
Opleiding Informatica

Efficacy and Characteristics of Search Algorithms in Quantum

Tic-Tac-Toe

Kah Ming, Wong, s2641976

Supervisors:
Dr. E.P.L. van Nieuwenburg

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 31/07/2023

www.liacs.leidenuniv.nl

Abstract

Quantum Tic-Tac-Toe is a game that introduces chance and luck into its game mechanics
due to quantum mechanics. As such, the game is much harder to play correctly. This thesis
puts the Monte Carlo algorithm against the expecti-minimax algorithm to see which of the
algorithms performs better in Quantum Tic-Tac-Toe; as a means, a computer program has
been created. In the program, surprisingly, both algorithms beat the other convincingly as
long as they are player 1. This implies that player 1 holds a greater advantage over player 2 in
Quantum Tic-Tac-Toe. This, however, is not explicitly the scope of this paper and should be
researched further. Further improvements can be made by acquiring a real quantum computer,
instead of using a random generator for the quantum mechanics; as the real quantum computer
includes realistic noise. The playouts and depth, too, can be increased for potential better
performance of the algorithms.

2

Contents

1 Introduction 1
1.1 Thesis overview . 1

2 Related Work 2
2.1 Quantum and Quantum Games . 2

2.1.1 Superposition . 2
2.1.2 Entanglement . 2
2.1.3 Collapse . 3
2.1.4 Quantum Games . 3

2.2 Classic Tic-Tac-Toe . 4
2.3 Quantum Tic-Tac-Toe . 5

2.3.1 Minimal Quantumness . 6
2.3.2 Moderate Quantumness . 7
2.3.3 High Quantumness . 8

2.4 Monte Carlo Search . 8
2.5 Minimax Search . 9
2.6 Alpha-Beta Pruning . 12
2.7 Expecti-Minimax Search . 13

3 Design 13
3.1 The Game Modes . 14
3.2 The Tic-Tac-Toe Class . 14
3.3 The Board . 15

3.3.1 The Random Agent . 15
3.3.2 The Monte Carlo Agent . 16
3.3.3 The (Expecti-)Minimax Agent . 16

3.4 Heuristic . 16

4 Experiments 17
4.1 Analyzing the Expecti-Minimax Search . 17
4.2 Agent vs Agent . 19

4.2.1 Monte Carlo Agent vs Random Agent . 19
4.2.2 Expecti-Minimax Agent vs Random Agent 21
4.2.3 Expecti-Minimax Agent vs Monte Carlo Agent 23

5 Conclusions and Further Research 27

References 28

1 Introduction

Tic-Tac-Toe is a well-known board game that is played by many. Here, two players take turns
marking empty spaces of a 3-by-3 board. The player who gets a line of their marks first, whether
horizontally, vertically, or, diagonally, wins the game. Tic-Tac-Toe is also known as a combinatorial
game and a solved game. Combinatorial, because of its deterministic nature, wherein, chance and
luck does not play a role; and, furthermore, due to the fact that no information is hidden from either
player. There exists perfect information in the game. It is solved, because at any given state of the
game, the outcome of it can be correctly predicted; this, given that both players play optimally.

Figure 1: Representation of Tic-Tac-Toe.

Quantum Tic-Tac-Toe is Tic-Tac-Toe with quantum mechanics as game mechanics. This, in contrast
to Tic-Tac-Toe, introduces chance and luck into the game. Making it more difficult to be played
optimally.

The scope of this thesis is to answer the research question: “Does the expecti-minimax algo-
rithm perform better than the Monte Carlo algorithm in Quantum Tic-Tac-Toe?”.

1.1 Thesis overview

The following sections can be found in this thesis:

• Section 1: In this section, introduction to the subject and the research question is given.

• Section 2: In this section, all the necessary background information and related work is given.

• Section 3: In this section, the design of the program will be elaborated on.

• Section 4: In this section, the experiments will be elaborated on, and the results will be
presented.

• Section 5: In this section, conclusions will be made through the results of the experiments,
and potential further research will be given.

1

2 Related Work

This section aims to provide insights on all the related information surrounding Quantum Tic-Tac-
Toe. This will give an explanation on what Quantum Tic-Tac-Toe exactly is, what it is related to,
and, furthermore, how we will continue forward with our research on Quantum Tic-Tac-Toe.

2.1 Quantum and Quantum Games

Needless to say, the game Quantum Tic-Tac-Toe is based on quantum mechanics. Quantum Tic-
Tac-Toe can, therefore, in a way be called a Quantum Game. Prior existences of Quantum Games
have existed before Quantum Tic-Tac-Toe. These so called Quantum Games all have the same
principles in quantum mechanics, which, each and every single one of them makes use of:

• Superposition

• Entanglement

• Collapse

2.1.1 Superposition

Figure 2: Example of an entity in two-state 50-percentage superposition.

Superposition is the principle in quantum mechanics such that an entity can be in two or more
states at the same time. The idea is that said entity has a certain ’amplitude’ to be in a given state.
The amplitude is a complex number (e.g. z) whose absolute square (e.g. |z|2) is the probability for
the entity to be in that state. This gives precedence that the entity is not both states for certain,
as it is those states for some amount of probability. It is, therefore, important to note that while in
superposition, an entity cannot be fully assigned to some state. An entity in superposition begins
with two states. However, these states can increase, such that an entity can be many different states
for a certain amount of probability.

