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Abstract

Quantum stabilizer states have many uses in different quantum fields, such as quantum error
correction and classical simulations. We propose a recursive algorithm that can be used to
determine whether a state is a stabilizer state, as well as to determine what Pauli operators
transform one quantum state to another. This algorithm can be used in classical simulations,
for hypothesis checking or for educational purposes. The algorithm is based on the LIMDD
algorithm by Vinkhuijzen et al. [VCE+22].
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1 Introduction

In recent times, quantum computing has become more widely known as well as used. While quan-
tum computers are certainly not mainstream yet, there is no denying this rise and the potential
advantages it has. But why has it been receiving more attention and what could some of these
advantages be?

Regular computing (as we have been using for the past few decades) is based on represent-
ing information as bits and manipulating those bits. Bits have 2 possible values: they are either 0
or 1. The bits are manipulated using gates, made up of transistors. For decades, computing power
has been increasing, but more recently the growth of chip sizes is slowing down [MM19]. However,
while the tasks performed by computers are ever-growing, chip sizes are not. To try to keep up
with the growing problem sizes, other computing ways must be explored.

This is where quantum computing comes in. Already in 1982 Feynman came with the notion
that quantum physics could be useful in computing [Fey18]. An important advantage of quantum
computing is that certain algorithms can have up to an exponential speed-up when compared to
classical computing. This means that the order of magnitude of the number of operations performed
by the original algorithm is exponentially larger than that of the new algorithm. It is important
to note that this order of magnitude of number of operations is measured in terms of the input
size of an algorithm. As a quick example, take a problem with input size 32. A ’slow’ algorithm
may perform 216 = 4.3 · 109 operations, while a new algorithm performs only 32 operations. Since
log2(4.3 · 109) = 32, this signifies an exponential speed-up.

An example of an algorithm with such speed-up is the black box graph traversal problem stated
by Childs et al [CCD+03], which can be solved exponentially faster on a quantum computer than
a regular one. Furthermore, quantum computing could be very useful in optimization problems,
which have various industrial applications [S.19]. Quantum computing is also very important for
cryptography, since many cryptographic algorithms are based on the fact that finding a prime
factorization is computationally very hard. In 2016, a (powerful) quantum computer could factor a
200-bit number in a day using Shor’s algorithm [Sho94], while it took hundreds of computers over
2 years to factor a 768-bit number [Mon16].

However, when building a functional quantum computer, engineers face a lot of challenges [ALF+17].
Many of those are solved theoretically but not in practice. A big issue is the presence of noise in
quantum computers. Noise is the effect that small environmental changes have on the state of the
quantum computer, altering the state from the expected state to a slightly different one. In order
to find out how noisy a quantum computer is allowed to be while still giving correct answers, is by
simulating the quantum computer on a regular computer. We will refer to simulating a quantum
computer on a regular computer as classical simulation. Noise levels from small, built quantum
computers can be measured and the effect that the noise level would have on a larger computer
can be measured by doing performance analysis on the simulated version.

Simulating quantum computing efficiently is a challenge, partly due to the amount of computer
memory that is necessary. While it will be explained in more detail in Section 2.2, in order to store
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a quantum state on a regular computer, we need to store a number of values that is exponential
in the number of qubits (quantum bits) we want to simulate. This is doable for small numbers of
qubits, but it quickly becomes an issue for slightly larger numbers of qubits. If we assume a RAM
memory of 8GB, and floating point numbers of 8 bytes, we can store 1 billion floating point values,
which would be enough for representing one quantum state of 29 qubits.

The good news is that there are ways to more efficiently represent these quantum states. That
way, only a linear amount of ‘values’ need to be stored. The bad news, this representation does not
work for all quantum states. In some cases, when certain quantum gates have been applied, it is
necessary to save the entire vector (exponential in the number of qubits). But when possible, it
would be preferred to store the linear amount, which is where Vecs2Pauli, the algorithm we propose,
could come in handy. The Vecs2Pauli algorithm can be used to figure out if a quantum state can
be saved in the shorter representation or whether the entire vector is necessary.

While this might seem very useful for simulating large quantum computers, a big drawback
is the fact that Vecs2Pauli’s input grows exponentially in the number of qubits. The algorithms
runtime is polynomial in the input size, but if the input size is too big to be able to run the algorithm,
a good runtime doesn’t matter. However, the algorithm could be quite useful in hypothesis testing
as well as for educational purposes.

The approach of the Vecs2Pauli algorithm is a translation from the decision-diagram approach in a
paper by Vinkhuijzen et al [VCE+22]. The Vecs2Pauli algorithm also uses the coset intersection
algorithm as well as the algorithm to find a minimal generating set finding algorithm for a group
mentioned in this paper in Appendix D.

This paper is organized as follows. To start, some necessary mathematical and quantum ba-
sics are explained in Section 2. Section 3 contains the problem definition and explains a naive
approach, the Vecs2Pauli algorithm and its subalgorithms. Possible applications for the Vecs2Pauli
algorithm are more elaborately explained in Section 4, while Section 5 discusses some challenges
related to this algorithm.

2 Background

2.1 Relevant math

2.1.1 Relevant linear algebra

Some background mathematics is required before we start introducing quantum computing me-
chanics. The tensor product of two matrices A and B is denoted by A ⊗ B and is computed by
essentially replacing each entry aij of A by aij · B. If A is a m× n matrix and B is of size p× q,
the resulting matrix A⊗B will have size m · p× n · q. Let’s illustrate this with an example.

Example 2.1. In this example, A has size 3× 1, and B is of size 1× 2. The resulting matrix has
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size 3× 2.

A =

3
1
0

 , B =
(
2 5

)

A⊗B =

3 ·B
1 ·B
0 ·B

 =

6 15
2 5
0 0

 .

Useful properties of the tensor product that will be used later on are the following:

c(A⊗B) = (cA)⊗B = A⊗ (cB) ∀c ∈ C (1)

(A⊗B)(C ⊗D) = (AC)⊗ (BD) (2)

2.1.2 Relevant group theory

The algorithm discussed in this paper makes use of algebraic groups and cosets. A group is a
combination of a set of values and an operation, such that by applying this operation to any tuple
of members of the set, the resulting value will also be a member of the set: the set is closed under
the group operation. This operation should satisfy associativity; parentheses can be rearranged
without changing the result. For example: a + (b + c) = (a + b) + c, so the regular + operation
is associative. Furthermore, the group always contains an identity element, as well as an inverse
for every member of the group. An identity element is an element that, when applying the group
operation on the identity and a second element, the result will be that second element (so applying
the identity doesn’t change anything).

