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Abstract

Software-Defined Networking has become an important field of study for academia, while
at the same time showing success in real-world settings. ProbNetKAT allows one to model
interesting problems, such as fault tolerance in networks or expected congestion on specific
links, by providing a probabilistic language for Software-Defined Networking. Previous research
has not yet produced a compiler for this language. This thesis contributes an implementation
of ProbNetKAT in Haskell, as well as a compiler that allows the running of ProbNetKAT
programs in the ns-3 network simulator. The operational semantics of nondeterminism in
ProbNetKAT requires transforming the intermediate automaton to a specific normal form,
which we have implemented. The Haskell implementation enables probabilistic inference on
ProbNetKAT programs.



Contents

1 Introduction 1
1.1 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Background 3
2.1 Software Defined Networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 NetKAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 ProbNetKAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Probabilistic Inference 5
3.1 Semantics of ProbNetKAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Probabilistic Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Semantics in Haskell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Compilation 11
4.1 ns-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Probability First Normal Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2.1 Operational meaning of & . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2.2 Converting to Probability First . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Implementation 15
5.1 Generating the parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 Build the Kleisli Arrow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 Probabilistic Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.4 Building the Automaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.5 Normalizing the Automaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.6 Ns-3 structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 Conclusion 20

7 Future Work 20

8 Acknowledgements 21



1 Introduction

In the past two decades, Software-Defined Networking (SDN) has introduced a new era of dynamic
and flexible network management. Where previously, updating the way the network propagates
packets was determined in the switches and routers themselves, SDN centralizes control in software-
based controllers. This paradigm shift provides network administrators with more flexible control
over the network, enabling them to adapt and optimize network behavior in real-time, responding
to changing demands and conditions.

Traditional SDN has proven itself with real-world successes, for example, in cloud and Internet of
Things settings. Whereas most SDN languages have some form of nondeterminism or probabilistic
branching, the probabilistic SDN language ProbNetKAT combines both probabilistic choice and
nondeterminism to allow handling of uncertainties inherent in real-world network environments. The
probabilistic and nondeterministic semantics of ProbNetKAT can be used to model, for example,
unreliable network connections that may randomly drop packets. Having a working implementation
of this language allows for research into probabilistic networking protocols, which this thesis aims
to provide.

The main contributions of this thesis are a Haskell implementation of the semantics of ProbNetKAT
in terms of probability distributions, as well as a compiler for ProbNetKAT programs into a
form usable by the discrete network simulator ns-3. The former enables probabilistic inference
on ProbNetKAT programs and, for example, analysis of probabilistic forwarding protocols for a
modeled network. The latter facilitates the evaluation of ProbNetKAT programs within a simulated
network environment by visualizing the effects of the program on the behavior of packets in the
network. In this thesis, any time inference is written, it is to be taken as referring to probabilistic
inference specifically.

1.1 Thesis Overview

We describe the background of ProbNetKAT in Section 2. Section 3 discusses the semantics of
ProbNetKAT and inference on ProbNetKAT programs. In Section 4, we look at the process of
compiling ProbNetKAT programs and some potential problems that arise. Section 5 contains
details on the implementation of the topics discussed in Sections 3 and 4. We give our conclusion
in Section 6 and future work in Section 7.

1.2 Related Work

Previous work has been done on Probabilistic NetKAT and its predecessors. Smolka et al. [Smo+15]
introduce and discuss a NetKAT compiler. This work uses an intermediary automaton, aptly
called a NetKAT automaton, which has the same expressive power as the NetKAT language itself.
In our implementation, discussed in more detail in later sections, we also convert ProbNetKAT
programs into automata. The workings of the two types of automata are similar, but Smolka
et al. include a global and a local compilation step. The automaton is used for the global com-
pilation, whereas the local compilation uses Forwarding Decision Diagrams (a generalization of
BDDs) to output forwarding tables. We do not directly produce forwarding tables in our compilation.
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However, although ProbNetKAT has advantages over NetKAT, it comes with its own caveats. Kahn
[Kah17] shows that there are certain undecidable problems for probabilistic network programming
with some results specifically for ProbNetKAT. These results follow from the embedding of the
undecidable Post-correspondence problem and probabilistic finite automata in the language.

Another article discussing decidability for problems regarding ProbNetKAT programs is Scalable
verification of probabilistic networks by Smolka et al. [Smo+18]. They show that for ProbNetKAT
without histories, the problem of determining program equivalence is decidable. General results
without restrictions are not yet known. A notable difference between their work and ours is this
restriction, as we do support histories in the probabilistic inference.

In Scalable Verification of Probabilistic Networks, Smolka et al. [Smo+19] present an implementation
of the guarded and history-free fragment of ProbNetKAT, named McNetKAT, which is capable of
verifying probabilistic network programs of thousands of nodes.

