
Master Computer Science

The XAI-Economist: Explainable Reinforcement
Learning in RL-Assisted Policy Generation

Name: Koen Ponse
Student ID: s1861581
Date: 12/10/2023
Specialisation: Artificial Intelligence
1st supervisor: T.M. Moerland
2nd supervisor: N. van Stein

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Abstract

Reinforcement learning (RL) has come a long way in recent years and has
recently shown the ability to assist in the creation of governmental policies by
being able to both create policies and simulate their potential outcomes. However,
if RL-assisted governmental policy design is to succeed, we need scalable RL
solutions for complex future environments. Furthermore, we require the wider
population to trust the black-box algorithms that will directly affect their lives.
Explainability in reinforcement learning, however, is a young field of research with
few generally applicable solutions. In this thesis, we recreate a recent application
of RL-assisted governmental policy generation in a simpler environment and show
how our environment demonstrates the same real-life economic behavior while
being a much more scalable solution. We further propose an explainability pipeline
for deep RL consisting of novel and existing explainability tools for finding state
importance values and feature importance values. We then validate these methods
in our new economic environment. While the state importance values may already
explain what RL agents find important, we can further process them by reweighting
feature importances by the state importance values. We show how this process
allows for a clearer and more fair representation of the most important input
features of an RL agent.

Contents
1 Introduction 1

2 Preliminaries 2
2.1 Definitions . 2
2.2 Reinforcement Learning . 2
2.3 Foundation . 4
2.4 Explainable Deep Reinforcement Learning 5

3 Related work 8
3.1 AI governmental policy generation . 8
3.2 Explainability in Deep Reinforcement Learning 9

4 RL-assisted Economic Policy Generation 11
4.1 Environment . 11
4.2 Methodology . 14
4.3 Results . 15

5 Explainable Deep Reinforcement Learning 20
5.1 Explainability in RL-assisted policy generation 20
5.2 State importances in Deep RL . 22
5.3 Feature Importances in Deep RL . 24
5.4 Results . 26

6 Limitations & Discussion 31

7 Conclusion 33

1 Introduction
Every day, more and more governmental policies are created that affect the lives of
an increasing number of people. It is not surprising then that the task laid out to
policymakers is becoming increasingly difficult. As such, historical data and (economic)
models are of great importance in deciding on a good policy. However, the accuracy of
historical data for predicting future events may be questionable in our ever-evolving world,
and it is subject to the Lucas-critique [1]. Furthermore, traditional economic models may
not capture the complexity of the world, and we may lack models in new, unexplored
situations. Recent advances in AI technology allowed us to create better models, but
these still assume the availability of a lot of data.
Reinforcement learning (RL) has come a long way in recent years, even playing a major
role in the very well-known large language models [2]. As reinforcement learning may
allow us to simulate unseen scenarios with a minimal amount of data, recent work has
been published to assist policy-making through the use of RL [3, 4, 5]. These created
simulations may not yet be accurate representations of the real world, but they could
be the initial steps in assisting policy creation through AI. As the simulations become
more sophisticated, these techniques can be used to both create policies and predict their
potential outcomes without the need to manually program specific behavior.
In this thesis, we build on the work of the AI economist [4], a two-level multi-agent rein-
forcement learning algorithm designed to find optimal tax policies. In the AI economist,
a small economy is simulated in which RL agents have to maximize their utility, while
an RL policy-maker sets tax rates such that equality and productivity are both maxi-
mized. This economic framework is then used to generate new taxation rules that are
compared with real-world taxes, showing an improvement in equality while productivity
stays relatively high.
Although the AI economist is a good first step in AI-assisted policy design, the created
environment is computationally demanding, simulates only a small population (4 or 10
agents), and the spatial setting it creates causes unrealistic biased behavior of the agents.
As such, we propose a similar simulated economy, but in a simpler 1D environment. We
show that our environment is capable of producing the same real-world economic behavior
as observed in the original AI economist paper, while agents can learn more than 10 times
faster in a much more scalable implementation.
When designing governmental policies, it is key that we use methods that can be trusted
by the general population. While current black-box algorithms, such as neural networks,
may be required for solving complex tasks, they do not provide the required trust, as
they are not transparent by nature. As such, if AI-assisted policy design is to succeed
through the use of deep reinforcement learning, we need strong explainability methods
for DLR. However, general explainability for black-box algorithms such as deep learning,
and especially deep reinforcement learning, is still a young and poorly explored field of
research [6, 7, 8].

1

With this in mind, we propose novel methods for finding state importance values for
explainability in reinforcement learning, applicable to any current policy- or value-based
deep reinforcement learning method. We experiment with these methods in our new eco-
nomic simulation. We further use the existing black-box explainers SHAP [9] and LIME
[10] for local feature importance, and propose a novel method whereby we reweight the
feature importance scores by state importances. This results in a clearer visualization of
important features and, perhaps more importantly, provides us with a fairer representa-
tion of important input features.
The remainder of this thesis is structured as follows. The next section, Section 2, gives
an overview of reinforcement learning in general and about Foundation, the framework
on which we build our environment. Section 3 discusses earlier work in the field of AI-
assisted policy generation and explainability in deep reinforcement learning. Next, Section
4 introduces our environment and methodology and compares our environment with that
of the original work [4]. Section 5 discusses our method of explainability by providing
insight into the model’s state importance and also discusses existing methods for local
feature importance explanations. These two methods are combined to provide weighted
global feature importance explanations, and the section concludes with experimentation
on trained agents of section 4. Finally, Sections 6 and 7 conclude our work with our
limitations and pointers for future work.

2 Preliminaries
This section will provide background information on key concepts that are used through-
out our work. First, we will define important terminology used throughout the rest of
this thesis. Next, we will provide a mathematical and intuitive explanation of reinforce-
ment learning, the backbone of our work. We will further describe Foundation and the
Gather-Trade-Build environment, both designed as part of the AI economist [4]. Finally,
this section contains background information and a taxonomy of explainable AI in deep
reinforcement learning. This taxonomy is used to group related works and ours.

2.1 Definitions
Throughout this thesis, we refer to governmental or economic policies. This is done to
avoid confusion between a policy and a reinforcement learning policy, which is used in
reinforcement learning to describe how an agent decides on its actions. Although we only
mention governmental policies, we should note that the general idea of AI-assisted policy
design applies to any (to be) enacted policy by governments and businesses.

2.2 Reinforcement Learning
Mathematically, reinforcement learning (RL) [11] environments can be defined as a
Markov decision process (MDP). An MDP consists of a 5-tuple (S,A,R, T, γ) where

2

S is the set of all states (state space), A the set of all possible actions (action space),
R is the reward function: S ×A×S 7→ R, T is the transition function that maps states
and actions into a probability distribution of the next states: S ×A× S 7→ [0, 1], and γ
is the discount factor, which governs the importance of future states. in an MDP, a state
s ∈ S is a valid Markovian state if the probability of a next state, given an action, is
independent of previous states. In reinforcement learning, an RL agent is given s ∈ S and
produces a ∈ A according to its policy π, where π is trained to maximize the outcome
of R, while R and T are unknown. Formally, the policy π gives the probability of action
a in state s, given some (trainable) parameters θ:

π(a|s, θ) = Pr(at ∈ A, st ∈ S, θt) (1)

The mathematical formulation provides us with a machine learning paradigm, different
from (un)supervised learning. In reinforcement learning, we are provided with an environ-
ment in which our learner is able to act using a set of pre-defined actions. The actions
themselves are not labeled, as might be the case in supervised learning, but rather the
actions lead to a new state of the environment along with a scalar reward. The environ-
ment state is what the learner observes and uses to decide on its actions, and it is the
reward that the learner uses to update its predictions. However, rewards are not directly
linked to any action and may even not be obtained after each action. Rather, the learner
is tasked with finding specific rewards in a, possibly vast, state-action space, simply by
performing actions. Through all this, reinforcement learning promises to be applicable to
a broader range of applications without the requirement for human-labeled data, since
we can theoretically simulate any environment and only need to define a reward function
to optimize for.
Traditionally, tabular reinforcement learning focused on environments small enough so
that we could fit the entire state action space into memory. Learners were typically
assigned the task of updating a Q-table, where each table entry, known as a Q-value,
represents the expected future rewards in a state, given an action. A policy could then
use these Q-values to select actions. For example, the greedy policy would always select
the action in a state with the highest Q-value.
As stated above, tabular reinforcement learning requires relatively small environments.
As environments become more complex and contain larger or continuous state/action
spaces, tabular reinforcement learning becomes infeasible. To combat this problem, new
methods fall into the domain of deep reinforcement learning. Deep reinforcement learning
methods use function approximation methods (often a neural network) to approximate
the state so that not every state-action value needs to be stored in memory. Deep RL
methods may follow the same value-based approach as traditional tabular RL and use
the network to output Q-values for a given state and use a predefined policy π to take
actions [12]. However, deep RL methods may also be policy-based and output a policy
π directly, for example, by providing an action distribution over the available actions.
This eliminates the need for a predefined policy π and allows for continuous actions.

3

X0

X1

X2

....
Xn

a1 a2 a3 a4 a5

Vπ(s)

Figure 1: Abstraction of the actor-critic paradigm. A neural network takes in a vector
(or matrix) of state features and outputs both a probability distribution over the actions
and a scalar value V that is an estimate of the future rewards given the current state.
Both the actor and the critic may be the same network with two output heads, be two
completely different networks or share parts of the network.

However, pure policy-based methods produce high variance results due to Monte-Carlo
estimates for the cumulative rewards. To combat this, some methods adopt the actor-
critic paradigm [13] shown in Figure 1. These methods output both a policy and a state
value V , where V is the expected future reward from the current state. In this thesis,
we use PPO, an actor-critic algorithm explained in more detail in Section 4.2.