2.1.2 Entanglement

Entanglement is another principle in quantum mechanics. This gives the notion of correlation
between entities, such that, the state of one entity is directly correlated to the state of an entity

2

which it is entangled to. The degree of entanglement can vary, however, it always starts between
two entities; a two-entity entanglement. To expand on that, an entanglement can have more
and more entities entangling with each other; virtually endlessly, and all those entities’ state are
directly correlated to each other. Entanglement actually quantifies correlations that go beyond clas-
sical correlations. For the sake of this thesis however, entanglement can be thought of as correlations.

2.1.3 Collapse

Figure 3: Example of a measurement.

The previous two principles, superposition and entanglement, both are based on chances. The state
of an entity in either phases is always uncertain. However, through collapse, entities turn into one
state for certain. This is done by first measuring the states. In the case of an entity in superposition,
a measurement will observe in what state the entity is for certain. The entity in superposition,
thus, turns into an entity which is in two or more states for a certain amount of percentage, into an
entity that is in one and only one place for 100-percentage; making it an entity with a classical
state. In the case of entities in an entanglement, only one of the entities need to be measured. As
the states are directly correlated to each other, all the other entities will collapse to its correct state
by observing the state of one entity.

2.1.4 Quantum Games

A Quantum Game is, thus, a game that bases its mechanics on the previous mentioned principles
of quantum mechanics. While quantum games all have the same foundation in quantum mechanics,
they can all be implemented in a different way. This is done by varying the amount of quantum in
a game. For example, a limitation can be set on the degree of superposition and entanglement. To
illustrate this, one game can limit itself to two-state superposition and two-entity entanglements
(minimal quantumness), while another game sets no limits to the amount of entity superpositions
and entanglements (high quantum). Hence, two games that are identical to each other in terms of

3

mechanics and goal, can still turn wildly different in terms of playing the game through quantum;
such that the optimal strategy in one game no longer applies to the other.

Essentially, any game that makes use of states can be turned into a variant of itself, which, instead,
makes use of quantum mechanics; turning it into a quantum game. The well-known board game
chess also has a quantum variant, unsurprisingly, called Quantum Chess. There exists different
kinds of implementations of Quantum Chess. One implementation of Quantum Chess is by S.
Akl, in which a piece begins with two different piece states; once a piece moves it will reveal
its piece state. This implementation is briefly touched upon in S. Akl’s paper Technical Report
No. 2010-568 on the Importance of being Quantum [Akl10]. A recent implementation is done by
Christopher Cantwell in his paper Quantum Chess: Developing a Mathematical Framework and
Design Methodology for Creating Quantum Games [Can19]. Notably, in this paper Cantwell briefly
mentioned Quantum Tic-Tac-Toe and described it as deterministic. This, however, is regarding a
different implementation of Quantum Tic-Tac-Toe. This paper will focus on Quantum Tic-Tac-Toe
that is not deterministic in the slightest, more on this later.

Quantum Fox-In-A-Hole is another Quantum Game, and is the quantum variant of the classic
puzzle Fox-In-A-Hole. In the classic version there are 5 holes. A fox in hidden in one of those holes.
Each night the fox moves either left or right into the neighbouring holes. The player guesses each
morning where the fox is. The player wins if he guesses correctly, and loses if he does not do so in a
certain amount of days. In the quantum variant, the fox moves both left and right each night. This,
thus, results into superpositions of holes, in which, the fox has a certain amount of percentage to
reside in. Whenever the player guesses, a measurement is taken place.

2.2 Classic Tic-Tac-Toe

To explain Quantum Tic-Tac-Toe, knowledge of Tic-Tac-Toe is first required. Classic Tic-Tac-Toe
is a game, in which, two players take turns marking their plays on a 3-by-3 board. Of which, Player
1 marks their plays with X and Player 2 marks their plays with O. Player 1, the one who marks
the board with X, always begins first; marking one empty cell of the 3-by-3 board. Player 2, by the
same process, then marks one empty cell on the 3-by-3 board with an O; this process repeats. A
player wins if they get a 3-in-a-row of their marks either horizontally, vertically or diagonally. A
draw is forced when the board is full, and, neither players have a 3-in-a-row.

4

Figure 4: Example of a play through of Classic Tic-Tac-Toe.

Figure 4 shows a play through example of a Classic Tic-Tac-Toe game. In which, Player 1 wins in
the end, as they have created a 3-in-a-row. In Classic Tic-Tac-Toe luck or chance does not play a
role in its mechanics. Both player can fully observe the board at any time, and each player know
what the opposing player can and can not do. Classic Tic-Tac-Toe is, therefore, a game with perfect
information; and, thus, a combinatorial game. Furthermore, Classic Tic-Tac-Toe with its relatively
small amount of states is a solved game. Such that, as long as each player keeps playing optimally,
the game will always result in a draw.

