e. limt→∞ P(st = s|s0 = s) = 0), however, it may still be possible
to solve the problem analytically in simple situations. For example, consider the
following simple state space graph for a transient state s:

s ...

Assuming an action has already been chosen for now, the value of s is given by the
Bellman equation 2 as

V (s) =
∑
s′

P(s′|s) (R(s, s′) + γV (s′))

=
∑
s′ ̸=s

P(s′|s) (R(s, s′) + γV (s′)) + P(s|s) (R(s, s) + γV (s))

=
P(s|s)R(s, s) +

∑
s′ ̸=s P(s′|s) (R(s, s′) + γV (s′))

1− γP(s|s)
(12)
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which does not depend on the value of V (s) anymore. Recoginizing the geometric
series (as γP(s|s) < 1), this may even be written as

=
∞∑
n=0

γnP(s|s)n
[
P(s|s)R(s, s) +

∑
s′ ̸=s

P(s′|s) (R(s, s′) + γV (s′))

]

to see that this indeed sums over every possible number of times one may remain
in s and collect R(s, s), after which one moves on to a different state s′, never to return.

Equation 12 may thus be used to solve for V (s) if V (s) is transient with the only
path to itself being a trivial loop. As a final necessary remark, Equation 12 also works
for a recurrent state with the only path being a simple loop (P(s|s) = 1), as this
results in

V (s) =
1 ·R(s, s) + 0

1− γ · 1
=

R(s, s)

1− γ
=

∞∑
n=0

γn ·R(s, s),

which is well-defined for γ < 1, and once again corresponds to the future discounted
rewards.

For some types of more complicated loops (longer paths, multiple paths, etc.) it is
possible to extend equation 12, although this becomes significantly more complicated
when there exists a cycle that bypasses s entirely. In this case, the above will suffice.

4.2 State Space Analysis

Given that some simple cases may be solved analytically, it is worth investigating
whether the state space of the inventory management problem has any such cases.

First, consider the case where L = S = 0. In this case, the state space is simply
S = I = N≤. If the action a = 0 is taken (nothing is ordered), the situation as
described in Section 4.1 occurs, where the state s is transient with the only path to
itself being a trivial loop in the case of zero demand, except for the zero state, which
is recurrent with only a path to itself. This has been visualized in Figure 8.

It is thus possible to calculate the intrinsic value of the inventory (that is to say,
what would happen if one were to stop ordering and only sell the current inventory,
which is not V ∗(s)) for all s analytically using equation 12 and dynamic programming,
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I I − 1 I − 2 . . .

Figure 8: State space transitions for L = S = 0 under a = 0. All states, except the
zero state, are transient with the only path to itself being a trivial loop. The zero
state is recurrent with a trivial loop to itself.

starting from I = 0 and working up to I = Imax.

Due to the FIFO nature of the model, it is now possible to do the reverse: given
that the net present value of the current inventory I is known, as well as the net
present value of the inventory I + a for any a ≥ 0, a can be chosen in such a
way that the inventory value of the next state, minus the associated cost of a · c,
is maximized. This will be considered further after handling the lead time and shelf life.

Having considered L = S = 0, the case with L > 0, S = 0 may be considered next.
This results in a state space of S = SL × I. To reason about the transition dynamics,
it is easiest to look at only the classes of states as far as transitions are concerned,
disregarding the actual values. These classes are represented by binary strings of
length L+ 1, with a 1 representing the presence of a non-zero order or inventory, and
a 0 representing the absence of an order or any inventory. For example, with L = 2,
the state (O2, O1, I) = (3, 0, 1) would become 101.

Due to the right-shift that happens every time period (with a possible carry of
the least significant bit if there is any inventory left over), the state space transi-
tions under the 0-action closely resemble a binary tree, except for the potential carry.
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For L = 3, while disregarding the unobservable states, this has been drawn in Figure 9.

000

001

010
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011

110 111

a = 0

111

110

101

011 010

100

001 000

a > 0

Figure 9: Transition graphs for the state classes with L = 3, S = 0. On the left, the
transition graph under a = 0, and on the right the transitions under a > 0. The upper
(unobservable) states 1000, . . . , 1111 have been omitted.