2.3 Foundation
Our work builds on Foundation, a multi-agent reinforcement learning framework for eco-
nomic simulations, first introduced in the AI economist [4]. Foundation is built to simulate
a general population and a government-like policy maker. The worker agents (general
population) can take actions in an environment and are all trained to optimize the same,
individual, goal. This goal may, for example, be to optimize one’s own utility, defined as
a function of consumption and labor. Meanwhile, the planner agent is tasked with setting
governmental policies that affect the population. The policymaker has its own goal, for
example, to optimize the equality and productivity of the population. The Foundation
framework can be broken down as follows:
The scenario sets the number and type of agents active in the population, along with
their optimization goal.
The world is the 2D grid world in which the population can move and act.
The components define the actions and reactions of the environment that all actors
can perform. Creating new components is the primary method of expanding on your
environment and is what makes Foundation a friendly method for building environments.
Foundation is built with the Gym-style API [14], providing the familiar step() and
reset() functions, integrating with other libraries that rely on this structure. At each
environment step, Foundation steps through each defined component and performs the

4

Timestep: 0 Timestep: 250 Timestep: 500 Timestep: 750 Timestep: 1000

Figure 2: The original Gather-Trade-Build 2D environment [4] at different timesteps of
an episode. This version with four agents contains four different quadrants. The colored
stars indicate the different agents, with the same-colored pixels indicating houses built by
this agent. The blue pixels represent water, which agents cannot move through. White
and light green pixels indicate stone and wood respectively. In each episode, agents are
spawned in a corner of each quadrant.

agent actions in random order if the agents decide to act in this component. The scenario
may also define events that may occur at each step, such as updating the world with
newly spawned resources.
With Foundation, the authors of the AI economist [4] have created the Gather-Trade-
Build environment, shown in Figure 2. In Gather-Trade-Build, a number of agents are
spawned in a grid world with two resources; wood and stone. At each time step, agents
can move, build, and trade. All these actions cost a predefined amount of labor. When
moving, if an agent lands on a resource, it is picked up and placed in the agent’s inventory.
Building is the process of combining one of each resource to build a house at the current
location. In exchange for building a house, the agent receives coins. The agents are tasked
with maximizing their utility, a function of (logarithmically decreasing) coin and labor. In
addition, each agent has a different skill level for collecting resources and building houses.
These skill levels influence the amount of coins and resources gained when performing
the respective action. In Gather-Trade-Build, an additional planner agent collects taxes
each 100th-time step and sets tax rates for the next 100 time steps. After collecting the
taxes, the planner agent redistributes all the collected taxes uniformly among all agents.
The planner is tasked with maximizing both the equality between agents and the total
productivity. In Section 4 we experiment with the Gather-Trade-Build environment and
explain, in more detail, the alterations we have made for our own environment.

2.4 Explainable Deep Reinforcement Learning
To define explainability in our work, we follow the definition of the work of Vourous in
which the authors define explainability as “the ability to provide surface representations of
interpretations” [6]. By this definition, explainable AI is not only the practice of providing
good surface representations, but also creating methods that create good interpretations
of a model or simply resort to using more interpretable models. However, these improved
interpretations should still result in good explanations. A decision tree can be considered

5

a highly interpretable model, as it provides expressive explanations of its actions through
a decision tree chart. However, the explainability of a decision tree may still be low if
the tree becomes very large, as we are no longer able to properly provide a good surface
representation of this large tree.
In this work, we focus on the post hoc methods. Post hoc methods create interpretations
of (generally black-box) model’s behavior after predictions are made. Although works
such as that of Rudin et al. [15, 16] advocate against the use of black-box models in favor
of intrinsically interpretable models [17, 18], we cannot ignore the recent successes of deep
learning models, particularly when applied to deep reinforcement learning [19, 2, 20, 12].
Yet, it is widely understood that explainability in AI is the key to gaining trust in a
system [21, 22, 15], and as such, we should attempt to improve the current post hoc
explainability methods.
Generally, we can subdivide post hoc explainability methods in mimicking and distillation
methods [6]. Mimicking methods attempt to mimic a trained black-box model with a
more interpretable model, such as a decision tree. Through mimicking, we may gain all
the benefits of the more interpretable model, but we should be aware that this method
only explains the mimicked model and not the original model. This is generally not
an issue if we can use the mimicked model in production (only leveraging the training
capabilities of the original black-box model), but this may not always be feasible. Further-
more, as reinforcement learning methods improve and we are able to solve more complex
problems through RL, we can expect environments and models to grow in complexity as
well. This raises doubts about the scalability of these mimicking methods.
Distillation methods attempt to dissect a model’s decision or reasoning via some part
of the system, such as the inputs, outputs, or parts thereof. Distillation approaches
include methods that attempt to explain an output through importance measurements
of the input features. These methods, as well as the discussed mimicking approaches, are
largely based on the literature of explainable AI (XAI) of supervised learning. Because
reinforcement learning deals with recurrent problems and is more or less modeled after
how humans behave in an environment, we can probe our reinforcement learning with
different explainability questions. That is, we should be able to probe the model for
explanations in a form similar to the way a human would provide explanations. Humans
can explain their actions or feelings in various ways, which we list below.
Historical explanations use historical data to provide reasoning on the current action.
Someone taking a longer route to work may explain this behavior because in the past it
was observed (or heard) that the shortest route is under construction.
Current data (feature importance) explanations simply use data that we can cur-
rently observe. These we have described earlier and provide explanations by highlighting
important input features.
(Sub-)goals may also be used as an explanation. Going to work can be explained by the
objective of buying a house in the future. This kind of explanation attempts to estimate
a future state and may be particularly interesting if an agent has multiple objectives, as

6

it may allow us to visualize what the agent is currently attempting to maximize.
What-if state explanations also provide explanations by estimating a future state. As
an explanation for paying taxes, we may provide a state in which we are fined after a tax
agency performs an audit. This example of an explanation is in its counterfactual form
(what-if we do not) and these counterfactual forms are not limited to what-if explana-
tions.
Intuitive explanations generally explain an action with a feeling or score about the
situation. These explanations may be satisfactory because we can assume that these are
a good summary of someone’s past experiences. However, when information is highly
critical, often when we attempt to visualize one critical action or state, we may want
to understand the underlying explanation of this intuition. Yet, because intuitive expla-
nations provide a representation of someone’s inner beliefs, they may be highly relevant
when attempting to generate trust in the system. In reinforcement learning, intuitive ex-
planations imply the use of a model’s output directly to generate explanations. We know
that, through training, the outputs are a reasonable summary of the past experiences of
the models.
Although the above list is not created as a comprehensive list, it functions as a good,
and extendable, taxonomy for explainability methods for reinforcement learning methods.
We also note that we can often explain situations or actions with multiple types of
explanations. We can, for example, explain the fact that we would like to eat because
we have not eaten in a long time (historical data) or because we feel hungry (current
data). Both explanations are valid, but different types of explanations may be favorable
in certain situations, depending on the target audience.

Local versus global explanations So far, we have discussed the “how” of explain-
ability methods. Important is that we should also categorize “what” is explained. These
categorizations are also made in the works of Vourous and Puiutta & Veith [6, 23]. To
explain “what” is explained, we have mainly discussed local explanations. Local expla-
nations are used to directly explain a specific action. It is important to note that we
can also provide (semi) global explanations that explain the general behavior of an agent
or at least the behavior over a longer period of time. These global explanations can be
provided as a summary of local explanations in a single visualization. Furthermore, in
addition to explaining actions, we may sometimes want to probe for someone’s feelings
about a particular situation or state to better understand its behavior. For example, we
expect self-driving cars to find states with crossroads to be very important. We also
expect models to be surprised when we know we have placed them in a highly nontypical
state. If these feelings are not what we anticipate them to be, we are less likely to trust
the system.

7

3 Related work
This section outlines earlier work on both subjects of this thesis. First, we discuss related
work in AI-assisted governmental policy generation, both in the domain of reinforcement
learning and non-RL works. Next, we describe previous work in the domain of explainabil-
ity in deep reinforcement learning, not particularly applied to AI-assisted governmental
policy generation.

3.1 AI governmental policy generation
Since modeling real-world behavior is a complex problem that is likely to require large
amounts of computational power, designing and modeling real-world policies through
artificial intelligence is a relatively new field. Previous work has been conducted in the
space of governmental policy validation. Garrido and Mittone have trained agents using
real-world data and use these agents to validate various tax audit strategies to optimize
against tax evasion [24]. A similar paper by Bloomquist studied optimal strategies to
combat tax evasion by small businesses [25]. Both studies show that it is possible to
optimize tax audit strategies in their simulated world, highlighting the capabilities of AI-
assisted governmental policy generation. However, in these works, the validated policies
are still human-crafted, and the training of the agents required real-world data.
With recent advances in reinforcement learning, the AI economist [26, 27, 4] has at-
tempted to make progress in the field by eliminating the need for real-world data and
allowing AI-created policies. They introduce a simulated economy in a 2D world in which
multiple RL agents with different skill levels can move, gather resources, build houses for
income, and trade with each other. Simultaneously, an RL planner agent sets new tax
rates every 100 time steps with the goal of maximizing equality times productivity. They
compare tax policies created by their planner with existing tax policies and a free market
setting. They find that, in their simulated environment, the RL-generated tax policies
outperform existing policies when optimizing for productivity and equality.
Trott et al. [5], build on the same framework introduced by the AI economist, and exper-
iment with COVID-19 policies in the USA. Here, the agents are the states that may enact
more strict policies, possibly reducing COVID-19 deaths but increasing unemployment.
The government (planner) is responsible for providing subsidies for policies it thinks need
to be enacted to uphold social health and productivity.
Koster et al. [28] develop Democratic AI, in which reinforcement learning is used to
design a policy that a majority of real humans prefer. This is validated in an online
game where humans have to decide whether to keep or share a sum of money. An RL
agent and humans both designed a mechanism for redistributing the money persuading
humans to share. The authors found that the RL agent successfully outperformed the
human mechanism by often winning the majority vote.
Recently, a policy design competition was held [3], in which competitors had to design AI

8

agents that negotiate with each other in a simulated world. Measured is then how these
negotiated deals affect the global economy and the global climate crisis. The results have
not yet been made public, but this competition highlights an increase in the popularity
of AI-assisted policy design.

3.2 Explainability in Deep Reinforcement Learning
As discussed in Section 2.4, this work focuses on post hoc distillation methods for black-
box reinforcement learning methods. In this area, various works exist to provide local
explanations for a model’s action through feature importance explanations. Obtaining
approximated global feature importances in these methods is often trivially done by taking
an average over a range of local explanations. Here, various methods focus on visual-
based agents, often highlighting the visual element of a state to which attention is paid
[29, 30, 31, 32, 33]. Other methods in this category include SHAP and LIME [9, 10].
Although not developed for reinforcement learning in particular, both methods are model-
agnostic tools for finding feature importances given a single input (or observation). SHAP
does this by removing features from the input one at a time and observing the effect on
the output. SHAP has been applied in various reinforcement learning works to explain the
outcomes of a model [34, 35, 36, 37]. LIME is similar to SHAP, but instead of removing
features, it slightly shifts features around its mean. In Section 5, we will provide more
detailed explanations of both SHAP and LIME and will use both methods in our pipeline
to explain RL agent behavior.
As we have previously discussed in Section 2.4, reinforcement learning provides opportu-
nities for various forms of explanations. Most notably, we are able to use the extra time
dimension for explanations. Reinforcement learning explainability methods can, and likely
should, take advantage of this. Amir and Amir were among the first to have done so by
introducing the HIGHLIGHTS algorithm [38]. HIGHLIGHTS aims to provide the end-user
with a summary of important states so that the user can make an educated assessment
of the model’s performance. To estimate importance, as measured by the model, HIGH-
LIGHTS assumes access to the model’s Q-values and calculates state importance by
comparing the best action in a state with the worst action:

I(s) = max
a∈A

Qπ
(s,a) −min

a∈A
Qπ

(s,a) (2)

