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Abstract

Text-to-speech (TTS) technology, despite its advancements, often produces speech that lacks
the naturalness inherent in human communication, primarily due to insufficient incorpora-
tion of prosodic elements such as intonation and stress. This research aimed to enhance the
naturalness of synthesized speech by integrating prominence labels into the Tacotron2 ar-
chitecture, specifically targeting improved prosody in the generated speech. Various methods
were devised to integrate these labels, including: incorporating them into input tokens for the
encoder layer, concatenating them in the Attention layer, and predicting them analogously
to the architecture’s stop token loss. These methods were embodied in experimental setups,
namely ENCO-MOD, ATT-MOD, and PRO-MOD, and were evaluated using objective met-
rics to assess their efficacy. Our experiments encountered significant challenges, particularly
alignment issues while using a multi-speaker dataset, which yielded inconclusive results. A
shift to a single-speaker dataset illuminated potential, with ATT-MOD showing notable align-
ment during training. However, the PRO-MOD, while able to produce synthesized speech with
some degree of emphasis, demonstrated that extended training periods are crucial to fully
ascertain its capability and reliability in generating prominently emphasized speech. These
findings, although preliminary and constrained by the specified experimental setups, illuminate
avenues for further research and model refinement, especially concerning extended training for
PRO-MOD.
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Chapter 1

Introduction

In an era where artificial intelligence strives to imitate human abilities, one area stands out as a
fascinating frontier - Text-to-Speech (TTS) technology. It’s the science and art of transforming
inert, written text into dynamic, lifelike speech. But while TTS can read aloud a book or guide
you via GPS, reproducing human-like sounding speech remains a challenge [24].
Recent advancements in artificial intelligence and machine learning have significantly propelled
the field of Text-to-Speech (TTS) technology [3]. These developments have enabled modern
TTS systems to generate synthesized speech that matches the naturalness, expressiveness,
and variability of human speech.
Current TTS engines have advanced capabilities, including the ability to reproduce various
speaking styles, diverse accents, and a range of emotional tones. This results in a more engaging
and personalized user experience.
The use of TTS technology spans multiple domains, including audiobooks, navigation systems,
voice assistants, and assistive tools for individuals with visual impairments. As the technology
advances, it is anticipated to unlock novel applications, thereby transforming our interaction
with technology and modes of information consumption [23]
Despite considerable advancements in text-to-speech (TTS) technology, there remains a no-
table gap in achieving truly natural-sounding synthesized speech. The concept of naturalness
in TTS refers to the ability of the generated speech to exhibit prosodic features that are
characteristic of human speech, including intonation, stress, rhythm, and variations in speed
[20]. While TTS systems have made significant progress in producing intelligible and coherent
speech, the challenge lies in capturing the subtleties and nuances that make speech sound
natural. Prosodic features play a crucial role in conveying meaning, emotions, and emphasis
in spoken language. However, current TTS systems often struggle to replicate these features
accurately, resulting in speech that may sound robotic or monotonous.
The drawbacks associated with the current TTS technology manifest prominently in the form
of decreased user engagement and comprehension, which consequently results in lower user
satisfaction. The synthesized speech, often characterized by a robotic tone, tends to engen-
der feelings of artificiality and detachment, thus posing a challenge for listeners to engage
fully with the synthesized content [9]. Moreover, the absence of naturalness and human-like
prosody inhibits the effective conveyance of emotions, subtle nuances, and intended emphasis
in the speech output. The quest to overcome these limitations and enhance the naturalness
of synthesized speech is an active area of research and development. The goal is to augment
the user experience, making synthesized speech not just a passive information delivery system,
but an engaging medium [5]. Further, the introduction of human-like prosody adds an extra
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dimension of expressiveness and nuance to the synthesized speech, making it more relatable
and comprehensible for listeners [25].
It helps to convey the intended emphasis, distinguish between different sentence types (such as
questions or statements), and express emotions effectively. Furthermore, human-like prosody
is particularly crucial in applications where the synthesized speech is intended to engage and
communicate with users, such as voice assistants or interactive systems. By infusing the synthe-
sized speech with natural prosody, these systems can provide a more pleasant and interactive
user experience, fostering better comprehension, engagement, and overall satisfaction [10].
Our approach differs from others in that we investigate how the model behaves when promi-
nence labels are input at different positions. While many researchers typically provide the model
with additional information at the beginning, such as prosodic information, tones, or intona-
tion—depending on what is available to them at the time—we introduce our extra information,
the prominence labels, at various locations within the architecture. This allows us to evaluate
whether it’s more beneficial to introduce prominence as an additional input in the beginning
or to integrate prominence labels directly into the attention layer. We also consider creating a
new prediction head for prominence labels from the attention layer and back-propagating the
loss to determine which method produces superior synthesized speech. While the state-of-the-
art model learns directly from the input text, we supplement this by adding prominence labels
alongside the input text. This provides additional data for the model to learn the prominence
of each word spoken in the dataset.
In our research, we use predicted prominence labels from the text to condition speech gener-
ation. Prosody refers to the rhythm, stress, and intonation of speech. In our method, words
are assigned prominence labels ∈ [0, 2] ⊂ R, with 2 indicating the highest level of prominence.
This rating system allows for a quantitative representation of the prominence of words in a
given text, which can be crucial in understanding the nuances of spoken language [22]. The
prominence labels are then utilized in various experimental setups. All setups involve the con-
ditioning of Tacotron 2 [18], a neural network architecture for speech synthesis. The research
also introduced an auxiliary task-learning approach for the prediction of the prominence labels.
This approach was introduced to inspect the behavior of the model with an extra prediction
head, which imitates the Stop token architecture and how it will affect the generated hypoth-
esized speech.
In section [2], we review the existing literature on Tacotron2 and prosodic features addition
in the architecture, their impact in making speech more natural, and how other prosodic fea-
tures are important to enhance the synthesized speech. We begin by introducing our proposed
approach [3], which involves conducting experimental variations using predicted prominence
labels. Subsequently, we provide details on the experimental setup and the evaluation metrics
employed to assess the effectiveness of our approach. In [6] we investigate the learning of dif-
ferent experiments with the help of prominence labels. Finally, in [7] we discuss the implication
of our findings and suggest future direction for research in this area.