Where ProbNetKAT extends the NetKAT language, Vandenbroucke and Schrijvers [VS19] in turn
propose a functional extension of Probabilistic NetKAT called PλωNK, allowing higher-order
functions that could make writing SDN programs easier.

Because ProbNetKAT has both probabilistic and nonodeterministic branching, the automata we
use also have these features. Sokolova [Sok11] have studied a variety of probabilistic systems
coalgebraically. Systems with nondeterministic branching followed by probabilistic branching
are called Segala systems. After normalization, our automata are more closely related to bundle
systems. The main difference is that we keep track of the number of repetitions in nondeterministic
branching, akin to using multi-sets as described by Jacobs [Jac21]. Of course, our original (not
normalized) automata can arbitrarily mix nondeterministic and probabilistic choice which makes
them Pneuli-Zuck systems, rather than Segala systems.
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2 Background

ProbNetKAT is based on existing work on the NetKAT SDN language, which itself is an extension
on the Kleene Algebra With Tests. This section provides an overview of ProbNetKAT’s background
in relation to Software-Defined Networking (SDN) and its predecessors.

2.1 Software Defined Networking

In traditional networking, switches forward network packets according to forwarding tables. Changes
in the structure of the network therefore require updating the forwarding tables of all affected
switches. This process not only becomes impractical in large and dynamic networks but also hinders
the flexibility required to adapt to changing demands.

The main idea behind SDN is to separate the data plane and the control plane of the network. The
data plane is the network layer that consists of switches that perform forwards based on forwarding
tables, while the control plane is made up of programs and servers that determine and manage
these tables. In SDN, you centrally program the behavior of the network and push the changes to
the switches.

2.2 NetKAT

Based on Kleene Algebra with Tests (KAT), Anderson et al. [And+14] proposed NetKAT as an
SDN language. The language extends KAT with primitives for reasoning about networking. NetKAT
is a Kleene Algebra with Tests with extra assumptions and constants. The essential object in
NetKAT is the network packet, which consists of a number of fields. A field can be thought of as a
variable, with a name and a value. A history is an ordered list of packets, conceptually keeping
track of changes to the packet as it moves through the network. The first item of the list denotes
the current state of the packet. In NetKAT, the constant dup denotes creating a copy of the head
of the history, growing the history. The other additions to NetKAT are assignment (to fields), tests
(on fields), drop, skip, sequential composition (·), and parallel composition (+). The Kleene star is
still present from KAT, and denotes zero or more repetitions. Tests behave like a skip or no-op
when the test is passed or as a drop if the test fails.

As stated before, NetKAT is a Kleene Algebra with Tests, which is a tuple (K,B,+, ·, ∗, 0, 1,¬)
such that [And+14]:

• (K,+, ·, ∗, 0, 1) is a Kleene algebra

• (B,+, ·,¬, 0, 1) is a Boolean algebra

• (B,+, ·, 0, 1) is a structural subalgebra of (K,+, ·, 0, 1)

NetKAT satisfies these structural demands, but these demands are not enough to define NetKAT.
The operations discussed above (dup, for example) require more structure, the axioms of which
are given by Anderson et al. [And+14] but will not be discussed in their entirety in this thesis. In
terms of denotational semantics, NetKAT programs denote functions of type H → P(H), mapping
histories to sets of histories. Dropping maps the history to the empty set.
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2.3 ProbNetKAT

Building on the basis of NetKAT, Foster et al. [Fos+16] proposed to extend NetKAT to include
probabilistic and nondeterministic branching. This allows modeling behavior such as a faulty network
link that sometimes drops packets. This article serves as the main inspiration for our research.
Foster et al. [Fos+16] proved that the extension from NetKAT to ProbNetKAT is conservative,
which means that any ProbNetKAT program that does not have probabilistic choices has the same
semantics as in NetKAT. However, some symbols differ as the parallel composition in NetKAT is
given by + and by & in ProbNetKAT. ProbNetKAT extends NetKAT with the random choice
operation p⊕r q for some ProbNetKAT expressions p and q. The argument r ∈ [0, 1] denotes the
probability for the left side of the operator; the probability for the right side is then 1− r. When
r = 0.5 this can be omitted for brevity.

If we want to model, for example, a faulty network link in ProbNetKAT, we can do so by
incorporating a chance of dropping the packet in the network topology. A very simple example
can be seen in Figure 1. Between switches S1 and S2 there is a 10% chance that the packet is
lost. We cannot model this with NetKAT, but in ProbNetKAT we can simply encode the edge as
sw = S1; sw ←− S2⊕0.9 drop. A slightly more complex example will be discussed in more detail in
Section 3.2.