2.3 Quantum Tic-Tac-Toe

Quantum Tic-Tac-Toe incorporates quantum mechanics into the Classic Tic-Tac-Toe. The imple-
mentation this paper uses is TiqTaqToe, which, currently, can be accessed in browser form [vN].
This implementation of Quantum Tic-Tac-Toe consist of various game modes. The following list
denotes the game modes, of which, increases the quantum with each step:

1. No Quantumness: Classic Tic-Tac-Toe

2. Minimal Quantumness: Tic-Tac-Toe with two-state superposition

3. Moderate Quantumness: Tic-Tac-Toe with two-state superposition, and entanglement with
classic state

4. High Quantumness: Tic-Tac-Toe with two-state superposition, and entanglement with super-
position

It is important to note, with each increase in quantum, the next game mode is essentially the
same as the previous one; however, with extra features. Moreover, this implementation of Quantum
Tic-Tac-Toe is setting a hard limitations on a few aspects of quantum. Namely, if an entity is in

5

superposition (and not entangled) it can only be in a two-state superposition. In a similar vein,
limitations are set on the entanglement, such that infinite entanglement can not occur. Moreover, a
player can only create an entanglement with a move from the opposing player.

On a separate note, as Tic-Tac-Toe gets incorporated with quantum mechanics, it turns from
a perfect information game, into an imperfect information game. That is because, as long as
superposition moves are on the board, the board can never with certainty be assessed which
state it will hold after the measurement; and, thus, chance and luck does play a role in Quantum
Tic-Tac-Toe with superposition moves.

2.3.1 Minimal Quantumness

In this stage of Quantum Tic-Tac-Toe, superposition moves are introduced to Classic Tic-Tac-Toe.
For clarity, a move refers to the marks of the players they make each turn. A move from the
Classical Tic-Tac-Toe is referred to as a classic move, as they do not have any quantumness. In
Minimal Quantumness, each turn a player can choose between two moves. Either a classic move or
a superstition move. A superstition move in Minimal Quantumness is limited to empty cells, and
no entanglements may occur. Specifically, a superposition move in Minimal Quantumness is made
by marking two empty cells in a turn.

Figure 5: Example of a play through of Minimal Quantumness.

Figure 5 shows an example, in which, Player 1 makes a superposition move. These moves are
marked with the current turn. X1 is in this case at the marked cells for both 50-percentage. Player
2, in the following turn, decides to make a classic move marked as O2; as it is now the second turn
of the game. This process repeats itself until there is a classical 3-in-a-row, or, if the board is full.
At a full board, the superposition moves are measured. In the case of Figure 5, one of the X1 will
be removed. Turning X1 in a classic move. After a measurement takes place, one of the following
three scenarios can happen:

1. Board is measured, however, no players have won; and, there are still empty cells.

2. Board is measured, one player got a 3-in-a-row after measurement took place.

3. Board is measured, both player got a 3-in-a-row after measurement took place.

6

In the first case, since no one has won and there are still empty cells, the game will continue with the
pre-existing rules; this until the board is full with classical moves, or a player has won through 3-in-
a-row. For the other two cases the same rule applies, a player receives a point if they get a 3-in-a-row.

It is important to note that a 3-in-a-row can only be formed with classical moves. Thus, if
there is a 3-in-a-row, but, made from one or more superposition move; then it is invalid. Figure 6
illustrates this.

Figure 6: Example an invalid 3-in-a-row.

Here, Player 1 has a 3-in-a-row. However, this 3-in-a-row is invalid as X1 is a superposition move.
The game will, thus, continue on until there is a 3-in-a-row made of classical moves, or, the board
is full of classical moves.

2.3.2 Moderate Quantumness

In Minimal Quantumness there was a hard limit set on superposition moves, namely, a superposition
move can only be made on two empty cells. Moderate Quantumness expands on that, such that
superposition moves can now also be made on a classical move of the opposing player; causing
entanglements to occur. Figure 7 begins with a classical moveX1. Player 2 then makes a superposition

Figure 7: Example an entanglement in Moderate Quantumness.

move, of which, one of the cell contains the classical move of Player 1. Both X1 and O2 is in either

7

cell for a 50-percentage probability. Once the board is full, a measurement is taken place. Moreover,
it can be clearly seen that once either X1 or O2 is observed to be in one cell, then the other mark
collapses into the remaining cell.

2.3.3 High Quantumness

In a similar vein, High Quantumness unlocks another limitation of Moderate Quantumness by, now,
allowing superposition moves on a superposition move of the opposing player.

Figure 8: Example an entanglement of High Quantumness.

Figure 8 begins with a superposition move from Player 1 in cell 1 and 2. Player 2 in the following
turn also makes a superposition move, with one of those moves being cell number 2; the cell
containing a superposition move from Player 1. An entanglement occurs between entity X1 and O2.
For O2 the same thing as last time applies, in which, it has a 50-percentage probability being in
cell 2, and a 50-percentage probability being in cell 6 after a measurement takes place. However,
this does not exactly apply to X1. Namely, X1 in cell 1 still has the 50-percentage probability from
the initial superposition move. The percentage probability of X1 in cell 2, though, is in turn split
again. Thus, causing the X1 in cell 2 and cell 6 to have a probability of 25-percentage each instead,
after the entanglement.

2.4 Monte Carlo Search

A common algorithm to explore the most likely optimal move is done through Monte Carlo Search.
This algorithm does this through many random sampling. In regards to Quantum Tic-Tac-Toe, the
randomness of the game is accounted for by a large amount of random sampling. To make use of
Monte Carlo Search, a root first has to be determined, which, usually, is the current state of the
game. From the root all available moves need to be determined. Once that has been done, a certain
amount of playouts will be played with each available move as the first move, and, after the initial
move, the game will be played with random moves. A playout refers to a simulation of the game
being played until the end, resulting into either a win, a loss or a draw.

8

Figure 9: Example a Monte Carlo Search.