3



Chapter 2

Motivation and Related Work

Although text-to-speech (TTS) technology has advanced significantly in recent years, much
more can be done to better capture the meaning and style of the original text. The main motive
for this research is to enhance the naturalness of generated speech from text. While numerous
studies have explored the performance of TTS models, such as Tacotron2 [18], there remains
a need to investigate the impact of architectural conditioning [19] and auxiliary task learning
[17] on the quality and expressiveness of generated speech. Our research explores the potential
of experimental modification in Tacotron2 architecture with prominence labels as inputs.
Other alternative neural network architectures, showed effective performance in TTS fields.
Speech2Vec [4] is a sequence-to-sequence framework for learning word embeddings from
speech. Learning word embeddings directly from speech enables the model to make use of
the semantic information carried by speech that does not exist in plain text. Speech2vec can
be seen as the speech version Word2Vec [13]. Their research showed speech contains richer
information than text such as prosody, and a machine should be able to make use of this infor-
mation in order to learn better semantic representations. Their goal was to learn a fixed-length
embedding of an audio segment corresponding to the word. The word embedding was able to
describe the semantics of the original audio segment.
Another research based on Transformers network [12], used the Tacotron2 framework and
incorporated a multi-head attention mechanism, replacing the traditional recurrent neural net-
works and original attention protocols. This adjustment allowed them the parallel construction
of hidden states in the encoder and decoder, significantly improving training efficiency. Multi-
head here replaced the original RNN structures in the encoder and decoder as well in the
attention. It can split one attention into subspaces so that it can model the frame relation-
ship in multiple different aspects. It is beneficial for learning when sentences are long, as
the generated sample sounds smoother. Moreover, the self-attention mechanism facilitates
direct connections between inputs at different time intervals, effectively resolving long-range
dependency issues. Utilizing phoneme sequences, their Transformer TTS network generates
mel spectrograms, which are further processed by a WaveNet vocoder to produce the final
audio outputs. Generate audio quality was evaluated by human testers in MOS and CMOS
which showed similar results to the base Tacotron2.
The creation of novel speech synthesis algorithms and methodologies, such as neural network-
based, has been one of the main areas of attention in TTS research. It has been demonstrated
that these methods enhance the generated speech’s naturalness and understandability [2, 16].
An early attempt at encoding prosody into TTS systems is demonstrated by Hirschberg and
Pierrehumbert (1986) [6]. They presented a set of rules to predict prosodic features such as
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intonation and stress. They investigated how variations in intonation can convey important in-
formation about discourse structure, referent choice, information status, conceptual contrasts,
and subordination relationships. More recent studies have begun to leverage deep learning
techniques for this purpose. The Tacotron system, introduced by Wang et al. [20], was one
of the first models to demonstrate an end-to-end trainable neural TTS system. It achieved
substantial improvements in the naturalness of the speech, but it had no explicit control over
prosody.
Y.Lee et al. [11] introduce prosody embeddings for emotional and expressive speech synthesis.
The embeddings enable fine-grained control over the speaking style and are integrated into end-
to-end synthesis networks. By adjusting the learned prosody features, the pitch and amplitude
of the synthesized speech can be changed at both frame and phoneme levels. The authors also
propose temporal normalization of prosody embeddings, which improves robustness against
speaker variations during prosody transfer tasks.
A study by Ramu et al. [15] delves into the extraction and analysis of both global and local
prosodic features from various linguistic units like sentences, words, and syllables, specifically
for the task of speech emotion recognition. While global features offer a broad statistical view of
prosodic patterns, local features provide insights into the finer, moment-to-moment dynamics
of speech. This approach, which considers the positions of words and syllables, emphasizes the
depth of information that can be extracted from prosodic features. For our research, this study
is informative, we extract insights for prosodic features inclusion into training for TTS models.
As it also underscores the importance of considering prosody at various granular levels, from the
overarching outlines of a sentence to the specific dynamics of individual syllables. As we aim to
enhance Tacotron2 with prominence labels, understanding the multi-layered nature of prosody,
as evidenced by [15], offers valuable insights. Their methodology and findings underscore the
potential of our approach to capture and reproduce the rich prosodic nuances in synthesized
speech. Their exploration of local and global prosodic features as well as positions of words
and syllables at different positions and even separately, helped us understand the role of word
emphasis/prominence in emotion recognition.
Research by Ramu et al. [15] only focused on the local and global prosodic features of linguistic
units. However, research by Yu Zhou et al. [27] introduces a speech emotion recognition system
that incorporates both spectral and prosodic features. This research is introduced to effectively
present the variations and options to pick and use the prosodic features from various sources
and their effects in improving synthesized speech. The spectral features mentioned in this
research capture characteristics of speech sounds, while prosodic features reflect elements like
pitch and rhythm. By combining these features, their system achieves a significant reduction
in emotion recognition errors compared to using each feature type individually.
In a recent study [8], the subtle prosodic nuances of Dutch sarcastic speech were explored.
Based on sentence-level analysis, the results revealed specific prosodic indicators for sarcasm,
including longer duration, lessened intensity, and diminished vocal loudness when compared
to sincere speech. It’s interesting to note that the use of pitch and duration varied depending
on the sort of statement and the gender of the speaker. In context with our research, these
findings underscore the complex and varied nature of prosodic cues in encoding linguistic
subtleties. This highlights the potential depth and richness that prominence labels can bring
to synthesized speech, enabling it to capture and convey not just the literal meaning but the
layered emotional and pragmatic nuances beneath.
Research by Jeremy et al. [1] explores how prosody can be used to identify emotional states
during human-computer interactions. Their results show that prosodic models can distinguish