S1 S20.9

Figure 1: Very simple network example. Packets travelling from S1 to S2 have probability 0.9 of
succeeding and 0.1 of being dropped.
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3 Probabilistic Inference

3.1 Semantics of ProbNetKAT

The semantics of ProbNetKAT is defined by Foster et al. [Fos+16] in terms of Markov kernels
[Kle20, Def. 8.25] . To understand the meaning of ProbNetKAT programs, we do not have to fully
understand this mathematical basis. Instead, we can think of ProbNetKAT programs as taking in
a network packet (formally, a history) and outputting a distribution on sets of histories. Recall
from Section 2 that a history is defined to be a non-empty sequence of packets, keeping track of the
path of the packet through the network. The atomic operations used in ProbNetKAT have fairly
simple semantics, as given below. In the definition, δ denotes the Dirac measure, and a ∈ 2H is a
set of histories. The type of the semantics is 2H −→ B −→ R. For an input a ∈ 2H , the program p
produces an output following the distribution given by JpK(a). B ⊆ 2(2

H) are the Borel sets [Kle20,
Def. 1.21] of the topology generated by basic clopen sets on the powerset 2H . The definitions given
by Foster et al. [Fos+16] are as follows:

JpK : 2H −→ B −→ R
Jx← nK(a) = δ{π[n/x]:η|π:η∈a}

Jx = nK(a) = δ{π:η|π:η∈a,π(x)=n}

JdupK(a) = δ{π:π:η|π:η∈a}

JskipK(a) = δa

JdropK(a) = δθ

As an example, we can see that the drop instruction in ProbNetKAT maps any incoming packet
to a distribution that has probability 1 for the empty set and 0 everywhere else. Chaining these
atomic operations is done with the sequential composition operator (;). Its semantics is given by:

Jp; qK(a) = JqK(JpK(a))

When programs p and q are composed sequentially, the output of p becomes the input of q. This is
nontrivial, as the output type of JpK(a) is a distribution, rather than a set of histories, as its input
is. Foster et al. [Fos+16] extend the definition of JqK by integration as shown below.

JqK(µ) ≜ λA.

∫
a∈2H

JqK(a,A) · µ(da), for µ a probability measure on 2H

Essentially, the required composition is the Kleisli composition. Another interesting part comes
from the nondeterministic (or parallel) (‘&’) and probabilistic composition (‘⊕’) operators. The
probabilistic composition takes an argument r that denotes the probability that the first argument is
used. Semantically, we multiply this r by the distribution produced by JpK to scale the distribution.
Of course, the second option has probability 1− r. For convenience, when r = 0.5, we can omit this
parameter and simply write ⊕. Combining both nondeterminism and probabilistic choice results in
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some problems with the operational semantics, which will be discussed in more detail in Section 4.
Intuitively, the parallel composition means that both subprograms are executed, and the results
are combined. In this sense, drop behaves like the identity for parallel composition. Similarly, skip
is the identity for sequential composition. Foster et al. [Fos+16] give the following semantics for
these compositions:

Jp&qK(a) = JpK(a)&JqK(a)
Jp⊕r qK(a) = rJpK(a) + (1− r)JqK(a)

We still need a definition for “&” on distributions as that is missing. Foster et al. [Fos+16] give
the following definition for combining distributions. Given measures µ and ν, both measures are
sampled independently, after which we take the union of these results (both subsets of histories).

(µ&ν)(A) ≜ (µ× ν)({(a, b)|a ∪ b ∈ A})

Finally, the Kleene star (‘*’) operation denotes iteration on a program. Giving its semantics is
not trivial. To obtain a definition, Foster et al. [Fos+16] construct an infinite stochastic process
starting with c0 ∈ 2H . They create the sequence by defining cn+1 as the result of sampling 2H

according to the distribution JpK(cn), giving the infinite sequence c0, c1, c2, · · · ∈ (2H)ω. Then they
ask if the union of the resulting sequence

⋃
n cn is in A (A ∈ B. We take the probability that A will

be sampled from this union to be equal to Jp∗K(c0, A).

3.2 Probabilistic Inference

Probabilistic programming languages, such as ProbNetKAT, inherently deal with distributions
rather than concrete values. We often want to reach some conclusions despite the uncertainty that
these distributions introduce in our decision-making process, such as predicting the chance that our
probabilistic protocol works as intended or estimating the congestion in a network link. Probabilistic
inference refers to taking a given prior probability distribution and attempting to estimate the
outcome by updating our knowledge. As an example, we could take a network topology and the
protocol and model it by implementing both in ProbNetKAT. We can assign to every network edge
a probability reflecting the chance that this edge passes packets successfully. This program then
models the behavior of the entire system, and we can draw samples from it. Depending on the
situation, we might be able to completely enumerate all possible execution paths.

To expand on this example and see the possibilities enabled by implementing the semantics of
ProbNetKAT, we look at a fault tolerance example by Foster et al. [Fos+16]. Figure 2 shows the
network topology used in the example.
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S1

S20.9

S3

1 S4

1

1

Figure 2: Example of a network topology with one link having a 10% fail rate.

