
Opleiding Informatica

Expanding Side-Channel Data Sets

Using Conditional Generative Adversarial Networks

Joren van den Berg

Supervisors:
Guilherme Perin

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 06/04/2023

www.liacs.leidenuniv.nl

Abstract

Side-channel analyses using deep learning usually require large data sets to perform well.
Obtaining these data sets can prove to be quite difficult, as manufactures of chips implement
certain safeguards against obtaining the required measures. The performance of side-channel
analyses can be improved by generating synthetic traces from the original data set of traces
instead of measuring directly from the target device. This research proposes using conditional
generative adversarial networks (cGAN) to generate the synthetic traces, on which a deep-
learning model can be trained to execute a Deep-Learning Side-Channel Analysis. We will
compare the effectiveness of various cGAN models and investigate the effect of certain
hyperparameters on the performance of our analysis. The experiments will be performed on an
ATMega8515 chip running AES 128-bit encryption. To compare our models, we will calculate
the guessing entropy of the predictions made by a MLP model, trained on the synthetic traces
generated by our cGAN model. We will also compare models using the Signal-To-Noise ratio
of the synthetic traces and the real traces (the SNR should be similar). Our results show
much promise in using cGAN models to enhance existing data sets and using them perform
Side-Channel Analyses.

Contents

1 Introduction 1
1.1 The problem . 1
1.2 Proposed solution . 1
1.3 Contributions . 2
1.4 Thesis overview . 2

2 Background 2
2.1 AES . 2
2.2 ASCAD Data set . 3
2.3 Generative Adversarial Networks (GAN) . 4
2.4 Conditional Generative Adversarial Networks (cGAN) 4
2.5 Multilayer Perceptron (MLP) . 5
2.6 Side-Channel Attacks (SCA) . 5
2.7 Evaluation Metric . 6

3 Related Work 7
3.1 GANs in SCA . 7
3.2 ASCAD data set . 7
3.3 Attack Model . 7

4 Experiments 8
4.1 Methodology . 8
4.2 Model Architecture . 9

4.2.1 Attack Model . 10
4.2.2 Discriminator . 11
4.2.3 Generator . 12
4.2.4 GAN . 13

4.3 Exploring the Impact of Hyperparameters . 14
4.3.1 Layers . 14
4.3.2 Nodes . 16
4.3.3 Dropout . 17
4.3.4 Activation Functions . 19
4.3.5 Network Optimizer . 20
4.3.6 Training . 22

5 Conclusions and Further Research 23

References 25

1 Introduction

Cryptographic algorithms are mathematically secure. Knowing the input and output data (i.e.,
plaintexts and ciphertexts), as well as every detail about the cryptographic algorithm, is not enough
to recover the key. However, when a cryptographic implementation executes on electronic devices
(e.g., microprocessors, microcontrolers), there are several sources of unintended and unavoidable
information leakages. Most common types are power consumption, electromagnetic emission, exe-
cution time, temperature and acoustics. An attacker may be able to measure these side-channel
information during the execution of encryption or decryption operations and to perform statistical
analysis to extract the key from the side-channel measurements.

Side-Channel Analyses (SCA) mainly consist of two categories: profiling attacks and non-profiling
attacks. Non-profiling attacks mean that we recover the secret key by analyzing the leakages of a
target device directly. Differential power analysis (DPA) [KJJ99] and Correlation Power Analysis
(CPA) [BCO04] are examples of direct or non-profiling attacks. With profiling attacks, we are in
the possession of an open identical copy of the target device, of which we know the secret key
beforehand. We use this copy to construct a model (in our case, a deep learning model), which we
later use to attack our target device.

1.1 The problem

Obtaining enough measurements for our attack to be successful, can be time-consuming and
expensive, if not sometimes impossible. When the encryption algorithm we are attacking is part of
an application, we may need to collect traces for the whole application, which can take more time.
In other cases the secret key may only be temporarily valid, meaning we can only obtain traces
during a small time window. The limited number of measurements can also be a consequence of
implemented countermeasures against SCA.

1.2 Proposed solution

To solve this problem, we may be able to make use of Generative Adversarial Networks (GANs). Using
these few insufficient profiling traces, we might be able train a Conditional Generative Adversarial
Network which we can use to expand our data set, such that the expanded data set is sufficient
to execute a successful attack. One solution to increase the dataset size is data augmentation, a
technique usually applied as a regularization of the model. Data augmentation generates synthetic
measurements by applying modifications to the original dataset. The original dataset represents an
approximation distribution from a true and unknown distribution. By augmenting the training set,
one expects the approximation distribution to be a better representation of the real distribution.
In this research, we will investigate how effective this method is at reducing the amount of real
measurement required to make our attack successful, thus reducing the impact of these issues.

1

1.3 Contributions

Source Code The source code used in our experiments will be published online and available.
Anyone can use the source code to train a model and use it to improve the performance of SCA.
View source on GitHub

Reproducability As the source code is publicly available, the experiments in this paper can easily
be reproduced by anyone.

Effect of cGAN hyperparameters In our experiments we will research the effect of hyperpa-
rameters on the effectiveness of Conditional GANs for SCA. The goal is to improve understanding
of why certain cGAN models perform better or worse than others in the context of SCA.

1.4 Thesis overview

This research was part of a bachelor thesis at the Leiden Institute of Advanced Computer Science
(LIACS), supervised by Guilherme Perin.