5



between neutral and emotionally charged utterances with an accuracy comparable to human
judgment, particularly those of displeasure. The models continue to be accurate even when
they use recognized words rather than precise spoken content. Interestingly, the study also
discovered that hyperarticulation is not a valid emotional indicator and language model features
lag in predicting emotions. This study shows the informational value of prosody for emotion
in speech, albeit in STT in the latter case.
This study highlights the potential of prosodic elements in evoking and expressing emotions
for our research. When attempting to increase the emotional resonance of synthesized speech
systems, it emphasizes the transformative power of prosody.
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Chapter 3

Research Question

The central research question of this thesis is: ”How does the output of the Tacotron2 TTS
model change specifically in terms of naturalness when integrated with prominence labels?”
Prominence labels, derived from highly large-scale datasets, indicate word emphasis. By intro-
ducing these labels as input to the Tacotron2 model, we allow the model to better identify
the emphasis for each word in the input text. This could lead to more accurate and natural
speech synthesis. While the use of prominence labels in speech synthesis has been explored,
their integration in the context of architectural modifications and auxiliary task learning in
Tacotron2 remains a novel area of investigation.
Our research delves into the behavior of Tacotron2 under different experimental conditions,
focusing on the impact of architectural adjustments and auxiliary tasks when prosodic labels
are used as the input features in the model.

Hypotheses

• Incorporating predicted prominence as an additional input in the Tacotron2 model will
result in a measurable increase in the expressiveness of the synthesized speech as com-
pared to the baseline model without prominence input.

• The direct embedding of prosodic information through concatenation will produce fewer
artifacts in the synthesized speech compared to methods that do not embed this infor-
mation.

• The introduction of prominence prediction as an auxiliary task will lead to faster learning
efficiency, as measured by the rate of reduction in prominence loss feedback, compared
to the Tacotron2 model without this auxiliary task.
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Chapter 4

Method

In this section, the methodology employed to conduct our experiments is described, with a focus
on the various modifications applied to the architecture of Tacotron2, wherein prominence
labels are utilized as an additional input feature. We anticipate that the synthesized audio will
exhibit the desired naturalness. The Tacotron2 model, recognized as a state-of-the-art TTS
(Text-to-Speech) architecture, will serve as the baseline model for this research.
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4.1 Baseline model: Tacotron2

This first experiment will act as a baseline, where we train the Tacotron2 model with the
Ljspeech dataset which contains text with prominence labels.
The Tacotron2[19] is a sequence-to-sequence model comprising two principal components: the
encoder and the decoder.