In the figure it can be seen that the state space forms a directed acyclic graph under
the action a = 0, with the exception of the 000 and 001 nodes. The dynamics in
these nodes corresponds exactly to the L = 0 case, as nothing is ordered, which is
again equivalent to the case shown in Figure 8.

Because the first two nodes (000 and 001) are known to be solvable, with the rest of
the state space forming a directed acyclic graph, it is once again possible to solve the
entire state space analytically using dynamic programming. This may be extended
to any arbitrary value of L, as the right-shift guarantees a smaller most-significant
non-zero bit, except in the first two nodes, which have been covered seperately.

It is important to note that, under the zero action, the acyclicality of all nodes aside
from the first two is independent of the inventory dynamics. This means that, irre-
spective of S, if Oi > 0 for some i, the fact that i(s′) < i(s) holds for all s′ ∈ fw(s, 0).
If the first two nodes are solvable, this implies that the rest of the state space is too.

The next question is whether S > 0 influences the solvability of the first two nodes.
Because S = SL×SS, the transition dynamics of the inventory states occur in parallel
to the transition dynamics of the order states. For S = 3 these dynamics (now only
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for SS) have been drawn in Figure 10.
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a = 0 or O1 = 0

111
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Figure 10: Transition graphs for the inventory state classes with S = 3. On the left,
the transition graph under a = 0 or O1 = 0, and on the right the transitions under
a > 0 or O1 > 0. The upper (unobservable) states 1000, . . . , 1111 have been omitted.
All dashed outgoing arrows correspond to the single incoming dashed arrow.

The way to interpret this in the broader state space S is as a subgraph replacing the
least significant bit in Figure 9, with the order state transitions still applying.

For L ∈ {0, 1}, with the exception of 000 (which contains only the zero state), all
other states form a directed acyclic graph under the zero action. This is once again
due to the right-shift, this time without the ability to carry the least significant bit
to the next state. The zero state, once again, is known to be solvable.

Because an outstanding order may arrive even after taking the zero action for L > 2,
the situation on the right may occur even after taking a = 0. Recall, however, only
the solvability of the first two nodes in Figure 9 was required to solve the problem.
These two nodes contain no outstanding orders, which means that the transition
dynamics on the left of Figure 10 still apply in these nodes for a = 0, and that
these are once again solvable, as i(s′) < i(s) for all s′ ∈ fw(s, 0) and all s ∈ S
such that s ̸= 0, regardless of the value of L, with s = 0 already being solvable.
For L > 2, this is because, even if the inventory substates may contain cycles un-
der the zero action, the order substates are decreasing in index. Referring back to
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the index function in Equation 6, this always results in a lower index irrespective of SS.

The next thing to wonder is what use the solvability of the discounted value of the
current inventory is. For L = S = 0, it was previously discussed that this allows
a to be chosen such that the inventory value of the next state (minus the cost of
ordering) is maximized. Defining ’s+ a’ as the state that results from taking action
a, but still within the same time period, which for L > 0 and a > 0 is one of the
previously discussed unobservable states, with s+ a being the state on the bottom
right in Figure 4, it may more generally be stated that the optimal state-action value
function Q∗(s, a) for the inventory model satisfies

Q∗(s, a) = Q∗(s+ a, 0)− a · c, (13)

as the action incurs an immediate cost of a · c, which ’lifts’ the current (intermediate)
state to s + a, from where demand will be observed (corresponding to selling the
current inventory without taking any other action). It has now become more apparent
why, even though these states are not ’observable’ for L > 0, the V ∗-values are well-
defined. In addition, because fw(s+a, 0) = fw(s, a) and r(s+a, 0, s′)−ac = r(s, a, s′),
these states still do not have to be considered in the implementation, preserving the
previously obtained computational and memory savings for L > 0.