We have four network switches, marked S1 through S4. All links except S1 −→ S2 have probability
1 of working correctly, while S1 −→ S2 only has probability 0.9, which means that it fails 10% of
the time. In ProbNetKAT we would encode this topology as follows:

t ≜(sw = S1; pt = 2; ((sw ←− S2; pt←− 1)⊕.9 drop))

& (sw = S1; pt = 3; sw ←− S3; pt←− 1)

& (sw = S2; pt = 4; sw ←− S4; pt←− 2)

& (sw = S3; pt = 4; sw ←− S4; pt←− 3)

One possible, although admittedly not very clever, policy for forwarding packets in this network
would be to send all traffic from S1 to S4 through S2. This policy in ProbNetKAT looks like this:

p ≜ (sw = S1; pt←− 2)&(sw = S2; pt←− 4)

If the packet is in S1, we set the port of the packet to 2, making the topology forward it to S2.
Similarly, if the packet is in S2, we set the port to 4. Combining both policy and topology into
a single ProbNetKAT program would be (p; t)∗, alternating between the policy and the network
topology. Finally, we would like to know how many packets end up in S4. To this end, we add
an egress predicate to the program e ≜ sw = S4. The complete program is then (p; t)∗; e. When
the Haskell implementation of ProbNetKAT is given this program with an input, it will show the
output distribution of the program. In this case, the output is as follows.

• 90.00% : [[(4,2)]]

• 10.00% : []

For the input [[(1, 0)]]. We can see that we have a probability of 90% that the packet ends up in
(4, 2) and a probability of 10% that the packet is dropped.
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If we want to see the history of the packet and see how it traveled through the network, we can
edit the topology to always dup the packet before editing the port.

t′ ≜(sw = S1; pt = 2; dup; ((sw ←− S2; pt←− 1)⊕.9 drop))

& (sw = S1; pt = 3; dup; sw ←− S3; pt←− 1)

& (sw = S2; pt = 4; dup; sw ←− S4; pt←− 2)

& (sw = S3; pt = 4; dup; sw ←− S4; pt←− 3)

The output of the network is as follows.

• 90.00% : [[(4,2),(2,4),(1,2)]]

• 10.00% : []

If we change the forwarding protocol to send any packet randomly through S2 or S3, we can
improve on this 90%. The protocol p′ as defined below implements this change.

p′ ≜ (sw = S1; (pt←− 2⊕ pt←−))&(sw = S2; pt←− 4)&(sw = S3; pt←− 4)

The output distribution reflects the fact that packets passing through S2 have a chance of failing.
We are left with only 5% dropped packets. We can conclude that policy p′ has better fault tolerance
than policy p for this specific network topology.

• 50.00% : [[(4,3)]]

• 45.00% : [[(4,2)]]

• 5.00% : []

It is the convention that the port number denotes the switch number of the other side of the
connection. So port 3 of switch 1 is the port connecting to switch 3. Similarly, the packet is received
on port 1 of switch 3.

3.3 Semantics in Haskell

As previously stated, the semantics of ProbNetKAT were implemented in Haskell. First, we define
the type of a packet to be a tuple of two integers, the first being the switch and the second the
port. A history is simply an (ordered) list of packets. We handle distributions on sets of histories.
We restrict packets to only consisting of these two values, as that makes the semantics easier to
implement and test, as the dimension of the tuple is constant. However, any payload could be quite
easily added as additional fields or by changing a packet to be a collection (set or otherwise) of
pairs of strings and integers. This would match more closely the definition of [Fos+16], but for
simplicity, we have not done so.

One can think of ProbNetKAT programs as taking in sets of packets and outputting distributions
on SH. We use Monad-Bayes, a library that implements probabilistic programming in Haskell by
Scibior [Sci23] for our probabilistic monads.
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A Kleisli arrow type takes the form Kleisli m a b, corresponding to a function of type a→ mb for
types a and b and some monad m (a probabilistic monad in our case). Using these Kleisli arrows,
we can perform the composition of subexpressions with Kleisli composition. This means that we
can define the semantics of individual operations in terms of mapping histories to distributions
of sets of histories and have the Kleisli composition deal with using distributions as input. We
use the following types, where m denotes a probabilistic monad from the monad-bayes package
(“Enumeration”, for example).

type Packet = (Integer, Integer) -- sw is the first element, pt is the second

type History = [Packet]

type SH = Set History

type KSH m = Kleisli m SH SH

The semantics of the atomic actions are then implemented by lifting basic functions into Kleisli
arrows. Taking the assignment, for example, to change the switch on a packet, we simply map a
packet to a packet with the correct switch value. We take that function and map it to the input
set. The resulting mapping is then lifted to a Kleisli arrow with arr. The ‘assign port’ function
is essentially the same. Drop maps to a singleton set containing only the empty set; skip is the
identity function (or rather the identity arrow). Testing involves filtering the sets based on the
given test and mapping a packet to the empty history (’dropping’) if it fails the test.