Example 2.2. Let’s take the group G = {1,−1, i,−i} with multiplication as its operation, which is
an associative operation. By multiplying any of these elements, the result will also be in this group.
1 is the identity for multiplying complex numbers, since multiplying a complex number with 1 will
not change the complex number. We see the identity is included in this group. Furthermore, every
element has an inverse: another element such that the result is 1 if they are multiplied together:
−1−1 = −1, i−1 = −i, −i−1 = i. All group axioms are hereby satisfied, so group G is a valid group.

A coset is a specific type of subset: it is like a ‘shifted group’. It is obtained by taking a group
and one other element of the same type as the members of the group. This single element is called
the coset representative. The members of the coset are then acquired by applying the operation
with the coset representative as one operator and all elements of the group as the second operator.
In this paper we use the word coset for a left coset: the single element operator is to the left of
the operation, while the group elements are to the right. This is relevant for non-commutative
operations, such as matrix multiplication. Mathematically, a left coset with multiplication as its
operation is denoted as follows: {π · g | g ∈ G} where π is the coset representative and G is the
group.

Example 2.3. Let’s take the same group G as in Example 2.2. Our coset representative can be 5.
The members of the (left) coset will then be {5 · 1, 5 · −1, 5 · i, 5 · −i} = {5,−5, 5i,−5i}. Note that a
coset doesn’t necessarily have all the properties that a group has. For example, it doesn’t contain the
identity element (which is 1 in this example), nor does every element have an inverse.
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2.2 Quantum states

2.2.1 Superposition

In quantum computing, quantum bits or qubits are used. The special thing about qubits is that
they are not necessarily 0 or 1. They can also be in a state called superposition. This can be seen as
being in both states at once, with certain amplitudes for each possible state. For single qubits, it’s

as follows: the classical 0 is denoted as |0⟩ =
(
1
0

)
, while the classical 1 is written as |1⟩ =

(
0
1

)
.

A single qubit in superposition can take on any value of the form

|ϕ⟩ = α0 · |0⟩+ α1 · |1⟩ ,

where α0, α1 ∈ C and |α0|2 + |α1|2 = 1. Often a quantum state is written as a vector of length 2n,
with n the number of qubits considered:

|ϕ⟩ =


α0

α1
...

α2n−1

 .

This vector is also called a ‘ket’.

While a qubit can be in superposition while computations are being performed, it can only
be in one of the classical states when checking the value during a quantum circuit. In other words,
when checking the value of the qubit, it will always be exactly |0⟩ or |1⟩. The probability of seeing a

certain state is its amplitude squared: |αi|2. So if |ϕ⟩ =

(
1√
2
i√
2

)
, the probability of observing classical

state |0⟩ is just as big as state |1⟩, with both having a probability of 0.5.

2.2.2 Multiple qubits

Before we generalize to many qubits, let’s first look at two. With two qubits, there are four basic
computational states. The first qubit is either |0⟩ or |1⟩, and the second qubit is also either |0⟩ or
|1⟩, which makes a total of four possible combinations. The combined state is |ϕ⟩ ⊗ |ψ⟩, where |ϕ⟩
is the state of the first qubit, and |ψ⟩ is the state of the second qubit. This is why we needed to
know about the tensor product before generalizing to multiple qubits. For multiple qubits where
each qubit is either |0⟩ or |1⟩, such as |1⟩ ⊗ |0⟩ ⊗ |1⟩, we often shorten this notation to |101⟩.

In general, when generalizing to n qubits, there are 2n possible basic computational states. For a
superposition of n states, we therefore need 2n amplitudes, which can be written as a vector of
length 2n. This is a big reason why naively doing classical simulation is challenging: it takes a lot
of memory space to perform computations with simulated qubits.

4



2.3 Stabilizer states

2.3.1 Pauli matrices

Performing computations on qubits can be done by essentially multiplying the amplitude vector
with a unitary operator. A unitary operator is a square matrix U such that U †U = UU † = I where
the † denotes the adjoint operator: take the transpose of a matrix and then replace every entry in
this transposed matrix by its conjugate transpose. The conjugate transpose of a complex number
a+ b · i is a− b · i for a, b ∈ R.
The most well-known quantum operators (or gates) work on either 1 or 2 qubits. An example is

the bit-flip operator: X =

(
0 1
1 0

)
.

There are certain gates that are used quite often in quantum physics. These are:

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

These four matrices are called the Pauli matrices. They have some rules: X2 = Y 2 = Z2 = I, and

XY = iZ, Y Z = iX, ZX = iY,

Y X = −iZ, ZY = −iX, XZ = −iY.

The Pauli matrices form a group of 16 elements: each of the four matrices appears four times:
multiplied by 1,−1, i, and −i. A group always contains the identity element, which is I for ma-
trices when the operation is multiplication, and when multiplying elements of a group, one will
always get another element of the group as an outcome. This is also shown by the rules above.
Furthermore, the operation must be associative, which multiplication is when regarding matrices:
A · (B · C) = (A · B) · C. Finally, every element must also have its inverse in the group. This is
easily shown, since X2 = Y 2 = Z2 = I, each of I,X, Y, Z is its own inverse. This also works when
talking about −I,−X,−Y,−Z. If the factor is i, the inverse is −i · the same matrix and vice versa,
since i · −i = −i2 = −− 1 = 1.

These Pauli matrices operate on single qubits. To let them operate on multiple qubits, we can take
the tensor product of multiple single-qubit Pauli matrices, creating a so-called Pauli string. An
example of a Pauli string is X ⊗ Y ⊗ Z, which is often shortened to XY Z. A Pauli string can be
multiplied by ±1 or ±i to obtain a member of the n-qubit Pauli group. Computing the product of
a member of the n-qubit Pauli group and an n-qubit state might seem challenging due to the size
of the matrix and the vector, but using Equation 2, it becomes rather simple:

−iXY Z · |101⟩ = −i((X ⊗ Y ⊗ Z) · (|1⟩ ⊗ |0⟩ ⊗ |1⟩)) = −i · (X · |1⟩)⊗ (Y · |0⟩)⊗ (Z · |1⟩).