Using this, for all L, S, the state-action value function Q0(s, a), representing the
present value of s+ a after paying a · c for the order, is given by

Q0(s, 0) =
P(s|s, 0)R(s, 0, s) +

∑
s′ ̸=s P(s′|s, 0) (R(s, 0, s′) + γQ0(s′, 0))

1− γP(s|s, 0)
, (14)

Q0(s, a) = Q0(s+ a, 0)− ac

=
∑

s′∈fw(s,a)

P(s′|s, a)
(
R(s, a, s′) + γQ0(s′, 0)

)
. (15)

As previously discussed, because P(s′|s, 0) > 0 and s′ ̸= s implies i(s′) < i(s), with
Q(0, 0) also being well-defined, it follows that Q0(s, 0) is well-defined for all s ∈ S,
which in turn means Q0(s, a) is well-defined for all s ∈ S and a ∈ A. The initial
policy π0 is then given by

π0(s) = argmax
a∈A

Q0(s, a). (16)

Q0 may be evaluated using a single pass of dynamic programming from the lowest
index to the highest, which has a complexity of O(|S| · |A|). From there, a single pass
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of policy improvement may be performed to obtain π0, with the usual complexity of
O(|S| · |A|2).

This yields a policy that, from any state, takes the action that maximizes the future
discounted rewards, taking the immediate cost of the action into account. As a result
of the definition of Q0(s, a), this goes beyond optimizing the next time period’s
expected immediate reward and takes into account the future rewards (and losses,
such as the probability of discarding inventory) over multiple time periods.

It should be noted that this policy is not necessarily optimal. For one, the introduction
of a new factor such as a fixed cost associated with placing an order easily breaks
the premise of optimizing the next time period’s inventory value, as it may now be
optimal to order a large amount of items in one go, for which a look-ahead of more
than one time period is required.

Additionally, the implicitly defined value function

V 0(s) = max
a∈A

Q0(s, a)

does not satisfy the Bellman equation 2, as this requires all future rewards to be
discounted. Although the policy may (potentially) still be optimal without the value
function from which it is derived satisfying the Bellman equation, as long as the
relative differences between the V-values are maintained, this suffers from the same
kinds of problems as heuristic approaches to integer programming due to the discrete
nature of the inventory model.

Once a near-optimal policy has been obtained, this may be iterated upon using the
conventional methods discussed in Section 3.

Next, this policy, as well as the iteration upon this policy, will be compared.

4.3 Application

Knowing the importance of the order in which the states are updated, the heuristic
performance will be compared against three variations on value iteration: one iterating
from the lowest state to the highest, one iterating from the highest state to the lowest,
and one iterating in a random order. The first two are deterministic, and the third
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will be averaged over 20 runs, each with different evaluation orders.

The heuristic approach will first perform a single pass of dynamic programming from
the lowest index to the highest, storing the values as initial values in the V-table,
followed by a single pass of policy improvement, at which point the performance will
be measured. This policy will then be iterated upon.

This is done using a model with Imax = 15, L = 3, S = 2 with the default parameters.
A final performance of ≈ 3 · 8 = 24 may thus be expected. Convergence is defined as
∆ < 10−4.

Figure 11: The performance of the heuristic approach compared to the three variations
on value iteration, evaluating in forward, backward and random (averaged over 20
runs) order. The heuristic approach performs significantly better after the first pass,
but still requires a large amount of policy evaluation iterations to converge to the
actual optimum. This further increases performance from ≈ 22.5 to ≈ 24.9 after full
convergence.

The results of this are shown in Figure 11. The heuristic approach performs significantly
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better than the other three methods after the first pass, but then requires a large
amount of policy evaluation iterations to converge. This is due to the fact that the
initial V-values are initialized on the order of the expected final performance, i.e. 24,
with some values being higher and some being lower. The final V-values, being the
discounted future rewards, however, lie around

24

1− γ
=

24

1− 0.99
= 2400

which means the policy has to be evaluated until the values have converged to a
factor 100 higher than the initial values, with a delta of 10−4. The figure was cut
off at 108 references, but about three times this amount (≈ 3.2 · 108) was required
to converge. The performance, however, barely improved, increasing from ≈ 22.5
using the heuristic, to ≈ 24.7 after the first (normal) policy improvement, and finally
≈ 24.9 after full convergence. This shows the efficacy of the single pass of the heuristic.

The value iteration methods also showcase the information propagation dynamics.
Broadly speaking, going ’down’ with regards to the index realizes rewards (which
means value propagates upwards, as rewards resulting from actions are only realized
after L time periods), and going ’up’ accumulates future rewards, corresponding
to ordering inventory. This is precisely the reason a single low to high pass for the
heuristic performs as well as it does.