changeSw :: Integer -> History -> History

changeSw _ [] = []

changeSw i ((_,y):xs) = (i,y) : xs

assignSw :: MonadDistribution m => Integer -> KSH m

assignSw s = arr $ Set.map (changeSw s)

Parallel composition means that we take the union of executing both input arrows, which is achieved
by liftA2. The sequential composition is implemented simply with >>>, which is the left-to-right
composition for Kleisli arrows. This accomplishes exactly what we want: the output of the left-hand
side is the input for the right-hand side. The probabilistic composition takes a probability r and
draws a Bernoulli random variable that is 1 with probability r. This results in a probabilistic Kleisli
arrow.

par :: MonadDistribution m => KSH m -> KSH m -> KSH m

par = liftA2 Set.union

seq :: MonadDistribution m => KSH m -> KSH m -> KSH m

seq = (>>>)

prob :: MonadDistribution m => Double -> KSH m -> KSH m -> KSH m

prob r f g = Kleisli $ \h -> do

x <- bernoulli r

if x then runKleisli f h else runKleisli g h

Finally, we have to implement the semantics of the Kleene star. Foster et al. [Fos+16] give an
approximation for the Kleene star by performing a finite number of repetitions. We use the fact
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that [p∗] is approximated by [p(M)] for sufficiently large M [Fos+16]. We define p(0) = skip and
pn+1 = skip& p ; p(n). This is easily implemented in Haskell if the previous composition operators
have already been implemented. The ‘depth’ of the approximation makes the resulting computation
scale exponentially with the number of possible paths. The depth is configurable with the constant
value kleeneDepth in our code (with default value 5).

kleeneApprox :: MonadDistribution m => Integer -> KSH m -> KSH m

kleeneApprox 0 _ = skip

kleeneApprox n p = skip `par` seq p (kleeneApprox (n-1) p)

kleene :: MonadDistribution m => KSH m -> KSH m

kleene = kleeneApprox kleeneDepth

When we look at the example discussed in Section 3.2, we can already see a very noticeable difference
between p and p′. Using depth 10 for the Kleene star approximation on modest hardware, the
former works without issue, while the latter gets killed by the operating system for using too many
resources. Although Foster et al. [Fos+16] prove that we can approximate [p∗] mathematically, in
practice it might not always be feasible.
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4 Compilation

In order to run ProbNetKAT programs on the network simulator, we have to transform the program
into something the simulator nodes can run. The NS-3 simulator, as well as the behavior of the
simulated nodes, is written in C++. We transform the abstract syntax tree of a ProbNetKAT
program into an automaton. The nodes in the network run the ProbNetKAT program by adding
a field to the ProbNetKAT header (attached to the packet) that behaves like a program counter.
Before we can execute the program we have to transform it to a form that can be executed in
the ns-3 simulator. To this end the program is converted to an automaton. Therefore, in the
ProbNetKAT header we keep track of where in the automaton (node number) the packet currently
is. This automaton is structurally similar to the expression tree from which it is derived, with some
key differences.

In the automaton, nodes contain atomic instructions (dup, drop, skip, assignment, or test) or
denote a branch (either probabilistic or parallel). Atomic instructions have zero or one outgoing
edge. The probabilistic and parallel nodes have (at least) two outgoing edges. In the case of the
probabilistic nodes, the outgoing edges also have a weight, denoting the probability for that branch
to be taken. For the parallel composition nodes, the outgoing edges have no weight. How these are
handled is explained in more detail in Section 4.2.1.

Note that there are no sequential composition nodes left in the automaton. Atomic operations
that are sequentially composed form a chain in the automaton. If the sequential composition is
of sub-trees that are more complex and feature probabilistic or nondeterministic branching, the
resulting automaton is more complex than a chain as well. The right sub-tree of the sequential
composition must be placed at the end of all branches of the left sub-tree. This is further complicated
by the Kleene star, which ends up as edges to earlier nodes in the automaton. This means that we
cannot use a tree datastructure, and a more general graph structure must be used.

Figure 3 shows the transition from abstract syntax tree to automaton for a program (sw ←− 1; skip)∗.
For illustration purposes, this program is very simple.

*

;

sw ← 1 skip

(a) Abstract syntax tree representation.

sw ← 1

skip

(b) Automaton representation.

Figure 3: Program (sw ←− 1; skip)∗ represented as a tree and as an automaton (graph).
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4.1 ns-3

The target for our compilation of ProbNetKAT is the network simulator ns-3. This discrete event
network simulator is written in C++ and allows one to write code that will be executed on the
simulated network nodes. Therefore, we want to compile ProbNetKAT programs to a C++ snippet
that can be compiled into the simulation. Implementation details will be discussed in more detail
in Section 5.