HIGHLIGHTS is validated by showing summaries to humans of three agents with differ-
ent skill levels. The humans are then tasked with selecting the best-performing agent.
Results are compared against random summaries, and summaries only showing the first
few states. The results show that the HIGHLIGHT-generated summaries outperform
both baselines when it comes to correctness and confidence. HIGHLIGHTS attempts
to explain a model by means of semi-global historical explanations, which are built by
summarizing local intuitive explanations. HIGHLIGHTS success over the baselines shows
that explanations built through a model’s Q-value estimate can be a valid explanation
method, demonstrating the strength of intuitive explanations. However, a weakness of

9

HIGHLIGHTS comes from its evaluation. The agents compared are trained for various
lengths. This means that the weaker agents may not yet have had the time to gener-
ate appropriate Q-values and, in turn, they will not be able to demonstrate their true
behavior well.
Probably developed simultaneously, Huang et al. [39] publish a work similar to HIGH-
LIGHTS in which they seek to automatically generate a set of critical states, as deter-
mined by the model through intuitive explanations. Huang et al. describe two meth-
ods of identifying critical states. The first method is value-based and is similar to the
HIGHLIGHTS method. We again assume knowledge of a model’s Q-estimate and then
calculate the state importance via the following formula:

I(s) = max
a∈A

Qπ
(s,a) −

1

|A|
∑
a∈A

Qπ
(s,a) (3)

Huang et al. then determine whether a state is critical by comparing I(s) to a user-
defined threshold t:

C(s) = I(s) > t (4)

Compared to Equation 2, Huang et al. assign an importance score based on how much
better the best-performing action is compared to all other actions, rather than the worst
action. In reinforcement learning, this value is often referred to as the advantage (A) of
a state-action pair1. Equation 3 is likely to give a better estimate of the importance of
a state, due to a lower variance.
The second method of Huang et al. of measuring state importance is policy-based. If
the model outputs a policy directly in the form of a distribution over the actions, Huang
et al. measure state importance by calculating the entropy H of the action distribution:

I(s) = H(π(s|·)) (5)

The idea here is that in critical states, the necessary action would be very obvious and
highly probable, resulting in a low entropy. As such, Huang et al. marks a state as critical
if its entropy is below threshold t:

C(s) = I(s) < t (6)

Huang et al. found that computing importance scores through the value-based approach
is more reliable, however, the policy-based approach is directly applicable to continuous
action spaces without the need for discretization. In Section 5.2, we build on both
approaches of Huang et al. to estimate state importances in multi-agent environments
where agents have access only to a state’s value (V).

1Here, the advantage A is calculated over a random policy. However, more generally in RL, the
advantage is weighted by a (trainable) policy.

10

Sequira et al. further produced multiple works that extend the HIGHLIGHTS algorithm
with additional interestingness factors beyond state importance [40, 41, 42]. Their most
recent work [42] proposes an extensive toolkit for the explainability of reinforcement
learning. In this paper, the authors go beyond providing intuitive explanations for the
various interestingness factors and also provide SHAP [9] explanations to explain the
intuitive explanations by means of feature importances. The proposed work is a first step
in solving the lack of an easy-to-use and generally applicable explainability method for
reinforcement learning. However, the toolkit has as of yet not been released and is not
designed for multi-agent environments.
The explainability method of Bogges et al. [43] is two-fold. First, they propose to provide
a user with a summary of an agent’s policy, which is provided in the form of historical
data. This summary is based on states that satisfy the inclusion of one or more predefined
predicate features. This set is further refined by including only likely states. To provide a
more local explanation of the agents, Bogges et al. also propose to provide a query-based
explanation in the form of NLP answers to the following questions: “when do agents do
actions”, “why don’t agents do actions in states” and “what do agents do in predicates”.
The first two questions provide feature importance explanations, with the latter doing
so in counterfactual form. The final question uses intuitive explanations by providing
action distributions over states that contain predicate features. The strength of Bogges
et al. is that through the predicate set, the pipeline provides NLP explanations that
can immediately be understood by a human. However, this implies that an expert has
to create predicate sets beforehand, and larger predicate sets may adversely affect the
explainability. Furthermore, the method is not tested on problems with large state-action
spaces and, as such, may not be applicable to real-world simulations.

4 RL-assisted Economic Policy Generation
This section will first describe our environment, built as an adaptation of Foundation and
the Gather-Trade-Build environment (Section 2.3). Our experimental setup is largely
based on that of the AI economist [4], but adapted to our environment and lacking
comparison with the existing US and Saez tax system [44]. We highlight the changes
between our work and the AI economist, reproduce their work, and compare it with
our environment. We show that our simplified and more scalable setup demonstrates
the same real-life economic behavior in agents and, as such, is an improved tool for
AI-assisted governmental policy design.

4.1 Environment
The base version of Foundation and the Gather-Trade-Build scenario of the AI economist
uses a 2D map in which agents move around, gather resources, and build buildings to
generate income. This spatial setting, with partial observability, creates the need for a
complex network that is created in the form of a recurrent network with convolutional

11

layers to process the spatial map input. This complexity slows down training and requires
extensive tuning. In turn, users are less able to prototype different scenario settings and/or
scale to more complex scenarios or larger populations. Furthermore, as shown in the AI
economist, a spatial setting may cause unrealistic behavior, such as agents being blocked
by buildings and resources.
To solve the described problems, we propose a new environment, built with an adaptation
of the Foundation framework that allows 1D vector observations. Similarly to the Gather-
Build-Trade scenario used by the AI economist, our scenario allows agents to mine for
resources, convert these resources into coins, and trade with other agents.
Mining allows an agent to choose one of the resources in the scenario and gain one
or more of these resources from the available world resources in exchange for performed
labor. The amount of resources mined by an agent is determined by the following formula:

Mr = min(Wr,max(1, bSm + ρc)) (7)

where Wr is the amount of currently available resources in the world (infinity in our
experiments), Sm is the skill of an agent and ρ is a random number between 0 and 1.
Agent skills are randomly assigned to agents according to a Gaussian distribution with µ
1 and σ 0.162, similar to the distribution of human IQ levels [45].
Building allows agents to convert a number of each resource into coins. Coins directly
influence the reward signal. In contrast to the AI economist, agents are not required
to stand on an empty plot of land and can perform this action at any time they have
the required resources in their inventory. When building, an agent will lose the required
resources and will gain a number of coins multiplied by their building skill (Sb). Similarly
to the mining skill, the building skills are randomly distributed according to a Gaussian
distribution with µ 1 and σ 0.161.
Trading allows agents to place a bid or sell order for one of the resources, exchanging a
single resource for coin. Orders are active for a predetermined number of time steps, and
any agent can place a maximum number of orders simultaneously. After each component
step (after placing all orders), whenever a bid price is higher than or equal to an ask price
of the same resource, a match is found and the resources and coins are exchanged between
the two agents. When a match can be made between multiple existing orders, priority
is given to the lowest ask and highest bid. Ties are first resolved by the lifetime of the
order and then at random. When a match is made between two orders with different
prices, the most recent order (the order that triggered the match) sets the price. This is
in contrast to the original AI economist implementation, where the oldest order sets the
price. We found that the original caused agents to bid (ask) at high (low) prices so that
their order would be evaluated earlier without punishment.

2in order to amplify differences in skill levels in small populations, we raise each final skill level to
the power of 8

12

At each time step, agents observe their inventory and labor, the available resources in the
world, the state of the market, and the current tax brackets if applicable. A comprehensive
image of the observation space is shown in Figure 3. Agents can then perform a single
action out of the described components (mine, build, trade). A reward is given each time
step as the delta in an agent’s isoelastic utility minus their obtained labor:

Ua,t =
c1−η
a,t − 1

1− η
− la,t (8)

Ra,t = Ua,t − Ua,t−1 (9)
Where ca,t and la,t are an agent’s number of coin and labor respectively at time step t. η
is a constant ≥ 0. Higher η values will create a more concave function, where marginal
utility will decrease faster with each additional coin earned.

Market

Market rate
Lowest sell & Highest bid
Number of offers & bids
Agent: Lowest offers & highest bid
Agent: Number of offers & bids
Agent: number of offers

Sell 6Buy 3
Sell 6Buy 6
Sell 7Buy 4
Sell 4Buy 5
Sell 7Buy 2

Agent: wood

Agent: stone

Agent: coin

Agent: labor

Inventory

: Observed by workers
: Observed by planner
: Workers act on
: Planner acts on

0

%

$

7 tax rates
Timestep & Tax year info
Agent: marginal income
Agent: previous income
Agent: previous marginal income

Agent: Mine stone skill
Agent: Mine wood skill
Agent: Build skill

Figure 3: An overview of the components of our 1D vector environment, modeled after
the 2D Gather-Trade-Build environment [4]. Worker agents keep an inventory and can
mine for stone and wood, convert these resources into coins by building, and place orders
on the market. The planner agent sets tax rates for the next 100 time steps. After
each 100 time steps, taxes are collected according to these tax rates, and the collected
coin is uniformly redistributed. An overview of the observation space is given through
the eye icons. Whenever an observation property is prefixed with ’Agent:’, this property
is related to each individual worker agent and is not observable to other worker agents.
For instance, Agent: stone is the amount of stone kept by a single agent, which is not
observable by other agents. In contrast, Market rate refers to a global market rate,
whereby all agents observe the same value. Whenever the planner observes an Agent
observation, the planner does so for each agent individually. Market observations are
separate for each of the resources (wood and stone).

The final component in our environment is only acted upon by the planner agent. As
is the case in the AI economist, the planner agent sets tax rates in predefined brackets
every 100 time steps. Before setting new tax rates, the planner will also collect coins
from all agents according to the previously in-place tax brackets and will redistribute
the collected coin uniformly across all agents. To set its taxes, the planner observes the

13

current and past incomes of all agents, as well as their inventory. Some information, such
as an agent’s labor, remains hidden. Again, a comprehensive overview of the observation
space can be found in Figure 3. The planner is rewarded for increasing equality and
productivity. Productivity is measured in the total coin among all agents and equality is
measured as the Gini index [46]:

Rp,t = (Et · (
n∑

a=0

ca,t))− (Et−1 · (
n∑

a=0

ca,t−1)) (10)

Et = Ginit =
∑n

ai

∑n
aj
|cai − caj |

2n2c̄
(11)

Where n is the total number of agents in the environment and c̄ is the average amount
of coin across all agents.