This thesis is organized as follows: in Section 2, we state some definitions and explain the data set
used for our experiments, Generative Adversarial Networks, Conditional Generative Adversarial
Networks, the evaluation and the algorithm used. In Section 3, we discuss some related research
and their effects on our research. In Section 4, we first explain the methodology of our experiments,
followed by establishing a baseline for our experiments, and finally we discuss the experiments
themselves.

2 Background

In this section, we will explain some background information that will be used throughout this
paper.

2.1 AES

AES (Advanced Encryption Standard) is a symmetric encryption algorithm widely used to secure
sensitive data. The side-channel analysis application of this work targets an AES 128-bit algorithm,
which applies an 128-bit key. This key, which we will try to recover, consists of 16 bytes. AES 128-bit
algorithm consists of ten rounds for encryption or decryption, and in each round the following
operations may appear:

• AddRoundKey: this operation XORs an intermediate AES 128-bit state with the corresponding
round key.

• SubBytes: each byte of the input block, given by an AES 128-bit state, is substituted with a
corresponding byte from the AES S-box, which is a predefined lookup table.

2

https://github.com/jvdberg08/cgan-sca

• ShiftRows: the bytes in each row of the block are cyclically shifted to the left. The first row
remains unchanged, the second row is shifted by one position, the third row by two positions,
and the fourth row by three positions.

• MixColumns: the columns of the block are treated as polynomials and multiplied with a fixed
matrix using a special multiplication called Galois field multiplication.

Figure 1 illustrates the sequence of execution rounds for the encryption operation. In each round, a
round key is considered and all round keys are generated by a the key expansion algorithm.

Of the 16 AES key bytes, we will focus on recovering only the first one, as the first two key
bytes are unprotected in the ASCAD dataset. We will be focusing on the SubBytes operation of
the AES encryption algorithm. The SubBytes step transforms every byte to another byte using an
sbox, which is simply a mapping from one byte to another, where both bytes are never the same
and are never a compliment of each other. If we can predict the SubBytes output operation, we are
able to predict the key, as the plaintext is assumed to be known.

Figure 1: AES encryption overview. Available from: https://www.researchgate.net/figure/Architecture-
of-AES-Algorithm fig3 301644181. Accessed 18/07/2023

2.2 ASCAD Data set

The data set we will use is the ASCAD dataset. This dataset is intended to be used similarly to the
MNIST, and is introduced first in [PSB+18]. The dataset has 200.000 profiling traces and 100.000
attack traces. These traces have been measured on an ATMega8515 chip while running a first-order
masked AES 128-bit encryption. We will use the following amount of those traces:

• Profiling: 200.000 traces (from the profiling set)

• Validation: 20.000 traces (from the attack set)

• Attack: 20.000 (from the attack set)

3

https://www.researchgate.net/figure/Architecture-of-AES-Algorithm_fig3_301644181. Accessed 18 Jul, 2023
https://www.researchgate.net/figure/Architecture-of-AES-Algorithm_fig3_301644181. Accessed 18 Jul, 2023

Each side-channel measurement in this dataset contains 250 000 sample points. This interval
represents the side-channel leakages from the entire first AES encryption round computation over
the 128-bit key (i.e., AddRoundKey and SubBytes operation). In this work, we focus on a specific
interval with 1,000 measurement points belonging to the first SubBytes operation (measurement
points from 49,900 to 50,900), and corresponding metadata: a key and a plaintext, both 16 bytes.

2.3 Generative Adversarial Networks (GAN)

Generative Adversarial Networks (GANs) were first introduced by Goodfellow et al. in 2014
[GPAM+14] and have been largely adopted as a generative model for data generation such as
images, video and audio. A generative adversarial network is a neural network architecture which
consists of 2 sub-models, a generator model and a discriminator model. These models work as
adversaries in a zero-sum game, with the generator trying to maximize the loss and the discriminator
trying to minimize the loss. Equation 1 represents the loss function of a GAN model.

Figure 2: GAN architecture. Available from: https://nl.mathworks.com/help/deeplearning/ug/train-
conditional-generative-adversarial-network.html. Accessed 18/07/2023.

The generator’s task is to learn the real data distribution and generate fake data using random noise
as z input resembling the real data as close as possible. The discriminator’s task is to determine
whether a given sample is real (labeled as ’1’) or fake (labeled as ’0’). The GAN loss function is
given by the following equation:

min
G

max
D

V (G,D) = Ex[log(D(x))] + Ez[log(1−D(G(z)))] (1)

where D(x) is a value between 0 and 1 representing the probability of the trace being real, with x
being a trace from the real data set. A value of 0.5 indicates the trace could just as likely be real
as fake, meaning our discriminator is unsure. G(z) represents a synthetic trace generated by the
generator, and D(G(z)) in turn represents how sure the discriminator is of the trace’s authenticity.

As can be seen from Equation 1, the discriminator’s goal is to maximize D(x) (real data, so
classify as ’1’) and minimize D(G(z)) (fake data, so classify as ’0’). The generator tries to maximize
D(G(z)), and has no influence on D(x) to prevent over-fitting.

2.4 Conditional Generative Adversarial Networks (cGAN)

In our case, using GANs is not sufficient as there is no way to specify the class (i.e., the label) of
the data we want to generate. Thus, we use Conditonal Generative Adversarial Networks (cGAN)
[MO14]. A cGAN is a GAN which can be conditioned using class labels. Other than this, a cGAN

4

https://nl.mathworks.com/help/deeplearning/ug/train-conditional-generative-adversarial-network.html
https://nl.mathworks.com/help/deeplearning/ug/train-conditional-generative-adversarial-network.html

works much like a GAN. In this paper, the labels represent an intermediate byte (between 0 and
255) being processed by the AES encryption algorithm for which the trace is generated. More
specifically, this byte is the first output byte of the SubBytes output in the first encryption round.
Figure 3 shows the structure of the CGAN model that is considered in this work.