We simulate a given network topology and send packets through this network. As the purely
mathematical semantics of ProbNetKAT does not have a sense of the physical nature of networks
(for example, network switches and latency), we have to make some decisions when we want to
actually run ProbNetKAT programs.

An important point is that there is no ‘send’ instruction in ProbNetKAT. This means that we have
to choose a different way of interpreting when a switch that implements a ProbNetKAT program
should forward a packet. We have chosen to use the dup command to mean ‘send the current packet
to the switch indicated by the switch number in the packet. As dup allows you to keep track of the
way a packet moves through the network and is therefore naturally called at the positions in the
program where a packet moves between switches, it is a reasonably natural fit.

The result of compiling a ProbNetKAT program is a C++ program snippet that contains instructions
to build the graph (automaton). The simulated network nodes interpret the program by finding the
node in the automaton where the execution of the program is left.

4.2 Probability First Normal Form

4.2.1 Operational meaning of &

To give operational meaning to parallel composition, we allow the network nodes to choose one of
the possible paths from a parallel composition node in the automaton. If a packet happens to be
dropped somewhere further in its lifetime, the node that drops the package communicates this to
the rest of the network via the control node. The specific path taken in the automaton is marked,
and subsequent packets at the same node at the same stage of their execution will take the other
path (provided that the other path has not been marked yet).

However, this approach is not enough, as the result of either path from the parallel composition
node can be random. See Figure 4 for a visualization of the problem. If by chance in the left subtree
the drop path is taken, our approach would mark the root node, making sure that a similar packet
will take the right subtree. If the next packet also ends up being dropped, we will have both sides
marked. To prevent this, we must prevent probabilistic choices after parallel branches. To this end,
we convert all programs to a Probability First Normal Form.

12



&

⨁ ⨁

p drop q drop

Figure 4: Automaton showing a problem that arises from combining probabilistic and nondetermin-
istic branching. The red drop nodes are problematic for the operational meaning of the parallel
composition.

4.2.2 Converting to Probability First

In Probability First Normal Form we do not allow probabilistic branching after any nondeterministic
branching. In general, we want to have all probabilistic branching done at the root of the automaton.
We swap the parallel and probabilistic composition and extend the automaton to include all possible
execution paths. This can be seen in Figure 5. At first glance, it is obvious that the automaton
grows very quickly when converted to this Normal Form.

13



⨁

& & & &

p q p drop drop q drop drop

Figure 5: The same program as in Figure 4, but in Probability First Normal Form. The semantics
of the programs are equivalent, but this version fixes the operational problems with the parallel
composition.

The implementation of normalization is discussed in more detail in Section 5.5. An important
consideration is also that we should keep track of the parallel branches that a packet has taken in
the automaton. These could be nested, and if a packet is dropped, we should mark the last parallel
branch that was taken. Of course, this could be further optimized by marking higher branches if
both execution paths end up marked.

14



5 Implementation

The project consists of one main Haskell program along with a number of modules. Figure 6 depicts
the flow of the program and the module responsible for each part. All source code is publicly
available on GitHub: https://github.com/floydremmerswaal/probnetkat. The program parses
the command-line input and handles reading the input files. The parser is generated with a parser
generator, discussed in more detail in Section 5.1. This parser generates an abstract syntax tree
of the input program (if the input is valid). This syntax tree is transformed into a Kleisli arrow
as discussed in Section 3, or compiled into C++ instructions as described in Section 4. After we
have constructed the Kleisli arrow representing the program, we can easily calculate the output
distribution of running the program on an input distribution.

Also included in this project are several programs written to allow our generated C++ code to be
ran in the ns-3 simulator. This is explained in more detail in Section 5.6.

Figure 6: Diagram showing the workings of the project. The regular text under the bold text refers
to the module that contains the code that accomplishes the step. The dotted line towards the
simulation step means that it is a step that has to be done manually by the user.
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5.1 Generating the parser

In order to parse ProbNetKAT programs, we need a parser. The compiler front-end generator
BNFC takes in a BNF and produces a parser in the desired language, as well as datatypes for
abstract syntax trees. We have chosen to target Haskell. BNFC targets the Alex lexer generator
and the Happy parser generator.

The BNF used to parse ProbNetKAT can be seen in Figure 7. As explained previously, we
have chosen to restrict packets to contain two fields, the switch and the port number. To ease
implementation, the assignments and tests for these fields are encoded as different expressions
instead of a general assignment and test expression that has both a name and a value argument.
We have included both line (anything after “//”) and multiline (anything between “/*” and “*/”)
comments to allow one to annotate their ProbNetKAT programs.

en t rypo in t s Exp ;

EAssSw . Exp3 : := ”sw <−” In t eg e r ;
EAssPt . Exp3 : := ”pt <−” In t eg e r ;
ESwEq . Exp3 : := ”sw =” In t eg e r ;
EPtEq . Exp3 : := ”pt =” In t eg e r ;
EDup . Exp3 : := ”dup ” ;
ESkip . Exp3 : := ” sk ip ” ;
EDrop . Exp3 : := ”drop ” ;

ESeq . Exp2 : := Exp2 ” ;” Exp3 ;
EProbD . Exp1 : := Exp1 ”+” Exp2 ;
EProb . Exp1 : := Exp1 ”+[” Double ” ]” Exp2 ;
EPar . Exp : := Exp ”&” Exp1 ;

EKleene . Exp : := Exp ”∗” ;

c o e r c i on s Exp 3 ;

comment ”//” ;
comment ”/∗” ”∗/” ;

Figure 7: BNF grammar for ProbNetKAT to be used by BNFC.