4.2 Methodology
We trained all agents using RLlib [47], allowing us to generate environment traces in
parallel in 30 environments with different random seeds. Both the planner and the
agents use a similar model of 2 fully connected hidden layers of 128 nodes with all worker
agents sharing the same weights. Furthermore, all agents are updated using the RLlib
implementation of proximal policy gradients (PPO) [48]. We have used the clipped PPO
version, calculating the loss without a KL-penalty via the following formula:

LPPO = min(Φθ(a|s) · A, clip(1− ϵ, 1 + ϵ,Φθ(a|s)) · A) (12)

Φθ(a|s) =
πθ(a|s)
πθk(a|s)

= exp(log πθ(a|s)− πθk(a|s)) (13)

Φθ(a|s), is the ratio between the probability of action a in state s in the old policy
π and the new policy πk. Due to the clipping in Equation 12, this ratio cannot stray
further than the clipping parameter ϵ. The right-hand side of Equation 13 is generally
how computing this ratio is implemented. Notably in Equation 12, is the Advantage A,
which we have discussed prior in Section 3.2. The advantage here is calculated by means
of the critic model, part of PPO. The critic model is a regression model, updated with a
mean squared error loss function. Lastly, to promote exploration, the complete loss also
includes the entropy of the currently produced action distribution:

LH = ω · Hπ(s) (14)

Lπ = LPPO − LH (15)

The entropy coefficient ω scales the importance of the entropy in the loss. High ω values
will promote action distributions with high entropy, rewarding more random action distri-
butions and in turn increasing exploration. It is then common practice to anneal ω during

14

training, promoting exploration during the initial phases, and gradually decreasing this
as the model learns how to properly act in the environment. This entropy regularization,
together with stochastically sampling from the produced action distribution, is our main
method of exploration in all our agents.
All hyperparameters, for both agents and planners, together with those of the environ-
ment, are listed in Table 1. Most notably in the environment parameters, the available
resources is set to infinity. Although this eliminates scarcity, it removes an extra hy-
perparameter that is to be varied with the amount of agents. Additionally, time is still
scarce, so agents still have to carefully manage their actions to maximize their reward.
Similarly to the curriculum learning approach used in the AI economist, we first train
worker agents without any taxes in a free market setting, to ensure that agents start
working. After training for 5 million time steps, we start training workers and planner
simultaneously with taxes enabled. Agents are then tasked with maximizing their, now
post-tax, utility. Lastly, in order to speed up training and prohibit agents from taking
actions that are not possible, we apply action masking whenever an action cannot be
performed. For example, a sell order cannot be placed on the market whenever an agent
has no resources in their inventory to sell. Action masking is performed by setting the
action probability of the masked actions to 0 after predictions are made.

4.3 Results
To reproduce the original AI economist results, we have used the code provided in the AI
economist GitHub3 and used the same two-phase training procedure to train the agents.
First, agents were trained for 25 million steps in a no-tax environment. Afterwards, we
enabled the planner and trained both agents and planner for an additional 150 million
steps in both the environment with taxes enabled, and taxes disabled. The original
experiments were conducted over 1 billion steps, far exceeding our 150 million steps.
However, our results showed that rewards have (almost) converged at 150 million steps,
whereas the original results showed training was still ongoing at over 800 million steps.
This difference may be explained by the original graphs presenting results in their 10-agent
environment, where we have used their 4-agent setup for our reproduction. Nevertheless,
our reproduction results, shown in Figure 4, verify the original results and show how the
AI economist is a capable method of finding new tax schedules that manage to increase
equality while minimizing reduction in production.
However, our reproduction results highlight a key issue with the original AI economist
setup, namely its computational requirements. Each of our runs was completed in ap-
proximately 8 to 9 days4. After the 150 million steps, most of our available RAM (1.5TB)
was used up, limiting us from conducting longer experiments. As such, we conclude that
the original AI economist setup has extreme computational demands for even a simple

3https://github.com/salesforce/ai-economist/tree/a84d5f3fdcabb207d9fde7754d34906903b3e184
4We used 16 Intel Xeon E5-2630v3 cores@ 2.40GHz (32 threads)

15

https://github.com/salesforce/ai-economist/tree/a84d5f3fdcabb207d9fde7754d34906903b3e184

Worker agents
Number of hidden layers 2
Number of hidden nodes 128
Discount factor (γ) 0.998
learning rate (α) start, end, steps 0.5, 0.025, 1000000
Entropy coefficient (ω) start, end, steps 0.5, 0.025, 1000000
Planner agent
Number of hidden layers 2
Number of hidden nodes 128
Discount factor (γ) 0.998
learning rate (α) start, end, steps 0.003, 0.0001, 20000000
Entropy coefficient (ω) start, end, steps 2.0, 0.125, 20000000
Training paramaters (both planner and workers)
PPO clip parameters 0.3
minibatch size 2000
num sgd iterations per update 5
train batch size 10000
Environment parameters
Episode length 1000
Tax period length 100
Resources 2 (Wood, Stone)
Number of resources to build 3 per resource
Base build payment 20
Max multiplier build payment (Bs) 5
Build labor cost 2
Mine labor cost 2
Trade labor cost 0,02
Max bonus mining skill (Bm) 5
World resource (Wr) regeneration probability ∞ (no scarcity)
Agent starting coin 0
isoelastic eta (η) 0.27

Table 1: Model parameters for both our planner and worker agents and the environment
parameters. All worker agents in the environments share a single network. Both the
learning rate and the entropy coefficient are linearly decayed, from start to end over
steps.

economic simulation with a population of 4. As real-world use cases will most likely
require a more realistic environment, computational requirements will only increase. Cre-
ating a more realistic environment will make this problem worse, prohibiting any real use
cases. We argue that AI-assisted policy generation should be more scalable and allow
for relatively quick training, such that different scenarios can quickly be prototyped. For

16

(a) (b)

(c) (d)

Figure 4: Original AI economist reproduction results. Results are averaged over 4 repe-
titions. Absolute numbers differ from the originally presented results [4] due to possible
changes in the environment settings. Yet, we observe the expected behavior of the AI
economist (green line) managing to raise equality (Figure 4b) through its taxes over the
free market setting (purple line). Due to these taxes, we expect productivity to drop
compared to the free market setting, which we observe in Figure 4a. The final planner
rewards in Figure 4c show that the combined task of optimizing both equality and pro-
ductivity is improved upon by the AI tax planner. Figure 4d shows us that the worker
agents achieve, on average, marginally higher utility. However, the maximum and mini-
mum values (indicated by the shaded area) are brought substantially closer by the taxes.

this reason, we recreated the original environment as outlined in Section 4.1.
The results of our vector environment are shown in Figure 5. We observe similar results
in our simplified environment but converge after roughly just 40 million training steps,
or 20 hours, in an environment of 15 agents (in contrast to 4 in the reproduction).
The AI economist’s [4] Gather-Trade-Build environment demonstrated real-world eco-
nomic behavior without preprogramming this behavior. This is noted as the key advan-
tage of RL-assisted governmental policy generation, as environments can be simulated
without the need to manually implement all behaviors (which may be incorrectly imple-
mented). In order for our simplified environment to be an improvement over the original
work, we should be able to observe similar behavior emerge. We demonstrate that our
simplified environment recreates the same three economic phenomena.

17

(a) (b)

(c) (d)

Figure 5: Results of our vector environment during 40 million training steps. The top
two images show productivity and equality averages over the 30 simulated environments.
The two bottom images represent the average rewards of the planner (5c) and workers
(5d). Shaded areas indicate the minimum and maximum observed values across agents
in the 30 environments. Figure 5d shows that tax policies slightly increase the average
utility of all agents.

The equality-productivity tradeoff is the phenomenon observed in the real world, whereby
people are not motivated to perform difficult labor if they are not adequately rewarded.
Generally, a government has a great incentive to increase equality among its population,
which may be achieved by raising taxes and redistributing wealth. However, high taxes
can disincentivize working, as marginal incomes become smaller and work becomes less
rewarding. This increase in equality may then have an adverse effect on total produc-
tivity, and this effect should be carefully managed with any tax policy. This effect is
demonstrated in our environment in Figures 5a and 5b. The free market setting achieves
higher overall productivity compared to the environment with taxes enabled, but this
causes lower overall equality.
Specialization in our environment is demonstrated in Figure 6. We visualize the dis-
tributions of each agent and clearly show that each agent has a different approach to
maximizing its post-tax utility. This behavior is not manually programmed, but rather
just a result of their randomly distributed skill level for mining resources and building. We
can see some agents opting to mine and sell, some agents buy their resources to build,
while other agents may choose to generate income simply by buying low and selling high.

18

Agent 0 Agent 2 Agent 3 Agent 5 Agent 11 Agent 14

Actions
Build
Buy
Sell
Mine Wood
Mine Stone

Figure 6: Action distribution over an entire episode in our environment for a subset of
agents. Agents are not manually programmed to pursue certain actions but still specialize
in a different strategy to optimize their post-tax utility. This emergent specialization is
only due to the different randomly assigned skill levels for mining and building. While
this data comes from a single episode, similar distributions are found in other episodes
and training runs.

Finally, the authors of AI economists show that their agents also demonstrate tax gaming
strategies. Agents move labor to low tax years in order to maximize their total post-tax
income. We can demonstrate this very same behavior in our environment in a similar
fashion by calculating the paid tax under the assumption that agents earned a fixed income
each year (the average yearly income). Figure 7 shows this effect by plotting the actual
taxes paid against the taxes to be paid under the described assumption. This effect may
also be explained by the productivity-equality trade-off, as it shows that agents work more
in low-tax years. Nonetheless, all described behaviors demonstrate real-world economic
effects that emerge simply by training to optimize a real-life goal rather than manually
modeling this behavior. This emphasizes the advantages of reinforcement learning for
simulating behavior in economic simulations.
We finish this section with a discussion about the produced economic policies. We have
plotted some of the RL-created tax schedules in Figure 8. We can observe that the created
tax schedules are very unconventional. That is, whereas real-life tax schedules usually
follow a progressive system, the produced tax schedules do not adhere to this. Naturally,
real-world use cases should most likely constrain the policymaker in some way such that
the produced policies would align better with the preferences of the population. Likely,
the policymaker should also be penalized for producing erratic tax schedules that are very
different from the previously in-place tax schedule. It is worth noting that not limiting the
policymaker in such ways could be a major advantage of using RL to create governmental
policies, as it could lead to the development of novel concepts. An illustration of this can
perhaps already be seen in Figure 8, where taxes are typically higher for lower incomes
than for middle-income brackets (and then taxes increase again for the highest incomes).
This could be interpreted as the planner guiding agents into the middle-income brackets,
encouraging them to work but then punishing them for becoming too wealthy. Highly
rewarding agents for doing an average amount of work.

19

Figure 7: Tax gaming strategies visualized for all 15 agents with data from 100 different
episodes. The colors indicate the average income earned by each agent. The actual paid
tax is compared with the tax agents would pay if they consistently performed an equal
amount of labor (earned 1/10th of the average total income) in each tax year. Agents
often move labor into low tax years and are in turn able to decrease their overall taxes.

5 Explainable Deep Reinforcement Learning
This section delves into our method of explainability in multi-agent deep reinforcement
learning and will validate our method on the models created in Section 4. Our pipeline
consists of three methods for discovering state importance, inspired by previous work
focusing on small tabular problems [38, 39, 40] and more recent work that includes the
focus on deep RL methods [41, 42]. The proposed methods make use of the current
typical deep RL model outputs (the value head and the policy head) and, as such, should
be applicable to most, if not all, current deep RL algorithms.