Figure 3: cGAN architecture. Available from: https://nl.mathworks.com/help/deeplearning/ug/train-
conditional-generative-adversarial-network.html. Accessed 18/07/2023.

2.5 Multilayer Perceptron (MLP)

As mentioned in the previous sections, the CGAN architecture requires two separate neural networks
models: a generator and a discriminator. In this work, we consider Multilayer Perceptrons (MLPs)
as the neural network model architecture for both generator and discriminator. Moreover, in the
profiling attack part, a deep neural network is also considered as the profiling model. Thus, we also
adopt MLP models for this task.

A MLP is a fully-connected feed-forward neural network algorithm, which consists of an in-
put layer, one or more hidden layers, and an output layer. Every layer consists of multiple neurons
and may implement a non-linear function with an activation function. Every node in a layer i
is connected to all nodes of the next layer j with a certain weight wij , hence the name fully-connected.

The attack model, which performs the final side-channel analysis using traces generated by the
cGAN model, will be an MLP. However, we will not perform any experiments using variations of
this MLP and will be using the same model as our attack model every time, since hyperparameter
tuning for the attack model is not the focus of this research. This is explained further in Section
3.3.

The generator and discriminator will both also be MLPs. We’ve decided against also experi-
menting using CNNs. CNNs are in general more complex, difficult to train and have a larger
amount of hyperparameters to tune, and as such there was not enough time available to take
CNNs into consideration too. Moreover, CNNs are known to be shift-invariant and more robust
to trace desynchronizations in SCA context [CDP17]. In this work, we only consider side-channel
measurements that are synchronized in the time domain.

2.6 Side-Channel Attacks (SCA)

Side-channel attacks mainly consist of two categories: profiling attacks and non-profiling attacks.
Non-profiling attacks mean that we recover the secret key by analyzing the leakages of a target

5

https://nl.mathworks.com/help/deeplearning/ug/train-conditional-generative-adversarial-network.html
https://nl.mathworks.com/help/deeplearning/ug/train-conditional-generative-adversarial-network.html

device directly. With profiling attacks, we are in the possession of an open identical copy of the
target device, of which we know the secret key beforehand. We use this copy to construct a model
(in our case, a deep learning model), which we later use to attack our target device. In this paper we
will only be investigating profiling side-channel attacks, as we want to investigate the impact using
a cGAN to generate data to train a MLP has on the effectiveness of our attack, thus a non-profiling
attack would make no sense.

2.7 Evaluation Metric

To compare different cGAN models, we need a way to measure the effectiveness of our attack. To
do this, we will use guessing entropy, a proven SCA evaluation metric [SMY09]. Giving a list of K
key candidates, the guessing entropy measures the position of the correct key among all k ∈ K.

Let Nk be the number of possible keys/labels, and Na be the size of the attack set. In our
case, as we target only the first key byte, the number of possible keys Nk is 28. When a trained
deep neural network is provided with a set of Na attack traces, the output layer provides a two-
dimensional matrix P containing the predicted probability for each class for each trace. The matrix
P has dimensions {Na×Nk}. Each element pi,y in P is the probability that the trace i is represented
by the class y. The class y, as explained in previous sections, is derived from the leakage model. In
our case, traces are labeled according to the intermediate byte obtained from the first SubBytes
output in the first AES encryption round. Thus, the label is defined as y = S(k ⊕ di), in which
S indicates the substitution operation from SubBytes and di is the plaintext byte from the i-th
attack trace. Note how the label associated to the trace i differs for different key candidates.

For each key byte candidate, we compute a cumulative sum of probabilities:

S(k) =
Na−1∑
i=0

log pi,y (2)

where the label y is defined according to the key byte candidate. After computing S(k) for all key
candidates, we sort their values by order of magnitude, which gives us a vector with sorted key
probabilities. The key rank is the position of the correct key candidate inside the sorted vector.
In other words, to obtain the rank r of the correct key c for given trace t with prediction vector
p = Pt, with length Nk, define psorted = p | pi >= pj. The rank r of the correct key c is r where
psorted,r = pc.

To calculate the guessing entropy G, we perform this ranking process multiple times on a randomly
selected subset of predictions and average the key rank for every trace. As such, guessing entropy is
the average of multiple key rank results.

The metric that is considered in this work is the evolution of guessing entropy with respect
to the number of attack traces, which is very useful for showing the efficiency of our attacks. This
way, we compute guessing entropy for different number of attack traces, ranging from 1 to Na. The
faster our guessing entropy stabilizes at 1, meaning the correct key was predicted as most likely,
the more efficient our attack is. An unsuccessful attack will stabilize at around Nk/2, indicating
our model is not generalizing correctly.

6

3 Related Work

In this section, we review recent publication relating side-channel analysis and conditional generative
adversarial networks.

3.1 GANs in SCA

Generative models have seen limited usage in side-channel analysis, primarily focused on specific
applications. In [WCL+20], researchers explored the application of generative adversarial networks
(GANs) for data augmentation purposes. Authors from [MBPK22], utilized conditional generative
adversarial networks (cGANs) for data augmentation. Both analyses specifically targeted protected
AES implementations.
Authors of [ZBC+23] employed Variational Auto Encoders (VAEs) to generate reconstructed and
synthetic traces, effectively modeling the true conditional probability distribution of real side-
channel traces. Another approach [CZG+22] proposed a GAN-based structure to address issues
related to the transferability of profiling models.