2.3.2 Stabilizer groups

Stabilizer groups are groups containing elements, that when multiplied with a vector describing a
quantum state, will produce that same vector (stabilizing it) [Got97, Got98a]. Each quantum state
has a stabilizer group, which contains at least the identity operator. A stabilizer group has at most
2n elements for an n-qubit state, and if it has exactly 2n elements, that group uniquely describes
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the corresponding quantum state. If a stabilizer group has less than 2n elements, multiple quantum
states may have that group as their stabilizer group. Stabilizer groups are abelian groups.
The stabilizer group for |0⟩ = {I, Z} and for 1√

2
(|000⟩ + i |111⟩ the stabilizer group is given

by {III, Y XX, XY X,XXY,ZZI, IZZ, ZIZ,−Y Y Y }. These stabilizer groups have the same
properties as the Pauli group; they contain the identity element, and when multiplying two
elements, a third element of the group will be the outcome. This second property makes it possible
to reduce the number of elements necessary to note. A group of size ≤ 2n can be generated by ≤ n
elements that are independent. We can therefore save these at most n elements, greatly reducing
the necessary memory. The other elements of the stabilizer group can then be found by multiplying
the elements in the generating set.

2.4 Clifford gates

Many quantum circuits use Clifford gates. All Clifford gates can be generated with the following
gates:

H =
1√
2

(
1 0
0 −1

)
, S =

(
1 0
0 i

)
, CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

Clifford gates are gates that normalize the Pauli group. This means that when one multiplies a tensor
product of Pauli matrices with a Clifford gate, the outcome will still be a member of the Pauli group.

This is particularly useful when simulating quantum circuits since it also means that if a Clifford
gate is applied to a quantum state with a full stabilizer group, the resulting state will also have a
full stabilizer group [Got98b].

2.5 Use of stabilizer states

Stabilizer states are used in many different fields within quantum computing. This is because the
subset formed by stabilizer states is large enough to use it in many applications without needing
to extend this subset with non-stabilizer states. They are used a lot in quantum communication
[FWH+10] and they are fundamental in quantum error correction [Got97]. As discussed before,
especially when only using Clifford gates, stabilizer states are also used frequently in classical
simulations.

3 Algorithm

3.1 Problem Definition

The goal we are trying to achieve is to find all PauliLIMs that will map input vector v to input
vector w, where v and w can be amplitude vectors of quantum states, though they don’t necessarily
have to be. The input vector can contain any values x ∈ C. A PauliLIM is a combination of a
factor (in the rest of this paper referred to as α) which can be any complex number, and a Pauli
string, which is the tensor product of Pauli matrices. In mathematical notation, we are looking for
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all combinations of α ∈ C and P = Q1⊗Q2⊗ . . .⊗Qn, where n is the amount of qubits the vector
represents (n = log2(length(v))) and Qi ∈ {I,X, Y, Z} such that

α · P · v = w, (3)

Lemma 3.1. All solutions to Equation 3 can be represented as a coset. We can use a complex
number α and a Pauli operator P , such that α · P maps v to w. α · P will be used as coset
representative, and the stabilizer group of v is the group of the coset.

Proof. Lemma 16 in the paper by Vinkhuizen et al. [VCE+22] shows that the set of solutions to a
mapping from quantum state |v⟩ to quantum state |w⟩ is of the form π ·Stab(|v⟩) with π a mapping
from |v⟩ to |w⟩ and Stab(|v⟩) the stabilizer group for |v⟩. This is a generalization of that Lemma.
Since the proof of Lemma 16 does not use any properties that only apply to quantum states, but in
reality uses only linear algebra and group theory, the proof of Lemma 16 still holds.

A way to solve this is by simply checking all possible solutions one by one. If we first assume α = 1
for simplicity, there are 4n possible solutions we have to check. If α ≠ 1, we can start by still
multiplying any possible P with v. If P · v and w don’t match, we can find a possible α by dividing
w’s first non-zero element by P · v’s value on the same index. This will not work if w =0 (which can
easily be checked before even starting the algorithm) or P ·v’s value is 0, but in that case, no α would
work anyway. After finding this possible α, simply multiply P ·v by α and check the result against w.

This algorithm can be improved upon by using one of the characteristics of a PauliLIM. In
the matrix of a PauliLIM, there will always be exactly one non-zero value in each row and column.
As such, applying a PauliLIM can also be seen as applying a permutation, since every entry in v
has a corresponding entry in the result vector it is directed to, possibly multiplied by −1, i or −i.
By applying the PauliLIM as a permutation of v instead of using matrix multiplication, we need
fewer operations.

Example 3.2. Take PauliLIM P = iXIZ and v = (1, 0, 2, 1, 0, 0, 0, 1)T . v can also be written as
1 · |000⟩+ 2 · |010⟩+ 1 · |011⟩+ 1 · |111⟩. We apply the PauliLIM as follows using Equation 2:

iXIZ ·(1·|000⟩+2·|010⟩+1·|011⟩+1·|111⟩) = i·(X ·|0⟩⊗I ·|0⟩⊗Z ·|0⟩)+i·(X ·|0⟩⊗I ·|1⟩⊗Z ·|0⟩)

+i · (X · |0⟩⊗ I · |1⟩⊗Z · |1⟩)+ i · (X · |1⟩⊗ I · |1⟩⊗Z · |1⟩) = i · |100⟩+2i · |110⟩− i · |111⟩− i · |011⟩

which can be written as w = (0, 0, 0,−i, i, 0, 2i,−i)T .

In this paper, we provide an alternative approach which will be explained in the following section.

3.2 Vecs2Pauli

Below, we will provide an algorithm that will return the generating set for the Pauli strings that
satisfy Equation 3. These Pauli strings will be found using a recursive approach, which is inspired
by the approach in [VCE+22]. While the algorithm was intended for vectors representing quantum
states, we have extended it to work for any vector with a length of 2n and entries in C. For simplicity,
we will assume α = 1 for now. We will address later how it is handled if α ̸= 1.
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3.2.1 Base case

We first take a look at the base case for the Vecs2Pauli algorithm, where v and w concern 1 qubit
and the corresponding vectors are of length 2. In this case we are searching for single-qubit Pauli
operators P and factors α ∈ C such that

α · P · v = w, (4)

with v =

(
v0
v1

)
and w =

(
w0

w1

)
We know the solution will be the coset consisting of one solution to

Equation 4 and the stabilizer group of |v⟩. Finding this stabilizer group will be discussed later in
Section 3.3, so for now we will focus on finding one combination of α and P that satisfy Equation 4.
There are six distinct possibilities for combinations of α and P here which will all take different
routes through the algorithm:

• There are no solutions (e.g. α · P ·
(
0
0

)
=

(
1
0

)
).

• There are multiple possible α’s (e.g. α · P ·
(
0
0

)
=

(
0
0

)
).

• One possible α combined with one of I,X, Y, Z.