Figure 9 shows a root with 3 available moves, which, thus, leads to 3 children nodes. In those nodes,
a certain amount of playthroughs will be played. In this case, specifically, an amount of 100. The
numbers in the children nodes denotes the amount of game they have won. From left to right, the
first one has won an amount of 5 out of the 100, the second one has won 47 out of the 100, and
lastly, the third one has won 24 out of the 100. In Monte Carlo Search, picking the node with the
highest amount of won playthroughs is sufficient to determine the ”most likely to be the optimal”
move.

2.5 Minimax Search

Minimax Search is a well-known algorithm in the field of Artificial Intelligence. In a Minimax
algorithm there exists a maximizing player (henceforth, MAX) and a minimizing player (henceforth,
MIN). A MAX player, as the name suggests, aims to maximize the score in a search tree. In contrast,
a MIN player aims to minimize the score in a search tree. Through choosing the highest and lowest
scores, the MAX and MIN players, essentially, keep making their optimal move at each turn. The
scores of a minimax tree is determined at the leaves. A minimax search is recursive, in the sense
that the MAX and MIN each take turn choosing the highest and lowest score of their children
respectively.

9

Figure 10: Two-player minimax game tree[RN20].

Figure 10 shows an example of a game tree. It starts from the root A, the MAX player. This root,
in particular, has three moves, namely a1, a2, and a3. These moves lead to the children nodes B,
C, and D. These children nodes are from the MIN player. In a larger tree, the levels will keep
interchanging between the MAX and MIN player.

From the root, a depth-first search to the leaves will be utilized. The leaves can be seen as
the end-state of a game. For example, in Tic-Tac-Toe, it would be when a player has won the game,
or, the game ended in a draw when the board has been filled completely with no winning player. To
these states a score can be assigned, of which, the MAX and MIN players will keep choosing from.
For instance, node B has the children nodes 3, 12 and 8 to choose from. Since node B is a MIN
player it will, naturally, choose the lowest score of the children nodes. This being the 3. The same
applies for node C and node D, but, of course, with different children nodes to choose from. Node
A, being a MAX player, will choose the highest score amongst its children, and, thus, picks node B.

10

Algorithm 1 Pseudo-code Minimax Algorithm

1: Minimax(depth, bestMove):
2: if Max depth is reached or leaf is reached then
3: return Evaluation of node
4: end if
5: if MAX then
6: maxEval = -∞
7: for Each available move of node do
8: Play the move
9: eval = minimax(depth-1, dummyMove)
10: if eval > maxEval then
11: maxEval = Eval
12: bestMove = current move
13: end if
14: Undo the move
15: end for
16: return maxEval
17: else
18: minEval = ∞
19: for Each available move of node do
20: Play the move
21: eval = minimax(depth-1, dummyMove)
22: if eval < minEval then
23: minEval = Eval
24: bestMove = current move
25: end if
26: Undo the move
27: end for
28: return minEval
29: end if

11

Notably, in the pseudo-code the bestMove is called by reference, and for the recurring calls of
Minimax a dummyMove is passed instead. If not, the bestMove can potentially be assigned to a
move deeper into the tree, which, is not the intention. Furthermore, in the pseudo-code, a move
is being explicitly undone. However, in different Programming Languages, for instance, C++, a
copy of the current object can instead be made. Thus, removing the need of undoing a move. The
bestMove can be played once this has been determined through the algorithm.
The depth variable is, frankly, unneeded in a simple game such as Tic-Tac-Toe. However, Quantum
Tic-Tac-Toe increases the search space significantly. Therefore, demanding the need of this variable,
to end the search algorithm earlier; or, otherwise, risk an extremely long and unfeasible computation
time.

2.6 Alpha-Beta Pruning

The depth variable is not the only way to alleviate the problem of unfeasible computation time in
a minimax algorithm. Alpha-beta pruning, namely, is a technique to reduce the amount of nodes
that is being evaluated; and, thus, reducing the computation time. This is done by keeping track of
the lowest and highest score in a certain sub-tree; also called the alpha and the beta respectively.
The two optimizing players, MAX and MIN, then compare its children with the alpha and the
beta. If it is found that the children of a node leads to a worse score than the alpha and the beta,
then that sub-tree can essentially be cut off. As, evidently, there appears to be a better and more
optimal play that had been evaluated prior.

Figure 11: Example of Alpha-Beta pruning[RN20].

12

Figure 11 illustrates the alpha-beta pruning. Alpha is denoted by -∞, while beta is denoted by
+∞. Moreover, the root A is a MAX player, while node B is a MIN player. In Figure 11a, node
B evaluates its first child, which, appears to have a value of 3. Node B, whom is a MIN player,
therefore has a value of at most 3. The beta for the sub-tree with B at its root is therefore 3.

In Figure 11b, B evaluates its second child with the value of 12. Again, since node B is a MIN
player, it will not choose 12; and, thus, 3 is still the highest score of node B. Node B has evaluated
all its children in Figure 11c, in which, it can be said for certain that the score will be 3; thus,
turning both alpha and beta into a 3 of node B. Furthermore, since the score of B is now known,
the alpha of root A can be adjusted. Considering that root A is a MAX player, it then can be said
that root A has a score of at least 3; thus, changing its alpha into a value of 3.