5.1 Explainability in RL-assisted policy generation
A policymaker considering reinforcement learning to aid in its policy creation process has
some important explainability issues that need to be addressed when it comes to the
produced policies. First, the policymaker must be certain that the policies produced are
not biased or discriminatory. Another issue is that a policymaker needs to understand
the considerations that an RL planner has made. Finally, the policymaker must be able
to verify that the simulated environment is indeed simulating real life. These final two
issues are broadly defined, and a policymaker may have many questions to satisfy them.
We explain them more thoroughly below.
The discriminatory policy issue is a prevalent issue in any AI system that has to make
decisions about humans. In typical AI systems, the training data may contain inherent

20

0 1000 2000 3000 4000 5000
0%

20%

40%

60%

80%

100%
Ta

x
ra

te
Period 1

0 1000 2000 3000 4000 5000
0%

20%

40%

60%

80%

100%

Period 3

0 1000 2000 3000 4000 5000
0%

20%

40%

60%

80%

100%

Period 5

0 1000 2000 3000 4000 5000
Income

0%

20%

40%

60%

80%

100%

Ta
x

ra
te

Period 6

0 1000 2000 3000 4000 5000
Income

0%

20%

40%

60%

80%

100%

Period 8

0 1000 2000 3000 4000 5000
Income

0%

20%

40%

60%

80%

100%

Period 10

Figure 8: Different tax schedules created by the RL planner, after training, in a single
episode. Similar, unconventional and erratic tax schedules are found in different episodes.
The cutoffs of the different brackets are fixed, the planner is only able to adjust the tax
rates within these fixed cutoffs with intervals of 5%. Real-world applications would likely
require constraining the planner, but these unconventional outcomes may provide insights
not thought of before. Interestingly, we often observe that taxes are higher in low-income
brackets than middle-income brackets (after which taxes rise again). This could be seen
as the planner guiding the worker agents into middle-income brackets, motivating them
to do an average amount of work but punishing them for becoming too wealthy.

biases, and the model may be taught to replicate these biases. Because RL works without
such training data, this problem is partly alleviated. However, RL systems may still learn
unwanted biases that need to be made visual. We may address this problem by removing
certain input features, yet we still run the risk that other input features inadvertently
permit the same behavior [49]. Further still, removing all features that may lead to
(negative) biased or discriminatory behavior may not always be feasible, especially in a
policy creation task. For example, if we design traffic policies, we may want to include
data on percentages of people with visual impairment in a region to create a good policy.
However, we must then ensure that the reinforcement learning system is not using this
data negatively. Because we cannot effectively eliminate all input features that lead to
biases or discrimination, we have to inspect feature importances. In the next two sections,
we go over our pipeline for feature importance in reinforcement learning, which involves
utilizing the previously discussed SHAP and LIME methods [9, 10]. In this thesis, we
apply this pipeline in the domain of RL governmental policy creation, but note that the
proposed work should be applicable to other domains in model-free deep reinforcement
learning.

21

The issue of understanding the produced policy is more domain-specific and likely
requires a solution that is less generally applicable. Likely, a policymaker would benefit
from a flow chart that indicates which actions are taken based on the composition of
population characteristics. To further create trust in the system, a policymaker would
also likely need to probe the system with various what-if questions. This work does not
aim to solve these explainability questions. However, part of our pipeline, explained in the
next section, does highlight important time steps and, as such, does give some insight
into what the RL policymaker thinks about the state of the world. If this aligns well with
the policymakers’ thoughts, this will, we hope, increase their trust in the system.
Finally, the environment validation issue would generally require comparisons with
real-world data. While this is not necessarily a traditional XAI solution, policymakers
would likely only trust a simulation that demonstrates real-life behavior. For example, we
may simulate existing tax rate schedules and observe whether the simulated equality and
productivity match that of the real world. Even if we meet this requirement, we must
still verify if the agents behave like real people to create new policies, since the agents
are placed in a new unseen environment that we cannot validate with actual data. This
work attempts to partly validate human-like behavior by investigating whether the agents
pay attention to features that humans would and whether the agents find similar time
steps as important.

5.2 State importances in Deep RL
In this section, we describe our methods for estimating state importance (as measured by
the model). Visualizing the importance of states has proven to be an effective method
for increasing trust in a system and quickly demonstrating a model’s capabilities [38, 39].
Furthermore, state importance may partly aid us in solving the environment validation
issue, by allowing us to compare a model’s state importance values with those of a human.
If these values align, this may increase trust in the simulation. Perhaps most importantly,
state importance values allow us to improve global feature importance measurements in
reinforcement learning systems by weighing local feature calculations by their importance.
We argue that this improves measurements because important features in important
states are more important than important features in unimportant states.
Similarly to the work of Huang et al. [39], we measure state importance through policy-
based and value-based methods. Allowing compatibility with each of the types of outputs
as shown in Figure 1. We have altered their methods and reformulated them so that they
are applicable to multi-agent environments. Together, our two methods are applicable to
value-based [12], policy-based [50], and actor-critic-based models [13]. Accommodating
for most, if not all, current model-free deep RL models.

Value-based State Importance If the used RL model predicts state values V (the
model’s estimate of future rewards in the current state), this output can function as
an excellent statistic for what the model considers important. However, this absolute

22

value needs to be put into context to provide useful information. As such, we define
the importance of a state as the difference between two value estimates. That is, we
compare the value of state st+H , where H is a predefined horizon of steps, with a value
estimate of the same time step, when we have taken random steps in the time steps
between t and t+H:

It,t+(H−1) =
|V (sπt+H)− V (sγt+H)|

H
(16)

Here V (sπt+H) and V (sγt+H) are the value estimates after acting on the actual policy π and
a random policy γ respectively, for H steps. We average the final calculated importance
over the entire horizon of timesteps. The entire process is schematically visualized in
Figure 9a.
We take H steps before measuring I because V -estimates may attribute a sudden increase
or decrease in V to only a single step. For example, a self-driving car closing in on a wall
may only drop V on the first time step where it is too late to correct a mistake and hit the
wall. However, due to an increased risk, we would typically also attribute importance to
the steps leading up to the mistake. Granted, some methods may already incorporate risk
in their V -estimates, especially in on-policy algorithms. In these methods, we may want
to decrease H, or even set it to 1, to achieve an increased accuracy of I. However, this
comes at the cost of computational requirements due to the need to copy the environment
state at each time step. Furthermore, even on-policy methods likely never incorporate
all the risk in their V estimate that our random agent would estimate.

π

γ

St

St+1 St+H

St+1 St+H

...

... V:72

V:89
It,t+H:} 17

H
_

(a)
0

%

a1 a2 a3 a4 a5 a1 a2 a3 a4 a5

(b)

Figure 9: On the left (a), our value-based method for finding state importance It. At
timestep t, we perform two rollouts of H steps. One rollout performs regular steps with
policy π and the other rollout performs random steps with random policy γ. After H
steps, the trained value head of the neural network evaluates both states and outputs
V . The absolute difference between these values, divided by H, is then attributed as
the state importance for the time steps t to t + H. On the right (b), there are two
action distributions. The leftmost action distribution is of low entropy (decisive) and is
attributed with high importance by the regular policy-based method. In contrast, the
rightmost action distribution is of high entropy and indicates low importance.

23

Policy-based State Importance For measuring the importance of states through the
policy output of a model, we may use the definition by Huang et al. [39] which measures
the entropy of the output distribution (Figure 9b). In Huang et al., this entropy is
compared to some threshold to indicate whether a state is critical. Because our work
focuses on importance scores instead of a binary answer, the inverse of the normalized
entropy could be used to indicate state importance:

It = 1−H(π(·, s)) (17)

Here, we normalize the entropy (indicated by the bar) over a single episode. However, the
entropy of the output distribution only indicates the decisiveness of the agent. Although
decisiveness may indeed indicate importance (a fireman will act decisive in case of a
fire), we may also act decisive in trivial situations, and so can RL agents. Due to this,
in addition to measuring the decisiveness of the agents, we also propose to measure
importance as a change in entropy. We calculate this by summing over the current
entropy minus H previous entropy values and averaging this final value:

It =

∑H
i=0 |H(π(·|st))−H(π(·|st−i))|

H
(18)

By taking the absolute value, this method finds states where the agent suddenly has
to act decisively (likely indicating an important state) or suddenly stops being decisive
(indicating an end to importance or perhaps some form of surprise). Arguably, the latter
of the two is not as significant and we may not even consider these importance values.
Nevertheless, we believe that there is still information present in these circumstances that
a human may be interested in and thus have chosen to include both in this study.
In general, our state importance methods all produce historical data explanations by
summarizing local intuitive explanations. Although we discuss state importance in this
work, our complete pipeline used in this thesis averages state importances over multiple
episodes. As such, our final results are more akin to time step importance values and
can in turn be calculated once and then used in future explanations. To get a reason-
able average of the state importance per time step in the high-variance multi-agent RL
environments, we average over 10 episodes. This allows the implementation to be easily
parallelizable.

5.3 Feature Importances in Deep RL
This section details the SHAP and LIME methods [9, 10], two model-agnostic tools for
finding local feature importances, and the manner in which they are used in our work. We
will strengthen the outputs generated by both SHAP and LIME by the state importances
we have calculated in the previous section.
Local Interpretable Model-agnostic Explanations (LIME) [10] assumes that all complex
models are linear in their locality, similar to how regular functions are linear in their

24

locality. With this assumption, LIME works by fitting a simpler interpretable model to
this local state and uses this interpretation as a local explanation. LIME aims to minimize
the following formula:

argmin
g∈G

L(f, g, s) (19)

Which is a measure of how well the simpler interpretable model g describes the complex
model f in the local state s. Here, G is the set of all possible linear models. LIME
requires a set of background data, which we can obtain by simply sampling the envi-
ronment. From this data, we obtain the mean and standard deviations for each feature.
Equation 19 is then minimized by obtaining a large set of perturbed data points, which
(for our numerical features) are drawn from a normal distribution with mean and standard
deviation according to our data. We then obtain black-box prediction labels for these
new data points. LIME is then able to explain state s, by fitting a simple linear regression
model to the perturbed data and black-box labels, while weighing the data points by their
distance to s. By default, LIME uses Euclidean distance and Ridge regression [51] as the
interpretable model. The coefficients produced by this linear regression method are used
as the interpretation.
Shapley Additive explanations (SHAP) [9] is a method rooted in game theory to measure
the importance of features by removing a feature in a state and measuring the difference in
the outcome in this new altered state. Shapley values [52] measure the impact of players
on the outcome of a game. In machine learning, the game is a prediction, and the players
are the input features. Intuitively, Shapley values are calculated by continuously adding
features and measuring the difference between adding feature x and the average gain of
adding any feature. Because features are often not completely uncorrelated, the order in
which these features are added for measurement matters. As such, with a high number
of features, the calculation of exact Shapley values becomes extremely computationally
demanding. Furthermore, Shapley values require us to add and remove features from the
input data, while most models are not capable of changing the input shape after training.
Lundberg et al. [9] proposed different methods to approximate Shapley values more
efficiently. In most of these methods, the problem of removing features is addressed by
again retrieving a background dataset and for each removed feature, sample a random
value of the same feature from this background dataset. One of the proposed methods,
KernelSHAP is surprisingly similar to LIME. As discussed, instead of creating a new
dataset of perturbed data points, KernelSHAP creates its new data by creating new
data points where one or more of the data points are removed. As is the case in LIME,
KernelSHAP then fits a linear regression model on this new data to explain a single state
s. The main difference between LIME and KernelSHAP lies in the weighting of the altered
samples. Because data points where most features (or close to no features) are removed,
can provide us with the most information about a particular feature, these data points
are weighted more heavily. This then allows for an additional optimization step by first
creating data points with F −1 or F − (F −1) features removed, where F is the number
of features. Depending on the budget, we may then elect to create more samples that

25

will have a lower weight associated with them. Even with the added optimization steps
in SHAP, approximating Shapley values still proves to be computationally demanding.
However, Shapley values have a strong theoretical foundation which may prove to be a
requirement if more AI regulations get enforced.
We use both LIME and SHAP to generate current data explanations in order to address
the discriminatory policy issue and in part the environment validation issue. To strengthen
these methods, we combine SHAP and LIME outputs with our previous method of state
importance by weighing the outputs of each state s by the state importance Ist . This is
done because SHAP and LIME both calculate feature importance scores for a single state
while not considering whether a state is important or not. By combining the methods and
reweighting the feature importance scores, we should obtain a better representation of
feature importance, since important features are even more important when in important
states. Furthermore, presenting feature importances in environments with many features
will, by default, result in a large list not easily understood by humans. We hope that
our method of combining feature importance with state importance eliminates some
otherwise important features, reducing the list of important features.