3.2 ASCAD data set

The data set used in this research, as previously mentioned in Section 2.2, was introduced as a way
to benchmark new Deep-Learning Side-Channel Analyses (DL-SCA) models against other state of
the art models, by providing a standard data set [PSB+18]. This data set can be found on GitHub.
Later, in several publications, the ASCAD dataset became the main dataset for benchmarking in
research. An updated overview of deep learning-based side-channel analysis is provided in [PPM+23],
in which most of the mentioned methods and papers considered ASCAD data set as the target
device for proof-of-concepts.

3.3 Attack Model

The primary purpose of this research is to determine the effectiveness of using cGANs for side-
channel analyses and to determine the effect of hyperparameters of these cGANs on the effectiveness
of side-channel analyses. However, we cannot execute an attack using a cGAN model without
implementing an attack model, as the cGAN will only generate fake data, which needs to be fed
into another deep learning model, which will execute the attack.

As this is not the purpose of this research, we have copied a well-researched MLP which has
proven to be effective at deep-learning based SCA [PSB+18]. In this paper, CNNs were also found
to be very effective at deep-learning based SCA, even more so than standard MLPs. However, we
have decided to implement an MLP model instead of a CNN model, as CNNs are in general more
difficult to train and more complex. We deemed the performance difference not significant enough,
and since all our experiments use the same attack model, this should not affect our results. We will
use the model deemed as the best in this paper, which was named ”MLPbest”.

This model also provides us with a perfect benchmark, as our only addition to this model is

7

the cGAN model used to generate samples. Thus, we can compare the performance of analyses
with generated samples to the performance of analyses performed with only MLPbest.

4 Experiments

The algorithm for which we are trying to uncover secret information is AES 128-bit. In the ASCAD
data set we use, the first two key bytes are unprotected, while the rest of the key bytes are protected
with masking. We want to target an unprotected scenario, and as such we only target the first key
byte.

The main purpose of our experiments, is researching the effects the various hyperparameters
of cGANs have on the effectiveness of augmenting the profiling set to train deep-learning models
to perform side-channel analysis. To do so, we try to minimize the variations in results that can
possibly be caused by our deep-learning model, while also trying to maximize the performance
of said deep-learning model, to avoid drawing incorrect conclusions about the effectiveness of the
analyses (if we use an under powered deep-learning model, we might draw the conclusion that
cGANs are not useful in the context of DL-SCA).

We will be executing several different experiments to determine the effect various hyperparameters
have on the effectiveness of using Conditional GANs for side-channel analysis. We will also be
investigating the effects of certain variations in the training of cGAN models, such as differing
number of epochs, batch sizes and data set sizes. As mentioned in Section 3.3, the MLPbest model
will provide us with a solid bench marking foundation, against which we can compare our models.
We will not reuse the results from [PSB+18], but instead generate our own results, to prevent any
small inconsistencies in methodology to interfere with our findings. We will then have a set of
results of our attack model without the use of data augmentation using a CGAN model, against
which we can compare our other findings.

4.1 Methodology

We will train a cGAN model on the data set defined in Section 2.2. We will first define Equation 3,
which represents the parameters used in training our models, where b is the batch size, e is the
number of epochs and t is the training set size. In all but one experiment, we will use a training
process defined as T (400, 10, 200.000). In the remaining experiment we will investigate the impact
these parameters have on the effectiveness of our model.

T (b, e, t) (3)

We will train the model for e epochs, with a batch size of b, meaning t/b batches per epoch. For
every batch, we first train our discriminator on a batch of real samples, without affecting and
updating our generator. Next, we generate b synthetic samples using our generator, on which we
then train our discriminator, still without affecting and updating our generator. Finally, we generate
b random latent points, on which we train the entire cGAN model, which only affects and updates
our generator. After every epoch, we calculate the Signal-To-Noise Ratio with 10.000 randomly
selected real traces and 10.000 generated fake traces, which will be shown in the results of some

8

experiments.

When training is finished, we discard our discriminator and enter the attack phase. During the
attack phase, we use our generator to generate synthetic traces. We generate 100 traces for a
random possible label (1 byte → 8 bits → 28, so between 0 and 255), find the mean of these 100
traces, and do this 10.000 times, resulting in 10.000 means, which we will use as our synthetic
traces. Using these synthetic traces, we train our MLP model (see Section 4.2.1) for 200 epochs,
with a batch size of 100. We use our MLP model to make predictions about our attack data set
(see Section 2.2).

Finally, we use our predictions to calculate the Guessing Entropy, which indicates the rank
of the correct key over a limited number of attack traces. If our Guessing Entropy stabilizes at GE
= 1, we can conclude the attack has been successful and using a cGAN model has been useful. The
earlier the Guessing Entropy stabilizes as GE = 1, the less traces were required to get there. For
example, if we reach a Guessing Entropy of 1 after 500 traces, we would have only needed to collect
500 traces from our attack set, even though in the experiments we use 20.000 traces to perform the
attack. Obviously, the less traces required the better, as this saves significant time and effort while
performing side-channel analyses.