The algorithm for this base case is written in Algorithm 3. In lines 1-2 the third possibility is
checked. If this is not the case, the first step is to see if there are any solutions where P ∈ {I, Z}.
We need to satisfy the following equations:{

α · v0 = w0,
if P = I

α · v1 = w1,
(5)

{
α · v0 = w0,

if P = Z
−α · v1 = w1,

(6)

If either v0 = 0 and w0 ̸= 0, or v1 = 0 and w1 ̸= 0, there will be no such solution, so we can skip
lines 6-18. If v0 and w0 are both equal to 0, we only have v1 and w1 to determine a solution. For
convention, if w1

v1
< 0, we say P = Z and return it with α = −w1

v1
. Otherwise we simply return

α = w1

v1
and P = I. If it is not the case that v0 = w0 = 0, we move on to lines 13-18. We know then

that v0 ̸= 0, so we can calculate w0

v0
. Here we assume that the top equations of Equations 5 and 6

hold, and check the corresponding α with the second equations in lines 15-18.

If no solutions with P ∈ {I, Z} have been found, solutions with P ∈ {X, Y } are considered
in lines 20-34. The corresponding equations to be satisfied are as follows:{

α · v0 = w1,
if P = X

α · v1 = w0,
(7)

{
i · α · v0 = w1,

if P = Y
−i · α · v1 = w0,

(8)

8



In lines 20-21 we again check whether there will be any solutions of this type. If this is not the case,
there are no solutions at all, which will be returned in line 36. If there are solutions, the first step
is to check whether v0 = w1 = 0. If so, we determine α only by the second equations of Equations 7
and 8. We choose to say P = X if v1

w0
∈ R, and P = Y if the imaginary part of v1

w0
̸= 0. Note that if

P = Y , we need to modify the returned value for α in line 26, since we want α s.t. −i · α · v1 = w0,
while we calculated α = w0

v1
.

In case v0 and w1 are not both 0, we know v0 ̸= 0, so we can calculate α = w1

v0
. We then check the

second equation of Equations 7 and 8 and return α and either X or Y . Note that the calculated α
is different from the α in Equation 8, namely: calculated α = i · α. This is the reason lines 33-34
don’t correspond one-on-one with Equation 8.

3.2.2 Multi-qubit case

We provide a recursive algorithm for dealing with multiple qubits. We can rewrite Equation 3 using
vector notation:

α · P1 ⊗ . . .⊗ Pn ·
(
v0
v1

)
=

(
w0

w1

)
, (9)

where v0, v1, w0, w1 are vectors themselves of half the length of v and w. Depending on P1, there
are 4 options for rewriting this equation.(

α · P2...n 0
0 α · P2...n

)
·
(
v0
v1

)
=

(
w0

w1

)
→

{
α · P2...n · v0 = w0,

if P1 = I
α · P2...n · v1 = w1,

(10)

(
0 α · P2...n

α · P2...n 0

)
·
(
v0
v1

)
=

(
w0

w1

)
→

{
α · P2...n · v1 = w0,

if P1 = X
α · P2...n · v0 = w1,

(11)

(
0 −i · α · P2...n

i · α · P2...n 0

)
·
(
v0
v1

)
=

(
w0

w1

)
→

{
−i · α · P2...n · v1 = w0,

if P1 = Y
i · α · P2...n · v0 = w1,

(12)

(
α · P2...n 0

0 −α · P2...n

)
·
(
v0
v1

)
=

(
w0

w1

)
→

{
α · P2...n · v0 = w0,

if P1 = Z.
−α · P2...n · v1 = w1,

(13)

Each subequation corresponds to a call to Vecs2Pauli concerning one fewer qubit than in the
original call. Continuing through the recursive tree, eventually a call will be performed with vectors
of length two, which will be redirected to Vecs2PauliBase, as done in lines 7-10 of Algorithm 4.

Before going immediately to the recursive part of the algorithm, we check some special cases
first, specifically where one or more parts of the vectors are filled with zeroes. If the entire vector v is
filled with zeroes, we check two special cases: either w is also filled with zeroes, and every PauliLIM
is a solution to Equation 9. Otherwise, w contains non-zero elements and no PauliLIM will be a
solution. If only w is a zero vector, a special value is returned: α = 0, since 0 · any PauliLIM is a
solution in that case. These cases are checked and handled in lines 1-6.

In lines 11-15 some prerequisites are handled: creating the subvectors of v and w, as well as
finding the stabilizer group of v. We need the stabilizer group of v, since all PauliLIMs that
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transform v into w form a coset of one such PauliLIM and v’s stabilizer group. The algorithm for
finding the stabilizer group can be found in Algorithm 2.

The recursive calls explained above are handled next. In lines 16-25 Equation 10 is handled
by performing either 1 or 2 recursive calls and subsequently finding the intersection between the
answers (using Algorithm 1) if necessary, since both subequations need to be satisfied for a PauliLIM
to be a solution. If v0 is filled with zeroes but w0 is not, or v1 is the zero vector and w1 isn’t, it
is not necessary to perform these recursive calls, since we will not find a solution anyway. Also,
if the first call does not yield a solution, it is not necessary to perform the second call. Then one
element of the intersection is returned by the computeCosetIntersectionElement (Algorithm 1,
and afterward a left-multiplication with the Pauli-I element is done. The coset intersection that is
being determined in this algorithm is found using the coset intersection algorithm in [VCE+22].
Finally, factor α is returned along with the coset of the selected element and v’s stabilizer group.

If no solution is found, this process is repeated a maximum of 3 times, with Pauli-matrices
Z,X, and Y in lines 26-29, 30-39 and 40-49 respectively. If still not solution is found, the special
value of no α possible is returned to indicate there is no solution.

3.3 Finding the stabilizer group

When finding the stabilizer group, we will do this recursively again, since it is the same question
as for the Vecs2Pauli algorithm, where v = w. We will divide the explanation of the algorithm in
two parts again, the base case and the case for multiple qubits. The algorithm can be found in
Algorithm 2.

3.3.1 Base case

We are looking for all combinations of α ∈ C and P ∈ {I,X, Y, Z} such that

α · P · |v⟩ = |v⟩ . (14)

Given the characteristics of the Pauli matrices, we know that α ∈ {±1,±i} in this case, since the
Pauli matrices only perform rotations and reflections in the complex plane. This means applying a
Pauli matrix will never change a vectors length, and as such, applying α · P with α /∈ {±1,±i}
will always result in a vector with a different length than the original vector. Only in the very
special case that v = 0̄ (the vector filled with 0’s), other values for α are possible. Specifically speak-
ing, in that case, all values for α ∈ C satisfy Equation 14, as well as any member P of the Pauli group.