5.4 Results
Figure 10 displays our results for our value-based and policy-based methods for finding
state importance values I. Produced importance scores are first normalized between 0
and 1 and then averaged over 10 episodes. The horizon H is set to 5 for all agents and
1 for the planner, as the planner can only act every 100 time steps.
In the value-based approach, we observe how the state importance values tend to decrease
over time. This is expected behavior in our episodic economic environment. Early states
may be comparable to someone’s early life, where all decisions may still have a long-term
effect on utility. Near the end of someone’s life, these effects are expected to be less
long-term, and their importance will be valued less (given that the agent only considers its
own utility). Although this highlights yet more real-life economic behavior in our agents,
one may wish to correct for this trend in other problems. Notably in poorer agents, such
as Agent 14, we tend to observe a slight increase in value-based state importance during
the first few hundred time steps. These agents are primarily concerned with buying and
selling goods and, as such, likely have many more opportunities after a few hundred time
steps. This is because other agents will have plenty of goods to trade by then and the
market is likely fully stocked, potentially benefiting traders.
We observe how the regular policy-based method has its flaws in Agent 14. Here, we
see a large shift in action distribution entropy around the 200th time step. Around this
time, trading agents tend to switch to a trading strategy that should be marked as an
important state. Our policy-based difference method better estimates these situations
by measuring when an agent has to respond to an (important) situation, rather than
whether the agent acts decisively.

26

0 200 400 600 800 1000
Time step

0.0

0.2

0.4

0.6

0.8

1.0
No

rm
al

ize
d

St
at

e
Im

po
rta

nc
e

State Importance for the Planner

Policy-based
Policy-based diff
Value-based

0 200 400 600 800 1000
Time step

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
St

at
e

Im
po

rta
nc

e

State Importance for Agent 0
Policy-based
Policy-based diff
Value-based

0 200 400 600 800 1000
Time step

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No
rm

al
ize

d
St

at
e

Im
po

rta
nc

e

State Importance for Agent 7
Policy-based
Policy-based diff
Value-based

0 200 400 600 800 1000
Time step

0.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d
St

at
e

Im
po

rta
nc

e

State Importance for Agent 14
Policy-based
Policy-based diff
Value-based

Figure 10: State importance for the planner and various worker agents as estimated
by our methods. The importance scores are first normalized between 0 and 1 in their
respective runs and then averaged over 10 episodes. The upper and lower standard
deviations over the 10 episodes are highlighted. Horizon H is set to 1 for the planner
agent, and to 5 for the other agents. The state importance values for the planner are
as expected, with high importance only being attributed to states in which taxes can
be set. For the agents we observe that these same states are often important as well,
but to what extent differs per agent. The results of the worker agents are smoothed for
an improved visual interpretation in these figures, but non-smoothed results are used for
further processing.

When inspecting which time steps are deemed important, we can see that the results are
as we would expect them for the planner agent. Each 100th-time step, when the planner
is able to act, is marked as important. The policy-based methods make no distinction
between each tax year, but the value-based method does demonstrate the previously
described linearly decreasing trend over time. Again, this is the result of the planner
agent valuing later time steps less because there is less chance of long-term utility effects
and because of the lower V outputs, the changes in V will also be lower. Worker agents
have a more diverse state importance output, but to spot a trend, we again have to look
at the time step in which taxes are set and collected. Clearly, these are important time
steps as they will have a significant effect on the worker’s utility and their next actions.

27

This importance is most pronounced in Agent 0 (generally the richest agent / highest
build skill) and to a lesser extent in Agent 14 (generally the poorest agent / lowest build
skill). As previously described, the policy-based difference method also shows how trading
agents tend to start trading around the 200th time step.

Feature importance scores Next, we measure the feature importance values of our
planner and worker agents with both the SHAP and the LIME method [9, 10]. We then
re-weight the feature importance values by their state importance.

0.00 0.02 0.04 0.06 0.08 0.10
SHAP value

Inv. A14 Coin

Last Inc. A4

Inv. A13 Coin

Inv. A3 Wood

Inv. A3 Stone

Last Inc. A2

Low Sell Stone

Last Inc. A3

Last Inc. A0

Last Inc. A1

Absolute SHAP values for the Planner

0.00 0.02 0.04 0.06 0.08 0.10
SHAP value adjusted by state importance

Absolute SHAP values for the Planner

0.00 0.02 0.04 0.06 0.08 0.10
SHAP value adjusted by state importance

Last Inc. A4
Inv. A4 Coin
Inv. A0 Coin
Inv. A1 Coin
Last Inc. A2
Inv. A2 Coin

Low Sell Stone
Last Inc. A3
Last Inc. A0
Last Inc. A1

Absolute SHAP values for the Planner

Low

High

Fe
at

ur
e

va
lu

e

Figure 11: on the left, SHAP values of the planner agent for its 10 most important
features (sorted by the SHAP values). In the middle, the same features with their SHAP
values reweighted by state importance. The right image shows the new 10 most important
features after reweighting the features. The SHAP values displayed are only calculated
based on the actions that the planner has taken. Because the planner takes multiple
actions simultaneously (one for each tax bracket), the absolute SHAP values for each
action are used and then averaged for the final displayed result. The reweighting of the
SHAP values significantly decreases the number of important instances, allowing for a
clearer visualization. Generally, we observe the previous incomes (Prev. Inc.) and the
inventory of coins (Inv. Coin) to be most important. This intuitively makes sense as they
are directly linked to both productivity and equality. Nevertheless, we observe the SHAP
values to be extremely low in general, indicating that the planner does not incorporate
much information from any input features into its decision.

Figure 11 shows SHAP values for the planner agent, both before and after reweighting
the SHAP values with state importance. As a final importance score, we have added all
three importance scores together, weighing each of our three state importance methods
equally. We observe how the reweighting of the SHAP values significantly decreases the
number of important instances, resulting in a clearer visualization. Furthermore, while
the original results may show how the planner attends to the poorer agents (such as
A13 and A14), after reweighting we observe that most attention is actually paid to only
the richest agents. However, we note that, according to the SHAP values, all features
contribute very small amounts to the outputs for the planner. While we can conclude

28

that the model is likely not discriminatory against any of the agents, a policymaker would
still likely not want to use this model as all input features are barely considered. Future
work may look into different input features for the planner in order to hopefully improve
on this issue. For example, instead of an input for each individual worker agent, we
may generate general statistics about the population, such as the number of agents that
belong in a specific tax cutoff bracket.

40 20 0 20
SHAP value adjusted by state importance

High bid my Stone
Prev. income

Num my bids Stone
Labor

Low sell Stone
Market rate Stone

Inv. Wood
Time step
Inv. Stone

Inv. Coin

SHAP values for agent 0

Low

High

Fe
at

ur
e

va
lu

e

40 20 0 20
SHAP value

Market rate Stone

Labor

High bid my Wood

Prev. income

Num my bids Stone

Inv. Wood

Low sell Stone

Inv. Stone

Inv. Coin

Time step

SHAP values for agent 0

40 20 0 20
SHAP value adjusted by state importance

SHAP values for agent 0

4 2 0 2
SHAP value adjusted by state importance

Market rate Stone
Num my sell Wood

Time step
Num my bids Stone

Inv. Wood
Low sell Stone

Inv. Coin
Tax phase

Prev. income
High bid Stone

SHAP values for agent 14

Low

High

Fe
at

ur
e

va
lu

e

1.0 0.5 0.0 0.5 1.0 1.5 2.0
SHAP value

Marginal income

Num my bids Stone

Num my sell Wood

Time step

Inv. Wood

Inv. Coin

Low sell Stone

Prev. income

Tax phase

High bid Stone

SHAP values for agent 14

1 0 1 2 3
SHAP value adjusted by state importance

SHAP values for agent 14

Figure 12: on the left, SHAP values of the richest and poorest agents (A0 and A14) for
their 10 most important features (sorted by the SHAP values). In the middle, the same
features with their SHAP values reweighted by state importance. The right image shows
the new 10 most important features after reweighting the features. The SHAP values
displayed are only calculated based on the actions that the agents took. The reweighting
of the SHAP values decreases the number of important instances, allowing for a clearer
visualization.

In Figure 12 we have displayed SHAP values for both the generally richest agents (highest
build skill) and the poorest agent (lowest build skill). Again, after reweighting the SHAP
values, our most important features are reordered according to the new values, resulting
in a more fair representation. Whereas the current time step appeared to be the most
important feature for Agent 0, reweighting for importance reveals that the number of
coins instead has a larger impact on its actions. This better aligns with our human
intuition of what the agent should consider when deciding on its actions, increasing trust
in the simulation. The number of coins in inventory is less important to Agent 14, which

29

primarily trades and as such highly considers the current highest bid for stone on the
market. In general, we observe that the SHAP values for the richer agents are much
higher compared to the poorer agents. This intuitively makes sense as the richer agent’s
actions likely have larger consequences. However, the effect seems overblown, likely
indicating an unrealistic utility function was used as the agent reward function.