Updating the states from the highest index to the lowest index results in the realiza-
tion of the reward only being evaluated after the evaluation of the action, which in
the case of ordering > 0 items always leads to a leaf in Figure 9, in turn requiring L
iterations for the reward to reach the this state, as it has to be propagated through
the tree-like structure, which hapens one level at a time when going from the highest
index to the lowest index.

Inversely, updating the states from the lowest index to the highest, which implicitly
contains aspects of the heuristic, results in the fastest convergence. Due to the actual
calculation of V-values instead of a policy based on the differences between discounted
inventories, this is not instant and still requires gradual convergence. The value
propagation, however, happens faster.

Interestingly enough, the random order actually showcases this the best. Consider
a lower state sl where value is realized, and a higher state sh where future value is
accumulated, with a set of intermediate states {si} with many different connections
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to sl and sh. A pass from low to high will instantly propagate realized value from
sl to sh, and a high to low pass will require depth({si}) iterations to obtain this
realized value, but then propagate it back to sl in a single iteration when sl is evaluated.

A random order of {si}, however, will contain many of the paths from sl → sh, as
well as many of the paths from sh → sl, which means value may be propagated back
and forth within a single iteration, possible even multiple times, resulting in very fast
inital value propagation. This is visible in 11, where the random order outperforms
both other orders by a wide margin after a single iteration.

As the values converge and the policy starts to stabilize, however, the individual
paths start mattering more as the vast majority will not be taken. Because these
individual paths are evaluated in a random order, propagation in neither direction is
instant, resulting in the worst possible performance. This is also visible in the figure,
as the random order consistently underperforms the other two once more convergence
iterations have been performed.

Although the figure may suggest that random order converges to a lower value, it does
eventually converge after ≈ 1.6 · 109 references. This does not differ significantly from
the backward pass (≈ 1.5·109), but both are slower than the forward pass (≈ 0.97·109).

Last but not least, this behaviour may be explicitly shown by performing policy
evaluation a varying number of times with a policy π ≡ 0 (preventing inter-state
value development), ranging from one iteration to 10. This is done from the highest
index to the lowest. After performing this number of iterations, policy improvement
is performed, and the resulting policy’s average performance is evaluated. This is
restarted for every tested number of iterations. Doing this, in turn, for L = 2, . . . 5
yields Figure 12.

Here, the fact that it requires L iterations for the reward to reach the leaf states is
clearly visible, after which a very well-performing policy is obtained. Because π ≡ 0,
this is very similar to the heuristic aside from some minor details such as not handling
self-transitions and requiring L iterations instead of one.

Having considered the value dynamics and the resulting heuristic approach, the
limit of what is practically possible with conventional methods has been reached.
Convergence using the parameters used above takes minutes in the worst cases, which
will blow up very quickly as Imax, L and S are increased. Because of this, a neural
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Figure 12: The performance of policy iteration after a varying number of top-to-
bottom policy evaluation iterations, with the policy being evaluated using a policy
π ≡ 0. After performing this number of iterations, policy improvement is performed,
and the resulting policy’s average performance is evaluated. Various values of L are
compared. The arrival of information in the leaf states after precisely L iterations is
clearly visible, resulting in a sudden surge in performance.

approach will be considered next.
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5 Deep Reinforcement Learning

The step from exact methods like policy iteration and value iteration into more
random methods like Q-learning may be taken further by taking a small step into
the field of deep learning. Instead of storing exact values for every state-action pair,
a neural network may be used to approximate these Q-values.

Deep Q-networks (DQN) are one such method, and a brief look into their performance
will be given in this section.

5.1 Motivation

The methods discussed in Section 3 had various complexities. Policy iteration had a
complexity of O(|S| · |A|) for policy evaluation, and O(|S| · |A|2) for the occasional
policy improvement, although this required more total iterations than value iteration,
which had a complexity of O(|S| · |A|2) for each iteration. The both of them have a
memory complexity of O(|S|).