Figure 11d shows the first and only instance of pruning in this example. Namely, node C evaluates
its first child which has the value 2. Node C, whom is a MIN player, has a score of at most 2. In
the perspective of root A then, whom has a score of at least 3, node C has a worse highest score
than its (root A’s) lowest score. Hence, the remaining nodes of node C can be pruned, decreasing
the amount of computation time.

Figure 11e and Figure 11f shows how pruning can still be avoided depending on the order-
ing of the evaluations. Namely, node D first evaluates the child with the value of 14. Node D has,
therefore, at most a value of 14. This value is higher than the lowest score of A. There is, thus, a
need to evaluate further. Node B then evaluate its child with the value of 5, whom, again, has a
higher score than the lowest possible score of root A. Node D then evaluate its last child with the
value of 2, which is the child node D will end up choosing as node D is a MIN player. The score of
node D ended up being worse than a score, of which, root A had already evaluated prior. Had, for
instance, the child with the value of 2 been the first child that node D evaluated, then alpha-beta
pruning could have prevented the algorithm from evaluating every single child; essentially, wasting
computation time.

2.7 Expecti-Minimax Search

Expecti-minimax search is a variant of minimax search, which accounts for chance or luck in a
game such as Quantum Tic-Tac-Toe. Herein, chance nodes are created to account for certain chance
or luck elements in a game. In the standard minimax search the MAX and MIN node attains the
value of the highest or lowest score of its children. In expecti-minimax, however, the MAX and
MIN node can instead be a chance node. If so, then the MAX and MIN node attains not the value
of one of its children, but, attains the average of all its children. Note that this means that every
possible outcome still has to be computed in the case of expecti-minimax.

3 Design

This section will shed light on the computer program that will eventually be used to conduct
experiments with. The main aspects that will be highlighted are the various agents, the game
modes, the search algorithms, and other key aspects that make the computer program. The aim is

13

to elaborate what exactly these key aspects are, and why they have been designed in such a way.
Moreover, the computer program is programmed in C++. The main reason as to why C++ was
picked, in favor of other programming languages, is primarily due to familiarity, speed, and the
built-in libraries that can be used for the computer program.

3.1 The Game Modes

Section 2 provides a detailed overview of the game modes, namely Classic Tic-Tac-Toe, Minimal
Quantumness Tic-Tac-Toe, Moderate Quantumness Tic-Tac-Toe, and High Quantumness Tic-Tac-
Toe. All these game modes will be included into the computer program, on which, various agents
will be played. The Classic Tic-Tac-Toe is here to provide an extra mean of benchmark, while the
remaining three are the main point of interests. In particular, how the seach algorithms perform on
the various different variants of Quantum Tic-Tac-Toe, and how well they take account for the
chance and luck that gets introduced in each step of quantum increase.

3.2 The Tic-Tac-Toe Class

The Tic-Tac-Toe class is the class in the computer program for both the classical and quantum
Tic-Tac-Toe. This class consists of various member-functions to play the game with, for instance, a
function to automatically play a game with two agents, a function to play a move, a function to
empty the board, a function to apply measurement on the board, etc. The class itself keeps track
of a few important variables, of which includes:

• The current player as a bool variable, in which, false applies to Player 1 (X), while true
applies to Player 2 (O)

• The current game mode as an integer variable, in which, 0 equals classic Tic-Tac-Toe, 1
equals Minimal Quantumness, 2 equals Moderate Quantumness, and, lastly, 3 equals High
Quantumness

• The current turn of the game as an integer, starting with 0

Notably, since the turn variable starts with 0, in case of superstition or entanglement, Player 1
(X)’s turns will always be sub-scripted with an even integer, while Player 2 (O)’s turns will always
be sub-scripted with an odd integer.
Another variable that is passed to the class, or, more specifically, the function to automatically
play the game, is the game type of the two players. This variable is an integer, and, each player has
their own integer parameter that gets passed to the class. The following applies to both integer
parameters:

• If the player is a random agent, this integer will be 0

• If the player is a human agent, this integer will be 1

• If the player is a Monte Carlo agent, this integer will be 2

• If the player is an (expecti-)minimax agent, this integer will be 3

14

3.3 The Board

The board that the game will be played on is a standard 3-by-3 board, identical to the standard
Classic Tic-Tac-Toe. However, there will be a distinction made in the computer program, specifically,
between the board of a classic Tic-Tac-Toe, and, the board of the Quantum Tic-Tac-Toes. The
board of the classical Tic-Tac-Toe with only classical moves will be called as board, while the
quantum variant of this board will be called qtBoard ; which, is to be used by the three variants of
Quantum Tic-Tac-Toe. The (classical) board in the computer program is an integer array of the
size 3-by-3. The following applies in the classical board:

• Player 1 (X) will be denoted with the integer 1

• Player 2 (O) will be denoted with the integer 2

• An empty cell will be denoted with the integer 0

The qtBoard, on the other hand, requires a lot more information than just who played which
classical move where. For instance, a cell of a qtBoard needs to accommodate to the fact that
two players can occupy that specific cell at the same time. In a similar vein, a qtBoard needs to
keep track of superstition moves, entanglement, the percentage probabilities of each superstition or
entanglement, and, which moves are exactly connected with each others. To illustrate an unwanted
outcome, when measurement takes place of the move X2, an unwanted outcome would be removing
one of the other superstition move (e.g.: X4) instead of removing the other X2 move.