The predictions consist of a matrix P with dimensions 20.000 x 256 (Na = 20.000 traces, 256
possible keys for every trace), where every key is given a probability of being the correct key. To
calculate the Guessing Entropy, we randomly select 5.000 traces out of 20.000, sort the predictions
of every trace in decreasing order and for every 10th trace find the index of the correct key, which is
the key rank. We do this 40 times, adding up all key ranks and finally dividing by 40, which results
in the average key rank over time. This averaged key rank is essentially the guessing entropy. This
random selection and repetition is done to improve the statistical significance of our findings.

The results of some executions within an experiment were pretty similar, due to the fact that we
perform the calculation for every 10th trace. As such, certain executions might both yield a result
of 50 traces, while in reality there might still be a small difference. For the parameters with the
most promising results, where such a situation applies, we might run another experiment where we
calculate the Guessing Entropy for every single trace, while also doing the entire execution 500
times instead of 40, to further improve the significance of our findings.

4.2 Model Architecture

To keep the experiments clear and organized, we will be defining our models as equations. We will
do so for both the generator and discriminator, except for the MLP. The MLP will be kept the same
throughout all experiments, as we want to investigate only the generator and discriminator. Let l
be the number of layers, d be the percentage of dropout between every non-input/output dense
layer (only for the discriminator), n the number of nodes for every layer, and a be the activation
function. The discriminator and generator models can then defined using Equations 4 and 5. For
the generator, there are no dropout layers.

D(l, d, n, a) (4)

9

G(l, n, a) (5)

In the models shown below (Sections 4.2.2 and 4.2.3), we have excluded the input layers from this
definition. These input layers introduce some variation in the labels, which prevent over-fitting in
our models.

Finally, we can define our cGAN. Let d be a discriminator, g be a generator, o be an opti-
mizer, and l be a learning rate for the optimizer o. We then define our cGAN as seen in Equation 6.
Loss values will be calculated using Binary Cross-Entropy.

N(d, g, o, l) (6)

4.2.1 Attack Model

As mentioned in Section 3.3, this model was taken from [PSB+18], and was already tailored for
ASCAD dataset. This model will stay the same throughout all experiments, as the main focus
of our experiments is on the cGAN models. Thus, we want this model to influence our results as
little as possible. This model is an MLP, trained for 200 epochs with a batch size of 100 and an
RMSprop optimizer with a learning rate of 0.00001. The MLP will be trained on data generated by
the generator. Essentially, this MLP is used as a supervised model, in which the traces produced by
the generator are used for training and the attack and validation sets are taken from the original
ASCAD data set. The MLP model is detailed below:

Layer Type Output Shape Parameter #

Input (None, 1,000) 0
Dense (None, 200) 200,200
Dense (None, 200) 40,200
Dense (None, 200) 40,200
Dense (None, 200) 40,200
Dense (None, 200) 40,200
Dense (None, 200) 40,200
Dense (Output) (None, 256) 51,456

Total Parameters: 452,656
Trainable Parameters: 452,656
Non-trainable Parameters: 0

To obtain results against which we can benchmark our experiments, we will perform a side-channel
analysis using this model without performing any data augmentation using CGAN models, but
with only our actual attack data set. In the other experiments, our Attack Model is trained using
10.000 synthetic traces (as explained in Section 4.1) generated by our cGAN model. To obtain our
benchmark without data augmentation, we will instead use 10.000 traces directly from the profiling
traces from the ASCAD data set. The guessing entropy results without data augmentation with
our MLP model can be seen in Figure 4.

10

Figure 4: Guessing Entropy without data augmentation

4.2.2 Discriminator

The base discriminator model is defined as follows. It is a simple Fully-Connected Neural Network.
The first 4 layers are not variable and will be the same for every single model. These 4 layers allow
for a label as input, and perform so called Label Smoothing (0 → 0.1 and 1 → 0.9, for example),
which has been shown to improve the stability of GANs in [SGZ+16]. These layers are concatenated
with our data input, which has 1,000 nodes, as our traces each have 1,000 measurement points
(Section 2.2). Dropout layers are added between every dense layer to prevent over-fitting. The
architecture of the discriminator is described below:

11

Layer Type Output Shape Parameter #

Input (None, 1) 0
Embedding (None, 1, 256) 65,536
Dense (None, 1, 200) 51,400
Flatten (x) (None, 200) 0

Input (y) (None, 1,000) 0

Concatenate (x & y) (None, 1,200) 0
Dense (ELU) (None, 250) 300,250
Dropout (30%) (None, 250) 0
Dense (ELU) (None, 250) 62,750
Dropout (30%) (None, 250) 0
Dense (ELU) (None, 250) 62,750
Dropout (30%) (None, 250) 0
Dense (ELU) (None, 250) 62,750
Dense (Linear) (None, 1) 401

Total Parameters: 1,078,937
Trainable Parameters: 1,078,937
Non-trainable Parameters: 0

Using Equation 4, this model would be defined as D(4, 30%, 250, ELU).

4.2.3 Generator

The base generator model is defined as shown below. Once again, it’s a Fully Connected Neural
Network. The first 4 layers are not variable and will be the same for every single model. These 4
layers allow for a label as input, and perform so called Label Smoothing (0 → 0.1 and 1 → 0.9, for
example), which has been shown to improve the stability of GANs in [SGZ+16]. These layers are
concatenated with our data input, which has 1,000 nodes, as our traces each have 1,000 measurement
points (Section 2.2). Our generator does not have dropout layers, as the generator needs to learn
the data distribution as close as possible to generate believable synthetic traces.