5.2 Build the Kleisli Arrow

When the lexer and parser are finished, we are left with the abstract syntax tree that represents the
program. To build the Kleisli arrow used for inference, we can recursively walk through this tree,
as seen in the Haskell code below. When the semantics of the actions and compositions are defined,
we simply use these functions for the corresponding nodes in the tree. The result is a single arrow
representing the entire computation described by the ProbNetKAT program. Note that the parser
differentiates between probabilistic composition with and without argument (EProb and EProbD)
to allow users to simply write ⊕ when r = 0.5, instead of ⊕0.5.

16



transExp :: MonadDistribution m => Exp -> Kleisli m SH SH

transExp x = case x of

EDup -> dup

ESkip -> skip

EDrop -> drop

EAssSw integer -> assignSw integer

EAssPt integer -> assignPt integer

ESwEq integer -> testSw integer

EPtEq integer -> testPt integer

EKleene exp1 -> kleene (transExp exp1)

ESeq exp1 exp2 -> seq (transExp exp1) (transExp exp2)

EPar exp1 exp2 -> par (transExp exp1) (transExp exp2)

EProbD exp1 exp2 -> prob 0.5 (transExp exp1) (transExp exp2)

EProb exp1 double exp2 -> prob double (transExp exp1) (transExp exp2)

5.3 Probabilistic Inference

The Haskell library Monad-Bayes implements probabilistic monads that allow us to do inference
and sampling. We use the Enumerate monad to get a complete and exact result of the resulting
distribution after passing the input packets through the program by enumerating all possible paths.
Alternatively, we can use the SampleIO monad (with fixed or random seeding) to generate any
number of samples we want. Both options are available to the user via different command-line
options. To show how this works, we reuse the example in Section 3.2. Recall that we have a
network consisting of four nodes, S1 − S4. The link between S1 and S2 is only 90% reliable. To
perform the inference step shown for that example, we first write the program in a file:

// t o t a l network i s (p ; t ) ∗ ; e
// po l i c y (p)
( ( ( ( sw = 1 ; pt <− 2) & (sw = 2 ; pt <− 4 ) ) ;
// topology ( t )
( ( sw = 1 ; pt = 2 ; dup ; ( ( sw <− 2 ; pt <− 1) + [0 . 9 ] drop ) ) &
( sw = 1 ; pt = 3 ; dup ; sw <− 3 ; pt <− 1) &
(sw = 2 ; pt = 4 ; dup ; sw <− 4 ; pt <− 2) &
(sw = 3 ; pt = 4 ; dup ; sw <− 4 ; pt <− 3 ) ) )∗ )

// e g r e s s ( e ) , or what ends up in switch 4?
; ( sw = 4)

This file is available in the repository as test/infer.pnk. We then run the inference on it by running
the program on this input file with the input [[(1,0)]], which means that the packet starts in switch
1. We use option -i to run exact inference.

stack run -- -i test/infer.pnk "[[(1,1)]]"

The output of the program shows the resulting distribution:

90.00% : [[(4,2)]]

10.00% : []
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5.4 Building the Automaton

In the compilation step, we convert the abstract syntax tree into an automaton, represented by
a graph data structure. We use the Functional Graphing Library, originally motivated by the
author Martin Erwig in his paper Inductive Graphs and Functional Graph Algorithms [Erw01].
This package allows users to construct arbitrary graphs, internally represented by a patricia tree.

The graph is constructed by visiting the AST nodes in a depth-first manner. Due to the structure
of the tree, any leaf node is an atomic instruction, and all other nodes are either one of the
compositions or the Kleene star. When a sequential composition is encountered, we first recursively
construct the graph for the left child, after which we can do the same for the right child. In an
(AST) leaf node, we create an edge from the (graph) parent to the generated (graph) node. To
do this, the recursive function call takes the node number to be used by the child, and the parent
node number. In a similar manner, the probabilistic and nondeterministic branchings are dealt
with. However, they are simpler, as they retain the structure from the AST and do not need to
connect their subtrees together. To handle the Kleene star correctly, the recursive function has
another argument that signifies if the current context is in the subtree of a Kleene star. This is
necessary as we have to loop back to an earlier state in the automaton. We also need to know which
state to loop back to. A notable exception to this is that even if we are currently processing the
subtree of a Kleene star, the left hand side of a sequential composition should not loop back to the
parent node of the Kleene star. Only the last expression (‘most right hand’) has an edge back up.
The resulting graph can be operationally problematic, as discussed earlier in Section 4.2. We will
discuss the solution to these problems in the next section.