If we work out Equation 14 for P = I and P = Z, we get the following pairs of equations.{
α · v0 = v0,

if P = I
α · v1 = v1,

(15)

{
α · v0 = v0,

if P = Z
−α · v1 = v1,

(16)

10



Clearly, 1 · I will always be a member of the stabilizer group, since both equations in Equation 15
will always hold for α = 1. In contrast, −1 · I, i · I and −i · I will only be in the stabilizer group if
both v0 and v1 are equal to 0. In a similar fashion, we check whether any multiples of Z are in the
stabilizer group. 1 ·Z will be in the stabilizer group if v1 = 0, while −1 ·Z will be included if v0 = 0.
Again, i·Z and−i·Z will only be members of the stabilizer group in the case that both v0 and v1 are 0.

Working out Equation 14 for P = X and P = Y gives us the following pairs of equations.{
α · v0 = v1,

if P = X
α · v1 = v0,

(17)

{
i · α · v0 = v1,

if P = Y
−i · α · v1 = v0,

(18)

It is easy to determine from Equation 17, 1 ·X will be a part of the stabilizer group if both entries
in the vector are the same, while −1 ·X will be in the stabilizer group if one element is −1· the

other element, such as

(
1
−1

)
. Any other α ·X will only be in the stabilizer group if both entries of

vector v are 0. Determining whether α · Y is a solution to Equation 18 is slightly less trivial. By
working out Equation 18 with the four possibilities for α: 1,−1, i,−i, we get the following four sets
of equations: {

i · v0 = v1,
if P = Y and α = 1

−i · v1 = v0,
(19){

−i · v0 = v1,
if P = Y and α = −1

i · v1 = v0,
(20){

i · i · v0 = −v0 = v1,
if P = Y and α = i

−i · i · v1 = v1 = v0,
(21){

i · −i · v0 = v0 = v1,
if P = Y and α = −i

−i · −i · v1 = −v1 = v0,
(22)

It can be seen that Equations 21 and 22 will only be true in the case that v0 = v1 = 0, while
Equations 19 and 20 can also be true for non-zero vectors.

Since the Vecs2Pauli algorithm will give a special output if the input vector v is the 0−vector, it is
not needed to determine the stabilizer group of the 0−vector. As such, some of the beforementioned
α · P combinations do not need to be checked since these tests will never be true.
In Algorithm 2, the stabilizer group of a vector of length 2 is found in lines 1-16.

3.3.2 Multi-qubit case

Finding the stabilizer group for |v⟩ can be done in a similar fashion to the algorithm described in
Section 3.2.

P2 ⊗ . . .⊗ Pn · |v2...n⟩ = |v2...n⟩ , P2 ⊗ . . .⊗ Pn · |v′2...n⟩ = ± |v′2...n⟩ if P1 ∈ {I, Z}, (23)
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P2⊗ . . .⊗Pn · |v2...n⟩ = y |v′2...n⟩ , P2⊗ . . .⊗Pn · |v′2...n⟩ = y∗ |v2...n⟩ with y ∈ {1, i} if P1 ∈ {X, Y }.
(24)

In the equation above, y∗ is the complex conjugate of y. It is calculated as follows: if y = a+ b · i,
then y∗ = a− b · i. Combining these equations to find the stabilizer group of |v⟩ gives the following,
where Stab(v) denotes the stabilizer group of v, and V ecs2Pauli(v, w) denotes the coset of solutions
that transform v to w.

Stab(|v⟩) = I⊗ (Stab(|v2...n⟩) ∩ Stab(|v′2...n⟩))
∪ Z ⊗ (Stab(|v2...n⟩) ∩ −1 · Stab(|v′2...n⟩)
∪X ⊗ (V ecs2Pauli(|v2...n⟩ , |v′2...n⟩) ∩ V ecs2Pauli(|v′2...n⟩ , |v2...n⟩)
∪ Y ⊗ (V ecs2Pauli(|v2...n⟩ , i · |v′2...n⟩) ∩ V ecs2Pauli(|v′2...n⟩ ,−i ∗ |v2...n⟩).

(25)

Using Lemma 3.1, we can rewrite Equation 25 as follows:

Stab(|v⟩) = I⊗ (Stab(|v2...n⟩) ∩ Stab(|v′2...n⟩))
∪ Z ⊗ (Stab(|v2...n⟩) ∩ −I · Stab(|v′2...n⟩)
∪X ⊗ (π · Stab(|v2...n⟩) ∩ π−1 · Stab(|v′2...n⟩)
∪ Y ⊗ (πi · Stab(|v2...n⟩) ∩ −π−1i · Stab(|v′2...n⟩),

(26)

where π is a Pauli string transforming |v2...n⟩ into |v′2...n⟩.

The intersection of the returned cosets of two recursive calls can be computed in the same
way as in the Vecs2Pauli algorithm in Section 3.2.2. It is also necessary to find the union of these
intersections. For general cosets, a union of cosets doesn’t necessarily form another coset. However,
since the union of the separate parts of Equation 26 once again forms a stabilizer group, this union
does form a coset. Specifically, the coset intersection will form a coset with the stabilizer group we
intended to find as the group part of the coset, and I⊗n as coset representative.

Furthermore, it is sufficient to find all stabilizers that are to be multiplied with I, and one
of each for those multiplied with X and Z. If either of the calls corresponding to X and Z doesn’t
give a solution, only then is it necessary to look for an operator σ such that Y ⊗ σ is part of the
stabilizer group, to find its generators.

The reason we can do this is due to the fact that in the algorithm to find a smallest gener-
ating set, Gauss elimination is performed on a matrix representing the stabilizers. In Appendix
A of [VCE+22] it is explained why this is allowed. During the Gauss elimination, any stabilizers
starting with X, Y or Z will be eliminated in the row reduction, except for a maximum of one of
each. Since Y = ZX

i
, if we have both a stabilizer starting with Z and one starting with X, we can

also reduce the stabilizer starting with Y, so in that case we don’t need any stabilizers starting with Y.

Recursively finding the stabilizer group for multi-qubit vectors is done is lines 17-40 in Algo-
rithm 2.
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Algorithm 1 A subroutine for finding an element in a coset intersection and returning it

Procedure computeCosetIntersectionElement(cosets Coset1 and Coset2, complex numbers α1 and
α2)
Output: Pauli string π and α ∈ C or special value if no solution

1: if Coset1 and Coset2 are both non-empty then
2: π ← one element in Coset1 ∩ Coset2
3: if there is no such π then
4: return no solution
5: if α1 = α2 or α2 = allAlphaPossible then
6: return α1 · π
7: else if α1 = allAlphaPossible then
8: return α2 · π
9: return no solution

4 Applications

There are several areas where the Vecs2Pauli algorithm could be used. We will discuss two of the
applications that we had in mind when working on this algorithm. There could of course be more
uses of this algorithm we have not thought of so far.