12

Layer Type Output Shape Parameter #

Input (None, 1) 0
Embedding (None, 1, 256) 65,536
Dense (None, 1, 400) 102,800
Flatten (x) (None, 400) 0

Input (y) (None, 1,000) 0

Concatenate (x & y) (None, 1,400) 0
Dense (ELU) (None, 160) 224,160
Dense (ELU) (None, 160) 25,760
Dense (ELU) (None, 160) 25,760
Dense (ELU) (None, 160) 25,760
Dense (ELU) (None, 160) 25,760
Dense (ELU) (None, 160) 25,760
Dense (Sigmoid) (None, 1,000) 161,000

Total Parameters: 682,296
Trainable Parameters: 682,296
Non-trainable Parameters: 0

Using Equation 5, this model would be defined as G(6, 160, ELU).

4.2.4 GAN

The models discussed in Section 4.2.2 (D) and 4.2.3 (G) can be combined into a cGAN model
N(D,G,Adam, 0.0002). The Adam optimizer will have a β1 value of 0.5, a β2 value of 0.999 and a ϵ
value of 0.0000001; these will not be changed in the experiments, except for in the network optimizer
experiment, where an SGD optimizer will be tested, which does not have these parameters.

13

4.3 Exploring the Impact of Hyperparameters

In this section, we explore the impact of different hyperparameters on generator and discriminator
architectures.

4.3.1 Layers

In this experiment, we will try to understand the effect that the number of layers has on the
performance of our model. A bigger model (meaning more layers) does not always mean a better
model. Too many layers and nodes can also an increase in computational power required and
potentially overfitting to the training set. In our case, we fill focus on the impact on the effectiveness
of our model and leave training and attack duration out of consideration.

To investigate the effect of layers on attack performance, we will investigate combinations of various
generators and discriminators. We will define various generator and discriminator models, differing
only in the number of layers. As such, we will define our discriminators as D(ld, 30%, 250, ELU)
with ld ∈ [2, 4, 6, 8]. Our generators will be defined as G(lg, 160, ELU) with lg ∈ [2, 4, 6, 8, 10]. This
results in 4 · 5 = 20 unique cGAN models. Plotting all these results in one graph would affect
readability, so plots contain one graph per ld, where each line represents a different value for lg.
Figure 5 shows the results of this experiment.
A general trend can be seen where more layers equals a better performing model, while the generator
should have more layers than the discriminator to ensure best performance (with some exceptions).
The results of models with discriminators ld ∈ [4, 6, 8] are all very similar and show this trend well,
with more powerful generators performing about the same. A generator with 6 layers seems to
perform relatively similar to a generator with 10 layers. To reduce training cost and duration, 6
layers would be the better choice. Same goes for the discriminator, where there is little difference
between choosing a discriminator with 4, 6 or 8 layers. As such, the best combination would be
lg = 6 and ld = 4.

The results for the models with a discriminator with 2 layers do not follow the previously mentioned
trend, but rather the opposite. When excluding lg = 10, more generators causes worse performance.
A discriminator is responsible for providing a learning gradient to the generator. With only 2 layers,
the discriminator may not be powerful enough to provide a useful gradient and keep up with the
more powerful generators. The model with a generator with 10 layers seems to be an anomaly. A
big difference in layers between the generator and discriminator might also be a viable way to train
the models. However, we do not have enough data to make such a conclusion at this moment.

14

Figure 5: Guessing Entropy for varying number of layers

15

4.3.2 Nodes

In the case of the number of nodes, the idea is the same as with the number of layers. Too many
can cause over fitting, too few can cause our model not to converge. For this experiment, our
discriminators will be defined as D(4, 30%, nd, ELU) with nd ∈ [100, 250, 400, 800]. Our generators
will be defined as G(6, ng, ELU) with ng ∈ [100, 160, 200, 400, 800]. This results in 4 · 5 = 20 unique
cGAN models. Once again we have split up the graphs, where we plotted one graph per value of nd

with the various lines representing a value of ng.

Figure 6: Guessing Entropy for varying number of nodes per layer

Figure 6 shows the results of this experiment. The 4 most efficient combinations (ng = 160 and
ng = 200 with nd = 250, ng = 200 with nd = 400 and ng = 200 with nd = 800) all converge to
a Guessing Entropy of 1 in 10 traces. In general, a generator with ng = 200 seems to have the
best performance. This shows that more nodes does not necessarily equal a better performing
model. However, as was the case in Section 4.3.2 with a discriminator with a small number of
layers (2), here ng = 200 does not have the best performance when the discriminator has a small
number of nodes (nd = 100). The best performing combination is ng = 200 with nd = 250, and
increasing either ng or nd does not seem to improve attack performance in any way. To definitively
say this, further experiments should be ran to investigate whether this is the case with ng > 800
and nd > 800.

16

4.3.3 Dropout

The dropout layer was first introduced by Srivastava et al. in 2014 [SHK+14]. The key idea of
the dropout technique is to randomly disable certain nodes of the network during training. The
idea is that this forces surrounding nodes to pick up the leftover workload, meaning the resulting
predictions are never dependent on specific nodes. As explained in Section 4.2.3, we do not use
dropout layers for our generator as our generator needs to learn the data distribution as close as
possible to generate synthetic data, and as such over fitting is by definition not possible. However,
the cGAN itself can over fit, and to solve this we use dropout layers in our discriminator. In this
experiment, we will investigate the effect this hyperparameter has on our attack performance. We
will once again do so using modified versions of our base models, Dbase and Gbase. In this experiment,
the discriminators we will be using are D(4, d, 250, ELU), with d ∈ [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.9].
For our generator, we will be using G(6, 160, ELU).