In any case, it is evident that there is need for a board that holds more information than the
classical board. To do this, a new structure is made called the qtCell, and, the 3-by-3 qtBoard will
consist of 9 of these qtCells. The qtCell struct hold the following member variables:

• A vector of turns (integers)

• A string

• The percentage in integer of Player 1

• The percentage in intger of Player 2

• the cell number

3.3.1 The Random Agent

The random agent is the agent which plays their moves randomly. There is no other reasoning
behind its plays, that is, other than being chosen randomly. There are two main reasons for the
creation of a random agent. One being the fact that it will provide the ability to construct a Monte
Carlo Search algorithm with it, as, a Monte Carlo Search’s playout is played randomly after the
first initial move. The random agent, also, will provide a rough benchmark on the two main search
algorithms, namely, (expecti-)minimax and Monte Carlo Search; and their effectiveness.

15

3.3.2 The Monte Carlo Agent

The Monte Carlo Agent, as the name suggests, is the agent that will play the game with a Monte
Carlo Search. A variable that passes with each game is the playouts variable. Through this, the
amount of playouts can be adjusted that the agent will simulate for each possible move.

3.3.3 The (Expecti-)Minimax Agent

The (expecti-)minimax agent is the agent that will play the game with either the expecti-minimax
or the minimax. Specifically, the agent will exclusively use the alpha-beta minimax search algorithm
if it is the classic Tic-Tac-Toe, and, exclusively use the expecti-minimax variant if the game mode
is anything other than the classic Tic-Tac-Toe. That is because, as explained before, the Quantum
Tic-Tac-Toe introduces chance and luck into the game. And, thus, requiring the necessity to take
account for these probabilistic mechanics. In this program, a chance node represents a node, in
which, measurement has taken place. The reasoning behind this is that because it is exactly in this
state, that the board turns from a state of probabilities into a state of certainties; and, from these
state of certainties it branches, again, into state of probabilities due to superposition moves.

One of the vital functions in the minimax algorithm is the one that determines the children
nodes of a chance node. As evaluating a quantum board relies on chance, and, thus, can not
manually determine every single possible classical board of a quantum board. This crucial function
is called determineChild in the program, and, looks through the board and ascertains in which
positions a turn can be found in recursively; and, converts it into an element of a sequence. A
sequence is, thus, effectively, a board made of classical moves in string form. If a turn is found at
multiple positions (e.g.: superposition or entanglement), then the function will call itself the same
amount of times; essentially, adding another sequence on top. By the time every turn has been
evaluated once, the sequence will be saved. Afterwards, each of these sequences can be converted
back into boards, and gets passed as children nodes of a chance node.

3.4 Heuristic

A heuristic is needed to evaluate the board in case it does not reach an appropriate leaf for the
expecti-minimax algorithm. There are many different manners to evaluate a board that is filled
with superposition moves and entanglements, which may end up confusing instead. Though, there
is an important aspect of Quantum Tic-Tac-Toe to keep in mind, namely, that a player can only
earn points (win) through a three-in-a-row consisting of classical moves only. As such, it is more
sensible to evaluate the boards of classical moves that the board can result into. In other words,
every possible classical board will be determined through the quantum board; each of which will
get evaluated individually.

The classical boards will then be evaluated by looking at each three-in-a-row line. Namely, for
each of these line the amount of moves from each player will be counted: the x counter and the
o counter. Depending on these counters a value will be added to or subtracted from the evaluation
of the classical board. The following scheme will be applied:

• if x counter=2 and o counter=0: +25

16

• else if x counter=0 and o counter=2: -25

• else if x counter=2: +5

• else if o counter=2: -5

• else if x counter=3: +50

• else if o counter=3: -50

The scheme essentially prioritizes on making sure that the minimax player has more likelihood to
win, since boards with more potential for a three-in-a-row is evaluated higher than boards that do
not. Once every derivations of the quantum board has been evaluated, the evaluations of these
derivations will be summed up and divided by the amount of derivations. The following formula
sums the heuristic up:

Evaluation of qtBoard =
Sum evaluation of derivations

Amount of derivations of initial board
(1)

4 Experiments

Here, various experiments will be conducted and analyzed. Additionally, the program will be run
on Intel(R) Core(TM) i5-6500 CPU @ 3.20GHz processor.

4.1 Analyzing the Expecti-Minimax Search

For this experiment, the first move of the expecti-minimax will be analyzed. This is done by looking
at the very first move of a new game in which player 1 is the expecti-minimax agent, the second
player will be omitted as it is not important for this specific analysis. Here, the time will be taken
as an average of 10 runs and denoted in seconds.

Depth Nodes Time(s)
2 46 0.003
3 338 0.060
4 1904 0.163
5 9749 1.583
6 42001 3.314

Table 1: Results of analyzing first move of expecti-minimax (Minimal Quantumness). Time is
average of 10 runs.

17

Depth Nodes Time(s)
2 46 0.003
3 338 0.063
4 4488 0.809
5 53516 17.896
6 333475 90.520

Table 2: Results of analyzing first move of expecti-minimax (Moderate Quantumness). Time is
average of 10 runs.

Depth Nodes Time(s)
2 46 0.003
3 249 0.064
4 3072 0.723
5 61749 22.568
6 209061 73.244

Table 3: Results of analyzing first move of expecti-minimax (High Quantumness). Time is average
of 10 runs.

Figure 12: Amount of nodes with each increase in depth. Y-axis in logarithmic scale.