4.1 In classical simulations

One such area is classical simulations: the simulation of a quantum computer on a regular computer.
As described in Section 2.3, to encode a quantum state of n qubits, we need a vector of length 2n.
However, if the quantum state has a full stabilizer group (generated by n elements), that stabilizer
group uniquely describes the corresponding quantum state [NC10]. Storing this vector requires
exponentially more space than storing the stabilizers, which is a very significant difference already
for relative small n.

This can be used in classical simulations. Since Vecs2Pauli can be used to find a state’s sta-
bilizers, it can be quite easily checked whether a state can be described by a full stabilizer group.
Many often-used quantum gates preserve the ability to write a quantum state using its stabilizer
group, see Section 2.4 on Clifford gates. Therefore classical simulation can be sped up by using
stabilizer group description where possible, switching to vectors when needed, and checking whether
stabilizer group descriptions can be used again by using Vecs2Pauli. It is important to note, that
due to Vecs2Pauli’s exponential input size, Vecs2Pauli can only be used in simulations like this for
a relatively small number of qubits.

Classical simulations are mostly done in order to determine how noisy a quantum computer
could be to still be accurate enough for the problem one’s trying to solve. A built quantum
computer is tested by running a quantum circuit with a relatively small number of qubits. The
levels of noise on this computer are measured and used as a parameter in the simulation, which uses
a much larger number of qubits. The level of noise can be adapted and the outcomes are analyzed.
This way, the highest noise level still allowed can be determined.
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Algorithm 2 Finding the stabilizer group

Procedure FindStabilizerGroup(vector v of length 2n)
Output: stabilizer group generating set G describing the stabilizer group of
v.

1: if n = 1 then
2: S ← {I} {see Equation 15}
3: if v1 = 0 then
4: S ← S ∪ {Z} {see Equation 16}
5: if v0 = 0 then
6: S ← S ∪ {−Z} {see Equation 16}
7: if v0 = v1 then
8: S ← S ∪ {X} {see Equation 17}
9: if v0 = −v1 then
10: S ← S ∪ {−X} {see Equation 17}
11: if v1 = i · v0 && v0 = −i · v1 then
12: S ← S ∪ {Y } {see Equation 19}
13: if v1 = −i · v0 && v0 = i · v1 then
14: S ← S ∪ {−Y } {see Equation 20}
15: G← findSmallestGeneratingSet(S)
16: return G
17: else
18: x← v0...2n−1−1 {the top half of v}
19: y ← v2n−1...2n−1 {the bottom half of v}
20: Stabx ← findStabilizerGroup(x)
21: Staby ← findStabilizerGroup(y)
22:

23: S ← {I ⊗ g | g ∈ Stabx ∩ Staby}
24:

25: SolutionZ ← V ecs2Pauli(y,−y)
26: if SolutionZ not empty then
27: S ← S ∪ {Z ⊗ g0 | g0 . . . gk = Stabx ∩ SolutionZ}
28:

29: SolutionX1← V ecs2Pauli(x, y)
30: SolutionX2← (inverse of coset representative of SolutionX1, group of SolutionX1)
31: if SolutionX1 and SolutionX2 both non-empty then
32: S ← S ∪ {X ⊗ g0 | g0 . . . gk = SolutionX1 ∩ SolutionX2}
33:

34: if Stabx ∩ SolutionZ is empty or SolutionX1 ∩ SolutionX2 is empty then
35: SolutionY 1← V ecs2Pauli(x, i · y)
36: SolutionY 2← (−1· inverse of coset representative of SolutionY 1, group of SolutionY 1)
37: if SolutionY 1 and SolutionY 2 both non-empty then
38: S ← S ∪ {Y ⊗ g0 | g0 . . . gk = SolutionY 1 ∩ SolutionY 2}
39: G← findSmallestGeneratingSet(S)
40: return G
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Algorithm 3 Finding a Pauli string converting v to w for 1 qubit

Procedure Vecs2PauliBase(vectors v and w both of length 2)
Output: A Pauli operator π and α ∈ C s.t. α · π · v = w.

1: if all entries in v and w are 0 then
2: return special value: all α possible
3:

4: if (v0 = 0 and w0 ̸= 0) or (v1 = 0 and w1 ̸= 0) then
5: skip to line 20
6: else if v0 and w0 are 0 then
7: if v1 ̸= 0 then
8: α← w1

v1
9: if α < 0 then
10: return − α · Z
11: else
12: return α · I
13: else
14: α← w0

v0
15: if α · v1 = w1 then
16: return α · I
17: if −α · v1 = w1 then
18: return α · Z
19:

20: if (v0 = 0 and w1 ̸= 0) or (v1 = 0 and w0 ̸= 0) then
21: skip to line 36
22: else if v0 = 0 and w1 = 0 then
23: if v1 ̸= 0 then
24: α← w0

v1
25: if imag(α) ̸= 0 then
26: return − α

i
· Y

27: else
28: return α ·X
29: else
30: α← w1

v0
31: if α · v1 = w0 then
32: return α ·X
33: if −α · v1 = w0 then
34: return α

i
· Y

35:

36: return special value: no α possible
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Algorithm 4 Finding all Pauli strings converting v to w for any number of qubits