Encoder: The role of the encoder is to convert input text tokens into a rich, high-dimensional
latent representation. The encoder does this using several convolutional layers followed by a
bidirectional Long Short-Term Memory (LSTM) layer. The input text from the dataset enters
the encoder, where it is processed into this high-dimensional latent space. The encoder takes
the text portion of the data, which allows it to learn the semantic and syntactic structures of
the language. The Encoder’s learning of semantic features of the text is somewhat limited and
not very deep in comparison to the semantic understanding of dedicated NLP models trained
for tasks like question-answering, translation, or summarization. It captures the semantic struc-
ture of the language to the extent necessary for high-quality speech synthesis, ensuring that
the generated speech reflects the meaning and intent of the input text.

Figure 4.1: Block diagram of the Tacotron2 system architecture.

Attention Mechanism: Before passing the encoded representation to the decoder, the model
employs an attention mechanism. This attention mechanism is a crucial component of the
Tacotron2 system as it helps to dynamically align the input sequence (text) with the output
spectrograms. The attention mechanism considers the entire output of the encoder and de-
termines which parts are most relevant for each decoding step, thereby enabling the model to
manage the variability in the alignment between text and corresponding speech.
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Decoder: The decoder of Tacotron 2 operates in an autoregressive manner, taking the en-
coded text and producing mel-spectrogram frames step-by-step. Using a combination of a
pre-net, LSTM layers, and a location-sensitive attention mechanism, it ensures accurate align-
ment between text and generated speech. The process continues until a stop token indicates
the end of speech generation.

Post-Net: The post-net in Tacotron 2 refines the mel-spectrogram frame predicted by the
decoder. It’s a neural network that takes the initial prediction, processes it and produces a
correction or refinement. This refined output is then added to the initial prediction to produce
a more accurate and higher-quality mel-spectrogram frame.

The Tacotron2 model stands out among text-to-speech models due to its end-to-end nature,
and attention mechanism. It’s direct learning from text to speech eliminates complex hand-
engineered components while enhancing output quality. Furthermore, its ability to accurately
process various text inputs, including punctuation and non-standard words, makes it highly
applicable in real-world scenarios. These features make Tacotron 2 an ideal choice for tasks
demanding efficient, high-quality speech synthesis.

10



4.2 ENCO-MOD: Encoder modification in Tacotron2

In our adaptation of the Tacotron2 model, we aim to incorporate the prominence labels from
the datasets. For data preparation check [5.1]. Prominence labels after being processed and
normalized, are converted into vectors. To include prominence labels in the architecture a
new embedding layer was introduced for the prosody which matches the size of the character
embedding in the architecture, then the prosody embedding layer was concatenated with the
character embedding layer to include prominence labels into the input, to match the size of the
next layer input layer a new fully-connected projection linear layer was introduced to project
concatenated embedding layer into it’s original shape. This allows us to maintain architectural
consistency. This was done to investigate the effects of conditioning through additional input
of prominence labels and architectural overview can be seen in [4.2].

Figure 4.2: Extra input with prominence labels for the encoder layer. The dotted structure
represents our architectural additions.
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4.3 ATT-MOD: Updated Attention layer input

In this experiment, similar data preparation was used which can be seen in [5.1]. A novel
approach was introduced here where the prominence labels are concatenated with the encoder’s
layer output and passed into the attention module. To execute this experiment, again a prosody
embedding layer was introduced and then the results from the encoder layer were concatenated
and later passed through a fully connected projection linear layer to ensure the resultant results
were in a similar shape for the attention’s output.
By concatenating prominence labels with the encoder’s output, the model is afforded a more
direct route to utilize prosodic information during the subsequent stages of processing. This is
fundamentally different from the traditional Tacotron 2 approach, where the model must infer
prosodic properties indirectly from the textual input.

Figure 4.3: Updated output of encoder layer with prominence labels. The dotted structure
represents our architectural additions.

After modifying the encoder output, this new data is subsequently passed into the attention
mechanism of Tacotron2 [4.3]. The attention mechanism plays a key role in aligning input
textual data with the corresponding portions of the generated speech. By feeding prominence-
enhanced encoder outputs into the attention mechanism, it is anticipated that this will allow
the model to learn more accurately the relationship between text and corresponding speech
prosody.

12



4.4 PRO-MOD: Predicting loss on attention layer

In this study, we implement an auxiliary task-learning approach within the Tacotron2 model
architecture. The goal of this experiment is to study if predicting prominence labels also helps
in generating better audio in terms of prosody.