5.5 Normalizing the Automaton

The normalization step assumes that an automaton already exists as specified in previous sections.
To convert the graph to a normalized version, we use an intermediate tree representation again.
This spanning tree contains the weights of the edges in a list inside the nodes instead of on the
edges.

A state is maintained during the transformation, remembering the next node to generate (an
incremented integer) and a map from integers to lists of nodes that maps a node number to a list of
nodes that have been generated from that node. This map starts empty. While walking through the
tree recursively, nondeterministic choices are merged down, and the probabilities of probabilistic
choices are multiplied and normalized. After we have recursively built up the new spanning tree, it
is converted back into an automaton, which is now normalized.

The resulting automaton is converted into C++ instructions by listing all nodes and edges of the
graph, resulting in the construction of an equivalent data structure in the C++ program. Some
optimizations are definitely still possible, but beyond the scope of this thesis. This could include,
for example, detecting equivalent sub-graphs and merging execution paths.
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5.6 Ns-3 structure

Ns-3 allows us to program our own simulations. In the simulation, we first generate the network
topology. In our tests, we have always used a network consisting of n nodes, all connected to every
other node. These nodes run a program that we also provide. This program handles sending and
receiving the network packets and also runs the ProbNetKAT program. The packets themselves are
UDP packets with some additional data, notably the switch and port numbers of the ProbNetKAT
packet, as well as the ProbNetKAT automaton node that should be executed next.

In total, we actually use n+ 1 nodes in the simulated network and use that extra ingress node to
send initial packets into the network. The simulation program contains a specification on when and
where the initial packets should be sent. Alternatively, one can specify the rate at which packets
should be sent for the entire duration of the network simulation. Of course, more intricate ingress
policies could be programmed into the simulation.

After running the simulation, it can be visualized with the NetAnim program provided by ns-3.
The simulated nodes are visualized in a ring in the bottom right, whereas the ingress node is placed
in the top left to avoid confusion. An example of a visualization can be seen in Figure 8. In the
figure, we see a network packet moving from node 0 to node 1. We built our implementation on top
of the UDP implementation in ns-3, which is why the packet shows up as a UDP packet.

Figure 8: Visualisation of a network simulation running a compiled ProbNetKAT program.

The simulation automatically stops when there are no packets left on the network and there are
no packets scheduled to be sent either. Alternatively, the simulation is run for a predetermined
period of time. As ProbNetKAT has probabilistic branching, we use the random number generator
provided by ns-3. Both the seed and the run numbers for this generator can be changed; a fixed
seed is the default for reproducibility, but a random seed could also be used.
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6 Conclusion

In this thesis, we have discussed the Software Defined Networking language Probabilistic NetKAT.
We set out to find a way to run ProbNetKAT programs and perform probabilistic inferences on
these programs. To this end, a parser has been created, and the semantics of the language has been
implemented in Haskell, enabling inference on packets and programs.

In addition, a compiler has been implemented that transforms a ProbNetKAT program into an
automaton. This automaton can be compiled into a C++ program that the network simulator ns-3
can run. The combination of both probabilistic and nondeterministic behavior in ProbNetKAT
introduces problems for the operational semantics, which are solved by transforming the automata
into a Probabilistic Normal Form. This normal form retains the semantic meaning of the original
automaton but makes sure that all probabilistic choices are made before any parallel branching can
occur. This normalization step is also implemented in our Haskell project. The simulated network
nodes in ns-3 run an interpreter for the ProbNetKAT automaton, while the packets sent through
the network are adapted UDP packets. The simulation can be visualized using the existing NetAnim
ns-3 animator.

7 Future Work

The generated automata, both regular and normalized, may be larger than necessary. For example,
generating the graph for a program p; (a&b); q would place copies of q underneath both branches
of the parallel composition. A more space-efficient way to handle this would merge the paths. It
would be interesting to find a way to minimize these automata, especially Probability First Normal
Form, as normalized graphs can become quite large. In previous work, Smolka et al. [Smo+15]
have used a generalization of Binary Decision Diagrams called Forwarding Decision Diagrams to
optimize their automata and the resulting forwarding tables. A similar approach might be fruitful
for ProbNetKAT, perhaps using probabilistic BDD/FDDs.

Another avenue to explore would be integrating with SDN APIs such as OpenFlow, or working
towards running ProbNetKAT programs on physical network hardware.

Finally, our Kleene star implementation for inference uses an approximation. Further work could
involve finding a way to implement the semantics without approximation. This might be done by
iterating until a fixed point is reached.
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