Procedure Vecs2Pauli(vectors v and w both of length 2n)
Output: Pauli string π, α ∈ C and stabilizer group generating set G s.t. α · π · g · v = w for
g ∈ ⟨G⟩.
1: if v and w are both zero vectors then
2: return special value: all α possible
3: else if only v is a zero vector then
4: return special value: no α possible
5: else if only w is a zero vector then
6: return special value: α = 0, π and G are irrelevant
7: if n = 1 then
8: α, π ← V ecs2PauliBase(v, w)
9: Stab← findStabilizerGroup(v)
10: return (α, (π, Stab))
11: x← top half of v
12: y ← bottom half of v
13: p← top half of w
14: q ← bottom half of w
15: Stab← findStabilizerGroup(v)
16: if x and p are zero vectors then
17: α2,MapI2 ← V ecs2Pauli(y, q)
18: return (α2, (I⊗ coset representative of MapI2, Stab))
19: α1,MapI1Z1 ← V ecs2Pauli(x, p)
20: if y and q are zero vectors then
21: return (α1, (I⊗ coset representative of MapI1Z1, Stab))
22: α2,MapI2 ← V ecs2Pauli(y, q)
23: α · π ← computeCosetIntersectionElement(MapI1Z1,MapI2, α1, α2)
24: if α · π is not no solution then
25: return (α, (I ⊗ π, Stab)) {solution to Equation 10}
26: α2,MapZ2 ← V ecs2Pauli(−y, q)
27: α · π ← computeCosetIntersectionElement(MapI1Z1,MapZ2, α1, α2)
28: if α · π is not no solution then
29: return (α, (Z ⊗ π, Stab)) {solution to Equation 13}
30: if x and q are zero vectors then
31: α2,MapX2 ← V ecs2Pauli(y, p)
32: return (α2, (X⊗ coset representative of MapX2, Stab))
33: α1,MapX1 ← V ecs2Pauli(x, q)
34: if y and p are zero vectors then
35: return (α1, (X⊗ coset representative of MapX1, Stab))
36: α2,MapX2 ← V ecs2Pauli(y, p)
37: α · π ← computeCosetIntersectionElement(MapX1,MapX2, α1, α2)
38: if α · π is not no solution then
39: return (α, (X ⊗ π, Stab)) {solution to Equation 11}
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40: if x and q are zero vectors then
41: α2,MapY2 ← V ecs2Pauli(−i · y, p)
42: return (α2, (Y⊗ coset representative of MapY2, Stab))
43: α1,MapY1 ← V ecs2Pauli(i · x, q)
44: if y and p are zero vectors then
45: return (α1, (Y⊗ coset representative of MapY1, Stab))
46: α2,MapY2 ← V ecs2Pauli(−i · y, p)
47: α · π ← computeCosetIntersectionElement(MapY1,MapY2, α1, α2)
48: if α · π is not no solution then
49: return (α, (Y ⊗ π, Stab)) {solution to Equation 12}
50: return special value: no α possible

In one particular simulator, NetSquid [CKD+21], switching from a ket to its corresponding stabilizer
group was still an open question. The simulator does have the possibility to go from a stabilizer
group back to vector/ket notation bu doing it the other way around was still a challenge. Vecs2Pauli
can be used to do exactly that, since it will calculate a vector v’s stabilizer group if v is used for
both input vectors.

4.1.1 Example

To illustrate how using Vecs2Pauli in simulations would be useful, we will work out an example
where it is possible to describe many intermediary states using the stabilizer group’s generators,
but it is necessary to switch between that and vectors at some point.

Quantum circuits typically start with all qubits in the |0⟩ state. With three qubits, that makes
|000⟩ which has {ZII, IZI, IIZ} as stabilizer group generators. Since the set of generators has
the same amount of elements as there are qubits, this stabilizer group is full and these generators
uniquely describe this quantum state.

Figure 1: The circuit that is
used in the example.

After applying the H,S and CNOT gates in the example shown
in Figure 1, the value of the quantum state is 1√

2
(|000⟩ + |110⟩),

which can be described by these stabilizer group generators:
{IIZ, ZZI,XXI}. We then run into a problem when applying
the T =

√
S gate in the next step. The T gate is not a Clifford

gate and does not map our full stabilizer group to another full
stabilizer group. After applying the T gate, the value of the state
is 1√

2
(|000⟩+ e

iπ
4 |110⟩). While IIZ and ZZI are still generators of

this state’s stabilizer group, there are no others, which means this
state doesn’t have a full stabilizer group. It is therefore not possible
to describe this state using only the stabilizer group generators and it is necessary to switch to an
amplitude vector to represent it. The next CNOT will preserve the number of stabilizers, but will
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not change the fact that there aren’t enough, so a vector is still necessary.

Only after the last gates can we go back to the stabilizer group generator notation, since we
encounter another T gate. Since we apply the T gate on the same qubit as before, we have applied
T to that qubit twice, making it equivalent to applying the S gate once. Since S is a Clifford gate,
this should imply that it should be possible to return to stabilizer group generator notation. This is
indeed the case since the quantum state at the end of the circuit can be written as 1√

2
(|000⟩−|111⟩).

The stabilizer group of this state is generated by {IZZ,ZZI,−XXX} which is a set of size 3,
making it once again a full stabilizer group.

Where Vecs2Pauli comes in is checking whether a state has a full stabilizer group and can thus be
represented by it. When checking the stabilizer group of 1√

2
(|000⟩+ e

iπ
4 |110⟩), Vecs2Pauli will only

return 2 generators, but for 1√
2
(|000⟩ − |111⟩) the algorithm will give 3 generators, so one knows it

has a full stabilizer group.

4.2 Educative tool/hypothesis testing

The Vecs2Pauli algorithm could also be used as an educative tool or for hypothesis testing. In both
cases, a logical ways to use it would be to either fill in both vectors v and w and see what the
outcome is (and if it matches what the user thought it would be), or fill in one vector and trying to
find the second vector such that the outcome matches a pre-determined outcome.

Researchers can use Vecs2Pauli to check ideas they have for hypotheses by testing them for
example on different inputs with different numbers of qubits. Since manually figuring out which
operators map an 8-qubit state to another 8-qubit state becomes quite tedious, using Vecs2Pauli
will make it easier to test hypotheses on a slightly higher number of qubits. An example of such a
hypothesis would be that applying a certain subgroup of PauliLIMs to a quantum state will always
result in a specific subgroup of quantum states.
It is also useful to know if a quantum state is a stabilizer state, since many different fields work
with stabilizer states and Clifford gates. As mentioned before in Section 2.5, stabilizer states have
many uses.

Vecs2Pauli could also be used in education, for example when teaching students about stabi-
lizer groups. The students could check their answers by filling in the same vector for both input
vectors, which will give its stabilizer group (in coset notation, but the coset representative will be
the identity).

5 Discussion

5.1 Time complexity

5.1.1 Naive algorithm

In Section 3.1 we provided a naive algorithm for finding all solutions to Equation 3. For a vector
containing values for n qubits, there are 4n possible Pauli operators. To check whether an operator
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P is correct (P · v = w) we will have to multiply P with v, which would usually take m2 · 2n amount
of multiplications for an arbitrary matrix and a vector of length 2n, where m is the matrix size.
Since the matrix size is 2n by 2n, multiplying P with v takes 2n · 2n = 4n multiplications. Checking
whether P · v and w match costs 2n checks. All in all, performing the naive version of the naive
algorithm makes for a time complexity of O(4n · 4n) = O(16n).