To implement this, a novel approach was introduced where we propose an auxiliary prominence
loss prediction head in the model. This prominence prediction head is a small fully-connected
layer connected to the output of the attention module within the Tacotron2’s architecture.
It predicts the prominence of the current attention readout. This is done to force attention
output to also contain information that is relevant to predict the prominence of the current to
be decoded frames. The loss is analogous to the stop token loss, but based on the prediction
of the prominence labels. The prominence prediction head outputs a sequence of predicted
prominence labels, the disparity between these predicted labels and the actual prominence
labels forms the prominence loss. The loss(Cross-Entropy Loss) provides a measure of how far
the model’s prominence predictions deviate from the true prominence features in the training
data. The alignment of predicted frame-based prosody labels with the true text-based prosody
labels is managed in the loss function. For the purpose of training, the true prosody labels are
expanded (repeated) to match the length of the predicted labels, ensuring that each frame has
an associated prosody label. In the inference phase, the final prosody label for each frame is
typically determined by taking the argmax of the logits produced by the model and selecting
the class with the highest predicted value. However, the method of expanding true labels dur-
ing training is a direct approach to handle different lengths between predictions and targets.

Figure 4.4: Auxiliary task: Adding Prominence Loss Prediction Head. The dotted struc-
ture represents our architectural additions.
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The calculated prominence loss is then backpropagated through the model during training,
adjusting the model’s parameters to reduce this prominence loss in future predictions. By
integrating this prominence loss into the overall loss of the Tacotron2 model, the model is
encouraged to generate speech that not only aligns with the text but also exhibits realistic
prominence patterns.

4.5 Vocoder: Waveglow

In the field of speech synthesis and audio processing, a vocoder serves as a key element that fa-
cilitates the conversion of Mel-frequency cepstral coefficients (MFCCs), or Mel spectrograms,
back into waveform signals, a process often denoted as Mel-to-Wave synthesis. Utilizing com-
plex algorithms and neural network architectures, it reconstructs the time-domain waveform
from the spectral representation, maintaining a thorough balance to preserve the details of the
original audio signal. For more details on Waveglow see [14].

4.6 Measures

4.6.1 Loss functions

The loss functions being used in the Tacotron2 model are described below. In our Tacotron 2
implementation, we chose to evenly weight the losses to ensure balanced importance between
generating accurate spectrograms and determining the sequence’s end. Empirical evaluations
indicated that this configuration produced optimal performance. Additionally, even weighting
prevented bias towards any specific objective, maintaining the model’s focus on both the
quality of speech synthesis and its natural termination.

Mel Spectrogram Loss (Mel Loss)

Given: The Mel loss is computed as the sum of the MSE loss between the prediction before
PostNet and the target Mel spectrogram, and the MSE loss between the prediction after Post-
Net and the target Mel spectrogram.

• y as the ground truth Mel spectrogram.

• ŷ1 as the predicted Mel spectrogram before the PostNet.

• ŷ2 as the predicted Mel spectrogram after the PostNet.

The Mel loss Lmel is:
Lmel =∥ y − ŷ1 ∥22 + ∥ y − ŷ2 ∥22 (4.1)

Gate Loss (Stop Token Loss)

Given: The gate loss is calculated using binary cross-entropy with logit loss between the
predicted gate outputs and the target gate outputs.

14



• g as the ground truth stop token (0 or 1).

• ĝ as the predicted stop token (logit output, before applying a sigmoid activation).

The gate loss Lgate is:

Lgate = −g log(σ(ĝ))− (1− g) log(1− σ(ĝ)) (4.2)

where σ(.) represents the sigmoid activation function.

Prominence Loss

Given: The prominence loss is computed using the cross-entropy loss between the predicted
prosody values and the prosody target values.

• p as the prosody target values.

• p̂ as the predicted prosody values.

• The pi refers to the prosody target value for the i-th element in the sequence. Similarly,
p̂i, refers to the predicted prosody value for the i-th element.

The prominence loss Lprominence is:

Lprominence = −
∑
i

pi log(p̂i) + (1− pi) log(1− p̂i) (4.3)
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Chapter 5

Experimental Setup

5.1 Dataset

In the initial phase of our experiments, we utilized the LibriTTS dataset [26], which encom-
passes similar features and prominence labels for words, deriving from a multispeaker platform
with 2,456 speakers. The prominence labels in LibriTTS were appended by the Helsinki Prosody
corpus [22], utilizing the Continuous Wavelet Transform annotation method [21] and Wavelet
prosody analyzer toolkit.
Simultaneously, we integrated the LJ Speech dataset [7], consisting of 3,100 short audio clips
from a single speaker reading passages from 7 non-fiction books, into our experiments. Recog-
nizing the absence of prominence labels in this dataset, we formulated a method to introduce
them. In the dataset preparation, a heuristic labeling approach was applied to designate words
with prominence labels: ”low” (0), ”medium” (1), and ”high” (2), based on their lexical
and syntactic roles. Common function words and certain auxiliary/modal verbs were typically
assigned low and medium prominence, respectively, while other content-rich words were la-
beled high prominence. Punctuation marks were assigned a distinct label (’NA’) and treated
separately to maintain sentence structure. Here’s an example of the label generation for the
LjSpeech dataset,

Sentence: ”The quick brown fox jumps over the lazy dog.”