Q-learning no longer strictly required obervation of every state-action pair, but in-
stead had a memory complexity of O(|S| · |A|), and a computational complexity that
depended on the amount of convergence required.

Considering the size of S, the problem starts to become clear very quickly. Seperating
|S| into |SL| · |SS| again, and using the fact that Imax + 1 = |A|, the observable size
of each is given by

|SL| = |A|max{L−1,0}, |SS| =

{(
S+|A|−1
|A|−1

)
if S > 0

|A| if S = 0
. (17)

Even with S = 0, value iteration and policy improvement’s complexity would become
O(|A|L−1 · |A| · |A|2) = O(|A|L+2) for L > 0. For even small values of L, this blows
up very quickly as Imax is increased. Most tests were performed with |A| = 16 and
converged in a matter of seconds for a value like L = 3. Increasing |A| to 64, how-
ever, already increases the number of steps to be taken per iteration by a factor of
43+2 = 1024, now likely requiring hours to converge. Additionally increasing S from
0 to 2 replaces one factor of 64 by

(
2+64−1

2

)
= 2080, or 43+1 · 2080 = 532480 times

as many operations as the Imax = 15, L = 3 and S = 0 case, potentially requiring
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months to converge.

Even the heuristical method described in Section 4 suffers from this, as it provided
a mostly linear speedup by reducing the number of convergence iterations, but not
the number of steps per iteration, with the first step still requiring forward policy
evaluation, followed by an immediate policy improvement, which resulted in a strong
initial policy. Further improvements on this also fall back on regular policy iteration
with the associated complexity, as could be seen in Figure 11.

Recalling Figure 1 from the newsvendor problem, the behaviour of the expected future
reward was actually rather simple. Although the pipeline of inventory resulting from
the introduction of lead time and shelf life significantly complicates the state space,
the reward dynamics remain largely the same: below a certain threshold, ordering
more inventory results in a higher expected reward, until this threshold is passed and
the holding costs and risk of discarding inventory start to outweigh additional sales.

In fact, a figure analogous to Figure 1 could be drawn for every state in the state
space. The optimal policy is already obtained by taking the argmax of this figure
for every state, and the value function is simply the maximum of this figure. For
three random states with L = 2, S = 3 and Imax = 15, this has been done in Figure 13.

The concave nature that was first observed with the newsvendor problem is still
present, albeit in a higher dimensional space. Even simple neural networks are capable
of approximating such a function with a high degree of accuracy, and thus it may be
expected that a neural network can be used to approximate the Q-values for every
state-action pair to a high enough degree.

In addition, neural networks are capable of generalizing over similar states, which was
not possible with the previous methods. For example, whereas Q-learning stored and
updated the state action value Q(s, a) for every state-action pair seperately, a neural
network may observe two Q-values Q(s, a1) and Q(s, a2) and, for some a3 inbetween
a1 and a2, infer the value of Q(s, a3) to be roughly between the two without ever
observing Q(s, a3) directly. Given the nature of the Q(s, a)-curves as seen in Figure
13, this may be expected to perform well.

To make matters worse with regards to the complexity, or better with regards to the
potential performance of a neural network, very few of the states in S are actually
reachable under the optimal policy, even after disregarding the outright unobservable
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Figure 13: The Q-values for three random states with L = 2, S = 3 and Imax = 15.
The optimal action is the one that maximizes the Q-value. The simple concave nature
of the Q-values, even with the addition of lead time and shelf life, is clearly visible.

states. On top of that, out of the probabilistically reachable states, the distribution
of the occurrences of each state is highly skewed, with the vast majority of reachable
states being visited very rarely.

This occurrence distribution (also known as stationary distribution) is shown in
Figure 14 for L = 2, S = 0, Imax = 31, based on 109 iterations. On the left, it can be
seen that a small cluster of states represent the majority of the observed states. In
fact, the top 10 states add up to ≈ 60% of the total observations, with the top 20
representing more than 70%.