0.2 0.0 0.2 0.4
LIME value adjusted by state importance

LIME values for agent 0

0.4 0.2 0.0 0.2 0.4
LIME value

Tax rate 3

Tax rate 6

Low sell my Wood

Num my sell Wood

Highest bid Wood

Low ask my Stone

Num my sell Stone

Lowest sell Wood

First tax day

Tax day

LIME values for agent 0

0.2 0.0 0.2 0.4
LIME value adjusted by state importance

Tax rate 3
Tax rate 6

Low sell my Wood
Num my sell Wood
Highest bid Wood
Low ask my Stone

Num my sell Stone
Lowest sell Wood

First tax day
Tax day

LIME values for agent 0

Low

High

Fe
at

ur
e

va
lu

e

0.05 0.00 0.05 0.10 0.15 0.20
LIME value adjusted by state importance

LIME values for agent 14

0.05 0.00 0.05 0.10 0.15 0.20
LIME value

Inv. Coin

Low sell my Wood

Num my sell Wood

Marginal income

First tax day

High bid Stone

Time step

Inv. Wood

Tax phase

Lowest sell Wood

LIME values for agent 14

0.0 0.1 0.2
LIME value adjusted by state importance

Inv. Coin
Marginal income

Num my sell Wood
Low sell my Wood

First tax day
High bid Stone

Time step
Tax phase
Inv. Wood

Lowest sell Wood

LIME values for agent 14

Low

High

Fe
at

ur
e

va
lu

e

Figure 13: on the left, LIME values of the richest and poorest agents (A0 and A14)
for their 10 most important features (sorted by the LIME values). In the middle, the
same features with their LIME values reweighted by state importance. The LIME values
displayed are only calculated on the basis of the actions that the agents took. The
reweighting of the LIME values decreases the number of important instances, allowing
for a clearer visualization, although the effect is less pronounced compared to the SHAP
visualization in Figure 12.

Figure 13 shows the LIME values for the same two agents (A0 and A14). While not
shown, the planner agent’s LIME values indicate a zero or near-zero importance for all
features, as was also the case in the SHAP results. For the agents, we can see a smaller
effect on the LIME values after adjusting the values by state importance. This is due to
LIME not attributing a value to each of the features for every local explanation. Instead,
only the top few features (in each individual explanation) are considered and given a
LIME score, resulting in a lot of 0 score instances. With many 0 feature scores already
present, adjusting for state importance has a much smaller effect. Furthermore, when
comparing the LIME scores to the SHAP scores, we observe a very different set of top

30

10 important features compared to our SHAP method. This is an unfortunate result, as
the two methods currently do not validate each other, which would have boosted trust
in the system.

6 Limitations & Discussion
RL-assisted policy generation has shown to be a promising field for being able to quickly
generate and validate new governmental policies. However, before being truly imple-
mented in real-world decision making, existing simulations require a greater amount of
realism and more scalable implementations. Although we believe our work to be a step
in the right direction when it comes to scalability, real-world applications would likely
require simulating populations of thousands of agents. For these population sizes, our
setup still requires weeks, if not months, of training due to the processing complexity of
the step function. Yet, we do believe reinforcement learning may play a role in govern-
mental policy creation and/or validation, possibly in the not-too-distant future. This is
because creating and validating tax policies, as done in our work, requires a simulated
national economy. Although simulating a true economy may not be possible in the near
future, if ever, many policy creation settings may not have this demanding requirement.
Furthermore, as the world becomes more connected and complex, we may see an in-
crease in demand for such hyper-realistic environments, as traditional models will simply
be inadequate.
Beyond creating a more realistic environment, by, for example, expanding the agent’s
action space to allow for a more diverse population, future works may investigate more
possibilities for the planner agent. Currently, the planner creates unrealistic and erratic
policies. Instead, future iterations should penalize the planner for large changes in policies
and perhaps be forced to create only some kind of policies (for instance only progressive
tax systems). However, as pointed out previously, providing the RL planner with more
freedom may produce new original policies that would otherwise not have been considered.
As was also apparent from our explainability experiments, the planner barely considered
any features, and this leads to distrust in the system as we cannot verify whether the
planner is merely creating semi-random policies. Future work should improve the planner,
namely its input features. Currently, the planner observes various features of each agent
individually, but these values may be better grouped into population statistics.
To better address the explainability questions posed to the real policymaker, new methods
must be better able to address the issues of environment validation and of understanding
the policy. Our work provides some tools to shed light on the behavior of the simulated
agents. This, perhaps together with the proposed methods of Sequeira and Gervasio [42]
allows for some environment validation, but we still end up with a lot of data that is
not easily understood by humans. As such, further experimentation with different visual
presentation methods is required, perhaps incorporating methods such as GroupShapley
[53] to reduce the number of features in a single explainability visualization. In the

31

future, more complex environments likely require many more tools for better insights.
With currently proposed methods, we do have access to methods to visualize which
input features are important to the RL planner. This, together with the fact that RL
does not incur an inherent bias through training data, provides strong tools to address the
discriminatory or biased RL policy issue. However, such issues may still occur through a
biased reward function, and, as such, these reward functions must always be transparent.
Methods to truly understand the created policy have yet to be created in future work.
These solutions are highly sought after because a policymaker requires reasoning about its
proposed policy, perhaps even presented in natural language. It is possible that mimicking
methods could be effective in this situation, as the governmental policy that is generated
may be simple to describe, and only the means to arrive at such a policy are not, due to
the moving objectives in a highly complex multi-agent environment during training.
Future work in our explainability pipeline in general should incorporate all methods in a
comprehensive, easy-to-use toolkit that researchers can easily use to explain their own
models. As pointed out in the work of Vourous, such a general toolkit for explainability in
DLR is currently missing. We eagerly await the release of the toolkit created by Sequeira
and Gervasio [42], to see if this toolkit is sufficient and can be expanded on. In contrast
to their work and other similar previous works, our (value-based) method relies heavily
on being able to take steps in a copy of the environment. Although in our experiments,
finding state importances over averaged over 10 episodes did not take more than 20
minutes, relying on copying the environment likely does not scale well to more complex
environments. As such, alternatives or more efficient approaches need to be investigated
in future work.
To further improve our pipeline before creating a general toolkit, we should broaden its
applicability. Currently, our state importance methods rely on the environment being
episodic with a fixed time step length. Our value-based method also disregards any
rewards obtained during the horizon H rollout. Because of this, when high rewards are
obtained in the real rollout, and not obtained in the random rollout (but removed from
V , because they can no longer be obtained), importance I is set to 0, because the V
estimates do not differ. While this is not a problem in our environment (as long as H
is reasonably small), due to the smooth reward function, future work should incorporate
an extra importance method that also compares the obtained rewards during the rollout.
Furthermore, while our work is applicable to most, if not all, current model-free deep
RL methods, we currently do not support model-based algorithms [54]. Because these
models create their own model of the environment, these algorithms may yet prove to
play a key role in explainable RL.
We do believe our novel method of amplifying feature importance scores in important
states presents a more truthfull representation of important features. Future work should
focus on exploiting this further and validate the method on smaller and simpler environ-
ments that should, in contrast to our economic simulation, be more suitable for validation
of the methods. In these simpler environments, we could then better compare the dif-

32

ferent state importance methods against baseline methods and determine which weights
to use in specific situations as final importance scores. Such an improved validation is
another requirement before working on a fully-fledged toolkit.
On a final note, we would like to address the ethical considerations when it comes to AI-
assisted policy generation. Any production-grade product for creating and/or validating
(governmental) policies may be misused, whether with intent or out of ignorance, and
cause undesired consequences that are hidden behind an RL system. We do not believe
that our work is a sufficient leap forward in AI-assisted policy generation, whereby it
would benefit from a new ethical review, as already conducted in the AI economist paper
[4]. Nevertheless, we hope that future research will take explainability considerations into
account, reducing the risk of misuse or, at least, increasing transparency.

7 Conclusion
In this thesis, we have recreated the work of the AI economist [4], a framework for build-
ing and validating tax policies with reinforcement learning. We have altered the original
framework and built a new environment as a vector-based environment, rather than a
simulation in a 2D world. We have shown how this simplified vector-based environment
demonstrated the same real-life economic behavior. While demonstrating the same be-
havior, training was much faster in our environment, indicating that this is an improved
and more scalable direction for future work in RL-assisted policy generation.
We further combined novel and existing explainability methods in a pipeline to investigate
feature importance and state importance in our RL agents. Feature importances were
calculated using the existing SHAP and LIME [9, 10] methods and then adjusted by the
importance of the state in which the feature importance values were calculated. This
provided a clearer representation of the important features and should provide a fairer
representation of the most important features. Unfortunately, the latter of the described
benefits could not be properly evaluated because the two methods disagreed on important
features or found all features to have an importance of near 0. This indicates that a
policymaker would likely not trust the current system to aid in its (governmental) policy
design. However, having this fact transparent is already a step forward in the path to
RL-assisted policy generation that is both beneficial and explainable.

33

References
[1] R. E. Lucas Jr, “Econometric policy evaluation: A critique,” Carnegie-Rochester

conference series on public policy, vol. 1, pp. 19–46, 1976.
[2] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang,

S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller,
M. Simens, A. Askell, P. Welinder, P. Christiano, J. Leike, and R. Lowe, “Train-
ing language models to follow instructions with human feedback,” Mar. 2022.
arXiv:2203.02155 [cs].

[3] T. Zhang, A. Williams, S. Phade, S. Srinivasa, Y. Zhang, P. Gupta, Y. Ben-
gio, and S. Zheng, “AI for Global Climate Cooperation: Modeling Global Climate
Negotiations, Agreements, and Long-Term Cooperation in RICE-N,” Aug. 2022.
arXiv:2208.07004 [cs].

[4] S. Zheng, A. Trott, S. Srinivasa, D. C. Parkes, and R. Socher, “The AI Economist:
Taxation policy design via two-level deep multiagent reinforcement learning,” Sci-
ence Advances, vol. 8, p. eabk2607, May 2022. Publisher: American Association
for the Advancement of Science.

[5] A. Trott, S. Srinivasa, D. van der Wal, S. Haneuse, and S. Zheng, “Building a
Foundation for Data-Driven, Interpretable, and Robust Policy Design using the AI
Economist,” Aug. 2021. arXiv:2108.02904 [cs, econ, q-fin].

[6] G. A. Vouros, “Explainable Deep Reinforcement Learning: State of the Art and
Challenges,” ACM Computing Surveys, vol. 55, pp. 1–39, May 2023.

[7] S. Milani, N. Topin, M. Veloso, and F. Fang, “A Survey of Explainable Reinforcement
Learning,” Feb. 2022. arXiv:2202.08434 [cs].

[8] A. Krajna, M. Brcic, T. Lipic, and J. Doncevic, “Explainability in reinforcement
learning: perspective and position,” Mar. 2022. arXiv:2203.11547 [cs].

[9] S. M. Lundberg and S.-I. Lee, “A Unified Approach to Interpreting Model Pre-
dictions,” in Advances in Neural Information Processing Systems, vol. 30, Curran
Associates, Inc., 2017.

[10] M. T. Ribeiro, S. Singh, and C. Guestrin, “”Why Should I Trust You?”: Explaining
the Predictions of Any Classifier,” in Proceedings of the 22nd ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, KDD ’16, (New
York, NY, USA), pp. 1135–1144, Association for Computing Machinery, Aug. 2016.

[11] R. S. Sutton and A. G. Barto, Reinforcement Learning, second edition: An Intro-
duction. MIT Press, Nov. 2018. Google-Books-ID: uWV0DwAAQBAJ.