Processing:

• Common words like ”the” might be considered of low prominence: label 0.

• Words like ”jumps” and ”over” could be considered of medium prominence due to their
functional roles: label 1.

• The remaining words, which tend to carry significant meaning or are content words,
would be considered of high prominence: label 2.

Labeled Sentence: ”The 0 quick 2 brown 2 fox 2 jumps 1 over 1 the 0 lazy 2 dog 2.”
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Data Preparation for training

To prepare the dataset, we obtained the text and their corresponding prominence labels from
the text files. They have extracted the prominence labels from the audio files corresponding
to their sentences. So the final dataset looked like this: ”Audio file — Sentence with their
prominence labels”. For the first batch of experimentation, we used the Libritts dataset, and
for the second batch of experimentation, we used the LjSpeech dataset.

5.2 Training

The models were trained using a dataset of sentences with prominence labels with their Mel
Spectrogram representations of the audio signals. The training process involved the following
steps:

• Dataset: Dataset was divided for training, testing, and validation in the ratio of 8:1:1.

• Optimizer and Learning Rate: The model uses the Adam optimizer with a learning rate
of 1e-3 and a weight decay of 1e-6.

• Training Procedure: The model was trained using small-batch stochastic gradient de-
scent. A batch size of 4 and 32 were used. The model was trained for a total of 10 epochs
which account for 120k iterations for batch size 4 and 500 epochs which account for
180k iterations for batch size 32. During training, the backpropagation algorithm com-
puted the gradients of the loss function with respect to the model parameters, and the
optimizer updated the parameters accordingly.

• Regularization: During training, the model employs L2 regularization (also known as
weight decay) set at a rate of 1e-6 to prevent overfitting, and also uses gradient clipping
with a threshold of 1.0 to mitigate the effects of exploding gradients.

• Monitoring and Evaluation: Throughout the training process, the model undergoes eval-
uation against a validation set every 1000 iterations, and corresponding checkpoints of
its state are saved for potential resumption or analysis.
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Chapter 6

Results

Several observations were made based on the results we obtained. To establish a performance
baseline, we also added and presented results with the baseline Tacotron2 model.
ENCO-MOD: Encoder modification in Tacotron2 [4.2]
ATT-MOD: Updated Attention layer input [4.3]
PRO-MOD: Predicting loss on attention layer [4.4]

In our systematic analysis, we leveraged violin plots to visualize and interpret the distribu-
tion of Mel and Gate losses across different experimental setups which can be seen in Figures.
Violin plots for the Gate loss range from [0.00-0.14] and for Mel loss it ranges from [0.0-1.2]
[6.1, 6.2, 6.3, and 6.4]
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Figure 6.1: Comparison violin plot of Gate and Mel loss for baseline on 3 different iterations
checkpoints tested on the test dataset.
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Figure 6.2: Comparison violin plot of Gate and Mel loss for ENCO-MOD on 3 different
iterations checkpoints tested on the test dataset.
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Figure 6.3: Comparison violin plot of Gate and Mel loss for ATT-MOD on 3 different
iterations checkpoints tested on the test dataset.
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Figure 6.4: Comparison violin plot of Gate and Mel loss for PRO-MOD on 3 different
iterations checkpoints tested on the test dataset.
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Figure 6.5: Comparison violin plot of Prosody loss for PRO-MOD on 3 different iterations
checkpoints tested on the test dataset.

Figure 6.6: Box plot for combined loss for all three experiments with a baseline on the
test dataset. Exp1 here is ENCO-MOD, Exp2 is ATT-MOD, and Exp3 is PRO-MOD.
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6.1 Analytical Overview on violin plots

6.1.1 ENCO-MOD Analysis

[6.2]

Mel Loss Overview

ENCO-MOD vs. Baseline: ENCO-MOD consistently shows a lower median Mel Loss across
all iterations compared to the baseline, indicating a more accurate model on average in syn-
thesizing Mel spectrograms.
Key Observations: However, the distribution width (representing variability in predictions)
fluctuates across iterations, indicating periods of both stable and variable predictive perfor-
mance.