On the right, the logarithm of the occurrence is shown. Here, it can be seen that
significantly fewer than half of the states are actually visited at all, with most of
those that are reached occurring about four to five orders of magnitude less often
than the most visited state. For Imax = 15, L = 2, S = 3, using depth-first-search to
mark all reachable forward states starting from an initial state obtained by running
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Figure 14: Distribution of observed states during 109 iterations under the optimal
policy for L = 2, S = 0, Imax = 31. On the left, the absolute (relative) occurrences
are shown, and on the right the logarithm of the occurrences. Many states are never
visited, and of the states that are visited, the majority of visits are concentrated in a
small number of states.

the (optimal) policy for 100 iterations, a mere 1196 out of 208896 observable states,
or ≈ 0.57%, are found to be reachable at all.

To conclude things, DQN will be applied on a state space that is unmanageable for
the conventional methods as a proof of concept.

5.2 Deep Q-Learning

A Deep Q-Network replaces the Q-table with a neural network that takes the state as
input and outputs the Q-values for every action. The network is trained by observing
the reward R(s, a, s′) and the next state s′ after taking action a in state s, and
updating the network weights according to the rule.

To do this, two networks are used. One policy network is used to choose actions
based on its own predicted Q-values, and one target network is used to calculate the
target Q-values. In Equation 10, the updated Q-value would be the policy network’s
prediction ofQ(s, a), and the target network would be used to calculate maxa′ Q(s′, a′).
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The policy network actively learns the Q-values based on the target network’s pre-
dictions. The policy network’s weights are occasionally copied to the target network.
Because of this, the target network is always slightly behind the policy network; this
improves stability by preventing the policy network from chasing a moving target.

In addition, a replay memory is used to store observed transitions, which are sampled
randomly to train the network. This decorrelates the training data and allows for
more stable convergence. A pseudocode for DQN is given in Figure 15.

To implement this, pybind11 (Jakob et al., [2]) is used to interface with the C++
code, and pytorch (Padzke et al., [3]) is used to implement the neural network. The
code was largely based on the example code provided by the PyTorch Foundation
(Padzke and Towers, [4]).

In Section 5.1, a very rough estimate of the time required to converge for L = 3,
S = 2, Imax = 63 using value iteration was given as months. With an observable
|S| = 642 · 2080 = 8519680 states, and |A| = 64 actions, the Q-table would have
545259520 (≈ 5 · 108) entries. Using sizeof(double) = 8, this alone requires just
over 4 GiB of memory (or 2 GiB if using float). Evaluating every state-action pair,
even if only once, adds one final factor of 64, requiring ≈ 3.5 · 1010 array references.

The DQN maps NL+max{1,S} → R|A|, using a linear layer (with biases), followed by a
single hidden layer with 256 neurons and a ReLU activation function, followed by
another linear layer (with biases). For the case at hand, there are |A| = 64 actions,
and L+max{1, S} = 5 inputs, resulting in 5 · 256 + 256 · 64 = 17664 weights, and
256 + 64 = 320 biases, for a total of 17984 parameters; a reduction of more than five
orders of magnitude compared to the Q-table.

ε is initially set to 0.9 and linearly decreases to 0.01 over the whole training process.
The discount factor γ is set to 0.9 to prevent the Q-values from having to converge
to massive values, and the Huber loss is used as the loss function, which is more
conservative than the mean squared error. In addition, gradients are clipped to a
maximum norm of 0.5. The common optimizer Adam is used with a learning rate of
0.0005. Training runs for 10000 epochs, each with 100 episodes, which in turn perform
one step and backpropagate on a random batch of 128 transitions. The memory stores
the last 10000 transitions, and the target net is updated only every 10 epochs.
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# two networks; policy_net learns the values and target_net

# serves as a stable base for target values

policy_net = DQN()

target_net = policy_net

# epsilon-greedy policy

select_action(state):

if rand() > epsilon:

return argmax(policy_net.forward(state))

else:

return random_action()

for epoch in 1, ..., N:

for epsidode in 1, ..., M:

# add a transition to the memory

action = select_action(state)

transition = environment.step(action)

memory.store(transition)

# backpropagate a random batch from the memory

replay_batch = memory.sample(batch_size)

for transition in replay_batch:

q_value = policy_net.forward(state)[action] # predicted Q(s, a)

q_next = max(target_net.forward(next_state)) # max Q(s’, a’)

target_q = reward + gamma * q_next # target Q(s, a)

loss += loss_function(target_q, q_value)

loss.backpropagate(policy_net)

# transfer learned information to target_net

target_net = policy_net

Figure 15: Pseudocode for DQN. The policy network is updated every episode using
a random batch of previously observed transitions, and used to choose actions. The
target network, used to calculate the target Q-values, is updated to equal the policy
network every epoch. This prevents the policy network from chasing a moving target.
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All of this is very conservative, and the rate of convergence could significantly be
improved by using more aggressive settings, but these settings provide more stable
convergence for demonstrative purposes.