Figure 7: Guessing Entropy for varying dropout percentages

A dropout percentage of 20% or 30% seems to be the sweet spot, both converging after 20 traces,
although there is little difference between all but the 90% parameter. A dropout that is too large
(90%) seems to hinder the discriminator too much. This can cause the discriminator to fail in
providing a learning gradient to the generator, causing the generator not to learn anything useful,
which in turn causes our model to fail.

However, as can be seen by the relatively high performance of the model without any dropout
applied, over-fitting does not seem to be too much of an issue. To test this, we will run another
experiment where we also use varying numbers of layers and nodes. We will not use the combinations
found as ”best” in Section 4.3.1 and Section 4.3.2, but rather combinations which performed well
but are as far opposite from each other as possible. This should give us some insight into the effect
of dropout, and should show us whether over fitting is really not a problem, or only not a problem
for the specific number of layers and nodes previously used. Our models will be defined as follows,
with d ∈ [0.0, 0.3], resulting in 8 models:

• CGAN1(d) = N(D(10, d, 100, ELU), G(2, 160, ELU), Adam, 0.0002)

17

• CGAN2(d) = N(D(10, d, 800, ELU), G(2, 200, ELU), Adam, 0.0002)

• CGAN3(d) = N(D(8, d, 100, ELU), G(8, 160, ELU), Adam, 0.0002)

• CGAN4(d) = N(D(8, d, 800, ELU), G(8, 200, ELU), Adam, 0.0002)

The results of these experiments can be seen in Figure 8, where both images show the same graph
with a different limit on the x-axis. In this graph, we can clearly see that pairs are formed where
both versions of every model sit pretty close to each other, one with dropout and one without. 3
pairs (CGAN1, CGAN3, and CGAN4) converge to a Guessing Entropy of 1, while CGAN2 does
not converge within 5,000 traces. For all models but CGAN1, using d = 0.3 improves performance
over using d = 0.0. CGAN1 has the smallest discriminator of all models, which can explain why
this specific model can not take advantage of using dropout.

Using these results we can show that our previous conclusion — over-fitting is not a problem, but
dropout can still be used for marginal performance improvements — is only partially correct. Model
CGAN2 shows this nicely, where d = 0.0 shows Guessing Entropy increasing, a clear sign of an
unstable network, while Guessing Entropy decreases after applying d = 0.3.

Figure 8: Guessing Entropy for varying numbers of layers, nodes, and dropout

18

4.3.4 Activation Functions

In this experiment, we will investigate the effects of activation functions on the generator and
discriminator. We will define our discriminator asD(4, 30%, 250, ad) with ad ∈ [ELU,ReLU,Leaky−
ReLU], and our generator as G(6, 160, ag) with ag ∈ [ELU,ReLU,Leaky −ReLU].

Figure 9: Guessing Entropy for various activation functions

We can see that the ELU activation function for both the generator and discriminator, converging
after only 20 traces, is much more effective than any other combination, converging to a Guessing
Entropy entropy of 1 after 170, 470 or 1000+ traces.

19

4.3.5 Network Optimizer

In this experiment, we investigate the effects of the network optimizer with various learning rates. We
define our network asN(Dbase, Gbase, o, l), with o ∈ [Adam, SGD] and l ∈ [0.00005, 0.0001, 0.0002, 0.0005],
resulting in 8 GAN models differing only in the network optimizer used. As mentioned in Section
4.2.4, for the Adam optimizer a β1 value of 0.5, a β2 value of 0.999 and a ϵ value of 0.0000001 will
be used. The SGD optimizer does not use these parameters. The results of this experiment can be
seen in Figure 10.

Figure 10: Guessing Entropy of Adam and SGD optimizers with various learning rates

We can immediately see that the SGD network optimizer does not work well for GANs, regardless
of the learning rate used. This can be explained by the frequency of updates done by the SGD
optimizer. It updates the models parameters quite frequently (once for every example). This can
add to a models instability. GANs are notoriously unstable by themselves, and the SGD optimizer
seems to magnify this effect. This can clearly be seen in Figure 11, where the generator loss with
the Adam optimizer is much more stable than with the SGD optimizer.

Figure 11: Generator Loss of SGD (left) and Adam (right) optimizers with a learning rate of 0.0002

The Adam optimizer however does work well. To better show the effect of the learning rate with
the Adam optimizer, we have plotted the results again in Figure 12, but ignored the results from

20

the SGD optimizer. The learning rate does not seem to affect our results too much, except for a
learning rate of 0.00005, which does converge, but quite slow, after 510 traces.

Figure 12: Guessing Entropy for Adam optimizer with various learning rates

21

4.3.6 Training

We also investigate the effect the various training parameters have on the effectiveness of our
model. We use a CGAN model defined as N(D(4, 250, 0.3, ELU), G(6, 160, ELU), Adam, 0.0002).
The training process is defined using Equation 3, as T (btc, ep, tr) with btc ∈ [100, 200, 400, 600, 800],
ep ∈ [5, 10, 25] and tr ∈ [50, 000; 100, 000; 200, 000], resulting in 45 unique training processes. The
results can be seen in Figure 13.

Figure 13: Guessing Entropy for various training settings

22

One clear conclusion that can be made, is that too high of a batch size is in general not effective.
This seems to be counteracted somewhat by increasing the number of epochs and the training set
size, as can be seen in the results for b = 800, where tr = 200, 000 and ep = 10 or ep = 25 performs
well. This would however be a waste of time and compute resources, as a higher number of epochs
and a bigger training set cause training time to increase, while lowering the batch size does not.