18

Figure 12 depicts the amount of nodes of Table 1, Table 2, and Table 3 into one graph. Here, it is
evident that the amount of nodes increase exponentially with each increase in depth for the low
quantumness. The moderate and high quantumness does not seem to strictly increase exponentially,
as they are not a straight line in the graph; this could be due to pruning. Moreover, it appears that
the amount of nodes do not necessarily increase between the same depths of different quantumness
level. For example, depth 4 of moderate quantumness has a higher amount of nodes than depth 4
of high quantumness. Yet, for the depth 5 the amount of nodes of high quantumness is higher than
the amount of nodes of moderate quantumness. Depth 6 seems to, again, follow the same trend as
depth 4. One could reason that the amount of nodes in a depth would, in contrast to the graph,
increase with each quantumness level; this, due to the increasing amount of possible moves that
opens up with each increase in quantumness. Though, these anomalies could also be the result of
alpha-beta pruning; which prunes more nodes at certain quantumness depths.

Table 1, Table 2, and Table 3 also illustrates a rough expectation on the amount of compu-
tation time needed for an experiment. For instance, an experiment with 100 playthroughs in high
quantumness and with a depth of 6, would take at worst at least around 2 hours due to the very
first move alone.

4.2 Agent vs Agent

The experiments will be conducted between the different agents. For every experiment the following
variables will be analyzed:

• Amount of games played: 100

• Playout (for Monte Carlo): 100, 200, 300

• Depth (for expecti-minimax): 2, 3, 4

• Game mode: Low Quantumness, Moderate Quantumness, High Quantumness

Furthermore, if the experiment is between the Monte Carlo agent and the minimax agent, distinction
will be made between which of the agent is player 1 (X) and which of the agent is player 2 (O).
Player 2 will always be the random agent, if the experiment includes one. The results that will
mainly be looked at are the following:

• Player 1 win

• Player 2 win

• Draw win: both players have a 3-in-a-row

• Draw lose: neither players have a 3-in-a-row

These results will be denoted in the amount of games that applies to its description of the 100
games in an experiment.

4.2.1 Monte Carlo Agent vs Random Agent

19

Figure 13: Monte Carlo agent (player 1) vs random agent (player 2) in Low Quantumness.

Figure 14: Monte Carlo agent (player 1) vs random agent (player 2) in Moderate Quantumness.

20

Figure 15: Monte Carlo agent (player 1) vs random agent (player 2) in High Quantumness.

Figure 15 illustrates the performance of the Monte Carlo agent, which, performs well across the
board. There, however, does not seem to be much improvement with each increase in the amount
of playouts in every quantumness level, as the amount of games player 1 wins is roughly the same.
The graph of moderate quantumness does seem to imply as if the steps in playouts do gradually
improve the performance of the agent; however, that might as well just be an anomaly of the three,
rather than an indication of such.

Notably, the run-time for these experiments varies from 122 seconds to 512 seconds. The variable
that increases the run-time the most being the amount of playouts of the experiment.

4.2.2 Expecti-Minimax Agent vs Random Agent

21

Figure 16: Expecti-minimax (player 1) vs random agent (player 2) in Low Quantumness.

Figure 17: Expecti-minimax (player 1) vs random agent (player 2) in Moderate Quantumness.

22

Figure 18: Expecti-minimax (player 1) vs random agent (player 2) in High Quantumness.

Figure 16, Figure 17, and Figure 18 reiterates the same findings as Section 4.2.1, as the increase
in depth does not necessarily correlate to better results of the agent. Notably, the performance of
the expecti-minimax agent in high quantumness seems to do a bit worse, compared to the other
two quantum levels. Though, overall, the expecti-minimax agent seems to perform well against the
random agent.

The run-time of these experiments varies from 0.5 seconds to 217 seconds. The variable that
increases the run-time the most being the depth of the experiment.

4.2.3 Expecti-Minimax Agent vs Monte Carlo Agent

Various experiments have been conducted with every combination between the variables. Overall,
it seems that the findings of Section 4.2.1 also applies here. As such, the amount of playouts does
not change the results of these specific experiments by a notable amount, and, especially, does not
change the winner between the agents; of which, is what the research paper is ultimately looking
for. For this reason, in an attempt to lessen the amount of redundancy and improve clarity, only
the results of 100 playouts will be depicted.

23

Figure 19: Expecti-minimax (player 1) vs Monte Carlo agent (player 2) with 100 playouts in Low
Quantumness.

Figure 20: Expecti-minimax (player 1) vs Monte Carlo agent (player 2) with 100 playouts in
Moderate Quantumness.

24

Figure 21: Expecti-minimax (player 1) vs Monte Carlo agent (player 2) with 100 playouts in High
Quantumness.

Figure 19, Figure 20, and Figure 21 depicts the results of the experiments with 100 games, 100
playouts, and the different depths. Herein, it can be observed that the expecti-minimax agent (player
1) consistently wins over the Monte Carlo agent throughout every quantumness level. This, with the
exception to the depth 3 of minimal quantumness, where the Monte Carlo agent convincingly beats
the expecti-minimax agent. Another interesting observation to be made is that depth 3 performs
worse across the quantum levels. However, depth 4 for every quantum level performs adequately
again, in comparison to depth 3. As such, a greater depth does not necessarily signify a worse
performance for the expecti-minimax agent.