The average reward, evaluated every 40 epochs for 30000 iterations, is shown in Figure
16. This has in turn been averaged over 10 training runs.

Figure 16: The reward of the DQN averaged over 10 training runs of 10000 epochs
each with Imax = 63, L = 3, S = 2, evaluated every 40 epochs. The final average
reward is ≈ 3 · 32 = 96, which matches the rule of thumb for the optimal average
reward.

The final average reward can be seen to match the rule of thumb of the optimal
average reward being approximately 3λ = 3 · 32 = 96. Even on a non-AVX-512 CPU
using a single thread, the training time is on the order of one to two hours per run.
More aggressive settings may reduce this by a linear factor, and using a GPU can be
expected to provide an additional massive linear increase in performance on the scale
of orders of magnitude, as the batches and matrix multiplications may be processed
in parallel.
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Given the nature of the inventory model and the resulting Q-values, as was shown in
Figure 13, the value of Imax has relatively little effect on performance, as this simply
scales the range of inputs but not the general shape of the Q-values, something neural
networks have no trouble doing too.

Increasing L has the largest impact on the rate of convergence, as rewards for actions
taken are pushed further into the future, requiring longer to propagate. This may be
one of the explanations for the initial performance in Figure 16.

Furthermore, increasing S has little effect on performance, as any inventory is likely
to be sold within two periods under the current parameters. Attempting to extend
this by lowering λ will simply scale the optimal policy down by the same factor. In
addition, given the FIFO inventory policy, the vast majority of observed inventory
states will still have the unsold inventory in the first fields.

Although no further analysis of DQN for inventory management will be performed,
the current state of deep reinforcement learning in inventory management is covered
well by Boute et al. [1], which serves as an excellent starting point for further reading.

While lacking the elegance of a proper mathematical solution, the inevitable out-
performance of general, computation-driven methods over specialized, model-based
approaches has not gone unnoticed. A fitting quote to end this thesis is the bitter
lesson from Richard Sutton [5]:

We have to learn the bitter lesson that building in how we think we think
does not work in the long run. The bitter lesson is based on the historical
observations that 1) AI researchers have often tried to build knowledge
into their agents, 2) this always helps in the short term, and is personally
satisfying to the researcher, but 3) in the long run it plateaus and even
inhibits further progress, and 4) breakthrough progress eventually arrives by
an opposing approach based on scaling computation by search and learning.
The eventual success is tinged with bitterness, and often incompletely
digested, because it is success over a favored, human-centric approach.
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6 Conclusion

After a brief introduction of simple inventory models, a more general model incor-
porating finite shelf life and a lead time for orders was introduced for infinite time
horizon. Three conventional methods (policy iteration, value iteration and Q-learning)
had no trouble solving these model for small values of L, S and Imax, but started
running into a complexity wall as these values were increased.

Optimizations allowed this limit to be pushed one step further by reducing the state
space by a factor of |A|, as well as a significant reduction in memory footprint for
S > 0. This allowed the model to be solved for values of L and S that were previously
unmanageable, but only slightly shifted the ultimate limit.

Based on an analysis of the structure of the model, a heuristic approach was intro-
duced. This provided a high quality initial policy using a single pass of dynamic
programming to calculate the discounted intrinsic value of the inventories, followed by
a single pass of policy improvement to yield a near-optimal policy, which greatly out-
performed conventional methods after the first iteration. Still depending on the policy
improvement, however, led to the same complexity issues as the conventional methods.

Finally, a neural approach was taken, which proved itself to be capable of solving the
model for values of L, S and Imax that were previously unmanageable for conventional
methods with ease, scaling well with increases in these values.
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