Gate Loss Overview

ENCO-MOD vs. Baseline: The Gate Loss in ENCO-MOD is notably higher than in the
baseline across all iterations, suggesting less accurate predictions in phoneme durations.
Key Observations: The consistently broader distributions also suggest higher variability in
prediction performance across different input samples.

Iteration Insights

Mel Loss tends to decrease as iterations progress, showing model learning and optimiza-
tion. Gate Loss fluctuates across iterations, indicating inconsistent performance in predicting
phoneme durations.

Summary: ENCO-MOD

ENCO-MOD demonstrates commendable performance in reducing Mel Loss, indicating profi-
cient Mel spectrogram predictions. However, the high and variable Gate Loss signals potential
inconsistencies and challenges in accurately predicting phoneme durations, which might impact
the synthesized speech’s naturalness and coherence.

6.1.2 ATT-MOD Analysis

[6.3]

Mel Loss Overview

ATT-MOD vs. Baseline: ATT-MOD generally exhibits higher Mel Loss values compared to
ENCO-MOD but is still lower than the baseline, placing its performance in a middle ground
between the two.
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Gate Loss Overview

ATT-MOD vs. Baseline: The Gate Loss in ATT-MOD, while lower than ENCO-MOD,
still surpasses the baseline, indicating an area that might require further investigation and
optimization.

Iteration Insights

Mel Loss shows a general decrease with increasing iterations. Gate Loss, conversely, trends
upwards, signaling potential challenges in optimizing gate predictions as training progresses.

Summary: ATT-MOD

ATT-MOD navigates a middle path, performing better than the baseline but not as proficiently
as ENCO-MOD in Mel Loss. Gate Loss remains a consistent challenge, warranting further
exploration into optimizing gate predictions.

6.1.3 PRO-MOD Analysis

[6.4]

Mel Loss Overview

PRO-MOD vs. Baseline: Mel Loss in PRO-MOD mirrors that of ATT-MOD, indicating
similar average performances but showcasing a wider distribution, revealing more variability in
predictions.

Gate Loss Overview

PRO-MOD vs. Baseline: Gate Loss in PRO-MOD is notably higher than both ENCO-MOD
and ATT-MOD and also the baseline, signaling a potential area of concern and scope for
improvement.

Iteration Insights

Mel Loss generally decreases, showcasing model optimization. Gate Loss displays fluctuations,
highlighting periods of varied performance in gate predictions.

Summary: PRO-MOD

PRO-MOD aligns closely with ATT-MOD in Mel Loss but introduces more variability, poten-
tially signaling less consistency in predictions. The Gate Loss, being the highest among the
three experiments, pinpoints a critical area that might require focused attention and optimiza-
tion in future iterations.
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Figure 6.7: Alignment observed during baseline experiment with batch size 32 and around
38k steps it started showing early signs of the alignment, with Ljspeech dataset.

Figure 6.8: No alignment observed during baseline experiment with batch size 32, till 150k
steps with Libritts dataset.

Figure 6.9: No alignment observed during the second experiment with batch size 32, till
320k steps with Libritts dataset. 26



(a) Baseline (b) ENCO-MOD

(c) ATT-MOD (d) PRO-MOD

Figure 6.10: Alignment observed in Baseline, ATT-MOD, and PRO-MOD. ENCO-MOD
failed to attain alignment. Shown experiments are trained on the Ljspeech dataset till
150k iterations.

6.2 Discussion

The observed outcomes from training show great potential. Initially, training was performed for
all 4 experiments including baseline till 100k steps on the batch size of 4 with our prominence
labeled data. Later during the inference, we found out that the generated audio was noisy.
So we trained Vocoder on our dataset so that it could get accustomed to longer sentences
and audio files. However, our experiments didn’t show any alignment; even the baseline model
showed no alignment till 100k steps during inference. Later we tested our findings on a different
dataset, the Ljspeech [7] dataset. This dataset showed us that when the model is trained with
batch size 32 it gets alignment around 38k steps, as shown in [6.7]. While batch size 4 failed
to show any alignment till 120k steps in iteration. This finding leads us to investigate more
on how we can tune the hyperparameters. We found out that batch size and learning rate are
correlated to each other so, we tried another experiment with the Ljspeech dataset again, but
this time with batch size 4, and the learning rate was reduced 8 times as well. But this failed
to show the alignment during training till 100k steps. This made us realize that a higher batch
size is required for the model to learn the alignment in the early stage of the training. As we
didn’t take this information into account during initial training, we modified our prominence
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labels dataset by limiting only text of a certain length to be used for a batch size of 32. Then
we ran the training again but only for the baseline and for our second experiment to test our
findings. While training, we observed that for the baseline no alignment was observed till 130k
steps, and for the second experiment no alignment even at 320k steps as shown in Figures
[6.8][6.9]. These results failed our findings based on the batch size and the learning rate.
Later it was found that our prominence labeled dataset(LibriTTS) is actually a multispeaker
dataset that contains nearly 2456 speakers and Tacotron2 is a single-speaker TTS model. This
made us realize that this is the reason our model is not achieving the alignment because for
one speaker Tacotron2 was taking 40k-50k steps to get perfect alignment and for the 2456
speakers it would approximately take 2456 ∗ 50k steps. So hypothetically a very long training
process would have been required in the case of this multispeaker problem and maybe it could
attain the alignment as well with a longer training process.