If we use permutations to apply PauliLIMs, we can reduce this complexity. To apply the PauliLIM
as a permutation to vector v of length 2n, we need O(2n · n) operations: applying n single-qubit
Pauli operators on each entry in v, possibly multiplying the result by −1, i or −i. This reduces
total complexity to O(4n · 2n · n) = O(8n · n).

Adding in the operations necessary for dealing with α ̸= 1 costs at most 3 · 2n extra operations, so
this will not change our big-O complexity.

5.1.2 Vecs2Pauli

While the Vecs2Pauli algorithm described in Algorithm 4 works completely as intended, it performs
many recursive calls. In the worst case, it performs 7 calls to Vecs2Pauli with one qubit less, and
in the findStabilizerGroup call, another 7 recursive calls are done. All in all, the complexity of
Vecs2Pauli as described in Algorithm 4 is of order O(14n · n3). This is significantly slower than the
naive algorithm we discussed. However, with some changes to the algorithm, we believe it can be
done in O(7n · n3).

To explain how this speed-up can be achieved, it is useful to look at all the recursive calls

that are performed. If we have vectors v̄ =

(
a
b

)
and w̄ =

(
c
d

)
, the following 7 calls are done:

a→ c, b→ d, −b→ d, a→ d, b→ c, i · a→ d, −i · b→ c.

Of these 7 calls, the outcomes of the third, sixth, and seventh can be found without performing a
recursive call. Take the third one for example, where we want to find α and P such that

α · P · −c = d. (27)

From the second call, we get an α′ and P ′ such that

α′ · P ′ · c = d. (28)

To find a solution to Equation 27, we only need to take α′ and multiply by −1. Similar reasoning
can be used to explain how we can get solutions to the sixth and seventh recursive calls by adapting
the solution found in the fourth and fifth calls.

In a similar fashion, the number of recursive calls in the findStabilizerGroup algorithm (Algorithm

2) can be reduced. In one level of findStabilizerGroup performed on vector v̄ =

(
a
b

)
, the following

calls are performed:

a→ a, b→ b, −b→ b, a→ b, b→ a, i · a→ b, −i · b→ a.
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Using the same method as explained before, it will suffice to only perform the following three calls,
since the outcomes of the other calls can be derived from these:

a→ a, b→ b, a→ b.

Note we need one less call here compared to Vecs2Pauli, since b→ a = (a→ b)−1.

By implementing the improvements mentioned above, we reduce the number of recursive calls per
layer by 7. The complexity of Vecs2Pauli should therefore reduce to O(7n · n3).

5.2 Future work

Improving Vecs2Pauli’s runtime is a clear way to improve the algorithm, but there are also some
other issues that could be improved upon in future work.

5.2.1 Preprocessing the inputs

One of the issues we face at the moment is the fact that computers only have finite memory, while
some numbers that are used frequently in quantum states are irrational. One such example is 1√

2
.

It is therefore not possible to fully store the numbers, so the decimals are cut off at some point. It
is known, that this can sometimes cause discrepancies. In an exaggeration, 1√

2
can be stored as

0.707106781 at one point and 0.707106782 somewhere else. While they represent the same number,
the computer will not recognize them as being equal, which presents difficulties in our algorithms.

Furthermore, if a quantum state has a unique stabilizer group describing it, the values in its
corresponding vector will all be of the form {±1,±i}·m

√
2
k with k ∈ {0, . . . , n}, where n is the number of

qubits and k is the same for each entry.

To simplify dealing with both of the notions mentioned above, we can use an algorithm to
preprocess the input vectors. We will try to simplify all entries to the form a+b·i√

r
k with k ∈ {0, . . . , n}

and r ∈ {1, 2, 3, 5} with n still the number of qubits. If this works, we pull out the common factor
and can perform Vecs2Pauli with a vector containing only integers, dealing with the factor after
running the algorithm. Preprocessing the vectors like this can be done using Algorithm 5.

Simplifying the input vectors using this has several purposes. Its main purpose is to correct

very small errors in numbers. For example,

(
1.0000001
0.9999998

)
would be recognized as almost 1√

1
·
(
1
1

)
and the algorithm will work with

(
1
1

)
which saves storage space. Also, it would recognize that

Z will send

(
1
1

)
to

(
1
−1

)
, while the algorithm won’t give Z as a solution when looking for

transformations from

(
1.0000001
0.9999998

)
to

(
1
−1

)
.

We start by going through all entries of the input vector v until a non-zero value is found.
We then loop over all k from 0 until n and all r ∈ {1, 2, 3, 5} in lines 2-6 and try to find out if the
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value can be written as m√
r
k with m an integer (which may or may not be multiplied by i). If so, it

is tested whether the other values in the vector can also be written in that form with the same
value for k. This check is performed in lines 10-13. If that is the case, 1√

r
k is returned as well as a

vector containing mi’s such that 1√
r
k ·mi = vi on line 15.

It might be the case that we first find a value 2√
2
but later in the vector find 1√

8
. This sec-

ond value cannot be written in the desired form if we keep k = 1, but we miss out if we don’t check
if the whole vector can also be simplified with k = 3 since 4√

8
= 2√

2
. This is why we move on to the

next value in v if we can’t simplify the vector using a particular k we found. Only when all entries
have been used to find a suitable k and none have worked, we will return 1 · v.

This preprocessing algorithm will only work if all entries of the vector are either 0 or able to
be written as approximately m√

r
k with m ∈ Z · {1, i}, r ∈ {1, 2, 3, 5} and k ≤ n. If any entry is too

far from any value of this form, Vecs2Pauli will just have to work with the original input vector. We
have a certain amount of control over this, since we can decide when something is almost an integer,
but since quantum states for larger numbers of qubits will have small values in its vector, we can’t
allow to round off too much. For example, rounding 0.8 to 1 will give incorrect/unexpected results.

Algorithm 5 A subroutine for preprocessing the input to Vecs2Pauli, factoring out powers of
square roots of 1, 2, 3 or 5

Procedure preprocessInput(vector v of length 2n)
Output: complex number λ and vector m s.t. λ ·m = v

1: for every non-zero entry vj in v do
2: for k in [0, n] do
3: for r in {1, 2, 3, 5} do
4: if vj ·

√
r
k
is almost integer then

5: foundK ← k, foundR← r
6: exit k-for-loop
7: if no foundK then
8: return 1, v
9: λ← 1√

foundR
foundK

10: for p in [0, 2n − 1] do

11: mp ← vp ·
√
foundR

foundK

12: if mp is not almost integer then
13: return to line 1 with next entry
14: if p = 2n then
15: return λ,m
16: return 1, v
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