34

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller, “Playing Atari with Deep Reinforcement Learning,” Dec. 2013.
arXiv:1312.5602 [cs].

[13] V. Konda and J. Tsitsiklis, “Actor-Critic Algorithms,” in Advances in Neural Infor-
mation Processing Systems, vol. 12, MIT Press, 1999.

[14] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba, “OpenAI Gym,” June 2016. arXiv:1606.01540 [cs].

[15] C. Rudin, C. Chen, Z. Chen, H. Huang, L. Semenova, and C. Zhong, “Interpretable
machine learning: Fundamental principles and 10 grand challenges,” Statistics Sur-
veys, vol. 16, pp. 1–85, Jan. 2022. Publisher: Amer. Statist. Assoc., the Bernoulli
Soc., the Inst. Math. Statist., and the Statist. Soc. Canada.

[16] C. Rudin and K. L. Wagstaff, “Machine learning for science and society,” Machine
Learning, vol. 95, pp. 1–9, Apr. 2014.

[17] A. M. Roth, N. Topin, P. Jamshidi, and M. Veloso, “Conservative Q-Improvement:
Reinforcement Learning for an Interpretable Decision-Tree Policy,” July 2019.
arXiv:1907.01180 [cs].

[18] A. Silva, M. Gombolay, T. Killian, I. Jimenez, and S.-H. Son, “Optimization Methods
for Interpretable Differentiable Decision Trees Applied to Reinforcement Learning,”
in Proceedings of the Twenty Third International Conference on Artificial Intelligence
and Statistics, pp. 1855–1865, PMLR, June 2020. ISSN: 2640-3498.

[19] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis, “A
general reinforcement learning algorithm that masters chess, shogi, and Go through
self-play,” Science, vol. 362, pp. 1140–1144, Dec. 2018. Publisher: American Asso-
ciation for the Advancement of Science.

[20] E. Kaufmann, L. Bauersfeld, A. Loquercio, M. Müller, V. Koltun, and D. Scara-
muzza, “Champion-level drone racing using deep reinforcement learning,” Nature,
vol. 620, pp. 982–987, Aug. 2023. Number: 7976 Publisher: Nature Publishing
Group.

[21] S. Lo Piano, “Ethical principles in machine learning and artificial intelligence: cases
from the field and possible ways forward,” Humanities and Social Sciences Commu-
nications, vol. 7, pp. 1–7, June 2020. Number: 1 Publisher: Palgrave.

[22] M. Ashoori and J. D. Weisz, “In AI We Trust? Factors That Influence Trustwor-
thiness of AI-infused Decision-Making Processes,” Dec. 2019. arXiv:1912.02675
[cs].

[23] E. Puiutta and E. M. Veith, “Explainable Reinforcement Learning: A Survey,” May
2020. arXiv:2005.06247 [cs, stat].

35

[24] Nicolás Garrido, N. Garrido, and L. Mittone, “An agent based model for studying
optimal tax collection policy using experimental data: The cases of Chile and Italy,”
Journal of Socio-economics, vol. 42, pp. 24–30, Feb. 2013. MAG ID: 2079252372.

[25] K. M. Bloomquist and Kim Bloomquist, “Tax Compliance as an Evolutionary Co-
ordination Game: An Agent-Based Approach,” Public Finance Review, vol. 39,
pp. 25–49, Jan. 2011. MAG ID: 2059969213.

[26] S. Zheng, A. Trott, S. Srinivasa, N. Naik, M. Gruesbeck, D. C. Parkes, and
R. Socher, “The AI Economist: Improving Equality and Productivity with AI-Driven
Tax Policies,” Apr. 2020. arXiv:2004.13332 [cs, econ, q-fin, stat].

[27] S. Zheng, A. Trott, S. Srinivasa, D. C. Parkes, and R. Socher, “The AI Economist:
Optimal Economic Policy Design via Two-level Deep Reinforcement Learning,” Aug.
2021. arXiv:2108.02755 [cs, econ, q-fin].

[28] R. Koster, J. Balaguer, A. Tacchetti, A. Weinstein, T. Zhu, O. Hauser, D. Williams,
L. Campbell-Gillingham, P. Thacker, M. Botvinick, and C. Summerfield, “Human-
centred mechanism design with Democratic AI,” Nature Human Behaviour, vol. 6,
pp. 1398–1407, Oct. 2022. Number: 10 Publisher: Nature Publishing Group.

[29] N. Puri, S. Verma, P. Gupta, D. Kayastha, S. Deshmukh, B. Krishnamurthy, and
S. Singh, “Explain Your Move: Understanding Agent Actions Using Specific and
Relevant Feature Attribution,” Apr. 2020. arXiv:1912.12191 [cs].

[30] W. Shi, Z. Wang, S. Song, and G. Huang, Self-Supervised Discovering of Causal
Features: Towards Interpretable Reinforcement Learning. Mar. 2020.

[31] R. M. Annasamy and K. Sycara, “Towards Better Interpretability in Deep Q-
Networks,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
pp. 4561–4569, July 2019.

[32] A. Mott, D. Zoran, M. Chrzanowski, D. Wierstra, and D. Jimenez Rezende, “To-
wards Interpretable Reinforcement Learning Using Attention Augmented Agents,”
in Advances in Neural Information Processing Systems, vol. 32, Curran Associates,
Inc., 2019.

[33] R. Iyer, Y. Li, H. Li, M. Lewis, R. Sundar, and K. Sycara, “Transparency and
Explanation in Deep Reinforcement Learning Neural Networks,” in Proceedings of
the 2018 AAAI/ACM Conference on AI, Ethics, and Society, (New Orleans LA
USA), pp. 144–150, ACM, Dec. 2018.

[34] S. G. Rizzo, G. Vantini, and S. Chawla, “Reinforcement Learning with Explain-
ability for Traffic Signal Control,” in 2019 IEEE Intelligent Transportation Systems
Conference (ITSC), pp. 3567–3572, Oct. 2019.

[35] K. Zhang, P. Xu, and J. Zhang, “Explainable AI in Deep Reinforcement Learn-
ing Models: A SHAP Method Applied in Power System Emergency Control,” in

36

2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2),
pp. 711–716, Oct. 2020.

[36] K. Zhang, J. Zhang, P.-D. Xu, T. Gao, and D. W. Gao, “Explainable AI in Deep Re-
inforcement Learning Models for Power System Emergency Control,” IEEE Transac-
tions on Computational Social Systems, vol. 9, pp. 419–427, Apr. 2022. Conference
Name: IEEE Transactions on Computational Social Systems.

[37] D. Beechey, T. M. S. Smith, and �. Şimşek, “Explaining Reinforcement Learning
with Shapley Values,” June 2023. arXiv:2306.05810 [cs].

[38] D. Amir and O. Amir, “HIGHLIGHTS: Summarizing Agent Behavior to People,”
in Proceedings of the 17th International Conference on Autonomous Agents and
MultiAgent Systems, AAMAS ’18, (Richland, SC), pp. 1168–1176, International
Foundation for Autonomous Agents and Multiagent Systems, July 2018.

[39] S. H. Huang, K. Bhatia, P. Abbeel, and A. D. Dragan, “Establishing Appropriate
Trust via Critical States,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 3929–3936, Oct. 2018. ISSN: 2153-0866.

[40] P. Sequeira and M. Gervasio, “Interestingness elements for explainable reinforcement
learning: Understanding agents’ capabilities and limitations,” Artificial Intelligence,
vol. 288, p. 103367, Nov. 2020.

[41] P. Sequeira, J. Hostetler, and M. Gervasio, “Global and Local Analysis of In-
terestingness for Competency-Aware Deep Reinforcement Learning,” Nov. 2022.
arXiv:2211.06376 [cs].

[42] P. Sequeira and M. Gervasio, “IxDRL: A Novel Explainable Deep Reinforcement
Learning Toolkit based on Analyses of Interestingness,” July 2023. arXiv:2307.08933
[cs].

[43] K. Boggess, S. Kraus, and L. Feng, “Toward Policy Explanations for Multi-Agent
Reinforcement Learning,” in Proceedings of the Thirty-First International Joint Con-
ference on Artificial Intelligence, (Vienna, Austria), pp. 109–115, International Joint
Conferences on Artificial Intelligence Organization, July 2022.

[44] E. Saez and S. Stantcheva, “Generalized Social Marginal Welfare Weights for Opti-
mal Tax Theory,” The American Economic Review, vol. 106, pp. 24–45, Jan. 2016.
MAG ID: 1559593144.

[45] D. M. Johnson, “Applications of the standard-score IQ to social statistics.,” Journal
of Social Psychology, vol. 27, pp. 217–227, May 1948. Num Pages: 11 Place:
Worcester, Mass., United States Publisher: Clark University Press.

[46] C. Gini, Variabilità e mutabilità: contributo allo studio delle distribuzioni e delle
relazioni statistiche.[Fasc. I.]. Tipogr. di P. Cuppini, 1912.

37

[47] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg, J. Gonzalez, M. Jor-
dan, and I. Stoica, “RLlib: Abstractions for Distributed Reinforcement Learning,” in
Proceedings of the 35th International Conference on Machine Learning, pp. 3053–
3062, PMLR, July 2018. ISSN: 2640-3498.

[48] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal Policy
Optimization Algorithms,” Aug. 2017. arXiv:1707.06347 [cs].

[49] A. E. R. Prince and D. Schwarcz, “Proxy Discrimination in the Age of Artificial
Intelligence and Big Data,” Iowa Law Review, vol. 105, p. 1257, 2019.

[50] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist
reinforcement learning,” Machine Learning, vol. 8, pp. 229–256, May 1992.

[51] A. E. Hoerl and R. W. Kennard, “Ridge Regression: Biased Estimation for
Nonorthogonal Problems,” Technometrics, vol. 12, no. 1, pp. 55–67, 1970. Pub-
lisher: [Taylor & Francis, Ltd., American Statistical Association, American Society
for Quality].

[52] L. S. Shapley, “A Value for n-Person Games,” in 17. A Value for n-Person Games,
pp. 307–318, Princeton University Press, 1953.

[53] M. Jullum, A. Redelmeier, and K. Aas, “groupShapley: Efficient prediction expla-
nation with Shapley values for feature groups,” June 2021. arXiv:2106.12228 [cs,
stat].

[54] A. Plaat, W. Kosters, and M. Preuss, “Deep Model-Based Reinforcement Learning
for High-Dimensional Problems, a Survey,” Dec. 2020. arXiv:2008.05598 [cs].

38

	Introduction
	Preliminaries
	Definitions
	Reinforcement Learning
	Foundation
	Explainable Deep Reinforcement Learning

	Related work
	AI governmental policy generation
	Explainability in Deep Reinforcement Learning

	RL-assisted Economic Policy Generation
	Environment
	Methodology
	Results

	Explainable Deep Reinforcement Learning
	Explainability in RL-assisted policy generation
	State importances in Deep RL
	Feature Importances in Deep RL
	Results

	Limitations & Discussion
	Conclusion