One could conclude from Figure 19, Figure 20, and Figure 21 that the expecti-minimax agent
performs on average better than the Monte Carlo agent. This, however, does not seem to be the
case. The following experiment shows why.

25

Figure 22: Monte Carlo agent (player 1) vs expecti-minimax agent (player 2) with 100 playouts in
Low Quantumness.

Figure 23: Monte Carlo agent (player 1) vs expecti-minimax agent (player 2) with 100 playouts in
Moderate Quantumness.

26

Figure 24: Monte Carlo agent (player 1) vs expecti-minimax agent (player 2) with 100 playouts in
High Quantumness.

Figure 22, Figure 23, and Figure 24 are the same exact experiments as in Figure 19, Figure 20,
and Figure 21, with the exception that the Monte Carlo agent is now player 1, and the expecti-
minimax agent is player 2. Here, it can be observed that the Monte Carlo agent consistently
outperforms the expecti-minimax agent; by winning more games than the expecti-minimax agent
across every depth and quantum level. Another interesting observation that can be made is that
the performance of Monte Carlo agent (player 1) decreases as the quantumness increases above
the minimal quantumness. This can be seen by looking at the graph of minimal quantumness
where the amount of games won by the Monte Carlo agent is at least 80. However, decreases down
to 60 as the quantumness increases. Though, rather than saying that the performance of Monte
Carlo agent decreases, it can also be said that the expecti-minimax agent performance increases
with the quantum level; as it wins more games at higher quantumness compared to the minimal
quantumness.

5 Conclusions and Further Research

This research paper aims to answer its research question “Does the expecti-minimax algorithm
perform better than the Monte Carlo algorithm in Quantum Tic-Tac-Toe?”. To this end, a program
has been written in C++ with the algorithms as agents and various game modes as implemented
by the Quantum TiqTaqToe implementation [vN]. Here, the agents are analyzed and are put
against each other. The agents were first put against a random agent to establish a baseline of their
respective performance.

The Monte Carlo agent performs well against the random agent across all quantum levels. Though,
the amount of playouts of the Monte Carlo agent did not necessarily correlate to a better per-
formance. In fact, the playouts seems to not affect the results in a notable amount at all. The

27

expecti-minimax agent, too, performs well against the random agent across all quantum levels.
However, its performance does seem to suffer against the random player as the quantumness
increases.

Afterwards, the expecti-minimax agent and the Monte Carlo agent were put against each others.
Notably, a distinction was made which agent was player 1 and player 2. Had this not been the case,
then the wrong conclusions could, otherwise, have been made. As expecti-minimax agent would
have convincingly perform better than the Monte Carlo agent, barring at one specific depth in one
quantum level. Yet, by switching the players it had appeared that the Monte Carlo agent, who is
now player 1, convincingly performs better than the expecti-minimax agent.

The conclusion that can be made is, thus, that the expecti-minimax algorithm does not nec-
essarily perform better than the Monte Carlo algorithm for the used depths. As the winner seems to
be directly correlated to which of the player is player 1. However, note that if the full depth were to
be used, that the expecti-minimax should theoretically be better than the Monte Carlo algorithm;
as, at that point, it would be brute-force equivalent. The results from the experiments seems to,
further, imply that in every level of Quantum Tic-Tac-Toe, player 1 holds a greater advantage over
player 2. Though, this is something that should be further researched as that was not explicitly in
the scope of this research paper.

One of the limitations of this research paper is the lack of a real quantum computer. Instead, a
random generator was made of use to replicate the workings of collapsing an entanglement. As
such, further research into Quantum Tic-Tac-Toe with a real quantum computer could prove to be
more insightful. Moreover, removing the limitation set on the amount of entanglements, depth, and
playouts could also be interesting to research. Notably, the potential of an increase in performance
of the algorithms by increasing either the depth or the playouts. However, this would increase the
computation time significantly; making it infeasible with the current consumer computer.

References

[Akl10] Selim G. Akl. Technical report no. 2010-568 on the importance of being quantum. 2010.

[Can19] Christopher Cantwell. Quantum chess: Developing a mathematical framework and design
methodology for creating quantum games. 2019.

[RN20] Stuart J. Russell and Peter Norvig. Artificial Intelligence: a modern approach. Pearson, 4
edition, 2020.

[vN] Evert van Nieuwenburg. Quantum tiqtaqtoe. https://beta.tiqtaqtoe.com/start.
Accessed: 2023-05-22.

28

https://beta.tiqtaqtoe.com/start

	Introduction
	Thesis overview

	Related Work
	Quantum and Quantum Games
	Superposition
	Entanglement
	Collapse
	Quantum Games

	Classic Tic-Tac-Toe
	Quantum Tic-Tac-Toe
	Minimal Quantumness
	Moderate Quantumness
	High Quantumness

	Monte Carlo Search
	Minimax Search
	Alpha-Beta Pruning
	Expecti-Minimax Search

	Design
	The Game Modes
	The Tic-Tac-Toe Class
	The Board
	The Random Agent
	The Monte Carlo Agent
	The (Expecti-)Minimax Agent

	Heuristic

	Experiments
	Analyzing the Expecti-Minimax Search
	Agent vs Agent
	Monte Carlo Agent vs Random Agent
	Expecti-Minimax Agent vs Random Agent
	Expecti-Minimax Agent vs Monte Carlo Agent

	Conclusions and Further Research
	References