To overcome this challenge, we trained our models on the Ljspeech dataset with prominence
labels, which is originally a single-speaker dataset and has already proven earlier in the testing
that it attains alignment around 38k steps. During training, we only trained our experiments
to 150k steps to check if our experiments were indeed learning the alignments. Notably, with
the exception of ENCO-MOD, alignment was attained by each experiment up to 150k steps.
Moreover, ATT-MOD exhibited the most favorable alignment during training, while PRO-
MOD displayed consistent growth in alignment learning, suggesting that extended training
duration could prove advantageous for PRO-MOD by potentially showcasing the efficacy of
adding prosody loss in the Tacotron2 architecture. The observed alignment plots are presented
in [6.10].
In contrast, during the inference stage, the audio generated by PRO-MOD was most akin
to that produced by the Baseline model, though it is early to claim that extra prosody loss
head helped the model to put more emphasis on words based on prominence labels because of
the early stage of training. Although ATT-MOD demonstrated consistent alignment through-
out training, it unexpectedly failed to generate coherent speech during inference. Similarly,
ENCO-MOD was unable to generate coherent speech, a result of not achieving alignment
within 150k training steps. Consequently, while PRO-MOD yielded the best-generated speech
when compared to the others, a lengthier training duration is requisite to truly ascertain its
capabilities.
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Chapter 7

Conclusion and Further Research

This research embarked on a journey to explore the enhancement of synthesized speech’s
naturalness, particularly through the incorporation of prominence labels into the Tacotron2
architecture. Despite the methodological insights gained, the anticipated outcomes, especially
in terms of achieving consistent and meaningful improvements in speech emphasis and word
prominence, were not fully realized in the conducted experiments.
Our journey confronted substantial challenges, notably alignment difficulties encountered when
utilizing a multi-speaker dataset, which yielded inconclusive and non-generalizable outcomes. A
pivot to a single-speaker dataset did illuminate potential paths forward, facilitating alignment
achievement in specific experimental setups. Nevertheless, the findings must be contextualized
within the limitations of the particular datasets and experimental configurations utilized.
Notably, while ATT-MOD and PRO-MOD demonstrated alignment and indicated that our
architectural modifications were fundamentally compatible with the original architecture, their
practical application in synthesizing speech with enhanced prominence was limited. PRO-MOD
did produce synthesized speech that bore some degree of emphasis, yet without a significant
uplift in naturalness or a robust confirmation of the utility of the additional prosody loss head
in the architecture, especially considering the early stage of training.
These findings, while providing a foundation, underscore the necessity for caution in deriving
broad conclusions. The insights gained are tightly bound to the specific setups and conditions
of our experiments and should not be extrapolated to wider contexts without further validation.
Future research will delve deeper, exploring extended training durations and further model
refinement, capitalizing on the initial findings gleaned from the single-speaker dataset exper-
iments. A significant focal point will be navigating the complexities of achieving alignment
in a multi-speaker dataset, possibly exploring the incorporation of speaker embeddings, and
further probing into the optimal integration points and methods for prominence labels in the
Tacotron2 architecture.
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Appendix A

Usage of ChatGPT

ChatGPT has been a helpful device in my project. I basically involved ChatGPT as a composing
help, explicitly for help in organizing the segments. In a request to get a decent layout for the
segments where I present my data in a sensible way, ChatGPT was valuable. For instance,
on account of the Abstract, I gave ChatGPT all the data regarding my task, including the
primary goal and the aftereffects of my review. I was given an example abstract segment with
a decent progression of data that summed up the task. The example structure was as per
the following - it began with what is the principal objective of the paper, which was trailed
by the four tacotron2 models used. Then it referenced the commotion types, the assessment
measurements utilized, and the aftereffects of every one of the models. I involved this example
as a gauge to further form my Abstract segment. Since my emphasis was more on getting a
perfect voice output with prosody, I abbreviated the data about the models. Essentially, for the
Conclusion area, I utilized ChatGPT to characterize a layout for the information presentation.
I held the construction yet gave the data that was applicable to my thesis.
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