Another trend we see, is that a small training set (50,000 or 100,000) coupled with a low number of
epochs (5) does not perform well across any batch size. Simply increasing the number of epochs and
training set also does not always work however. The model will simply not have learned enough to
generate any meaningful samples.

5 Conclusions and Further Research

In all the experiments we have done, we have tested the effect various hyperparameters have on
the effectiveness of using data augmentation with Conditional Generative Adversarial Networks to
perform Side-Channel Analysis. It is hard to make any definitive conclusions about what works
with certain proof. However, we have shown that in general there is some consistency in what works
and what does not. Most experiments in this paper have used a set of hyperparameters, where
only one or two hyperparameters were variable. To further improve our understanding of these
hyperparameters, further research should be done combining all separate conclusions, and testing
whether applying all the high-level ideas can take a model from unstable to stable and efficient.

In Section 4.2.1, we have shown a baseline for how well our attack model performs, without
using data augmentation. Given the results from all our experiments, it is very clear that using
a Conditional Generative Adversarial Network to perform data augmentation can improve the
effectiveness of Deep-Learning based SCA. In Figure 4, the MLP does not achieve a Guessing
Entropy of 1 after 5,000 traces, but gets very close at 1.125. Several models used in our experiments
have shown convergence to a Guessing Entropy of 1 in less than 20 traces, which is a very significant
improvement.

References

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis with a
leakage model. In Marc Joye and Jean-Jacques Quisquater, editors, Cryptographic
Hardware and Embedded Systems - CHES 2004: 6th International Workshop Cambridge,
MA, USA, August 11-13, 2004. Proceedings, volume 3156 of Lecture Notes in Computer
Science, pages 16–29. Springer, 2004.

[CDP17] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolutional neural networks
with data augmentation against jitter-based countermeasures - profiling attacks without
pre-processing. In Wieland Fischer and Naofumi Homma, editors, Cryptographic
Hardware and Embedded Systems - CHES 2017 - 19th International Conference,
Taipei, Taiwan, September 25-28, 2017, Proceedings, volume 10529 of Lecture Notes
in Computer Science, pages 45–68. Springer, 2017.

23

[CZG+22] Pei Cao, Hongyi Zhang, Dawu Gu, Yan Lu, and Yidong Yuan. AL-PA: cross-device
profiled side-channel attack using adversarial learning. In Rob Oshana, editor, DAC
’22: 59th ACM/IEEE Design Automation Conference, San Francisco, California, USA,
July 10 - 14, 2022, pages 691–696. ACM, 2022.

[GPAM+14] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks,
2014.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings, pages
388–397, 1999.

[MBPK22] Naila Mukhtar, Lejla Batina, Stjepan Picek, and Yinan Kong. Fake it till you make
it: Data augmentation using generative adversarial networks for all the crypto you
need on small devices. In Steven D. Galbraith, editor, Topics in Cryptology - CT-RSA
2022 - Cryptographers’ Track at the RSA Conference 2022, Virtual Event, March 1-2,
2022, Proceedings, volume 13161 of Lecture Notes in Computer Science, pages 297–321.
Springer, 2022.

[MO14] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets, 2014.

[PPM+23] Stjepan Picek, Guilherme Perin, Luca Mariot, Lichao Wu, and Lejla Batina. Sok:
Deep learning-based physical side-channel analysis. ACM Comput. Surv., 55(11):227:1–
227:35, 2023.

[PSB+18] Emmanuel Prouff, Rémi Strullu, Ryad Benadjila, Eleonora Cagli, and Cécile Canovas.
Study of deep learning techniques for side-channel analysis and introduction to ascad
database. IACR Cryptol. ePrint Arch., 2018:53, 2018.

[SGZ+16] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and
Xi Chen. Improved techniques for training gans, 2016.

[SHK+14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15(56):1929–1958, 2014.

[SMY09] François-Xavier Standaert, Tal G. Malkin, and Moti Yung. A unified framework for
the analysis of side-channel key recovery attacks. In Antoine Joux, editor, Advances in
Cryptology - EUROCRYPT 2009, pages 443–461, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg.

[WCL+20] Ping Wang, Ping Chen, Zhimin Luo, Gaofeng Dong, Mengce Zheng, Nenghai Yu, and
Honggang Hu. Enhancing the performance of practical profiling side-channel attacks
using conditional generative adversarial networks. CoRR, abs/2007.05285, 2020.

24

[ZBC+23] Gabriel Zaid, Lilian Bossuet, Mathieu Carbone, Amaury Habrard, and Alexandre
Venelli. Conditional variational autoencoder based on stochastic attacks. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2023(2):310–357, 2023.

25

	Introduction
	The problem
	Proposed solution
	Contributions
	Thesis overview

	Background
	AES
	ASCAD Data set
	Generative Adversarial Networks (GAN)
	Conditional Generative Adversarial Networks (cGAN)
	Multilayer Perceptron (MLP)
	Side-Channel Attacks (SCA)
	Evaluation Metric

	Related Work
	GANs in SCA
	ASCAD data set
	Attack Model

	Experiments
	Methodology
	Model Architecture
	Attack Model
	Discriminator
	Generator
	GAN

	Exploring the Impact of Hyperparameters
	Layers
	Nodes
	Dropout
	Activation Functions
	Network Optimizer
	Training

	Conclusions and Further Research
	References

